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Abstract: In this paper, we consider the estimation of a change-point for
possibly high-dimensional data in a Gaussian model, using a maximum like-
lihood method. We are interested in how dimension reduction can affect the
performance of the method. We provide an estimator of the change-point
that has a minimax rate of convergence, up to a logarithmic factor. The
minimax rate is in fact composed of a fast rate —dimension-invariant— and
a slow rate —increasing with the dimension. Moreover, it is proved that con-
sidering the case of sparse data, with a Sobolev regularity, there is a bound
on the separation of the regimes above which there exists an optimal choice
of dimension reduction, leading to the fast rate of estimation. We propose
an adaptive dimension reduction procedure based on Lepski’s method and
show that the resulting estimator attains the fast rate of convergence. Our
results are then illustrated by a simulation study. In particular, practical
strategies are suggested to perform dimension reduction.
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1. Introduction

1.1. The model

An important problem in the vast domain of statistical learning is the question
of unsupervised classification of high-dimensional data. Many examples fall into
this category such as the classification of curves or images. Here, we will address
a framework where the change between classes occurs on a time scale, which
casts the problem into the change-point estimation issue.

We consider, for the sake of simplicity, a change-point problem with exactly
two classes: we assume that there exists a change-point τ : before nτ , the ob-
servations are in a certain state, after nτ , they are in another state. More pre-
cisely, we observe independent random vectors Y1, . . . , Yn with values in R

d,
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such that

Yi = θi + ηi, ηi ∼ N (0, σ2Id) i.i.d., 1 ≤ i ≤ n,

∀i ≤ nτ, θi = θ−,

∀i > nτ, θi = θ+.

In practice, such a model is obtained for instance in the monitoring of pa-
tients, where the variables Yi are a bunch of d biological, chemical and/or clinical
observations collected each ten minutes (for example) on a patient, and nτ re-
flects a time of change in the patient’s condition.

Our aim is to estimate the change-point τ . Using the maximum likelihood
approach, also known in this context as CUSUM method, we derive rates of
convergence for the estimation of τ , under conditions specified below.

For high-dimensional data, from a computational point of view, there is an
obvious need for dimension reduction when estimating τ . Without such a step,
the segmentation algorithm might be unstable or even not work at all. Here,
we will consider the dimension reduction problem from a theoretical point of
view (as opposed to the algorithmic point of view). From a theoretical point
of view, one might suspect that it should always be better to keep the whole
data, to get the best precision on the estimation of the change-point. In fact,
we show that this intuition is not correct. Addressing this dimension reduction
problem can require sophisticated tools directly connected to smoothing ques-
tions in nonparametric estimation. Especially, as will be seen along the paper,
sparsity assumptions, as well as smoothing adaptive methods, can be directly
borrowed from the nonparametric statistical inference and fruitfully applied in
this context.

To sum up, our goal is to answer the following questions:

(a) Without referring to the technical feasibility, is there a theoretical gain in
reducing the dimension, which somehow reduces to the choice between two
options: ignoring a part of the data, versus keeping all the data?

(b) If the data is high-dimensional but “sparse”, is there a way to use this
sparsity to get better results?

(c) If dimension reduction proves to be theoretically more efficient, how could
it be performed? Do usual nonparametric smoothing methods work well in
a change-point problem?

(d) Does on-line (signal by signal) dimension reduction perform as well as off-
line (using a preprocessing involving all the signals)?

1.2. Literature review and related work

The change-point problem has a long history, going back at least to [49]. For an
introduction to the domain, the reader may refer for instance to the monographs
and articles by [53], [51], [46], [7], [10], [12], [17] or [27].

Change-point detection has many practical applications, ranging from genet-
ics [47] or health [55] to aerospace industry [25]. Note that high-dimensional
change-point problems may occur in a wide range of areas. This is the case
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for instance in the analysis of traffic network data ([43, 44]), in bioinformatics,
when studying copy-number variation ([8, 60]), for studying functional magnetic
resonance imaging (fMRI) ([2]), in astrostatistics ([9, 56, 45]) or in multimedia
indexation ([22]). In these practical applications, the number of observations is
relatively small compared to their dimension, with the change-point possibly
occurring only for a few components.

Various different change-point methods and settings have been developed in
the literature, in particular in the univariate case. For instance, [33] introduced
the pruned exact linear time method, [21] wild binary segmentation, and [20] a
simultaneous multiscale change-point estimator, whereas change-point estima-
tion based on resampling has been investigated in [19] and [1]. Some multivariate
extensions are described among others in [28], [48], [3] and [34]. Dependent se-
quences are considered for instance in [23], [24], [4], [6] and [38]. Regarding the
high-dimensional context, [31] considers several dependent change-point tests
and studies the behavior of the maximum over all test statistics as both the
sample size and the number of tests tend to infinity. [15] propose a sparse
version of binary segmentation. [5], [26] and [14] are interested in the high-
dimensional context of panel data. The high dimension problem is addressed
through changes in cross-covariance in [39], [3], [11], [50], [16]. In [54], convex
optimization is used to perform regularization for solving the high dimensional
change-point problem. In [13, 52], graph-based approaches which are efficient in
high dimension are designed. [30] proposes a method based on a statistics in-
spired by Hotelling’s T 2 statistics. [18] consider high-dimensional change-point
detection, from the testing point of view.

In this paper, we will study the performance of the procedure from a min-
imax point of view, in a high-dimensional context. This approach provides an
evaluation of the best expectable performances in a particular framework, and
the aim is then to provide a procedure attaining these performances.

Minimax estimation is considered already in [36], in the Gaussian white noise
model. High-dimensional change-point problems are also studied in [35], which
proposes an asymptotically minimax estimator of the change-point location,
when the Euclidean norm of the gap tends to infinity as the dimension d goes
to infinity.

Our approach is deeply connected to this paper and can be considered as a
continuation of this project. The main difference is that in [35], the authors do
not question the dimension reduction problem and do not consider the same
estimation method. Moreover, [35] make the assumption that the change-point
only occurs after a known number of observations and before another known
number of observations. This is a crucial difference since knowing that some
observations are in the first or last state allows to provide an efficient estimation
of this state. Without this assumption, we do not have this opportunity, which
adds a difficulty to the problem.

Another related reference is the paper by [59], who proposed a two-stage
procedure based on a projection followed by a univariate change point estimation
algorithm applied to the projected data, providing rates of convergence for the
estimator of the change-point location.
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1.3. Outline of the paper

The paper is organized as follows. We begin Section 2 by introducing the change-
point model. We also present the problem of dimension reduction and the maxi-
mum likelihood estimator of the change-point. We prove that, for a fixed dimen-
sion, up to a logarithmic term, the maximum likelihood method, has a minimax
rate of convergence. Let us point out that we do not know whether this loga-
rithmic term is necessary or not. Indeed, as explained earlier, in [35], “the edges
are known” (and the estimation method uses this knowledge), meaning that the
minimax rate is established in the case where the change-point cannot occur
before or after a known proportion of the observations. Our method is agnostic
to this knowledge, creating obvious additional difficulties. Moreover, we show
that if the data is sparse, in a Sobolev sense, there exists an optimal dimension
reduction, depending on the sparsity constants.

Of course, these constants are not known in practice. The aim of Section
3 is to provide a procedure which behaves as well as if the sparsity constants
were known. To attain this optimal projection dimension in an adaptive way,
we provide a method relying on the Lepski method. The Lepski method (see
for instance [40, 41, 42] and Section 3.1 for more details) is one of the famous
methods to obtain adaptivity in various functional estimation settings such as
white noise model, regression, density estimation... In these models, minimax
optimality is linked with the regularity assumptions imposed on the functions
which are estimated. Adaptation methods provide ways to escape from this
knowledge and still perform optimally. Note that the proposed method has the
advantage of being performed off-line, before the main segmentation step.

Numerical experiments are provided in Section 4. Section 5 is devoted to the
proofs.

2. Main result: Minimax convergence rate

2.1. Change-point model and assumptions

Let n ≥ 3. We observe n independent signals Y1, . . . , Yn. We assume that each
signal Yi, i = 1, . . . , n, is a d dimensional vector: for every i, Yi = (Yi,1, . . . , Yi,d)
is a random vector with values in R

d.
We suppose that there exist a change-point 0 < τ < 1 and two vectors θ−

and θ+ of Rd, such that the model is given by

Yi = θi + ηi, ηi ∼ N (0, σ2Id) i.i.d., 1 ≤ i ≤ n, (1)

∀i ≤ nτ, θi = θ−,

∀i > nτ, θi = θ+.

Remark 1.
More than one change. Dealing with a finite and known number N ≥ 2 of
change-points would not change the theoretical results but would add unneces-
sary complexity to the proofs.
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Connection to Functional Data Analysis: White Noise model. Theoretically,
Model (1) is directly connected to the model in [35] where the observation is a
sequence of white noise models:

Xi(u) = μi(u) + σZi(u), u ∈ [0, 1], i = 1, . . . , n,

where the Zi’s are i.i.d. Gaussian white noises. The goal is to locate a change
occurring in the functions μi (i.e. ∀i ≤ nτ , μi(u) = μ−(u), and ∀i > nτ ,
μi(u) = μ+(u), ∀u ∈ [0, 1]). To connect this model to (1), we simply project the
observations on an orthonormal basis (Φ�)�≥1 of L2([0, 1]), limiting the obser-
vation to the first d projections, with the following formula:

Y �
i =

∫
[0,1]

Xi(u)Φ�(u)du = θ�i + η�i , i = 1, . . . , n, � = 1 . . . , d,

where θ�i =
∫
[0,1]

μi(u)Φ�(u)du and the variables η�i are i.i.d. N (0, σ2).

The white noise model may seem a bit theoretical but it is standardly used
in nonparametric statistics as an approximation to more refined models such
as functional regression models (as detailed in the following paragraph) or even
density estimation models.
Connection to Functional Data Analysis: Regression analysis. Suppose that our
data is composed of n independent curves discretely observed on [0, 1] with a
grid of step size equal to 1

d .

Xi

(
j

d

)
= μi

(
j

d

)
+ σ0Zij , i = 1, . . . , n, j = 1, . . . d,

where the Zij ’s are i.i.d. Gaussian N (0, 1) variables. The goal again is to locate a
change occurring in the functions μi (i.e. ∀i ≤ nτ , μi(u) = μ−(u), and ∀i > nτ ,
μi(u) = μ+(u), ∀u ∈ [0, 1]). Then, again, this model can be connected to (1),
with the help of an orthonormal basis (Φ�)�≥1 of L2([0, 1]), writing

Y �
i =

1

d

d∑
j=1

Xi

(
j

d

)
Φ�

(
j

d

)
= θ�i + η�i + r�i , i = 1, . . . , n, � = 1 . . . , d,

where θ�i =
∫
[0,1]

μi(u)Φ�(u)du, the variables η�i are i.i.d. N (0,
σ2
0

d ) and r�i are

deterministic quantities describing the difference between the Riemann sum and
the integral which can be negligible for d large enough and standard regularity
assumptions —which will not be discussed here— on the functions μi and Φ�.
Heteroscedasticity. For the sake of simplicity, the covariance matrix of the noise
ηi in (1) is chosen to be proportional to identity. In various examples, it could be
reasonable to choose a covariance of the form σ2J , where J is a known matrix,
different from identity. Similarly, in the FDA example, if the Zi’s are i.i.d. Gaus-
sian processes but not white noise, then taking an orthonormal basis of L2([0, 1])
would not necessarily lead to a covariance matrix proportional to identity. Then,
a simple change of variables like J−1/2Yi would lead to a similar behavior, pro-
vided appropriate regularity assumptions are made on the parameters J−1/2θ+

and J−1/2θ−.
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Variance. We suppose here σ2 to be known. Note that σ2 may depend on d or
on n. For instance, as in one of the previous examples, it may be of the form
σ2
0/d, where σ2

0 is an absolute and known constant.
Gaussianity. Considering Gaussian noise is a useful simplification, but this as-
sumption is not crucial. We essentially need concentration inequalities, and sim-
ilar results may likely be obtained under sub-Gaussian hypotheses on the errors.
In that case, the considered estimator of τ is no more a maximum likelihood
estimator, but simply a CUSUM estimator.

2.2. Estimation method

We are interested in the behavior of the maximum likelihood estimator, also
called in this case CUSUM estimator:

k̂(d) = argmin
k∈{2,...,n−2}

⎧⎨
⎩

k∑
i=1

d∑
j=1

(
Yi,j −

1

k

k∑
�=1

Y�,j

)2

+

n∑
i=k+1

d∑
j=1

(
Yi,j −

1

n− k

n∑
�=k+1

Y�,j

)2

⎫⎬
⎭ .

To prove some of our results, we will need the following sparsity conditions.

2.2.1. Condition on the means

For s > 0, we define

Θ(s, L) :=

⎧⎨
⎩θ ∈ R

d, sup
K∈N∗

K2s
∑
k≥K

(θk)
2 ≤ L2

⎫⎬
⎭ .

We will suppose that θ− and θ+ are in Θ(s, L).

Remark 2. This assumption expresses a form of sparsity of the coefficients
which is standard in nonparametric settings. It corresponds to conditions which
are directly connected to the regularity of the function to be estimated in non-
parametric estimation (see [57] for a general introduction). So this condition is
easily interpretable in the cases of FDA mentioned above. In the more general
setting of a high-dimensional physical observation, it is commonly accepted to
solve learning problems by introducing sparsity constraints (see for instance [32]
or [29] among many others). These constraints can take various forms: we de-
liberately chose here the Sobolev type. It is among the simplest forms to handle
technically. Note that it reflects an ordering: the first coefficients are supposed
to be more important than the last ones. This is quite a reasonable assumption
since, generally, modeling of high-dimensional or functional data via a basis ex-
pansion results in such a situation. However, other type of structural sparsity
could be investigated (like having a finite support of coefficients) which would
lead to different methods in particular for the adaptivity part.
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Example 1. Let s = 1/2 and L = 1. Assume that θ is defined by θk = 1√
2k

for

k = 1, . . . , kmax and θk = 0 for k > kmax. Then, for every K = 1, . . . , kmax,

K2s
∑
k≥K

(θk)
2 ≤ L2 = K

kmax∑
k=K

(
1√
2k

)2

≤ 1.

Hence, θ ∈ Θ(1/2, 1).

Note that there are possible extensions to other kinds of sparsity, considering
for instance coefficients belonging to the set

Θq(L) :=

{
θ ∈ R

d,
∑
k

|θk|q ≤ L

}
,

where q < 1. Note that this choice requires more sophisticated smoothing algo-
rithms.

To end up this section we introduce the following important parameter:

ε := min{τ, 1− τ}. (2)

As we are in a not degenerate case —there is a change, ε is a strictly positive
quantity, which measures the potential lack of information at the border of the
interval [0, 1]. It is important to notice that the theoretical performances of the
procedures will depend on ε. However, the procedure is agnostic to ε, which
therefore will not be supposed to have a known lower bound.

2.3. Dimension reduction for the estimation of τ

Our aim is to determine whether or not it is efficient to perform a dimension
reduction when estimating the change-point τ . More specifically, we will inves-
tigate the effect of replacing the vectors Yi = (Yi,1, . . . , Yi,d), i ≤ n (called “raw
data”), by, for p < d, Yi(p) := (Yi,1, . . . , Yi,p), i ≤ n, the vectors of Rp composed
of the p first coordinates of Yi.

For each projection dimension p, we may define:

k̂(p) = argmin
k∈{2,...,n−2}

⎧⎨
⎩

k∑
i=1

p∑
j=1

(
Yi,j −

1

k

k∑
�=1

Y�,j

)2

+

n∑
i=k+1

p∑
j=1

(
Yi,j −

1

n− k

n∑
�=k+1

Y�,j

)2

⎫⎬
⎭ .

We set

τ̂(p) =
k̂(p)

n
.
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In the sequel, we will use the notation

Δ2 :=

d∑
j=1

(θ−j − θ+j )
2 = ‖θ+ − θ−‖2.

We also define, for p ≤ d,

Δ2
p :=

p∑
j=1

(θ−j − θ+j )
2, Ψn(p,Δp) =

σ2

nΔ2
p

(
1 ∨ σ2p

nΔ2
p

)
.

Example 2. Let θ+ and θ− be defined by θ+k = 1√
2k

and θ−k = − 1√
2k
. The rate

Ψn is plotted as a function of n and p in Figure 1.

Fig 1. Example of plot of Ψn as a function of n and p (n = 1, . . . , 10; p = 1, . . . , 20).

The next result describes the behavior of the estimated change-point τ̂(p).

Proposition 1. For any γ > 0, there exist constants κ(γ, ε) and c(γ, ε) such
that, if

Δ2
p ≥ c(γ, ε)

σ2 ln(n)

n
,

then

P
(
|τ̂(p)− τ | ≥ κ(γ, ε) ln(n)Ψn(p,Δp)

)
≤ cn−γ ,

where c is an absolute constant.

Remark 3.
No sparsity required. Note that no condition on the sparsity of θ+ and θ− is
needed for this result.
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Minimaxity. Thanks to [35], one can observe that Ψn(p,Δp) is the minimax
rate in this framework. Compared to their result, we are apparently loosing a
logarithmic factor. However, it is important to stress that in [35], a fixed lower
bound on ε is supposed to be known, whereas our estimator τ̂(p) is adaptive in ε.
In other terms, the procedure τ̂(p) has minimax rate possibly up to a logarithmic
factor. About this logarithmic factor, it is also worth noticing that ln(n) could be
substituted by any sequence rn, provided that the factor n−γ is simultaneously
replaced by exp(−crn) in Proposition 1. (Here, c is a constant which can be
made explicit on closer inspection of the proof.)
ε-dependence. Looking carefully at the proofs, the constants c(ε, γ) and κ(ε, γ)

can be taken proportional to (γ+1)
ε2 . This remark proves that no condition is

required on the proximity of the change point to one extremity of the interval of
observation. It also shows that the dependence on ε is of polynomial form. An
interesting point, beyond the aim of this paper, would be to investigate whether
ε2 is the optimal rate. One comment that can be made is that our proofs are
especially adequate when ε is fixed (does not depend on n).
Fast rate/slow rate. For p = d, Ψn(d,Δd) = Ψn(d,Δ). The rate is composed

of two different regimes: a “fast one” σ2 ln(n)
nΔ2 , which does not depend on the

dimension d and a “slow one” σ4 ln(n)d
(nΔ2)2 , which is rapidly deteriorating with the

dimension. From the results above, we deduce that if c(γ, ε)σ
2 ln(n)
n ≤ Δ2 < σ2d

n ,

the rate of convergence is σ4 ln(n)d
(nΔ2)2 (small gap, slow performances), whereas if

Δ2 ≥ σ2d
n ∨ c(γ, ε)σ

2 ln(n)
n , it is σ2 ln(n)

nΔ2 . This last rate is obviously much better,
and with this latter condition on Δ, taking p = d (so raw data) allows to

obtain the best rate σ2 ln(n)
nΔ2 . Taking a smaller p could lead to a reduction of Δp

damaging the rate.
However this latter condition is quite restrictive on Δ when d is large. In the

next paragraph, we will try to refine this condition, gaining on the size p of the
projection.
Without assumptions on the behavior of the parameters θ+ and θ−, there is
nothing much to hope about the way Δp is increasing in p. At this stage, it
is fruitful to introduce sparsity assumptions. If we assume that the means θ−

and θ+ belong to Θ(s, L), then, for p such that Δ2 ≥ 8L2p−2s, Δp and Δ are

comparable, in the sense that Δ2
p ≥ Δ2/2. Indeed, Δ2 − Δ2

p =
∑d

j=p+1(θ
−
j −

θ+j )
2 ≤ 4p−2sL2, so that

Δ2
p

Δ2
≥ 1− 4p−2sL2

Δ2
≥ 1/2.

This is precisely what is exploited in the first part of Theorem 1 below.
Let us observe that if Δp and Δ are comparable (in the sense above), then
Ψn(p,Δp) ∼ Ψn(p,Δ) becomes much easier to analyse. In particular, we see
that, again, it is composed of two regimes —a slow one and a fast one— and

the dependence in p becomes easily understandable: σ2 ln(n)
nΔ2 for p ≤ nΔ2

σ2 , and
σ4 ln(n)p
(nΔ2)2 for larger p’s.
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This corresponds to what may be observed in practical applications: when
the dimension p is increasing, one first observes an improved convergence of τ̂ ,
then the rate remains stable for a while, and then convergence gets less good
again.

Note that two different convergence rates have also been highlighted in other
change-point settings, for instance in [58].

2.4. Minimax convergence rate under sparsity condition

The following theorem is an immediate consequence of Proposition 1 in the case
where one assumes the sparsity condition on the means.

Theorem 1. We consider Model (1), with the means θ+ and θ− in Θ(s, L).
For any γ > 0, there exist constants κ(γ, ε) and c(γ, ε) such that, if

Δ2 ≥
[
2c(γ, ε)

σ2 ln(n)

n
∨ 8L2p−2s

]
,

then
P

(
|τ̂(p)− τ | ≥ κ(γ, ε) ln(n)Ψn(p,Δ)

)
≤ cn−γ .

If, now,

Δ2 ≥
[
2c(γ, ε)

σ2 ln(n)

n
∨ 8L2p−2s ∨ σ2p

n

]
, (3)

then

P
(
|τ̂(p)− τ | ≥ κ(γ, ε)

σ2 ln(n)

nΔ2

)
≤ cn−γ .

Here, c is an absolute constant.

It is important to notice that a big difference with Proposition 1 is that the
rate is Ψn(p,Δ) instead of Ψn(p,Δp), which is more “honest” in a sense. The
price to pay is then, as is intuitive, that p should be large enough. In the second
statement, we look at the condition on Δ and p to obtain the fast rate. For Δ
fixed, we see that p must not be too large or too small.

Condition (3) contains two terms: one is increasing in p, one decreasing. Hence
it can be optimized leading to

popt ∼ ps :=

(
8L2n

σ2

) 1
1+2s

. (4)

We obtain the next corollary, corresponding to this projection dimension ps.

Corollary 1. Under the conditions above, for any γ > 0, there exist constants
κ(γ, ε) and c(γ, ε) such that, if

Δ2 ≥
[
2c(γ, ε)

σ2 ln(n)

n
∨

(
σ2

n

) 2s
1+2s (

8L2
) 1

1+2s

]
,

P
(
|τ̂(ps)− τ | ≥ κ(γ, ε)

σ2 ln(n)

nΔ2

)
≤ cn−γ .



1658 A. Fischer and D. Picard

Interpretation is that the quantity
[
2c(γ, ε)σ

2 ln(n)
n ∨ (σ

2

n )
2s

1+2s (8L2)
1

1+2s

]
is

the minimal gap between the two regimes ensuring that the “fast” rate σ2 ln(n)
nΔ2

can be obtained, with an appropriate projection dimension.

Remark 4. 1. We see here that there is an obvious advantage in reducing
the dimension, since it allows to obtain the best rate with less restricting
conditions on the gap Δ.

2. We observe that the greater Δ, the faster the rate of convergence of τ̂ ,
which is quite natural.

3. At first sight, the rate of convergence and the conditions could seem quite

unsatisfactory, but observe that very often σ2 is of the form
σ2
0

d . In this

case, the rate of convergence is of the order
(

nd
σ2
0

) −2s
1+2s

Δ−2.

4. Formula (4) indicates that the optimal p depends on the sparsity constant
s, which is rarely known.

5. If we now look for a procedure searching for an optimal p in an adaptive
way (without knowing the regularity s), some comments can be made be-
fore proposing a solution. In particular, one may ask whether it is possible
to optimize individually (on each signal Yi of R

d), or if it is necessary
to perform an off-line preprocessing (requiring the use of all the signals).

The form of the optimal projection dimension ps ∼
(

nd
σ2
0

) 1
1+2s

allows to

answer this question. Indeed, any adaptive smoothing performed individ-
ually on each signal Yi (such as thresholding, lasso...) would lead at best

to a dimension of the form popt =
(

d
σ2
0

) 1
1+2s

, which would induce a lost of

a polynomial factor in n in the rates. This means that it is obviously more
efficient to find a procedure performing the smoothing globally (off-line).

3. Fast rate of convergence: Adaptive choice of p

The message of the section above is the following: for a multichannel signal with
sparsity conditions, there is a lower bound on Δ above which there exists an
efficient choice of p, leading to the fast rate of estimation for the parameter

τ , σ2 ln(n)
nΔ2 . However, in Corollary 1, this choice depends on the knowledge of

the regularity parameter s. An essential question then is to construct a adap-
tive procedure, that is, to design a strategy still performing optimally, without
knowledge about the regularity.

There are several ways to give an answer to this question and one can for
instance look at the procedure introduced in [59], which proves adaptivity under
slightly different conditions.

Our preference here will be to take inspiration into nonparametric statistics
which provide many adaptive procedures, and in particular Lepski’s method.
This will lead to a procedure which is quite simple, and interesting by itself in
this context.
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3.1. Lepski’s procedure

Let us recall, as already mentioned in the Introduction, that the Lepski method
([40, 41, 42]) is a strategy allowing to obtain adaptivity in various functional
estimation settings such as white noise model, regression or density estimation.
In these models, minimax optimality is linked with the regularity assumptions
imposed on the functions which are estimated. In these nonparametric problems,
there is a balance to obtain between a “variance” term, typically of the form p

n ,
and a “bias” term, typically of the form p−2s. The Lepski procedure proposes
to choose the minimal p among those such that an estimated version of the bias
is below a bound.

For the sake of clarity, let us first recall the classical Lepski procedure in the
standard Gaussian white noise model. Note that it will not be described in the
original form presented in the first papers, corresponding to kernel estimation
methods. Here, the procedure is adapted to the orthogonal series estimation
methods, which is more suitable for a transposition to our case.

Consider the following model:

Zj = βj + εj , j = 1, . . . , d, (5)

where the εj ’s are i.i.d. N (0, ν2). The Lepski procedure for choosing the optimal
projection dimension p consists in defining p̂ as follows:

p̂ := min

{
k ≥ 1 : ∀d ≥ j ≥ m ≥ k,

j∑
�=m

(Z�)
2 ≤ CLjν

2 ln(d)

}
,

where CL is a tuning constant of the procedure.
In our change-point setting, a transformation of the data is necessary to fall

into the frame of Model (5). We will apply the Lepski method to a surrogate
data vector built on the whole observation.

3.2. Preprocessing

Using the complete data set (so off-line), we define a surrogate data vector,
which will be used to find an optimal p̂. We assume, for the sake of simplicity,
that n is even; otherwise, the modifications are elementary.

We set:

Zj =
1

n

n∑
i=1

Yi,j −
2

n

n/2∑
i=1

Yi,j , j = 1, . . . , d.

This vector Z = (Zj)1≤j≤d is a special case of Model (5), where

βj = (1− τ)(θ+j − θ−j )1{τ≥1/2} + τ(θ+j − θ−j )1{τ<1/2}, j = 1, . . . , d

εj =

n/2∑
i=1

−1

n
ηi,j +

n∑
i=n/2+1

1

n
ηi,j , j = 1, . . . , d

ν2 =
σ2

n
.
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3.3. Adaptive convergence rate

We consider the Lepski procedure applied to the vector Z, producing a projec-
tion dimension p̂. This parameter is then just plugged in the maximum likelihood
procedure for estimating τ̂ .

It is well-known that estimating the regularity of a signal is impossible with-
out important extraneous assumptions, but Lepski’s procedure provides a pro-
jection dimension p̂ which, with overwhelming probability, is smaller than the
optimal ps (defined in (4) above) and such that the bias Δ2 −Δp̂ is controlled,
which is precisely the need here.

The following theorem states that the method leads to an optimal selection,
up to logarithmic terms. As announced, Lepski’s method allows an adaptive
choice of p: though the optimal ps is unknown, we are able to achieve the same
convergence rate as in Corollary 1 with p = ps.

Theorem 2. We consider Model (1) and assume that θ+ and θ− belong to
Θ(s, L). We suppose that there exists a constant α > 0 such that

n

σ2
≥ α ln d.

For any γ > 0, there exist constants CL, κ(γ, ε), c(γ, ε) and R such that,
letting

p̂ := min

{
k ≥ 1 : ∀d ≥ j ≥ m ≥ k,

j∑
�=m

(Z�)
2 ≤ CLj

σ2

n
ln(d ∨ n)

}
,

if

Δ2 ≥ 2c(γ, ε)
σ2 ln(n)

n
∨R

(
σ2 ln(d ∨ n)

n

) 2s
1+2s

,

then

P
(
|τ̂(p̂)− τ | ≥ κ(γ, ε)

σ2 ln(n)

nΔ2

)
≤ cn−γ .

Remark 5. A thorough examination of the proof in Section 5.2 shows that
the constant CL only needs to be “large enough” (see (10)). Obviously, there is
no point in pretending that the bound in (10) is optimal. Hence, CL is to be
considered as a tuning constant of the method. The theorem proves that if the
constant is large enough, then an optimal result is obtained.

4. Numerical study

In this section, we provide some simulations illustrating our theoretical results.

4.1. Rate of convergence

In this experiment, we study the rate of convergence of the estimator τ̂ . Let
d = 20, p = 10, σ = 1, τ = 0.3. Let us consider data generated from Model
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(1) with the means θ− and θ+ obtained from the following distribution: θ− ∼
N (0, 1

20j2 ), θ
+ ∼ N (−θ−, 10−4).

To get a first insight about the rate of convergence, we simulate 1000 times
a sample of length n, for n chosen between 20 and 4000, and plot in Figure 2
the mean and median of the error |τ − τ̂ | over the 1000 trials in function of n,
together with the function n 
→ ln(n)Ψn(p,Δp) corresponding to the theoretical
rate of convergence obtained in Proposition 1. Note that the rate of convergence
of |τ − τ̂ | is given in the proposition up to a constant κ(γ, ε). Nevertheless, the
figure provides an appropriate illustration of the result as soon as n is large
enough.

Fig 2. Plot of |τ̂ − τ | as a function of n (mean and median over 1000 trials).

Then, simulating 1000 samples, for each value of the sample size n between
500 and 4000, we try to estimate of the rate of convergence by computing the
linear regression of |τ − τ̂ | by ln(n): omitting the logarithmic factor, an expo-
nent −1 is to be found, corresponding to the rate of convergence 1

n . Figure 3
provides an illustration of this linear regression, considering again the mean and
the median over the 1000 trials. On this example, the estimated slope of the
regression line is −1.172 for the mean and −1.098 for the median.

4.2. Selection of p

In Theorem 2, we suggest to select p using Lepski’s method. Before introducing
a practical procedure for the selection of p, let us illustrate the fact that the
performance of the estimator τ̂ may indeed vary a lot as a function of p, so that
selecting the right p is a crucial issue in the estimation of τ .

We set d = 200, n = 100, σ = 1, τ = 0.3. We consider data generated from
Model (1) with means θ− and θ+ built as follows:

• Case A: θ− ∼ N (0, V ), θ+ ∼ N (0, V ), V = diag(v1, . . . , vd), vj = 1
2j2 for

j = 1, . . . , d.
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Fig 3. Plot of ln(|τ̂ − τ |) as a function of ln(n) (mean and median over 1000 trials).

• Case B: θ− is such that θ−j ∼ N (0, 1/2) for j = 1, . . . , 20, and θ−j ∼
N (0, 1

2(j−20)2 ) for j = 21, . . . , d. θ+ is such that θ+j ∼ N (θ−j , 10
−2) for

j = 1, . . . , 20, and θ+j ∼ N (0, 1
2(j−20)2 ) for j = 21, . . . , d.

We simulated 5000 data sets according to Model (1) in each of the two cases.
Figure 4 and 5 show the mean and median error |τ̂ − τ | over the 5000 trials as
a function of p. In the first case, the best result is obtained already with p = 1,
whereas for the second, taking p around 30 is a good choice.

Theorem 2 provides a theoretical way to select p. However, the statement
depends on a tuning constant CL. In practice, it is simpler to try to select
directly p. In the sequel, two such procedures are investigated, yielding two
estimators p̂1 and p̂2.

• Method 1. This method is often used to search for tuning constants in
adaptive methods. The idea is to find a division of the set {1, . . . , d} into
{1, . . . , p̂1} and its complementary, where the two subsets are correspond-
ing to two “regimes” for the data, one with “big coefficients”, one with
small ones.
Let Z̄(p) = 1

p

∑p
j=1 Zj and Z̄(−p) = 1

d−p

∑d
j=p+1 Zj , and consider

V (p) =

p∑
j=1

(Zj − Z̄(p))2 +

d∑
j=p+1

(Zj − Z̄(−p))2.

This quantity V is computed for every p = 1, . . . , d and the value p̂1 is
chosen such that

p̂1 ∈ arg min
p=1,...,d

V (p).

Indeed, this procedure, by searching for a change-point along Z1, . . . , Zd,
should separate the first most significative differences θ−j − θ+j , where j =
1, . . . , p̂1, from the remaining ones, expected to be less significative for
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Fig 4. Mean and median of the error over 5000 trials for Model A.

Fig 5. Mean and median of the error over 5000 trials for Model B.

estimating τ̂ , in such a way that keeping for the estimation all components
until p̂1 seems a reasonable choice.

• Method 2. The second idea is more computationally involved and based on
subsampling. When performing subsampling, the indices drawn at random
are sorted, so that the parameter of interest τ remains indeed approxima-
tively unchanged. For each p = 1, . . . , d, we compute τ̂(p) for a collection
of subsamples. Then, p̂2 is set to the value of p minimizing the variance
of τ̂ over all subsamples. Here, 100 subsamples are built, each of them
containing 80% of the initial sample.

Remark 6. Proportions of data from 50% to 90% have also been tried, with
quite similar results. Observe that picking a quite small proportion of data
for subsampling could be interesting since it provides more variability between
the subsamples, but, at the same time, the fact that the ratio between the
dimension d and the sample size is modified may be annoying when the aim
is to select p. We also considered a version of subsampling where a different
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Fig 6. Error of the two selection procedures over 1000 trials, compared with the error obtained
using the oracle p� = 30.

Table 1

Mean and standard deviation over 1000 trials of the error obtained with the oracle p� and
the two selection methods.

Error over 1000 trials Oracle p� p̂1 p̂2
Mean 0.1524 0.2207 0.2047
(Standard deviation) (0.18735) (0.21329) (0.20841)

subsampling index is drawn for every p = 1, . . . , d: again, this provides more
variability in the subsamples, but τ may also vary more than in the classical
version. The results were not significantly different.

The performance of the two methods is compared with the result obtained
using the value of pminimizing the average value of |τ−τ̂(p)| over a large number
of trials, called hereafter oracle p� (here, p� = 30 as obtained above for 5000
trials). Of course, p� is not available in practice, since it depends on the true τ .
However, it is introduced as a benchmark. The results, corresponding to 1000
trials, for Model B, are shown in Figure 6 and Table 1. The performances of the
proposed methods could seem unsatisfactory in absolute terms. Nevertheless, the
data has deliberately been chosen difficult to segment. Indeed, to illustrate the
selection of p, it seems more appropriate to consider a high-dimensional, hard
situation, rather than an easy one where the true τ is always found exactly.
Observe that the two methods perform very similarly, with a slight advantage
of Method 2 over Method 1. However, Method 2 is based on subsampling, and,
as such, is more CPU-time consuming.

5. Proofs

5.1. Proof of Proposition 1

Our proof will heavily rely on standard concentration inequalities for Gaussian
and chi-square distributions, detailed in the Appendix (see Section A).
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In the sequel, for the sake of simplicity, we will assume that nτ ∈ {2, . . . ,
n − 2}. This will not have any consequence on the result but will save us the
repeated use of integer parts. Also, in this proof, Ψn(p,Δ) will be replaced by
Ψn to lighten notation. The proof uses several lemmas, whose proofs are given
at the end of the section. First, Lemma 1 shows that τ̂ may be written using
Gaussian and chi-square random variables.

Lemma 1. Under Model (1), the estimator τ̂(p) may be written as follows:

τ̂(p) = argmin
t∈{ 2

n ,...,n−2
n }

Kp(t),

where

Kp(t) = −
p∑

j=1

σ2V 2
j (t)−

p∑
j=1

σ2W 2
j (t) +

p∑
j=1

δ2j
(nt− nτ)nτ

nt
+ 2N1(t)− 2N2(t).

Here, V 2
j (t) and W 2

j (t), j = 1, . . . , p, are independent χ2(1) random variables,

N1(τ) = N2(τ) = 0, for every t �= τ , N1(t) ∼ N
(
0,

∑p
j=1 σ

2(nt− nτ)δ2j

)
and

N2(t) ∼ N
(
0,

∑p
j=1

σ2(nt−nτ)2δ2j
nt

)
.

The expression obtained for τ̂(p) is then used in the sequel for building an
upper bound for P (|τ̂(p)− τ | ≥ λΨn), where λ > 0.

Lemma 2. For λ > 0, we have

P

(
|τ̂(p)− τ | ≥ λΨn

)

≤ P

(
inf

k
n−τ≥λΨn

Kp

(
k

n

)
< Kp(τ)

)
+ P

(
inf

k
n−τ≤−λΨn

Kp

(
k

n

)
< Kpτ

)
.

We will only evaluate the probability P
(
inf k

n−τ≥λΨn
Kp

(
k
n

)
< Kp (τ)

)
in

what follows, since the second term can be treated in a symmetrical way.

Lemma 3. For λ > 0,

P

(
inf

k
n−τ≥λΨn

Kp

(
k

n

)
< Kp (τ)

)
≤ PV,W + PN ,

where

PV,W =

P

(
∃k ∈ {nτ + nλΨn, . . . , n− 2},

p∑
j=1

V 2
j

(
k

n

)
+

p∑
j=1

W 2
j

(
k

n

)
−

p∑
j=1

V 2
j (τ)−

p∑
j=1

W 2
j (τ) >

nΔ2
p

σ2

( kn − τ)nτ

2k

)
,
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PN =

P

(
∃k ∈ {nτ + nλΨn, . . . , n− 2},

|N1(
k
n )−N2(

k
n )|

σ2
>

nΔ2
p

σ2

( kn − τ)nτ

4k

)
.

Lemma 4 provides a control of the term PN . For PV,W , 3 different cases will
be considered, addressed in Lemmas 5, 6, and 7 below.

Lemma 4 (Control of PN ). The following inequality holds:

PN ≤ 2n

[
exp

(
−ε2λ

26

)
+ exp

(
−
ε2nΔ2

p

26σ2

)]
.

To get an upper bound for the term PV,W , let us begin with the case where

nΔ2
p ≤ 32pσ2/ε2. Moreover, the situation where σ4p

(nΔ2
p)

2 ≥ 1
λ will be addressed

first.

Lemma 5 (Control of PV,W , case 1). Assume that σ4p
(nΔ2

p)
2 ≥ 1

λ . Then,

PV,W ≤ 4(n+ 1) exp

(
−λε2

210

)
.

The more intricate situation where σ4p
(nΔ2

p)
2 ≤ 1

λ (i.e.
(nΔ2

p)
2

σ4p ≥ λ) is considered

in the next lemma.

Lemma 6 (Control of PV,W , case 2). Assume that nΔ2
p ≤ 32pσ2/ε2 and that

σ4p
(nΔ2

p)
2 ≤ 1

λ . Then,

PV,W ≤ 12n exp

(
−λε2

214

)
+ 12n exp

(
−
nΔ2

pε
2

27σ2

)
.

Then, Lemma 7 provides an upper bound for PV,W in the case where nΔ2
p ≥

32pσ2/ε2.

Lemma 7 (Control of PV,W , case 3). Assume that nΔ2
p ≥ 32pσ2/ε2. Then,

PV,W ≤ 8n exp

(
−
nΔ2

pε

26σ2

)
+ 4n exp

(
−λε2

27

)
.

End of the proof of Proposition 1. Collecting the results of the different lem-
mas, we see that P (|τ̂ − τ | ≥ λΨn) may be upper bounded by a sum of terms
all of the form

c1n exp(−c2(ε)λ)

or

c1n exp

(
− c2(ε)

nΔ2
p

σ2

)
,

where c1 denote an absolute constant, and c2 is polynomial in ε. Recalling that
nΔ2

p

σ2 ≥ c(γ, ε) ln(n), and taking λ = κ(γ, ε) ln(n), this proves Proposition 1.
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Proof of Lemma 1. Let us denote by P(τ,θ+,θ−) the probability distribution as-
sociated with Model (1). We will consider the behavior of our estimators un-
der the probability P(τ,θ+,θ−). Using the notation x+ = (x+

1 , . . . , x
+
p ), and

x− = (x−
1 , . . . , x

−
p ), observe that τ̂ may be defined in the following way:

τ̂(p) =
1

n
argmin

k∈{2,...,n−2}

⎧⎨
⎩

k∑
i=1

p∑
j=1

(
Yi,j −

1

k

k∑
�=1

Y�,j

)2

+

n∑
i=k+1

p∑
j=1

(
Yi,j −

1

n− k

n∑
�=k+1

Y�,j

)2

⎫⎬
⎭

= argmin
t∈{ 2

n ,...,n−2
n }

Kp(t),

where

Kp(t) = min
x−,x+

L(t, x−, x+)− L(τ, 0, 0).

Here, the function L is given (for t ∈ { 2
n , . . . ,

n−2
n }) by

L(t, x−, x+) =

nt∑
i=1

p∑
j=1

(Yi,j − θ−j − x−
j )

2 +

n∑
i=nt+1

p∑
j=1

(Yi,j − θ+j − x+
j )

2.

As an aside, not used in the sequel, note that writing

dP(t,θ++x+,θ−+x−)

dP(τ,θ+,θ−)
= exp

(
− 1

2σ2
(L(t, x−, x+)− L(τ, 0, 0))

)

highlights the facts that we are actually searching for a maximum likelihood
estimator. Let us consider the case t ≥ τ . The other case can be treated in
a symmetrical way. For t ≥ τ , and under the distribution P(τ,θ+,θ−), we may
write

L(t, x−, x+)− L(τ, 0, 0)

=

nτ∑
i=1

p∑
j=1

((x−
j )

2 − 2ηi,jx
−
j ) +

n∑
i=nt+1

p∑
j=1

((x+
j )

2 − 2ηi,jx
+
j )

+
nt∑

i=nτ+1

p∑
j=1

(
(θ+j − θ−j − x−

j )
2 + 2ηi,j(θ

+
j − θ−j − x−

j )
)

=

nτ∑
i=1

p∑
j=1

((x−
j )

2 − 2ηi,jx
−
j ) +

n∑
i=nt+1

p∑
j=1

((x+
j )

2 − 2ηi,jx
+
j )

+

nt∑
i=nτ+1

p∑
j=1

(
(δj − x−

j )
2 + 2ηi,j(δj − x−

j )
)
,
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so that

L(t, x−, x+)− L(τ, 0, 0)

=
n∑

i=nt+1

p∑
j=1

((x+
j )

2 − 2ηi,jx
+
j ) +

nt∑
i=1

p∑
j=1

((x−
j )

2 − 2ηi,jx
−
j )

+

nt∑
i=nτ+1

p∑
j=1

(
δ2j − 2δjx

−
j + 2δjηi,j

)
, (6)

where δ = (δ1, . . . , δp) is the vector θ+ − θ−. Now, we have to minimize in
(x−, x+) the previous expression. By differentiation, we obtain that the mini-
mum is attained by taking, for every j,

x̂+
j =

∑n
i=nt+1 ηi,j

n− nt
, (7)

x̂−
j =

∑nt
i=1 ηi,j + (nt− nτ)δj

nt
. (8)

Plugging the minimizers (7) and (8) into expression (6) leads to the minimum

Kp(t) =

p∑
j=1

(
−

(∑n
i=nt+1 ηi,j

)2
n− nt

−

(∑nt
i=1 ηi,j + (nt− nτ)δj

)2

nt

+ (nt− nτ)δ2j + 2δj

nt∑
i=nτ+1

ηi,j

)
.

Under P(τ,θ+,θ−), K
p(t) can be written in the following way:

Kp(t) = −
p∑

j=1

σ2V 2
j (t)−

p∑
j=1

σ2W 2
j (t) +

p∑
j=1

δ2j
(nt− nτ)nτ

nt
+ 2N1(t)− 2N2(t),

where

σ2V 2
j (t) =

(∑n
i=nt+1 ηi,j

)2
n− nt

,

σ2W 2
j (t) =

(∑nt
i=1 ηi,j

)2

nt
,

N1(t) =

p∑
j=1

nt∑
i=nτ+1

ηi,jδj ,

N2(t) =

p∑
j=1

∑nt
i=1 ηi,j(nt− nτ)δj

nt
, N2(τ) = 0.
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Proof of Lemma 2. We write

P

(
|τ̂ − τ | ≥ λΨn

)

= P

(
inf

| kn−τ |≥λΨn

Kp

(
k

n

)
< inf

| kn−τ |<λΨn

Kp

(
k

n

) )

≤ P

(
inf

| kn−τ |≥λΨn

Kp

(
k

n

)
< Kp (τ)

)

≤ P

(
inf

k
n−τ≥λΨn

Kp

(
k

n

)
< Kp (τ)

)
+ P

(
inf

k
n−τ≤−λΨn

Kp

(
k

n

)
< Kp (τ)

)
.

Proof of Lemma 3. We have

P

(
inf

k
n−τ≥λΨn

Kp

(
k

n

)
< Kp (τ)

)

= P

(
∃k ∈ {2, . . . , n− 2}, k

n
− τ ≥ λΨn, K

p

(
k

n

)
< Kp (τ)

)

≤ P

(
∃k ∈ {nτ + nλΨn, . . . , n− 2},

−
p∑

j=1

V 2
j

(
k

n

)
−

p∑
j=1

W 2
j

(
k

n

)
+

2N1(
k
n )− 2N2(

k
n )

σ2
+

nΔ2
p

σ2

( kn − τ)nτ

k

< −
p∑

j=1

V 2
j (τ)−

p∑
j=1

W 2
j (τ) +

2N1(τ)− 2N2(τ)

σ2

)

≤ P

⎛
⎝∃k ∈ {nτ + nλΨn, . . . , n− 2},

p∑
j=1

V 2
j

(
k

n

)
+

p∑
j=1

W 2
j

(
k

n

)

−
p∑

j=1

V 2
j (τ)−

p∑
j=1

W 2
j (τ)−

2N1(
k
n )− 2N2(

k
n )

σ2
>

nΔ2
p

σ2

( kn − τ)nτ

k

⎞
⎠ ,

since N1(τ) = N2(τ) = 0.
Thus,

P

(
inf

k
n−τ≥λΨn

Kp

(
k

n

)
< Kp (τ)

)

≤ P

(
∃k ∈ {nτ + nλΨn, . . . , n− 2},

∣∣∣∣∣∣
p∑

j=1

V 2
j

(
k

n

)
+

p∑
j=1

W 2
j

(
k

n

)
−

p∑
j=1

V 2
j (τ)−

p∑
j=1

W 2
j (τ)

∣∣∣∣∣∣ >
nΔ2

p

σ2

( kn − τ)nτ

2k

)
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+ P

(
∃k ∈ {nτ + nλΨn, . . . , n− 2},

|2N1(
k
n )− 2N2(

k
n )|

σ2
>

nΔ2
p

σ2

( kn − τ)nτ

2k

)
.

Here, we used the fact that P (|A−B| > x) ≤ P (|A| > x/2)+P (|B| > x/2).

Proof of Lemma 4. Using the Gaussian concentration inequality (12) recalled
in the Appendix, we may write

PN ≤
∑

k∈{nτ+nλΨn,...,n−2}
P

(∣∣∣∣N1

(k

n

)∣∣∣∣ > Δ2
pn(

k
n − τ)nτ

8k

)

+
∑

k∈{nτ+nλΨn,...,n−2}
P

(∣∣∣∣N2

(k

n

)∣∣∣∣ > Δ2
pn(

k
n − τ)nτ

8k

)

≤
∑

k∈{nτ+nλΨn,...,n−2}
2 exp

⎛
⎜⎝−

(
Δ2

pn(
k
n−τ)nτ

8k

)2

2nΔ2
p(

k
n − τ)σ2

⎞
⎟⎠

+
∑

k∈{nτ+nλΨn,...,n−2}
2 exp

⎛
⎜⎝−

(
Δ2

pn(
k
n−τ)nτ

8k

)2

2
nΔ2

p(
k
n−τ)2σ2

k
n

⎞
⎟⎠

≤ 2n

[
exp

(
−
τ2nΔ2

pΨnλ

26σ2

)
+ exp

(
−
τ2nΔ2

p

26σ2

)]

≤ 2n

[
exp

(
−τ2λ

26

)
∧ exp

(
−τ2λpσ2

26nΔ2
p

)
+ exp

(
−
τ2nΔ2

p

26σ2

)]

≤ 2n

[
exp

(
−τ2λ

26

)
+ exp

(
−
τ2nΔ2

p

26σ2

)]

≤ 2n

[
exp

(
−ε2λ

26

)
+ exp

(
−
ε2nΔ2

p

26σ2

)]
.

Proof of Lemma 5. We have

PV,W ≤ P

(
∃k ∈ {nτ + nλΨn, . . . , n− 2},

∣∣∣∣
p∑

j=1

V 2
j

(
k

n

)
− p+

p∑
j=1

W 2
j

(
k

n

)
− p

∣∣∣∣ > nΔ2
p

σ2

( kn − τ)nτ

4k

)

+ P

⎛
⎝∣∣∣∣

p∑
j=1

V 2
j (τ)− p+

p∑
j=1

W 2
j (τ)− p

∣∣∣∣ > nΔ2
p

σ2

λΨnnτ

4n

⎞
⎠ .

Using concentration results for the chi-square distribution recalled in Corollary
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2 in the Appendix, we obtain

P

(
∃k ∈ {nτ + nλΨn, . . . , n− 2},

∣∣∣∣
p∑

j=1

V 2
j

(
k

n

)
− p+

p∑
j=1

W 2
j

(
k

n

)
− p

∣∣∣∣ > nΔ2
p

σ2

( kn − τ)nτ

4k

)

≤ 2
∑

k∈{nτ+nλΨn,...,n−2}
P

⎛
⎝∣∣∣∣

p∑
j=1

V 2
j

(
k

n

)
− p

∣∣∣∣ > nΔ2
p

σ2

( kn − τ)nτ

8k

⎞
⎠

≤ 4
∑

k∈{nτ+nλΨn,...,n−2}

[
exp

(
−

(
nΔ2

p

σ2

( kn − τ)nτ

8k

)2
1

16p

)

∨ exp

(
−
nΔ2

p

σ2

( kn − τ)nτ

8k × 4

)]

≤ 4n

[
exp

(
−

(
nΔ2

pλΨnτ

σ2

)2
1

210p

)
∨ exp

(
−
nΔ2

pλΨnτ

25σ2

)]

≤ 4n

[
exp

(
− λ2τ2σ4p

210(nΔ2
p)

2

)
∨ exp

(
−λτ

25

)]

≤ 4n

[
exp

(
−λτ2

210

)
∨ exp

(
−λτ

25

)]

≤ 4n exp

(
−λε2

210

)
.

The last but one inequality follows from the assumption σ4p
(nΔ2

p)
2 ≥ 1

λ . Likewise,

P

⎛
⎝∣∣∣∣

p∑
j=1

(V 2
j (τ)− 1) +

p∑
j=1

(W 2
j (τ)− 1) >

nΔ2
p

σ2

λΨnτ

4

∣∣∣∣
⎞
⎠ ≤ 4 exp

(
−λε2

210

)
.

Proof of Lemma 6. We have

PV,W ≤ P

(
∃k ∈ {nτ + nλΨn, . . . , n− 2},

∣∣∣∣
p∑

j=1

V 2
j

(
k

n

)
−

p∑
j=1

V 2
j (τ)

∣∣∣∣ > nΔ2
p

σ2

( kn − τ)nτ

4k

)

+ P

(
∃k ∈ {nτ + nλΨn, . . . , n− 2},

∣∣∣∣
p∑

j=1

W 2
j

(
k

n

)
−

p∑
j=1

W 2
j (τ)

∣∣∣∣ > nΔ2
p

σ2

( kn − τ)nτ

4k

)
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:= PV + PW .

Let us compute

σ2

[
W 2

j

(
k

n

)
−W 2

j (τ)

]

=

( nτ∑
i=1

ηi,j

)2(
1

k
− 1

nτ

)
+

( k∑
i=nτ+1

ηi,j

)2
1

k

+
2

k

nτ∑
i=1

ηi,j

k∑
i=nτ+1

ηi,j

=
k − nτ

k

[( k∑
i=nτ+1

ηi,j

)2
1

k − nτ
−

( nτ∑
i=1

ηi,j

)2
1

nτ

]

+
2

k

nτ∑
i=1

ηi,j

k∑
i=nτ+1

ηi,j .

Similarly,

σ2

[
V 2
j

(
k

n

)
− V 2

j (τ)

]

=

( n∑
i=k+1

ηi,j

)2(
1

n− k
− 1

n− nτ

)
−

( k∑
i=nτ+1

ηi,j

)2
1

n− nτ

− 2

n− nτ

n∑
i=k+1

ηi,j

k∑
i=nτ+1

ηi,j

=
k − nτ

n− nτ

[( n∑
i=k+1

ηi,j

)2
1

n− k
−

( k∑
i=nτ+1

ηi,j

)2
1

k − nτ

]

− 2

n− nτ

n∑
i=k+1

ηi,j

k∑
i=nτ+1

ηi,j .

As a consequence, we get

PW ≤
∑

k∈{nτ+nλΨn,...,n−2}

P

(∣∣∣∣
p∑

j=1

k − nτ

k

[( k∑
i=nτ+1

ηi,j

)2
1

k − nτ
−

( nτ∑
i=1

ηi,j

)2
1

nτ

]∣∣∣∣
> nΔ2

p

( kn − τ)nτ

8k

)

+
∑

k∈{nτ+λΨn,...,n−2}
P

⎛
⎝∣∣∣∣

p∑
j=1

2

k

nτ∑
i=1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣ > nΔ2
p

( kn − τ)nτ

8k

⎞
⎠
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:= PW
1 + PW

2 .

Also,

PV ≤
∑

k∈{nτ+λΨn,...,n−2}
P

(∣∣∣∣
p∑

j=1

k − nτ

n− nτ

[( n∑
i=k+1

ηi,j

)2
1

n− k

−
( k∑

i=nτ+1

ηi,j

)2
1

k − nτ

]∣∣∣∣ > nΔ2
p

( kn − τ)nτ

8k

)

+
∑

k∈{nτ+λΨn,...,n−2}
P

(∣∣∣∣
p∑

j=1

2

n− nτ

n∑
i=k+1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣
> nΔ2

p

( kn − τ)nτ

8k

)

:= PV
1 + PV

2 .

Now,

PW
1 =

∑
k∈{nτ+nλΨn,...,n−2}

P

(∣∣∣∣
p∑

j=1

k − nτ

k

[( k∑
i=nτ+1

ηi,j

)2
1

σ2(k − nτ)

−
( nτ∑

i=1

ηi,j

)2
1

σ2nτ

]∣∣∣∣ > nΔ2
p

σ2

( kn − τ)nτ

8k

)

≤
∑

k∈{nτ+nλΨn,...,n−2}
P

⎛
⎝∣∣∣∣

p∑
j=1

( k∑
i=nτ+1

ηi,j

)2
1

σ2(k − nτ)
− p

∣∣∣∣ > nΔ2
p

σ2

τ

16

⎞
⎠

+
∑

k∈{nτ+nλΨn,...,n−2}
P

⎛
⎝∣∣∣∣

p∑
j=1

( nτ∑
i=1

ηi,j

)2
1

σ2nτ
− p

∣∣∣∣ > nΔ2
p

σ2

τ

16

⎞
⎠

≤ 4n

[
exp

(
−

(nΔ2
pτ)

2

162σ4 × 16p

)
∨ exp

(
−

nΔ2
pτ

16σ2 × 4

)]

≤ 4n

[
exp

(
−λτ2

212

)
∨ exp

(
−
nΔ2

pτ

26σ2

)]

≤ 4n

[
exp

(
−λε2

212

)
∨ exp

(
−
nΔ2

pε

26σ2

)]
.

In the last two bounds, we have first applied Corollary 2, then used the fact

that we are in the case
(nΔ2

p)
2

σ4p ≥ λ.
Similarly,

PV
1 =

∑
k∈{nτ+λΨn,...,n−2}

P

(∣∣∣∣
p∑

j=1

k − nτ

n− nτ

[( n∑
i=k+1

ηi,j

)2
1

σ2(n− k)
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−
( k∑

i=nτ+1

ηi,j

)2
1

σ2(k − nτ)

]∣∣∣∣ > nΔ2
p

σ2

( kn − τ)nτ

8k

)

≤
∑

k∈{nτ+nλΨn,...,n−2}
P

⎛
⎝∣∣∣∣

p∑
j=1

( n∑
i=k+1

ηi,j

)2
1

σ2(n− k)
− p

∣∣∣∣ > nΔ2
pτ(1− τ)

16σ2

⎞
⎠

+
∑

k∈{nτ+nλΨn,...,n−2}
P

(∣∣∣∣
p∑

j=1

( k∑
i=nτ+1

ηi,j

)2
1

σ2(k − nτ)
− p

∣∣∣∣
>

nΔ2
pτ(1− τ)

16σ2

)
.

Thus,

PV
1 ≤ 4n

[
exp

(
−

(nΔ2
p)

2τ2(1− τ)2

162σ4 × 16p

)
∨ exp

(
−

nΔ2
pτ(1− τ)

4× 16σ2

)]

≤ 4n

[
exp

(
− τ2(1− τ)2λ

212

)
∨ exp

(
−

nΔ2
pτ(1− τ)

26σ2

)]

≤ 4n

[
exp

(
− λε2

214

)
∨ exp

(
−

nΔ2
pε

27σ2

)]
.

For PW
2 , let us denote by F , the σ-algebra spanned by the variables {ηi,j , i ≤

nτ, j ≤ p}. We write

PW
2 =

∑
k∈{nτ+nλΨn,...,n−2}

E

⎡
⎣P

⎛
⎝∣∣∣∣

p∑
j=1

nτ∑
i=1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣ > nΔ2
p

( kn − τ)nτ

16

∣∣∣F
⎞
⎠

⎤
⎦ .

Conditionally on F , the random variable
∑p

j=1

∑nτ
i=1 ηi,j

∑k
i=nτ+1 ηi,j follows

a centered normal distribution N (0, σ2(k − nτ)
∑p

j=1(
∑nτ

i=1 ηi,j)
2), that is

∑p
j=1

∑nτ
i=1 ηi,j

∑k
i=nτ+1 ηi,j

σ(k − nτ)1/2(
∑p

j=1(
∑nτ

i=1 ηi,j)
2)1/2

∼ N (0, 1).
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Thus,

PW
2 ≤ 2

∑
k∈{nτ+nλΨn,...,n−2}

E

[
exp

(
−
(nΔ2

p(
k
n − τ)nτ)2

162
1

2σ2(k − nτ)
∑p

j=1(
∑nτ

i=1 ηi,j)
2

)]

≤ 2
∑

k∈{nτ+nλΨn,...,n−2}

E

[
exp

(
−
(nΔ2

p(
k
n − τ)nτ)2

162
1

2σ2(k − nτ)
∑p

j=1(
∑nτ

i=1 ηi,j)
2

)

× 1{∑p
j=1

(
∑nτ

i=1
ηi,j)

2

σ2nτ
≤8p

}
]

+ 2nP

⎛
⎝ p∑

j=1

(
∑nτ

i=1 ηi,j)
2

σ2nτ
≥ 8p

⎞
⎠ .

Hence,

PW
2 ≤ 2n exp

(
−
(nΔ2

p)
2λΨnτ

212σ4p

)
+ 2n exp

(
−7p

4

)

≤ 2n exp

(
− λτ

212

)
+ 2n exp

(
−
nΔ2

pε
2

25σ2

)

≤ 2n exp

(
− λε

212

)
+ 2n exp

(
−
nΔ2

pε
2

25σ2

)
.

We used here nΔ2
p ≤ 32pσ2/ε2 together with Corollary 2. To end the proof, we

investigate the term PV
2 . For k ∈ {nτ + nλΨn, . . . , n − 2}, let Fk denote the

σ-algebra spanned by the variables {ηi,j , i > k, j ≤ p}.
Conditionally on Fk, the random variable

p∑
j=1

1

n− nτ

n∑
i=k+1

ηi,j

k∑
i=nτ+1

ηi,j

follows a centered normal distribution N (0, σ2(k−nτ)
n2(1−τ)2

∑p
j=1(

∑n
i=k+1 ηi,j)

2), that
is ∑p

j=1

∑n
i=k+1 ηi,j

∑k
i=nτ+1 ηi,j

σ(k − nτ)1/2(
∑p

j=1(
∑n

i=k+1 ηi,j)
2)1/2

∼ N (0, 1).
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Using Gaussian concentration (12), we write:

PV
2 =

∑
k∈{nτ+nλΨn,...,n−2}

E

⎡
⎣P

⎛
⎝∣∣∣∣

p∑
j=1

1

n− nτ

n∑
i=k+1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣ > nΔ2
p

( kn − τ)nτ

16k

∣∣∣Fk

⎞
⎠

⎤
⎦

≤ 2
∑

k∈{nτ+nλΨn,...,n−2}

E

[
exp

(
−
(nΔ2

p(k − nτ)(1− τ)nτ)2

162k2
1

2σ2(k − nτ)
∑p

j=1(
∑n

i=k+1 ηi,j)
2

)

× 1{∑p
j=1

(
∑n

i=k+1
ηi,j)

2

σ2(n−k)
≤8p

}
]

+ 2nP

⎛
⎝ p∑

j=1

(∑n
i=k+1 ηi,j

)2
σ2(n− k)

≥ 8p

⎞
⎠ .

Hence,

PV
2 ≤ 2n exp

(
−
(nΔ2

p)
2λΨnτ

2(1− τ)2

212σ4p

)
+ exp

(
−7p

4

)

≤ 2n exp

(
−λτ2(1− τ)2

212

)
+ 2n exp

(
−
nΔ2

pε
2

25σ2

)

≤ 2n exp

(
−λε2

214

)
+ 2n exp

(
−
nΔ2

pε
2

25σ2

)
.

Again, we used the assumption nΔ2
p ≤ 32pσ2/ε2 and Corollary 2.

Proof of Lemma 7. The proof is very similar to the proof of Lemma 6. Recall
that

PV,W ≤ P

(
∃k ∈ {nτ + λΨn, . . . , n− 2},

p∑
j=1

V 2
j

(
k

n

)
−

p∑
j=1

V 2
j (τ) >

nΔ2
p

σ2

( kn − τ)nτ

4k

)

+ P

(
∃k ∈ {nτ + nλΨn, . . . , n− 2},

p∑
j=1

W 2
j

(
k

n

)
−

p∑
j=1

W 2
j (τ) >

nΔ2
p

σ2

( kn − τ)nτ

4k

)

:= PV + PW .
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To bound PV and PW , we will use the next inequalities:

σ2

(
W 2

j

(
k

n

)
−W 2

j (τ)

)
=

( nτ∑
i=1

ηi,j

)2(
1

k
− 1

nτ

)
+

( k∑
i=nτ+1

ηi,j

)2
1

k

+
2

k

nτ∑
i=1

ηi,j

k∑
i=nτ+1

ηi,j

≤
( k∑

i=nτ+1

ηi,j

)2
1

k
+

2

k

nτ∑
i=1

ηi,j

k∑
i=nτ+1

ηi,j ,

and

σ2

(
V 2
j

(
k

n

)
− V 2

j (τ)

)

=

( n∑
i=k+1

ηi,j

)2(
1

n− k
− 1

n− nτ

)
−

( k∑
i=nτ+1

ηi,j

)2
1

n− nτ

− 2

n− nτ

n∑
i=k+1

ηi,j

k∑
i=nτ+1

ηi,j

≤
( n∑

i=k+1

ηi,j

)2
k − nτ

(n− k)(n− nτ)

− 2

n− nτ

n∑
i=k+1

ηi,j

k∑
i=nτ+1

ηi,j .

As a consequence, we get

PW ≤
∑

k∈{nτ+nλΨn,...,n−2}
P

⎛
⎝∣∣∣∣

p∑
j=1

1

σ2(k − nτ)

(
k∑

i=nτ+1

ηi,j

)2

− p

∣∣∣∣ > nΔ2
p

σ2

τ

8

⎞
⎠

+ P

⎛
⎝∣∣∣∣

p∑
j=1

2

σ2k

nτ∑
i=1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣ > nΔ2
p

σ2

( kn − τ)nτ

8k

⎞
⎠

:= PW
1 + PW

2 .

Likewise,

PV ≤
∑

k∈{nτ+nλΨn,...,n−2}
P

(∣∣∣∣
p∑

j=1

1

σ2(n− k)

(
n∑

i=k+1

ηi,j

)2

− p

∣∣∣∣
>

nΔ2
p

σ2

nτ(1− τ)

8k

)
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+ P

⎛
⎝∣∣∣∣

p∑
j=1

2

σ2(n− nτ)

n∑
i=k+1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣ > nΔ2
p

σ2

( kn − τ)nτ

8k

⎞
⎠

:= PV
1 + PV

2 .

Now, using Corollary 2, we get, since nΔ2
p ≥ 32pσ2/ε2,

PW
1 ≤ 2n exp

(
−
nΔ2

pτ

25σ2

)
≤ 2n exp

(
−
nΔ2

pε

25σ2

)
.

Also, using nΔ2
p ≥ 32pσ2/ε2 again, we have

PV
1 ≤ nP

⎛
⎝∣∣∣∣

p∑
j=1

1

σ2(n− k)

(
n∑

i=k+1

ηi,j

)2

− p

∣∣∣∣ > nΔ2
p

σ2

τ(1− τ)

8

⎞
⎠

≤ 2n exp

(
−
nΔ2

pτ(1− τ)

25σ2

)
≤ 2n exp

(
−
nΔ2

pε

26σ2

)
.

Now, to address the term PW
2 , let us denote by F the σ-algebra spanned by the

variables {ηi,j , i ≤ nτ, j ≤ p}. Using Gaussian concentration (12) as in Lemma
6, we write

PW
2 =

∑
k∈{nτ+nλΨn,...,n−2}

E

[
P

(
1

σ2

∣∣∣∣
p∑

j=1

nτ∑
i=1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣ > nΔ2
p

σ2

( kn − τ)nτ

16

∣∣∣F)]

≤ 2
∑

k∈{nτ+nλΨn,...,n−2}

E

[
exp

(
−

(nΔ2
p)

2(k − nτ)2τ2

162
1

2σ2(k − nτ)
∑p

j=1(
∑nτ

i=1 ηi,j)
2

)]

≤ 2
∑

k∈{nτ+nλΨn,...,n−2}

E

[
exp

(
−

(nΔ2
p)

2(k − nτ)τ2

29σ2
∑p

j=1(
∑nτ

i=1 ηi,j)
2

)
× 1{∑p

j=1

(
∑nτ

i=1
ηi,j)

2

nτσ2 ≤
nΔ2

pτ

8σ2

}
]

+ 2nP

⎛
⎝ p∑

j=1

(
∑nτ

i=1 ηi,j)
2

nτσ2
− p ≥

nΔ2
pτ

8σ2
− p

⎞
⎠

≤ 2n exp

(
−

(nΔ2
p)

2nΨnλτ
2 × 8

29σ2 × n2τ2Δ2
p

)
+ 2n exp

(
−

nΔ2
pτ

25σ2
+

p

4

)

≤ 2n exp

(
− λ

26

)
+ 2n exp

(
−

nΔ2
pε

26σ2

)
.
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Here, we used the inequality nΔ2
p ≥ 32pσ2/ε2, and the fact that ε ≤ 1

2 , and

applied again Corollary 2. Similarly, for the term PV
2 , let Fk be the σ-algebra

spanned by the variables {ηi,j , i > k, j ≤ p}. We write:

PV
2 =

∑
k∈{nτ+nλΨn,...,n−2}

E

⎡
⎣P

(∣∣∣∣
p∑

j=1

1

n− nτ

n∑
i=k+1

ηi,j

k∑
i=nτ+1

ηi,j

∣∣∣∣ > nΔ2
p

( kn − τ)nτ

16k

∣∣∣Fk

)⎤
⎦

≤ 2
∑

k∈{nτ+nλΨn,...,n−2}

E

[
exp

(
−

(nΔ2
p)

2(k − nτ)2n2(1− τ)2τ2

162k2

× 1

2σ2(k − nτ)
∑p

j=1(
∑n

i=k+1 ηi,j)
2

)]

≤ 2
∑

k∈{nτ+nλΨn,...,n−2}

E

[
exp

(
−

(nΔ2
p)

2(k − nτ)(1− τ)2τ2

29σ2
∑p

j=1(
∑n

i=k+1 ηi,j)
2

)

× 1{∑p
j=1

(
∑n

i=k+1
ηi,j)

2

σ2(n−k)
≤

nΔ2
pτ

8σ2

}
]

+ 2nP

⎛
⎝ p∑

j=1

(∑n
i=k+1 ηi,j

)2
σ2(n− k)

− p ≥
nΔ2

pτ

8σ2
− p

⎞
⎠

≤ 2n exp

(
−
nΔ2

pλΨnτ(1− τ)2 × 8

29σ2

)
+ 2n exp

(
−
nΔ2

pτ

25σ2
+

p

4

)

≤ 2n exp

(
−λτ(1− τ)2

26

)
+ 2n exp

(
−
nΔ2

pε

26σ2

)

≤ 2n exp

(
−λε2

27

)
+ 2n exp

(
−
nΔ2

pε

26σ2

)
.

5.2. Proof of Theorem 2

Let us in this section define ps :=
(

σ2 ln(d∨n)
n

) −1
1+2s

. The following Lemma is

essential in the sequel.
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Lemma 8. We consider Model (1), and assume that θ+ and θ− belong to
Θ(s, L). We suppose that there exists a constant α > 0 such that

n

σ2
≥ α ln d.

Then, for any γ, if CL is large enough (see condition (10) below), there exists
a constant R = R(γ, L,CL, ε) (see condition (11)) such that, if

Δ2 ≥ R

(
σ2 ln(d ∨ n)

n

) 2s
1+2s

, (9)

then we have

P

({
Δ2

p̂ ≥ Δ2

2

}
∩ {p̂ ≤ ps}

)
≥ 1− c′n−γ ,

where c′ is an absolute constant.

The proof is based on an intermediate lemma, stating that, with large prob-
ability, p̂ ≤ ps.

Lemma 9. Under the conditions above, for any γ, if we have

CL ≥ 16 ∨ 4L2 ∨ 20(γ + 2)

α
1

1+2s

∨ 24L(γ + 2)1/2

α
1

2(1+2s)

, (10)

then

P (p̂ > ps) ≤ 3(d ∨ n)−γ .

Recall that Z is defined by

Zj =
1

n

n∑
i=1

Y j
i − 2

n

n/2∑
i=1

Y j
i , j = 1, . . . , d,

that is Zj = βj +εj , j = 1, . . . , d, where βj = (1−τ)(θ+j −θ−j )1{τ≥1/2}+τ(θ+j −
θ−j )1{τ<1/2} and εj ∼ N (0, σ2

n ).

Lemma 10. For ps ≤ � ≤ k,

P

⎛
⎝∣∣∣ k∑

j=�

(Zj)
2 −

k∑
j=�

(βj)
2
∣∣∣ > x

⎞
⎠ ≤ 2 exp

(
− x2

26L2p−2s
s

σ2

n

)
+ exp

(
− nx

10σ2

)
,

as soon as x ≥ 10(k − �+ 1)σ2/n.
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Proof of Lemma 10.

P

⎛
⎝∣∣∣ k∑

j=�

(Zj)
2 −

k∑
j=�

(βj)
2
∣∣∣ > x

⎞
⎠

≤ P

⎛
⎝ k∑

j=�

(εj)
2 + 2

∣∣∣ k∑
j=�

εjβj

∣∣∣ > x

⎞
⎠

≤ P

⎛
⎝ k∑

j=�

(εj)
2 > x/2

⎞
⎠ + P

⎛
⎝∣∣∣ k∑

j=�

εjβj

∣∣∣ > x/4

⎞
⎠ .

Observe that
∑k

j=� εjβj follows a Gaussian distribution N
(
0, σ2

n

∑k
j=�(βj)

2
)
,

so that, using the concentration of the Gaussian distribution (see (12) in the

Appendix) and the fact that
∑k

j=�(βj)
2 ≤ 2L2p−2s

s , since θ+ and θ− are in
Θ(s, L), we obtain

P

⎛
⎝∣∣∣ k∑

j=�

εjβj

∣∣∣ > x/4

⎞
⎠ ≤ 2 exp

(
− x2

26L2p−2s
s

σ2

n

)
.

Using Corollary 2 in the Appendix, we get

P

⎛
⎝ k∑

j=�

(εj)
2 > x/2

⎞
⎠ ≤ P

⎛
⎝ k∑

j=�

n

σ2
(εj)

2 − k + �− 1 >
nx

2σ2
− k + �− 1

⎞
⎠

≤ exp
(
− nx

10σ2

)
,

as soon as x ≥ 10(k − �+ 1)σ2/n.

Proof of Lemma 9. We have

P (p̂ > ps) ≤ P

⎛
⎝∃k ≥ � ≥ ps,

k∑
j=�

(Zj)
2 > CLk

σ2

n
ln(d ∨ n)

⎞
⎠ .

Now, since k ≥ ps,

k∑
j=�

(βj)
2 ≤ 2L2p−2s

s = 2L2

(
σ2 ln(d ∨ n)

n

) 2s
1+2s

= 2L2ps
σ2 ln(d ∨ n)

n
.

Thus, if CL ≥ 4L2, we have
∑k

j=�(βj)
2 ≤ (CL/2)k

σ2

n ln(d ∨ n). We get, with

2x := CLk
σ2

n ln(d ∨ n), the following inequality:

P

⎛
⎝ k∑

j=�

(Zj)
2 > 2x

⎞
⎠ ≤ P

⎛
⎝∣∣∣ k∑

j=�

(Zj)
2 −

k∑
j=�

(βj)
2
∣∣∣ > x

⎞
⎠ .
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Now, from Lemma 10, as soon as CLk ln(d ∨ n) ≥ 20(k − � + 1) (which is
always true for instance if CL ≥ 20), we have

P (p̂ > ps)

≤
∑

k≥�≥ps

P

⎛
⎝ k∑

j=�

(Zj)
2 > CLk

σ2

n
ln(d ∨ n)

⎞
⎠

≤
∑

k≥�≥ps

2 exp

(
−
(CLk

σ2

n ln(d ∨ n))2

28L2p−2s
s

σ2

n

)
+ exp (−CLk ln(d ∨ n)/20)

≤ d2

[
2 exp

(
−
(CLps

σ2

n ln(d ∨ n))2

28L2p−2s
s

σ2

n

)
+ exp (−CLps ln(d ∨ n)/20)

]

≤ d2

[
2 exp

(
− C2

L
28L2

(
σ2

n

)− 1
1+2s

(ln(d ∨ n))
2s

1+2s

)

+exp

(
−CL

20

(
σ2

n

)− 1
1+2s

(ln(d ∨ n))
2s

1+2s

)]

≤ d2
[
2 exp

(
− C2

L
28L2

α
1

1+2s ln(d ∨ n)

)
+ exp

(
−CL

20
α

1
1+2s ln(d ∨ n)

)]
.

This last term is less than 3(d ∨ n)−γ , as, by assumption, CLα
1

1+2s

20 > γ + 2,

and
C2

Lα
1

1+2s

28L2 > γ + 2.

Equipped with Lemma 9, let us go back to the proof of Lemma 8.

Proof of Lemma 8. To simplify the exposition, let us suppose that τ ≥ 1/2, the
other case can be treated similarly, with elementary modifications.

We may write

Δ2
p̂ = Δ2 −

ps∑
j=p̂+1

(θ+j − θ−j )
2 −

d∑
j=ps+1

(θ+j − θ−j )
2.

Yet,

d∑
k=ps+1

(θ+j − θ−j )
2 ≤ 4L2p−2s

s = 4L2

(
σ2 ln(d ∨ n)

n

) 2s
1+2s

≤ Δ2/4,

as soon as R ≥ 16L2, since Δ2 ≥ R
(

σ2 ln(d∨n)
n

) 2s
1+2s

(condition (9)). Then,

P
(
{p̂ ≤ ps} ∩ {Δ2

p̂ ≤ Δ2/2}
)
≤ P

⎛
⎝{p̂ ≤ ps} ∩

{ ps∑
j=p̂+1

(θ+j − θ−j )
2 ≥ Δ2/4

}⎞
⎠ .
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Now,

P

(
{p̂ ≤ ps} ∩

{ ps∑
j=p̂+1

(θ+j − θ−j )
2 ≥ Δ2/4

})

≤ P

(
{p̂ ≤ ps} ∩

{ ps∑
j=p̂+1

(Zj)2

(1− τ)2
+

[
(θj+ − θj−)

2 − (Zj)2

(1− τ)2

]
≥ Δ2/4

})
.

From the construction of p̂, we know that

ps∑
j=p̂+1

(Zj)2

(1− τ)2
≤ CLps

(1− τ)2
σ2

n
ln(d ∨ n) =

CL
(1− τ)2

(
σ2 ln(d ∨ n)

n

) 2s
1+2s

.

Thus, if CL/(1− τ)2 ≤ R/8,

ps∑
j=p̂+1

(Zj)2

(1− τ)2
≤ Δ2/8.

Consequently,

P
(
{p̂ ≤ ps} ∩ {Δ2

p̂ ≤ Δ2/2}
)

≤ P

⎛
⎝{p̂ ≤ ps} ∩

{ ps∑
j=p̂+1

[
(θj+ − θj−)

2 − (Zj)2

(1− τ)2

]
≥ Δ2/8

}⎞
⎠ .

≤
ps∑
k=1

P

⎛
⎝{p̂ = k} ∩

{∣∣∣∣
ps∑

j=k+1

[
(θj+ − θj−)

2 − (Zj)2

(1− τ)2

] ∣∣∣∣ ≥ Δ2/8

}⎞
⎠

≤
ps∑
k=1

P

⎛
⎝∣∣∣∣

ps∑
j=k+1

[
(βj)

2 − (Zj)2
] ∣∣∣∣ ≥ (1− τ)2Δ2/8

⎞
⎠

≤
ps∑
k=1

P

⎛
⎝ ps∑

j=k+1

(εj)
2 + 2

∣∣∣∣
ps∑

j=k+1

εjβj

∣∣∣∣ ≥ (1− τ)2Δ2/8

⎞
⎠ .

Now, we use again Gaussian and chi-square concentration results, as in the
proof of Lemma 10.

As soon as (1− τ)2nΔ2/(80σ2) ≥ ps, which is always true if R ≥ 80
(1−τ)2 , we

obtain:

ps∑
k=1

P

⎛
⎝ ps∑

j=k+1

(εj)
2 ≥ (1− τ)2Δ2/16

⎞
⎠ ≤ ps exp

(
− (1− τ)2nΔ2

80σ2

)
.

Moreover, since Var
(∑ps

j=k+1 εjβj

)
= σ2

n

∑ps

j=k+1(βj)
2 ≤ σ2Δ2(1−τ)2

n ,

ps∑
k=1

P

⎛
⎝∣∣∣∣

ps∑
j=k+1

εjβj

∣∣∣∣ ≥ (1− τ)2Δ2/25

⎞
⎠ ≤ 2ps exp

(
− (1− τ)2nΔ2

211σ2

)
.
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Now, nΔ2

σ2 ≥ R ln(d ∨ n)ps. Hence, for R large enough, the right-hand terms
admit an upper bound of the order n−γ . Combining this bounds with Lemma
9, we get the desired result, as soon as Conditions (10) and

R ≥ 16L2 ∨ 8CL
ε2

∨ 211(γ + 1)

ε2
(11)

are satisfied.

Proof of Theorem 2. We use Lemma 8, the definition of ps, and Proposition 1.
For any γ, γ′, we have

P

(
|τ̂(p̂)− τ | ≥ κ(γ, ε)

σ2 ln(n)

nΔ2

)

≤ P

({
|τ̂(p̂)− τ | ≥ κ(γ, ε)

σ2 ln(n)

nΔ2

}
∩

{
Δ2

p̂ ≥ Δ2/2
}
∩ {p̂ ≤ ps}

)
+ c′n−γ

≤
ps∑
p=1

P

({
|τ̂(p̂)− τ | ≥ κ(γ, ε)

σ2 ln(n)

nΔ2

}
∩

{
Δ2

p̂ ≥ Δ2/2
}
∩ {p̂ = p}

)
+ c′n−γ′

≤
ps∑
p=1

P

({
|τ̂(p)− τ | ≥ κ(γ, ε)

σ2 ln(n)

2nΔ2
p

}
∩

{
Δ2

p ≥ Δ2/2
}
∩ {p̂ = p}

)
+ c′n−γ′

≤
ps∑
p=1

P

( {
|τ̂(p)− τ | ≥ κ(γ, ε)

σ2 ln(n)

2nΔ2

}
∩

{
Δ2

p ≥ Rpσ2 ln(d ∨ n)

2n

}

∩ {p̂ = p}
)
+ c′n−γ′

≤ pscn
−γ + c′n−γ′

,

as soon as R is large enough, which proves the theorem.

Appendix A: Concentration inequalities

Gaussian concentration If N ∼ N (0, 1), then it is well known that, for
x > 0,

P (|N | > x) ≤ 2 exp
(
− x2

2

)
. (12)

Exponential inequality for the chi-square distribution The next lemma
is proved in [37].

Lemma 11. Let k be a positive integer and U be a χ2 distribution with k degrees
of freedom. For z > 0,

P (U − k ≥ 2
√
kz + 2z) ≤ exp(−z),

P (k − U ≥ 2
√
kz) ≤ exp(−z).
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In this paper, the following form of the result is used.

Corollary 2. Let k be a positive integer and U be a χ2 distribution with k
degrees of freedom. For 0 < x ≤ 4k,

P (U − k ≥ x) ≤ exp
(
− x2

16k

)
.

For x ≥ 4k,

P (U − k ≥ x) ≤ exp
(
− x

4

)
.

For x > 0,

P (k − U ≥ x) ≤ exp
(
− x2

4k

)
.

Consequently,

P (|U − k| ≥ x) ≤ 2

[
exp

(
− x2

16k

)
∨ exp

(
− x

4

)]
.
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References

[1] S. Arlot and A. Celisse. Segmentation of the mean of heteroscedastic data
via cross-validation. Stat. Comput., 21(4):613–632, 2011. ISSN 0960-3174.
MR2826696

[2] J. A. D. Aston and C. Kirch. Evaluating stationarity via change-point al-
ternatives with applications to fmri data. Ann. Appl. Stat., 6(4):1906–1948,
2012. MR3058688

[3] A. Aue, S. Hörmann, L. Horváth, M. Reimherr, et al. Break detection in
the covariance structure of multivariate time series models. The Annals of
Statistics, 37(6B):4046–4087, 2009. MR2572452

[4] J. Bai. Least square estimation of a shift in linear processes. Journal of
Time Series Analysis, 15:453–472, 1994. MR1292161

[5] J. Bai. Common breaks in means and variances for panel data. Journal of
Econometrics, 157(1):78–92, 2010. MR2652280

http://www.ams.org/mathscinet-getitem?mr=2826696
http://www.ams.org/mathscinet-getitem?mr=3058688
http://www.ams.org/mathscinet-getitem?mr=2572452
http://www.ams.org/mathscinet-getitem?mr=1292161
http://www.ams.org/mathscinet-getitem?mr=2652280


1686 A. Fischer and D. Picard

[6] J. Bai and P. Perron. Estimating and testing linear models with multiple
structural changes. Econometrica, 66:47–78, 1998. MR1616121

[7] M. Basseville and I. Nikiforov. Detection of abrupt changes: Theory and ap-
plications. Lecture Notes in Mathematics. Prentice Hall, 1993. MR1210954

[8] K. Bleakley and J. P. Vert. The group fused Lasso for multiple change-point
detection, 2011. Available at https://hal.inria.fr/hal-00602121.

[9] S. Bourguignon, D. Mary, and E. Slezak. Restoration of astrophysical spec-
tra with sparsity constraints: models and algorithms. J. Sel. Topics Signal
Processing, 5:1002–1013, 2011.

[10] B. E. Brodsky and B. S. Darkhovsky. Nonparametric methods in change-
point problems. The Netherlands, 1993. MR1228205

[11] A. Bücher, I. Kojadinovic, T. Rohmer, and J. Segers. Detecting changes
in cross-sectional dependence in multivariate time series. Journal of Multi-
variate Analysis, 132:111–128, 2014. MR3266263

[12] E. Carlstein, H. Müller, and D. Siegmund, editors. Change-point problems,
volume 23. 1994. MR1477909

[13] H. Chen and N. Zhang. Graph-based change-point detection. Ann. Statist.,
43:139–176, 2015. MR3285603

[14] H. Cho. Change-point detection in panel data via double cusum statistic.
Electron. J. Statist., 10(2):2000–2038, 2016. MR3522667

[15] H. Cho and P. Fryzlewicz. Multiple-change-point detection for high dimen-
sional time series via sparsified binary segmentation. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 77(2):475–507, 2015.
MR3310536

[16] I. Cribben and Y. Yu. Estimating whole-brain dynamics by using spec-
tral clustering. Journal of the Royal Statistical Society: Series C (Applied
Statistics), 66(3):607–627. MR3632344

[17] M. Csörgő and L. Horváth. Limit theorems in change-point analysis. 1997.
MR2743035

[18] F. Enikeeva and Z. Harchaoui. High-dimensional change-point detec-
tion with sparse alternatives, 2017. Available at https://hal.inria.fr/
hal-00933185. MR3953444

[19] J. Fiosina and M. Fiosins. Resampling-based change point estimation. In
J. Gama, E. Bradley, and J. Hollmén, editors, Advances in Intelligent Data
Analysis X, pages 150–161, Berlin, Heidelberg, 2011. Springer.

[20] K. Frick, A. Munk, and H. Sieling. Multiscale change point inference. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology),
76(3):495–580, 2014. MR3210728

[21] P. Fryzlewicz et al. Wild binary segmentation for multiple change-point
detection. The Annals of Statistics, 42(6):2243–2281, 2014. MR3269979

[22] Z. Harchaoui, F. Vallet, A. Lung-Yut-Fong, and O. Cappe. A regularized
kernel-based approach to unsupervised audio segmentation. In ICASSP,
pages 1665–1668, 2009.

[23] S. Hariz and J. J. Wylie. Rates of convergence for the change-point esti-
mator for long-range dependent sequences. Statistics & Probability Letters,
73:155–164, 06 2005. MR2159251

http://www.ams.org/mathscinet-getitem?mr=1616121
http://www.ams.org/mathscinet-getitem?mr=1210954
https://hal.inria.fr/hal-00602121
http://www.ams.org/mathscinet-getitem?mr=1228205
http://www.ams.org/mathscinet-getitem?mr=3266263
http://www.ams.org/mathscinet-getitem?mr=1477909
http://www.ams.org/mathscinet-getitem?mr=3285603
http://www.ams.org/mathscinet-getitem?mr=3522667
http://www.ams.org/mathscinet-getitem?mr=3310536
http://www.ams.org/mathscinet-getitem?mr=3632344
http://www.ams.org/mathscinet-getitem?mr=2743035
https://hal.inria.fr/hal-00933185
https://hal.inria.fr/hal-00933185
http://www.ams.org/mathscinet-getitem?mr=3953444
http://www.ams.org/mathscinet-getitem?mr=3210728
http://www.ams.org/mathscinet-getitem?mr=3269979
http://www.ams.org/mathscinet-getitem?mr=2159251


On change-point estimation under Sobolev sparsity 1687

[24] S. B. Hariz, J. J. Wylie, and Q. Zhang. Optimal rate of convergence for
nonparametric change-point estimators for nonstationary sequences. Ann.
Statist., 35:1802–1826, 2007. MR2351106

[25] S. S. Henry, D. and R. J. Patton. Fault detection and diagnosis for aeronau-
tic and aerospace missions. In T. L. C. Edwards and H. Smaili, editors, Fault
Tolerant Flight Control – a Benchmark Challenge, pages 91–128, Berlin,
2010. Springer. MR3642405
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