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We define and study a tritrophic bioeconomic model of Lotka-Volterra with a prey, middle predator, and top predator populations.
These fish populations are exploited by two fishermen. We study the existence and the stability of the equilibrium points by using
eigenvalues analysis and Routh-Hurwitz criterion.We determine the equilibrium point that maximizes the profit of each fisherman
by solving the Nash equilibrium problem. Finally, following some numerical simulations, we observe that if the price varies, then
the profit behavior of each fisherman will be changed; also, we conclude that the price change mechanism improves the fishing
effort of the fishermen.

1. Introduction

The problem of modelization is, perhaps, the most challeng-
ing in modern ecology, biology, chemistry, and many other
sciences. In population dynamics, specially, in the dynamics
of prey-predator marine species interactions modelization
has gained a great importance. A predator is an organism
that feeds another organism. The prey is the organism which
the predator feeds. Predator always depends upon its prey
and the predator dies if it does not get food. The first basic
classic prey-predator model is renowned by Lotka-Volterra
model andmathematical formulation of thismodel is directly
related to the great work of Lotka (in 1925) and Volterra (in
1926).Thanks to this prey-predatormodel, othermodels have
been proposed and studied [1–3]. In [1], the authors have con-
sidered predator-prey dynamics with predator “searching”
and “handling” modes; they have derived a model that gen-
eralizes Holling’s functional responses and they have proved
results concerning local and global properties, including for
oscillations. In [2], the authors have formulated and stud-
ied a stage-structured predator-prey model of Beddington-
DeAngelis type functional response to investigate the impact
of predation over the immature prey by the juvenile predator.
In [3], the authors have studied the global stability of diffusive

predator-prey system of Holling-Tanner type in a bounded
domain.

Let us add that many researchers have studied extended
tritrophic (prey, middle predator, and top predator) models
to understand the interaction of different types of species
[4–6]. In [4], the dynamics of a predator-prey model with
disease in super predator are investigated. In [5], the authors
have studied a prey-predatormodel with the concept of super
predator under economic perspective. In [6], the authors have
made a systematic analysis of the dynamics of a predator-prey
systemwith type II functional response, inwhich the predator
growth rate is affected by the presence of a super predator.

In recent years, the biodiversity of marine populations is
threatened by human impact, more precisely, by harvesting,
which requiredmany scientists to study bioeconomicmodels
of fishery [7, 8]. In [7], the authors havemade amathematical
study of a bioeconomic model of fishing for multisite,
exploited by several fishermen, except one of them which
is defined as not exploitable free fishing zone. In [8], the
authors proposed and analyzed an extended model for the
prey-predator-scavenger in presence of harvesting to study
the effects of harvesting of predator as well as scavenger.

In this paper, we have studied a tritrophic (prey, middle
predator, and top predator) generalist model.The objective is
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to calculate the fishing effort that maximizes the profit of the
fishermen, while respecting the conservation of the three fish
populations, and also to study the effect of the variation of
the price on each profit. The remaining part of this paper is
organized as follows. In Section 2, we introduce the biological
tritrophic model. The existence and the stability of the steady
states solutions are analyzed in Section 3. The bioeconomic
model of the prey, middle predator, and top predator system
is proposed in Section 4. In Section 5, we compute and solve
the Nash equilibrium problem. In Section 6, we solve the
linear complementarity problem. In Section 7, we present
some numerical simulations to show the impact of price on
the profits of fishermen. Finally, a brief conclusion is given in
Section 8.

2. Biological Model

In this section, we consider a tritrophic prey-predator model
which consists of three constituent populations, that is,
prey, middle predator, and top predator. We impose that
the population of prey 𝑥(𝑡) grows in the logistic manner
with birth rate constant and there exist interactions between
the prey and middle and top predator due to defensive
ability of prey; we impose that the population of middle
predator 𝑦(𝑡) grows also in the logistic manner with birth
rate constant, prey 𝑥(𝑡) is favorite food for middle predator𝑦(𝑡), andhence in the presence of favorite food the population
density of middle predator 𝑦(𝑡) will increase, and there are
interactions between the middle predator and top predator
due to defensive ability of middle predator; in the presence
of favorite food (prey and middle predator) of top predator𝑧(𝑡) the population density of top predator 𝑧(𝑡) will increase.
Hence we can write this model in mathematical terms as𝑑𝑥 (𝑡)𝑑𝑡 = 𝑟1𝑥 (1 − 𝑥) − 𝛼𝑥𝑦 − 𝛽𝑥𝑧,𝑑𝑦 (𝑡)𝑑𝑡 = 𝑟2𝑦 (1 − 𝑦) + 𝛼𝑥𝑦 − 𝛿𝑦𝑧,𝑑𝑧 (𝑡)𝑑𝑡 = 𝑟3𝑧 (1 − 𝑧) + 𝛽𝑥𝑧 + 𝛿𝑦𝑧

(1)

with positive initial conditions 𝑥(0) > 0, 𝑦(0) > 0, 𝑧(0) > 0.
Here 𝑟1, 𝑟2 and 𝑟3 are the per capita growth rate of prey,

middle predator, and top predator, respectively; 𝛼, 𝛽, and 𝛿
are the maximum value which per capita reduction rate of 𝑥
and 𝑦 can attain, respectively; 𝛼 is the conversion rate of prey𝑥 into middle predator 𝑦, and 𝛽 and 𝛿 are the conversion rate
of prey𝑥 into top predator 𝑧 and the conversion rate ofmiddle
predator 𝑦 into top predator 𝑧, respectively.
3. The Steady States of the System

Since the focus is on the growth of marine species, there is
need for the steady states of the system to satisfy conditions
for nonnegativity. Furthermore, it is realized that the preda-
tors cannot survive in the complete absence of their prey.
System (1) has eight biologically feasible nonnegative steady

states. These steady states are obtained by solving the system
of equations

𝑟1 (1 − 𝑥) − 𝛼𝑦 − 𝛽𝑧 = 0,𝑟2 (1 − 𝑦) + 𝛼𝑥 − 𝛿𝑧 = 0,𝑟3 (1 − 𝑧) + 𝛽𝑥 + 𝛿𝑦 = 0.
(2)

(i) 𝑃1 = (0, 0, 0), 𝑃2 = (1, 0, 0), 𝑃3 = (0, 1, 0), 𝑃4 =(0, 0, 1).
(ii) 𝑃5 = (𝑥5, 𝑦5, 0), where 𝑥5 = 𝑟2(𝑟1 +𝛼)/(𝑟1𝑟2 +𝛼𝛼) and𝑦5 = 𝑟1(𝑟2 + 𝛼)/(𝑟1𝑟2 + 𝛼𝛼).
(iii) 𝑃6 = (𝑥6, 0, 𝑧6), where 𝑥6 = 𝑟3(𝑟1 −𝛽)/(𝑟1𝑟3 +𝛽𝛽) and𝑧6 = 𝑟1(𝑟3 + 𝛽)/(𝑟1𝑟3 + 𝛽𝛽).
(iv) 𝑃7 = (0, 𝑦7, 𝑧7), where 𝑦7 = 𝑟3(𝑟2 − 𝛿)/(𝑟2𝑟3 + 𝛿𝛿) and𝑧7 = 𝑟2(𝑟3 + 𝛿)/(𝑟2𝑟3 + 𝛿𝛿).
(v) 𝑃8 fl 𝑃∗ = (𝑥∗, 𝑦∗, 𝑧∗), where
𝑥∗ = (𝑟1𝑟2𝑟3 + 𝑟1𝛿𝛿 + 𝑟3𝛼𝛿 − 𝑟2𝑟3𝛼 − 𝑟2𝑟3𝛽 − 𝑟2𝛽𝛿)Δ ,
𝑦∗ = (𝑟1𝑟2𝑟3 + 𝑟2𝛽𝛽 − 𝑟3𝛽𝛼 − 𝑟1𝑟3𝛿 + 𝑟1𝑟3𝛼 − 𝑟1𝛽𝛿)Δ ,
𝑧∗ = (𝑟1𝑟2𝑟3 + 𝑟1𝑟2𝛽 + 𝑟1𝑟2𝛿 + 𝑟1𝛼𝛿 − 𝑟2𝛽𝛼 + 𝑟3𝛼𝛼)Δ ,

(3)

where Δ = 𝑟1𝑟2𝑟3 + 𝑟1𝛿𝛿 + 𝑟2𝛽𝛽 + 𝑟3𝛼𝛼 − 𝛼𝛿𝛽 + 𝛽𝛼𝛿.
One can see that the steady state equilibrium 𝑃∗ exists if𝑟1 > max{𝛼, 𝛽}, 𝑟2 > 𝛿, and 𝑟3 > max{𝛿, 𝛽}.

3.1. Analysis of Steady States. The Jacobian matrix for system
(1) is given by

𝐽 = [[[[
𝐽11 −𝛼𝑥 −𝛽𝑥𝛼𝑦 𝐽22 −𝛿𝑦𝛽𝑧 𝛿𝑧 𝐽33

]]]] , (4)

where 𝐽11 = 𝑟1 (1 − 2𝑥) − 𝛼𝑦 − 𝛽𝑧,𝐽22 = 𝑟2 (1 − 2𝑦) + 𝛼𝑥 − 𝛿𝑧,𝐽33 = 𝑟3 (1 − 2𝑧) + 𝛽𝑥 + 𝛿𝑦.
(5)

At any steady state solution, the Jacobian matrix is
computed. Let 𝐽𝑘 = 𝐽 denote the Jacobian evaluated at 𝑃𝑘 for𝑘 = 1, 2, 3, . . . , 7, the corresponding entries, and 𝐽∗ denote
the Jacobian evaluated at 𝑃∗.
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Figure 1: Dynamical behaviors and phase space trajectories of the three fish populations.

Table 1: Characteristics of the three fish populations.

Prey Middle predator Top predator𝑟1 = 5 𝑟2 = 4 𝑟3 = 3𝛼 = 9.10−6 𝛼 = 8.10−6 𝛽 = 2.10−6𝛽 = 7.10−6 𝛿 = 6.10−6 𝛿 = 10−6
3.1.1. Local Stability of the Steady State𝑃1. For the equilibrium
point 𝑃1 = (0, 0, 0) the Jacobian matrix is given by

𝐽1 = [[[
𝑟1 0 00 𝑟2 00 0 𝑟3

]]] . (6)

The eigenvalues are found to be 𝜆1 = 𝑟1 > 0, 𝜆2 = 𝑟2 > 0, and𝜆3 = 𝑟3 > 0, and then this point is unstable.
According to Table 1, Figure 1 shows the dynamical

behaviors and phase space trajectory of the prey, middle
predator, and top predator fish populations against time,

beginning with the initial values 𝑥(0) = 0.01, 𝑦(0) = 0.01,
and 𝑧(0) = 0.01. By Figure 1 we find that the steady state point𝑃1 is unstable, andmore precisely this point tends to the point𝑃∗.
3.1.2. Local Stability of the Steady State 𝑃2. In the same way
we can consider the stationary point 𝑃2 = (1, 0, 0) and find
the Jacobian matrix

𝐽2 = [[[[
−𝑟1 −𝛼 −𝛽0 𝑟2 + 𝛼 00 0 𝑟3 + 𝛽

]]]] . (7)

The eigenvalues can easily be computed, 𝜆1 = −𝑟1, 𝜆2 = 𝑟2 +𝛼 > 0, and 𝜆3 = 𝑟3 + 𝛽 > 0. Therefore, the point 𝑃2 = (1, 0, 0)
is unstable.

Following Table 1, Figure 2 shows the dynamical behav-
iors and phase space trajectory of the three fish populations
against time, beginning with the initial values 𝑥(0) = 1.01,
and 𝑦(0) = 0.01, 𝑧(0) = 0.01. By Figure 2 we can see that the
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Figure 2: Dynamical behaviors and phase space trajectories of the three fish populations.

steady state point𝑃2 is unstable, andmore precisely this point
tends to the point 𝑃∗ too.
3.1.3. Local Stability of the Steady State 𝑃3. For the point 𝑃3 =(0, 1, 0)we have the Jacobianmatrix 𝐽3 which is written in the
form

𝐽3 = [[[[
𝑟1 − 𝛼 0 0𝛼 −𝑟2 −𝛿0 0 𝑟3 + 𝛿

]]]] . (8)

The eigenvalues are 𝜆1 = 𝑟1−𝛼, 𝜆2 = −𝑟2, and 𝜆3 = 𝑟3+𝛿 > 0.
Then, the point 𝑃3 = (0, 1, 0) is unstable.

According to Table 1, Figure 3 shows the dynamical
behaviors and phase space trajectory of the three fish pop-
ulations against time, beginning with the initial values 𝑥(0) =0.01, 𝑦(0) = 1.01, and 𝑧(0) = 0.01. By Figure 3 we can see
that the steady state point 𝑃3 is also unstable and tends to the
point 𝑃∗.
3.1.4. Local Stability of the Steady State 𝑃4. 𝑃4 = (0, 0, 1) is
stable if 𝑟1 − 𝛽 < 0 and 𝑟2 − 𝛿 < 0; if not, it is unstable.

In fact, the Jacobian matrix of the system in this state is
written as

𝐽4 = [[[[
𝑟1 − 𝛽 0 00 𝑟2 − 𝛿 0𝛽 𝛿 −𝑟3

]]]] . (9)

The eigenvalues are 𝜆1 = 𝑟1 − 𝛽, 𝜆2 = 𝑟2 − 𝛿, and 𝜆3 = −𝑟3.
Therefore, if 𝑟1 − 𝛽 < 0 and 𝑟2 − 𝛿 < 0, then the point 𝑃4 =(0, 0, 1) is stable; if not, it is an unstable point.

For the same values parameters in Table 1, Figure 4
indicates the dynamical behaviors and phase space trajectory
of the three fish populations against time, beginning with the
initial values 𝑥(0) = 0.01, 𝑦(0) = 0.01, and 𝑧(0) = 1.01.
Following Figure 4 we can see that the steady state point 𝑃3 is
unstable and also tends to the point 𝑃∗.
3.1.5. Local Stability of the Steady State 𝑃5. For the equilib-
rium point 𝑃5 = (𝑥5, 𝑦5, 0) the Jacobian matrix is given by

𝐽5 = [[[[
−𝑟1𝑥5 −𝛼𝑥5 −𝛽𝑥5𝛼𝑦5 −𝑟2𝑦5 −𝛿𝑦50 0 𝑟3 + 𝛽𝑥5 + 𝛿𝑦5

]]]] . (10)
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Figure 3: Dynamical behaviors and phase space trajectories of the three fish populations.

The eigenvalues are

𝜆1
= −12 (𝑟1𝑥5 + 𝑟2𝑦5 + √(𝑟1𝑥5 − 𝑟2𝑦5)2 − 4𝛼𝛼𝑥5𝑦5) ,𝜆2
= −12 (𝑟1𝑥5 + 𝑟2𝑦5 − √(𝑟1𝑥5 − 𝑟2𝑦5)2 − 4𝛼𝛼𝑥5𝑦5) ,

𝜆3 = 𝑟3 + 𝛽𝑥5 + 𝛿𝑦5.
(11)

We have 𝜆3 > 0; then, the point 𝑃5 = (𝑥5, 𝑦5, 0) is unstable.
Following Table 1, Figure 5 represents the dynamical

behaviors and phase space trajectory of the three fish pop-
ulations against time, beginning with the initial values 𝑥(0) =1.01, 𝑦(0) = 1.02, and 𝑧(0) = 0.01. Following Figure 5 we can
deduce that the steady state point𝑃5 is unstable and also tends
to the point 𝑃∗.
3.1.6. Local Stability of the Steady State 𝑃6. For the equilib-
rium point 𝑃6 = (𝑥6, 0, 𝑧6) the Jacobian matrix is given by

𝐽6 = [[[[
−𝑟1𝑥6 −𝛼𝑥6 −𝛽𝑥60 𝑟2 + 𝛼𝑥6 − 𝛿𝑧6 0𝛽𝑧6 𝛿𝑧6 𝑟3𝑧6

]]]] . (12)

the eigenvalues are𝜆1
= −12 (𝑟1𝑥6 + 𝑟3𝑧6 − √(𝑟1𝑥6 − 𝑟3𝑧6)2 − 4𝛽𝛽𝑥6𝑧6) ,𝜆2
= −12 (𝑟1𝑥6 + 𝑟3𝑧6 + √(𝑟1𝑥6 − 𝑟3𝑧6)2 − 4𝛽𝛽𝑥6𝑧6) ,𝜆3 = 𝑟2 + 𝛼𝑥6 − 𝛿𝑧6.

(13)

We have 𝜆1 > 0 and 𝜆2 > 0. Therefore, the point 𝑃6 =(𝑥6, 0, 𝑧6) is unstable.
According to Table 1, Figure 6 shows the dynamical

behaviors and phase space trajectory of the three marine
species against time, beginning with the initial values 𝑥(0) =1.05, 𝑦(0) = 0.01, and 𝑧(0) = 1.5. Following Figure 6 we can
deduce that the steady state point𝑃6 is unstable and also tends
to the point 𝑃∗.
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Figure 4: Dynamical behaviors and phase space trajectories of the three fish populations.

3.1.7. Local Stability of the Steady State𝑃7. For the equilibrium
point 𝑃7 = (0, 𝑦7, 𝑧7) the Jacobian matrix is given by

𝐽7 = [[[[
𝑟1 − 𝛼𝑦7 − 𝛽𝑧7 0 0𝛼𝑦7 −𝑟2𝑦7 −𝛿𝑦7𝛽𝑧7 𝛿𝑧7 −𝑟3𝑧7

]]]] . (14)

the eigenvalues are𝜆1
= −12 (𝑟2𝑦7 + 𝑟3𝑧7 − √(𝑟2𝑦7 + 𝑟3𝑧7)2 − 4𝛿𝛿𝑦7𝑧7) ,𝜆2
= −12 (𝑟2𝑦7 + 𝑟3𝑧7 + √(𝑟2𝑦7 + 𝑟3𝑧7)2 − 4𝛿𝛿𝑦7𝑧7) ,𝜆3 = 𝑟1 − 𝛼𝑦7 − 𝛽𝑧7.

(15)

We have 𝜆1 > 0 and 𝜆2 > 0. Therefore, the point 𝑃7 =(0, 𝑦7, 𝑧7) is unstable.
Following Table 1, Figure 7 shows the dynamical behav-

iors and phase space trajectory of the three marine species
against time, beginning with the initial values 𝑥(0) = 0.01,𝑦(0) = 1.4, and 𝑧(0) = 1.65. By Figure 7 we can conclude that

the steady state point𝑃7 is unstable and also tends to the point𝑃∗.
3.1.8. Local Stability of the Steady State 𝑃∗. As usual, one can
consider the corresponding linearized system (the Jacobian
matrix) and determine the characteristic equation for the
eigenvalues. The Jacobian matrix (in the equilibrium point𝑃∗) reads

𝐽∗ = [[[[
−𝑟1𝑥∗ −𝛼𝑥∗ −𝛽𝑥∗𝛼𝑦∗ −𝑟2𝑦∗ −𝛿𝑦∗𝛽𝑧∗ 𝛿𝑧∗ −𝑟3𝑧∗

]]]] (16)

resulting in the characteristic equation and trying to apply
Routh-Hurwitz conditions. We find𝑃 (𝜆) = 𝑎0𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + 𝑎3, (17)

where𝑎0 = 1,𝑎1 = 𝑟1𝑥∗ + 𝑟2𝑦∗ + 𝑟3𝑧∗,𝑎2 = 𝑟3𝑧∗ (𝑟1𝑥∗ + 𝑟2𝑦∗) + 𝑥∗𝑦∗ (𝛼𝛼 + 𝑟1𝑟2)+ 𝑥∗𝑧∗𝛽𝛽 + 𝑦∗𝑧∗𝛿𝛿,
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Figure 5: Dynamical behaviors and phase space trajectories of the three fish populations.

𝑎3 = 𝑧∗ (𝑟1𝑥∗ + 𝑟2𝑦∗) (𝑥∗𝛽𝛽 + 𝑦∗𝛿𝛿)− 𝛿𝑦∗𝑧∗ (𝛿𝑟2𝑦 − 𝛼𝛽𝑥∗)− 𝛽𝑥∗𝑧∗ (𝛽𝑟1𝑥∗ + 𝛼𝛿𝑦∗) + 𝑟3𝑥∗𝑦∗𝑧∗ (𝛼𝛼 + 𝑟1𝑟2) .
(18)

We can easily verify that 𝑎0, 𝑎1, 𝑎2, 𝑎3, and 𝑎1𝑎2 − 𝑎0𝑎3
are all positive. Thus, the Routh-Hurwitz conditions are
satisfied. Therefore, the point 𝑃∗ = (𝑥∗, 𝑦∗, 𝑧∗) is locally
asymptotically stable.

For the values parameters quoted in Table 1, Figure 8
shows the dynamical behaviors and phase space trajectory
of the three marine species against time, beginning with the
initial values 𝑥(0) = 46.7, 𝑦(0) = 39.9, and 𝑧(0) = 31.1. By
Figure 8 one can see that the steady state point 𝑃∗ is locally
asymptotically stable.

More precisely, beginning with different initial values we
can note that the three fish populations tend to the point 𝑃∗.
4. Bioeconomic Model

The main purpose of this section is to define and study a
bioeconomic model for two fishermen who catch the three

fish populations. The model for the evolution of these three
fish populations becomes

𝑑𝑥 (𝑡)𝑑𝑡 = 𝑟1𝑥 (1 − 𝑥) − 𝛼𝑥𝑦 − 𝛽𝑥𝑧 − 𝑞1𝐸1𝑥,𝑑𝑦 (𝑡)𝑑𝑡 = 𝑟2𝑦 (1 − 𝑦) + 𝛼𝑥𝑦 − 𝛿𝑦𝑧 − 𝑞2𝐸2𝑦,𝑑𝑧 (𝑡)𝑑𝑡 = 𝑟3𝑧 (1 − 𝑧) + 𝛽𝑥𝑧 + 𝛿𝑦𝑧 − 𝑞3𝐸3𝑧.
(19)

The capturability coefficient 𝑞 is a key parameter in the
validation process of the fishing simulation model, which
is assumed to be constant. Fishing effort is defined as the
product of fishing activity and fishing power. The fishing
effort deployed by a fleet is the sum of these products on all
fishing units in the fleet, while fishing power is the ability of
a fishing unit to catch fish. However, it is interesting to note
that, according to the literature, effort depends on several
variables, for example, ship, number of hours spent fishing,
number of days spent fishing, number of stolen sorties,
technology, fishing equipment, and crew.

However, in this paper, effort is treated as a variable that
combines all of these factors.



8 International Journal of Differential Equations

40.2

y
40.15 46.8

x
46.75

40.1 46.710 20 30 40 50
t

31.34

31.345

31.35
31.34

31.3531.355

10 20 30 40 50
t

46.7

46.75

46.8

10 20 30 40 50
t

40.1

40.12

40.14

40.16

40.18

40.2

Figure 6: Dynamical behaviors and phase space trajectories of the three marine species.

The expression of biomass as a function of fishing effort
at biological equilibrium is the solution of the system

𝑟1 (1 − 𝑥) = 𝛼𝑦 + 𝛽𝑧 + 𝑞1𝐸1,𝑟2 (1 − 𝑦) = −𝛼𝑥 + 𝛿𝑧 + 𝑞2𝐸2,𝑟3 (1 − 𝑧) = −𝛽𝑥 − 𝛿𝑦 + 𝑞3𝐸3.
(20)

This solution of this system (20) is given by

𝑥 = 𝑎11𝐸1 + 𝑎12𝐸2 + 𝑎13𝐸3 + 𝑥∗,𝑦 = 𝑎21𝐸1 + 𝑎22𝐸2 + 𝑎23𝐸3 + 𝑦∗,𝑧 = 𝑎31𝐸1 + 𝑎32𝐸2 + 𝑎33𝐸3 + 𝑧∗, (21)

where

𝑎11 = − (𝛿𝛿𝑞1 − 𝑟2𝑟3𝑞1)Δ ,
𝑎12 = (𝛽𝛿𝑞2 + 𝛼𝑟3𝑞2)Δ ,
𝑎13 = (−𝛿𝛼𝑞3 + 𝛽𝑟2𝑞3)Δ ,

𝑎21 = (𝛿𝛽𝑞1 − 𝛼𝑟3𝑞1)Δ ,
𝑎22 = (−𝛽𝛽𝑞2 − 𝑟1𝑟3𝑞2)Δ ,
𝑎23 = (𝛽𝛼𝑞3 + 𝛿𝑟1𝑞3)Δ ,
𝑎31 = (−𝛼𝛿𝑞1 − 𝛽𝑟2𝑞1)Δ ,
𝑎32 = (𝛼𝛽𝑞2 − 𝛿𝑟1𝑞2)Δ ,
𝑎33 = (−𝛼𝛼𝑞3 − 𝑟1𝑟2𝑞3)Δ .

(22)

Inmatrix form, this solution can be written as𝑋 = −𝐴𝐸+𝑋∗,
where 𝐴 = (−𝑎𝑖𝑗)1≤𝑖,𝑗≤3 and 𝑋∗ = (𝑥∗, 𝑦∗, 𝑧∗)𝑇 with 𝑎𝑖𝑖 < 0
for all 𝑖 = 1, 2, 3.
4.1. The Net Economic Revenue. Simultaneously, an algebraic
equation is also included due to the consideration of the eco-
nomic profit of harvesting. According to Gordon’s economic
theory

(i) Π𝑖(𝐸) = Total Revenue (TR)𝑖 − Total Cost (TC)𝑖,
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Figure 7: Dynamical behaviors and phase space trajectories of the three fish populations.

where the total revenue (TR)𝑖 and total cost (TC)𝑖 are given
by

(a) (TR)𝑖 = Price 𝑝𝑖 × Catches 𝐻𝑖𝑗.
We note that 𝐻𝑖𝑗 = 𝑞𝑗𝐸𝑖𝑗𝑋𝑗 represent the catches of

species 𝑗 by the fisherman 𝑖 (𝑋1 = 𝑥, 𝑋2 = 𝑦, and 𝑋3 = 𝑧),
and 𝐸𝑖𝑗 is the effort of the fisherman 𝑖 to exploit the species 𝑗.
It is clear that𝐻𝑗 = ∑2𝑖=1𝐻𝑖𝑗 is the total catches of species 𝑗 by
all fishermen.

According to the above notations we have(TR)𝑖 = 𝑝1𝐻𝑖1 + 𝑝2𝐻𝑖2 + 𝑝3𝐻𝑖3
= ⟨𝐸𝑖, −𝑝𝑞𝐴𝐸𝑖 + 𝑝𝑞𝑋∗ − 𝑝𝑞𝐴𝐸𝑗⟩ . (23)

(b) (TC)𝑖 = ⟨𝑐𝑖, 𝐸𝑖⟩,
where 𝑐𝑖 is a constant cost per unit of harvesting effort
of the fisherman 𝑖.

The profit for each fisherman is represented by the
function Π𝑖(𝐸), so that the profit of fisherman 𝑖 is given by

Π𝑖 (𝐸) = ⟨𝐸𝑖, −𝑝𝑞𝐴𝐸𝑖 − 𝑝𝑞𝑋∗ − 𝑐𝑖 − 𝑝𝑞𝐴𝐸𝑗⟩ . (24)

Tomaintain the biodiversity of the three fish populations,
it is natural to assume that all biomasses remain positive;
therefore 𝑋 = −𝐴𝐸 + 𝑋∗ ≥ 0. In other words, for the
fisherman 𝑖 we must have 𝐴𝐸𝑖 ≤ 𝐴𝐸𝑗 − 𝑋∗.
5. Nash Equilibrium

Each of the two fishermen tries to maximize their profits
and reach a fishing effort that is an optimal response to
the effort of the other fisherman. Therefore, we have a
Nash equilibrium situation where each fisherman’s strategy
is optimal, taking into account the strategy of the second
fisherman. This problem can be translated into the two
following mathematical problems.

The first fisherman must solve this problem (𝑝1):
max ∏(𝐸1)

= ⟨𝐸1, −𝑝𝑞𝐴𝐸1 + 𝑝𝑞𝑋∗ − 𝑐1 − 𝑝𝑞𝐴𝐸2⟩
subject to 𝐴𝐸1 ≤ −𝐴𝐸2 + 𝑋∗𝐸1 ≥ 0𝐸2 given.

(𝑝1)
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Figure 8: Dynamical behaviors and phase space trajectories of the three fish populations.

The second fisherman must solve this problem (𝑝2):
max ∏(𝐸2)

= ⟨𝐸2, −𝑝𝑞𝐴𝐸2 + 𝑝𝑞𝑋∗ − 𝑐2 − 𝑝𝑞𝐴𝐸1⟩
subject to 𝐴𝐸2 ≤ −𝐴𝐸1 + 𝑋∗𝐸2 ≥ 0𝐸1 given.

(𝑝2)

By definition, the point (𝐸1, 𝐸2) is called Nash equilib-
rium point if and only if 𝐸1 is a solution of problem (𝑝1) for
given 𝐸2, and 𝐸2 is a solution of problem (𝑝2) for given 𝐸1.

By applying the essential conditions of Karush-Kuhn-
Tucker to the problem (𝑝1) we will ensure the existence of
constants 𝑢1 ∈ R3+, V1 ∈ R3+, and 𝜆1 ∈ R3+ such that2𝑝𝑞𝐴𝐸1 + 𝑐1 − 𝑝𝑞𝑋∗ + 𝑝𝑞𝐴𝐸2 − 𝑢1 + 𝐴𝑇𝜆1 = 0,𝐴𝐸1 + V1 = 𝐴𝐸2 + 𝑋∗,⟨𝑢1, 𝐸1⟩ = ⟨𝜆1, V1⟩ = 0. (25)

In the same way, by applying the essential conditions of
Karush-Kuhn-Tucker to the problem (𝑝2) we will ensure the

existence of constants 𝑢2 ∈ R3+, V
2 ∈ R3+, and 𝜆2 ∈ R3+ such

that2𝑝𝑞𝐴𝐸2 + 𝑐2 − 𝑝𝑞𝑋∗ + 𝑝𝑞𝐴𝐸1 − 𝑢2 + 𝐴𝑇𝜆2 = 0,𝐴𝐸2 + V2 = 𝐴𝐸1 + 𝑋∗,⟨𝑢2, 𝐸2⟩ = ⟨𝜆2, V2⟩ = 0. (26)

We can notice that the two preceding problems can be
written in the form of a single problemwhich is the following:𝑢1 = 2𝑝𝑞𝐴𝐸1 + 𝑐1 − 𝑝𝑞𝑋∗ + 𝑝𝑞𝐴𝐸2+ 𝐴𝑇𝜆1,𝑢2 = 2𝑝𝑞𝐴𝐸2 + 𝑐2 − 𝑝𝑞𝑋∗ + 𝑝𝑞𝐴𝐸1+ 𝐴𝑇𝜆2,

V1 = −𝐴𝐸1 − 𝐴𝐸2 + 𝑋∗,
V2 = −𝐴𝐸2 − 𝐴𝐸1 + 𝑋∗,⟨𝑢𝑖, 𝐸𝑖⟩ = ⟨𝜆𝑖, V𝑖⟩ = 0 ∀𝑖 = 1, 2,

𝑢𝑖, 𝐸𝑖, 𝜆𝑖, V𝑖 ≥ 0 ∀𝑖 = 1, 2.

(27)
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To maintain the biodiversity of fish populations, it is
natural to assume that all biomasses remain strictly positive;
that is, 𝑋∗ > 0; therefore V1 = V2 > 0. As the scalar product
of (𝜆𝑖)𝑖=1,2 and (V𝑖)𝑖=1,2 is zero, 𝜆𝑖 = 0 for all 𝑖 = 1, 2. In what
follows in this paper, we denote V fl V1 = V2. So we have the
following expressions:𝑢1 = 2𝑝𝑞𝐴𝐸1 + 𝑝𝑞𝐴𝐸2 + 𝑐1 − 𝑝𝑞𝑋∗,𝑢2 = 2𝑝𝑞𝐴𝐸2 + 𝑝𝑞𝐴𝐸1 + 𝑐2 − 𝑝𝑞𝑋∗,

V = −𝐴𝐸1 − 𝐴𝐸2 + 𝑋∗,⟨𝑢𝑖, 𝐸𝑖⟩ = ⟨𝜆𝑖, V𝑖⟩ = 0 ∀𝑖 = 1, 2,
𝑢𝑖, 𝐸𝑖, 𝜆𝑖, V𝑖 ≥ 0 ∀𝑖 = 1, 2;

(28)

thus,

(𝑢1𝑢2
V

) =(2𝑝𝑞𝐴 𝑝𝑞𝐴 𝐴𝑇𝑝𝑞𝐴 2𝑝𝑞𝐴 1−𝐴 −𝐴 1 )(𝐸1𝐸20 )
+(𝑐1 − 𝑝𝑞𝑋∗𝑐2 − 𝑝𝑞𝑋∗𝑋∗ ).

(29)

Let us denote

𝑧 = (𝐸1𝐸20 ) ,
𝑤 = (𝑢1𝑢2

V

),
𝑀 = [[[[

2𝑝𝑞𝐴 𝑝𝑞𝐴 𝐴𝑇𝑝𝑞𝐴 2𝑝𝑞𝐴 1−𝐴 −𝐴 1
]]]] ,

𝑏 = (𝑐 − 𝑝𝑞𝑋∗𝑐 − 𝑝𝑞𝑋∗𝑋∗ ).

(30)

6. Linear Complementarity Problem

The Nash equilibrium problem is equivalent to the following
linear complementarity problem LCP(𝑀, 𝑏).

Find vectors 𝑧, 𝑤 ∈ R9 such that𝑤 = 𝑀𝑧+𝑏 ≥ 0, 𝑧, 𝑤 ≥ 0,
and 𝑧𝑇𝑤 = 0.

Using the following theorem we can prove that this linear
complementarity problem LCP(𝑀, 𝑏) has a unique solution.
Theorem 1. 𝐿𝐶𝑃(𝑀, 𝑏) has a unique solution for every 𝑏 if and
only if𝑀 is a P-matrix.

Proof. We have 𝑎𝑖𝑖 < 0 for all 𝑖 = 1, 2, 3 and Δ > 0 so if we
note by (𝑀𝑖)𝑖=1,...,9 the submatrix of𝑀, we obtain

det (𝑀1) = −2𝑝01𝑞1𝑎11 > 0,
det (𝑀2) = 4𝑝1𝑞1𝑝2𝑞2𝑞2𝑞1𝑟3𝑞2𝐾2Δ > 0,
det (𝑀3) = 8𝑝1𝑞21𝑝2𝑞22𝑝3𝑞23Δ2 > 0,
det (𝑀4) = −12𝑎11𝑝21𝑞31𝑝2𝑞22𝑝3𝑞23Δ2 > 0,
det (𝑀5) = 18𝑝21𝑞41𝑝22𝑞42𝑝3𝑟3𝑞23Δ3 > 0,
det (𝑀6) = 27𝑝21𝑞41𝑝22𝑞42𝑝23𝑞43Δ4 > 0,
det (𝑀7) = −9𝑝1𝑞31𝑝22𝑞42𝑝23𝑞43𝑎11Δ4 > 0,
det (𝑀8) = 3𝑝1𝑞41𝑝2𝑞42𝑝23𝑞43𝑟3Δ5 > 0,
det (𝑀) = 𝑝1𝑞21𝑝2𝑞22𝑝3𝑞23Δ4 > 0.

(31)

Remember that a matrix 𝑀 is called P-matrix if the
determinant of every principal submatrix of 𝑀 is positive
(see Murty [9] and Cottle et al. [10]). The class of P-
matrices generalizesmany important classes ofmatrices, such
as positive definite matrices, M-matrices, and inverse M-
matrices, and arises in applications. Note that each symmetric
positive definite matrix is P-matrix, but the reverse is not
always true. Since the matrix𝑀 of our problem is P-matrix,
we can conclude that the linear complementarity problem
LCP(𝑀, 𝑏) admits one and only one solution. This solution
is given by

𝐸1 = 13𝐴−1 (𝑋∗ − 𝑐1𝑝𝑞) ,
𝐸2 = 13𝐴−1 (𝑋∗ − 𝑐2𝑝𝑞) .

(32)

Then, the fishing effort that maximizes the profit of the
first fisherman for caching the prey population is

𝐸11 = 13 [ 𝑟1𝑞1 (𝑥∗ − 𝑐1𝑝1𝑞1) + 𝛼𝑞1 (𝑦∗ − 𝑐1𝑝2𝑞2)
+ 𝛽𝑞1 (𝑧∗ − 𝑐1𝑝3𝑞3)] ;

(33)

the fishing effort that maximizes the profit of the first
fisherman for caching the middle predator population is

𝐸12 = 13 [ 𝑟2𝑞2 (𝑦∗ − 𝑐1𝑝2𝑞2) − 𝛼𝑞2 (𝑥∗ − 𝑐1𝑝1𝑞1)
+ 𝛿𝑞2 (𝑧∗ − 𝑐1𝑝3𝑞3)] ;

(34)
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Table 2: Economic parameters of the model.

Prey Middle predator Top predator𝑝1 = 1 𝑝2 = 3 𝑝3 = 5𝑞1 = 0,05 𝑞2 = 0,02 𝑞3 = 0,01𝑐1 = 0,01 𝑐1 = 0,01 𝑐1 = 0,01𝑐2 = 0,015 𝑐2 = 0,015 𝑐2 = 0,015
the fishing effort that maximizes the profit of the first
fisherman for caching the top predator population is

𝐸13 = 13 [ 𝑟3𝑞3 (𝑧∗ − 𝑐1𝑝3𝑞3) − 𝛽𝑞3 (𝑥∗ − 𝑐1𝑝1𝑞1)
− 𝛿𝑞3 (𝑦∗ − 𝑐1𝑝2𝑞2)] .

(35)

Then, the fishing effort that maximizes the profit of the
second fisherman for caching the prey population is

𝐸21 = 13 [ 𝑟1𝑞1 (𝑥∗ − 𝑐2𝑝1𝑞1) + 𝛼𝑞1 (𝑦∗ − 𝑐2𝑝2𝑞2)
+ 𝛽𝑞1 (𝑧∗ − 𝑐2𝑝3𝑞3)] ;

(36)

the fishing effort that maximizes the profit of the second
fisherman for caching the middle predator population is

𝐸22 = 13 [ 𝑟2𝑞2 (𝑦∗ − 𝑐2𝑝2𝑞2) − 𝛼𝑞2 (𝑥∗ − 𝑐2𝑝1𝑞1)
+ 𝛿𝑞2 (𝑧∗ − 𝑐2𝑝3𝑞3)] ;

(37)

the fishing effort that maximizes the profit of the second
fisherman for caching the top predator population is

𝐸23 = 13 [ 𝑟3𝑞3 (𝑧∗ − 𝑐2𝑝3𝑞3) − 𝛽𝑞3 (𝑥∗ − 𝑐2𝑝1𝑞1)
− 𝛿𝑞3 (𝑦∗ − 𝑐2𝑝2𝑞2)] .

(38)

7. Numerical Simulations

In this section, we complement the mathematical study
undertaken previously on the model by numerical simula-
tions in order to discover the effect of the variation of the
price on the profits of the fishermen.Theparameters ofmodel
system (1) are considered as shown in Table 1.

The economic parameters are considered as shown in
Table 2.

Using the parameters cited in Tables 1 and 2, thereafter
we will see how changes in the price can affect effort fishing,
catches, and profits.

Table 3: The influence of the price on the fishing effort.𝑝1 𝑝2 𝑝3 𝐸1 𝐸2
0,5 0,75 1 182,2202 173,3303
5 7,5 10 198,2224 197,3330
20 30 60 199,4130 199,1188
50 70 100 199,7626 199,6433
90 120 250 199,8282 199,7416
220 400 510 199,9113 199,8662
2200 3000 5100 199,9113 199,991520000 30000 60000 199,9113 199,9915

Table 4: The influence of the price on the catches.𝑝1 𝑝2 𝑝3 𝐻1 𝐻2
0,5 0,75 1 1,52469 1,38889
5 7,5 10 1,36024 1,35055
20 30 60 1,34079 1,33824
50 70 100 1,33632 1,33531
90 120 250 1,33554 1,33479
220 400 510 1,33446 1,33408
2200 3000 5100 1,33344 1,33340
20000 30000 60000 1,33344 1,33340

Table 5: The influence of the price on the profits.𝑝1 𝑝2 𝑝3 𝜋1 𝜋2
0,5 0,75 1 2 1
5 7,5 10 34 32
20 30 60 96 95
50 70 100 229 228
90 120 250 302 301
220 400 510 611 610
2200 3000 5100 6131 6130
20000 30000 60000 71331 71300

According to Table 3, one can remark that an increase
in the price level of the three fish populations leads to an
increase in the fishing effort which must be provided by
each fishermen to exploit them. But on arriving at a certain
rank the fishing effort becomes constant. More precisely, if
the price is greater than 10300, the fishing effort in this case
becomes constant and it does not exceed 399,9781.Thismeans
that the fishermen must not exceed a fishing effort equal
to 399,9781 to expect maximum benefit by making more
reasonable catches that take into account the preservation of
marine species.

According to Table 4, the catch level decreases as the
price increases. If the price is equal to 4000, the catches that
maximize the profit of the fishermen are equal to 2,66684;
in this case the catches that allow the fisherman to have a
maximum profit do not exceed 2,66684. Contrariwise, the
profit is always increased even if the level of catches decreases,
which is justified by the increase in the level price of fish
populations (Table 5).
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Consequently, it can be deduced that this model meets
the objective of the work since it allows the fishermen to
maximize their profit taking into account the preservation of
marine recourses.

8. Conclusion

In the present paper, we have studied a bioeconomic
tritrophic prey-predator model. We have maximized the
profit of two fishermen exploiting the prey, middle predator,
and top predator fish populations.The existence and stability
of equilibrium point are studied using eigenvalue analysis
and Routh-Hurwitz criterion. Using the Nash equilibrium
problem and linear complementarity problem we have deter-
mined the equilibrium point that maximizes the profits of
each fisherman.We have closed this paper by some numerical
simulations in order to show the influence of the price on the
profits of fishermen.
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