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Abstract: We show how to exactly reconstruct the block structure at the
critical line in the so-called Ising block model. This model was recently
re-introduced by Berthet, Rigollet and Srivastava in [2]. There the authors
show how to exactly reconstruct blocks away from the critical line and
they give an upper and a lower bound on the number of observations one
needs; thereby they establish a minimax optimal rate (up to constants).
Our technique relies on a combination of their methods with fluctuation
results obtained in [20]. The latter are extended to the full critical regime.
We find that the number of necessary observations depends on whether the
interaction parameter between two blocks is positive or negative: In the
first case, there are about N logN observations required to exactly recover
the block structure, while in the latter case

√
N logN observations suffice.
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1. Introduction

In a recent paper Berthet, Rigollet and Srivastava rediscovered a block version
of the Curie-Weiss-Ising model [2]. This model had been introduced earlier in
the statistical physics literature, see e.g. [11], [10], [9], [6]. Extensions of these
models are studied in [19] or [21]. The first of these papers uses a very general
interaction structure, while the latter investigates the situation in the spirit of
social interaction models or statistical physics models on random graphs, see
[23], [3], [7], and [18]. A related version of this model has been investigated
using the method of moments in [15], [17] and [16].

The article by Berthet et al. is motivated by a considerable amount of articles
investigating block models in the recent past, see e.g. [1], [12], [5], [22], [4]. The
model is interesting from both a probabilistic and a statistical perspective.

To define the model, one starts by partitioning the set {1, . . . , N} into a set
S ⊂ {1, . . . , N} with |S| = N

2 and its complement Sc. To this end we need to
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assume that N is even; the model itself can be defined and analyzed for arbitrary
block sizes (see [19], where large deviations and Central Limit Theorems are
proved for a general block structure), but the statistical questions then become
more tricky.

The set S induces a Hamiltonian on the binary hypercube {−1,+1}N , N ∈ N

given by

HN,α,β,S(σ) := − β

2N

∑
i∼j

σiσj −
α

2N

∑
i �∼j

σiσj , σ ∈ {−1,+1}N . (1)

Here we choose β > 0 and 0 ≤ |α| ≤ β, and we write i ∼ j, if either i, j ∈ S
or i, j ∈ Sc and i �∼ j, otherwise. The Hamiltonian (1) (or energy function), in
turn, induces a Gibbs measure on {−1,+1}N given by:

μN,α,β(σ) = μN,α,β,S(σ) :=
e−HN,α,β(σ)∑
σ′ e−HN,α,β(σ′)

=:
e−HN,α,β(σ)

ZN,α,β
,

where σ = (σi)
N
i=1 ∈ {−1,+1}N .

The behavior of the model can sometimes be studied best, when analyzing
an order parameter. In this case such an order parameter is given by the vector
of block magnetizations, m := mN := (mN

1 ,mN
2 ), where

m1 := mN
1 := m1(σ) :=

2

N

∑
i∈S

σi and m2 := mN
2 := m2(σ) :=

2

N

∑
i/∈S

σi.

Its advantage is that the Hamiltonian can be rewritten as

HN,α,β,S(σ) = −N

2

(
1

2
αm1m2 + β

1

4
m2

1 +
1

4
βm2

2

)
.

To describe and understand the phase transitions in the model recall that with-
out a partitioning (and with α = β) we would be back in the situation of the
so-called Curie-Weiss model at inverse temperature β. This model is defined
by the Hamiltonian HCW (σ) = 1

2N

∑
i,j σiσj for σ ∈ {±1}N and the corre-

sponding Gibbs measure μCW
N,β (σ) =

e−βHCW (σ)

ZCW
N,β

. It has been extensively studied,

see e.g. [8]. In particular, it has been shown that its equilibrium measures are
intrinsically related to the largest solution, m+(β), of the equation

z = tanh(βz).

More precisely, for all β ≥ 0, in the Curie-Weiss model the random variable
1
N

∑N
i=1 σi asymptotically concentrates in the points m+(β) and −m+(β). Note

that m+(β) = 0, if and only if β ≤ 1.
A similar change in the behavior was shown to be true for the block spin

Ising model, see [2].

Theorem 1.1 (cf. [2, Proposition 4.1]). In the above setting assume that |α| ≤ β
and denote by ρN,α,β the distribution of m under the Gibbs measure μN,α,β.
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• If β+ |α| ≤ 2, then ρN,α,β weakly converges to the Dirac measure in (0, 0).
• If β + |α| > 2 and α = 0, then ρN,α,β weakly converges to the mixture of

Dirac measures 1
4

∑
s1,s2∈{−,+} δ(s1m+(β/2),s2m+(β/2)).

• If β + α > 2 and α > 0, then ρN,α,β weakly converges to the mixture of
Dirac measures: 1

2 (δ(m+(α+β
2 ),m+(α+β

2 )) + δ(−m+(α+β
2 ),−m+(α+β

2 )).

• If β + |α| > 2 and α < 0, then ρN,α,β weakly converges to the mixture of
Dirac measures: 1

2 (δ(m+( β−α
2 ),−m+( β−α

2 )) + δ(−m+( β−α
2 ),m+( β−α

2 )).

Theorem 1.1 can be considered as a Law of Large Numbers for m. Central
Limit Theorems for m were proved in [20].

They are also very useful for understanding the following reconstruction re-
sult, even though the authors in [2] choose a different approach. We will come
back to this point when having described the reconstruction mechanism.

In the major part of their work [2] Berthet et al. consider the question,
whether with a given number of observations n one can reconstruct S exactly,
and, if so, how n relates to N . One of their main findings is

Theorem 1.2 (cf. [2, Corollary 4.6]). If the parameters α and β satisfy |α| ≤ β,
α < β, and |α|+β �= 2, then there exist positive constants C1 and C2 that depend
on α and β such that there is an algorithm that recovers the block structure
(S, Sc) exactly with probability 1− δ whenever

1. n ≥ C1N log(N/δ) if α > 0 or |α|+ β < 2 or
2. n ≥ C2 log(N/δ), otherwise,

where n denotes the number of observations.

There are two regimes of parameters excluded by Theorem 1.2. The first is
α = β. While one can still prove limit theorems in this case (see [15]), it is rather
obvious that it is impossible to reconstruct S in this case: The interaction simply
does not differentiate between spins in the same block and spins in different
blocks.

Another obvious question left open by Theorem 1.2 is, what happens at the
critical line |α| + β = 2. The purpose of this note is to fill this gap. We will
show:

Theorem 1.3. If the parameters α and β satisfy α < β, α �= 0, and |α|+β = 2,
then the following holds true.

• If α > 0, there exists a positive constant C3 such that there is an algo-
rithm that recovers the block structure (S, Sc) exactly with probability 1−δ
whenever

n ≥ C3N log(N/δ).

• If α < 0, there exists a positive constant C4 such that there is an algo-
rithm that recovers the block structure (S, Sc) exactly with probability 1−δ
whenever

n ≥ C4

√
N log(N/δ).

Here, n denotes the number of observations.
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Remark 1.4. Note that the number n of necessary observations indicates that
the phase one enters at the phase transition point α > 0 and α + β = 2 is of a
different nature than the phase one enters at α < 0 and |α|+β = 2 – even though
both points still belong to the high temperature regime according to Theorem 1.1.
We exclude the case α = 0, because it is already covered by Theorem 1.2.

Remark 1.5. Following the proof in [2] one can see that the constants C1 and
C3 in the above Theorems 1.2 and 1.3 depend on α and β and explode when α
tends to β. We will not elaborate on this point.

The rest of this note is devoted to the proof of Theorem 1.3. To this end
we will quickly recap the general reconstruction approach from [2] in Section
2. Section 3 will generalize a result on the critical fluctuations of m1 +m2 and
m1 − m2 from [20]. In particular, we will treat the case of negative α which
was omitted in [20]. These two ingredients will yield the proof of Theorem 1.3,
which will be given in Section 4.

2. The strategy for block recovery

While part 2 of Theorem 1.2 could, in principle, be shown using a large devia-
tions estimate, the first part needs some more sophisticated arguments. In this
section we will recall how the approach proposed in [2] by Berthet et al. works.
We will be a bit brief and especially refer the reader to [2] for proofs.

Given n observations σ(1), . . . , σ(n) the log-likelihood function for S is given
by

L(S) = −n logZN,α,β(S)−
n∑

k=1

HN,α,β,S(σ
(k)).

Since it is easily seen that ZN,α,β , as a sum over all configurations σ, is indepen-
dent of S, because we know its size, maximizing L(S) amounts to minimizing∑n

k=1 HN,α,β,S(σ
(k)). On the other hand, taking the N × N matrix Q with

elements Qij = β
N , if i ∼ j and Qij = α

N , otherwise, one readily sees that
HN,α,β,S(σ) = −1

2Tr(σσ
TQ) (where the upper index T indicates transposition).

Note that Q depends on S.

Thus finding the maximum likelihood estimator for S amounts to maximizing
1
2Tr(Σ̂Q) or Tr(Σ̂Q), where Σ̂ = 1

n

∑n
k=1 σ

(k)σ(k)T is the empirical covariance
matrix of the observations.

Here, we maximize over all matrices Q that induce a bisection of {1, . . . N}
into sets S and Sc of equal size. More precisely, the N × N matrix Q =
(Qij)1≤i,j≤N has to satisfy the following properties: Q is symmetric, Qij ∈
{ β
N , α

N }, the diagonal entries are equal to β
N , Qij = Qjk = β

N implies Qik = β
N

for all i, j, k ∈ {1, . . . N} and for each i = 1, . . . , N we have |{j : Qij =
β
N }| = N

2 .

Now, for each fixed σ the function Tr(σσTQ) is maximized by the same set S
(associated to the matrix Q) no matter, what α and β are, as long as α < β.
The same holds true for n fixed observations σ(1), . . . , σ(n) and Tr(Σ̂Q).
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Indeed, it is an easy matter to check that

2n

N
Tr(Σ̂Q) =

n∑
k=1

αm1(σ
(k))m2(σ

(k)) +
β

2
((m1(σ

(k)))2 + (m2(σ
(k)))2).

As σ(1), . . . , σ(n) are fixed so is 2
N

∑N
i=1 σ

(k)
i =: ck. This means we have that

m2(σ
(k)) = ck −m1(σ

(k))

for all k and constants ck depending on k (of course), but not depending on the
partitioning (S, Sc). Thus given our n observations σ(1), . . . , σ(n) we compute

2n

N
Tr(Σ̂Q)

= α

n∑
k=1

(m1(σ
(k)))(ck −m1(σ

(k))) +
β

2

n∑
k=1

(m1(σ
(k)))2 + (ck −m1(σ

(k)))2).

At first glance the right hand side may appear rather tricky, because even though
the observations σ(1), . . . , σ(n) are taken independently, the m1(σ

(k)) are not,
when S is the free variable. However, multiplying out the products (resp. the
square) and rearranging the terms we see that

2n

N
Tr(Σ̂Q) = K + (β − α)

n∑
k=1

(m1(σ
(k)))2 − (β − α)

n∑
k=1

ckm1(σ
(k))

for some constant K depending on β and σ(1), . . . , σ(n) but not on the choice of
S. This reveals that the minimal and maximal points of 2n

N Tr(Σ̂Q) as a function
of S do not depend on α and β as long as β �= α. Only, whether they are maxima
or minima depends on whether α < β or α > β. Hence, as long as we keep α < β
we can choose any values for them we like.

We can therefore also set β = N and α = −N . This transforms our optimiza-
tion problem into

max
R∈R

Tr(Σ̂R) with R = {R = rrT : r ∈ {±1}N :
N∑
i=1

ri = 0} (2)

(cf. (3.2) in [2]). Obviously each R = rrT ∈ R again induces a bisection of
{1, . . . , N} into two sets S and Sc of equal size, where i ∼ j, if ri = rj . Moreover,
there is a one-to-one correspondence between the set of valid matrices Q and R;
e.g. given some matrix Q with the aforementioned properties, the corresponding
matrix R = rrT ∈ R is given by ri = 1, if Q1i = β

N and ri = −1 otherwise.
Thus each R ∈ R is an estimator for the unknown blocks.

In [2] the authors now proceed in two steps. First the σ are centered, i.e. σ ∈
{±1}N is replaced by σ := Πσ with Π := IdN − 1

N 1N , where 1N is the N ×
N matrix with all elements equal to 1. Since for all R ∈ R, we have that
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Tr[Σ̂R] = Tr[Γ̂R], where Γ̂ = ΠΣ̂Π the likelihood function remains the same
over R when we replace Σ̂ by Γ̂. The decisive step in [2] is then to embed the
optimization problem (2) into a larger class of optimization problems. Hence,
instead of solving (2) the authors look for solutions of

max
R∈E+

Tr(Γ̂R) (3)

with

E+ :={R : R is a positive semidefinite, symmetric N ×N matrix

with 1 on the diagonal}.

The question is, of course, when a solution of (3) also provides a solution to (2).
This is, where the authors in [2] spend a considerable amount of work to show
that:

Theorem 2.1 (cf. [2, Theorem 3.3]). The semidefinite programming problem
(3) has a unique maximum at R∗ ∈ E+ with probability 1− δ whenever

n > Cα,β
log(4N/δ)

Z − Z ′ (1 + op(1)).

Here Z := E(σiσj), if i ∼ j, Z ′ := E(σiσj), if i �∼ j, and Cα,β is a constant
depending on α and β.

Moreover, this unique solution of (3) is of the form R∗ = rSr
T
S , where

rS := 1S − 1Sc for a set S with cardinality N
2 . Thus R∗ ∈ R. In particu-

lar, the semidefinite programming solution, if it exists, recovers exactly the block
structure (S, Sc).

3. A limit theorem

Theorem 2.1 obviously asks for an estimate of Z − Z ′. As a matter of fact, in
[2] the authors show by a comparison of the distribution of (m1,m2) with a
Gaussian distribution that for α ≤ 0 and |α| + β > 2, the difference Z − Z ′

is of constant order in N , while it is of order 1
N , in all other cases, whenever

|α| + β �= 2. Indeed, for α > 0 and α + β < 2 this also easily follows from the
Central Limit Theorem 1.2 for the vector m in [20] and it would follow from
corresponding Central Limit Theorems also in the other cases when |α|+β �= 2,
if such were proven (they are quite likely true, because similar Central Limit

Theorems hold for the vector 1
N

∑N
i=1 σi in the Curie-Weiss model, see e.g. [14]).

For |α|+ β = 2 there is no such estimate for Z −Z ′ in [2]. Indeed, in view of
Theorem 3.1 below the main tool in this reference does not work, because at least
for α > 0, and α+β = 2 the vector

√
N(m1,m2) is not asymptotically Gaussian.

Moreover, considering Theorem 6 and Remark 7 in [16] one may wonder, whether
an exact reconstruction of (S, Sc) on the basis of the correlations between the
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spins is possible at all. There, the authors show that for α > 0 and α + β = 2
asymptotically:

E(σiσj) =

√
12

N

Γ( 34 )

Γ( 14 )
for i �= j

independent of whether the sites i and j belong to the same block, or to different
blocks. Hence, asymptotically the correlations E(σiσj) at α + β = 2 do not
depend on whether i ∼ j or i �∼ j, nor do they depend on α and β.

In the sequel we generalize a theorem from [20] to analyze the fluctuations of
(m1,m2) for all |α| < β with |α| + β = 2. This well help us to prove Theorem
1.3. Indeed, at |α|+ β = 2 the following holds:

Theorem 3.1. For the parameters of the block spin Ising model α and β assume
that |α| < β and that |α|+ β = 2.

(a) Then, if α > 0 on a scale
√
N/2 the difference between m1 and m2,

i.e. m̃1 − m̃2 :=
√
N
2 (m1 − m2), is asymptotically Gaussian with mean 0

and variance 2
2−(β−α) .

If α < 0, N
1
4

2 (m1 −m2) converges in distribution to a probability measure
ρ on R, which is absolutely continuous with Lebesgue-density

g(x) = exp

(
− 1

12
x4

)
/K,

where K is a normalizing constant to make ρ a probability measure.
(b) For the overall spin m1 + m2, we have the following: If α > 0 there is

a non-standard Central Limit Theorem, i.e. N
1
4

2 (m1 + m2) converges in
distribution to the probability measure ρ given in part (a) of the theorem.

If α < 0, there is a Gaussian Central Limit Theorem, i.e.
√
N
2 (m1 +m2)

converges in distribution to a Gaussian with mean zero and variance − 1
α .

Remark 3.2. Theorem 3.1 also shows the difference between |α|+β = 2, α > 0
and |α|+β = 2, α < 0. Indeed, according to Theorem 1.1 for |α|+β slightly larger
than 2, the block magnetizations m1 and m2 are close together when α > 0, while
they move apart for α < 0.

Moreover, notice that the probability measure ρ in Theorem 3.1 is the same
as the limiting distribution of the appropriately rescaled magnetization in the
Curie-Weiss model, see [8, TheoremV.9.5]

Proof. The proof of Theorem 3.1 makes use of the so-called Hubbard-Stratono-
vich transform.

Introduce the random variables

w1 := w1(σ) :=
1

N

N∑
i=1

σi =
1

N

(∑
i∈S

σi +
∑
i/∈S

σi

)

and

w2 := w2(σ) :=
1

N

(∑
i∈S

σi −
∑
i/∈S

σi

)
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together with the vectors w̃ = (w̃1, w̃2) and ŵ = (ŵ1, ŵ2) consisting of the
components

w̃1 :=
√
Nw1 and w̃2 := N1/4w2,

as well as
ŵ1 := N1/4w1 and ŵ2 :=

√
Nw2.

Note that

HN,α,β,S(σ) = −N

2

(
2α

1

4
m1m2 + β

1

4
m2

1 + β
1

4
m2

2

)

= −N

8

(
2α(w1 + w2)(w1 − w2) + β

(
(w1 + w2)

2 + (w1 − w2)
2
))

= −N

4
(β(w1

2 + w2
2) + α(w1

2 − w2
2))

= −1

4
(
√
N(α+ β)ŵ1

2 + (β − α)ŵ2
2)

= −1

4
(
√
Nκαŵ1

2 + ηαŵ2
2),

where we have set

κα := α+ β =

{
2 if α > 0
2(1 + α) if α < 0

and

ηα := β − α =

{
2 if α < 0
2(1− α) if α > 0

.

Note that κα > 0 as well as ηα > 0, if |α| < β and |α|+ β = 2.
Similarly,

HN,α,β,S(σ) = −1

4
(καw̃1

2 +
√
Nηαw̃2

2).

We now begin with the case of α < 0. Then κα < 2, which will make a
difference, as we will see.

Our strategy can be summarized as “linearizing” the Hamiltonian by tilting
it with a suitable Gaussian random variable (a similar technique was used e.g. in
[13]). To this end, let N (0, C) be a 2-dimensional Gaussian distribution with
expectation 0 and covariance matrix C,

C =

(
2
κα

0

0 1√
N

)
.

Denote by ρN,α,β := μN,α,β ◦ (w̃)−1 the distribution of w̃ under the Gibbs
measure and by χN,α,β := ρN,α,β∗N (0, C). Let us compute the Lebesgue density
of χN,α,β : Let A be a measurable subset of R2. Then with

K1 :=
1

2π
√
detC

, K2 :=
1

2π
√
detCZN,α,β

and K3 := K22
N
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we obtain

χN,α,β(A) =
∑

σ∈{−1,1}N

N (0, C)(A− w̃)μN,α,β(σ)

= K1

∑
σ∈{−1,1}N

∫
A−w̃

exp

(
−1

2

(κα

2
x2 +

√
Ny2

))
μN,α,β(σ)dxdy

= K1

∑
σ∈{−1,1}N

∫
A

exp

(
−1

2

(κα

2
(x− w̃1)

2 +
√
N(y − w̃2)

2
))

μN,α,β(σ)dxdy

= K2

∑
σ∈{−1,1}N

∫
A

exp
(
− 1

2

(κα

2
(x− w̃1)

2 +
√
N(y − w̃2)

2
)

+
1

4

(
καw̃1

2 + 2
√
Nw̃2

2
))

dxdy

because ηα = 2 when α < 0. Thus

χN,α,β(A)

= K2

∑
σ∈{−1,1}N

∫
A

exp

(
−1

4
καx

2 −
√
N

2
y2 +

1

2
καxw̃1 +

√
Nyw̃2

)
dxdy

= K3

∫
A

exp

(
−1

4
καx

2 −
√
N

2
y2

)
exp

(
N

2
log cosh

(
1√
N

κα

2
x+N− 1

4 y

)

+
N

2
log cosh

(
κα

2
√
N

x− 1

N
1
4

y

))
dxdy. (4)

Note that in the above expression, both the integral term and the constant K3

depend on N . However, it suffices to consider the convergence of the integral,
because once the convergence of the integral is shown for all measurable subsets
A ⊂ R

2 and in particular for A = R
2, this implies the convergence of K3 to a

constant.

Introduce as short-hand for the negative exponent in (4):

Φ(x, y) :=
1

4
καx

2 +

√
N

2
y2

− N

2

(
log cosh

(
κα

2
√
N

x+
1

N
1
4

y

)
+ log cosh

(
κα

2
√
N

x− 1

N
1
4

y

))
.

(5)

Then by Taylor expansion of log cosh(z) = 1
2z

2 − 1
12z

4 + O(z6) up to fourth
order we see that the y2-terms cancel, and so do the xy-terms and we arrive at

Φ(x, y) =
x2

2

(
κα

2
− κ2

α

4

)
+

y4

12
+O(N− 1

2 ),



Recovery in block spin Ising models at criticality 1805

where the constant in the O(N− 1
2 )-term depends on x and y. Therefore we

obtain for the density of the convolution

χN,α,β(A) = K3

∫
A

exp

[
−1

2
x2

(
κα

2
− κ2

α

4

)
− 1

12
y4 +O(N− 1

2 )

]
dx dy

and the convergence in the O(N− 1
2 )-term is uniform on compact subsets of R2.

From here it becomes immediately clear, that the cases κα = 2 and ηα = 2 have
to be treated separately.

We next show how to extend the convergence to non-compact sets. This is
done in the spirit of [20] or [13].

To this end for a Borel set A ⊂ R
2 we split the integral∫

A

exp (−Φ(x, y)) dxdy =

∫
A∩B(0,R)

exp (−Φ(x, y)) dxdy (6)

+

∫
A∩B(0,R)c∩Br,N

exp (−Φ(x, y)) dxdy +

∫
A∩Bc

r,N

exp (−Φ(x, y)) dxdy.

Here, for any number R > 0 we denote by B(0, R) the (2-dimensional) ball
centered in 0 with radius R and by Br,N we denote the box

Br,N := (−r
√
N, r

√
N) × (−rN1/4, rN1/4). (7)

Later R will be sent to ∞ and r will be taken very small. Note that we will
however first take the limit N → ∞ and then R → ∞. The summands in (6)
will be called inner region, intermediate region, and outer region, respectively.
They will be treated separately.

As noted earlier for fixed R > 0

lim
N→∞

∫
A∩B(0,R)

exp (−Φ(x, y)) dxdy

=

∫
A∩B(0,R)

exp

[
−1

2
x2

(
κα

2
− κα2

4

)
− 1

12
y4
]
dx dy.

This already finishes the treatment of the inner region.

For the outer region A ∩Bc
r,N , which we will further split up in two regions,

we change scales and we write

Φ(x, y) = N Φ̃

(
x√
N

,
y

N
1
4

)
,

where obviously

Φ̃(x, y) :=
1

4
καx

2 +
1

2
y2 − 1

2
log cosh

(κα

2
x+ y

)
− 1

2
log cosh

(κα

2
x− y

)
.
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We denote the free energy of the Curie-Weiss model at inverse temperature
β by fCW (β). Note that fCW (β) is non-negative and given by

fCW (β) = −β

2
(m+(β)2 + log(cosh(βm+(β))) = max

t

[
− 1

2β
t2 + log cosh(t)

]
.

Then,

log cosh(x) ≤ 1

4
x2 +max

t

[
−1

4
t2 + log cosh(t)

]
=

1

4
x2 + fCW (2).

Hence,

Φ̃(x, y) =
1

4
καx

2 +
1

2
y2 − 1

2
log cosh

(κα

2
x+ y

)
− 1

2
log cosh

(κα

2
x− y

)
≥ 1

4
καx

2 +
1

2
y2 − 1

2

(καx
2 + y)2

4
− 1

2

(καx
2 − y)2

4
− fCW (2)

= x2

(
1

4
κα − 1

16
κ2
α

)
+

y2

4
− fCW (2).

Setting

r0 := 4

√
fCW (2)

min(κα − κ2
α

4 , 1)
,

and, in accordance with (7),

Br0,N := (−r0
√
N, r0

√
N) × (−r0N

1/4, r0N
1/4),

we assume that r is sufficiently small such that r < r0, i.e. Br,N ⊂ Br0,N , and
we split up the outer region

A ∩Bc
r,N = (A ∩Bc

r0,N ) ∪ (A ∩ (Br0,N \Br,N )).

Then, if (x, y) /∈ Br0,N we have x2

N + y2

√
N

≥ r20 and hence we know that

− Φ(x, y)

= −N Φ̃

(
x√
N

,
y

N
1
4

)
≤ −N

(
x2

N

(
1

4
κα − 1

16
κ2
α

)
+

y2

4
√
N

)
+NfCW (2)

= −N

16

(
x2

N

(
κα − 1

4
κ2
α

)
+

y2√
N

)
− 3N

4

(
x2

N

(
1

4
κα − 1

16
κ2
α

)
+

y2

4
√
N

)
+NfCW (2)

≤ −3N

4

(
x2

N

(
1

4
κα − 1

16
κ2
α

)
+

y2

4
√
N

)

≤ −NKα

(
x2

N
+

y2√
N

)

for some appropriate constant Kα > 0 depending on α.
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Thus∫
A∩Bc

r0,N

exp (−Φ(x, y)) dxdy =

∫
A∩Bc

r0,N

exp

(
−N Φ̃

(
x√
N

,
y

N
1
4

))
dxdy

≤
∫
A∩Bc

r0,N

exp

(
−NKα

(
x2

N
+

y2√
N

))
dxdy

≤e−NKαr20/2

∫
R2

exp

(
−NKα

2

(
x2

N
+

y2√
N

))
dxdy

≤K ′
αe

−NKαr20/2 (8)

for another constant K ′
α > 0.

Next we want to extend (8) to arbitrarily small r ∈ (0, r0). To this end we
claim

inf
x∈Br0,N\Br,N

Φ̃

(
x√
N

,
y

N
1
4

)
> 0, for all 0 < r < r0. (9)

By rescaling it suffices to consider Φ̃ on the set (−r0, r0)×(−r0, r0)\(−r, r)×
(−r, r).

Obviously, Φ̃(0, 0) = 0. We want to show that (0, 0) is the unique minimum
of Φ̃.

Indeed, Φ̃ gets minimal if ∇Φ̃ = 0 and the latter is given by

∇Φ̃(x, y) =

(
1
2καx− κα

4 tanh(καx
2 + y)− κα

4 tanh(καx
2 − y)

y − 1
2 tanh(

καx
2 + y) + 1

2 tanh(
καx
2 − y)

)
.

Solving ∇Φ̃ = 0 thus is equivalent to solving

G(x, y) :=

(
1
2 tanh(

καx
2 + y) + 1

2 tanh(
καx
2 − y)

1
2 tanh(

καx
2 + y)− 1

2 tanh(
καx
2 − y)

)
=

(
x
y

)
.

Obviously, (0, 0) is a solution. To see that (0, 0) is indeed the only solution,
we assume that G(x, y) = (x, y) for some (x, y). Note that x = 0 immediately
implies y = 0. If y = 0, we have tanh(κα

2 x) = x, which has only the solution
x = 0, since κα

2 ≤ 1.
Hence, we can assume that x �= 0 and y �= 0. By the symmetry of tanh, the

first equation induced by G(x, y) = (x, y) reads

tanh(y + καx
2 )− tanh(y − καx

2 )

καx
=

2

κα
.

With g(z) := (tanh(x))′ = 1− (tanh(z))2 and the mean value theorem we have

tanh(y + καx
2 )− tanh(y − καx

2 )

καx
= g(x0)

!
=

2

κα
=

1

1 + α
> 1, (10)

for some x0 between y + καx

2 and y − καx

2 (recall α < 0 for the last inequality).
Since 0 ≤ g(z) ≤ 1 for all z ∈ R the in equality in (10) can never be true, and
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there is no solution to G(x, y) = (x, y) with x �= 0, y �= 0. This, in turn implies
that on R

2 the function Φ̃ has a unique minimum at (0, 0). This proves exactly
the claim in (9) or in other words for all r > 0 there is a constant ξ(r, r0) such
that

Φ̃

(
x√
N

,
y

N1/4

)
> ξ(r, r0)

for all (x, y) ∈ Br0,N \Br,N . From here we get that∫
A∩(Br0,N\Br,N )

exp (−Φ(x, y)) dxdy ≤
∫
Br0,N

e−Nξ(r,r0)dxdy ≤ 2r20Ne−Nξ(r,r0)

≤ e−Nξ(r,r0)/2 (11)

for N sufficiently large. By (8) and (11) we have

lim
N→∞

∫
A∩Bc

r,N

exp (−Φ(x, y)) dxdy = 0

for r > 0 sufficiently small.
Now we turn to the intermediate region A ∩ B(0, R)c ∩ Br,N : Recalling

the definition of Φ̃ we want to expand the term log cosh
(

κα

2
√
N
x+ 1

N
1
4
y
)
resp.

log cosh
(

κα

2
√
N
x− 1

N
1
4
y
)
for x, y ∈ Br,N \B(0, R), where we recall the definition

of Br,N given in (7). Note that x, y ∈ Br,N implies κα

2
√
N
x± 1

N
1
4
y ∈ (−2r, 2r).

For z ∈ (−2r, 2r) we use the Taylor approximation and estimate the remain-
der using the Lagrange form∣∣∣∣log cosh(z)− z2

2
+

1

12
z4
∣∣∣∣ ≤ Crz6 resp. − log cosh(z) ≥ −z2

2
+

1

12
z4 − Crz6

for some positive constant C > 0. Applying this to Φ̃ and x, y ∈ Br,N \B(0, R)
and using that the terms with odd powers of x (and y) cancel, this gives

N Φ̃

(
x√
N

,
y

N1/4

)
≥ x2κα

4
+

√
Ny2

2
− N

4

(
καx

2
√
N

+
y

N1/4

)2

− N

4

(
καx

2
√
N

− y

N1/4

)2

+
N

24

[(
καx

2
√
N

+
y

N1/4

)4

+

(
καx

2
√
N

− y

N1/4

)4
]

− Cr
N

2

[(
καx

2
√
N

+
y

N1/4

)6

+

(
καx

2
√
N

− y

N1/4

)6
]

≥ x2

2

(
κα

2
−

(κα

2

)2
)
+

y4

12
+

N

2

κ2
αx

2

4N

y2√
N

− CrN

[
κ6
αx

6

64N3
+ 15

κ4
αx

4

16N2

y2√
N

+ 15
κ2
αx

2

4N

y4

N
+

y6

N3/2

]

≥ x2

2

[
κα

2
−
(κα

2

)2
]
+

y4

12
− CrN

[
κ6
αx

6

64N3
+

15κ4
αx

4y2

16N2
√
N

+
15κ2

αx
2y4

4N2
+

y6

N3/2

]
.
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Now note that for x, y ∈ Br,N we have

CrN
κ6
αx

6

64N3
≤ C

1

64
κ6
αx

2r5, (12)

15CrN
κ4
αx

4

16N2

y2√
N

≤ C
15

16
κ4
αx

2r5, (13)

15CrN
κ2
αx

2

4N

y4

N
≤ C

15

4
κ2
αx

2r5, (14)

and

CrN
y6

N3/2
≤ Cy4r3. (15)

Note that the coefficients of x2 resp. of y4 on the right hand sides of equations
(12)–(15) become arbitrarily small, if we take r small enough.

On the set Ar
R,N := A ∩B(0, R)c ∩Br,N we can therefore bound

N Φ̃

(
x√
N

,
y

N1/4

)

≥x2

2

(
κα

2
−

(κα

2

)2

− C
1

32
κ6
αr

5 − C
15

8
κ4
αr

5 − 15

2
Cκ2

αr
5

)
+

y4

12
(1− 12Cr3).

Since κα < 2, there exists some ε > 0 such that for r sufficiently small we have

κα

2
−

(κα

2

)2

− C
1

32
κ6
αr

5 − C
15

8
κ4
αr

5 − 15

2
Cκ2

αr
5 > ε

as well as
1− 12Cr3 > ε.

Hence for such a small value of r and N ∈ N we get∫
Ar

R,N

exp (−Φ(x, y)) dx dy ≤
∫
Ar

R,N

exp
(
−ε

2
x2 − ε

12
y4
)
dx dy. (16)

Note that the integrand on the left hand side of (16) implicitly depends on
N while the integrand on the right hand side does not depend on N and is
integrable over R

2, i.e. the estimate in (16) carries over if we take N → ∞ on
both sides

lim
N→∞

∫
Ar

R,N

exp (−Φ(x, y)) dx dy ≤
∫
A∩B(0,R)c

exp
(
−ε

2
x2 − ε

12
y4
)
dx dy.

(17)
Further, as again the integrand on the right hand side of (17) is integrable over
all of R2, the right hand side of (17) vanishes for R → ∞, i.e.

lim
R→∞

lim
N→∞

∫
Ar

R,N

exp (−Φ(x, y)) dx dy = 0.
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Combining the three considerations above shows that the only contribution
to χN,α,β comes from the inner region

lim
R→∞

lim
N→∞

∫
A

exp (−Φ(x, y)) dxdy =

∫
A

exp

[
−x2

2

(
κα

2
− κ2

α

4

)
− 1

12
y4
]
dx dy.

Thus in particular, the distribution of w̃2 = N1/4

2 (m1 −m2) convoluted with
an independent Gaussian distribution with mean 0 and variance 1√

N
converges

to a probability measure ρ on R with density proportional to exp(− 1
12x

4).
Since the N (0, 1√

N
)-distribution converges to 0, as N → ∞, this implies that

N1/4

2 (m1 −m2) converges to ρ in distribution, as well. Moreover, the above cal-

culation yields that the distribution of w̃1 =
√
N
2 (m1 + m2) convoluted with

an independent Gaussian N (0, 2
κα

) converges to a Gaussian variable with mean

zero and variance
(
κα

2 − κα2

4

)−1
. In terms of characteristic functions this means

lim
n→∞

E(eitw̃1)e−
t2

2
2

κα = e
− t2

2

(
κα
2 −κ2

α
4

)−1

resp.

lim
n→∞

E(eitw̃1) = e
− t2

2

(
1

κα
2

−κ2
α
4

− 2
κα

)
= e

− t2

2

(
1

1−κα
2

)
= e−

t2

2 (− 1
α ).

Hence,
√
N
2 (m1 +m2) converges in distribution to a Gaussian distribution with

mean zero and variance − 1
α .

To analyze the second situation, i.e. α > 0 and α+ β = 2, we now convolute
the distribution of ŵ with respect to μN,α,β,S with a 2-dimensional normal
distribution N (0, C), where this time

C :=

(
1√
N

0

0 2
β−α

)
=

(
1√
N

0

0 2
ηα

)

(recall that β − α > 0). Calling this convolution χ̂N,α,β , i.e. setting χ̂N,α,β :=
μN,α,β(ŵ)

−1 ∗N (0, C), we can compute its density as above (recall that κα = 2
in this case). For a 2-dimensional Borel set A we obtain

χ̂N,α,β(A) =
∑

σ∈{−1,1}N

N (0, C)(A− ŵ)μN,α,β(σ)

= K2

∑
σ∈{−1,1}N

∫
A

exp
(
− 1

2

(√
N(x− ŵ1)

2 +
ηα
2
(y − ŵ2)

2
)

+
1

4

(√
N2ŵ1

2 + ηαŵ2
2
))

dxdy

= K2

∑
σ∈{−1,1}N

∫
A

exp

(
−
√
N

2
x2 +

√
Nxŵ1 −

ηα
4
y2 +

ηα
2
yŵ2

)
dxdy
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= K3

∫
A

exp

(
−
√
N

2
x2 − ηα

4
y2

)
exp

(
N

2
log cosh

(
x

N1/4
+

ηα

2
√
N

y

)

+
N

2
log cosh

(
x

N1/4
− ηα

2
√
N

y

))
dxdy, (18)

where again

K2 :=
1

2π
√
detCZN,α,β

, K3 := 2N
1

2π
√
detCZN,α,β

.

(but this time C is different).

Expanding log cosh again up to fourth order we see that now the x2-terms in
the exponent cancel and we obtain

−
√
Nx2

2
− ηαy

2

4
+
N

2
log cosh

[
x

N1/4
+

ηαy

2
√
N

]
+
N

2
log cosh

[
x

N1/4
− ηαy

2
√
N

]

=− 1

12
x4 − 1

2
y2

(
ηα
2

−
(ηα

2

)2
)
+O(N− 1

2 )

with a O(N− 1
2 )-term that depends on x and y but is uniformly bounded for x

and y taken from a compact subset of R2.

For non-compact sets A we note that the integrand in (18) equals the re-
spective integrand in the case α < 0, if we interchange the roles of x and y and
replace ηα by κα (and use log cosh(z) = log cosh(−z)), i.e. using the notation
A′ := {(y, x) : (x, y) ∈ A} we have

χ̂N,α,β(A) = K3

∫
A′

exp

(
−
√
N

2
y2 − ηα

4
x2

)
exp

(
N

2
log cosh

(
y

N1/4
+

ηαx

2
√
N

)

+
N

2
log cosh

(
ηαx

2
√
N

− y

N1/4

))
dxdy.

Again dividing the regime of integration into an inner, an intermediate and an
outer region, we already saw in the case α < 0 (note that in the case α < 0 we
did not use the explicit form of κα in that part of the proof and hence we may
replace κα by ηα)

lim
N→∞

χ̂N,α,β(A) =

∫
A

exp

(
− 1

12
x4 − 1

2
y2

(
ηα
2

−
(ηα

2

)2
))

dx dy.

In particular, ŵ2 =
√
N
2 (m1 − m2) converges in distribution to a N (0, σ̃2)-

distribution, where σ̃2 = 1
ηα
2 −( ηα

2 )
2 = 1

β−α
2 −( β−α

2 )
2 .
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This weak convergence is equivalent to the convergence of the characteristic
functions.

Computing the characteristic functions of the Gaussian distribution involved
in the above proof, we have therefore shown that the characteristic function of
ŵ2 in the point t ∈ R satisfies

lim
N→∞

E(eitŵ2)e−
1
2 (

2
β−α )t2 = e−

1
2 t

2[ β−α
2 −( β−α

2 )
2
]−1

.

Therefore,

lim
N→∞

E(eitŵ2) = e
1
2 (

2
β−α )t2e−

1
2 t

2[ β−α
2 −( β−α

2 )
2
]−1

= e
− 1

2 t
2

(
1

1− β−α
2

)
.

On the level of weak convergence, or convergence in distribution, this in turn
implies that

ŵ2
N→∞−−−−→ N (0, σ2), σ2 =

1

1− β−α
2

in distribution. Similarly, ŵ1 = N
1
4

2 (m1 +m2) convoluted with an independent
Gaussian distribution with mean 0 and variance 1√

N
converges to a probability

measure ρ on R with density proportional to exp(− 1
12x

4). Since the N (0, 1√
N
)-

distribution converges to 0, as N → ∞, this implies that N1/4

2 (m1 −m2) con-
verges to ρ in distribution, as well.

4. Proof of Theorem 1.3

We are now ready to give the proof of our central result, Theorem 1.3, which
consists of a combination of the previous two sections.

Proof of Theorem 1.3. In view of Theorem 2.1, all we need to do is to estimate
Z − Z ′ in the critical case.

Let us first assume that α > 0. Then, Theorem 3.1 shows that 1√
N
(
∑

i∈S σi−∑
j /∈S σj) converges to a normal distribution with mean 0 and variance 2

2−β+α .
In particular

V

⎛
⎝ 1√

N

⎛
⎝∑

i∈S

σi −
∑
j /∈S

σj

⎞
⎠
⎞
⎠ → 2

2− β + α
.

But,

E
1√
N

⎛
⎝∑

i∈S

σi −
∑
j /∈S

σj

⎞
⎠ = 0,
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hence

V

⎛
⎝ 1√

N

⎛
⎝∑

i∈S

σi −
∑
j /∈S

σj

⎞
⎠
⎞
⎠

=
1

N

⎛
⎝ ∑

i,j∈S

E(σiσj) +
∑
i,j /∈S

E(σiσj)− 2
∑

k∈S,l/∈S

E(σkσl)

⎞
⎠

=
1

N

(
N + 2

N

2

(
N

2
− 1

)
Z − 2

N2

4
Z ′

)
,

where we recall that Z := E(σiσj), if i ∼ j and Z ′ := E(σiσj), if i �∼ j. Thus(
N

2
− 1

)
Z − N

2
Z ′ → 2

2− β + α
− 1 =

β − α

2− β + α
. (19)

Note that we excluded the case α = 0, β = 2 in which case the right hand side
would explode.

Note that Z is of order 1√
N
. On the one hand this follows from Theorem 6

and the remark from the paper by Kirsch and Toth [16] cited at the beginning
of Section 3 and on the other hand it also follows from Theorem 3.1 directly:
As noted in Theorem 3.1 (b) 1

N3/4

∑
i σi converges to a non-degenerate limit

distribution. Since Z ≥ |Z ′| as a consequence of β ≥ |α| (α = 1, i.e. α = β

being excluded, of course) this limit theorem implies that N(N−1)Z
N3/2 ≤ c for

some constant c which shows that c is at most of order 1√
N
. But then (19)

shows that
Z − Z ′ ∼ C/N for some constant C > 0 (20)

where ∼ indicates asymptotic equivalence.
Let us now turn to the other case where α < 0 and still β + |α| = 2. Then

according to Theorem 3.1 the difference of the spins 1
N3/4 (

∑
i∈S σi −

∑
j /∈S σj)

converges to a distribution ρ on R with density proportional to exp(− 1
12x

4). In
particular, ρ has finite variance

τ :=
√
12

Γ( 34 )

Γ( 14 )
∼ 1.17

Then

V

⎛
⎝ 1

N3/4

⎛
⎝∑

i∈S

σi −
∑
j /∈S

σj

⎞
⎠
⎞
⎠ → τ.

Taking into account that again E(
∑

i∈S σi −
∑

j /∈S σj) = 0 and following the
same calculations as above we obtain:

1√
N

+

(√
N

2
− 1√

N

)
Z −

√
N

2
Z ′ → τ. (21)
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The observation that this time 1√
N

∑
i σi converges to a normal distribution

yields that Z is of order 1
N , hence (21) implies

Z − Z ′ ∼ C̃/
√
N for some (other) constant C̃ > 0. (22)

Combining (20) and (22), respectively, with the reconstruction result Theorem
2.1 from [2] implies the assertion of Theorem 1.3.
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