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Abstract: Common model selection criteria, such as AIC and its vari-
ants, are based on in-sample prediction error estimators. However, in many
applications involving predicting at interpolation and extrapolation points,
in-sample error does not represent the relevant prediction error. In this
paper new prediction error estimators, tAI and Loss(wt) are introduced.
These estimators generalize previous error estimators, however are also ap-
plicable for assessing prediction error in cases involving interpolation and
extrapolation. Based on these prediction error estimators, two model selec-
tion criteria with the same spirit as AIC and Mallow’s Cp are suggested.
The advantages of our suggested methods are demonstrated in a simulation
and a real data analysis of studies involving interpolation and extrapolation
in linear mixed model and Gaussian process regression.
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1. Introduction

Predicting a phenomenon at different points than the points appearing in the
training sample plays an important role across many research fields such as in
geostatistics (Li and Heap, 2014; Kyriakidis and Journel, 1999), health (Manton,
Singer and Suzman, 2012) and econometrics (Baltagi, 2008). In many of these
use cases the new predicted points are interpolation or extrapolation points with
respect to space or to time. For example, Brown and Comrie (2002) interpolated
climate values in Southwestern U.S., where the coverage of climate information
is sparse. By predicting at interpolation points, they created a high-resolution
map of seasonal temperature and precipitation in this area. An extrapolation
example is given by Stewart, Cutler and Rosen (2009) who forecast the effects
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of obesity and smoking on U.S. life expectancy in 2020 by using a data set for
the years 2003 through 2006.

Modeling approaches involving prediction at pre-specified interpolation and
extrapolation points were studied in machine learning, mainly in the context of
transductive support-vector machines (Joachims, 1999), however also in regres-
sion (Le et al., 2006).

Assessing prediction error at interpolation and extrapolation points, or more
generally at transduction points, cannot be done using traditional in-sample
prediction error estimators as in AIC (Akaike, 1974) and its variants. Simi-
larly, K-fold cross-validation, which estimates the generalization error, is also
unsuitable in these cases, where prediction points are specified.

This paper introduces a prediction error estimator, tAI, which generalizes
previous in-sample prediction error estimators like mAIC (Vaida and Blan-
chard, 2005) and cAIC (Vaida and Blanchard, 2005), however, it does not as-
sume that the predicted points are the same as the points appearing in the
training sample and therefore is applicable to a wider range of use cases, such
as cases involving prediction at interpolation and extrapolation points. Since
prediction error assessment is highly related to model selection, a new model
selection criterion, tAIC, which is based on tAI, is proposed as well. tAI is
suitable when the observations are normally distributed, whether they are cor-
related or not and therefore is applicable for various parametric models with
different variance structure assumptions such as linear mixed model (LMM),
Gaussian process regression (GPR), generalized least squares (GLS) and linear
regression. Relaxing the normality requirement of tAI, we also propose in Sec-
tion 4 an approach for inference on interpolation and extrapolation that is based
on squared error loss rather than likelihood, and hence generalizes the optimism
approach in model selection (Efron, 1986).

In many use cases involving predicting at interpolation and extrapolation
points, the dependent variable has a correlation structure (Li and Heap, 2014;
Kyriakidis and Journel, 1999). For example, in the use case given by Brown
and Comrie (2002), it is natural to assume a spatial correlation structure on
the Southwestern U.S. area. Similarly, in repeated measures studies that fore-
cast long-term treatment effects, a correlation structure with respect to time is
commonly assumed (Ho et al., 2011). Therefore, use cases involving correlated
data and models that are implemented on correlated data, such as LMM, GPR
and GLS, are good platforms for analyzing how predicting at interpolation and
extrapolation points influences prediction error estimation and model selection.
Before introducing tAI, we define a setup which puts LMM, GPR and GLS
under a unified framework:

Let y ∈ R
n and the fixed matrices {X ∈ R

n×p, Z ∈ R
n×q} be a training

sample, y∗ ∈ R
n∗

and the fixed matrices {X∗ ∈ R
n∗×p, Z∗ ∈ R

n∗×q} be a
prediction set, where

y ∼ N(μ, V ), y∗ ∼ N(μ∗, V ∗), (1)

μ = Xβ, μ∗ = X∗β, V is a function of Z, and V ∗ is a function of Z∗. For ex-
ample, in LMM it is typically assumed that the columns of Z, Z∗ are associated
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with normally distributed random effects with covariance matrix G ∈ R
q×q such

that the marginal covariance matrices of y and y∗ are:

V = ZGZt + σ2In, σ ∈ R
+

V ∗ = Z∗GZ∗t + σ2In∗ ,

where In, In∗ are the identity matrices with dimensions n and n∗ respectively. In
GPR it is often assumed that the marginal covariance matrices of y and y∗ are:

V = K(Z,Z) + σ2In

V ∗ = K(Z∗, Z∗) + σ2In∗ ,

where K is some kernel function.
In addition, denote the following conditional covariance matrices:

R∗ = Var(y∗|y) (2)

R = Var(ynew|y), (3)

where ynew is y∗ for the special case when X∗, Z∗, and V ∗ are restricted to
be equal to X, Z, and V . This also yields that ynew is distributed as y, i.e.,
ynew ∼ N(μ, V ).

By normality of y and y∗,

E(y∗|y) = X∗β +Cov(y∗,y)V −1(y −Xβ).

Given V, Cov(y∗,y) and the ML estimator of β,

β̂ = (XtV −1X)−1XtV −1y,

E(y∗|y) can be used for predicting y∗ as follows

f̂∗ =Ê(y∗|y) (4)

=X∗(XtV −1X)−1XtV −1y

+Cov(y∗,y)V −1
{
In −X(XtV −1X)−1XtV −1

}
y.

This procedure generalizes standard prediction practices in LMM, GPR and
GLS. In addition, f̂∗ is the Best Linear Unbiased Predictor (BLUP) (Harville
et al., 1976).

tAI is an estimator of the following prediction error,

− 1

n∗Ey∗|y�(y
∗) = − 1

n∗Ey∗|y log

⎡⎣exp
{

−1
2 (y∗ − f̂∗)tR∗−1

(y∗ − f̂∗)
}

√
(2π)n∗ |R∗|

⎤⎦ . (5)

Correspondingly, given a set of candidate models, tAIC would be defined as
a model selection criterion selecting a model with the minimal tAI. In such
a way, tAIC selects the model minimizing the unbiased estimate of eq. (5).
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This methodology, of estimating the prediction errors for different models and
then selecting the model with the minimal prediction error, is the same as is
implemented in AIC and its variants.

{X∗, Z∗, R∗} = {X,Z,R} is not assumed in the setup above and in its asso-
ciated prediction error measure, eq. (5). Therefore, tAI is applicable in various
use cases that require flexibility in defining {X∗, Z∗, R∗}. For example, in the
use case mentioned above of Brown and Comrie (2002), where GPR is used
for predicting interpolated climate values (Kriging), it is reasonable to define
{X∗, Z∗} as the data points at the high-resolution spatial array rather than as
the data points at the training sample, {X,Z}, which cover the area sparsely.
Therefore, while prediction error estimators that are based on in-sample error
estimation and generalization error estimation are unsuitable to this case, tAI
is suitable. For similar considerations, tAIC is required in repeated measures
studies in health and biomedicine, when the main interest is to select LMM
model minimizing the prediction error at long-term points, {X∗, Z∗, R∗}, which
are different than the points that are used for model building, {X,Z,R} (Pope
et al., 2002; Li et al., 2008).

Besides downscaling of climate maps and estimating long-term effect in clin-
ical studies, interpolation and extrapolation using LMM and Kriging are im-
portant tools for many research topics in mining engineering, agriculture, envi-
ronmental sciences, especially when sampling is difficult and expensive like in
mountainous and deep marine regions (Li and Heap, 2011; Stahl et al., 2006;
Vicente-Serrano, Saz-Sánchez and Cuadrat, 2003). tAI and tAIC are relevant
for all these research topics as well as for others which do not involve inter-
polation and extrapolation but still do not satisfy {X∗, Z∗, R∗} = {X,Z,R}.
Various use cases will be presented and analyzed in Sections 3 and 5.

2. tAI and tAIC

tAI is derived by estimating −Ey∗|y�(y
∗)/n∗ by the averaged log-likelihood of

the training sample,

− 1

n
�(y) = − 1

n
log

⎡⎣exp
{

−1
2 (y − f̂)tR−1(y − f̂)

}
√

(2π)n|R|

⎤⎦ , (6)

plus a penalty correction

CtAI = Ey

[
− 1

n∗Ey∗|y�(y
∗)−

{
− 1

n
�(y)

}]
, (7)

where
f̂ = Xβ̂ + (V −R)V −1(y −Xβ̂)

is the estimated conditional expectation, Ê(ynew|y).
This approach of estimating prediction error by deriving the bias of the train-

ing error is also used in AIC and its variants (Akaike, 1974). Consequently, the
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estimator

tAI = − 1

n
�(y) + CtAI

does not contain y∗ but still satisfies

EytAI = Ey

{
− 1

n∗Ey∗|y�(y
∗)

}
,

and tAI can be seen either as an estimator of −Ey∗|y�(y
∗)/n∗ or of its expec-

tation, −EyEy∗|y�(y
∗)/n∗ = −Ey,y∗�(y∗)/n∗. The difference between defining

the estimated prediction error with or without expectation over y, is also rele-
vant for other AIC-like prediction error measures and a detailed discussion of it
is out of the scope of this paper. A relevant discussion can be found in Hastie,
Tibshirani and Friedman (2009).

The calculation of CtAI in eq. (7) is addressed by Theorem 1 below. Note
that Theorem 1 introduces a transductive correction for a setup that is more
general than the setup in eq. (7), i.e., Theorem 1 is relevant for other models
besides LMM and GLS.

Theorem 1. Consider the setup given in eq. (1), (2) and (3). Also, let

�H∗(y∗) = log

⎡⎣exp
{

−1
2 (y∗ −H∗y)tR∗−1

(y∗ −H∗y)
}

√
(2π)n∗ |R∗|

⎤⎦
�H(y) = log

[
exp

{−1
2 (y −Hy)tR−1(y −Hy)

}√
(2π)n|R|

]
,

where Hy ∈ R
n and H∗y ∈ R

n∗
are linear predictors of y and y∗ respectively,

i.e., H and H∗ do not contain y, y∗. If Hμ = μ, H∗μ = μ∗ are satisfied, then:

Ey

{
− 1

n∗Ey∗|y�H∗(y∗) +
1

n
�H(y)

}
=

1

n
tr
(
R−1HV

)
− 1

n∗ tr
(
R∗−1

H∗Cov(y,y∗)
)

+
1

2

{
log

(
|R∗| 1

n∗

|R| 1
n

)
+

1

n∗ tr
(
R∗−1

V ∗
)
− 1

n
tr
(
R−1V

)}

+
1

2

{
1

n∗ tr
(
R∗−1

H∗V H∗t
)
− 1

n
tr
(
R−1HVHt

)}
,

when tr is the trace operator.

The proof is based on standard algebra arguments and is included in Ap-
pendix A.1.

The conditions in Theorem 1 are satisfied by the BLUPs, f̂ and f̂∗, where

f̂ = Hy

H = X(XtV −1X)−1XtV −1 + (V −R)V −1
{
In −X(XtV −1X)−1XtV −1

}
,
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and

f̂∗ = H∗y

H∗ = X∗(XtV −1X)−1XtV −1 +Cov(y∗,y)V −1
{
In −X(XtV −1X)−1XtV −1

}
.

Therefore, Theorem 1 can be utilized for implementing tAI.
Besides prediction error estimation, these results can be used for defining the

following model selection criterion.

Definition 2. Given set of models H, satisfying the conditions in Theorem 1,
tAIC is the following criterion:

hbest = argmin
h∈H

tAIh,

where tAIh is tAI for model h.

tAIC is based on the same idea that AIC and other model selection criteria
are based on – selecting the model minimizing the unbiased estimate of the
in-sample error.

2.1. Comparison with other prediction error estimators

The prediction error estimators that appear in cAIC and mAIC (Vaida and
Blanchard, 2005) are AIC versions for normal linear models for the case when
the data has a correlation structure, however assuming {X,Z,R} = {X∗, Z∗,
R∗}. They use the random effects framework in order to express the data cor-
relation structure. cAIC, conditional AIC, is based on conditional likelihood
given the random effects. cAIC is mainly used as a model selection criterion for
LMM, i.e., when the prediction goal is to predict new observations that share
the same random effects realizations with the training set (e.g., predicting ob-
servations that relate to the same clusters as the observations in the training
set). mAIC, marginal AIC, is based on marginal likelihood with respect to the
random effects. mAIC is mainly used as a model selection criterion for GLS,
i.e., when the prediction goal is to predict new observations without assuming
that the new observations and the training set share the same random effects
realizations (e.g., predicting observations that do not necessarily relate to the
same clusters as the observations in the training set). For more information
about the distinction between marginal and conditional inference see Vaida and
Blanchard (2005); Verbeke and Molenberghs (2009).

Given known covariance matrices, V and R = σ2I, σ2 ∈ R
+, the prediction

error estimate in cAIC is:

cAI = − 1

n
�(y) +

tr(H)

n
. 1

1Vaida and Blanchard (2005) define this prediction error estimator with a factor of 2n, i.e.,
as 2n×cAI. In addition, they denote the prediction error estimator as cAIC. However, here, in
order to distinguish between the prediction error estimator and the model selection procedure,
the prediction error estimator is denoted as cAI and the criterion as cAIC. Similarly with
mAI and mAIC.
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Given known covariance matrix, V , the prediction error estimate in mAIC is:

mAI = − 1

n
�(y) +

p

n
.

�(y) in cAI is the conditional log-likelihood given the random effects, and �(y)
in mAI is the marginal log-likelihood of y with respect to the random effects.
The model selection criteria cAIC and mAIC are defined from cAI and mAI
similarly to tAIC.

Vaida and Blanchard (2005) extend the cAI result for the case when σ2 is
estimated by MLE, but all the other variance parameters in V are known:

cAIσ2 = − 1

n
�(y) +

(n− p− 1) (tr(H) + 1)

(n− p) (n− p− 2)
+

p+ 1

(n− p) (n− p− 2)
.

A detailed discussion about the case when the variance parameters are un-
known can be found in Section 2.3.

It is easy to confirm that when {X,Z,R} = {X∗, Z∗, R∗}, the tAI formula
is indeed reduced to the mAI formula when Cov(y∗,y) = 0 and to the cAI
formula when Cov(y∗,y) �= 0.

In addition, when GLS is implemented, an interesting interpretation for the
difference between mAI and tAI can be shown. With a little algebra we get:

CtAI(GLS) =
p

n
+

1

2
log

(
|V ∗| 1

n∗

|V | 1
n

)

+
1

2
tr

{
(XtV −1X)−1

(
1

n∗X
∗tV ∗−1

X∗ − 1

n
XtV −1X

)}
=
p

n
+

1

2
log

(
|V ∗| 1

n∗

|V | 1
n

)

+
1

2
tr

[
Var(β̂)

{
1

n∗Var(β̂
∗)−1 − 1

n
Var(β̂)−1

}]
,

where

β̂∗ = (X ′∗V ∗−1

X∗)−1X ′∗V ∗−1

y∗.

Since Var(β̂) achieves the Cramer-Rao bound:

CtAI(GLS) =
p

n
+

1

2
log

(
|V ∗| 1

n∗

|V | 1
n

)
+

1

2
tr

[
I(β̂)−1

{
1

n∗ I(β̂
∗)− 1

n
I(β̂)

}]
,

(8)

where I is Fisher-information. The determinants |V | and |V ∗| are often called
the generalized variance (Wilks, 1932; Johnson et al., 2014).
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2.2. Relaxing Theorem 1 conditions

Although this paper focuses on prediction error estimation and model selec-
tion for LMM and GPR, Theorem 1 is more general and does not assume the
paradigm applied in LMM and GPR, i.e., predicting using E(y∗|y) and esti-
mating the marginal mean parameters with MLE. Theorem 1 assumes:

1. Normality of y∗ and y.
2. Ey = Xβ, Ey∗ = X∗β
3. Hμ = μ, H∗μ = μ∗

and therefore can be used in other cases satisfying the above conditions.
When the normality assumption cannot be made, another model selection

criterion, which is based on similar approach as tAI can be implemented. For
more details see Section 4.

Proposition 3 extends Theorem 1 results for the case the normality assump-
tion is valid, however the fitted model does not satisfy condition 3 of unbiased-
ness:

Proposition 3. Consider the setting of Theorem 1, without the assumption
that Hμ = μ and H∗μ = μ∗, then:

Ey

{
− 1

n∗Ey∗|y�H∗(y∗) +
1

n
�H(y)

}
=

1

n
tr
(
R−1HV

)
− 1

n∗ tr
(
R∗−1

H∗Cov(y,y∗)
)

+
1

2

{
log

(
|R∗| 1

n∗

|R| 1
n

)
+

1

n∗ tr
(
R∗−1

V ∗
)
− 1

n
tr
(
R−1V

)}

+
1

2

{
1

n∗ tr
(
R∗−1

H∗V H∗t
)
− 1

n
tr
(
R−1HVHt

)}
+

1

2n
tr
(
R−1(2Hμμt − μμt −HμμtHt)

)
− 1

2n∗ tr
(
R∗−1

(2H∗μμ∗t − μ∗μ∗t −H∗μμtH∗t)
)
.

The proof can be found in Appendix A.1 as part of the proof of Theorem 1.
Note that this expression is less useful, as it depends on μ and μ∗, the objects

that we try to estimate.

2.3. tAI for unknown variance parameters

In most applications the parameters of the covariance matrices, V, V ∗, R and
R∗, are unknown and therefore are estimated using various methods, such as
maximum likelihood and restricted maximum likelihood (Verbeke and Molen-
berghs, 2009). Using the estimated parameters instead of the true variance pa-
rameters can add variance to tAI and even can make tAI biased. This issue,
which appears also in cAI and mAI, is complex (Vaida and Blanchard, 2005)
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and several solutions are proposed in context of cAI and mAI, e.g., by Vaida
and Blanchard (2005); Liang, Wu and Zou (2008); Greven and Kneib (2010).
In many solutions, some of the variance parameters are assumed to be known
and only the remaining subset is considered as an estimate. Some solutions re-
quire numerical approximations, asymptotic approximations and consume an
intensive computational effort.

As was mentioned in Section 2.1, Vaida and Blanchard (2005) propose cAIσ2

for the case when all the parameters are known besides σ2. They suggest to
use cAIσ2 also in cases when all the variance parameters are unknown. Their
suggestion is based on simulations and on an asymptotic analysis of a use case.

Liang, Wu and Zou (2008) propose an unbiased prediction error estimator
for the case when σ2 is known, but other variance parameters are unknown:

− 1

n
�(y) +

1

n
tr(

∂ŷt

∂y
), (9)

where ŷ is the predictor of y. This result is based on Stein’s equality (Stein,
1981). Since their method uses derivatives of ŷ, which are non-linear expressions
due to the variance estimates, implementing this approach requires numerical
approximation. Therefore, besides the fact that this approach yields an ap-
proximation, the computational effort is substantial (Greven and Kneib, 2010).

Greven and Kneib (2010) also derive an estimator of 1/n× tr(∂ŷt/∂y), however
their estimator includes derivatives and requires partial prior knowledge on the
variance matrix.

In Section 5 we demonstrate numerically the effect of using estimated vari-
ance parameters in tAI on its bias and variance, as well as on model selection
using tAIC, in scenarios when all the variance parameters are unknown. Both
simulation and real data analyses support the result by Vaida and Blanchard
(2005) – although using the estimated variance parameters adds variance, tAI
and tAIC still preform well, especially when the sample size of the training set
is not very small.

3. Use cases

In this section, typical use cases of using tAI and tAIC are presented.

3.1. Predicting interpolation and extrapolation in spatial array and
longitudinal temporal data

As was described in the introduction, predicting interpolated and extrapolated
data points using LMM and GPR is common in biomedicine, health, climatology
and other research fields, where temporal and spatial datasets are common. The
flexible definition of X∗, Z∗, R∗ and V ∗ in tAI makes it applicable when the goal
is to estimate prediction error at interpolated and extrapolated data points along
time and space dimensions.
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In Section 5 we analyze numerically a repeated measures clinical study, con-
taining child growth measurements (Potthoff and Roy, 1964), where interpo-
lation and extrapolation objectives can be defined and application of tAI is
demonstrated. The following example, built on the application of Tsanas et al.
(2010), demonstrates that appropriate use of tAIC can also simplify and im-
prove on existing methodology.

Example 3.1. Tsanas et al. (2010) introduced a new method for measuring pro-
gression of Parkinson’s disease. Their motivation is that the standard method-
ology for measuring Parkinson’s disease progression, which uses UPDRS score
(Unified Parkinson’s Disease Rating Scale), is costly and requires a physician
visit. Their alternative methodology is creating a formula that approximates the
UPDRS score with speech signals which are not costly. Six months data was
collected for their study, containing large amount of longitudinal speech signal
measurements per patient, however, UPDRS scores were collected only at a small
number of the time points. In order to select the best covariates with respect to
the whole speech signals sample, they suggested to interpolate the UPDRS scores
using “straightforward linear interpolation”, then to fit several alternative mod-
els and to select one of them using AIC and other model selection criteria. An
alternative paradigm that does not require imputing UPDRS scores is by us-
ing tAIC. Since tAIC does not assume {X∗, Z∗} = {X,Z}, there is no need
in interpolating the UPDRS scores in order to select a model minimizing the
estimated prediction error with respect to the whole speech signals sample.

We note that in Example 3.1, one may think that y∗ is used twice, for model
building and for prediction error estimation, and therefore over-fitting can occur.
However, since in tAI approach, unlike in cross-validation approach, y∗ is used
as a conceptual idea in order to derive CtAI and not as real observations, y∗ is
not used twice.

In the spatial data analysis domain, commonly, studies include geographical
data (Li and Heap, 2014) and neuroimaging data (Salimi-Khorshidi et al., 2011).
Such studies usually use GPR rather than LMM. Although GPR and LMM
reflect different perspectives – while GPR is based on functional data analysis
approach, LMM is based on multivariate analysis approach – and use different
techniques for expressing the covariance matrices, both models use conditional
expectation for prediction, hence tAI is also applicable for GPR. A use case
of creating high-resolution climate maps given by Brown and Comrie (2002),
which was mentioned in the introduction, is an example for the importance of
tAI in assessing the prediction error at interpolation and extrapolation points.
A similar use case, containing chemical concentration in soil data, is analyzed
numerically in Section 5.

3.2. Other transductive settings

LMM and GPR are also used for modeling data without spatial or temporal
correlation structure. One interesting example is modeling the effect of SNPs
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(Single Nucleotide Polymorphism) on a phenotype as part of a Genome-Wide
Association Study (GWAS). In this case the common practice is to consider the
SNPs as random effects and other explanatory variables (e.g., age, height and
gender) as fixed effects (Zhang et al., 2010). When using LMM for modeling
the effect of SNPs on phenotype, tAI allows estimating the prediction error for
an extended population compared to the training sample. It is directly useful
in the important case when {X∗, Z∗} can be collected from other studies which
investigate different phenotype, however contain the SNPs and the explanatory
variables that are used in the training sample (Wray et al., 2013).

tAI may also be required when there are missing values. Missing values of
the dependent variable is a common phenomenon in statistical analysis and in
particular in clinical trials with repeated measures study designs (Wood, White
and Thompson, 2004; O’neill and Temple, 2012). There are many methods for
handling missing values in repeated measures studies, some of the methods
involving missing values imputation (Mallinckrodt et al., 2003). In case of having
missing data of the dependent variable at some known points but the goal is to
estimate the prediction error with respect to the original study design (Hogan,
Roy and Korkontzelou, 2004), tAI can be used without imputing the missing
values.

4. Optimism for prediction at interpolation and extrapolation points

The formulation of tAI and the derivation of CtAI are based on the normality
assumptions of y and y∗, which is commonly assumed when LMM and GPR
are implemented. However, the approach that is used for developing tAI can
be used for creating other prediction error estimators that are not based on the
normality assumption of y∗ and y. For example, in the standard formulation
of the prediction error estimator that is based on expected optimism correction
(Efron, 1986),

Loss(Opt) =
1

n
‖y −Hy‖22 + w,

where

w = Ey

(
1

n
Ey∗|y‖y∗ −Hy‖22 −

1

n
‖y −Hy‖22

)
,

it is assumed that y∗ and y are drawn from the same distribution and have the
same predictor, Hy. However, as was already discussed in the previous sections,
these conditions are not satisfied in many use cases. The following prediction
error generalizes Loss(Opt) :

Loss(Optt) =
1

n
‖y −Hy‖22 + wt,

where

wt = Ey

(
1

n∗Ey∗|y‖y∗ −H∗y‖22 −
1

n
‖y −Hy‖22

)
.
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Similarly to tAIC definition, given a set of models H, Loss(Optt) can be used
for model selection as follows:

hbest = argmin
h∈H

Lossh(Optt), (10)

where Lossh(Optt) is Loss(Optt) for model h.
For this section, assume that y ∈ R

n is a random variable with mean μ and
variance V . Similarly, let y∗ ∈ R

n∗
be a random variable with mean μ∗ and

variance V ∗. In addition, let Hy ∈ Rn and H∗y ∈ Rn∗
be the predictors of

y and y∗ respectively, when H and H∗ do not contain y and y∗. Theorem 4
introduces a general expression of wt for predictors that are linear in y.

Theorem 4.

wt =
2

n
tr (HV )− 2

n∗ tr (H
∗Cov(y,y∗))

+
1

n∗ tr (V
∗)− 1

n
tr (V ) +

1

n∗ tr
(
H∗V H∗t)− 1

n
tr
(
HVHt

)
+

1

n
tr
(
2Hμμt − μμt −HμμtHt

)
− 1

n∗ tr
(
2H∗μμ∗t − μ∗μ∗t −H∗μμtH∗t) .

Corollary 5. Using Theorem 4, when Hμ = μ and H∗μ = μ∗

wt =
2

n
tr (HV )− 2

n∗ tr (H
∗Cov(y,y∗))

+
1

n∗ tr (V
∗)− 1

n
tr (V ) +

1

n∗ tr
(
H∗V H∗t)− 1

n
tr
(
HVHt

)
.

In case H∗ = H, V ∗ = V and V − Cov(y,y∗) = σ2In, then

wt = w =
2σ2

n
tr (H) ,

which is the same result as was introduced by Hodges and Sargent (2001) for
linear hierarchical models. Numerical results that compare between Loss(Opt)
and Loss(Optt) are presented in Section 5.

Loss(Optt) is based on the squared error loss function which reflects Eu-
clidean distance. Other prediction error estimators which are based on different
distances, such as on Mahalanobis distance (Mahalanobis, 1936), might be sug-
gested as well. Corollary 6 presents a penalty correction for a prediction error
estimator which is based on Mahalanobis distance.

Corollary 6. Given the definitions in Theorem 4, when Hμ=μ and H∗μ=μ∗

Ey

(
1

n∗Ey∗|y‖y∗ −H∗y‖2M − 1

n
‖y −Hy‖2M

)
(11)

=
2

n
tr
(
R−1HV

)
− 2

n∗ tr
(
R∗−1

H∗Cov(y,y∗)
)
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+
1

n∗ tr
(
R∗−1

V ∗
)
− 1

n
tr
(
R−1V

)
+

1

n∗ tr
(
R∗−1

H∗V H∗t
)
− 1

n
tr
(
R−1HVHt

)
= 2CtAI − log

(
|R∗| 1

n∗

|R| 1
n

)
,

where

‖y∗ −H∗y‖2M = (y∗ −H∗y)tR∗−1(y∗ −H∗y)

‖y −Hy‖2M = (y −Hy)tR−1(y −Hy).

The relation between eq. (11) and CtAI arises due to the relation between
Mahalanobis distance and the normal likelihood which tAI is based on.

It is natural to use Loss(Optt) instead of tAI for linear predictors that do
not assume normality, such as the predictors that are used in nearest neighbors,
Nadaraya-Watson kernel regression and smoothing spline models. Moreover, due
to the form of the normal density function, many predictors that seem to be
based on the normality assumption can be alternatively interpreted as a solution
of a least squares problem or complex versions of least squares problems like
weighed least squares and penalized least squares problems. For example, GLS
can be interpreted as the solution of weighted least squares problem with the
weight matrix V −1. Similarly, f̂∗ can be interpreted as an estimator of

ã+ B̃y

where
{ã, B̃} = argmin

a∈Rn∗ ,B∈Rn∗×n

Ey∗,y‖y∗ − (a+By)‖22.

The proof is attached in Appendix A.2.
These alternative interpretations are free from normality assumption and

therefore Loss(Optt) can be suitable for them. Since many predictors can be
interpreted in different ways, then the assignation of predictors to tAI or to
Loss(Optt) should refer to the possibility to assume normality rather than to
the predictor type.

5. Numerical results

This section focuses on comparison between the prediction error estimators that
were mentioned in the previous sections, as well as between their corresponding
model selection criteria using simulation and real data analyses. Relevant R code
can be found at https://github.com/AssafRab/Prediction-Error-Interpolation-
Extrapolation.

5.1. Simulation analyses

The goal of the following analyses is to investigate the accuracy of tAI, cAI
and mAI in estimating −Ey∗|y�(y

∗)/n∗, for different sample sizes and variance

https://github.com/AssafRab/PredictionErrorInterpolationExtrapolation
https://github.com/AssafRab/PredictionErrorInterpolationExtrapolation
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setups. In addition, tAIC, cAIC and mAIC will also be analyzed and compared
with respect to the oracle solution

hbest = argmin
h∈H

− 1

n∗Ey∗|y�h(y
∗).

Additional numerical results with respect to a potentially different oracle solu-
tion

hbest = argmin
h∈H

− 1

n∗EyEy∗|y�h(y
∗),

and with respect to

hbest = argmin
h∈H

− 1

n∗Ey∗|y‖y∗ −H∗y‖22,

will be also presented right afterwards.

Simulation setup The simulation demonstrates prediction error estimation
and model selection for the following LMM setting:

φi,j = 0.5× timei,j +

k=2∑
k=0

xi,j,k + 2×
k=6∑
k=3

xi,j,k + bi,1 + timei,j × bi,2 + εi,j ,

where i ∈ {1, ..., S} is the subject number and j ∈ {1, ..., 12} is the measurement
number.

• timei,j = j, ∀j ≤ 10, timei,11 = 15, timei,12 = 20,
• xi,j,0 = 1, ∀i ∈ {1, ..S}, j ∈ {1, ..., 12},
• xi,j,1 were drawn independently from Bernoulli distribution with 0.5 prob-

ability of success ∀i ∈ {1, ..S}, j ∈ {1, ..., 12},
• xi,j,k, ∀k ∈ {2, ..., 6}, were drawn independently form standard normal

distribution ∀i ∈ {1, ..S}, j ∈ {1, ..., 12},
• bi,1 and bi,2 were drawn independently from normal distribution with zero

mean, Var(bi,1) = 15, Var(bi,2) = 1 and Cov(bi,1, bi,2) = 0 ∀i ∈ {1, ..., S}.
Denote σb = [Var(bi,1),Var(bi,2)].

• εi,j were drawn independently from normal distribution with zero mean
and variance σ2 (for different σ2 values in different simulation setups)
∀i ∈ {1, ..S}, j ∈ {1, ..., 12},

• xi,j,k, bi,1, bi,2 and εi,j are independent ∀i ∈ {1, ..S}, j ∈ {1, ..., 12}, k ∈
{1, ..., 6}.

The dependent variable in the training set ,y, was defined as φi,j ∀j ∈
{1, .., 10}, the dependent variable in the prediction set, y∗, was defined as
φi,j ∀j ∈ {11, 12}. Therefore, this setting demonstrates predicting at extrap-
olation time points. This setting was generated nine times, for different number
of subjects, S ∈ {20, 100, 200}, and different residual variance values, σ2 ∈
{15, 20, 25}. mAI, cAI and tAI were calculated and −Ey∗|y�h(y

∗)/n∗ was ap-
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proximated using repeated sampling of y∗. The simulation was repeated 200
times for creating an approximation of the density of −Ey∗|y�h(y

∗)/n∗ and for
calculating its average – the approximation of −EyEy∗|y�h(y

∗)/n∗.
Three linear mixed models were fitted given the true covariance matrices, all

the models contain the time covariate, in addition, Model 1 contains xi,j,k, ∀k ≤
2, Model 2 contains xi,j,k, ∀k ≤ 4 and Model 3 contains xi,j,k, ∀k which is also
the model that generated the data.

Another simulation analysis which demonstrates the performance of tAI in
high-dimensional data (150 variables) is presented in Appendix B.2.

Results Figure 1 presents the densities of tAI, cAI, mAI and−Ey∗|y�(y
∗)/n∗

for Model 3, when S = 100 and σ2 = 20, as generated from the 200 simulation
runs. Two versions of tAI, cAI and mAI are presented – when the parameters
of the covariance matrices, σ2 and σb, are known, and when they are unknown.

Fig 1. Densities of tAI, cAI, mAI and −Ey∗|y�(y
∗)/n∗ where number of subjects= 100 and

σ2 = 20. Two scenarios are presented: when the variance parameters are known and when
they are estimated.

As can be seen from Figure 1, tAI density is concentrated around the mean of
−Ey∗|y�(y

∗)/n∗. mAI and cAI are stochastically smaller than −Ey∗|y�(y
∗)/n∗

since their corrections, tr(H)/n and p/n, are unsuitable for this case of predict-
ing at extrapolation points. Also, the densities of tAI, cAI and mAI, which
are based on estimated variance parameters (dotted lines in the plot) have a
larger variance than the densities that are based on known variance parameters,
however, they are still very similar.

In addition, for the versions with the known variance parameters, since
tAI, cAI and mAI share the same random part, �(y)/n, but different mean,
−Ey�(y)/n plus CtAI , tr(H)/n, p/n respectively, their densities have the same
shape, however shifted with respect to the corrections. In contrast, −Ey∗|y�(y

∗)/

n∗ has the same mean as tAI but different variance, since Var
(
−Ey∗|y�(y

∗)/n∗)
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depends on H∗, R∗ and n∗ that do not appear in Var (tAI) = Var (−�(y)/n).
In our case, H∗ contains large values compared to H and therefore

Var

(
Ey∗|y − 1

n∗ �(y
∗)

)
> Var (tAI) .

In order to asses the performance of tAI version with the estimated variance
parameters, compared to the tAI version with the known variance parameters,
a two sample Anderson-Darling test (Anderson and Darling, 1952) was used.
The tested statistic is:

tAI −
(
− 1

n∗Ey∗|y�(y
∗)

)
,

where one sample uses tAI version with the estimated variance parameters, and
the other sample uses tAI version with the true variance parameters. Implement-
ing the function ad.test of the package kSamples in R software, the p-value of
the test is 0.9754. The result indicates that in this setting there is no evidence
for significant difference between the distribution of tAI −

(
−Ey∗|y�(y

∗)/n∗)
when the variance parameters are known in advance or estimated.

Figure 2 presents the same graph as Figure 1, but for different settings of S
and σ2.

Fig 2. Densities of tAI, cAI, mAI and −Ey∗|y�(y
∗)/n∗ for different settings. Two scenarios

are presented: when the variance parameters are known and when they are estimated.

As can be seen in Figure 2, even for relatively small sample size and large
variance, the versions with the estimated variance parameters are similar to
those with the known variance parameters. Also, as expected, as much as the
sample size increases the variance of the error decreases.
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For demonstrating the model selection performance, Figure 3 presents the
agreement rate between each of tAIC, cAIC and mAIC and the oracle over
the repeated simulation runs. Both versions of tAIC, cAIC and mAIC, are
analyzed – when the variance parameters are known and when they are esti-
mated.

Fig 3. For the different nine setups, each bar refers to the agreement rates of mAIC, cAIC
and tAIC, with the oracle criterion. Also, two scenarios are presented: when the variance
parameters are known (in dark color) and when they are estimated (in light color).

As can be seen from Figure 3, tAIC performs better than mAIC and cAIC.
For large sample sizes, tAIC and cAIC both perform well. For small sample size
(number of subjects = 20), the tAIC version that is based on the known variance
parameters outperforms the tAIC version with estimated variance parameters.
This demonstrates the expected difficulty in estimating these parameters for
small sample size.

Figure 4 presents similar analyses with respect to the prediction errors

EyEy∗|y − 1

n∗ �hbest
(y∗)

and
1

n∗Ey∗|y‖y∗ −H∗y‖22.

We see that the general picture – the advantage of tAIC over the other
criteria in model selection, and the small effect of variance parameter estimation
for large data, compared to the bigger effect for smaller data – is preserved

Another type of model selection performance analysis is presented in Ap-
pendix B.1.
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Fig 4. Figure (4a) presents the agreement rates of mAIC, cAIC and tAIC
with argmin

h∈H
EyEy∗|y − 1

n∗ �hbest
(y∗). Figure (4b) presents the agreement rates of

argmin
h∈H

Lossh(Optt) and argmin
h∈H

Lossh(Opt) with argmin
h∈H

1
n∗ Ey∗|y‖y∗ − H∗y‖22. In each sub-

figure different nine setups are presented. In each setup, each bar refers to the agreement rate
of the relevant criterion with the oracle criterion. Also, two scenarios are presented: when the
variance parameters are known (in dark color) and when they are estimated (in light color).

5.2. Real data analyses

The analyses below focus on comparison between tAI, cAI, mAI and

− 1

n∗ �(y
∗).

Here, −�(y∗)/n∗ is used as a ground truth instead of −Ey∗|y�(y
∗)/n∗ since the

latter is unknown for the real data sets. Also, only tAI, cAI and mAI with the
estimated variance parameters version are presented (since the true variance
matrices are unknown).

5.2.1. Meuse data

Data description Meuse data set was introduced by Rikken and Van Rijn
(1993) and is available in sp package in R software. The data was collected in
a floodplain area of the river Meuse, near the village of Stein, Netherlands, and
contains 155 measurements of topsoil concentrations of Zinc, Lead, Copper and
Cadmium, along with location (latitude and longitude) and other covariates.
In addition, another data set, Meuse.grid, is analyzed. Meuse.grid is a higher
resolution grid of the same area, containing 3103 observations of location and
some of the covariates that are available in the Meuse data set, however it does
not contain the metal concentration measurements. The Meuse.grid is available
in sp package in R software as well.

Results The Meuse data set was partitioned randomly into training and test
samples. Four Gaussian process regression models were fitted to the log of the
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Lead concentration.2 All the models share the same kernel structure, squared-
exponential kernel,

K(Zi,Zj) = σ2
f exp

[
−1

2

{
1

l21
(Zi,1 − Zj,1)

2
+

1

l22
(Zi,2 − Zj,2)

2

}]
,

where Zi,1 refers to the latitude of measurement i, Zi,2 refers to longitude of
measurement i and l1, l2 and σf lie in R

+. Each model has a different marginal
mean, see Table 1. The descriptions of the covariates can be found in sp package
in R software.

Table 1

Meuse data: Covariates

Covariates
Model Intercept, dist, ffreq, soil dist× ffreq dist× Soil

1 �
2 � �
3 � �
4 � � �

Fig 5. Estimating prediction error of four predictive spatial models that were fitted to topsoil
metal concentration in a floodplain area of the river Meuse (Meuse data). For each model,
each color refers to a different prediction error estimate. The oracle is presented as well.

As can be seen in Figure 5, tAI estimates −�(y∗)/n∗ most accurately. The
other prediction error estimators consistently under estimate −�(y∗)/n∗.

Figure 6 is based on Meuse and on Meuse.grid data sets, where the whole
Meuse data set is used as training data and the Meuse.grid data set is used as
the prediction set, {X∗, Z∗}. Since the Lead consternation is not given in the
Meuse.grid data set, then −�(y∗)/n∗ is unknown. Therefore tAI, cAI and mAI
are compared without having a ground truth.

As can be seen from Figure 6, the differences between the mAI, cAI and
tAI are sustained and the results are consistent with the previous figures, i.e.,
mAI, cAI give lower error estimates, which likely underestimate the prediction
error.

2Only log(Lead) can be analyzed under the normality assumption.
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Fig 6. Estimating prediction error of four predictive spatial models that were fitted to topsoil
metal concentration in a floodplain area of the river Meuse (Meuse data). For each model,
each color refers to a different prediction error estimate of another data set – Meuse.grid
data, which contains the covariates, but not the dependent variable.

5.2.2. Growth data

Data description The Growth data was introduced by Potthoff and Roy
(1964) and contains four skull length measurements for 27 children at ages
8, 10, 12 and 14 (total of 27× 4 measurements) along with the child’s age and
gender.

Results Figure 7 presents a scenario where the training sample is defined as
the skull length measurements at ages 8, 10, 12 and the prediction set is defined
as the skull length measurements at age 14. Three linear mixed models are
fitted, all have the same variance structure, containing random intercept per
child and random slope for the child’s age, however each model has a different
set of fixed effects (see Table 2).

Table 2

Growth data: Covariates

Covariates
Model Intercept Age Gender Age×Gender

1 � �
2 � � �
3 � � � �

As can be seen in Figure 7, in general perspective, tAI estimates −�(y∗)/n∗

most accurately. The other prediction error estimators under-estimate
−�(y∗)/n∗.

Figure 8 presents three similar analyses as in Figure 7, however where the
other time-points measurements are designated as holdout.

When age = 8, the results are similar to the results in Figure 7, however,
when age = 10 and age = 12, tAI and cAI have similar performance. This is
not surprising since in these cases {X∗, Z∗, R∗} is similar to {X,Z,R}.
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Fig 7. Estimating prediction error of three predictive longitudinal models that were fitted to
repeated skull length measurements of 27 children at ages 8, 10 and 12, but predict the skull
length measurements of the same children at age 14. For each model, each color refers to a
different prediction error estimate. The oracle is presented as well.

Fig 8. Estimating prediction error of three predictive longitudinal models that were fitted to
repeated skull length measurements of 27 children. In each column, measurements that refer
to a different age were defined as the prediction set. For each model, each color refers to a
different prediction error estimate. The oracle is presented as well.

6. Discussion and conclusions

tAI is an extension of the prediction error estimators used in mAIC and cAIC,
extending them to estimate prediction error at interpolation and extrapolation
points. As demonstrated in Section 3, these use cases are common in various
research fields, and particularly in geostatistics and health, where GPR and
LMM are used for predicting at interpolation and extrapolation points. Since
GLS, linear regression and smoothing splines can be expressed as LMM (Brum-
back, Ruppert and Wand, 1999), tAI is applicable for them as well.

The correction in tAI is more complicated than the corrections in mAIC and
cAIC, which are p/n and tr(H)/n respectively. The correction in tAI is affected
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by the relations between Var(y) to Var(y∗), Var(f̂) to Var(f̂∗) and between
Cov(y,y∗) to Cov(y,ynew). When interpreting the correction as a measure
of over-fitting, the differences between the corrections offer a new perspective
about how the over-fitting is composed as a function of the variance structure
of the problem.

In many cases the parameters of the covariance matrices are unknown in
advance and therefore are estimated by various procedures prior to model fitting,
e.g., REML in LMM (Verbeke and Molenberghs, 2009). Estimating the variance
parameters implies an extra variation for tAI, especially when the sample size
is small. Our empirical results demonstrate, however, that it remains useful in
this setting.

The numerical analyses emphasize the practical importance in using tAI in
scenarios where {X∗, Z∗, R∗} �= {X,Z,R} are different. It is noticeable espe-
cially when predicting at extrapolation points, since in this case the differences
between Var(y) to Var(y∗) and between Var(f̂) to Var(f̂∗) can be large.

Loss(Optt) is another prediction error estimator for cases involving predict-
ing at interpolation and extrapolation points. Unlike tAI, Loss(Optt) does not
assume that the observations are normally distributed and therefore it is also
applicable in various non-parametric applications. Since many predictors that
are apparently based on normal linear model can be alternatively interpreted as
solutions for the generalized least squares problems, the assignation of predic-
tors to tAI or to Loss(Optt) should refer to the possibility to assume normality
rather than to the predictor formula.

Appendix A: Proofs

A.1. Proof of Theorem 1

Proof. By the definitions of �H(y) and �H∗(y∗), the bias of
{
− 1

n�H(y)
}
is

Ey

[
− 1

n∗Ey∗|y�H∗(y∗)−
{
− 1

n
�H(y)

}]
= − 1

n∗Ey,y∗�H∗(y∗) +
1

n
Ey�H(y)

=
1

2n∗

{
log |R∗|+ n∗ log(2π) + Ey,y∗(y∗ −H∗y)tR∗−1

(y∗ −H∗y)
}

− 1

2n

{
log |R|+ n log(2π) + Ey(y −Hy)tR−1(y −Hy)

}
=

1

2
log

(
|R∗| 1

n∗

|R| 1
n

)
(12)

+
1

2

{
1

n∗Ey,y∗(y∗ −H∗y)tR∗−1

(y∗ −H∗y)

− 1

n
Ey(y −Hy)tR−1(y −Hy)

}
.
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First, let us simplify the last two terms of equation (12):

Ey,y∗(y∗ −H∗y)tR∗−1

(y∗ −H∗y)

= tr
{
R∗−1

Ey∗(y∗y∗t)
}
+ tr

{
H∗tR∗−1

H∗
Ey(yy

t)
}

− 2tr
{
R∗−1

H∗
Ey,y∗(yy∗t)

}
= tr

{
R∗−1

(V ∗ + μ∗μ∗t)
}
+ tr

{
R∗−1

H∗(V + μμt)H∗t
}

− 2tr
{
R∗−1

H∗(Cov(y,y∗) + μμ∗t)
}
,

and

Ey(y −Hy)tR−1(y −Hy) =tr
{
R−1

Ey(yy
t)
}
+ tr

{
(HtR−1HEy(yy

t)
}

− 2tr
{
R−1HEy(yy

t)
}

=tr
{
R−1(V + μμt)

}
+ tr

{
R−1H(V + μμt)Ht

}
− 2tr

{
R−1H(V + μμt)

}
.

Therefore, the difference between the last two terms of equation (12) is

1

n∗Ey,y∗(y∗ −H∗y)tR∗−1

(y∗ −H∗y)− 1

n
Ey(y −Hy)tR−1(y −Hy)

=
2

n
tr
(
R−1HV

)
− 2

n∗ tr
(
R∗−1

H∗Cov(y,y∗)
)

+
1

n∗ tr
(
R∗−1

V ∗
)
− 1

n
tr
(
R−1V

)
+

1

n∗ tr
(
R∗−1

H∗V H∗t
)
− 1

n
tr
(
R−1HVHt

)
+

1

n
tr
(
R−1(2Hμμt − μμt −HμμtHt)

)
− 1

n∗ tr
(
R∗−1

(2H∗μμ∗t − μ∗μ∗t −H∗μμtH∗t)
)
.

By the assumptions of Hμ = μ and H∗μ = μ∗ :

Hμμt = μμt

HμμtHt = μμt

H∗μμ∗t = μ∗μ∗t

H∗μμtH∗t = μ∗μ∗t,

which give

1

n
tr
(
R−1(2Hμμt − μμt −HμμtHt)

)
= 0

1

n∗ tr
(
R∗−1

(2H∗μμ∗t − μ∗μ∗t −H∗μμtH∗t)
)
= 0.
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Therefore, the the difference between the last two terms of equation (12) is
reduced to:

1

n∗Ey,y∗(y∗ −H∗y)tR∗−1

(y∗ −H∗y)− 1

n
Ey(y −Hy)tR−1(y −Hy)

=
2

n
tr
(
R−1HV

)
− 2

n∗ tr
(
R∗−1

H∗Cov(y,y∗)
)

+
1

n∗ tr
(
R∗−1

V ∗
)
− 1

n
tr
(
R−1V

)
+

1

n∗ tr
(
R∗−1

H∗V H∗t
)
− 1

n
tr
(
R−1HVHt

)
,

and the bias is:

Ey

[
− 1

n∗Ey∗|y�H∗(y∗)−
{
− 1

n
�H(y)

}]
=

1

n
tr
(
R−1HV

)
− 1

n∗ tr
(
R∗−1

H∗Cov(y,y∗)
)

+
1

2

{
log

(
|R∗| 1

n∗

|R| 1
n

)
+

1

n∗ tr
(
R∗−1

V ∗
)
− 1

n
tr
(
R−1V

)}

+
1

2

{
1

n∗ tr
(
R∗−1

H∗V H∗t
)
− 1

n
tr
(
R−1HVHt

)}

A.2. Proof of BLUP optimally for least squares problem with a
linear solution

The following theorem will be proven below:

Theorem 7. Let

{a∗, B∗} = argmin
a∈Rn∗ ,B∈Rn∗×n

Ey∗,y‖y∗ − (a+By)‖22.

Then
a∗ +B∗y = μ∗ +Cov(y∗,y)V −1(y − μ).

Proof. Under some regularity conditions

∂Ey,y∗‖y∗ − (a+By)‖22
∂a

=
Ey,y∗∂‖y∗ − (a+By)‖22

∂a
∂Ey,y∗‖y∗ − (a+By)‖22

∂B
=

Ey,y∗∂‖y∗ − (a+By)‖22
∂B

.

Since

∂‖y∗ − (a+By)‖22
∂a

=
∂
(
−y∗ta− aty∗ + ata+ atBy + ytBta

)
∂a

= −2y∗ + 2a+ 2By,
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then
∂Ey,y∗‖y∗ − (a+By)‖22

∂a
= −2μ∗ + 2a+ 2Bμ.

Similarly,

∂‖y∗ − (a+By)‖22
∂B

=
∂
(
−y∗tBy + atBy − ytBty∗ + ytBta+ ytBtBy

)
∂B

= −2y∗yt + 2ayt + 2Byyt

and therefore

∂Ey,y∗‖y∗ − (a+By)‖22
∂B

= −2
(
Cov(y∗,y) + μ∗tμ

)
+ 2aμt + 2B

(
V + μμt

)
.

Since the optimized function is convex, the solution of the following equations
achieves the global minimum where

0 =− μ∗ + a+Bμ

0 =− Cov(y∗,y)− μ∗μt + aμt +B
(
V + μμt

)
.

The solution for B is

B
(
V + μμt

)
= Cov(y∗,y) + μ∗μt − aμt

= Cov(y∗,y) + μ∗μt − (μ∗ −Bμ)μt

= Cov(y∗,y) +Bμμt,

which gives
B = Cov(y∗,y)V −1.

The solution for a is

a = μ∗ −Bμ

= μ∗ − Cov(y∗,y)V −1μ

which gives

a+By = μ∗ − Cov(y∗,y)V −1μ+Cov(y∗,y)V −1y

= μ∗ +Cov(y∗,y)V −1(y − μ).

Therefore f̂∗ can be seen as an estimator of the optimal linear predictor for the
squared error loss.

Appendix B: Additional results

B.1. Model selection performances – an extension

Figure 9 presents the average prediction error

Ey∗|y − 1

n∗ �hbest
(y∗),

over the different simulation runs, where hbest is the selected model by the rel-
evant criteria, mAIC, cAIC and tAIC. This error reflects the true average
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prediction error that is obtained when implementing the different model selec-
tion criteria. In addition, the average prediction error of the oracle criterion,

hbest = argmin
h∈{1,2,3}

− 1

n∗Ey∗|y�h(y
∗),

is presented.

Fig 9. The figure presents for nine different setups the average true prediction error
of the selected model by the criteria: tAIC, cAIC and mAIC with respect to the oracle
argmin
h∈H

Ey∗|y − 1
n∗ �hbest

(y∗), along with the true prediction error of the selected model by

the oracle itself. Two versions of the criteria tAIC, cAIC and mAIC are presented: when
the variance parameters are known and when they are estimated.

Figure 10 presented the same analysis with respect to the prediction errors

EyEy∗|y − 1

n∗ �hbest
(y∗)

and
1

n∗Ey∗|y‖y∗ −H∗y‖22.

B.2. tAI in high-dimensional data setting

Here, the performance of tAI and tAIC in a scenario when there are many
covariates, is analyzed.

The LMM setting here is as follows:

φi,j =xi,j,0 + 0.1
k=50∑
k=1

xi,j,k +
k=150∑
k=51

xi,j,k + 0.5× timei,j

+ bi,1 + timei,j × bi,2 + εi,j ,
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Fig 10. Figure (10a) presents for nine different setups the average true prediction error
of the selected model by the criteria: tAIC, cAIC and mAIC with respect to the oracle
argmin
h∈H

EyEy∗|y − 1
n∗ �hbest

(y∗), along with the true prediction error of the selected model

by the oracle itself. Two versions of the criteria tAIC, cAIC and mAIC are presented: when
the variance parameters are known and when they are estimated. Figure (10b) presents the
same graph, however with respect to the oracle argmin

h∈H
1
n∗ Ey∗|y‖y∗ −H∗y‖22.

where xi,j,0 = 1 and xi,j,k, ∀k > 0 was drawn from standard normal distribu-
tion. Unlike in Section 5, 0 ≤ k ≤ 150. Other objects, such as timei,j , bi,1, bi,2,
εi,j , y and y∗ are defined in the same way as they are defined in Section 5.
Also, S = 200 and σ2 = 20.

Figure 11 presents the densities of tAI, mAI, cAI and the oracle,
−Ey∗|y�(y

∗)/n∗. Table 3 presents the agreement rate of tAI, mAI and cAI
with the oracle, as well as the true mean prediction error of tAI, mAI and cAI
(for more information, see Section 5).

Fig 11. Densities of tAI, cAI, mAI and −Ey∗|y�(y
∗)/n∗, where number of subjects= 200

and σ2 = 20 in high-dimensional setting.
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Table 3

Model Selection Performances
High Dimensional Data

Agreement Rate with Oracle Mean Prediction Error
Estimator/Variance Parameters True Estimated True Estimated

tAIC 0.96 0.96 2.43 2.43
cAIC 0.88 0.85 2.44 2.44
mAIC 0.02 0.02 2.45 2.45
Oracle — — 2.43 2.43
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