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Abstract: The paper treats the modeling of stationary multivariate
stochastic processes via a frequency domain model expressed in terms of
cepstrum theory. The proposed model nests the vector exponential model
of [20] as a special case, and extends the generalised cepstral model of [36]
to the multivariate setting, answering a question raised by the last authors
in their paper. Contemporarily, we extend the notion of generalised auto-
covariance function of [35] to vector time series. Then we derive explicit
matrix formulas connecting generalised cepstral and autocovariance matri-
ces of the process, and prove the consistency and asymptotic properties of
the Whittle likelihood estimators of model parameters. Asymptotic theory
for the special case of the vector exponential model is a significant addition
to the paper of [20]. We also provide a mathematical machinery, based on
matrix differentiation, and computational methods to derive our results,
which differ significantly from those employed in the univariate case. The
utility of the proposed model is illustrated through Monte Carlo simula-
tion from a bivariate process characterized by a high dynamic range, and
an empirical application on time varying minimum variance hedge ratios
through the second moments of future and spot prices in the corn commod-
ity market.
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1. Introduction

Vector stationary autoregressive moving-average (VARMA) models and their
generalizations have been used extensively to modeling economic, financial and
statistical time series. Such models are formulated in the time domain as differ-
ence equations with a corresponding covariance structure. However, to fit these
models, it is necessary to impose some restrictions on the coefficient matrices to
ensure that certain determinants are non trivial. This may increase computa-
tional cost, except in special cases. To avoid such difficulties, many authors have
considered stationary processes in the frequency domain. Indeed, the spectral
density provides a complete characterization of the serial correlation structure
of the process, as well as, the necessary information for prediction and interpo-
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lations. Tractable methods to derive the spectral representations of a general
class of Markov switching (MS) VARMA models have been proposed by [33], [7],
and [10]. Spectral representation and autocovariance structure of MS Dynamic
Stochastic General Equilibrium (DSGE) models are recently investigated in [8].
A further advantage of spectral analysis is that it can reveal detailed features
of real data without using a parametric model. The only assumption needed
is the stationarity of the series. A fresh insight can be gained into the time
series structure and cyclic behaviour at different time scale, such as seasonal
patterns and business cycle. This serves to derive some goodness-of-fit tests on
MS models based on spectral density functions.

Frequency domain analysis has become a fundamental component of many
scientific inquiries and empirical economic applications. [38] introduce a class
of nonlinear multivariate time-frequency functional models to study inference
for general scientific processes, especially ecological. An approach for identi-
fying and predicting economic recessions in real-time by using time-frequency
functional models has been proposed by [22]. Their methodology extracts in-
formation embedded in time-frequency representation of daily returns for stock
market indices, and specifically reveals important features of daily NASDAQ
index log returns corresponding to economic recessions. See also [15] for a dis-
cussion on the last quoted paper. [21] utilize time-frequency functional models
to discover several features of animal communication signals, which were over-
looked in previous time-domain analyses. [31] propose univariate generalized
Gegenbauer processes as a flexible way of modeling time series data which ex-
hibit long memory and seasonal long memory. We refer to [30], [17], and [25]
for comprehensive monographs dealing various classes of generalised statistical
models that have been found useful in statistical and economic analyses.

One of the most important time-frequency model for scalar times series has
been proposed by [4]. It is called the (scalar) exponential model, and arises by
truncating the Fourier series expansion of the scalar log-spectrum. The corre-
sponding coefficients are called cepstral coefficients, and their collection con-
stitutes the cepstrum of the model. The cepstral coefficients are then obtained
from the discrete Fourier transform of the log-spectrum. These terms were in-
troduced by [3], where cepstral and cepstrum are anagrams of spectral and
spectrum, respectively.

[32] study the cepstral random field model, providing recursive formulas which
connected the spatial cepstral coefficients to an equivalent moving-average (MA)
random field. This facilitates easy computation of the autocovariance matrix,
and serves to establish asymptotic results for Bayesian and maximum likelihood
(ML) estimators of model parameters.

[19] and [20] treat the modeling of stationary vector time series through a
multivariate extension of the scalar exponential model of [4]. Such a process is
called vector exponential (VEXP) model. In contrast to VARMA models, the
VEXP processes are always stable and invertible. In particular, this implies that
the spectral density matrix is nonsingular at all frequencies. Furthermore, the
class of VEXP processes is arbitrarily dense in the space of stable invertible
vector time series. These authors provide precise mathematical development



Generalised cepstral models 607

and computational algorithms for the proposed model, which differs significantly
from the univariate case.

More recently, [36] introduce a class of univariate (generalised) cepstral mod-
els by using the Box-Cox transformation of the spectral density. See also [5].
Their class includes various univariate models, such as, the univariate expo-
nential model of [4], and standard ARMA processes. The generalised cepstral
coefficients of the proposed model are shown to be related with the generalised
autocovariance function of a stationary univariate stochastic process. Such a
function has been introduced and studied in a previous paper of the same au-
thors. See [35]. Consistency, asymptotic theory of parameter estimators, Monte
Carlo simulations, and empirical applications illustrating the flexibility of the
univariate generalised spectral model complete the nice paper of [36].

The main goal of the present paper is to obtain new results on the multi-
variate specification of the generalised cepstral model introduced by [36]. This
answers a suggestion given by those authors in the conclusion section of the
quoted paper. We also take advantage from methods and techniques developed
by [11] and [20] in the multivariate case. Contemporarily, we show that the
proposed multivariate model extends the notion of generalised autocovariance
function to vector time series. This, in turn, generalises results obtained by [35]
for univariate stochastic processes, and illustrates the utility of the vector model.
We also derive explicit matrix relationships between generalised cepstral and au-
tocovariance matrices of the considered vector process. Furthermore, we prove
consistency and asymptotic properties of the Whittle likelihood estimators of
model parameters. The proposed class of models includes various multivariate
stochastic processes, such as, the vector exponential model of [20], and standard
VARMA models. Asymptotic theory for the special case of the vector exponen-
tial model is a significant addition to the paper of [20]. Finally, we provide a
mathematical machinery, based on matrix differentiation, and computational
methods, which are very different to those employed in the univariate case.

The paper is organized as follows. In Section 2 we introduce the model, give
some preliminaries and definitions of cepstrum theory, and establish notations.
Section 3 is devoted to define the generalised cepstral matrices and the gener-
alised matrix cepstrum of a stationary vector stochastic process, and to describe
their statistical properties. We show that the generalised matrix spectrum con-
tains all information for prediction and feature extraction of the considered
process, and uniquely characterises its spectral properties. Whittle estimation
of the proposed vector model, consistency and asymptotic results on the estima-
tors of model parameters are presented in Section 4. Here we formulate the main
result (Theorem 1, §4) concerning the closed form expression for the asymptotic
covariance matrix of the generalised matrix cepstrum model. The proof of the
main theorem is given in Appendix A. Section 5 provides a Monte Carlo simu-
lation from a bivariate VAR(4) process and illustrates the computation of the
asymptotic covariance matrix of the estimated parameters (the obtained results
are given in Appendix B). In Section 5 we also present an empirical example
on the hedge ratios through the second moments of futures and spot prices in
the corn commodity market. Section 6 concludes with remarks. For the basic
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identities and results on matrix calculus the reader is addressed to [14], [26], and
[27, 28]. General discussion concerning vector time series and spectral theory is
provided in [6], and [18].

2. Generalised linear models for the spectrum

Let x = (xt)t∈Z be a n-dimensional stationary zero-mean stochastic process.
The spectral density matrix (sdm) of x is a (n×n) dimensional matrix function
given by

f(ω) =
∞∑

k=−∞
Γk z

k (1)

where Γk = E(xt x
′
t−k) is the autocovariance function (acf), z = exp(−iω),

ω ∈ [−π, π], and i denotes the imaginary unit. Assume that f = f(ω) is positive
definite (pd) for every ω ∈ [−π, π]. For a n-variate time series, f(ω) is always
Hermitian non negative definite, and is often positive definite. Of course, this
may not always be the case. Conditions for positive definiteness are provided
after formula (5) below.

Taking the Fourier transform (FT) of f gives the acf of x:

Γk =
1

2π

∫ π

−π

f(ω) z−k dω (2)

where the integration works component-wise on each entry of the sdm.
Assuming that the process x is purely nondeterministic, its Wold represen-

tation can be written as
xt = Ψ(B) εt (3)

where B is the backshift operator, i.e., Bk xt = xt−k, ε = (εt) is a white
noise process with zero-mean and positive definite autovariance matrix Ω, i.e.,
εt ∼ WN(0,Ω), and

Ψ(z) =
∑
j≥0

Ψj z
j (4)

is the causal representation of x (for identifiability, set Ψ0 = In, the identity
n × n matrix). Assume that det Ψ(z) �= 0 for all |z| ≤ 1, and the matrix
coefficients satisfy

∑
j≥0 j ||Ψj ||2 < ∞.

Then the sdm is also given by

f(ω) = Ψ(z)ΩΨ′(z) (5)

where z denotes the complex conjugate of z, as usual. Setting Λ(z) = Ψ(z)Ω
1
2

implies that f(ω) = Λ(z)Λ′(z). Here Ω
1
2 denotes the (unique) square root of

the pd matrix Ω. Then a necessary and sufficient condition for f(ω) to be pd
is that Λ(z) (or a suitable truncation of it) is non singular (at least, up to a
set of frequencies that have Lebesgue measure zero). Of course, the positivity of
any nested sequence of n principal minors of f(ω) is a necessary and sufficient
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condition for positive definiteness. A computational, simple and fast sufficient
criterion to verify positive definiteness of a Hermitian matrix has been described
in [37]. Computation geometry of positive definiteness and algorithms to solve
the maximal least eigenvalue problem can be found in [23]. A lot of numerical
algorithms for correcting non positive definite matrices into pd ones has been
collected in [29] (§4).

The acf is related to the matrix coefficients of the Wold filter Ψ(B) by

Γk =
∑
j≥0

Ψj+k ΩΨ′
j (6)

for any integer k ≥ 0, and Γk = Γ′
−k for k < 0.

Extending the work of [35, 36] and [19, 20], we consider different represen-
tations of the sdm that involve the matrix power and the matrix exponential.
Since the sdm is pd by assumption, there are orthogonal matrices (as functions
of frequency ω) that diagonalize f(ω) for every ω ∈ [−π, π].

By (1) the matrix f = f(ω) is Hermitian for every ω ∈ [−π, π], hence we can
write

f = PAP∗ (7)

where P = P(ω) is a unitary complex-valued matrix, i.e., PP∗ = In, and
A = A(ω) is diagonal with real positive entries. Here P∗ denotes the conjugate
transpose of P, as usual.

The λth matrix power of f is defined by

fλ = PAλ P∗ (8)

for λ ∈ R, where Aλ is the diagonal matrix consisting of the λth powers of the
entries of A. Then we can write

f =
(
PAλ P∗)1/λ (9)

that is, the sdm f of x is the matrix power at exponent 1/λ of the pd matrix
PAλ P∗.

By Artin (1991, p. 139), the matrix exponential of f is given by

exp(f) = P exp(A)P∗ (10)

where exp(A) is the diagonal matrix consisting of the exponential of the entries
of A.

In particular, we can write (see Holan et al., 2017)

loge(f) = P loge(A)P∗ (11)

hence
f = exp[P loge(A)P∗] (12)

where the diagonal matrix loge(A) consists of the logged entries of A. In other
words, by (12) the sdm f of x is the matrix exponential of the Hermitian matrix
P loge(A)P∗, which is not pd in general.
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The matrix functions in (8) and (11) can be expanded in the Hilbert space
with basis (zk)k∈Z as

PAλ P∗ =

∞∑
k=−∞

Γλk z
k (13)

and

P loge(A)P∗ =

∞∑
k=−∞

Ck z
k. (14)

Such expansions can be calculated by determining the matrix coefficients Γλk

and Ck for λ ∈ R and k ∈ Z by inverse FT of PAλ P∗ and P loge(A)P∗,
respectively. Then we have

Γλk =
1

2π

∫ π

−π

(PAλ P∗)(ω) z−k dω (15)

and

Ck =
1

2π

∫ π

−π

[P loge(A)P∗](ω) z−k dω. (16)

For univariate time series, the scalars (γλk) from (15) give the generalised au-
tocovariance function (gacf) introduced and studied by [35]. However, in the
present context they are matrices, and we call them generalised autocovariance
matrices (gacm). The matrix coefficients Ck in (16) are the cepstral matrices
(cm) defined in [20], and denoted there by Θk, for k ∈ Z. For univariate time
series, the scalars (ck) from (16) give the cepstral coefficients also considered in
[36].

The gacm Γλk depend on two arguments, the integer lag k and the real power
λ. For λ = 1, Γ1k = Γk is the acf of the process x at lag k. For λ = 0, Γ0k =
0n×n, the null (n×n) matrix, for k �= 0, and Γ00 = In (up to a constant), hence
we get the acf of a white noise process WN(0, In). For λ = −1, Γ−1k = Γinv,k

extend to the multivariate case the inverse autocovariance function considered
in [12]. See also [2].

Finally, from (9) and (12) we obtain the formal expressions

f =

( ∞∑
k=−∞

Γλk z
k

)1/λ

(17)

and

f = exp

( ∞∑
k=−∞

Ck z
k

)
. (18)

Thus a generic sdm f(ω) of a covariance stationary vector time series x = (xt)t∈Z

can be written in the forms (17) and (18), using the matrix power and the matrix
exponential, respectively. Equation (18) arises from [20], by setting Ck = Θk,
for k ∈ Z. Equation (17) extends the gacf from [35] to the multivariate setting.
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3. Generalised cepstral matrices and matrix cepstrum

Extending the univariate case of [36] to multivariate time series, consider the
Box-Cox transform (see [5]) of the sdm f(ω) with transformation parameter
λ ∈ R

gλ(ω) =

{
1
λ [fλ(ω) − In] λ �= 0

loge f(ω) λ = 0.
(19)

For every ω ∈ [−π, π], gλ(ω) is a well-defined (n× n) matrix, which we call the
generalised cepstral density matrix (gcdm) of the process x. In Appendix A, we
show that

lim
λ→0

1

λ
[fλ(ω) − In] = loge f(ω) (20)

hence gλ(ω) is a continuous matrix function with respect to frequency ω.
By (13) and (14) the gcdm gλ(ω) can be represented as

gλ(ω) =
∞∑

k=−∞
Cλk z

k (21)

which is linear in the matrix coefficients Cλk

Cλk =
1

2π

∫ π

−π

gλ(ω) z
−k dω (22)

given by the inverse FT of gλ(ω).
When λ equals zero, we obtain the exponential model of [20] as a special case,

that is, C0k = Ck from (14), for k ∈ Z. See also [4] for univariate time series.
In the univariate case, the scalars (cλk) from (22) are the generalised cepstral
coefficients at lag k introduced and studied by [36]. However, in the present
context they are (n × n) matrices, which we call generalised cepstral matrices
(gcm).

Assume that gλ(ω) can be represented by a finite polynomial

gλ(ω) =

K∑
k=−K

Cλk z
k (23)

for some positive integer K. Then the set of (n× n) matrices

Cx,K = {Cλk : λ ∈ R, k = 0, . . . ,K}

is called the generalised matrix cepstrum (of order K) for the process x. Later,
we show that Cλ,−k = C′

λk for every integer k < 0.
The spectral model with Box-Cox link and mean function

f(ω) =

{
[In + λgλ(ω)]

1
λ λ �= 0

exp gλ(ω) λ = 0
(24)
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will be referred to as generalised matrix cepstral model for the spectrum with
parameter λ ∈ R and orderK. In short, we denote it by GMCM(λ,K). Equation
(24) is well-defined. See Appendix A for its computation.

To our knowledge, the idea of the generalised matrix cepstrum is completely
new in the literature, and is a nontrivial multivariate extension (based on differ-
ential matrix calculus) of the univariate model from [36]. Moreover, the asymp-
totics for the parameter vector by using Whittle likelihood method provides
matrix expressions in closed form, which can not be easily derived from the
univariate case (see the statement of Theorem 1, §4). This asymptotic theory
also gives a significant contribution to the paper of [20], where such a theory has
not been discussed in the case of the vector exponential model (see Theorem 2,
§4).
Remark 1. The GMCM(λ,K) assumes that the spectrum can be represented
by a finite set of (n×n) matrix coefficients. These matrices represent the Fourier
coefficients of the Box-Cox transformation of the spectrum.

For example, consider the GMCM(λ,K) for λ = K = 1, that is,

f(ω) = In + g1(ω) = In + C1,0 + C1,−1 z + C1,1 z

where z = exp(−iω) and z = z−1. The right-hand side is the sdm of the 1st
order vector moving-average (VMA) process xt = εt + Ψ εt−1 such that

In + C1,0 = Ω + ΨΩΨ′ C1,1 = ΨΩ = C′
1,−1.

More generally, GMCM(1,K) is a VMA(K) model. Conversely, GMCM(−1,K)
is a vector autoregressive (VAR) model of order K.

For example, the sdm of GMCM(−1, 1) is given by

f(ω) = [In − g−1(ω)]
−1 = [In − C−1,0 − C−1,−1 z − C−1,1 z]

−1.

This is also the sdm of the VAR(1) process xt = Φxt−1 + εt with

In − C−1,0 = Ω−1 + Φ′ Ω−1 Φ C−1,1 = Ω−1 Φ = C′
−1,−1.

Remark 2. The methodology in this paper is based on the assumption that the
process x = (xt)t∈Z is stationary. This is also a standard assumption in [35, 36]
and [20]. As pointed out by one of the referees, the resulting generalised matrix
cepstral model (GMCM) is more general than the often used vector ARMA
models, but it is hard to impose the conditions on Cλ k such that the GMCM
is stationary. This is not a problem for VARMA models, or other non-linear
vector time series models. From Remark 1, it is clear that some conditions on
Cλ k are needed for the stationarity of x, but these conditions can not be easily
derived for the general GMCM. Thus we can circumvent this problem to make
the data stationary by differencing or capturing a common trend. Furthermore,
if a Bayesian treatment is desired, prior parameter restrictions may cause some
difficulties since they imply that the model parameters must be supported on a
complicated manifold. However, the cepstral approach allows for the entries of
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each parameter matrix to be any real number, so that taking independent vague
Gaussian priors is a coherent choice that guarantees a stable outcome. See [20]
(§3.2).

To complete the section we derive some properties of the generalised cepstral
matrices. It is shown that Cx,K contains all the necessary information for pre-
diction and feature extraction of the process x, and uniquely characterises its
spectral properties.

Any sdm is Hermitian and has the property f(−ω) = f ′(ω). This also holds
for fλ and loge(f), hence for gλ(ω) by (19). It follows from (21) that the gcm
Cλk are real-valued and satisfy

Cλ,−k = C′
λk. (25)

In particular, for the gacm Γλk we have the relation

Γλ,−k = Γ′
λk. (26)

See [35] for the univariate case, i.e., γλ,−k = γλk.
For λ = k = 0 the Szegö-Kolmogorov formula for the prediction error variance

gives

Ω = exp

(
1

2π

∫ π

−π

loge f(ω) dω

)
= exp(C00)

hence

C00 = loge Ω. (27)

For λ �= 0 the gcm Cλk are related to gacm Γλk by the following relationships:

Cλ0 =
1

λ
(Γλ0 − In) Cλk =

1

λ
Γλk (k �= 0). (28)

Remark 3. For λ = 1, C1k = Γ1k = Γk (k > 0) from (2) and (28), i.e.,
the acf of x. For λ = −1 and k �= 0, C−1,k = −Γ−1,k, which is the inverse
autocovariance of x (see Cleveland, 1972, for univariate time series). The ma-
trix Cλ0 for λ = −1, 0, 1 is related to some statistical characteristics of x.
Namely, (In − C−1,0)

−1 is the interpolation error variance, exp(C00) = Ω is
the prediction error variance, and In + C1,0 = Γ1,0 = Γ0 is the unconditional
autocovariance matrix of x.

The coefficients of the Wold and autoregressive representations of x can be
obtained using a spectral factorization that arises naturally after a reparame-
terization of the gcm Cλk. By the representation theorem of Fejér and Riesz,
we can write

fλ(ω) = ϕλ(z)Ωλ ϕ
′
λ(z) (29)

where

ϕλ(z) =

K∑
k=0

ϕλ k z
k ϕλ 0 = In.
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From (29) when λ �= 0 the gcm Cλk are obtained as

Cλ0 =
1

λ

[
K∑

k=0

ϕλ k Ωλ ϕ
′
λ,k − In

]
(30)

and

Cλk =
1

λ

K∑
j=k

ϕλ j Ωλ ϕ
′
λ,j−k (k �= 0). (31)

Using arguments from [36], we can always assume that detϕλ(z) �= 0 for |z| ≤ 1.
Extending the method proposed by [34] to power series with matrix coeffi-

cients, for λ = 0 the coefficients of the Wold representation can be obtained
recursively as

Ψj =
1

j

j∑
r=1

rC0r Ψj−r (j > 0) Ψ0 = In.

For λ �= 0, we have the recursive relations

Ψj =
1

j

j∑
r=1

(
r
λ+ 1

λ
− j

)
ϕλ r Ψj−r (j > 0) Ψ0 = In

by using [16]. The coefficients of the VAR(∞) representation of x are derived as
follows. Set xt = Ψ(B) εt as in (3) and εt = Φ(B)xt with Ψ(B) =

∑
k≥0 Ψk B

k

(Ψ0 = In) and Φ(B) = In −
∑

k≥1 Φk B
k. Following [17] (§10), the matrices

Φk can be evaluated by requiring(
In − Φ1 B

1 − Φ2 B
2 − · · ·

) (
In + Ψ1 B

1 + Ψ2 B
2 − · · ·

)
= In.

Setting the coefficient of B1 equal to zero produces Φ1 = Ψ1. Similarly, setting
the coefficient of B2 equal to zero gives Φ2 = −Φ1 Ψ1 + Ψ2, hence Φ2 =
−Ψ2

1 + Ψ2. In general, setting the coefficient of Bk equal to zero produces the
recursive relation

Φk = −
k−1∑
j=1

Φj Ψk−j + Ψk

for all k = 2, 3, . . . with Φk = 0 for k < 0, Φ0 = In, and Φ1 = Ψ1.
Thus all the relevant informations for prediction are available from the K+1

matrices of the generalised matrix cepstrum Cx,K .

4. Whittle likelihood estimation and asymptotic properties

Let x be generated by (3) with Gaussian disturbances (having finite eight order
moments), and

∑
j≥0 j ||Ψj ||2 < ∞. Assume x1, . . . , xT from the process x
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are available and consider the sample spectral density matrix (periodogram)
defined by

IT (ω) =
1

2π T

(
T∑

t=1

xt exp(− iω t)

) (
T∑

t=1

x′
t exp( iω t)

)
(32)

for ω ∈ [−π, π]. Set x̃ = (x′
1 · · · x′

T )
′ ∈ R

nT . Then x̃ ∼ N(0, Γ̃), where Γ̃
denotes the (nT )× (nT ) covariance matrix of the sample.

The log Gaussian likelihood for a mean-zero sample, apart from a constant,
is

L(λ,θ) = −1

2
loge det Γ̃(θ) − 1

2
x̃′ Γ̃

−1
(θ) x̃ (33)

where
θ = θλ = ([vecCλ0]

′ [vecCλ1]
′ · · · [vecCλK ]′)′ ∈ R

R

where R = n2(K + 1) and K is as in (23). Assuming conditions sufficient to
guarantee efficiency of the maximum likelihood (ML) estimators (see later), the
inverse of the Hessian can be used to approximate their asymptotic covariance
matrix.

Because there is some computational cost associated with the inversion of
Γ̃, an approximated version of (33), known as the Whittle likelihood, may be
preferable for very large sample sizes. Therefore, for the mean-zero case we can
consider the following Whittle likelihood

WT (λ,θ) = − 1

2π

∫ π

−π

loge det f(ω) dω − 1

2π

∫ π

−π

tr
[
IT (ω) f(ω)

−1
]
dω.

(34)
Observe that the parameter λ appears on the right-hand side of (34) writing
f(ω) as in (24). Furthermore, the elements of θ = θλ arise from the expression
of gλ(ω) given in (23), by using the vec operator. These observations will always
be assumed in the sequel to simplify notations.

Notice that the integral on the left-hand side in (34) equals the trace of
C00 = C0 for λ = 0 (see Appendix A), that is,

1

2π

∫ π

−π

loge det f(ω) dω = trC0. (35)

Approximating (34) by the Riemann sum over Fourier frequencies ωj = (π j)/T
for j = −T, . . . , T , the Whittle likelihood can be written

WT (λ,θ) = − 1

2T

T∑
j=−T

{
loge det f(ωj) + tr

[
IT (ωj) f(ωj)

−1
]}

(36)

which is to be maximized with respect to the transformation parameter λ and
the vector θ = θλ containing the elements of the gcm Cλk for k = 0, . . . ,K.

Set
z(ω) = (1/2 z z2 · · · zK)′ ∈ R

K+1
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and
Θ = Θλ = [C′

λ0 C′
λ1 · · · C′

λK ]′ ∈ R
[n(K+1)]×n

hence θ = vecΘ, and let z(ω) be the complex conjugate of z(ω). Then (23)
becomes

gλ(ω) = (z(ω)′ ⊗ In)Θ + Θ′ (z(ω)⊗ In). (37)

Thus (36) can be expressed as

WT (λ,θ) = − 1

2T

T∑
j=−T

WT,j(λ,θ)

where

WT,j(λ,θ) = loge det[In + λgλ(ωj)]
1
λ + tr

(
IT (ωj) [In + λgλ(ωj)]

− 1
λ

)
for λ �= 0, and

WT,j(λ,θ) = trgλ(ωj) + tr
(
IT (ωj) [expgλ(ωj)]

−1
)

for λ = 0 (use Formula (4) from [11]. Here gλ(ω) is given by (37), and In +
λgλ(ωj) is assumed to be positive definite.

As suggested in [36], the profile likelihood of the model as λ varies can be
used to select the spectral model for x. Let WT,max(λ) denote the partially

maximised (or, profile) Whittle likelihood, i.e., WT,max(λ) = WT (λ, θ̃λ), where

θ̃λ = argmaxθ WT (λ,θ). The ML estimate of λ is obtained as the value which
maximises the profile Whittle likelihood.

The truncation parameter K can be chosen as the value minimizing an in-
formation criterion, such as AIC or BIC, given by

AIC(K,λ) = − 2WT (λ, θ̃λ) + 2K

and
BIC(K,λ) = − 2WT (λ, θ̃λ) + loge(T )K,

respectively.
We now prove the consistency and asymptotic normality of the Whittle ML

estimator, denoted by (λ̃T , θ̃
′
T )

′, of the parameter vector (λ,θ′)′. In practice,
the transformation parameter is estimated by maximizing the profile likelihood,
as discussed above. As usual, denote (λ0,θ

′
0)

′ the true parameter vector.
The asymptotic theory for the Whittle MLE is based on the following as-

sumptions.

Assumption A1. The process x = (xt) is a stationary Gaussian process,
generated according to (3), where (εt) is a sequence of independent, identically
distributed normal random variables with mean zero, positive definite covariance
matrix Ω, and εt has finite absolute eight order moments. Furthermore∑

j≥0

j ||Ψj ||2 < ∞.
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Assumption A2. The true parameter vector of the model is in the interior of
the parameter space, and the (n × n) matrix In + λgλ(ω) is positive definite
for every ω ∈ [−π, π], with determinant ≥ m for some m > 0.

Assumption A3. The process x is absolutely regular, that is, its cepstral
matrix coefficients satisfy

∑∞
j=1 j ||Cj ||2 < ∞.

Theorem 1. Assume that Assumptions A1–A3 are fulfilled. Then we have

plimT→∞ λ̃T = λ0 plimT→∞ θ̃T = θ0

and

√
T

⎛⎝λ̃T − λ0

θ̃T − θ0

⎞⎠ −→
d

N(0,V(λ0,θ0))

with

[V(λ,θ)]−1 =

⎛⎝V (λ,λ) V (λ,θ)

V (θ,λ) V (θ,θ)

⎞⎠ ∈ R
(1+R)×(1+R)

where

V (λ,λ) =
n

2π

∫ π

−π

{
tr
[
f(ω)−λ gλ(ω)

2 M(ω)
]}2

dω

V (λ,θ) =
n

2π

∫ π

−π

tr
[
f(ω)−λ gλ(ω)

2 M(ω)
]
[vec f(ω)−λ]

× [z′(ω)⊗ In2 + z′(ω)⊗ In2 ] dω

and

V (θ,θ) =
n

2π

∫ π

−π

[z(ω)⊗ In2 + z(ω)⊗ In2 ] [vec f(ω)−λ]

× [vec f(ω)−λ]′ [z′(ω)⊗ In2 + z′(ω)⊗ In2 ] dω

with V (θ,λ) = V (λ,θ)′
, R = n2(K + 1) and

M(ω) = [gλ(ω)]
−2

{
1

λ2

(
λgλ(ω) − [In + λgλ(ω)] loge [In + λgλ(ω)]

)}
.

This theorem generalizes Theorem 2 by [36] to multivariate time series. The
above matrix expressions give those in the quoted paper when n = 1. Further-
more, the above theorem provides the asymptotic theory for the special case of
the vector exponential model of [20]. More precisely, for λ0 = 0 (that is, the ex-
ponential case) A1 and A2 are not needed, and the finiteness of

∑∞
j=1 j ||Cj ||2

implies
∑∞

j=1 j ||Γj ||2 < ∞. Then we have

Theorem 2. Under Assumption A3, the asymptotic matrix [V(0,θ)]−1 for the
vector exponential model (case λ0 = 0) has block elements

V (0,0) =
n

8π

∫ π

−π

{
tr[gλ(ω)

2]
}2

dω
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V (0,θ) = − n

4π

∫ π

−π

tr[gλ(ω)
2] [vec(In)]

′ [z′(ω)⊗ In2 + z′(ω)⊗ In2 ] dω

and

V (θ,θ) =
n

2π

∫ π

−π

[z(ω)⊗ In2 + z(ω)⊗ In2 ] [vec In]

× [vec In]
′ [z′(ω)⊗ In2 + z′(ω)⊗ In2 ] dω.

The matrix formulas in the statement of Theorem 2 are obtained by taking
the limit for λ → 0 of [V(λ,θ)]−1, as given in Theorem 1.

5. Simulated and empirical examples

5.1. Simulated VAR(4) process

This example estimates the spectrum of a bivariate VAR(4) process defined by

Φ(L)xt = εt, εt ∼ NID(0,Ω)

where
Φ(L) = I2 − Φ1 L − Φ2 L

2 − Φ3 L
3 − Φ4 L

4

with

Φ1 =

(
−0.1731 −0.0212
0.1549 −0.1405

)
Φ2 =

(
0.0412 −0.0236
0.0989 0.0519

)

Φ3 =

(
0.0051 0.0282
0.0351 0.0248

)
Φ4 =

(
0.0205 0.0111
0.0225 0.0003

)
and Ω = I2. Let Φ(z) be the AR matrix polynomial of the model. Then
det Φ(z) has two real roots −2.3015 and 2.1488, and three pairs of complex
conjugate roots with modulus 2.7016, 3.2562 and 3.6144 and phases 1.76, 2.68
and 0.89, respectively. The process is second-order stationary as det Φ(z) �= 0
for every |z| ≤ 1. Let f(ω) = (fij(ω)) ∈ R

2 be the spectral matrix of the pro-
cess. Rescaling the squared argument of the cross-spectrum f12(ω) yields the
squared coherence ρ2(ω) defined as

ρ2(ω) =
|f12(ω)|2

f11(ω) f22(ω)
.

We conduct a Monte Carlo experiment in which 1,000 replications of length T =
100 are generated according to the bivariate VAR(4) Gaussian process above.
A typical realization is plotted in Figure 1, with T = 100 observations. For
each replication, we estimate a sequence of GMCM(λ,K) models, with λ taking
values on a grid from −2.1 and −0.6 with step 0.05, and for K ranging from 0
to 7. This range of values covers the subset of interest of the parameter space
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Fig 1. A typical realization of the simulated bivariate VAR(4) described in Section 5.1.

and that in which the maximization of the Whittle likelihood by a numerical
algorithm works well. Model selection is carried out using BIC criterion. The
main results are in Table B (see Appendix B), which reports the means of the
estimated cepstral matrix parameters, the corresponding standard deviations,
and the true parameter values. The standard errors are computed by using the
asymptotic matrix expressions given in the statement of Theorem 1. Estimates
are rather close to the true parameter values and they tend to be closer as the
number of replications increases. It can be observed that the Whittle estimation
method has small bias and reasonable standard errors. A typical profile of the
Whittle likelihood of the GMCM(λ,K) models as a function of λ (on the x-
axis) is depicted in Figure 2. This shows that the optimal value of the power
transformation parameter λ is equal to −1. Given λ = −1, model selection by
BIC criterion for the order of the GMCM(λ,K) selects the true model parameter
K = 4 the 81% of the replications. Finally, the estimated squared coherence is
reported in Figure 3 together with the centered periodogram in points. The
comparison shows that the selected model exhibits a squared coherence that
approximate the periodogram quite well.

5.2. Empirical example on hedge ratios

[24] use a bivariate 2-state Markov switching generalised autoregressive condi-
tional heteroscedastic model (in short, MS GARCH) to estimate the hedge ratios
through the second moments of futures and spot prices in the corn commodity
market. It is shown in the quoted paper that the MS-GARCH specification is
more capable than standard VARMA models to capture the empirical features
of the considered real data. Let rc,t and rf,t denote the returns on the spot and
futures at time t, respectively. Then the bivariate process is x = (xt)t∈Z, where
xt = (rc,t rf,t)

′. The data series (traded on the Chicago Board of Trade)
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Fig 2. A typical profile of the Whittle likelihood estimation of GMCM(λ,K) model in the
simulated experiment described in Section 5.1.

Fig 3. Estimated squared coherence of GMCM(−1, 4) model (line) and periodogram (points).
See Section 5.1.
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Fig 4. Hedge ratio. Squared coherence ρ2(ω) of the process described in Section 5.2.

is taken from the period 2 January 1991 to 31 December 2003. The spectral
density functions of the squares r2c,t and r2f,t, and the cross product rc,t rf,t have
been derived in [9] by starting from the MS GARCH specification. By using
these functions, the squared coherence ρ2(ω) of the process is plotted in Figure
4. We now investigate what GMCM(λ,K) representation provides the best fit
to the curve in Figure 4. Estimating the GMCM(λ,K) on a grid of values for λ
in the range [−12.00; 2.00] with step 0.45, and for K ranging from 0 to 7, and

computing the BIC criterion, leads to selecting λ̃ = −5.56 and K̃ = 5. Figure 5
displays the profile Whittle likelihood of GMCM(λ, K̃) models, as a function
of λ in the grid. It shows that the optimal value of the power transformation
parameter is λ̃ = −5.56. Figure 6 plots the squared coherences fitted by the
GMCM(λ, K̃) models with K̃ = 5 and λ set equal to 1, 0, −1, and −5.56,
respectively. The case λ = 1 corresponds to fitting a bivariate MA(5) model
to the series; the case λ = 0 corresponds to fitting the bivariate exponential
model of order K̃ = 5 from [20]; and λ = −1 corresponds to fitting a bivariate
AR(5). For none of these cases the estimated squared coherence has the form of
that plotted in Figure 4. On the contrary, the squared coherence fitted by the
maximum likelihood, i.e., λ̃ = −5.56 and K̃ = 5, has the same profile shown in
Figure 4.

6. Conclusion

We have proposed a general class of frequency domain models for multivari-
ate stationary stochastic processes, called generalised matrix cepstral models
(GMCM). Such models, expressed in terms of cepstrum theory, extend the gen-
eralised cepstral model of [36] to the multivariate setting, and nest the vector
exponential model of [19, 20] as a special case. Any multivariate short memory
time series application can be faced by using the GMCM framework, providing a
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Fig 5. Hedge ratio. Profile of the Whittle likelihood as a function of λ for GMCM(λ, K̃)

models with K̃ = 5.

Fig 6. Hedge ratio. Comparison of the squared coherences arising from different values of
λs in GMCM(λ, K̃) models with K̃ = 5. λ = 1 (starred line), λ = 0 (dotted line), λ = −1
(crossed line), λ = −5.56 (solid line).
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large class of models for vector time series. Then we derive the statistical prop-
erties of the model, discuss the Whittle maximum likelihood estimation, and
prove the consistency and asymptotic properties of the parameter estimators.
Other approaches to estimation can be immediately discussed, such as Bayesian
estimation along the treatment shown in [20]. A further development of the re-
search may be to allow the elements of cepstral matrices to vary over time. This
permits to model time-varying spectra of locally stationary vector time series.
Finally, alternative cepstral models can be investigated along the lines of the
proposed model.

Appendix A

Derivation of (20). We have

1

λ
[fλ − In] =

1

λ
[PAλ P∗ − In]

=
1

λ
[PAλ P∗ − PP∗]

= P

[
1

λ
(Aλ − In)

]
P∗

= P diag
(
(aλ11 − 1)/λ, . . . , (aλnn − 1)/λ

)
P∗

where A = diag(a11, . . . , ann). Then

lim
λ→0

1

λ
[fλ − In] = P diag

(
lim
λ→0

aλ11 − 1

λ
, . . . , lim

λ→0

aλnn − 1

λ

)
P∗

= P diag (loge a11, . . . , loge ann) P
∗

= P loge(A)P∗ = loge f .

Derivation of (24). Given a factorization gλ = Qλ Dλ Q
∗
λ with Qλ unitary

matrix and Dλ diagonal matrix, we get

In + λgλ = In + Qλ λDλ Q
∗
λ

= Qλ Q
∗
λ + Qλ λDλ Q

∗
λ

= Qλ (In + λDλ)Q
∗
λ

= Qλ diag(1 + λ d11,λ, . . . , 1 + λ dnn,λ)Q
∗
λ

where Dλ = diag(d11,λ, . . . , dnn,λ). Then

[In + λgλ]
1
λ = Qλ diag

(
(1 + λ d11,λ)

1
λ , . . . , (1 + λ dnn,λ)

1
λ

)
Q∗

λ

hence

lim
λ→0

[In + λgλ]
1
λ = Qλ diag

(
lim
λ→0

(1 + λ d11,λ)
1
λ , . . . , lim

λ→0
(1 + λ dnn,λ)

1
λ

)
Q∗

λ

= Qλ diag (exp(d11,λ), . . . , exp(dnn,λ)) Q
∗
λ

= Qλ exp(Dλ)Q
∗
λ

= exp(Qλ Dλ Q
∗
λ) = expgλ.
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Derivation of (28). For λ �= 0 using (15) and (19) we get

Γλk =
1

2π

∫ π

−π

fλ(ω) z−k dω =
1

2π

∫ π

−π

(In + λgλ(ω)) z
−k dω

=
1

2π

∫ π

−π

In z
−k dω + λ

1

2π

∫ π

−π

gλ(ω) z
−k dω

= δk0 In + λCλk

by (22). Here δij denotes the Kronecker symbol, i.e., δii = 1 and δij = 0 for i �= j.
In fact, the integral on the left-hand side vanishes for k �= 0 while equals In for
k = 0.

Derivation of (35). Using (18) and Formula (4) from [11], we get (λ = 0)

1

2π

∫ π

−π

loge det f(ω) dω =
1

2π

∫ π

−π

loge det exp

( ∞∑
k=−∞

Ck z
k

)
dω

=
1

2π

∫ π

−π

tr

( ∞∑
k=−∞

Ck z
k

)
dω

=
1

2π
tr

( ∞∑
k=−∞

Ck

∫ π

−π

zk dω

)
= trC0

as the last integral vanishes for k �= 0 and equals 2π for k = 0.

Derivation of (37). From (23) and (25) we get

gλ(ω) =
K∑

k=−K

Cλk z
k = Cλ0 +

−1∑
k=−K

Cλk z
k +

K∑
k=1

Cλk z
k

= Cλ0 +

K∑
k=1

Cλ,−k z
k +

K∑
k=1

Cλk z
k

= Cλ0 +
K∑

k=1

C′
λk z

k +
K∑

k=1

Cλk z
k

= (z(ω)′ ⊗ In)Θ + Θ′ (z(ω)⊗ In).

Proof of the Theorem 1. Under assumptions A1–A3, Theorem II.2.1 (consis-
tency) and Theorem II.2.2 from [13] hold, as proved below. Condition A2 states
that In + λgλ(ω) is pd, hence it is a proper spectral density. To guarantee the
positivity of the spectral density, one can use a reparameterization of the model
based on a set of generalised inverse partial autocorrelations as described in [36].
Furthermore, under A1 the gacm Γλk form a pd sequence. In addition, by (37)
gλ(ω) is a smooth and Hermitian matrix function of ω ∈ [−π, π]. Note that the
GMCM is also identified, i.e., (λ1,θ

′
1)

′ �= (λ2,θ
′
2)

′ implies that f1(ω) �= f2(ω) for
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almost all frequencies ω and parameter pairs (λi,θ
′
i)

′ in the interior of param-
eter space, i = 1, 2. Assumption A3 implies that

∑∞
j=−∞ j ||Γk||2 < ∞. This

fact, together with f(ω) pd and continuous, guarantees that the principal part
of the Gaussian log-likelihood can be approximated by the Whittle likelihood.
See Corollary I.3.1 from [13].

We now compute the derivatives of the inverse matrix of the sdm f(ω). The
derivative of f(ω)−1 with respect to λ is an (n × n) matrix. The derivative
of f(ω)−1 with respect to Θ is an n × [n(K + 1)] matrix. For computational
convenience we use Θ instead of θ = vecΘ taking in mind the expression of
gλ(ω) in (37). For λ �= 0, we have

∂ f(ω)−1

∂ λ
=

∂

∂ λ
[In + λgλ(ω)]

− 1
λ

=
∂

∂ λ
exp loge [In + λgλ(ω)]

− 1
λ

= exp loge [In + λgλ(ω)]
− 1

λ
∂

∂ λ
loge [In + λgλ(ω)]

− 1
λ

= f(ω)−1 ∂

∂ λ

{
− 1

λ
loge [In + λgλ(ω)]

}
= f(ω)−1

{
1

λ2
loge [In + λgλ(ω)] −

1

λ
[In + λgλ(ω)]

−1
gλ(ω)

}
= − f(ω)−1 [In + λgλ(ω)]

−1
[gλ(ω)]

2 M(ω) ∈ R
n×n

where M(ω) is as in the statement of the theorem.
Note that

lim
λ→0

M(ω) = −1

2
In

hence

lim
λ→0

∂ f(ω)−1

∂λ
=

1

2
f(ω)−1 [gλ(ω)]

2

where
f(ω) = exp gλ(ω).

The derivative of f(ω)−1 with respect to Θ is the n× [n(K+1)] matrix function
given by

∂ f(ω)−1

∂Θ
= − 1

λ
[In + λgλ(ω)]

− 1
λ − 1

λ
∂ gλ(ω)

∂Θ

= − f(ω)−1 [In + λgλ(ω)]
−1

[z′(ω)⊗ In + z′(ω)⊗ In].

In particular, we get

lim
λ→0

∂ f(ω)−1

∂Θ
= − f(ω)−1 [z′(ω)⊗ In + z′(ω)⊗ In]

where
f(ω) = exp gλ(ω).



626 M. Cavicchioli

Hence, the derivatives of f(ω)−1 exist and are continuous in (λ,θ). By Theorem

II.2.1 in [13], it follows that plimT→∞ λ̃T = λ0 and plimT→∞ θ̃T = θ0.
Furthermore, the spectral density matrix f(ω) is a twice-differentiable matrix

function of λ and Θ, and the second derivatives are

∂2 f(ω)

∂ λ2
= f(ω)

{
[M1(ω)]

2
+ M2(ω)

}
∈ R

n×n

∂2 f(ω)

∂ λ ∂Θ
= f(ω)N(ω) [z′(ω)⊗ In + z′(ω)⊗ In] ∈ R

n×[n(K+1)]

and
∂2 f(ω)

∂Θ′ ∂Θ
= (1− λ) f(ω)L(ω) ∈ R

n×n

where

M1(ω) = − 1

λ2
loge [In + λgλ(ω)] +

1

λ
[In + λgλ(ω)]

−1
gλ(ω)

M2(ω) =
2

λ3
loge [In + λgλ(ω)] −

2

λ2
[In + λgλ(ω)]

−1
gλ(ω)

− 1

λ
[In + λgλ(ω)]

−2
[gλ(ω)]

2

N(ω) =

(
1 − λ

λ

)
[In + λgλ(ω)]

−2
gλ(ω)

and

L(ω) = [In + λgλ(ω)]
−2

[z′(ω)⊗ In + z′(ω)⊗ In] [z(ω)⊗ In + z(ω)⊗ In].

Under the stated assumption, i.e., In + λgλ(ω) is positive definite, the second
partial derivatives are continuous in ω. Furthermore, we have

lim
λ→0

∂2 f(ω)

∂ λ2
= f(ω) [gλ(ω)]

3

[
1

4
gλ(ω) +

2

3
In

]

lim
λ→0

∂2 f(ω)

∂ λ ∂Θ
= − f(ω)gλ(ω) [In + 2gλ(ω)] [z

′(ω)⊗ In + z′(ω)⊗ In]

and

lim
λ→0

∂2 f(ω)

∂Θ′ ∂Θ
= f(ω) [z′(ω)⊗ In + z′(ω)⊗ In] [z(ω)⊗ In + z(ω)⊗ In]

where
f(ω) = exp gλ(ω).

The above relations follow from

lim
λ→0

M1(ω) = −1

2
[gλ(ω)]

2 lim
λ→0

M2(ω) =
2

3
[gλ(ω)]

3
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lim
λ→0

N(ω) = −gλ(ω) − 2 [gλ(ω)]
2

and

lim
λ→0

L(ω) = [z′(ω)⊗ In + z′(ω)⊗ In] [z(ω)⊗ In + z(ω)⊗ In].

Set δ = (λ θ′)′ ∈ R
R+1, where R = n2(K + 1). The score associated with the

Whittle likelihood in (36) is given by

S(δ) =
1

2T

T∑
j=−T

tr
[
IT (ωj) f(ωj)

−1 − In
] ∂ tr loge f(ω)

∂ δ′
∈ R

1×(R+1).

In fact, we have

∂ loge det f(ω)

∂ δ′
= − ∂ loge det f(ω)−1

∂ δ′

= − ∂ loge det f(ω)−1

∂ [vec f(ω)−1]′
∂ vec f(ω)−1

∂ δ′

= [vec f(ω)]
′
[vec f(ω)−1] (vec In)

′ ∂ vec loge f(ω)

∂ δ′

= tr
[
f(ω) f(ω)−1

] ∂ tr loge f(ω)

∂ δ′

and

∂ tr
[
IT (ω) f(ω)

−1
]

∂ δ′
=

∂ tr
[
IT (ω) f(ω)

−1
]

∂ [vec f(ω)−1]
′

∂ vec f(ω)−1

∂ δ′

= [vec IT (ω)]
′ ∂ vec f(ω)−1

∂ δ′

= − [vec IT (ω)]
′
[vec f(ω)−1] (vec In)

′ ∂ vec loge f(ω)

∂ δ′

= − tr
[
IT (ω) f(ω)

−1
] ∂ tr loge f(ω)

∂ δ′
.

The Hessian matrix associated with the Whittle likelihood in (36) is the (R +
1)× (R+ 1) matrix function given by

H(δ) = − 1

2T

T∑
j=−T

tr
[
IT (ωj) f(ωj)

−1 − In
] ∂2 tr loge f(ω)

∂ δ ∂ δ′

− 1

2T

T∑
j=−T

tr
[
IT (ωj) f(ωj)

−1
] ∂ tr loge f(ω)

∂ δ

∂ tr loge f(ω)

∂ δ′
.

Hence, the information matrix I(δ) = E[−H(δ)] is such that

I(δ) =
n

2π

∫ π

−π

∂ tr loge f(ω)

∂ δ

∂ tr loge f(ω)

∂ δ′
dω
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by using [6] (Proposition 11.7.2). Furthermore, we have

∂ tr loge f(ω)

∂ λ
= tr

{
[In + λgλ(ω)]

−1
[gλ(ω)]

2 M(ω)
}
∈ R

and

∂ tr loge f(ω)

∂ θ′ =
{
vec [In + λgλ(ω)]

−1
}′

[z′(ω)⊗ In2 + z′(ω)⊗ In2 ] ∈ R
1×R.

Thus λ̃ and θ̃ are asymptotically normal as stated in the theorem. Moreover,
the asymptotic covariance matrix V(λ0,θ0) is given by

V(λ,θ) =

[
n

2π

∫ π

−π

∂ tr loge f(ω)

∂ δ

∂ tr loge f(ω)

∂ δ′
dω

]−1

.

This completes the proof of the theorem.

Appendix B

Table B

Summary statistics of the simulated experiment of the Whittle likelihood estimation of the
parameters of the GMCM(λ,K) model, based on 1,000 replications from the bivariate

VAR(4) model described in Section 5.

Parameters Mean Sd True
C−1,0(1, 1) - 0.0802 0.1148 -0.0677
C−1,0(1, 2) 0.0341 0.2424 0.0127
C−1,0(2, 2) - 0.0286 0.0609 -0.0250
C−1,−1(1, 1) - 0.2354 0.2008 -0.1859
C−1,−1(1, 2) 0.1276 0.1874 0.1669
C−1,−1(2, 1) - 0.0381 0.0843 -0.0371
C−1,−1(2, 2) - 0.0862 0.1018 -0.1347
C−1,−2(1, 1) 0.03521 0.1930 0.0336
C−1,−2(1, 2) 0.1204 0.2286 0.1033
C−1,−2(2, 1) - 0.0183 0.0271 -0.0231
C−1,−2(2, 2) 0.0372 0.3397 0.0562
C−1,−3(1, 1) 0.0241 0.0690 0.0052
C−1,−3(1, 2) 0.0275 0.0474 0.0387
C−1,−3(2, 1) 0.0293 0.0623 0.0301
C−1,−3(2, 2) 0.0156 0.0920 0.0251
C−1,−4(1, 1) 0.0169 0.0358 0.0205
C−1,−4(1, 2) 0.0186 0.0080 0.0225
C−1,−4(2, 1) 0.0059 0.0085 0.0111
C−1,−4(2, 2) 0.0011 0.0222 0.0003

λ - 1.0011 0.0204 -1
K 4.0023 0.4025 4

Ω(1, 1) 1.0641 0.5403 1
Ω(1, 2) 0.0025 0.0036 0
Ω(2, 2) 1.1430 0.8204 1
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