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1. Introduction

In epidemiology, a key quantity of interest is the cumulative incidence of a
given disease in a given population, i.e., the distribution of the time T to
disease onset for a random member of the target population. The most direct
way to obtain an estimate of this quantity is by taking a random sample
from the target population and following them up for occurrences of the
disease. For rare diseases, however, this approach is impractical because it
would take an enormous sample size to accrue a sufficient number of disease
events.

A common powerful alternative avenue for estimating the population
cumulative incidence is the case-control family study, in which the cases are
oversampled. Specifically, separate samples of n1 individuals in whom the event
has already occurred (case probands) and n0 individuals in whom the event
has not yet occurred (control probands) are obtained. We record age at disease
onset or age at censoring and disease status of each proband and of one or
more members of a designated set of the proband’s relatives, which we call
the individual’s key relatives. For example, in Stanford et al.’s [12] study
of prostate cancer, case probands were men diagnosed with prostate cancer,
control probands were men without prostate cancer, and each proband was
interviewed to obtain detailed disease history information on his key relatives,
which included the proband’s father, brothers, and uncles. The goals of a
case-control family study are to (1) assess familial aggregation of the disease,
(2) assess the effect of genetic and environmental factors on disease risk, and
(3) to estimate the population cumulative incidence of the disease. This paper
focuses on the last of these three goals. We will work in terms of the survival
function S(t) = P (T > t), which we will refer to as the marginal survival
function.

The analysis of case-control family data is complicated by two factors: the
case-control selection scheme used to ascertain the families (i.e., cases are
oversampled) and by the within-family dependence (i.e., family members are
not independent given the observed covariates). A review of semiparametric
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models and estimation procedures based on copula or frailty approaches for
estimating the effect of genetic and environmental factors on disease risk can be
found in Gorfine et al. [9].

It is of interest to provide a fully nonparametric estimator of the marginal
survival function that takes into account the dependence of the failure times of
family members and the case-control sampling design. By fully nonparametric
estimation, we mean estimation that avoids specific assumptions about the form
of the distribution or the dependence structure among failure times within a
family. The estimator that first comes to mind is the Kaplan-Meier survival
curve estimator based on the survival data of the relatives. This estimator,
however, is biased because it does not take the case-control sampling and the
within-family dependence into account. Gorfine et al. [9] demonstrated that
the bias can be either upward or downward, depending on the dependence
structure, and the coverage rates of 95% confidence intervals can be as low
as zero.

So far, Gorfine et al. [9] is the only published work proposing a fully
nonparametric estimator for this problem. Their estimator is based on a kernel
smoothing approach. Through an extensive simulation study they showed that
their estimator performs well in terms of bias. The estimator of [9] is based
on the median of random variables with a complicated dependence structure.
Consequently, the asymptotic properties of the estimator were not derived. In
addition, their bandwidth selection procedure was not specifically targeted to
the estimand of interest.

In the present paper we approach the problem with a different strategy, with
the following novel components: (i) A new identity (Equation (2.4) below) is
derived that links the marginal survival function to the conditional survival
function for a relative given the status of the proband as case or control. Using
this identity, we develop a new estimator for the problem. (ii) The asymptotic
properties of the proposed estimator is established. This is the first paper
to present for this data setting a fully nonparametric estimator with proven
consistency. (iii) The new estimator works with means rather than medians
and performs well in terms of bias and much better in terms of variance than
the estimator of [9]. In some scenarios the new estimator also outperforms the
estimator of [9] in terms of bias. (iv) In contrast with [9], we also present a
bandwidth selection procedure that is specifically targeted to the estimand of
interest. (v) Although it is traditionally assumed in case-control family studies
that the marginal survival distribution is the same for a given individual and all
his/her key relatives, see, e.g., [3, 9, 11], and this assumption is often reasonable,
our proposed procedure provides a consistent estimator of the marginal survival
function without requiring this assumption. This is a novel result for the case-
control family design. R code for carrying out the simulations reported in this
paper and for applying the method to a data set is available at the following
Github site:

https://github.com/david-zucker/marginal-survival

https://github.com/david-zucker/marginal-survival
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2. Preliminaries

We begin by presenting some general definitions. We then describe the data
we will work with and note relevant connections to the general definitions.
Finally, we present the key identity that serves as the basis for our estimation
procedure.

As above, we let T denote the time to disease onset for a randomly selected
member of the population and let T ′ be the time to onset of a randomly selected
key relative. In some cases the set of key relatives consists of only one relative,
for example the individual’s father, while in other cases it consists of several
relatives, for example the individual’s brothers. It is commonly assumed that T
and T ′ are identically distributed, see, e.g., [3, 9, 11]. This assumption is often
reasonable, but for our main result we do not require it. In fact, theoretically
we could replace T ′ with any variable W collected on the relatives that satisfies
P (T > t,W > u) ≥ P (T > t)P (W > u) for all t and u, with strict inequality
for every t on a set of u values of positive measure. Our goal is to estimate the
marginal survival function S(t) = P (T > t). The marginal survival distribution
is assumed to be continuous with density f(t) = −(d/dt)S(t). We define
S0(u|t) = P (T ′ > u|T > t) and S1(u|t) = P (T ′ > u|T = t). We assume here
that the joint distribution of (T, T ′) is the same for all relatives. This assumption
can be relaxed by introducing different types of proband-relative relationships.

We now describe the data we will work with. The setup is as in Gorfine et al.
[9]. We have a sample of n1 individuals with the disease, which we refer to as the
case probands. Each case proband is frequency matched by age with a disease-
free control probands. The total number of control probands is n0 = an1, and
the total number of probands in the study is n = n0+n1. Proband i’s observation
time XPi is the age at disease onset for a case proband and the age at sampling
for a control proband. We define δPi to be 1 if proband i is a case proband and 0
if proband i is a control proband. For proband i we have data on Ji relatives. We
view Ji as a random variable, and let J denote the maximum number of relatives
for a given proband. For each relative ij we determine whether the relative has
the disease (δRij = 1) or not (δRij = 0). If the relative has the disease, we
ascertain the age of disease onset. If the relative does not have the disease,
he/she is regarded as censored at the latest age for which his/her disease status
was known. The censoring is assumed independent of the survival time. For each
relative ij, we denote by XRij the relative’s age at the time of disease onset or
censoring. Thus, the data consist of n1 independent and identically distributed
matched sets comprising one case family and a control families, and the observed
data on family i consists of (XPi, δPi, XRi1, . . . , XRiJi , δRi1, . . . , δRiJi).

We denote the maximum observation time among the probands by τ0 and
the maximum observation time among the relatives by τ . We will write some of
the formulas as if each proband has exactly J relatives, with the extra relatives
taken to be censored at time 0. As in Gorfine et al. [9], the conditional survival
function for a relative in family i given the information on the corresponding
proband is S0(·|XPi) if the proband is a control and S1(·|XPi) if the proband
is a case.
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We now develop a new representation for S(t) in terms of S0(u|t) and
S1(u|t). Let λ(t) and Λ(t) denote the hazard and cumulative hazard functions
corresponding to S(t), and define S∗

q (u|t) = (∂/∂t)Sq(u|t), q = 0, 1. Also define
Λq(u|t) = − logSq(u|t) and Λ∗

q(u|t) = (∂/∂t)Λq(u|t), q = 0, 1. We can write
S∗
q (u|t) = −Sq(u|t)Λ∗

0(u|t). We then have

P (T > t, T ′ > u) =

∫ ∞

t

P (T ′ > u|T = x)f(x)dx

which yields the following:

S(t)S0(u|t) =
∫ ∞

t

S1(u|x)f(x)dx

⇒ ∂

∂t
[S(t)S0(u|t)] = −S1(u|t)f(t)

⇒ −f(t)S0(u|t) + S(t)S∗
0 (u|t) = −S1(u|t)f(t)

⇒ −λ(t)S0(u|t) + S∗
0 (u|t) = −S1(u|t)λ(t)

⇒ λ(t)(S0(u|t)− S1(u|t)) = S∗
0 (u|t) = −S0(u|t)Λ∗

0(u|t)
⇒ λ(t)(S0(u|t)− S1(u|t))2 = −S0(u|t)(S0(u|t)− S1(u|t))Λ∗

0(u|t) (2.1)

Now define

ψ(u, t) =

[∫ τ

0

(S0(v|t)− S1(v|t))2 dv
]−1

(S0(u|t)− S1(u|t))S0(u|t) (2.2)

Note that the bracketed integral is nonzero provided that for every t there exists
a set of u values of positive measure for which S0(u|t) �= S1(u|t). Integrating
both sides of (2.1) and rearranging gives

λ(t) = −
∫ τ

0

ψ(u, t)Λ∗
0(u|t) du (2.3)

Λ(t) = −
∫ t

0

∫ τ

0

ψ(u, s)Λ∗
0(u|s) du ds (2.4)

We use the key identity (2.4) to construct our estimator.

3. Estimation procedure

In Gorfine et al., S0(u|t) and S1(u|t) were estimated using a generalized version
of the kernel-smoothed Kaplan-Meier estimator proposed by Beran [2] and
examined in Dabrowska [4], and the resulting estimators were used to construct
an estimator of S(t). Here, in light of (2.4), we work not only with S0(u|t)
and S1(u|t) but also the derivative Λ∗

0(u|t). Accordingly, we take a local linear
estimation approach. Choose a symmetric kernel function K and a bandwidth h.
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Let NRij(t) = δRijI(XRij ≤ t) and YRij(t) = I(XRij ≥ t), and write Qi = δPi.
Let χ(q1, q2) = I(q1 = q2). Define (with q = 0, 1)

λq(u|t) =
∂

∂u
Λq(u|t), NRi �(v) =

J∑
j=1

NRij(v), YRi �(v) =

J∑
j=1

YRij(v)

dMRij(v) = dNRij(v)− YRij(v)λQi(v|XPi)dv

MRi �(v) =

J∑
j=1

MRij(v)

Yq(s, v) =
1

nqh

n∑
i=1

χ(Qi, q)YRi �(v)K

(
XPi − s

h

)

X̄Pq(s, v) = Yq(s, v)
−1

[
1

nqh

n∑
i=1

χ(Qi, q)YRi �(v)K

(
XPi − s

h

)
XPi

]

Cq(s, v) =
1

nqh

n∑
i=1

χ(Qi, q)YRi �(v)K

(
XPi − s

h

)
(XPi − X̄Pq(s, v))

2

We can write

dNRi �(v)

YRi �(v)
= ΛQi(dv|XPi) +

dMRi �(v)

YRi �(v)

with E[dMRi �(v)/YRi �(v)] = 0. A first-order Taylor approximation gives the
local linear representation

dNRi �(v)

YRi �(v)
≈ ΛQi(dv|s) + Λ∗

Qi
(dv|s)(XPi − s) +

dMRi �(v)

YRi �(v)

We now carry out weighted linear least squares fitting where the response
variable is dNRi �(v)/YRi �(v), the explanatory variable isXPi−s, and the weights
are χ(Qi, q)YRi �(v)K((XPi − s)/h). This leads to the local linear estimators

Λ̂∗
q(dv|s) = Cq(s, v)

−1

[
1

nqh

n∑
i=1

χ(Qi, q)K

(
XPi − s

h

)

(XPi − X̄Pq(s, v))dNRi �(v)

]
Λ̂q(dv|s) =

(nqh)
−1
∑n

i=1 χ(Qi, q)K((XPi − s)/h)dNRi �(v)

Yq(s, v)

− Λ̂∗
q(dv|s)(X̄Pq(s, v)− s)

that is, for a given u,

Λ̂∗
q(u|s) =

∫ u

0

1

Cq(s, v)

[
1

nqh

n∑
i=1

χ(Qi, q)K

(
XPi − s

h

)
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(XPi − X̄Pq(s, v))dNRi �(v)

]
(3.1)

Λ̂q(u|s) =
∫ u

0

Yq(s, v)
−1

[
1

nqh

n∑
i=1

χ(Qi, q)K((XPi − t)/h)dNRi �(v)

]

−
∫ u

0

X̄Pq(s, v)− s

Cq(s, v)

[
1

nqh

n∑
i=1

χ(Qi, q)K

(
XPi − s

h

)

(XPi − X̄Pq(s, v))dNRi �(v)

]
(3.2)

with the second equation leading to Ŝq(u|s) = exp(−Λ̂q(u|s)). We can now

substitute Ŝ0(u|s), Ŝ0(u|s), and Λ̂∗
0(u|s) into (2.3) and (2.4) to obtain estimators

λ̂(t) and Λ̂(t) for λ(t) and Λ(t). We then take Ŝ(t) = exp(−Λ̂(t)). When we want

to emphasize the dependence on the bandwidth h, we will write Ŝ(t;h).

4. Asymptotic theory

We can write Λ̂(t)− Λ(t) = A(t) +A∗(t) +A∗∗(t) with

A(t) =

∫ t

0

∫ τ

0

ψ(u, s)[Λ̂∗
0(u|s)− Λ∗

0(u|s)] du ds

A∗(t) =

∫ t

0

∫ τ

0

[ψ̂(u, s)− ψ(u, s))]Λ∗
0(u|s) du ds

A∗∗(t) =

∫ t

0

∫ τ

0

[ψ̂(u, s)− ψ(u, s)][Λ̂∗
0(u|s)− Λ∗

0(u|s)] du ds

We will provide a detailed asymptotic analysis ofA(t) and an outline of the proof
that A∗(t) converges in probability to zero at a faster rate than A(t). A similar
argument can be used to show that A∗∗(t) is negligible in comparison with the
other two terms. The result thatA∗(t) converges in probability to zero at a faster
rate than A(t) can be explained by the fact that in nonparametric regression,
the error in estimating the derivative of the regression function converges to
zero at a slower rate than the error in estimating the regression function itself;
see Fan and Gijbels [7] (Theorem 3.1, page 62). Details regarding A∗(t) can be
found in Section 8.4.

In this section, Section 8, and the appendix, we will write m = n0 and assume
that the indices have been arranged so that the control probands appear first
in the list of probands, meaning that a sum over probands 1 to m is a sum over
the control probands. Recall that n0 = an1.

Define Γ(s, v) = h−2C0(s, v). We then have

Γ(s, v) =
1

mh

m∑
i=1

YRi �(v)K

(
XPi − s

h

)(
XPi − X̄P0(s, v)

h

)2
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and thus

A(t) = − 1

mh3

m∑
i=1

∫ t

0

∫ τ

0

∫ u

0

ψ(u, s)

Γ(s, v)
K

(
XPi − s

h

)
(XPi − X̄P0(s, v))

(dNRi �(v)− YRi �(v)(XPi − X̄P0(s, v))λ
∗
0(v|s)dv) du ds

Now, the process MRij is a martingale with respect to the filtration Fijv =
σ(XPi, Ji, {NRij(d), YRij(d), d ∈ [0, v]}). Accordingly, for any process P(v) that
is predictable with respect to Fijv, the process∫ u

0

P(v)dMRij(v)

is a mean-zero martingale. It follows, even though the process MRi � does not
have any martingale properties, that for any function P (v, x) we have

E

[∫ u

0

P (v,XPi)dMRi �(v)

]
= 0 (4.1)

We now write A(t) = −(A1(t) +A2(t)), where

A1(t) =
1

mh3

m∑
i=1

∫ t

0

∫ τ

0

∫ u

0

ψ(u, s)Γ(s, v)−1YRi �(v)K

(
XPi − s

h

)
(XPi − X̄P0(s, v))(λ0(v|XPi)− (XPi − X̄P0(s, v))λ

∗
0(v|s))dv du ds

A2(t) =
1

mh3

m∑
i=1

∫ t

0

∫ τ

0

∫ u

0

ψ(u, s)Γ(s, v)−1K

(
XPi − s

h

)
(XPi − X̄P0(s, v))dMRi �(v) du ds

In Section 8 we establish the asymptotic properties of our estimator. We list
below the assumptions we make in obtaining this result.

Assumptions

1. Relative ij’s event time and censoring time are conditionally independent
given XPi and δPi.

2. The kernel K is symmetric, equal to zero outside of [−1, 1], and equal
to a polynomial inside [−1, 1]. In addition, K is twice differentiable with
bounded derivatives over the entire real line, including the points−1 and 1.

3. The bandwidth h = hm is given by hm = αmm−ν , where 1/4 < ν < 1/3
and αm → α > 0 as m → ∞.

4. The random variable XPi has a density g(x) satisfying

gmin = inf
x∈[0,τ0]

g(x) > 0.

5. Defining yq(s, v) = E[YRi �(v)|XPi = s, δPi = q], we have

y(min)
q = inf

s∈[0,τ0]
yq(s, τ) > 0.
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6. Defining ϕ(s, v) = g(s)y0(s, v), the first and second partial derivatives
ϕ̇(s, v) and ϕ̈(s, v) of ϕ(s, v) with respect to s exist and are bounded
uniformly over s and v. Note that Assumptions 4 and 5 imply that
ϕmin = infs∈[0,τ0],v∈[0,τ ] ϕ(s, v) > 0.

7. The first and second partial derivatives of ψ(v|s) with respect to s exist
and are bounded uniformly over s and v.

8. The first three partial derivatives of λ0(v|s) with respect to s exist and
are bounded uniformly over s and v.

Assumption 1 is an independent censoring assumption which is standard in
survival analysis. Assumption 2 is a condition that can always be arranged
to be satisfied, since the kernel K is chosen by the user and there are many
kernel functions that satisfy the requisite conditions. Assumption 3 is a type of
assumption always made in kernel estimation, and ensures that the bandwidth
goes to 0 fast enough, as the sample size increases, to make the bias term
(A1(t) in our case) converge to 0 but not so fast that the random error term
(A2(t)) gets out of control. Assumption 4 amounts to saying that the survival
time and censoring time have a continuous distribution on [0, τ0] and that the
proband observation times adequately cover the entire interval [0, τ0], which is
a reasonable assumption in most applications. No assumption is made on the
censoring times of the relatives. Assumption 5 is a type of assumption commonly
made in survival analysis, and ensures that the fraction of relatives at risk
remains positive throughout the interval [0, τ ].

Under the above assumptions, we show that (mh)1/2A1(t) → 0 in probability
as m → ∞ and that

A2(t) = B(t) + op((mh)−1/2) (4.2)

where

B(t) = 1

m

m∑
i=1

ζi(t)

with

ζi(t) =
1

h

∫ t

0

∫ τ

0

∫ u

0

ψ(u, s)γ(s, v)−1

(
XPi − s

h

)
[
h−1K

(
XPi − s

h

)]
dMRi �(v) du ds (4.3)

where γ is the limiting value of Γ. Define σ2
ζ (t) = hVar(ζi(t)). We then obtain

the following theorem.

Theorem 4.1. For each t ∈ [0, τ0], σ2
ζ (t) converges to a limit κ(t) and

(mh)1/2 (Λ̂(t) − Λ(t)) converges in distribution to N(0, κ(t)). Correspondingly,

(mh)1/2 (Ŝ(t)− S(t)) converges in distribution to N(0, S(t)2κ(t)).

The proof of the result for Λ̂(t) is given in Section 8. Here we give a brief
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sketch. A basic background result is a result on the behavior of

Ak(s, v, h) =
1

mh

m∑
i=1

YRi �(v)Zk

(
XPi − s

h

)
where Zk(r) = rkK(r). The behavior of E[Ak(s, v, h)] is established using the
usual change of variable + Taylor expansion argument used in the analysis
of kernel estimators. The behavior of sups,v |Ak(s, v, h) − E[Ak(s, v, h)]| is
established using Corollary 2.2 of Giné and Guillou [8], a result concerning
empirical processes involving kernel terms. Given this background result, we
proceed to the analysis of A1 and A2.

The main steps in the proof of convergence in probability of (mh)1/2A1(t) to
0 is a second-order Taylor expansion of λ0(v|XPi) around s ((8.1) below), the
resulting representation of λ0(v|XPi)− (XPi− X̄P0(s, v))λ

∗
0(v|s) in (8.2) below,

and the observation that the first-order term in the representation (8.2) drops
out because of the identity (8.3). The results on Ak(s, v, h) are used to deal with
the remaining terms.

Regarding (4.2), Equation (4.1) implies that E[ζi(t)] = 0. Thus, B(t) is
the sum of i.i.d. mean-zero terms. Accordingly, to show that (mh)1/2 B(t) is
asymptotically mean-zero normal we need to show that hVar(ζi(t)) converges
to a limit κ(t) and that ζi(t) satisfies an appropriate Lindeberg condition. The
remainder term in (4.2) is dealt with by a somewhat lengthy technical argument,
in which a key role is played by the martingale result in Theorem I.1 of Anderson
and Gill [1].

The result for Ŝ(t) follows immediately from the result for Λ̂(t) and the delta
method.

5. Practical implementation details

In general, kernel estimators suffer from areas where the variable being smoothed
over has low density, and indeed, we encountered this problem in preliminary
work, particularly with survival distributions with low event rate in the initial
part of the time line. We found that the performance of the estimator of Ŝ(t)
can be improved dramatically by introducing a time transformation that makes
the proband observation times approximately uniformly distributed. Along the
lines of Doksum et al. [5], we propose transforming according to an estimate
of the distribution function of the proband observation times, which leads
to a modified form of nearest neighbor regression. In the appendix, we show
that the consistency and asymptotic normality is maintained under the time
transformation if a smooth estimate of the distribution function is used. We
believe that this result holds as well when the empirical distribution function is
used. In our numerical work, we used the empirical distribution function.

In the context of family survival data, it is usually reasonable to assume
that P (T > t, T ′ > u) ≥ P (T > t)P (T ′ > u) = S(t)S(u) for all t and u, i.e.,
S0(u|t) ≥ S(u) for all t and u. This condition implies that for any t

P (T ′ > u|T ≤ t) ≤ S(u) ≤ P (T ′ > u|T > t) (5.1)
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If we let ŜKM,case(t) and ŜKM,control(t) denote the Kaplan-Meier survival curve
estimator based on the case relatives’ survival data and the control relatives’
survival data, respectively, the foregoing inequalities motivate modifying the
estimator to the estimator S̃(t) resulting from replacing Ŝ(t) with ŜKM,case(t)

if Ŝ(t) ≤ ŜKM,case(t) and by ŜKM,control(t) if Ŝ(t) ≥ ŜKM,control(t). We
implemented this modification in our numerical work. The modification comes
into play mainly when the event rate is extremely low (which happens in some
applications) or extremely high (which rarely happens in practice). Given the

consistency of Ŝ(t), if the inequalities in (5.1) are strict, then for large sample
sizes the modification no longer comes into play. The inequalities in (5.1) are
strict if the following mild condition holds: for each u there exists a set T (u)
such that P (XPi ∈ T (u)) > 0 and

inf
t∈T (u)

P (T > t, T ′ > u)− S(t)S(u) > 0

For bandwidth selection, we propose a bootstrap procedure. Let ŜC(u) denote
the Kaplan-Meier estimate of the survival function of the time to censoring
among the relatives (which is the same for case relatives and control relatives).
In each bootstrap replication b = 1, . . . , B, for each family i we generate Ji event
times for proband i’s relatives according to the survival function ŜQi(u|XPi) and

Ji censoring times for relatives according to the survival function ŜC(u). We
then run our estimation procedure for a given h on the resulting data, obtaining
the estimate Ŝ(u;h, b). Denote

S̄(t;h) =
1

B

B∑
b=1

Ŝ(t;h, b)

V (t;h) =
1

B − 1

B∑
b=1

(Ŝ(t;h, b)− S̄(t;h))2

MSEest(t, h) = (S̄(t;h)− Ŝ(t;h))2 + V (t;h)

IMSEest(h) =

∫ τ

0

MSEest(t, h)dt

We evaluate IMSEest(h) over a grid of h values in the range (0, 1] and choose
the h values with the minimum IMSEest(h).

To construct confidence intervals in finite samples with bandwidth selection,
we use the percentile bootstrap method.

6. Simulation study

We carried out a simulation study to evaluated the finite sample properties of
the proposed estimator. Data were generated under frailty models in which the
within-family dependence is expressed in terms of a shared frailty variate Wi,
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conditional on which the failure times of the family members are independent
with hazard function λ(t|Wi) = Wiλ0(t). We manipulated five design factors, as
follows: (1) frailty distribution: gamma or positive stable, (2) cumulative end-
of-study event rate: high (60%) or low (15%), (3) number of case probands:
500 or 1000 (with 1:1 matching of control probands to case probands), (4)
number of relatives per family: 1 or 4, and (5) strength of within-family
dependence: low (Kendall tau of 1/3 between the failure of times of two
members of the same family) and moderate (Kendall tau of 1/2). We took
λ0(t) = ν(μt)p−1 with p = 4.6, μ = 0.01, and ν chosen so as to obtain the
desired cumulative end-of-study event rate. The end of study age was taken
to be 110 years. The overall censoring rate, including both interim and end-
of-study censoring, was about 60% in the high event rate case and 90% in
the low event rate case. The data generation was carried out in the same
manner as in Gorfine et al. We carried out 1024 simulation replications for
each of the 32 combinations of the design. For each replication, we carried
out 30 inner replications for the bootstrap bandwidth selection procedure
and 100 outer replications for the percentile bootstrap confidence interval
procedure. These choices yielded good performance in our simulations; in
applying the method to a single dataset the user may wish to use larger
values.

The initial bandwidth was 0.5 and the bandwidth search was done in two
stages. In the first stage, we searched over [0.1, 1] in steps of 0.1 and identified
the h value h1 with the lowest imseest(h). In the second stage, we searched
over h1 − 0.05, h1, and min(h1 + 0.05, 1) and chose the h value with the lowest
imseest(h) to be the final h value. The kernel used was the triweight kernel
K(u) = (35/32)I(|u| ≤ 1)(1− u2)3.

The results for 500 case probands are summarized in Figures 1–4. Figures 1
and 3 show the true survival curve, along with Gorfine et al.’s estimator and the
new estimator. The finite-sample bias of the new estimator tends to be smaller,
and in some settings, such as the gamma frailty model with very low event
rates, its finite-sample bias is dramatically smaller. Figures 2 and 4 summarize
the pointwise 95% coverage rates of the percentile-bootstrap confidence interval
of the proposed estimator, along with the standard errors of the Gorfine et
al. estimator and the proposed estimators. Clearly, the proposed estimator
substantially outperforms the old estimator in terms of efficiency. In general,
the coverage rates are reasonably close to 95%, except at very early ages with a
small number of observed events. Similar results were obtained with 1000 case
probands.

7. Example

In this section we illustrate our method by re-analyzing the data presented
in Gorfine et al. from a population-based case-control family study of early
onset prostate cancer reported by Stanford et al. [12]. Briefly, case participants
were identified from the Seattle-Puget Sound Surveillance, Epidemiology, and
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Fig 1. Simulation results, one relative for each proband: the true survival curve (blue); Gorfine
et al. estimator (green); and the proposed estimators (red).
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Fig 2. Simulation results, one relative for each proband: the empirical standard errors of
Gorfine et al. (blue) and the proposed estimator (green); and point-wise precentile-bootstrap
95% confidence interval coverage rates of the proposed estimator. The black horizontal line
at 0.95 serves as a reference.



Marginal survival 5429

Fig 3. Simulation results, four relatives for each proband: the true survival curve (blue);
Gorfine et al. estimator (green); and the proposed estimators (red).
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Fig 4. Simulation results, four relatives for each proband: the empirical standard errors of
Gorfine et al. (blue) and the proposed estimator (green); and point-wise precentile-bootstrap
95% confidence interval coverage rates of the proposed estimator. The black horizontal line
at 0.95 serves as a reference.
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Table 1

Prostate cancer case-control family data

t The proposed Estimator Gorfine et al. Naive KM SEER
50 0.9997 (0.0007) 0.9918 (0.0311) 0.9991 (0.0003) 0.9958
52 0.9997 (0.0010) 0.9801 (0.0340) 0.9986 (0.0005) 0.9930
54 0.9993 (0.0012) 0.9784 (0.0413) 0.9981 (0.0006) 0.9902
56 0.9990 (0.0023) 0.9784 (0.0451) 0.9963 (0.0008) 0.9843
58 0.9910 (0.0037) 0.9784 (0.0451) 0.9945 (0.0010) 0.9783
60 0.9934 (0.0054) 0.9784 (0.0461) 0.9881 (0.0015) 0.9703
62 0.9908 (0.0063) 0.9678 (0.0501) 0.9848 (0.0017) 0.9603
64 0.9895 (0.0085) 0.9423 (0.0577) 0.9813 (0.0019) 0.9504

End Results (SEER) cancer registry. Cases were those with age at diagnosis
between 40 and 64 years. Controls were identified by use of random-digit
dialing and they were frequency matched to case participants by age. The
information collected on the relatives is the age at diagnosis for prostate
cancer if the relative had prostate cancer or age at the last observation if
the relative did not have prostate cancer. Here we use the information about
age at onset or age at censoring and disease status that was observed for
the probands and their fathers, brothers, and uncles. The following analysis
is based on 730 prostate-cancer case probands, 693 control probands, and
a total of 7316 relatives. Out of the 3793 case-probands’ relatives, 211 had
prostate cancer, and out of the 3523 control-probands’ relatives, 102 had
prostate cancer. The age range of the relatives with prostate cancer was 40–
93. Given that frequency matching was used rather than exact age matching,
and that the number of relatives per proband varied across the probands,
we carried out the time transformation based on the empirical distribution
of the proband observation times across all 7316 relatives in the data set.
For bandwidth selection we used the same two-stage procedure as in the
simulations.

Figure 3 and Table 1 present the estimates of prostate-cancer marginal
survival function using the naive Kaplan-Meier estimator based on the relatives’
data, Gorfine et al.’s estimator with nearest-neighbor smoothing and the median
operator, the SEER survival curve based on the SEER Cancer Statistics Review
1975–2012, and the proposed estimator. In this dataset, Gorfine et al.’s estimator
is closer to the SEER survival curve, but with very large pointwise standard
errors compared to the proposed estimator. The standard errors reported in
Table 1 are much larger than those reported in Gorfine et al. due to an error in
the bootstrap code applied back then.

8. Proofs

We present here the proofs of our asymptotic distribution results. In the
development below, the notations O and o, and similarly Op and op, should
be understood as being uniform in the relevant arguments.
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Fig 5. Prostate cancer case-control family data: the naive Kaplan-Meier estimator based
on the relatives’ data (dot-dashed line), Gorfine et al.’s estimator (dotted line), the SEER
survival curve (solid line), and the proposed estimator (dashed line).

8.1. Preliminaries

Define

I = [h, τ0 − h], U = [0, h) ∪ (τ0 − h, τ0], μk(ω) =

∫ ω

−1

Zk(r)dr

ηk(s, h) =

∫ (τ0−s)/h

−s/h

Zk(r)dr =

⎧⎨⎩
(−1)kμk(s/h) s ∈ [0, h]
μk(1) s ∈ I
μk((τ0 − s)/h) s ∈ [τ0 − h, τ0]

ak(s, v, h) = ηk(s, h)ϕ(s, v)

Note that, by symmetry of K, μk(1) = 0 for all odd k.
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We now present two lemmas.

Lemma 8.1. For k even we have

sup
s,v

|Ak(s, v, h)− ak(s, v, h)| =
{

Op(m
−(1−ν)/2 (logm)1/2) s ∈ I

Op(m
−ν) s ∈ U

and for k odd we have

sup
s,v

|Ak(s, v, h)| = Op(h) for s ∈ I

sup
s,v

|Ak(s, v, h)− ak(s, v, h)| = Op(h) for s ∈ U

Proof. The proof of this lemma is given in the appendix.

Lemma 8.2. We have

sup
s∈I,v∈[0,τ ]

|X̄P0(s, v)− s| = Op(h
2)

sup
s∈I,v∈[0,τ ]

|Γ(s, v)− a2(s, v, h)| = Op(m
−(1−ν)/2 (logm)1/2)

sup
s∈U,v∈[0,τ ]

∣∣∣∣X̄P0(s, v)− s−
(
a1(s, v, h)

a0(s, v, h)

)
h

∣∣∣∣ = Op(h
2)

sup
s∈U,v∈[0,τ ]

|Γ(s, v)− a2(s, v, h)| = Op(h)

Proof. Simple algebra yields

X̄P0(s, v)− s = A0(s, v)
−1A1(s, v)h

Γ(s, v) = A2(s, v)−A0(s, v)

(
X̄P0(s, v)− s

h

)2

= A2(s, v)−A0(s, v)
−1(A1(s, v))

2

The result now follows immediately from Lemma 8.1.

8.2. Analysis of A1(t)

We can write A1(t) as

A1(t) =

∫ t

0

∫ τ

0

∫ u

0

ψ(u|s)Γ(s, v)−1S(s, v) dv du ds

with

S(s, v) = 1

mh3

m∑
i=1

YRi �(v)K

(
XPi − s

h

)
(XPi − X̄P0(s, v))[

λ0(v|XPi)− (XPi − X̄P0(s, v))λ
∗
0(v|s)

]
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By Taylor expansion, we can write

λ0(v|XPi) =λ0(v|s) + λ∗
0(v|s)(XPi − s)

+ 1
2
λ∗∗
0 (v|s)(XPi − s)2 +R(s, v,XPi) (8.1)

in which |R(s, v, x)| ≤ R∗|s−x|3, with R∗ = sups,v |λ∗∗∗
0 (v|s)|/6, where λ∗∗

0 (v|s)
and λ∗∗∗

0 (v|s) denote, respectively, the second and third partial derivatives of
λ0(v|s) with respect to s We then have

λ0(v|XPi)− (XPi − X̄P0(s, v))λ
∗
0(v|s)

=
[
λ0(v|s) + λ∗(v|s)(X̄P0(s, v)− s)

]
+ 1

2
λ∗∗
0 (v|s)(XPi − s)2 +R(s, v,XPi) (8.2)

The term in square brackets does not depend on i. Since
m∑
i=1

YRi �(v)K

(
XPi − s

h

)
(XPi − X̄P0(s, v)) = 0 (8.3)

we get

S(s, v) = 1

mh3

m∑
i=1

YRi �(v)K

(
XPi − s

h

)
(XPi − X̄P0(s, v))[

1
2
λ∗∗
0 (v|s)(XPi − s)2 +R(s, v,XPi)

]
We can then write S(s, v) = S1(s, v) + S2(s, v), where

S1(s, v) =
1
2
λ∗∗
0 (v|s)

[
A3(s, v)h− (X̄P0(s, v)− s)A2(s, v)

]
S2(s, v) =

1

mh3

m∑
i=1

YRi �(v)K

(
XPi − s

h

)
(XPi − X̄P0(s, v))R(s, v,XPi)

We have

S2(s, v) ≤ h2A4(s, v) +R∗h|X̄P0(s, v)− s|[
1

mh

m∑
i=1

YRi �(v)K

(
XPi − s

h

) ∣∣∣∣XPi − s

h

∣∣∣∣3
]

We now consider separately the case of s ∈ I and s ∈ U . For s ∈ I, the results
of Lemmas 1 and 2 imply that S1(s, v) = Op(h

2) and S2(s, v) = Op(h
2), so that

S(s, v) = Op(h
2) and∫

[0,t]∩I

∫ τ

0

∫ u

0

ψ(u|s)Γ(s, v)−1S(s, v)dv du ds = O(h2)

For s ∈ U , the results of Lemmas 1 and 2 imply that S1(s, v) = Op(h) and
S2(s, v) = Op(h), so that S(s, v) = Op(h) and∫

[0,t]∩U

∫ τ

0

∫ u

0

ψ(u|s)Γ(s, v)−1S(s, v)dv du ds = O(h2)

(recalling that the length of U is 2h). We thus obtain A1 = Op(h
2), so that

(mh)1/2A1(t) = op(1), since ν > 1/4.
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8.3. Analysis of A2(t)

We begin with some notation. Let ρ(s, u, v) = ψ(u|s)/ϕ(s, v) and define

H(u, v, t, ξ) =
1

h2

∫ t

0

ρ(s, u, v)

η2(s, h)
K

(
ξ − s

h

)(
ξ − s

h

)
ds

H1(u, v, t, ξ) =
1

h2

∫ t

0

ψ(u|s)(Γ(s, v)−1 − a2(s, v, h)
−1)

K

(
ξ − s

h

)(
ξ − s

h

)
ds

H2(u, v, t, ξ) =
1

h2

∫ t

0

ψ(u|s)Γ(s, v)−1K

(
ξ − s

h

)(
s− X̄P0(s, v)

h

)
ds

The quantity ζi(t) in (4.3) can be written as

ζi(t) =

∫ τ

0

∫ u

0

H(u, v, t,XPi)dMRi �(v)du

In addition, define

Δ1i(t) =

∫ τ

0

∫ u

0

H1(u, v, t,XPi)dMRi �(v)du

Δ2i(t) =

∫ τ

0

∫ u

0

H2(u, v, t,XPi)dMRi �(v)du

The remainder term in (4.2) can then be written as B1(t) + B2(t), where

B1(t) =
1

m

n∑
i=1

Δ1i(t), B2(t) =
1

m

n∑
i=1

Δ2i(t)

Our claim is that (mh)1/2 B(t) is asymptotically mean-zero normal, and that
(mh)1/2 B1(t) and (mh)1/2 B2(t) are both op(1).

Analysis of Var(ζi(t))

We can write H(u, v, t, ξ) as

H(u, v, t, ξ) =
1

h

∫ 1

−1

rK(r)I

(
r ∈

[
ξ − t

h
,
ξ

h

])
ρ(ξ − hr, u, v)

η2(ξ − hr, h)
dr

The relevant range of ξ is [0, τ0]. The analysis of H(u, v, t, ξ) divides into several
cases. To ease the presentation, we assume that t < τ0. A similar development
can be given for t = τ0.

Case 1, ξ = ωh with ω ∈ [0, 1]: In this we case we have H(u, v, t, ξ) =
−h−1P1(ω) ρ(0, u, v) +O(1), where

P1(ω) =

∫ 1−ω

−ω

rK(r)

μ2(ω + r)
dr − μ1(−1 + ω)

μ2(1)
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Case 2, ξ = (1 + ω)h with ω ∈ [0, 1]: In this we case we have H(u, v, t, ξ) =
−h−1P2(ω)ρ(0, u, v) +O(1), where

P2(ω) =

∫ −ω

−1

rK(r)

μ2(1 + ω + r)
dr − μ1(ω)

μ2(1)

Case 3, ξ ∈ [2h, t − h]: In this case the indicator equals 1 and ξ − hr ∈ I
for all r ∈ [−1, 1], and hence, recalling that μ1(1) = 0, we get H(u, v, t, ξ) =
−ρ̇(ξ, u, v) + O(h), where ρ̇(s, u, v) is the partial derivative of ρ(s, u, v) with
respect to s.

Case 4, ξ = t+ωh with ω ∈ [−1, 1]: In this case, H(u, v, t, ξ) = −h−1μ1(−ω)
ρ(t, u, v)/μ2(1) +O(1).

Case 5, ξ > t+h: In this case the indicator equals 0 for all r ∈ [−1, 1] and so
H(u, v, t, ξ) = 0.

Define

V(ξ, t) = E

[∫ τ

0

(∫ u

0

H(u, v, t, ξ)dMi �(v)du

)2
∣∣∣∣∣XPi = ξ, δPi = 0

]

V∗(ξ, ξ′) = E

[(∫ τ

0

∫ u

0

ρ(ξ′, u, v)dMi �(v)du

)2
∣∣∣∣∣XPi = ξ, δPi = 0

]

V̇∗(ξ) = E

[(∫ τ

0

∫ u

0

ρ̇(ξ, u, v)dMi �(v)du

)2
∣∣∣∣∣XPi = ξ, δPi = 0

]

We then have

V(ξ, t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h−2V∗(ξ, 0)P1(ξ/h)
2 +O(h−1) ξ ∈ [0, h]

h−2V∗(ξ, 0)P2(ξ/h− 1)2 +O(h−1) ξ ∈ [h, 2h]

V̇∗(ξ) +O(h) ξ ∈ [2h, t− h]
h−2V∗(ξ, t)
(μ1(−(ξ − t)/h)/μ2(1))

2 + O(h−1) ξ ∈ [t− h, t+ h]
0 ξ > t+ h

Accordingly,

Var(ζi(t)) = E[ζi(t)
2] =

∫ τ0

0

g(ξ)V(ξ)dξ = C1 + C2 + C3 + C4

where

C1 =

∫ h

0

g(ξ)V(ξ, 0, t)dξ = h

∫ 1

0

g(ωh)V(ωh, 0, t)dω

= h−1g(0)V∗(0, 0)

∫ 1

0

P1(ω)
2dω +O(1)

C2 =

∫ 2h

h

g(ξ)V(ξ, t)dξ = h

∫ 2

1

g(ωh)V(ωh, 0, t)dω
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= h−1g(0)V∗(0, 0)

∫ 1

0

P2(ω)
2dω +O(1)

C3 =

∫ t−h

2h

g(ξ)V(ξ, t)dξ =

∫ t−h

2h

g(ξ)V̇∗(ξ)dξ +O(h)

C4 =

∫ t+h

t−h

g(ξ)V(ξ, t)dξ = h−1g(t)V∗(t, t)μ2(1)
−2

∫ 1

−1

μ1(ω)
2dω +O(1)

In other words,

Var(ζi(t)) =
κ(t)

h
+O(1)

where

κ(t) = g(0)V∗(0, 0)

[∫ 1

0

P1(ω)
2dω +

∫ 1

0

P2(ω)
2dω

]
+ g(t)V∗(t, t)μ2(1)

−2

∫ 1

−1

μ1(ω)
2dω

Proof of Lindeberg Condition

Define

s2m(t) = Var

(
m∑
i=1

ζi(t)

)
= m

[
κ(t)

h
+O(1)

]
.

We need to show that

sm(t)−2
m∑
i=1

E

[
ζi(t)

2I

(∣∣∣∣ ζi(t)sm(t)

∣∣∣∣ > ε

)]
→ 0 for all ε > 0 (8.4)

We have

|ζi(t)| =
∣∣∣∣∫ τ

0

∫ u

0

H(u, v, t,XPi)dMRi �(v)du

∣∣∣∣
≤
∫ τ

0

∫ u

0

|H(u, v, t,XPi)|dNRi �(v)du

+

∫ τ

0

∫ u

0

|H(u, v, t,XPi)|YRi �(v)λ(v)dvdu

≤ (1 + λmax)Jτ sup
u,v,t,ξ

|H(u, v, t, ξ)|

≤ [(1 + λmax)Jτ ]

[∫ 1

−1

|r|K(r)dr

]
μ2(0)

−1 sup
s,u,v

|ρ(s, u, v)|h−1

= Mh−1

with M defined in the obvious manner. Thus,∣∣∣∣ ζi(t)sm(t)

∣∣∣∣ ≤ M
[(κ(t) +O(h))mh]1/2

→ 0
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Thus, the Lindeberg condition (8.4) is satisfied.

Analysis of B1(t) and B2(t)

We show here that (mh)1/2 B1(t) = op(1); the argument for (mh)1/2 B2(t)
is similar. Define F0 = σ(XPi, δPi, Ji; i = 1, . . . ,m). For simplicity of
exposition, we present the proof for the case J = 2. Define the filtration
Fv = σ(F0, {NRij(d), YRij(d); i = 1, . . . ,m; j = 1, 2; d ∈ [0, v]}) We can write

lim
d↓0

Pr(NRi1(t+ d)−NRi1(t) = 1|Fv−)

= YRi1(v)YRi2(v)λ0(v|v)
+ YRi1(v) [(1− YRi2(v))(1−NRi2(v))λ0(v|XRi2)]

+ YRi1(v)NRi2(v)λ1(v|XRi2)

A similar equality holds for limd↓0 Pr(NRi2(t+ d)−NRi2(t) = 1|Fv−). So if we
define

λ̃i(v) = YRi1(v)[YRi2(v)λ0(v|v) + (1− YRi2(v))(1−NRi2(v))λ0(v|XRi2)]

+ YRi1(v)NRi2(v)λ1(v|XRi2) + YRi2(v)YRi1(v)λ0(v|v)
+ YRi2(v) [(1− YRi1(v))(1−NRi1(v))λ0(v|XRi1) +NRi1(v)λ1(v|XRi1)]

then the process M̃Ri �(v) defined by dM̃Ri �(v) =
∑m

i=1(dNRi �(v) − λ̃i(v)dv) is
a martingale with respect to the filtration Fv.

Define

B1(t, u) =
1

m

n∑
i=1

Δ1i(t, u)

with

Δ1i(t, u) =

∫ u

0

H1(u, v, t,XPi)dMRi �(v)

We can write (mh)1/2 B1(t, u) = B∗
1(t, u, u) + B∗∗

1 (t, u), where

B∗
1(t, u, w) = (mh)1/2

[
1

m

n∑
i=1

∫ u

0

H1(w, v, t,XPi)dM̃Ri �(v)

]

B∗∗
1 (t, u) = (mh)1/2

[
1

m

n∑
i=1

∫ u

0

H1(w, v, t,XPi)(dMRi �(v)− dM̃Ri �(v))

]

= (mh)1/2

[
1

m

n∑
i=1

∫ u

0

H1(w, v, t,XPi)(λ̃i(v)− YRi �(v)λ0(v|XPi))dv

]

Note that E[λ̃i(v)− YRi �(v)λ0(v|XPi)] = 0.
Now, since H1(u, v, t,XPi), viewed as a process in v, is predictable with

respect to Fv, the process B∗
1(t, u, w) viewed as a process in u, is a martingale
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with respect to Fu, with predictable variation process given by

〈B∗
1(t, ·, w),B∗

1(t, ·, w)〉(u) = h

∫ u

0

[
1

m

n∑
i=1

H1(w, v, t,XPi)
2λ̃i(v)

]
dv (8.5)

We can write H1(w, v, t, ξ) = H1a(w, v, t, ξ) +H1b(w, v, t, ξ) with

H1a(w, v, t, ξ) =
1

h2

∫
[0,t]∩I

ψ(w|s)(Γ(s, v)−1 − a2(s, v, h)
−1)

K

(
ξ − s

h

)(
ξ − s

h

)
ds

H1b(w, v, t, ξ) =
1

h2

∫
[0,t]∩U

ψ(w|s)(Γ(s, v)−1 − a2(s, v, h)
−1)

K

(
ξ − s

h

)(
ξ − s

h

)
ds

Now,

H1a(w, v, t, ξ) ≤ sup
s∈I,v∈[0,τ ]

|Γ(s, v)−1 − a2(s, v)
−1| sup

w,s
|ψ(w|s)|A(ξ)

with

A(ξ) =
1

h2

∫ t

0

K

(
ξ − s

h

) ∣∣∣∣ξ − s

h

∣∣∣∣ ds
Defining

B(r) =

∫ r

−1

|r′|K(r′)dr′

we have A(ξ) ≤ A′(ξ) with

A′(ξ) = h−1B

(
t− ξ

h

)
and

E[A′(XPi)] =

∫ τ0

0

h−1B

(
t− ξ

h

)
g(ξ)dξ ≤

∫ (τ0−t)/h

−t/h

B(ξ′)g(t+hξ′)dξ′ ≤ B(1)

Thus A(XPi) = Op(1). Hence, using the result of Lemma 2, we obtain

|H1a(w, v, t,XPi)| = Op(m
−(1−ν)/2(logm)1/2) = Op(1)

since ν < 1. Similarly, again using the result of Lemma 2, we find that
|H1b(w, v, t,XPi)| = Op(1). Accordingly, the term in brackets in (8.5) is Op(1). It
follows from Lenglart’s inequality (see, e.g., Andersen and Gill [1], Thm. I.1(b))
that for any given w (and in particular for w = u), supu∈[0,τ ] |B∗

1(t, u, w)| =
Op(

√
h).
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In regard to B∗∗
1 (t, u), using the Cauchy-Schwarz inequality, we have

|B∗∗
1 (t, u)| = (mh)1/2

∣∣∣∣∫ u

0

∫ t

0

ψ(u|s)(Γ(s, v)−1 − a2(s, v, h)
−1)[

1

mh2

n∑
i=1

K

(
XPi − s

h

)(
XPi − s

h

)

(λ̃i(v)− YRi �(v)λ0(v|XPi))

]
ds dv

∣∣∣∣∣
≤ (mh)1/2

√
Q1Q2

with

Q1 =

∫ u

0

∫ t

0

ψ(u|s)(Γ(s, v)−1 − a2(s, v, h)
−1)2ds dv

Q2 =

∫ u

0

∫ t

0

ψ(u|s)
[

1

mh2

n∑
i=1

K

(
XPi − s

h

)(
XPi − s

h

)

(λ̃i(v)− YRi �(v)λ0(v|XPi))

]2
ds dv

Now,

E[Q2] =

∫ u

0

∫ t

0

ψ(u|s)E
[{

1

mh2

n∑
i=1

K

(
XPi − s

h

)(
XPi − s

h

)

(λ̃i(v)− YRi �(v)λ0(v|XPi))

}2
⎤⎦ ds dv

= (mh2)−1

∫ u

0

∫ t

0

ψ(u|s)E
[
1

h2
K2

(
XPi − s

h

)(
XPi − s

h

)2

(λ̃i(v)− YRi �(v)λ0(v|XPi))
2

]
ds dv

= (mh2)−1

∫ u

0

∫ t

0

∫ τ0

0

h−2ψ(u|s)K2

(
ξ − s

h

)(
ξ − s

h

)2

(λ̃i(v)− YRi �(v)λ0(v|ξ))2g(ξ)dξ ds dv

= O((mh2)−1)

so that Q2 = Op((mh2)−1). Also, by Lemma A2, Q1 = Op(m
−(1−ν) (logm)).

We thus find that B∗∗
1 (t, u) = Op(m

−(1−2ν)/2(logm)1/2) = op(1).
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8.4. Analysis of A∗(t)

The term A∗(t) is

A∗(t) =

∫ t

0

∫ τ

0

[ψ̂(u, s)− ψ(u, s))]Λ∗
0(u|s) du ds

where

ψ(u, t) =

[∫ τ

0

(S0(v|t)− S1(v|t))2 dv
]−1

(S0(u|t)− S1(u|t))S0(u|t)

Defining

Z(t) =

∫ τ

0

(S0(v|t)− S1(v|t))2 dv

we can write
ψ(u, t) = Z(t)−1(S0(u|t)− S1(u|t))S0(u|t)

The estimate of Sq(u|s) (for q = 0, 1) is given by Ŝq(u|s) = exp(−Λ̂q(u|s)) with

Λ̂q(u|s) =
∫ u

0

Yq(s, v)
−1

[
1

nqh

n∑
i=1

χ(Qi, q)K((XPi − s)/h)dNRi �(v)

]

−
∫ u

0

X̄Pq(s, v)− s

Cq(s, v)

[
1

nqh

n∑
i=1

χ(Qi, q)K

(
XPi − s

h

)
(XPi − X̄Pq(s, v))dNRi �(v)

]
(8.6)

Let Ẑ(t) denote the estimate of Z(t) obtained by plugging in these estimates.
We can write

ψ̂(u, t)− ψ(u, t) = Ẑ(t)−1(Ŝ0(u|t)− Ŝ1(u|t))Ŝ0(u|t)
−Z(t)−1(S0(u|t)− S1(u|t))S0(u|t)

= −(S0(u|t)− S1(u|t))S0(u|t)Z(t)−2(Ẑ(t)−Z(t))

+ Z(t)−1(2S0(u|t)− S1(u|t))(Ŝ0(u|t)− S0(u|t))
−Z(t)−1S0(u|t)(Ŝ1(u|t)− S1(u|t))
+ higher order terms (8.7)

= −(S0(u|t)− S1(u|t))S0(u|t)Z(t)−2(Ẑ(t)−Z(t))

−Z(t)−1(2S0(u|t)− S1(u|t))S0(u|t)(Λ̂0(u|t)− Λ0(u|t))
+ Z(t)−1S0(u|t)S1(u|t)(Λ̂1(u|t)− Λ1(u|t))
+ higher order terms (8.8)

with

Ẑ(t)−Z(t) = −2

∫ τ

0

(S0(u|t)− S1(u|t)S0(u|t)(Λ̂0(u|t)− Λ0(u|t))du
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+ 2

∫ τ

0

(S0(u|t)− S1(u|t)S1(u|t)(Λ̂1(u|t)− Λ1(u|t))du

+ higher order terms (8.9)

In the above, we have used the Taylor expansion

exp(−Λ̂q(u|t))− exp(−Λq(u|t)) = − exp(−Λq(u|t))(Λ̂q(u|t)− Λq(u|t))
+O((Λ̂q(u|t)− Λq(u|t))2)

and the higher order terms in (8.8) and (8.9) are terms involving the quantity

(Λ̂q(u|t)−Λq(u|t))2, which are negligible in comparison with the terms involving

the quantity Λ̂q(u|t)− Λq(u|t).
Thus, the leading terms in A∗(t) are of the form

Ā∗(t) =

∫ t

0

∫ τ

0

W(u, s) (Λ̂q(u|t)− Λq(u|t)) du ds

=

∫ t

0

∫ τ

0

W(u, s)

{∫ u

0

Yq(s, v)
−1[

1

nqh

n∑
i=1

χ(Qi, q)K((XPi − t)/h)dNRi �(v)

]

−
∫ u

0

X̄Pq(s, v)− s

Cq(s, v)

[
1

nqh

n∑
i=1

χ(Qi, q)K

(
XPi − s

h

)
(XPi − X̄Pq(s, v))dNRi �(v)

]}
du ds

−
∫ t

0

∫ τ

0

W(u, s)

∫ u

0

λq(v) dv du ds

Since in our previous asymptotic analysis we focused on the case of q = 0, using
notation pertaining to that case, we will continue to do so here; exactly the
same analysis applies to the case of q = 1.

Based on (8.6), we can express Ā∗(t) as the sum of the following four terms

Ā∗
1(t) =

∫ t

0

∫ τ

0

W(u, s)

∫ u

0

Y0(s, v)
−1[

1

mh

n∑
i=1

K((XPi − s)/h)YRi �(v)λ0(v|XPi)

]
dv du ds

−
∫ t

0

∫ τ

0

W(u, s)

∫ u

0

λ0(v) dv du ds

Ā∗
2(t) =

∫ t

0

∫ τ

0

W(u, s)

∫ u

0

Y0(s, v)
−1[

1

mh

n∑
i=1

K((XPi − s)/h)dMRi �(v)

]
du ds
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Ā∗
3(t) = h−2

∫ t

0

∫ τ

0

W(u, s)

∫ u

0

(X̄P0(s, v)− s)Γ(s, v)−1

[
1

mh

n∑
i=1

K

(
XPi − s

h

)
(XPi − X̄P0(s, v))YRi �(v)λ0(v|XPi)

]
dv du ds

Ā∗
4(t) = h−2

∫ t

0

∫ τ

0

W(u, s)

∫ u

0

(X̄P0(s, v)− s)Γ(s, v)−1

[
1

mh

n∑
i=1

K

(
XPi − s

h

)
(XPi − X̄P0(s, v))dMRi �(v)

]
du ds

The terms Ā∗
1(t) and Ā∗

3(t) can be shown to be Op(h
2) using a Taylor expansion

argument similar to that used to analyze A1(t). The term Ā∗
2(t) can be written

as

Ā∗
2(t) =

1

m

n∑
i=1

∫ 1

−1

∫ τ

0

W(u,XPi − hr)I

(
r ∈

[
XPi − t

h
,
XPi

h

])
K(r)∫ u

0

YRi �(v)λ0(v|XPi)dMRi �(v)

Y0(XPi − hr, v)
du dr

= Ā∗
21(t) + Ā∗

22(t)

with

Ā∗
21(t) =

1

m

n∑
i=1

∫ 1

−1

∫ τ

0

W(u,XPi − hr)I

(
r ∈

[
XPi − t

h
,
XPi

h

])
K(r)∫ u

0

y0(XPi − hr, v)−1dMRi �(v) du dr

Ā∗
22(t) =

1

m

n∑
i=1

∫ 1

−1

∫ τ

0

W(u,XPi − hr)I

(
r ∈

[
XPi − t

h
,
XPi

h

])
K(r)∫ u

0

[Y0(XPi − hr, v)−1 − y0(XPi − hr, v)−1]dMRi �(v) du dr

Now, Ā∗
21(t) is the mean of i.i.d. bounded mean-zero random variables and thus

is Op(m
−1/2) by the central limit theorem. Using arguments along the lines used

for B1(t), Ā∗
22(t) can be shown to be negligible compared with Ā∗

21(t). Next, we
can write Ā∗

4(t) = Ā∗
41(t) + Ā∗

42(t) with

Ā∗
41(t) = h−2

∫ t

0

∫ τ

0

W(u, s)

∫ u

0

(X̄P0(s, v)− s)Γ(s, v)−1

[
1

mh

n∑
i=1

K

(
XPi − s

h

)
(XPi − s)dMRi �(v)

]
du ds

= h−1

∫ t

0

∫ τ

0

W(u, s)

∫ u

0

(X̄P0(s, v)− s)Γ(s, v)−1
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1

mh

n∑
i=1

K

(
XPi − s

h

)(
XPi − s

h

)
dMRi �(v)

]
du ds

=
1

m

n∑
i=1

∫ 1

−1

∫ τ

0

W(u,XPi − hr)I

(
r ∈

[
XPi − t

h
,
XPi

h

])
rK(r)

∫ u

0

h−1(X̄P0(XPi − hr, v)− (XPi − hr))Γ(XPi − hr), v)−1

dMRi �(v) du dr

and

Ā∗
42(t) = h−2

∫ t

0

∫ τ

0

W(u, s)

∫ u

0

(X̄P0(s, v)− s)2Γ(s, v)−1[
1

mh

n∑
i=1

K

(
XPi − s

h

)
dMRi �(v)

]
du ds

=
1

m

n∑
i=1

∫ 1

−1

∫ τ

0

W(u,XPi − hr)I

(
r ∈

[
XPi − t

h
,
XPi

h

])
K(r)

∫ u

0

h−2(X̄P0(XPi − hr, v)− (XPi − hr))2

Γ(XPi − hr, v)−1dMRi �(v) du dr

Using arguments along the lines used for B1(t), these two terms can be shown
to be negligible compared with Ā∗

21(t).

Appendix A: Appendix

A.1. Proof of Lemma 8.1

We begin with an expanded statement of the lemma and then proceed with the
proof.

Lemma 8.1. For k even we have

E[Ak(s, v, h)] =

{
ak(s, v, h) +O(h2) s ∈ I
ak(s, v, h) +O(h) s ∈ U

and for k odd we have

E[Ak(s, v, h)] =

{
O(h) s ∈ I
ak(s, v, h) +O(h) s ∈ U

In addition, for any k,

sup
s,v

|Ak(s, v, h)− E[Ak(s, v, h)]| = Op

(
(mh)−1/2(logm)1/2

)
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In general, we have

sup
s,v

|Ak(s, v, h)− ak(s, v, h)| ≤ sup
s,v

|Ak(s, v, h)− E[Ak(s, v, h)]|

+ sup
s,v

|E[Ak(s, v, h)]− ak(s, v, h)|

When k is even, the first term dominates for s ∈ I while the second term
dominates for s ∈ U , so that we obtain

sup
s,v

|Ak(s, v, h)− ak(s, v, h)| =
{

Op(m
−(1−ν)/2 (logm)1/2) s ∈ I

Op(m
−ν) s ∈ U

When k is odd, we get

sups,v |Ak(s, v, h)| = Op(h) s ∈ I
sups,v |Ak(s, v, h)− ak(s, v, h)| = Op(h) s ∈ U

Proof. The analysis of E[Ak(s, v)] involves a combination of a conditioning
argument with the usual change of variable + Taylor expansion argument. We
have

E[Ak(s, v, h)] = E

[
1

h

(
XPi − s

h

)k

K

(
XPi − s

h

)
YRi �(v)

]

= E

[
1

h

(
XPi − s

h

)k

K

(
XPi − s

h

)
E[YRi �(v)|XPi, δPi = 0]

]

=
1

h

∫ τ0

0

(
x− s

h

)k

K

(
x− s

h

)
y(x, v)g(x)dx

=

∫ (τ0−s)/h

−s/h

rkK(r)ϕ(s+ hr, v)dr

By Taylor’s theorem, we have

ϕ(s+ hr, v) = ϕ(s, v) + ϕ̇(s, v)(hr) + 1
2
R(s+ hr, v)(hr)2

where |R(s+ hr, v)| ≤ sups,v |ϕ̈(s, v)| < ∞. So we get

E[Ak(s, v, h)] = ϕ(s, v)

∫ (τ0−s)/h

−s/h

rkK(r)dr

+ hϕ̇(s, v)

∫ (τ0−s)/h

−s/h

rk+1K(r)dr

+ 1
2
h2

∫ (τ0−s)/h

−s/h

rk+2K(r)R(s+ hr, v)dr

and the claimed result follows.
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We now turn to the analysis of sups,v |Ak(s, v, h) − E[Ak(s, v, h)]|. We use
Corollary 2.2 of Giné and Guillou [8], a result concerning empirical processes
involving kernel terms. For x̄ = (x1, . . . , xJ) ∈ R

J , define

Lv(x̄) =

J∑
j=1

I(xj ≥ v)

Υs,v,h(x0, x̄) = Zk

(
x0 − s

h

)
Lv(x̄)

We can then write

Ak(s, v, h) =
1

mh

n∑
i=1

Υs,v,h(XPi, XR1, . . . , XRJ)

Since K is assumed polynomial on [−1, 1], the function Zk(r) satisfies Giné and
Guillou’s Condition (K1). Hence, by the arguments in Giné and Guillou, the
class {

Zk

(
· − s

h

)
: s ∈ R, h > 0

}
is a bounded, measurable Vapnik-Chervonenkis (VC) class of functions on R.
Any set of the form Lv(x̄) = j can be expressed as the result of Boolean
operations on half-spaces, and hence the class of sets {{x̄ : Lv(x̄) = j}, v ∈
R, j ∈ {0, . . . , J}} is a VC class (see Dudley [6], p. 141) (this is well known).
Further, any set of the form {(x0, x̄) : Υs,v,h(x0, x̄) ≤ b} with b < 0 can be
expressed as

J⋃
j=1

(
{x0 : Zk

(
· − s

h

)
≤ b/j} × {x̄ : Lv(x̄) = j}

)
and any set of this form with b ≥ 0 can be expressed as⎡⎣ J⋃

j=1

(
{x0 : Zk

(
· − s

h

)
≤ b/j} × {x̄ : Lv(x̄) = j}

)⎤⎦
⋃ ⎛⎝R× {x̄ : Lv(x̄) = 0}

⎞⎠
Recalling that the Cartesian product preserves the VC property, we can conclude
that the class of functions Υ∗ = {Υs,v,h : s ∈ [0, τ0], v ∈ [0, τ ], h > 0} is a
bounded VC class. Moreover, since the map (s, v, h, x0, x̄) �→ Υs,v,h(x0, x̄) is
jointly measurable, the class Υ∗ is measurable (see Giné and Guillou, bottom
of p. 911 to top of p. 912). This allows us to apply Giné and Guillou’s Corollary
2.2.

We have sup |Υs,v,h(x0, x̄)| ≤ U with U = J supr |r|kK(r). Also, a simple
standard calculation shows that Var(Υs,v,h(XPi, XR1, . . . , XRJ)) ≤ Rh for a
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constant R. Writing σ2 = Rh and letting C denote the constant C in Giné and
Guillou Eqn. (2.6), we find, after some simple algebra, that for m sufficiently
large

C
√
mσ

√
log

U

σ
≤ ρ

√
mh logm

with ρ = C
√
2Rν. Thus, writing Es,v,h = E[Υs,v,h(XPi, XR1, . . . , XRJ)] and

applying Giné and Guillou’s Corollary 2.2, for m sufficiently large we have

Pr

((
mh

logm

)1/2

sup
s,v

|Ak(s, v)− E[Ak(s, v)]| > ρ

)

= Pr

(∣∣∣∣∣
n∑

i=1

Υs,v,h(XPi, XR1, . . . , XRJ)− Es,v,h

∣∣∣∣∣ > ρ
√

mh logm

)

≤ Pr

(∣∣∣∣∣
n∑

i=1

Υs,v,h(XPi, XR1, . . . , XRJ)− Es,v,h

∣∣∣∣∣ > C
√
mσ

√
log

U

σ

)

≤ L1 exp

(
−L2

U

σ

)
= L1 exp(−L2[logU/R− logαm + ν logm]) → 0

where L1 and L2 are universal constants. This proves that

sup
s,v

|Ak(s, v, h)− E[Ak(s, v, h)]| = Op

(
(mh)−1/2(logm)1/2

)
A.2. Extension to time transformation of the proband observation

times

In this section, we sketch the proof that the consistency and asymptotic
normality of our estimator is maintained under a time transformation based
on an estimate Gm of the cumulative distribution function G of the proband
observation times. In this proof we need to assume that G has four bounded
derivatives and that a smooth estimate of G is used. We conjecture that the
result holds without these conditions (in our simulations, we obtained good
results taking Gm to be a linearly interpolated version of the empirical CDF),
but we do not have a proof.

We take

Gm(t) =
1

m

n∑
i=1

K
(
t−XPi

bm

)
where

K(a) =

∫ a

−∞
K(c)dc

with bm chosen as described in Schuster [10] so that Gm(t) and its first three
derivatives converge uniformly to G and its first three derivatives. We define
D = G−1 and Dm = G−1

m .
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For any thrice differentiable inverse CDF function D and any s̄ ∈ [0, 1], define

ΛD(s̄) = Λ(D(s̄))

S0,D(u|s̄) = S0(u|D(s̄))

Λ0,D(u|s̄) = Λ0(u|D(s̄))

Λ∗
0,D(u|s̄) =

∂

∂s̄
Λ0,D(u|s̄) = Λ∗

0(u|D(s̄))D′(s̄)

λ0,D(u|s̄) =
∂

∂u
Λ0,D(u|s̄) = λ0(u|D(s̄))

λ∗
0,D(u|s̄) =

∂

∂s̄
λ0,D(u|s̄)

λ∗∗
0,D(u|s̄) =

∂2

∂s̄2
λ0,D(u|s̄)

λ∗∗∗
0,D(u|s̄) =

∂3

∂s̄3
λ0,D(u|s̄)

ψD(u, s̄) = ψ(u,D(s̄))

Also, for any distribution function G, define

Ak(s̄, v, h,G) =
1

mh

m∑
i=1

YRi �(v)Zk

(
G(XPi)− s̄

h

)
M(s̄, v,G) = A1(s̄, v, h,G)/A0(s̄, v, h,G)
Γ(s̄, v,G) = A2(s̄, v, h,G)−A0(s̄, v, h,G)−1(A1(s̄, v, h,G))2

For any given nonrandom G, the analogues of Lemmas A1 and A2 hold for the
above quantities. Our estimator Λ̂∗

0,D(u|s̄) of Λ∗
0,D(u|s̄) is

Λ̂∗
0,D(u|s̄) =

∫ u

0

Γ(s̄, v, Gm)
−1

[
1

mh3

m∑
i=1

K

(
Gm(XPi)− s̄

h

)
(Gm(XPi)−M(s̄, v, Gm))dNRi �(v)

]
our estimator of ΛD(s̄) is

Λ̂D(t̄) = −
∫ t̄

0

∫ τ

0

ψ̂D(u, s̄)Λ̂∗
0,D(u|s̄) du ds̄

and our estimator of Λ(t) is Λ̂(t) = Λ̂D(Gm(t)).
In the analysis of Λ̂D(t̄) − ΛD(t̄), the analogues of A1(t) and A2(t) are

A1(t̄, Gm) and A2(t̄, Gm), where

A1(t̄,G) =
1

mh3

m∑
i=1

∫ t̄

0

∫ τ

0

∫ u

0

ψD(u, s̄)Γ(s̄, v,G)−1YRi �(v)
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K

(
G(XPi)− s̄

h

)
(G(XPi)−M(s̄, v,G))

(λ0,G−1(v|G(XPi))− (G(XPi)−M(s̄, v,G))

λ∗
0,D(v|s̄))dv du ds̄

A2(t̄,G) =
1

mh3

m∑
i=1

∫ t̄

0

∫ τ

0

∫ u

0

ψD(u, s̄)Γ(s̄, v,G)−1

K

(
G(XPi)− s̄

h

)
(G(XPi)−M(s̄, v,G))dMRi �(v) du ds̄

We can write A1(t̄,G) = A1a(t̄,G)−A1b(t̄,G), where

A1a(t̄,G) =
1

mh3

m∑
i=1

∫ t̄

0

∫ τ

0

∫ u

0

ψD(u, s̄)Γ(s̄, v,G)−1YRi �(v)

K

(
G(XPi)− s̄

h

)
(G(XPi)−M(s̄, v,G))

(λ0,G−1(v|G(XPi))− (G(XPi)−M(s̄, v,G))
λ∗
0,G−1(v|s̄))dv du ds̄

A1b(t̄,G) =
∫ t̄

0

∫ τ

0

ψD(u, s̄)(Λ∗
0,G−1(u|s̄)− Λ∗

0,D(u|s̄))du ds̄

By the same Taylor expansion argument as in Section 8 of the main paper, we
can write

A1a(t̄,G) =
1

mh3

m∑
i=1

∫ t̄

0

∫ τ

0

∫ u

0

ψD(u, s̄)Γ(s̄, v,G)−1YRi �(v)K

(
G(XPi)− s̄

h

)
(G(XPi)−M(s̄, v,G))

[
1
2
λ∗∗
0,G−1(v|s̄)(G(XPi)− s̄)2 +R(s̄, v,G(XPi))

]
where |R(s̄, v, x̄)| ≤ R∗

m|s̄−x̄|3 withR∗
m = Op(1). We have (mh)1/2 A1a(t̄, G) by

the same argument as in Section 8 of the main paper, which leaves us to deal with
A1a(t̄, Gm)−A1a(t̄, G) and A1b(t̄, Gm). The quantity A1a(t̄, Gm)−A1a(t̄, G) can
be broken up into a series of various terms. A typical term is

Ψ =
1

mh3

m∑
i=1

∫ t̄

0

∫ τ

0

∫ u

0

ψD(u, s̄)Γ(s̄, v, G)−1YRi �(v)[
K

(
Gm(XPi)− s̄

h

)
−K

(
G(XPi)− s̄

h

)]
(G(XPi)−M(s̄, v, G))[

1
2
λ∗∗
0,D(v|s̄)(G(XPi)− s̄)2 +R(s̄, v, G(XPi))

]
dv du ds̄

We can write Ψ = Ψ1 −Ψ2, where

Ψ1 =
1

mh3

m∑
i=1

∫ t̄

0

∫ τ

0

∫ u

0

ψD(u, s̄)Γ(s̄, v, G)−1YRi �(v)
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K

(
Gm(XPi)− s̄

h

)
−K

(
G(XPi)− s̄

h

)]
(G(XPi)− s̄)[

1
2
λ∗∗
0,D(v|s̄)(G(XPi)− s̄)2 +R(s̄, v, G(XPi))

]
dv du ds̄

Ψ2 =
1

mh3

m∑
i=1

∫ t̄

0

∫ τ

0

∫ u

0

ψD(u, s̄)Γ(s̄, v, G)−1YRi �(v)

[
K

(
Gm(XPi)− s̄

h

)
−K

(
G(XPi)− s̄

h

)]
(M(s̄, v, G)− s̄)[

1
2
λ∗∗
0,D(v|s̄)(G(XPi)− s̄)2 +R(s̄, v, G(XPi))

]
dv du ds̄

Write Δi = (Gm(XPi)−G(XPi))/h and Δ = ‖Gm −G‖∞/h. We have

|Ψ1| ≤ Op(1)

[
1

m

m∑
i=1

∫ t̄

0

∣∣∣∣K (
Gm(XPi)− s̄

h

)
−K

(
G(XPi)− s̄

h

)∣∣∣∣{∣∣∣∣G(XPi)− s̄

h

∣∣∣∣3 + ∣∣∣∣G(XPi)− s̄

h

∣∣∣∣4
}
ds̄

]

= Op(1)

[
h

m

m∑
i=1

∫ (t̄−G(XPi))/h

−G(XPi)/h

∣∣∣∣K (
r +

Gm(XPi)−G(XPi)

h

)
−K(r)

∣∣∣∣
(|r|3 + |r|4) dr

]
≤ Op(1)

[
h

m

m∑
i=1

∫ 1+|Δ|

−1−|Δ|
(|r|3 + |r|4)dr|K(r +Δi)−K(r)|dr

]

≤ Op(1)

[
h

m

m∑
i=1

|Δi|
∫ 1+|Δ|

−1−|Δ|
(|r|3 + |r|4)dr

]

≤ Op(1)[hΔ(1 +Δ)4]

Recalling that ‖Gm − G‖∞ = Op(m
−1/2), we obtain |Ψ1| = Op(m

−1/2). Thus
(mh)1/2 Ψ1 = op(1). Similarly, using Lemma A2, (mh)1/2 Ψ2 = op(1).

Next, regarding A1b(t̄, Gm), we can write

Λ∗
0,Dm

(u|s̄)− Λ∗
0,D(u|s̄) = Λ∗

0(u|Dm(s̄))D′
m(s̄)− Λ∗

0(u|D(s̄))D′(s̄)

= (Λ∗
0(u|Dm(s̄))− Λ∗

0(u|D(s̄)))D′
m(s̄) + Λ∗

0(u|D(s̄))(D′
m(s̄)−D′(s̄))

= Λ∗∗
0,D(u|s∗)(Dm(s̄)−D(s̄)) + Λ∗

0(u|D(s̄))(D′
m(s̄)−D′(s̄))

with s∗ betweenDm(s̄) andD(s̄). The first of the above two terms is Op(m
−1/2).

Regarding the second term, using integration by parts we can write∫ t̄

0

ψD(u, s̄)Λ∗
0(u|D(s̄))(D′

m(s̄)−D′(s̄))ds̄
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= [ψD(u, s̄)Λ∗
0(u|D(s̄))(Dm(s̄)−D(s̄))]

t̄
0

−
∫ t̄

0

[
∂

∂s̄
ψD(u, s̄)Λ∗

0(u|D(s̄))

]
(Dm(s̄)−D(s̄))ds̄

= Op(m
−1/2)

Thus (mh)1/2 A1b(t̄, Gm) = op(1).
We turn now to A2(t̄, Gm). By the same arguments as before we find that

(mh)1/2 A2(t̄, G) converges in distribution to a mean-zero normal distribution.
This leaves us to deal with A2(t̄, Gm) −A2(t̄, G). This quantity can be broken
up into a series of terms, a typical one of which is∫ τ

0

Ω(t̄, u)du

with

Ω(t̄, u) =
1

mh3

m∑
i=1

∫ t̄

0

∫ τ

0

∫ u

0

ψD(u, s̄)a2(s̄, v, G)−1

[
K

(
Gm(XPi)− s̄

h

)
−K

(
G(XPi)− s̄

h

)]
(G(XPi)− s̄) dMRi �(v) du ds̄

=
1

mh2

m∑
i=1

∫ t̄

0

∫ τ

0

∫ u

0

ψD(u, s̄)a2(s̄, v, G)−1

[
K

(
Gm(XPi)− s̄

h

)
−K

(
G(XPi)− s̄

h

)]
(
G(XPi)− s̄

h

)
dMRi �(v) du ds̄

This term can be dealt using an argument similar to that used for B1(t, u). We
can write Ω(u) = Ω∗(t̄, u, w) + Ω∗∗(t̄, u) with

Ω∗(t̄, u, w) =
1

m

m∑
i=1

∫ u

0

H̃(w, v, t̄, XPi)M̃Ri(v)

Ω∗∗(t̄, u) =
1

m

m∑
i=1

∫ u

0

H̃(w, v, t̄, XPi)(λ̃i(v)− YRi �(v)λ0,D(v|G(XPi)))dv

H̃(w, v, t,XPi) =
1

h2

∫ t̄

0

ψD(u, s̄)a2(s̄, v, G)−1[
K

(
Gm(XPi)− s̄

h

)
−K

(
G(XPi)− s̄

h

)](
G(XPi)− s̄

h

)
ds̄

We have

|H̃(w, v, t̄, XPi)| = H̃a(w, v, t̄, XPi) + H̃b(w, v, t̄, XPi)
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with

H̃a(w, v,t̄, XPi) =
1

h3

∫ t̄

0

|ψD(w, s̄)|a2(s̄, v, G)−1∣∣∣∣K ′
(
Gm(XPi)− s̄

h

)∣∣∣∣ ∣∣∣∣G(XPi)− s̄

h

∣∣∣∣ |Gm(XPi)−G(XPi)| ds̄

H̃b(w, v,t,XPi) =
1

h4

∫ t̄

0

|ψD(w, s̄)|a2(s̄, v, G)−1

|K ′′(υi)|
∣∣∣∣G(XPi)− s̄

h

∣∣∣∣ (Gm(XPi)−G(XPi))
2

I

(
min

{∣∣∣∣G(XPi)− s̄

h

∣∣∣∣ , ∣∣∣∣Gm(XPi)− s̄

h

∣∣∣∣} ≤ 1

)
ds̄

where υi is a value between (G(XPi)− s̄)/h and (Gm(XPi)− s̄)/h. Now,

H̃a(w, v, t̄, XPi) ≤ Op(1)h
−1‖Gm −G‖∞Ã(G(XPi))

with

Ã(ξ) =
1

h2

∫ t

0

K ′
(
ξ − s

h

) ∣∣∣∣ξ − s

h

∣∣∣∣ ds
By the same argument as used before for A(XPi), we have Ã(G(XPi)) = Op(1).
Thus,

H̃a(w, v, t̄, XPi) ≤ Op(1)h
−1‖Gm −G‖∞ = Op(1)

By a similar argument,

H̃b(w, v, t̄, XPi) ≤ Op(1)h
−2‖Gm −G‖2∞ = Op(1)

Hence, by the same argument as used before for B∗
1(t, u, u), we find that

(mh)1/2 Ω∗(t̄, u) = op(1). Finally, by the same argument as used for B∗∗
1 (t, u),

we obtain (mh)1/2 Ω∗∗(t̄, u) = op(1).
Finally, we have

Λ̂(t)− Λ(t) = Λ̂D(Gm(t))− ΛD(G(t))

= (Λ̂D(G(t))− ΛD(G(t))) + (Λ̂D(Gm(t))− Λ̂D(G(t)))

We have just shown that (mh)1/2 (Λ̂D(G(t)) − ΛD(G(t))) converges in
distribution to a mean-zero normal distribution. We now show that
(mh)1/2 (Λ̂D(Gm(t))− Λ̂D(G(t))) = op(1). We have

|Λ̂D(Gm(t))− Λ̂D(G(t))| ≤ ‖Gm −G‖∞ sup
s̄∈[0,1]

∣∣∣∣∫ τ

0

ψ̂D(u, s̄)Λ̂∗
0,D(u|s̄) du

∣∣∣∣
we know that ‖Gm −G‖∞ = Op(m

−1/2), and we have

sup
s̄∈[0,1]

∣∣∣∣∫ τ

0

ψ̂D(u, s̄)Λ̂∗
0,D(u|s̄) du

∣∣∣∣ = Op(1)

so we get (mh)1/2 (Λ̂D(Gm(t))− Λ̂D(G(t))) = op(1) as desired.
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