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1. Introduction

In this paper we study the classical problem of the estimation of a density func-
tion f : D → R where D ⊂ Rd from the observation of n identically distributed
random variables X1, . . . , Xn not necessarily independent. In several modern
applications, D is a known bounded domain whose shape can be quite com-
plex (e.g. geographical region). Moreover these data often present a dependence
structure that has to be taken into account. Our main objective is to propose a
new kernel-type estimation procedure to address these two points and to estab-
lish results ensuring the optimality of this procedure from a theoretical point of
view.

It is well known that classical kernel-type estimators present a severe bias
when the density function f does not vanish near the boundary of D. Several
procedures have been proposed in the literature to tackle this issue in the uni-
variate setting. Schuster (1985), Silverman (1986) and Cline and Hart (1991)
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studied the reflection of the data near the boundary. Marron and Ruppert (1994)
proposed a previous transformation of the data. Müller (1991), Lejeune and
Sarda (1992), Jones (1993), Chen (1999) and Botev et al. (2010) proposed to
construct kernels which take into account the shape of the support of the den-
sity. These procedures can be easily adapted to the hypercube D = [0, 1]d using
tensorization methods. Nevertheless, their generalization to more complex do-
mains has not been studied and seems more tedious. Only few methods are
designed to work with more general domains D ⊂ R

d. In this context, Müller
and Stadtmüller (1999) proposed a generic method to construct kernels (of ar-
bitrary orders) whose shape depends on both the estimation point x ∈ D and
the bandwidth h > 0. These kernels are solutions, for each x and h, of tricky
continuous least squares minimization problems. Marshall and Hazelton (2010)
proposed an alternative approach dedicated to the case d = 2 that allows one to
construct more tractable procedures. Few papers study in-depth the theoretical
properties of these multivariate procedures. In the context of independent and
identically distributed observations and twice differentiable density functions,
we point out Bouezmarni and Rombouts (2010) who study the behavior of Beta
kernels with a cross-validation selection procedure and Marshall and Hazelton
(2010) who study the pointwise behavior of their estimators for a fixed band-
width. The results stated in Müller and Stadtmüller (1999) could be used to
prove pointwise minimax results over arbitrary isotropic Hölder classes. To our
best knowledge only Bertin et al. (2018) proved adaptive results for integrated
risks over D = [0, 1]d (in the sense that a single estimation procedure achieves
the minimax rate of convergence over a large scale of regularity classes). They
introduced a new family of kernel density estimators that do not suffer from the
boundary bias problem and they proposed a data-driven procedure based on
the Goldenshluger and Lepski (see Goldenshluger and Lepski, 2014) approach
that jointly selects a kernel and a bandwidth.

Other classes of methods that consider density estimation on bounded do-
mains are that based on selection models of histograms or piecewise polyno-
mials (Castellan, 2000, 2003; Birgé and Rozenholc, 2006; Akakpo, 2012) using
approach developed by Barron et al. (1999).

These papers studied above all estimation on the unit hypercube [0, 1]d ⊂ R
d

in an independent framework. In the present paper, we aim at considering more
general bounded domains of Rd such as the disk, simple polygons — that may
be used to define geographical regions — or more regular domains satisfying
the rolling condition (see Arias-Castro and Rodŕıguez-Casal, 2017). We assume
that the observations are extracted from a stationary β-mixing process. In this
framework, we introduce a new family of kernel density estimators, and we
propose a data-driven selection procedure inspired by Goldenshluger and Lepski
(2014) and Bertin et al. (2018) to jointly select a kernel and a bandwidth. Our
main contribution consists in the statement of an oracle-type inequality in L2–
norm that allows us to prove the adaptivity (in the minimax sense) of our
procedure over a large scale of Hölder classes without bound on the smoothness
parameter. We also conduct simulation studies on the disk in the independent
case and the dependent case where observations come from a diffusion process
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with reflection. This type of process is of particular interest since it can be used
to model population dynamics in bounded geographical areas (see Cholaquidis
et al., 2016). Within this context, we consider a real data set corresponding to
the trajectories of elephants in Hwange National Park in Zimbabwe.

The paper is organized as follows. We first introduce the statistical framework
in Section 2. Section 3 is devoted to the description of our new estimation pro-
cedure and its theoretical properties are stated in Section 4. Simulation studies
are shown in Section 5, as far as the application to the real data in Section 6.
The proofs are postponed to Section 7.

2. Statistical framework

In what follows, we consider a strongly stationary and β-mixing process X =
(Xi : i ∈ Z) that lies into a bounded domain D ⊂ R

d. We assume that the
common marginal distribution of the random variables Xi is absolutely con-
tinuous with respect to the Lebesgue measure restricted to D and we denote
by f : D → R the density of this distribution. We aim at finding an accurate
estimation procedure for f based on the observations X1, . . . , Xn, where n ∈ N.

In the rest of this section, we present the main assumptions we make on the
law of the process X and on the geometry of the domain D. We also present
the adaptive minimax framework used to measure the statistical performances
of the estimators.

2.1. Assumptions on the law of the process

The assumptions on the process X are divided into two parts: the assumptions on
the marginal density f on the one hand and the assumptions on the dependence
structure of the process on the other hand.

To state the assumptions on the marginal density, we recall the definition of a
Hölder ball on the domain D. Let γ and L be two positive numbers. A function
f : D → R belongs to the Hölder class HD(γ, L) if the following conditions are
fulfilled:

i) The partial derivatives Dαf = ∂|α|f/(∂xα1
1 · · · ∂xαd

d ) exist for any α ∈
(N ∪ {0})d such that |α| = α1 + · · · + αd ≤ �γ� where �γ� = max{� ∈
N ∪ {0} : � < γ}.

ii) For any x, y in D,
∑

|α|=�γ� |Dαf(y) − Dαf(x)| ≤ L|y − x|γ−�γ�
1 where

|u|p = (
∑d

i=1 |ui|p)1/p if 1 ≤ p < +∞, |u|∞ = max{|ui| : i = 1, . . . , d}.

Assumption 1. Set f∞ > 0. The sup-norm ‖f‖∞ = supx∈D |f(x)|, is less than
or equal to f∞.

The absolute regularity (or β-mixing) condition of a process was introduced
by Volkonskii and Rozanov (1959) and attributed there to Kolmogorov. For the
convenience of the reader we recall the definition of the β-mixing coefficients of
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the strictly stationary process X. For each k ≥ 1, we define:

β(k) = sup
1

2

∑
i∈I

∑
j∈J

|P(Ui ∩ Vj)−P(Ui)P(Vj)| ,

where the supremum is taken over all pairs of finite partitions {Ui : i ∈ I} and
{Vj : j ∈ J} of the probability space Ω which are respectively measurable with
respect to σ(Xs : s ≤ 0) and σ(Xs : s ≥ k).

Assumption 2. Let c be a positive number and set 0 < ρ < 1. We assume
that the process X is strictly stationary and β-mixing at a geometric rate. More
precisely, for any k ≥ 1 we have β(k) ≤ cρk.

Assumption 3. Set f∞ > 0. For any k ≥ 1 the distribution of the random pair
(X1, Xk+1) admits a density fk : D2 → R (with respect to the Lebesgue measure
restricted to D2) such that ‖fk‖∞ ≤ f∞.

Without loss of generality we assume that the bounds f∞ that appear in
Assumptions 1 and 3 are the same if the two assumptions hold simultaneousely.

2.2. Geometric assumptions on the domain

In this section, we first state technical assumptions on the domain D and we
offer some examples that satisfy these conditions.

Assumption 4. Set R > 0. The domain D = ∅ is a bounded open connected
set such that, for any x ∈ D, |x|∞ ≤ R.

Remark that, since our goal is to consider the estimation on bounded do-
main, the existence of R > 0 is not a restrictive condition. Assuming that D
is connected is also not restrictive since the same estimation procedure could
be applied on each connected component. Finally D is assumed to be open to
ensure that the ambiant dimension d is the correct one.

Assumption 5. There exist 0 < r < 1 and a finite family A = {A1, . . . ,Aκ}
of distinct elements in GLd(R) such that:

i) For any j = 1, . . . , κ, | detAj | = 1.
ii) For any x ∈ D there exists Ax ∈ A such that x+A−1

x ([0, r]d) ⊂ D.

While Assumption 5 seems quite restrictive, it is satisfied by several domains
as illustrated in the following examples. The first one was considered in Bertin
et al. (2018) for independent data.

Example 1 (Hypercubes). We consider the case where D = (0, 1)d and we
define for u ∈ D and x ∈ D: Ax(u) = (σ(x1)u1, . . . , σ(xd)ud) where σ(x) =
1− 2I(1/2,1)(x) for x ∈ (0, 1). In this case we have r = 1/2 and κ = 2d.

To state the second example, we denote by Dr = {x ∈ R
d : |x|2 ≤ r} the

Euclidean ball with radius r > 0. Note that this example is of particular interest
since it is used throughout our simulation study in Section 5.
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Example 2 (Disk). For simplicity we only consider the case d = 2. We assume
that D = D1. For k = 1, . . . , 6 we define:

Ak =

(
cos(θk) − sin(θk)
sin(θk) cos(θk)

)
where θk = −3π/4 − kπ/3. Now, for any x ∈ D \ {0} we identify x/|x|2 ∈ S

1

with a real number in [0, 2π). Now, since

[0, 2π) =

6⋃
k=1

Ik where Ik =
[
−π

6
+ k

π

3
,
π

6
+ k

π

3

)
,

we define Ax = Ak if k is such that x/|x|2 ∈ Ik and A0 = A1. Assumption 5 is
satisfied with κ = 6 and r = 1/4.

However, generic classes of open subsets of R2 can be proven to satisfy As-
sumption 5 as in the two following examples (See Appendices A and B for the
proofs).

Example 3 (Rolling conditions). Set r0 > 0. The domain D is called r0-regular
if, for any 0 < r ≤ r0, the ball Dr rolls freely in both D and Dc. That is, for
each a ∈ ∂D, there exists xr

a and yra in R
d such that:

a ∈
(
xr
a + Dr

)
⊆ D and a ∈

(
yra + Dr

)
⊆ Dc.

Such regularity condition on D is well-known and widely used in statistics (see
Arias-Castro and Rodŕıguez-Casal, 2017, and references therein). The following
figure illustrates this condition:

Finally, since in practical situations the boundary of a domain can be approx-
imated by a simple polygonal path (as for geographical areas), the following
example (see Appendix B for more details) seems to be of prime interest.

Example 4 (Simple polygons). The interior of any simple polygon satisfies
Assumption 5.
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2.3. Framework

Under Assumptions 1 and 4, the marginal density f belongs to the space of
squared integrable functions that map D into R. This set, denoted by L2(D) is
endowed with its natural Hilbertian norm:

‖g‖2 =

(∫
D
g2(u)du

)1/2

.

To measure the performance of an estimator, we consider its risk defined by:

Rn(f̃ , f) =
(
E‖f̃ − f‖22

)1/2
.

Let F be a subset of L2(D). The maximal risk of f̃ over F is defined by:

Rn(f̃ ,F) = sup
f∈F

Rn(f̃ , f),

whereas the minimax risk over F (see Tsybakov, 2009) is:

φn(F) = inf
f̃

Rn(f̃ ,F)

where the infimum is taken over all the estimators. For the problem of multivari-
ate density estimation, the minimax rate of convergence over HD(γ, L) is given
by φn(γ, L) = n−γ/(2γ+d) (see Ibragimov and Hasminskii, 1980; Delyon and Ju-
ditsky, 1996). An estimator whose maximal risk is asymptotically bounded, up
to a multiplicative factor, by φn(F) is called minimax over F. Such an estimator
is well-adapted to the estimation over F but it can perform poorly over another
functional space. The problem of adaptive estimation consists in finding a single
estimation procedure that is simultaneously minimax over a scale of functional
classes. More precisely, given a family {Fλ : λ ∈ Λ} of subsets of L2(D), the
goal is to construct f∗ such that Rn(f

∗,Fλ) is asymptotically bounded, up to a
multiplicative constant, by φn(Fλ) for any λ ∈ Λ. One of the main tools to prove
that an estimation procedure is adaptive over a scale of functional classes is to
prove an oracle-type inequality that guarantees that this procedure performs
almost as well as the best estimator in a rich family of estimators. Ideally, we
would like to have an inequality of the following form:

Rn(f
∗, f) ≤ inf

η∈H
Rn(f̂η, f), (1)

where {f̂η : η ∈ H} is a family of estimators well-adapted to our problem: for

any λ ∈ Λ, there exists η(λ) such that f̂η(λ) is minimax over Fλ. However, in
many situations, (1) is relaxed and we prove a weaker inequality of the type:

Rn(f
∗, f) ≤ Υ1 inf

η∈H
R∗

n(f, η) + Υ2n
−1/2, (2)

where Υ1 and Υ2 are two positive constants and R∗
n(f, η) is an appropriate quan-

tity to be determined that can be viewed as a tight upper bound on Rn(f̂η, f).
Inequalities of the form (2) are called oracle-type inequalities.
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3. Statistical procedure

We propose in Section 3.1 a specific family of kernel-type estimators (f̂�) which
can tackle with the boundary bias problem encountered using classical kernel
estimators (see Bertin et al., 2018, and references therein for more details) and
that is well-adapted to our problem. The construction of this family is linked
with geometrical assumptions on the domainD. A selection procedure associated
to this family is given in Section 3.2.

3.1. Family of estimators

A function K : R → R is called a univariate kernel if the support of K is

included into [0, 1], ‖K‖∞ < +∞ and
∫ 1
0
K(u)du = 1. Moreover, we say that K

is a kernel of order m ∈ N ∪ {0} if∫ 1

0

K(u)updu = δ0,p, for any 0 ≤ p ≤ m.

For any bandwidth h > 0 and univariate kernel K, the normalized multivariate
kernel Kh is defined by:

Kh(s) = h−d
d∏

i=1

K(h−1si), s ∈ R
d.

Equipped with these notations we note that, under Assumption 5 and for h
small enough, for any x ∈ D, Kh ◦ Ax(u − x) = 0 as soon as u /∈ D. This
property implies that there is no loss of mass near the boundary (as in the
classical convolution kernel). This leads us to consider the following estimators:

f̂K,h(x) =
1

n

n∑
i=1

Kh ◦Ax(Xi − x), x ∈ D. (3)

In the following proposition, we study the bias term and the variance term of
the estimators f̂K,h and show that they reach minimax rate of convergence over
Hölder classes HD(γ, L).

Proposition 1. Assume that Assumptions 1, 2, 4 and 5 are fulfilled. Set γ > 0
and L > 0. Assume that f ∈ HD(γ, L). Let K be a kernel of order greater than
or equal to �γ�. Then, there exist two absolute constants C(R, γ) and C(ρ, c, f∞)
such that for any h > 0 we have:

‖Ef̂K,h − f‖2 ≤ C(R, γ)L‖K‖d∞hγ (4)

and

E‖f̂K,h −Ef̂K,h‖22 ≤ 4κ‖K‖2d2
nhd

c

1− ρ
. (5)
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With the additional Assumption 3, we get

E‖f̂K,h −Ef̂K,h‖22 ≤ κ‖K‖2d2
nhd

(
1 + C(c, ρ, f∞)hd/2

)
(6)

Moreover, in both cases, taking h = n−1/(2γ+d) the estimator f̂K,h reaches the
minimax rate φn(γ, L) � n−γ/(2γ+d) over HD(γ, L).

Even if the estimators f̂K,h are well-adapted to our framework, selecting
in a data driven way a kernel K and a bandwidth h is difficult from both
theoretical and practical points of view. As a consequence, we construct a one-
parameter subfamily which consists of predefined well-chosen pairs of kernels
and bandwidths. To do so, we define, for any m ∈ N ∪ {0}, the kernel

Km(u) =

m∑
r=0

ϕr(0)ϕr(u), u ∈ [0, 1], (7)

where ϕk(u) =
√
2k + 1Lk(2u−1) and Lk is the Legendre Polynomial of degree

k on [−1, 1]. We also consider, for any � ∈ N:

h(�) = e−� and mn(�) =

[
log(n)

2�
+

1

2

]
where [·] denotes the integer part. Using the notation introduced in (3) we define,
for any � ∈ N the estimator:

f̂� = f̂Kmn(�),h(�).

To obtain a finite collection of estimators we impose an additional restriction
on h(�) by considering only � ∈ Ln where

Ln = {� ∈ N : hn < h(�) < hn}.

Here, the bandwidths hn and hn are defined, for given c1 > 0 and c2 > 0, by

hn = (log n)−2(1+c1)/d and nhd
n =
(
log(n)

)c2
.

We have the following proposition about the family (f̂�).

Proposition 2. Assume that Assumptions 1, 2, 4 and 5 are fulfilled. Set γ > 0
and define �γ = [(2γ + d)−1 logn]. The estimator f̂�γ reaches the minimax rate
of convergence φn(γ, L) over HD(γ, L) for any L > 0.

Proposition 2 is a direct consequence of Proposition 1 and of the fact that
the order of the kernel of f̂�γ is larger than γ. Proposition 2 shows an interesting

property of the estimators f̂�. When we choose adequately � in order to obtain
a bandwidth of order n−1/(2γ+d), we automatically use a kernel of order larger
than γ, which allows one to obtain the optimal rate of convergence on HD(γ, L).
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Remark 1. Note that the kernel Km is of order m and satisfies

‖Km‖∞ ≤ A(m+ 1)B (8)

with A = 1 and B = 2. More precisely it can be proven that ‖Km‖2 = m + 1,
‖Km‖∞ = (m + 1)2 and that Km is the kernel of order m with smaller L2

norm. See Lemma 2 in Bertin et al. (2018) for more details. More generally,
any sequence of kernels Km of order m satisfying (8) with some constants A
and B can be used instead of the family defined by (7).

3.2. Selection rule

Let τ > 0. For any �, �′ ∈ Ln we define the following majorants:

M̂(�) =
√
2
Γ̂
(
Kmn(�), h(�)

)
+ τ‖Kmn(�)‖d2√

nhd(�)

and
M̂(�, �′) = M̂(�′) + M̂(�′ ∧ �),

where � ∧ �′ denotes the minimum between � and �′ and Γ̂(K,h) is defined by

Γ̂(K,h) = hd/2

(∫
D

1

n

n∑
i=1

(Kh ◦Ax(Xi − x))
2
dx

)1/2

.

Now, we define:

B̂(�) = max
�′∈Ln

{
‖f̂�∧�′ − f̂�′‖2 − M̂(�, �′)

}
+

with x+ = max(x, 0) denotes the positive part of x. The final estimator, f̂ is
then defined by

f̂ = f̂�̂ with �̂ = argmin
�∈Ln

(
B̂(�) + M̂(�)

)
. (9)

Remark 2. This selection rule is an adaptation of the so-called Goldenshluger-
Lepski (GL) method which consists in selecting, in a data-driven way, an esti-

mator that realizes the trade-off (9) beetwen B̂ and M̂ , estimators of respectively
the bias term and the stochastic term. Finding tight majorants is the key-point
of this procedure. Let us briefly comment on the form of the majorant M̂(�).
The ideal majorant would be

M(�) =
Γ
(
Kmn(�), h(�)

)√
nhd(�)

,

where

Γ(K,h) = hd/2

(∫
D
E (Kh ◦Ax)

2
(X1 − x)dx

)1/2

. (10)

However the term Γ
(
Kmn(�), h(�)

)
depends on the unknown density f and is

bounded, see (14), by the deterministic constant
√
κ‖K‖d2 which can be rough in
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some situations (in Example 1, κ = 2d). Recall that this is due to the specific
form of our boundary kernels. To circumvent this drawback we replace this quan-
tity by a simple estimator Γ̂

(
Kmn(�), h(�)

)
. For technical reasons that appear in

the proof of Lemma 7 we add the small corrective term τ‖K‖d2. Finally, the extra√
2 factor allows us to take into account the dependence structure of the observa-

tions using classical Berbee coupling techniques (see Berbee, 1979; Comte et al.,
2017) in the proofs of Theorem 3. Note also that the final procedure depends on
the parameters τ , c1 and c2 that can be chosen from a theoretical point of view
as small as desired.

4. Main results

In the following, we state an oracle inequality and adaptive properties of the
selection procedure f̂ .

Theorem 3 (Oracle-type inequality). Assume Assumptions 1, 2, 3, 4 and 5
are fulfilled. We have

Rn(f̂ , f) ≤ Υ1 inf
�∈Ln

(
max
�′≥�

‖Ef̂�′ − f‖2 +
‖Kmn(�)‖d2√

nhd(�)

)
+Υ2n

−1/2

with Υ1, Υ2 two positive constants depending on τ , c, ρ, f∞, κ, c1 and c2.

Note that this oracle-type inequality is of the form (2) with:

R∗
n(f, �) = max

�′≥�
‖Ef̂�′ − f‖2 +

‖Kmn(�)‖d2√
nhd(�)

which is, up to a multiplicative constant, an upper bound of the risk of f̂� since,
using (5):

Rn(f̂�, f) =
(
‖Ef̂� − f‖22 +E‖f̂� −Ef̂�‖22

)1/2
≤ ‖Ef̂� − f‖2 +

(
4cκ

1− ρ

)1/2 ‖Kmn(�)‖d2√
nhd(�)

.

This allows us to prove that the procedure is adaptive over a large scale of
Hölder spaces.

Theorem 4 (Adaptive estimation). Assume Assumptions 1, 2, 3, 4 and 5 are
fulfilled. For any γ > 0 and L > 0, we have:

lim sup
n→+∞

nγ/(2γ+d) sup
f∈HD(γ,L)

Rn(f̂ , f) < Υ. (11)

with Υ a positive constant depending on τ , c, ρ, f∞, κ, c1, c2, L and γ.

The proof of this theorem relies on Proposition 2 as well as the fact that, if
f ∈ HD(γ, L) for some γ > 0, then max�′≥�γ ‖Ef̂�′ − f‖2 is a tight upper bound

of ‖Ef̂�γ − f‖2 (see the proof for more details).
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Remark 3. This result is obtained without any restriction on the smoothness
parameter γ > 0. This follows from the simultaneous choice of a bandwidth
and a kernel and differs from the usual bandwidth selection procedure where the
kernel remains fixed. In fact, in the usual approach, the same selection procedure
proposed in Section 3.2 with K fixed instead of Kmn(�) can be applied to choose

a bandwidth ĥ and to obtain an estimator f̂K,ĥ. It can be proved similarly that

this estimator satisfies an oracle-type inequality and the same inequality (11)
but with Υ depending additionally on the order M of the kernel K. In this usual
approach, adaptation can be obtained on Hölder classes HD(γ, L) of smoothness
γ with 0 < γ ≤ M + 1. In fact the order of the kernel imposes a maximal value
on the smoothness parameter for adaptation. Note also that in this case to get
rid of this condition on the smoothness parameter, one may take a kernel with
order ϕ(n) that increases with n. Such a kernel satisfies ‖K‖2 ≥ (ϕ(n)+1) (see
Remark 1), and this will affect the rate of convergence by an extra ϕ(n)-term.

5. Simulation study

In this section, we study the performance of our procedure using simulated data
in Sections 5.1 (in the independent framework) and 5.2 (for β-mixing data).
More precisely, in Section 5.1, we aim at estimating several densities defined
on the disk that exhibit various behaviors near the boundary of their support.
In Section 5.2, we study the stationary density of a two dimensional reflected
Langevin diffusion on the disk. In each situation, we study the accuracy of our
procedure as well as usual kernel estimators, calculating empirical risks using
M = 500 Monte-Carlo replications. In the following, we detail our simulation
scheme and comment on the obtained results.

5.1. Densities on the disk

Simulation scheme We consider a family of densities {fa,b,c}(a,b,c)∈(0,+∞)3

such that fa,b,c : D1 → [0,+∞) is defined for any x and y by

fa,b,c(x, y) = ga,b(x
2 + y2)gc,c

(
atan2(y, x)

2π
mod 1

)
with ga,b the usual density of the beta distribution with parameters a and b.

Equivalently, (X,Y ) is distributed as (
√
R cosΘ,

√
R sinΘ) with R and Θ inde-

pendent with respective distributions Beta(a, b) and Beta(c, c). Four densities,
plotted in Figure 1, are studied:

Case 1 a = 1, b = 1, c = 1. The density f1 := f1,1,1 is in fact the uniform density
on the disk.

Case 2 a = 1.5, b = 1, c = 1. The density f2 := f1.5,1,1 takes small values in the
centre of the disk and its values increase slowly as one gets close to the
boundary.
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Case 3 a = 2, b = 1, c = 1. The density f3 := f2,1,1 takes very small values in
most of the disk and only on a small strip of the boundary takes larger
values.

Case 4 a = 1.5, b = 1, c = 3. The density f4 := f1.5,1,3, contrary to the others,
is not invariant by rotations. The mass is more important near the point
(−1, 0).

Fig 1. Representation of the four densities.

Quality criteria For each density function f ∈ {f1, f2, f3, f4}, we simulate
M = 500 sequences of i.i.d. observations (X1, . . . , Xn) where n is either 500,

1000, 2000 or 5000. Given an estimation procedure f̂ , we calculate M estimators
f̂ (1), . . . , f̂ (M). We consider the integrated squared error (ISE):

ISE(f̂ (j)) =

∫
D1

(
f(x)− f̂ (j)(x)

)2
dx .

Comparison of estimation procedures We consider a set H of 39 equally
spaced bandwidths between 0.05 and 1 with step 0.025. For each h ∈ H we define
the usual kernel estimator f̃h and f̂h which is a modified version of our estimator
defined in Section 3.1 that we call boundary estimator. These estimators are
defined as follows:

f̃h(x) =
1

nh2

n∑
i=1

K̃(h−1(Xi − x)) with K̃(u1, . . . , ud) =

d∏
j=1

I[− 1
2 ,

1
2 ]
(uj) (12)
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and

f̂h(x) =

{
f̃h(x) if x ∈ D1−h/

√
2

f̂K,h(x) otherwise
.

Here K = I[0,1] and the transformation Ax is the one in Example 2. We con-
sider only uniform kernels to allow an easier comparison of the performances
of the different estimators. We choose to implement our Goldenshluger-Lepski
procedure for the estimator f̂h since it has better practical performances than
the estimator f̂�. In fact it enjoys good properties of f̂K,h or f̂� in the boundary
and good performances of the usual kernel far from the boundary.

In Figure 2 and Figure 3 we compare, plotting boxplots of the ISE for n ∈
{500, 1000, 2000, 5000} observations and M = 500 replications, the behavior of

• the oracle of the boundary estimators (called boundary) defined by

f̂or = argmin
h∈H

ISE(f̂h),

• the Goldenshluger Lepski procedure based on the boundary estimators
(called boundary GL), More precisely the boundary GL estimator is given

by f̂ĥ with

ĥ = argmin
h∈H

(
B̂(h) +M(h)

)
(13)

M(h) =
τ‖K‖d2√

nhd
, M(h, h′) = M(h′) +M(h′ ∨ h)

and

B̂(h) = max
h′∈H

{
‖f̂h′∨h − f̂h′‖2 −M(h, h′)

}
+

• the oracle of usual Kernel estimators (called usual) defined by

f̃or = argmin
h∈H

ISE(f̃h),

• the Goldenshluger Lepki procedure based on the usual Kernel estimators
(called usual GL) given by f̃ĥ with h̃ = argminh∈H(B̃(h) +M(h)) where

B̃(h) = max
h′∈H

{
‖f̃h′∨h − f̃h′‖2 −M(h, h′)

}
+

For the boundary GL and usual GL, we use the slope heuristic to calibrate the
constant τ (see Baudry et al., 2012, and Section 6 in which we explicit the use
of the slope heuristic.)

In almost all the cases (except for n = 500, a = 2, b = 1 and c = 1), the oracle
based on boundary estimators as well as the GL procedure based on boundary
estimators outperform the oracle and the GL procedures based on usual kernels.
Note also that the ratio between the MISE of the GL procedure and the one of
the oracle, both based on boundary estimator is around 1.6 (see Table 1) which
means the GL procedure mimics quite well the oracle.
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Fig 2. Boxplots of the integrated squared error (ISE) on the disk for the models described
by Cases 1 to 4, and sample sizes equal to 500 and 1000 for the four estimators boundary,
boundary GL, usual and usual GL.
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Fig 3. Boxplots of the integrated squared error (ISE) on the disk for the models described
by Cases 1 to 4, and sample sizes equal to 2000 and 5000 for the four estimators boundary,
boundary GL, usual and usual GL.
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Table 1

Mean and standard-deviation for the ratio between the ISE of the GL procedure and the one
of the oracle, both for the boundary estimator, computed from M = 500 replications. The

results are provided for different sample sizes: n = 500, 1000, 2000 and 5000.

Case n mean sd n mean sd
a = 1, b = 1, c = 1 500 1.63 1.12 2000 1.71 1.23

1000 1.65 1.18 5000 1.55 1.03
a = 1.5, b = 1, c = 1 500 1.55 0.28 2000 1.57 0.21

1000 1.57 0.23 5000 1.60 0.19
a = 2, b = 1, c = 1 500 1.56 0.21 2000 1.60 0.16

1000 1.58 0.17 5000 1.60 0.13
a = 1.5, b = 1, c = 3 500 1.62 0.31 2000 1.62 0.23

1000 1.59 0.25 5000 1.62 0.19

5.2. Diffusion

Let us consider in this section the following two dimensional reflected Langevin
diffusion on the disk:{

dXt = dW 1
t − β Xt

(1+X2
t +Y 2

t )β
dt+ n1(Xt, Yt)dLt

dYt = dW 2
t − β Yt

(1+X2
t +Y 2

t )β
dt+ n2(Xt, Yt)dLt

with β > 1, (n1(x, y), n2(x, y)), (x, y) ∈ ∂D defined the normal vector to the
boundary of the domain D = Dr, W

1 and W 2 are two independent standard
Brownian motions and L the local time on ∂D. The process Zt = (Xt, Yt)t≥0

is well known as Brownian motion with drift. This process is ergodic and ex-
ponential Φ-mixing in the sense of Ibragimov (1962). Recall that the φ-mixing
coefficients of the strictly stationary process Zt = (Xt, Yt)t≥0 are defined, for
each k ≥ 1, as:

φ(k) = sup

∣∣∣∣P(U ∩ V )

P(U)
−P(V )

∣∣∣∣ ,
where the supremum is taken over all pairs U and V of the probability space Ω
which are respectively measurable with respect to σ(Zs : s ≤ 0) and σ(Zs : s ≥
k). Remark that φ-mixing is stronger than β-mixing (see, e.g., Doukhan, 1994).
The invariant measure is absolutely continuous with respect to the Lebesgue
measure restricted to the disk Dr. The invariant density writes as follows:

f(x, y) =
1− β

π[(1 + r2)1−β − 1]

1

(1 + x2 + y2)β
.

Note that this density has most of its mass concentrated in the centre of the
disk. In the simulations we fix β = 2 and we run as in Cattiaux et al. (2017) the
Euler reflected scheme introduced in Bossy et al. (2004). As we are interested
in the stationary regime, we throw away the first runs of the scheme. As in
Section 5.1, we simulate M = 500 Monte-Carlo replications with sample size n ∈
{500, 1000, 2000, 5000}. We obtain that for all sample sizes, the GL procedure
based on boundary estimators outperforms the GL procedure based on usual
kernels (see Figure 4 for more details).
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Fig 4. Boxplots of the integrated squared error (ISE) of the GL procedure based on the bound-
ary estimator for β = 2 and different sample sizes, n = 500, 1000, 2000 and 5000.

Note that, similar types of processes (defined on a more complex domain)
have been used to model population dynamics, in particular the home-range
and the core-area of an animal based on tracking data (see Cholaquidis et al.,
2016). Roughly speaking, the authors consider that the process under obser-
vation behaves in the interior of a geographical area D ⊂ R

d like an ordinary
Brownian motion with drift, and reflects (normally) at the boundary ∂D of
D. Under regularity assumptions on the drift and geometric constraints on the
support D, Cholaquidis et al. (2016) prove the existence of a unique stationary
distribution, absolutely continuous with respect to the Lebesgue measure on D.
They also prove that the process is geometrically ergodic. Then the trajectories
of the animals allow estimating the density of the invariant probability measure.
In Section 6 we study a real data set of this type.

6. Application to a real data set

In this section our method is applied to a database obtained from the study
“African Elephant (Migration) Chamaillé-Jammes Hwange NP” that resides in
the repository Movebank (Wikelski and Kays, 2018, accessed on 2018/11/05).

The data were obtained from the GPS tracking of the migratory trajectories
of 30 elephants, each from a different herd, evolving in the Hwange National
Park in Zimbabwe (HNP in the following). The daily observations of their dis-
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placements were taken by means of GPS devices located in collars installed in
individuals of different herds (see Tshipa et al., 2017; Valls-Fox et al., 2018,
and references therein). The date of installation of the collars was as follows:
August 2009 (10 elephants), November 2012 (10 elephants), November 2014
(8 elephants) and February 2015 (2 elephants). Each elephant is observed dur-
ing approximately 2 years.

We are interested in the spatial density of the whole set of elephants into
the park. Our work represents a first statistical insight in the data, where we
gather all the measures collected along time from the 30 elephants. At least
the independence of all the trajectories does not seem unreasonable as only one
elephant per herd was monitored. As in Cholaquidis et al. (2016) we then assume
that the animal movements can be modeled by a reflected diffusion. This allows
us to guarantee that the process that modeled the trajectories of the elephants
satisfies the main assumptions of our model. Moreover, nine elephants were
removed from the initial database as their behavior seems atypic.

6.1. Boundary of the park

Figure 5, obtained from c© OpenStreetMap contributors, represents the bound-
ary of HNP as well as the n = 17501 GPS positions of the elephants.

Fig 5. Map of HNP with the n = 17501 GPS positions of the elephants.

Note that the boundary is very simple on the east side (it consists mainly
in straight lines) and more complex on the west side. However most of the
observations lie in the east side. This is especially true for observations that are
close to a boundary. Our methodology requires the knowledge of this boundary.
Moreover, the more complex the boundary, the more difficult our method is
to implement. With this in mind we propose to approximate the boundary of
HNP by a simple polygon that adjusts quite well the real boundary in the east
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part whereas a more rough approximation is used in the west part. Finally, a
simple polygon with only 11 edges was chosen. Figure 6 represents both the real
boundary (in yellow) and the approximating simple polygon (in blue):

Fig 6. Real and approximating boundary of HNP.

6.2. Estimation procedure

In this section we follow the same strategy as in the simulation study: our
boundary estimators are only used in a “neighborhood” of the boundary of the
east side of HNP while classical kernel estimators are used otherwhere. More
precisely, for each bandwidth h, we define two specific zones: the northeast zone
C1 and the southeast zone C2. Examples of such zones are represented, for
different values of h, in Figure 7.

Fig 7. Zones C1 and C2 for h = 0.07 (left), and h = 0.15 (right).
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Now, our procedure consists in selecting in a data-driven way a bandwidth
among a family of 30 bandwidths equally spaced between 0.02 and 0.31. For
each bandwidth h and any point x in HNP, the estimator f̂h(x) is defined in
two different ways depending on the position of x. If x belongs to C1 ∪ C2 and
if the distance of x to the boundary is less than h, then the boundary estimator
is used and we define:

f̂h(x) =
1

n

n∑
i=1

Kh ◦Ax(Xi − x),

where Ax = −1 0
0 −1 if x ∈ C1 and Ax = 0 1

−1 0 if x ∈ C2. Otherwise the usual
kernel estimator defined by (12) is used.

We use the same selection procedure defined in Section 5 defined by (13).
Since our selection procedure depends on a tuning parameter τ , we propose to
use a slope heuristic to determine this constant. We refer the reader to Baudry
et al. (2012) for more details. As a consequence, for each tuning parameter

τ , our procedure selects the quantity ĥ(τ) and the slope heuristic consists in

defining τmin as the largest slope of the function τ �→ M(ĥ(τ)). As it can be
observed in Figure 8, we obtain τmin = 0.8 so we implement our GL procedure
with τ = 2τmin = 1.6. The bandwidth which is selected then equals to h =
0.07.

Fig 8. Value of the penalization M̂(ĥ(τ)) in terms of τ .

6.3. Results

Figure 9 represents the final density estimation plotted on a spatial regular grid
(with step δ = 0.01) within the real boundary.

The result we obtain seems to confirm that the density of elephants is related
to the placement of artificial water pumps. It would be interesting to investigate
further that issue with the owners of this database.
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Fig 9. The estimated repartition of the elephants within HNP.

7. Proofs

7.1. Preliminary notations and technical lemmas

For any � ∈ Ln, define

M(�) =
Γ(�) + τ‖Kmn(�)‖d2√

nhd(�)
where Γ(�) = Γ(Kmn(�), h(�))

with Γ(K,h) defined by (10). For any kernel K and bandwidth h > 0, define:

ξK,h(x) =

√
nhd

n

n∑
i=1

(Kh ◦Ax(Xi − x)−EKh ◦Ax(Xi − x)) , x ∈ D.

We denote Di = {x ∈ D : Ax = Ai}. The following lemma, whose proof is
postponed in Section 7.5, provides some properties of ξK,h.

Lemma 5. We have
Γ(K,h) ≤

√
κ‖K‖d2. (14)

Moreover under Assumptions 1, 2, 3, 4 and 5, there exists an absolute constant
C(c, ρ, f∞) such that we have

E‖ξK,h‖22 ≤ Γ2(K,h) + κ‖K‖2d2 C(c, ρ, f∞)hd/2 (15)

≤ κ‖K‖2d2
(
1 + C(c, ρ, f∞)hd/2

)
(16)

and ∃n0(c, ρ, f∞, c1, κ, τ) such that for n ≥ n0(c, ρ, f∞, c1, κ, τ) and h ≤ hn we
have:

E‖ξK,h‖2 ≤ Γ(K,h) + ‖K‖d2
τ

4
. (17)
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The proof uses the Bousquet inequality from Boucheron et al. (2004) (see
also Theorem 12.5 in Boucheron et al., 2013). It also makes use of ingredients in
Lemma 4.2 in Viennet (1997). Both Lemmas are recalled in Appendix C. Note
also that we will use in several parts that

‖Km‖∞ ≤ A(m+ 1)B

where A = 1 and B = 2.

7.2. Proof of Proposition 1

Proof of Bound (4) Set f ∈ HD(γ, L) and letK be a kernel of orderm = �γ�.
Using that | det(Ax)| = 1, we have for x ∈ D

BK,h(f, x) = E
(
f̂K,h(x)

)
− f(x) =

∫
D
Kh ◦Ax(u− x)f(u)du− f(x)

=

∫
[0,1]d

d∏
i=1

K(si)
[
f(x+ hA−1

x (s))− f(x)
]
ds.

Using a Taylor expansion we obtain

f(x+ hA−1
x (s))− f(x) =

∑
|α|≤m

Dαf(x)

α!
h|α|(A−1

x (s))α

+m
∑

|α|=m

hm(A−1
x (s))α

α!

∫ 1

0

(1− t)m−1
[
Dαf(x+ thA−1

x (s))−Dαf(x)
]
dt,

where for x ∈ R
d and α ∈ (N∪ {0})d we define xα =

∏d
i=1 x

αi

i . Using that K is
a kernel of order m and that (A−1

x (s))α is a polynomial in (s1, . . . , sd) of degree
α, we have

|BK,h(f, x)| ≤ Lhγ
∑

|α|=m

∫
[0,1]d

d∏
i=1

|K(si)||(A−1
x (s))α||A−1

x (s)|γ−mds

≤ Lhγ‖K‖d∞C(R, γ),

where C(R, γ) is a positive constant that depends only on R and γ.

Proof of Bound (5) We have

E‖f̂K,h −Ef̂K,h‖22 =

∫
D
Var

(
1

n

n∑
i=1

Kh ◦Ax(Xi − x)

)
dx

≤ κ

n2
sup

j=1,...,κ

∫
Dj

Var

(
n∑

i=1

Kh ◦Aj(Xi − x)

)
dx.
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Then using Lemma 9 in Appendix C, we deduce that there exists a sequence of
random variables (bk(X0))k≥0 such that 0 ≤ bk(X0) ≤ 1 and E(bk(X0)) = β(k)
and we have

E‖f̂K,h −Ef̂K,h‖22 ≤ 4nκ

n2
sup

j=1,...,κ
E

(
n∑

k=0

bk(X0)

∫
Dj

K2
h ◦Aj(X0 − x)dx

)

≤ 4κ‖K‖2d2
nhd

n∑
k=0

β(k) ≤ 4κ‖K‖2d2
nhd

c

1− ρ
·

Final step Note that (6) is a direct consequence of (15) and (16) of Lemma 5.

Finally choosing h = n−1/(2γ+d), the estimator f̂K,h reaches the minimax rate
n−2γ/(2γ+d).

7.3. Proof of Theorem 3

To prove Theorem 3, we use Berbee’s coupling method as in Viennet (1997)
(proof of Proposition 5.1) and proof of Theorem 1 of Comte et al. (2017). We

assume n = 2pnqn with qn = [logn]
2
. Then there exist random variables X∗

i ,
i = 1, ..., n satisfying the following properties:

• For r = 1, ..., pn, the random vectors �Ur,1 = (X2(r−1)qn+1, ..., X(2r−1)qn)
T

and �U∗
r,1 = (X∗

2(r−1)qn+1, ..., X
∗
(2r−1)qn

)T have the same distribution, and

so have the vector �Ur,2 = (X(2r−1)qn+1, ..., X2rqn)
T and the vector �U∗

r,2 =

(X∗
(2r−1)qn+1, ..., X

∗
2rqn)

T .

• For r = 1, ..., pn, P(�Ur,1 = �U∗
r,1) ≤ β(qn) and P(�Ur,2 = �U∗

r,2) ≤ β(qn).

• For each i ∈ {1, 2}, the random vectors �U∗
1,i, ...,

�U∗
pn,i

are independent.

We define Ω∗ = {Xi = X∗
i , i = 1, . . . , n} and Ω

∗
its complementary set in Ω.

We have (see Comte et al., 2017)

P(Ω
∗
) ≤ 2pnβ(qn) ≤ nβ(qn). (18)

Now denoting K�(·) = h(�)−d
⊗d

i=1 Kmn(�)

(
(h(�))−1·

)
, we define f̂∗

� = (f̂
∗(1)
� +

f̂
∗(2)
� )/2 where

f̂
∗(1)
� (x) =

2

n

pn∑
r=1

qn∑
s=1

K� ◦Ax(X
∗
2(r−1)qn+s − x),

f̂
∗(2)
� (x) =

2

n

pn∑
r=1

qn∑
s=1

K� ◦Ax(X
∗
(2r−1)qn+s − x).

For any kernel K and any bandwith h, let ξ
∗(1)
K,h (x) (resp. ξ

∗(2)
K,h (x)) defined as

2

√
nhd

n

pn∑
r=1

qn∑
s=1

(
Kh ◦Ax(X

∗
2(r−1)qn+s − x)−EKh ◦Ax(X

∗
2(r−1)qn+s − x)

)
,



2222 K. Bertin et al.

2

√
nhd

n

pn∑
r=1

qn∑
s=1

(
Kh ◦Ax(X

∗
(2r−1)qn+s − x)−EKh ◦Ax(X

∗
(2r−1)qn+s − x)

)
,

and ξ∗K,h(x) =
1
2 (ξ

∗(1)
K,h (x)+ξ

∗(2)
K,h (x)). The two following lemmas give some prop-

erties of ξ
∗(1)
K,h and ξ

∗(2)
K,h . Lemma 6 follows immediately from Lemma 5.

Lemma 6. We have

E‖ξ∗(i)K,h‖2 ≤
(
2Γ2(K,h) + 2κ‖K‖2d2 C(c, ρ, f∞)hd/2

)1/2
.

Moreover, ∃n0(c, ρ, f∞, c1, κ, τ) such that for n ≥ n0(c, ρ, f∞, c1, κ, τ) and h ≤
hn we also have: E‖ξ∗(i)K,h‖2 ≤

√
2
(
Γ(K,h) + ‖K‖d2 τ

4

)
.

Lemma 7. For any δ > 0, x ≥ 0, any i = 1, 2 and n−1 ≤ h ≤ hn, P(‖ξ∗(i)K,h‖2−
E‖ξ∗(i)K,h‖2 > δ‖K‖d2 + x) is bounded by

C̃0 exp

(
− C̃1x

2h̄
−d/2
n

‖K‖2d2 + x‖K‖d2

)
exp
(
−C̃2h̄

−d/2
n

)
where C̃0, C̃1, C̃2 are positive constants that depend only on c1, δ, ρ, c, κ and
f∞.

We are now able to prove the oracle inequality. Set � ∈ Ln. Using the trian-
gular inequality we get:

‖f − f̂‖2 ≤ ‖f − f̂�‖2 + ‖f̂�̂∧� − f̂�‖2 + ‖f̂�̂∧� − f̂�̂‖2.

Note that if � ≥ �̂, using the definitions of B̂(�) and M̂(�), we easily obtain:

‖f − f̂‖2 ≤ ‖f − f̂�‖2 + ‖f̂�̂∧� − f̂�‖2 ≤ ‖f − f̂�‖2 + B̂(�̂) + M̂(�̂, �)

≤ ‖f − f̂�‖2 + B̂(�̂) + M̂(�) + M̂(�̂)

≤ ‖f − f̂�‖2 + 2
(
B̂(�) + M̂(�)

)
.

Last inequality comes from the definition of �̂. The same bound remains valid if
� ≤ �̂. This implies:(

E‖f̂ − f‖22
)1/2

≤
(
E‖f̂� − f‖22

)1/2
+ 2
(
EB̂2(�)

)1/2
+ 2
(
EM̂2(�)

)1/2
. (19)

It remains to bound each term of the right hand side of this inequality.

1 We have:(
E‖f̂� − f‖22

)1/2
≤ ‖Ef̂� − f‖2 +

(
E‖f̂� −Ef̂�‖22

)1/2
≤ ‖Ef̂� − f‖2 +

√
κ‖Kmn(�)‖d2

√
1

nhd(�)
+

C(ρ, c, f∞)

nhd/2(�)
. (20)

Last line follows from Bound (6) of Proposition 1.
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2 Using triangular inequality and (14), last term can be bounded by:(
EM̂2(�)

)1/2
≤

√
2M(�) ≤

√
2(
√
κ+ τ)‖Kmn(�)‖d2√

nhd(�)
· (21)

3 Remark that, using the triangular inequality, we have:

B̂(�) ≤ 2 max
�′∈Ln

{
‖f̂�′ −Ef̂�′‖2 − M̂(�′)

}
+
+ max

�′∈Ln

‖Ef̂�′ −Ef̂�∧�′‖2

≤ 2 max
�′∈Ln

{
‖f̂�′ −Ef̂�′‖2 − M̂(�′)

}
+
+ 2max

�′≥�
‖Ef̂�′ − f‖2

≤ max
�′∈Ln

{
‖f̂∗(1)

�′ −Ef̂
∗(1)
�′ ‖2 − M̂(�′)

}
+

+ max
�′∈Ln

{
‖f̂∗(2)

�′ −Ef̂
∗(2)
�′ ‖2 − M̂(�′)

}
+

+ 2max
�′≥�

‖Ef̂�′ − f‖2 + 2 max
�′∈Ln

‖f̂∗
�′ − f̂�′‖2.

This implies that (EB̂2(�))1/2 is bounded by:

2(E(max
�′∈Ln

‖f̂∗
�′ − f̂�′‖2)2)1/2 + 2max

�′≥�
‖Ef̂�′ − f‖2 + (

√
Δ

(1)
n +

√
Δ

(2)
n ), (22)

where for i = 1, 2 Δ
(i)
n = E(max�′∈Ln{‖f̂

∗(i)
�′ −Ef̂

∗(i)
�′ ‖2−M̂(�′)}+)2. It remains

to study the terms of the right hand side of (22).

4. Study of Δ
(i)
n First define for m ∈ N, the kernel K∗

m = K2
m/‖Km‖22 and

consider, for �′ ∈ Ln the event

D�′ =
{
‖ξK∗

mn(�′),h(�
′)‖1/21 ≤ τ

2

(
nhd(�′)

)1/4}
.

Now, remark that, on the event D�′ we have:

|M̂(�′)−
√
2M(�′)|√

2
=

∣∣∣∣∣ Γ̂(�′)− Γ(�′)√
nhd(�′)

∣∣∣∣∣
=

‖Kmn(�′)‖d2√
nhd(�′)

∣∣∣‖f̂K∗
mn(�′),h(�

′)‖1/21 − (E‖f̂K∗
mn(�′),h(�

′)‖1)1/2
∣∣∣

≤
‖Kmn(�′)‖d2√

nhd(�′)

(
(nhd(�′))−1/2‖ξK∗

mn(�′),h(�
′)‖1
)1/2

≤
‖Kmn(�′)‖d2
(nhd(�′))3/4

‖ξK∗
mn(�′),h(�

′)‖1/21 ≤
τ‖Kmn(�′)‖d2
2(nhd(�′))1/2

·

This implies that, on D�′

M̂(�′) ≥
√
2
Γ(�′) + τ

2‖Kmn(�′)‖d2
(nhd(�′))1/2

. (23)



2224 K. Bertin et al.

Using (23), we obtain for i = 1, 2{
‖f̂∗(i)

�′ −Ef̂
∗(i)
�′ ‖2 − M̂(�′)

}
+

≤ ‖f̂∗(i)
�′ −Ef̂

∗(i)
�′ ‖∞ID̄�′

+
{
‖f̂∗(i)

�′ −Ef̂
∗(i)
�′ ‖2 − M̂(�′)

}
+
ID�′ ,

≤
2‖Kmn(�′)‖d∞

hd
n

ID̄�′

+

{
‖f̂∗(i)

�′ −Ef̂
∗(i)
�′ ‖2 −

√
2
Γ(�′) + τ

2‖Kmn(�′)‖d2
(nh(�′)d)1/2

}
+

·

Now, using triangular inequality

(
Δ(i)

n

)1/2
≤
∑

�′∈Ln

(
E
{
‖f̂∗(i)

�′ −Ef̂
∗(i)
�′ ‖2 − M̂(�′)

}2
+

)1/2

≤
∑

�′∈Ln

2‖Kmn(�′)‖d∞
hd
n

√
P(D̄�′)

+

√√√√E

{
‖f̂∗(i)

�′ −Ef̂
∗(i)
�′ ‖2 −

√
2
Γ(�′) + τ

2‖Kmn(�′)‖d2
(nh(�′)d)1/2

}2

+

(24)

Assume that here and after we have n ≥ n0(c, ρ, f∞, c1, κ, τ). We consider:

[
nhd(�′)

]
E

{
‖f̂∗(i)

�′ −Ef̂
∗(i)
�′ ‖2 −

√
2
Γ(�′) + τ

2‖Kmn(�′)‖d2
(nhd(�′))1/2

}2

+

= E
{
‖ξ∗(i)Kmn(�′),h(�

′)‖2 −
√
2Γ(�′)−

√
2
τ

2
‖Kmn(�′)‖d2

}2
+

=

∫ +∞

0

P
(
‖ξ∗(i)Kmn(�′),h(�

′)‖2 −
√
2
(
Γ(�′) +

τ

2
‖Kmn(�′)‖d2

)
> x1/2

)
dx

≤ 2

∫ +∞

0

xP (x)dx.

where

P (x) = P

(
‖ξ∗(i)Kmn(�′),h(�

′)‖2 −E‖ξ∗(i)Kmn(�′),h(�
′)‖2 >

τ‖Kmn(�′)‖d2√
2

+ x−H(�′)

)

and H(�′) = τ
2
√
2
‖Kmn(�′)‖d2. Last line follows from Lemma 6.

Using Lemma 7 with δ = τ/(2
√
2) and x = 0 we obtain:

E

{
‖f̂∗(i)

�′ −Ef̂
∗(i)
�′ ‖2 −

√
2
Γ(�′) + τ

2‖Kmn(�′)‖d2
(nh(�′)d)1/2

}2

+
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≤
2C̃0 exp

(
−C̃2h

−d/2

n

)
nhd(�′)

∫ +∞

0

x exp

(
−C̃1

x2h
−d/2

n

‖Kmn(�′)‖2d2 + x‖Kmn(�′)‖d2

)
dx

≤
2C̃0 exp

(
−C̃2h

−d/2

n

)
nhd(�′)

∫ +∞

0

x exp

(
−C̃1

x2h
−d/2

n

α2
n + xαn

)
dx

where αn = Ad(log n+3/2)Bd. This follows from the fact that the kernelKmn(�′)

satisfies (8) combined with the expression of mn(�
′). Now, splitting the integral

into two terms, depending on the position of x with respect to αn, we obtain:

E

{
‖f̂∗(i)

�′ −Ef̂
∗(i)
�′ ‖2 −

√
2
Γ(�′) + τ

2‖Kmn(�′)‖d2
(nh(�′)d)1/2

}2

+

≤ C̃3

2

exp
(
−C̃2h

−d/2

n

)
nhd

n

α2
n

(
h
d/2

n + h
d

n

)

≤ C̃3

exp
(
−C̃2h

−d/2

n

)
nhd

n

α2
nh

d/2

n

where C̃3 is a positive constant that depends on τ , ρ, c, κ, A, B, c1 and f∞.
This implies that there exists C̃4 a positive constant that depends on τ , ρ, c, κ,
A, B, c1, and f∞ such that we have:

∑
�′∈Ln

⎛⎝E{‖f̂∗(i)
�′ −Ef̂

∗(i)
�′ ‖2 −

√
2
Γ(�′) + τ

2‖Kmn(�′)‖d2
(nh(�′)d)1/2

}2

+

⎞⎠1/2

≤ C̃4n
−1/2.

(25)

It remains to bound
∑

�′∈Ln

2‖Kmn(�′)‖d
∞

hd
n

√
P(D̄�′). As ‖ · ‖1 ≤

√
Vol(D)‖ · ‖2:

P(D̄�′) ≤ P

(
‖ξK∗

mn(�′),h(�
′)‖2 ≥ τ2(nhd(�′))1/2

4
√
Vol(D)

)

≤ 2P

(
‖ξ∗(1)K∗

mn(�′),h(�
′)‖2 ≥ 2

3
U(�′)

)
+ 3E‖ξK∗

mn(�′),h(�
′) − ξ∗K∗

mn(�′),h(�
′)‖2

1

U(�′)

with U(�′) = τ2(nhd(�′))1/2

4
√

Vol(D)
. Then, using Lemma 5 and Lemma 6, we have:

E‖ξ∗(1)K∗
mn(�′),h(�

′)‖2 + ‖K∗
mn(�′)

‖d2 ≤
(

τ

2
√
2
+

√
2
√
κ+ 1

)
‖K∗

mn(�′)
‖d2.

Now using that ‖Kmn(�′)‖2 ≥ 1 and (8), we deduce that

‖K∗
mn(�′)

‖d2 =
‖Kmn(�′)‖2d4
‖Kmn(�′)‖2d2

≤ ‖Kmn(�′)‖2d∞
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≤ A2d(mn(�
′) + 1)2Bd ≤ A2d

(
logn

2�′
+

3

2

)2Bd

.

Now remark that:(
logn

2�′
+

3

2

)2Bd

≤ (nhd(�′))1/2
(
n−1/(4Bd) logn

2�′e−�′/(4B)
+

3(logn)−c2/(4Bd)

2

)2Bd

.

Moreover it is easily seen that, for n large enough:

n−1/(4Bd) logn

2�′e−�′/(4B)
≤ max

(
n−1/(4Bd) logn

2e−1/(4B)
,
n−1/(4Bd) log n

2�∗e−�∗/(4B)

)
≤ max

(
n−1/(4Bd) logn

2e−1/(4B)
, d(log n)−c2/(4Bd)

)
≤ d(logn)−c2/(4Bd),

where, �∗ = [ 1d (logn− c2 log logn)] is such that, for n large enough:

logn

2d
≤ �∗ ≤ 1

d
(log n− c2 log logn) .

Then we obtain for n large enough:

E‖ξ∗(1)K∗
mn(�′),h(�

′)‖2 + ‖K∗
mn(�′)

‖d2

≤
√

nhd(�′)

(
τ

2
√
2
+

√
2
√
κ+ 1

)
A2d

(
d+

3

2

)2Bd

(log n)−c2/2

≤ τ2(nhd(�′))1/2

6
√
Vol(D)

.

This implies, using Lemma 7 with δ = 1 and x = 0:

∃ C̃5 > 0 s.t. P

(
‖ξ∗(1)K∗

mn(�′),h(�
′)‖2 ≥ 2

3
U(�′)

)
≤ C̃5 exp(−C̃2h

−d/2

n ).

We also have:

E‖ξK∗
mn(�′),h(�

′) − ξ∗K∗
mn(�′),h(�

′)‖2

≤
√
nh(�′)d

√
4

h(�′)d
‖K∗

mn(�′)
‖d2 P(Ω

∗
) ≤ 2n

√
nβ(qn)‖K∗

mn(�′)
‖2d∞. (26)

Thus we have:

P(D̄�′) ≤ 2C̃5 exp(−C̃2(hn)
−d/2) + 2nβ(qn)

√
n‖K∗

mn(�′)
‖2d∞

3× 4
√
Vol(D)

τ2
√
nhd

.
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This implies that we have that
∑

�′∈Ln

2‖Kmn(�′)‖d
∞

hd
n

√
P(D̄�′) is bounded by:

∑
�′∈Ln

2‖Kmn(�′)‖d∞
hd
n

√
2C̃5 exp(−C̃2h

−d/2

n )

+
∑

�′∈Ln

2‖Kmn(�′)‖2d∞
hd
n

√
2n

√
nβ(qn)

√
3× 2(Vol(D))1/4

τ(nhd)1/4
·

Thus there exists a positive constant C̃6 such that∑
�′∈Ln

2‖Kmn(�′)‖d∞
hd
n

√
P(D̄�′) ≤ C̃6n

−1/2 (27)

as qn = [logn]
2
. Using (24), (25) and (27), we can conclude for i = 1, 2 that(

Δ(i)
n

)1/2
≤ (C̃4 + C̃6)n

−1/2 (28)

5. Final step Using (18) and proceeding as in (26) we obtain that√
E

(
max
�′∈Ln

‖f̂∗
�′ − f̂�′‖2

)2

≤ C̃7n
−1/2 (29)

and taking (22), (28) and (29) together we obtain:(
EB̂2(�)

)1/2
≤ C̃8n

−1/2 + 2max
�′≥�

‖Ef̂�′ − f‖2 (30)

with C̃7 and C̃8 are positive constants depending on c1, c2, τ , c, ρ, f∞, κ, A, B.

6. Conclusion Combining (19), (20), (21), (30) we finally obtain(
E‖f̂ − f‖22

)1/2
≤ 5max

�′≥�
‖Ef̂�′ − f‖2 + C̃9

(
‖Kmn(�)‖d2√

nhd(�)
+ n−1/2

)

with C̃9 a positive constant depending on c1, c2, τ , c, ρ, f∞, κ, A, B. We thus
get the result with Υ̃1 = 5 + C̃9 and Υ̃2 = C̃9.

7.4. Proof of Theorem 4

Set γ > 0 and L > 0 and let f ∈ HD(γ, L). Define �0 = �(2γ+d)−1 logn� where
for x ∈ R �x� is the smallest integer greater or equal to x. Since �0 belongs to
Ln for n large enough, Theorem 3 implies that we only have to bound the two
following quantities:

max
�′≥�0

‖Ef̂�′ − f‖2 and
‖Kmn(�0)‖d2√

nhd(�0)
.
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Defining h0 = n− 1
2γ+d we have:

e−1h0 < h(�0) ≤ h0 and mn(�0) ≤ γ + d/2 +
1

2
(31)

This, implies:

‖Kmn(�0)‖2 ≤ A

(
γ + d/2 +

3

2

)B

. (32)

Using (31) and (32), we obtain that
‖Kmn(�0)‖d

2√
nhd(�0)

≤ Cn−γ/(2γ+d), where C de-

pends on A, B and γ. It remains to bound the bias term. Set �′ ≥ �0. Remark

that: mn(�
′) ≤ mn(�0), h(�

′) ≤ h(�0) and ‖Kmn(�′)‖∞ ≤ A
(
γ + d/2 + 3

2

)B
. We

consider two cases.

Case 1 Assume that mn(�
′) ≥ �γ�. Using Proposition 1 we obtain that

‖Ef̂�′ − f‖2 ≤ C(γ,R)‖Kmn(�′)‖d∞L(h(�′))γ ≤ Cn−γ/(2γ+d)

where C depends on L, γ, R, τ , κ.

Case 2 Assume now that mn(�
′) < �γ�. Define γ′ = mn(�

′) + 1 ≤ γ and note
that there exists L′ that depends on α, L and D such that f ∈ HD(γ

′, L′). Using
Proposition 1 we have:

‖Ef̂�′ − f‖2 ≤C(R, γ′)‖Kmn(�′)‖d∞L(h(�′))γ
′ ≤ C exp

(
− �′(mn(�

′) + 1)
)

≤C exp

(
−�′
(
logn

2�′
+

1

2

))
≤ Cn−1/2

where C depends on L, γ, R, τ and κ. Theorem follows.

7.5. Proof of lemma 5

We have

Γ2(K,h) = hd
κ∑

i=1

∫
Di

∫
D
|Kh ◦Ai(u− x)|2f(u)dudx

≤
κ∑

i=1

∫
[0,1]d

∫
D

d∏
j=1

K2(vj)f(u)dudv ≤ κ‖K‖2d2 . (33)

We have

E‖ξK,h‖22 = hd

{∫
D
VarKh ◦Ax(X1 − x)dx+ 2

n−1∑
k=1

(n− k)

n
c(k)

}
where

c(k) =

∫
D
Cov (Kh ◦Ax(X1 − x),Kh ◦Ax(Xk+1 − x)) dx.



Density estimation on bounded domains 2229

The variance term can be easily bounded since∫
D
VarKh ◦Ax(X1 − x)dx ≤

∫
D
E|Kh ◦Ax(X1 − x)|2dx =

Γ2(K,h)

hd
. (34)

Concerning the covariance terms, on one hand we bound, using Assumption 3
the term c(k) by∫

D
E|Kh ◦Ax(X1 − x)Kh ◦Ax(Xk+1 − x)|dx+

∫
D
(E|Kh ◦Ax(X1 − x)|)2 dx

≤
κ∑

i=1

∫
Di

∫
D
|Kh ◦Ax(u− x)||Kh ◦Ax(v − x)|fk(u, v)dudvdx

+

∫
D
(E|Kh ◦Ax(X1 − x)|)2 dx

≤ f∞κ‖K‖2d1 +

κ∑
i=1

∫
Di

E|Kh ◦Ai(X1 − x)|
∫
D
|Kh ◦Ai(u− x)|f(u)dudx

≤ 2κf∞‖K‖2d1 ≤ 2κf∞‖K‖2d2 . (35)

On the other hand, using Lemma 9 in Appendix C, we get:

c(k) ≤ 2κ‖K‖2d2 cρk

hd
. (36)

Combining (35) with (36), we obtain that for any a ∈ (0, 1)

n−1∑
k=1

c(k) ≤ 2κ‖K‖2d2 f1−a
∞ (cρ)a

hda(1− ρa)
. (37)

Thus, using (33), (34) and (37) with a = 1/2, we get

E‖ξK,h‖22 ≤ Γ2(K,h)+
4κ‖K‖2d2

√
f∞

√
cρ

(1−√
ρ)

hd/2 ≤ κ‖K‖2d2
(
1 +

4
√
f∞

√
cρ

1−√
ρ

hd/2

)
which concludes the proof of (15) and (16). Finally (17) follows from previous
inequality and from the fact that h ≤ hn.

7.6. Proof of lemma 7

Define Y ∗1 = ‖ξ∗(1)K,h‖2. Using duality arguments and Banach-Alaoglu theorem,
there exists a countable set Λ = (λk)k∈N of functions such that ‖λk‖2 ≤ 1 and:

Y ∗1 = sup
k∈N

∫
D
λk(t)ξ

∗(1)
K,h (t)dt

= sup
k∈N

1√
n/2

pn∑
r=1

qn∑
s=1

(
gλk

(X∗
2(r−1)qn+s)−Egλk

(X∗
2(r−1)qn+s)

)
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= sup
k∈N

1
√
pn

pn∑
r=1

(
gλk,qn(

�U∗
r,1)−Egλk,qn(

�U∗
r,1)
)
,

where for any λ ∈ Λ, we define

gλ,qn(x1, . . . , xqn) =

√
2hd/2

√
qn

∫
D
λ(t)

qn∑
s=1

Kh ◦At(xs − t)dt

and
gλ,qn(x1, . . . , xqn) = gλ,qn(x1, . . . , xqn)−Egλ,qn(X1, . . . , Xqn)

Fix λ ∈ Λ. We then have ‖gλ,qn‖∞ ≤ 2‖gλ,qn‖∞ and

|gλ,qn(x1, . . . , xqn)| ≤
√
2hd/2 1

√
qn

κ∑
j=1

∣∣∣∣∣
∫
Dj

λ(t)

qn∑
s=1

Kh ◦Aj(xs − t)dt

∣∣∣∣∣
≤

√
2hd/2κ

√
qn sup

j=1,...,κ
‖λ � (Kh ◦Aj)‖∞

≤
√
2hd/2κ

√
qnh

−d/2‖K‖d2 ≤
√
2κ

√
qn‖K‖d2.

This implies that ‖gλ,qn‖∞ ≤ b where b = 2
√
2κ

√
qn‖K‖d2. Moreover:

E
(
g2λ,qn(

�U∗
r,1)
)
=

2hd

qn
Var

(
qn∑
s=1

∫
D
λ(t)(Kh ◦At)(X

∗
2(r−1)qn+s − t)dt

)

≤ 2κ2hd

qn
sup

j=1,...,κ
Var

(
qn∑
s=1

∫
Dj

λ(t)(Kh ◦Aj)(Xs − t)dt

)
.

Fix j ∈ {1, . . . , κ}. Denote Ψ = λ � (Kh ◦Aj). Using these notations we have:

Var

(
qn∑
s=1

∫
Dj

λ(t)(Kh ◦Aj)(Xs − t)dt

)
= Var

(
qn∑
s=1

Ψ(Xs)

)

≤ 4qn
(
EΨ4(X1)

)1/2(
2
+∞∑
k=1

(k + 1)β(k)

)1/2

.

Last line is deduced from the third inequation in Lemma 9 in Appendix C with
p = p′ = 2. Using Young’s inequality for convolution products with r = 4,
p = 4/3 and q = 2, we obtain:

EΨ4(X1) ≤ f∞‖Ψ‖44 ≤ f∞
(
‖λ‖2 · ‖Kh ◦Aj‖4/3

)4
.

Since ‖λ‖2 = 1, this leads to EΨ4(X1) ≤ f∞h−d‖K‖4d4/3 ≤ f∞h−d‖K‖4d2 .
Finally we obtain the following bound:

E
(
g2λ,qn(

�U∗
r,1)
)
≤ a where a = 8κ2

(
2

+∞∑
k=1

(k + 1)β(k)

)1/2

f1/2
∞ ‖K‖2d2 hd/2.
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Using Lemma 8 in Appendix C, with Xr,λ = gλ,qn(
�U∗
r,1)

√
pn

b
we get:

P(Y ∗1 −EY ∗1 > δ‖K‖d2 + x) ≤ exp

(
− (x+ δ‖K‖d2)2

2a+ 4bEY ∗1√
pn

+ 2b
3
√
pn

(x+ δ‖K‖d2)

)
.

Lemma 6 with Lemma 5 implies that

EY ∗1 ≤
√
2
√
κ‖K‖d2

√
1 + C(c, ρ, f∞)hd/2.

This, combined with basic calculations, implies that there exist positive con-
stants C̃, C̃0, C̃1, C̃2 that depend only on c1, δ, κ, c, ρ and f∞ such that:

P(Y ∗1 −EY ∗1 > δ‖K‖d2 + x)

≤ exp

(
− C̃x2

(‖K‖2d2 + x‖K‖d2)(hd/2 + qnn−1/2)

)
exp

(
− C̃

hd/2 + qnn−1/2

)

≤ C̃0 exp

(
− C̃1x

2h̄
−d/2
n

‖K‖2d2 + x‖K‖d2

)
exp
(
−C̃2h̄

−d/2
n

)
.

Last line follows from the fact that, for n large enough we have qnn
−1/2 ≤ h̄

d/2
n .

Similar arguments can be applied to the study of Y ∗2.

Appendix A: Regular domains satisfy Assumption 5

Step 1 Walther (1999) proved that the domain D is r0-regular if, and only if,
the following assumption is satisfied: ∂D is a 1-dimensional C1 submanifold in
R

2 with the outward-pointing unit normal vector n(a) at a ∈ ∂D satisfying the
Lipschitz condition:

|n(a)− n(b)|2 ≤ 1

r0
|a− b|2, ∀a, b ∈ ∂D.

Moreover, if x belongs to D is such that inf{|x − a| : a ∈ ∂D} ≤ 2r0 then
x projects uniquely onto ∂D. We then denote by a(x) this projection which
satisfies:

a(x)− x = |a(x)− x| · n(a(x)).
Now we define, for any 0 < r ≤ r0:

C(r) = {x ∈ D : inf{|x− a| : a ∈ ∂D} ≤ 2r} =
⋃

a∈∂D
(xr

a + Dr).

Using these notations and the triangle inequality we remark that, for any
0 < r ≤ r0/2 and any x ∈ C(r), we have:

x ∈
(
cr(x) + Dr

)
⊆ C(r0) ⊂ D

where cr(x) = x− rn(a(x)). The following figure illustrates this property:
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Step 2 Define

Ar =

[
0, r

√
2

2

]2
and consider the vector ν = (−1,−1)/

√
2 ∈ S

1. Note that, for any v ∈ S
1, there

exists a unique rotation ρv(·) ∈ GL2(R) such that ρv(ν) = v. In the following
figure the sets Ar and a + ρv(Ar) are represented for some point a in R

2 and
vector v in S1.

Now, assume that for any a ∈ ∂Dr = {(x, y) ∈ R
2 : x2 + y2 = r2}, the

outward-pointing unit vector is denoted by v(a). Then a+ ρv(a)(Ar) ⊆ Dr and
moreover a + ρv(Ar) ⊆ Dr as soon as v is a unit vector such that the angle
θ between v and v(a) is less than or equals to θ0 = arccos(

√
2/4) − π/4. This

is the case if |v(a) − v| ≤ 2 sin(θ0/2) = δ0. This result generalizes to any ball
centered at c ∈ R

2 in such a way: if a ∈ ∂(c+ Dr) then

a ∈ (a+ ρv(Ar)) ⊆ (c+ Dr)
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as soon as v is a unit vector such that |v − v(a)| ≤ δ0. The following figure
illustrates this property.

Step 3 Set 0 < r < r0δ0 < r0/2. Our goal is to prove the following property:
for any x ∈ C(r/6), if y satisfies both y ∈ C(r/6) and |x− y| ≤ r/3, then

y ∈
(
y + ρn(a(x))(Ar)

)
⊆ D.

Note that

|a(x)− a(y)| < |a(x)− x|+ |x− y|+ |y − a(y)|
< 2r/6 + r/3 + 2r/6 ≤ r

which implies (using the Lipschitz property of the normal n(·)) that:

|n(a(x))− n(a(y))| < r

r0
≤ δ0.

Using the previous steps combined with this result, since y ∈ ∂(cr(y) +Dr), we
have

y ∈
(
y + ρn(a(x))(Ar)

)
⊆
(
cr(y) + Dr

)
⊆ D.

Last inclusion is straightforward and comes from the triangle inequality. This
property is illustrated below:
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Step 4 Set 0 < r < r0δ0 < r0/2 and define for any x ∈ C(r/6) the set

V (x) = {y ∈ C(r/6) : |x− y| < r/3},

which is an open neighborhood of x. Note also that, using the property proved
at the previous step, for any y ∈ V (x) we have:

y + ρn(a(x))(Ar) ⊆ D

Finally {V (x) : x ∈ C(r/6)} is a covering of the compact set C(r/6) by open
sets. Thus, there exists a finite number of points x1, . . . , xN such that {V (xn) :
n = 1, . . . , N} is also a covering of C(r/6). The result follows easily.

Appendix B: Simple polygons satisfy Assumption 5

Chazelle (1991) proved that any simple polygon can be triangulated (in linear
time with respect to the number of vertices). In view of this result, our problem
boils down to the case of a triangle. Let ABC be a triangle and let Pε and Qε

such that APεQε and ABC are similar with homothetic ratio 1− 2ε > 0. Then

for any point x in APεQε, the parallelogram generated by the vectors �u = ε
−−→
AB

and �v = ε
−→
AC with its origin located at x is included into the triangle ABC.

This property is illustrated in the following figure.

One can also prove that there exist Sε, Tε, Uε and Vε such that the triangles
BSεTε and CUεVε satisfy similar properties. Now, it is easily seen that, for ε
small enough, the union of the triangles APεQε, BSεTε and CUεVε equals to
ABC (this property is illustrated below with ε = 0.125).

Using straightforward arguments, it can be proven that ABC satisfies Assump-
tion 5 with κ = 3 and r ≤ ε

√
2Area(ABC). This ends the proof.
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Appendix C: Classical lemmas

The following Lemma is the Bousquet inequality from Boucheron et al. (2004)
(see also Theorem 12.5 in Boucheron et al., 2013).

Lemma 8. Let X1, . . . , Xn be independent identically distributed random vec-
tors. Let S be a countable set of functions. Denote for s ∈ S Xi,s = s(Xi) and
Z = sups∈S

∑n
i=1 s(Xi). Assume that for all i = 1, . . . , n and s ∈ S EXi,s = 0,

and that Xi,s ≤ 1. Assume also that v = 2EZ + sups∈S
∑n

i=1 E(Xi,s)
2 < ∞.

Then we have for all t > 0

P (Z −EZ ≥ t) ≤ exp

{
− t2

2(v + t
3 )

}
.

The following lemma comes from Viennet (1997). See in particular Lemma 4.2.

Lemma 9. Let (χi)i∈Z be a stationary β-mixing process with rate (β(k))k≥0.

Let φ a measurable function such that E
(
φ2(χ0)

)
< ∞. There exists a sequence

of random variables (bk(χ0))k≥0 such that 0 ≤ bk(χ0) ≤ 1 and E(bk(χ0)) = β(k)
that satisfies

Cov(φ(χ0), φ(χk)) ≤ 2E
{
bk(χ0)φ

2(χ0)
}

and

Var

(
n∑

i=1

φ(χi)

)
≤ 4nE

{(
n∑

k=0

bk(χ0)

)
φ2(χ0)

}
.

For p ≥ 1, p′ such that 1
p + 1

p′ = 1, assume
∑

k≥0(k + 1)p−1β(k) < ∞. Let φ a

measurable function such that E(φ2p′
(χ0)) < ∞. We have

Var

(
n∑

i=1

φ(χi)

)
≤ 4n

(
E
(
φ2p′

(χ0)
))1/p′

⎛⎝p∑
k≥0

(k + 1)p−1β(k)

⎞⎠1/p

.
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