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Abstract: In this paper, we investigate quasi-maximum likelihood (QML)
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equivalent to the class of cointegrated continuous-time ARMA (MCARMA)
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to define a QML-function. Moreover, the parameter vector is divided ap-
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for cointegrated solutions of continuous-time linear state space models as
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1. Introduction

This paper deals with quasi-maximum likelihood (QML) estimation for the pa-
rameters of a cointegrated solution of a continuous-time linear state space model.
The source of randomness in our model is a Lévy process, i.e., an R"-valued
stochastic process L = (L(t))¢>o with L(0) = 0, P-a.s., stationary and indepen-
dent increments, and cadlag sample paths. A typical example of a Lévy process
is a Brownian motion. More details on Lévy processes can be found, e.g., in the
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monograph of Sato [48]. For deterministic matrices A € RV*N B ¢ RNVxm,
C € RN and an R™-valued Lévy process L, an R?-valued continuous-time
linear state space model (A, B,C,L) is defined by the state and observation
equation

dX(t) = AX(t)dt+ BdL(t), (1.1)
Y(t) = CX(t). '

The state vector process X = (X (t))¢>0 is an RY-valued process and the output
process Y = (Y (t))¢>0 is an R%-valued process. Since in this model the driving
noise is a Lévy process the model allows flexible margins. In particular, the
margins can be Gaussian if we use a Brownian motion as Lévy process.

The topic of this paper are cointegrated solutions Y of linear state space mod-
els. Cointegrated means that Y is non stationary but has stationary increments,
and there exist linear combinations of Y which are stationary. The cointegration
space is the space spanned by all vectors 3 so that 7Y is stationary. Without
any transformation of the state space model (1.1) it is impossible to see clearly
if there exists a cointegrated solution, not to mention the form of the cointe-
gration space. In the case of a minimal state-space model (see Bernstein [9]
for a definition), the eigenvalues of A determine whether a solution ¥ may be
stationary or cointegrated. If the eigenvalue 0 of A has the same geometric and
algebraic multiplicity 0 < ¢ < min(d, m), and all other eigenvalues of A have
negative real parts, then there exists a cointegrated solution Y. In that case Y
has the form

Y(t) = C1Z + C1B1L(t) + Y (1), (1.2)

where B; € Re™ and C; € R4*¢ have rank ¢ (see Fasen-Hartmann and Scholz
[18, Theorem 3.3]). The starting vector Z is a c-dimensional random vector. The
process Yy = (Ysi(t))s>0 is a stationary solution of the state space model

dX s (t) A X (t)dt + BodL(t),

Va(t) = CoXul(t), (1.3)

driven by the Lévy process L with Ay € RIN-x(N=¢) B, ¢ RIN=e)xm apq
Co € R*(N=¢) The matrices A, A1, A, B, By, Bo, C,C1, Cy and Cj are related
through an invertible transformation matrix 7' € RY*¥ such that

(N—c)xc 2

CTil = (Cl, 02) = O/,

where B;T denotes the transpose of B; (i =1,2) and O(n_c)xc € RWN=¢)xe de-
notes a matrix with only zero components. The process Y in (1.2) is obviously
cointegrated with cointegration space spanned by the orthogonal of Cj if the
covariance matrix Cov(L(1)) is non-singular. The probabilistic properties of Y
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are analyzed in detail in Fasen-Hartmann and Scholz [18] and lay the ground-
work for the present paper. Remarkable is that Y is a solution of the state space
model (A’, B’,C", L) as well.

The class of cointegrated solutions of linear state space models is huge.
They are equal to the class of cointegrated multivariate continuous-time ARMA
(MCARMA) processes (see Fasen-Hartmann and Scholz [18]). As the name sug-
gests, MCARMA processes are the continuous-time versions of the popular and
well-established ARMA processes in discrete-time. In finance and economics
continuous-time models provide the basis for option pricing, asset allocation
and term structure theory. The underlying observations of asset prices, exchange
rates, and interest rates are often irregularly spaced, in particular, in the con-
text of high frequency data. Consequently, one often works with continuous-
time models which infer the implied dynamics and properties of the estimated
model at different frequencies (see Chen et al. [17]). Fitting discrete-time mod-
els to such kind of data have the drawback that the model parameters are not
time-invariant: If the sampling frequency changes, then the parameters of the
discrete-time model change as well. The advantages of continuous-time mod-
elling over discrete-time modelling in economics and finance are described in
detail, i.a., in the distinguished papers of Bergstrom [7], Phillips [43], Cham-
bers, McCrorie and Thornton [15] and in signal processing, systems and control
they are described in Sinha and Rao [54]. In particular, MCARMA models are
applied in diversified fields as signal processing, systems and control (see Gar-
nier and Wang [22], Sinha and Rao [53]), high-frequency financial econometrics
(see Todorov [58]) and financial mathematics (see Benth et al. [6], Andresen et
al. [1]). Thornton and Chambers [16] use them as well for modelling sunspot
data. Empirical relevance of non-stationary MCARMA processes in economics
and in finance is shown, i.a., in Thornton and Chambers [16, 56, 57].

There is not much known about the statistical inference of cointegrated Lévy
driven MCARMA models. In the context of non-stationary MCARMA pro-
cesses most attention is paid to Gaussian MCAR(p) (multivariate continuous-
time AR) processes: An algorithm to estimate the structural parameters in
a Gaussian MCAR(p) model by maximum-likelihood started already by Har-
vey and Stock [26, 27, 28] and were further explored in the well-known paper
of Bergstrom [8]. Zadrozny [60] investigates continuous-time Brownian motion
driven ARMAX models allowing stocks and flows at different frequencies and
higher order integration. These papers use the state space representation of
the MCARMA process and Kalman filtering techniques to compute the Gaus-
sian likelihood function. In a recent paper Thornton and Chambers [57] extend
the results to MCARMA processes with mixed stock-flow data using an exact
discrete-time ARMA representation of the low-frequency observed MCARMA
process. However, all of the papers have in common on the one hand, that they
do not analyze the asymptotic properties of the estimators. On the other hand,
they are not able to estimate the cointegration space directly or rather relate
their results to cointegrated models.

Besides, statistical inference and identification of continuously and discretely
observed cointegrated Gaussian MCAR(1) processes, which are homogeneous
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Gaussian diffusions, are considered in Kessler and Rahbek [32, 33]; Stockmarr
and Jacobsen [55] and frequency domain estimators for cointegrated Gaussian
MCAR(p) models are topic of Chambers and McCrorie [14]. There are only a
few papers investigating non-Gaussian cointegrated MCARMA processes. For
example, Fasen [20] treats a multiple regression model in continuous-time. There
the stationary part is a multivariate Ornstein-Uhlenbeck process and the process
is observed on an equidistant time-grid. The model in Fasen [21] is similar but
the stationary part is an MCARMA process and the process is observed on a
high-frequency time grid.

The aim of this paper is to investigate QML estimators for C7, By and the
parameters of the stationary process Yy ; from the discrete-time observations
Y(h),...,Y(nh) where h > 0 is fixed. The parameters of C; are the long-
run parameters, whereas the other parameters are the short-run parameters.
Although there exist results on QML for discrete-time cointegrated processes
they can unfortunately not directly be applied to the sampled process for the
following reasons.

MCARMA processes sampled equidistantly belong to the class of ARMA pro-
cesses (see Thornton and Chambers [57] and Chambers, McCrorie and Thornton
[15]). But identification problems arise from employing the ARMA structure for
the estimation of MCARMA parameters. That is until now an unsolved prob-
lem (see as well the overview article Chambers, McCrorie and Thornton [15]).
Moreover, in this representation the innovations are only uncorrelated and not
iid (independent and identically distributed). However, statistical inference for
cointegrated ARMA models has been done only for an iid noise elsewise even a
Gaussian white noise, see, e.g., the monographs of Johansen [30], Liitkepohl [35]
and Reinsel [44], and cannot be used for estimation of Lévy driven MCARMA
processes.

Another attempt is to use the representation of the sampled continuous-
time state space model as discrete-time state space model (see Zadrozny [60]).
That is what we do in this paper. Sampling Y with distance h > 0 results in
Y = (Y (kh))ren, = (Yk(h))keNo, a cointegrated solution of the discrete time
state-space model

X]gh) — eAhXIEh)"_gl(gh)u

1.4
yM = ox®), (1.4)

where (f,(ch))keNo = (f(lzh_l)heA(kh_t)BdL(t))keNo is an iid sequence. For coin-

tegrated solutions of discrete-time state space models of the form

Xp = AXy+ €,

Y, = CXi+e, (1.5)
where (e)ren, 1S a white noise, asymptotic properties of the QML estimator
were investigated in the unpublished work of Bauer and Wagner [4]. An essential
difference between the state space model (1.4) and (1.5) is that in (1.4) the noise
is only going into the state equation, whereas in (1.5) it is going into both the
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state and the observation equation. An advantage of model (1.5) over our state
space model is that it is already in innovation form, i.e., the white noise (e)ren,
can be represented by finitely many past values of (Yj)ren, due to

k
e =Yy — C(A—BC)* Xy - CY (A— BCY'BY;_;. (1.6)

j=1

But in our model (1.4) it is not possible to write the noise (f,(ch))keNo by the
past of (Yk(h))keNo. Therefore, we are not able to apply the asymptotic results
of Bauer and Wagner [4] to the setting of our paper.

We use the Kalman-filter to calculate the linear innovations and to construct
an error correction form (see Fasen-Hartmann and Scholz [18, Proposition 5.5
and Theorem 5.8]). However, the linear innovations and the error correction
form use infinitely many past values in contrast to the usual finite order form
for VARMA models and discrete-time state space models as, e.g., in Liitkepohl
and Claessen [36], Saikkonen [45], Yap and Reinsel [59] and respectively, Aoki [2],
Bauer and Wagner [4] (see (1.6)). Indeed, the linear innovations are stationary,
but in general it is not possible to say anything about their mixing properties.
Hence, standard limit results for stationary mixing processes cannot be applied.
For more details in the case of stationary MCARMA models we refer to Schlemm
and Stelzer [50].

The representation of the innovations motivates the definition of the pseudo-
innovations and hence, the pseudo-Gaussian likelihood function. The term
pseudo reflects in the first case that we do not use the real innovations and in
the second case that we do not have a Gaussian model. This approach is stan-
dard for stationary models (see Schlemm and Stelzer [51]) but it is not so well
investigated for non-stationary models. In our model, the pseudo-innovations
are as well non-stationary and hence, classical methods for QML estimation for
stationary models do not work, e.g., the convergence of the quasi-maximum-
likelihood function by a law of large numbers or an ergodic theorem.

Well-known achievements on ML estimation for integrated and cointegrated
processes in discrete time are Saikkonen [46, 47]. Under the constraint that
the ML estimator is consistent and the long-run parameter estimator satisfies
some appropriate order of consistency condition, the papers present stochastic
equicontinuity criteria for the standardized score vector and the standardized
Hessian matrix such that the asymptotic distribution of the ML estimator can
be calculated. The main contributions of these papers are the derivation of
stochastic equicontinuity and weak convergence results of various first and sec-
ond order sample moments from integrated processes. The concepts are applied
to a ML estimator in a simple regression model with integrated and stationary
regressors.

In this paper, we follow the ideas of Saikkonen [47] to derive the asymp-
totic distribution of the QML estimator by providing evidence that these three
criteria are satisfied. However, our model does not satisfy the stochastic equicon-
tinuity conditions of Saikkonen [46, 47] such that the weak convergence results
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of these papers cannot be applied directly. But we use a similar approach. In
the derivation of the consistency of the QML estimator we even require local
Lipschitz continuity for some parts of the likelihood-function which is stronger
than local stochastic equicontinuity. For this reason we pay our attention in this
paper to local Lipschitz continuity instead of stochastic equicontinuity.

Although Saikkonen [46, 47] presents no general conditions for the analysis
of the consistency and the order of consistency of a ML estimator in an in-
tegrated or cointegrated model, the verification of the consistency of the ML
estimator in the regression example of Saikkonen [47] suggests, how to proceed
in more general models. That is done by a stepwise approach: In the first step,
we prove the consistency of the long-run parameter estimator and in the second
step its consistency rate; the long-run parameter estimator is super-consistent.
In the third step, we are able to prove the consistency of the short-run param-
eter estimator. However, important for the proofs is, as in Saikkonen [47], the
appropriate division of the likelihood-function where one part of the likelihood-
function depends only on the short-run parameters and is based on stationary
processes. This decomposition is not obvious and presumes as well a splitting
of the pseudo-innovations in a non-stationary and a stationary part depending
only on the short-run parameters.

The paper is structured on the following way. An introduction into QML
estimation for cointegrated continuous-time linear state space models is given
in Section 2. First, we state in Section 2.1 the assumptions about our para-
metric family of cointegrated output processes Y. Then, we define the pseudo-
innovations for the QML estimation by the Kalman filter in Section 2.2. Based
on the pseudo-innovations we calculate the pseudo-Gaussian log-likelihood func-
tion in Section 2.3. In Section 2.4 we introduce some identifiability conditions
to get a unique minimum of the likelihood function. The main results of this
paper are given in Section 3 and Section 4. First, we show the consistency of
the QML estimator in Section 3. Next, we calculate the asymptotic distribution
of the QML estimator in Section 4. The short-run QML estimator is asymp-
totically normally distributed and mimics the properties of QML estimators for
stationary models. In contrast, the long-run QML estimator is asymptotically
mixed normally distributed with a convergence rate of n instead of \/n as oc-
curring in stationary models. Finally, in Section 5 we show the performance of
our estimator in a simulation study, and in Section 6 we give some conclusions.
Eventually, in Appendix A we present some asymptotic results and local Lips-
chitz continuity conditions which we use throughout the paper. Because of their
technicality and to keep the paper readable, they are moved to the appendix.

Notation We use as norms the Euclidean norm ||-|| in R? and the Frobenius
norm ||-|| for matrices, which is submultiplicative. 04 s denotes the zero matrix
in R and I; is the identity matrix in R?*?. For a matrix A € R?*? we
denote by A7 its transpose, tr(A) its trace, det(A) its determinant, rank A its
rank, A\pin(A) its smallest eigenvalue and opin(A4) its smallest singular value.
If A is symmetric and positive semi-definite, we write Az for the principal
square root, i.e., A? is a symmetric, positive semi-definite matrix satisfying
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A2Az = A. For a matrix A € R¥* with rank A = s, AL is a d x (d — s)-
dimensional matrix with rank (d — s) satisfying ATA+ = Oy (d—s) and ALTA =
O(d—s)xs- For two matrices A € R¥* and B € R™", we denote by A ® B the
Kronecker product which is an element of R 5" by vec(A) the operator which
converts the matrix A into a column vector and by vech(A) the operator which
converts a symmetric matrix A into a column vector by vectorizing only the
lower triangular part of A. We write 0; for the partial derivative operator with
respect to the i*" coordinate and 0;,; for the second partial derivative operator
with respect to the i*" and j** coordinate. Further, for a matrix function f(2J)
in R™™ with ¥ € R® the gradient with respect to the parameter vector 9 is
denoted by Vyf(d) = %f#ﬂ) € RI™Xs Let &€ = (& )reny and 1 = (M) ren
be d-dimensional stochastic processes then I'¢ (1) = Cov(&1,m141) and T'¢(l) =
Cov(&1,&141), I € Ny, are the covariance functions. Finally, we denote with SN

weak convergence and with £, convergence in probability. In general € denotes

a constant which may change from line to line.

2. Step-wise quasi-maximum likelihood estimation
2.1. Parametric model

Let © C R®, s € N, be a parameter space. We assume that we have a parametric
family (Yy)seco of solutions of continuous-time cointegrated linear state space
models of the form

Yy(t) = Cr9Z + Cr9B1yLy(t)+ Ysrv(t), t>0, (2.1)

where Z is a random starting vector, Ly = (Ly(t))¢>0 is a Lévy process and
Yo = (Ysr,9(t))e>o0 is a stationary solution of the state-space model

dXs9(t) = A 9Xso(t)dt + BaydLy(t),

2.2
Yoro(t) = CoyXuo(l), (2:2)

with A2)19 € R(N_C)X(N_C), By € Rexm, By € R(N_C)Xm, 01719 € R¥*¢ and
Cay € RIX(N=¢) where ¢ < min(d,m) < N. In the parameterization of the Lévy
process Ly only the covariance matrix ElLS\ of Ly is parameterized.

The parameter vector of the underlying process Y is denoted by 9, i.e.,
(AQ7 Bl, BQ, Cl, CQ, L) = (A2’190, Blﬂgo s Bgﬂgo, 011190, 02’7907 L,yo) where Yst is a
stationary solution of the state space model (Ay, B, Co, L). Throughout the pa-
per, we shortly write (A2 ¢, B1,9, B2,9, C1.9,Ca,9, Ly) for the cointegrated state
space model with solution Yy as defined in (2.1). To be more precise we have
the following assumptions on our model.

Assumption A. For any ¥ € O the cointegrated state space model (Az 9, B9,
Bs.9,C1,9,C2.9, L) satisfies the following conditions:

(A1) The parameter space © is a compact subset of R®.
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(A2) The true parameter vector 9° lies in the interior of ©.

(A3) The Lévy process Ly has mean zero and non-singular covariance ma-
triv X5 = E[Ly(1)Ly(1)T]. Moreover, there exists a & > 0 such that
E||Ly(1)||*+° < oo for any ¥ € ©.

(A4) The eigenvalues of Ag g have strictly negative real parts.

(A5) The triplet (As,g, Ba.g, Ca,9) is minimal with McMillan degree N —c (see
Hannan and Deistler [24, Chapter 4.2] for the definition of McMillan
degree).

(A6) The matrices By .y € RE*™ and Cy 9RY*¢ have full rank ¢ < min(d, m).

(A7) The c-dimensional starting random wvector Z does not depend on 0,
E||Z||? < oo and Z is independent of Ly.

(A8) The functions 9 — Asg, 9 +— Biyg, ¥+ Cyg fori € {1,2}, 9 — Xk
and 91 — Of:'ﬁl are three times continuously differentiable, where ijﬁ 18
the unique lower triangular matriz with Cf:ngjﬂ =14 . and Cf:gClﬂg =
O(dfc)xc-

(A.Q) Ay = dmg(OcXC,Ag,g) € RNXN, By = (Blﬂ,B;—,ﬁ)T € RNxm, Cy :
(C1,9,C29) € RN Moreover, Cy has full rank d < N.

(A10) For any A\, N € o(Ay) = 0(A2,9)U{0} and any k € Z\{0}: \—=X # 2nk/h
(Kalman-Bertram criterion,).

Remark 2.1.

(i) (A1) and (A2) are standard assumptions for QML estimation.

(ii) Assumption (A3)-(A4) are sufficient assumptions to guarantee that there
exists a stationary solution Yy, 9 of the state space model (2.2) (see Mar-
quardt and Stelzer [38]).

(i11) Due to assumption (A5) the state space representation of Ys 9 in (2.2)
with Agy € RIN=OX(N=0) B, , € RU=IXM gnd Cyy € RN=C) g
unique up to a change of basis.

(iv) We require that ¢ respectively the cointegration rank r = d — ¢ is known
in advance to be able to estimate the model adequately. In reality, it is
necessary to estimate first the cointegration rank r and obtain from this
¢ =d —r. Possibilities to do this is via information criteria.

(v) Using the notation in (A9) it is possible to show that Yy is the solution of
the state space model (Ay, By, Cy, Ly). Furthermore, on account of (A5)
and (A6), the state space model (Ag, By, Cy) is minimal with McMillan
degree N (see Fasen-Hartmann and Scholz [18, Lemma 2.4]) and hence,
as well unique up to a change of basis. That in combination with (A10)
is sufficient that Yﬂ(h) = (Yﬁ(h)(k))keNo = (Yy(kh))ken, is a solution of a
discrete-time state space model with McMillan degree N as well.

Furthermore, we assume that the parameter space © is a product space of
the form © = ©7 x ©5 with ©; C R®* and O, C R*2, s = s1 + s9. The vector
9 = (97,90)T € © is a s-dimensional parameter vector where ¥J; € ©; and
Y5 € O4. The idea is that ¢ is the s;-dimensional vector of long-run parameters
modelling the cointegration space and hence, responsible for the cointegration
of Yy. Whereas 1), is the so-dimensional vector of short-run parameters which
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has no influence on the cointegration of the model. Since the matrix C; y is
respousible for the cointegration property (see Fasen-Hartmann and Scholz [18,
Theorem 3.3]) we parameterize C; » with the sub-vector ¥; and use for all the
other matrices 5. In summary, we parameterize the matrices with the following
sub-vectors (A2,192, Bl,ﬂ27B27192,Cl7191;02,1927 L192) for (191,192) €0; x0,=0.

2.2. Linear and pseudo-innovations

In this section, we define the pseudo-innovations which are essential to define
the QML function. Sampling at distance h > 0 maps the class of continuous-
time state space models to discrete-time state space models. That class of state
space models is not in innovation form and hence, we use a result from Fasen-
Hartmann and Scholz [18] to calculate the linear innovations &} (k) = Yy(kh) —
Py,_1Yy(kh) where Py, is the orthogonal projection onto span{Yy(lh) : —oo <1 <
k} where the closure is taken in the Hilbert space of square-integrable random
variables with inner product (Z1, Z2) — E(Z{ Z3). Thus, (k) is orthogonal to
the Hilbert space generated by span{Yy(lh), —co < I < k}. In our setting, the
linear innovations are as follows.

Proposition 2.2 (Fasen-Hartmann and Scholz [18]). Let Qgh) be the unique
solution of the discrete-time algebraic Riccati equation

Qi) —eAohQMedh _ Aok Ty el T Oy edsh 4 5,
where
spo [ By ety ),

0 B1,192§Bg:196’42”9“ eAM“Bg’gﬁgB;ﬁeA%ﬂ“ ’

and Klgh) = eAﬂhQEgh)Cg (Cﬁﬂfgh)cg)_l be the steady-state Kalman gain matriz.
Then, the linear innovations € = (e(k))ren of Y;g(h) = (Yﬁ(h)(k))keN =
(Yo (kh))ken are the unique stationary solution of the state space equation

ei(k) =Y\ (k) — CoXi(k), where

2.3
Xj(k) = (eMh — KV Co) X5k — 1) + K§Iv" (k- 1). 23

Moreover, Vﬁ(h) = E(e5(Dey (1)) = C’gQgh)Cg is the prediction covariance
matriz of the Kalman filter.

We obtain recursively from (2.3)

es(k) = V" (k) — Cole™ " — KV Co)F X5 (1)
k—1
=D Colet — K o) T KV (k).
j=1

However, the question arises which choice of X}(1) of the Kalman recursion
results in the stationary (¢} (k))ren. This we want to elaborate in the following.
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Since all eigenvalues of (e4?" — Kéh)C’qg) lie inside the unit circle (see Scholz
[52, Lemma 4.6.7]) the matrix function

o0
I(z,9) :=I; — Cy Z (eAﬁh — Kéh)Cﬁ)J_lKlgh)zj for z € C

j=1

is well-defined and due to Fasen-Hartmann and Scholz [18, Lemma 5.7] has the
representation as

I(z,9) = —a(ﬁ)Cf:Jz + k(z,9)(1 — 2)

for the linear filter

K(z,0) =TI = Y _k;(9)2’
j=1

with k;(0) = Zzoi] Cy(efoh — quh)Cg)iKéh) € R¥>4 and a matrix
a(¥) € R¥*(@=9) with full rank d — c. This representation of I(z,9) helps us
to choose the initial condition X (1) in the Kalman recursion appropriate so
that the linear innovations (e}(k))ren are really stationary. Therefore, it is
important to know that the stationary process Y ;¢ can be defined on R as

Yorw(t) = [ fsto(t—5)dLy(s), t € R, with fs 5(u)= Ca,9e429% By y1[g o) (u)
and the Levy process (Ly(t))icr is defined on the negative real-line as
Ly(t) = Ly(—t—) for t < 0 with an independent copy (Lg(t))tzo of (Ly(t))t>0-
Then, we have an adequate definition of AYﬂ(h)(k) = Yﬁ(h)(k) - Yﬁ(h)(k —1) for
negative values as well as AYﬁ(h)(k) = ffzo fau(kh — s)dLg(s), k € Z, with
faw(u) = fseo(u) = for9(u—h) + Cro9Bryljn(u). As notation, we use B for
the backshift operator satisfying BYﬂ(h)(k) = Yﬁ(h)(k —1).

Lemma 2.3. Let Assumption A hold. Then,
eh(k) = —11(W)Y " (k — 1) + k(B,9)AY ™ (k), k€N,

where I1(9) = a(9)C1-T and k(B,9)AY™ (k) =AY, (k) =35 | k; (0)AYS" (k—
4). The matriz sequence (kj(¥))jen is uniformly exponentially bounded, i.e.,
there exist constants € > 0 and 0 < p < 1 such that supyeg ||k;(9)]| < €p7,
jeN.

Proof. It remains to show that (k;(?));en is uniformly exponentially bounded.
The proof follows in the same line as Schlemm and Stelzer [51, Lemma 2.6] using
that all eigenvalues of (e4?" — K 1(9")019) lie inside the unit circle (see Scholz [52,
Lemma 4.6.7]). O

Due to H(ﬂ)Yﬂ(h)(/ﬂ -1)= H(ﬁ)Yéz)t (k — 1) we receive from Lemma 2.3

e5(k) = ~TI(W)Yy"), (k — 1) + k(B,9)AYS" (k).
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From this representation we see nicely that (¢}(k))ren is indeed a stationary
process. Defining Yﬁ(h) on the negative integers as

k—1
Yi (k) = CroZ +Yas(0) = > AYM ()
j=0

= Ci9Z+Lo(—kh) + Y} (~k), k€N,

the initial condition in the Kalman recursion is

Xp(1) =Y (eMh — KOy K Y ()

§=0
so that
% h %) h i h h .
ey(k) =Y (k) = 20, Cole — KO K Y (k- j).

The representation of the linear innovations in Lemma 2.3 motivates the
definition of the pseudo-innovations which are going in the likelihood function.

Definition 2.4. The pseudo-innovations are defined for k € N as
e (9) = ~HOY") +k(B,9)AY"

oo
h Agh h i—1 -(h)y-(h
= v -3 Cpeth - KV 0g) T iy M
j=1

The main difference of the linear innovations and the pseudo-innovations is
that in the linear innovation Yﬁ(h) is going in, whereas in the pseudo-innovations
Y (") is going in. For 9 = 9¥° the pseudo-innovations (s,ih) (9°))ren are the linear-
innovations (€%, (k))ren. In Appendix B we present some probabilistic properties
of the pseudo-innovations which we use throughout the paper. In particular, we

see that the pseudo-innovations are three times differentiable.

2.3. Quasi-maximum likelihood estimation

We estimate the model parameters via an adapted quasi-maximum likelihood es-
timation method. Minus two over n times the logarithm of the pseudo-Gaussian
likelihood function is given by

n

Z [d log 27 + log det Vﬁ(h) + 5,(€h)(19)T(V19(h))715§€h)(19)] .
k=1

£09() =

S|

The pseudo-innovations s,(ch) (9) are constructed by the infinite past

{Y(W() : —0o < I < k}. However, the infinite past is not known, we only

have the finite observations Yl(h), ey Y,fh). Therefore, we have to approximate
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the pseudo-innovations and the likelihood-function. For a starting value X fh) 9),
which is usually a deterministic constant, we define recursively based on (2.3)
the approximate pseudo-innovations as

S(h h >(h h h
XMW = (e - KPo)XM )+ K vM
gl = v - XM ),

and the approximate likelihood-function as

R 1 n 3
LP@) == [d log 27 + log det V" + 2 ()T (v{") 154;)(19)] .
k=1

Then, the QML estimator

O = (07 |, 07 )T = argmin%@f%h)(ﬁ)

n,1>Yn,2

is defined as the minimizer of the pseudo-Gaussian log-likelihood function
[,%h)(ﬁ). The estimator ¥,, 1 estimates the long-run parameter }; and the esti-

mator 1, 2 estimates the short-run parameter 5. However, for our asymptotic
results it does not matter if we use £ (9) or ch (9) as a conclusion of the next
proposition. But, for that proposition to hold, we require Assumption B which
assumes uniform bounds on the second moments of the starting value )A(fh) ()
of the Kalman recursion and its partial derivatives.

Assumption B.

For every w,v € {l,...,s} we assume that E(Zug ||)A({h) N)?) < oo,

€

S(h S(h S(h
E (supgee 10,8 0)]1?) < o0, E (supjee 1000 X{" (9)]?) < o0 and XM ()
is independent of (Ly(t))i>0-
This assumption is not very restrictive, e.g., if )A(l(h) () = )?fh) (9°) for any

Y€ Oand X fh) (9°) is a deterministic vector, which we usually have in practice,
Assumption B is automatically satisfied.

Proposition 2.5. Let Assumption A and B hold. Moreover, let v < 1 and
u,v € {1,...,s}. Then,

(a) n7 sup ILP(9) = LI ()] L= 0,

(b) gig 0L (9) = 0uL (9)] = 0,

(¢) n? ﬁug |0u L () = B L ()] - 0.

The proof of this proposition is similarly to the proof of Schlemm and Stelzer
[50, Lemma 2.7 and Lemma 2.15]. However, they are some essential differences
since in their paper (Yk(h)) ken and (e’:‘éh) (9))ken are stationary sequences where in
our setup they are non-stationary. Furthermore, we require different convergence
rates. A detailed proof can be found in Appendix C.



5164 V. Fasen-Hartmann and M. Scholz

We split now the pseudo-innovation sequence based on the decomposition
¥ = (¥7,93)7 so that one part is stationary and depends only on ¥s:

e (0) = e (9) + £ 39),
5;}?(79) — [0, ) = TI(8}, 92)] Vi) + [k(B, 01, 92) — k(B, 8}, 92)] A",
el () = ey (92) = ~(W3, 02)Y, ") + k(B,ﬂ?,%)AY;“- (2.4)
Due to similar calculations as in (B.1) we receive that

(99, 95) Y, = 11(99,9,)Y.")

st,k—1"

Hence,
el (V2) = —I1(09, 92)Y") | + k(B,09,92)AY,™, Kk eN, (2.5)

is indeed stationary. Moreover, s,(cbl) (99,92) = 0 for any ¥5 € O3 and k € N.
Finally, we separate the log-likelihood function ﬁ%h) (9) in

LMWy = LM W) + £8(02),

LM @) = £ (01, 92) — LW (09, 95)

1 n
= logdet Vﬁ(h) — log det Vﬂ((}fﬂ E Z ) 15;(6}? (9)
k=1

n

+ = Z @) (v 1512’,12)(192”5Z512}2(792)T(V19(h))715;}2(?92)

k=1
h h -1 (h
~Za” )T (Vyo'n,) ela (W),
L (92) = LM (99, 9,)

:dlog27r+logdetvﬁ(gb)l9 +— Zs(h Vﬁ(?)ﬁ) 151(gh2)(192)

Obviously, ££Lh % (92) depends only on the short-run parameters, whereas Eglh%(ﬁ)
depends on all parameters. Furthermore, we have the following relations:

LM @9,92)=0 and  LO(9,05) = L) (02)  for any ¥ € Oz, (2.6)

This immediately implies i (9°) = Eﬁlh%(ﬁg) In the remaining part of the
paper, we will see that the asymptotic properties of 3,1’1 are determined by
Eflhi (9), whereas the asymptotic properties of 1’9\n72 are completely determined
by /35%(192). Since Lﬁlh% (92) is based only on stationary processes it is not sur-

prising that 1/9\n72 exhibits the same asymptotic properties as QML estimators
for stationary processes.
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2.4. Identifiability

In order to properly estimate our model, we need a unique minimum of the
likelihood function and therefore we need some identifiability criteria for the
family of stochastic processes (Yy, 9 € 0). The first assumption guarantees the
uniqueness of the long-run parameter 9.

Assumption C. There exists a constant € > 0 so that

ICLa Chll > € [0y — 93| for 9 € ©.

1

Remark 2.6.

(i) Without Assumption C we have only that ||Cf:g1 C1|| has a zero in ¥ but
not that HCiglClH # 0 for 91 # 9. In particular, HCiglClﬂ # 0 for
91 # 99 implies that the space spanned by Cy and C1 y, are not the same.

(i) Due to the Lipschitz-continuity of Cf:gl and Cf:g(l, C1 = 0(g—c)xc the upper

bound HCIJ:;!’; Ch|| < €||91 — V|| for some constant € > 0 is valid as well.

(ii3) Assumption C implies that ||II(9)C1B4] = Ha(t?)Cf:gl C1By]| > 0 for
99 #£9 since a(V¥) and By have full rank, and thus, the process (5,(:2(19))%1\]
is indeed mnon-stationary for all long-run parameters 91 # 9.

(iv) The matriz function a(d) is continuous and has full column rank d — c so
that necessarily infyce omin(a(9)) > 0. Applying Bernstein [9, Corollary
9.6.7] gives for some constant € > 0:

I@)C1ll = inf {omin(a(9))} IC15,Cull = €9 — 4.

The next assumption guarantees the uniqueness of the short-run parame-
ter ¥9.

Assumption D. For any 99 # 92 € Oy there exists a z € C such that either
h - h
Copon [In = (A2 = KD, Cop )2 KGR,

£ C|Iv= (e = KM0)] TR

h
or Vﬂ(?,)ﬂz #* 140N

Lemma 2.7. Let Assumption A and D hold. The function Lgh) 10, - R
defined by

£ (9,) := dlog(27) + log det Vﬁ(?ﬁg +E (g§7g<ﬂ2)T(V;§>ﬁQ)—1ggg> (192)) (2.7)

has a unique global minimum at 93.

Proof. The proof is analogous to the proof of Lemma 2.10 in Schlemm and
Stelzer [51]. O
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Without the additional Assumption D we obtain only that L;h)(ﬂg) has a
minimum in 99 but not that the minimum is unique.

Due to Fasen-Hartmann and Scholz [18, Theorem 3.2] a canonical form for
cointegrated state space processes already exists and can be used to construct
a model class satisfying Assumption C and Assumption D. Further details are
presented in Fasen-Hartmann and Scholz [19]. Moreover, criteria to overcome
the aliasing effect (see Blevins [10], Hansen and Sargent [25], McCrorie [40, 41],
Phillips [42, 43], Schlemm and Stelzer [51]) are given there.

3. Consistency of the QML estimator

In order to show the consistency of the QML estimator, we follow the ideas
of Saikkonen [47] in his regression model. Thus, we prove the consistency in
three steps. In the first step, we prove the consistency of the long-run QML
estimator 19, ; and next we determine its consistency rate. Thirdly, we prove
the consistency of the short-run QML estimator 1/9\n72 by making use of the
consistency rate of the long-run QML estimator. Throughout the rest of this
paper, we assume that Assumption A—D always hold. Furthermore, we denote
by (W(T))ogrgl = ((Wl (’/’)T, WQ(T)T, Wg(?‘)T>T)0ST§1 a (2d + m)-dimensional

Brownian motion with covariance matrix

Sw = (1) /;( L Zpeti® )duwu)i (3.1)

T
eAWBgEL eA"‘“BgELBgeAz w

where
C1 By Cy Odxm  Ca(et2hd — eA2hU-1))
Yo = | Odxm Co i = Oaxm Chefzhi ;
Im><m 0m><N7c Imxm Ome—c
Y(z) = Zz/)jzj, zeC, (3.2)
§=0

(Wi(r)o<r<1, ¢ = 1,2, are d-dimensional Brownian motions and (W3(7))o<r<1
is an m-~dimensional Brownian motion.

3.1. Consistency of the long-run QML estimator

To show the consistency for the long-run parameter, Saikkonen [47, p. 903]
suggests in his example that it is sufficient to show the following theorem, where
B(¥9,6) := {91 € ©1 : |91 — 99| < 6} denotes the closed ball with radius §
around 99, and B(99,9) := ©1\B(¢#},§) denotes its complement.

Theorem 3.1. For any § > 0 we have

lim IP’( Cinf LWW) - LM (9°) > o> =1
n—00 YEB(VY,6)x O

Corollary 3.2. In particular, 5n,1 — 99 = 0,(1).



QMLE for cointegrated state space models

5167
8.1.1. Proof of Theorem 3.1

The following lemmata are important for the proof of the theorem
Lemma 3.3. Let LW := (Lfch))kez

= (L(kh))rez and define

n

h
S
NG

-
—
53
S~—

\
3\H

T _
[ ClBlL(h—)l} vy
= L(h) (19)

Then, |£n12( )| < €9y — NN U, for 9 € © with U, =1+ V,, +Q, = Op(1)
and V, and Q@ are defined as in Proposition A.3

(9)Cy B, LY,
h
— L, ().

To conclude L, 5(+,¥J2) is local Lipschitz continuous in 99
Proof of Lemma 3.3. Define

ot (0) = = [0, 02) — T3, 02)] CLBILY, = ~TI(01, 0) 1 BILLY,,
20) = W) el 1<z9>
= = [101,95) 100, 92)] Vi
+ [k(B,ﬁl,q‘}g) —k

(B,ﬁl,ﬁ2)] INAR

Then, (sk 12(9))ken is a stationary sequence and & 2(19)
First, note that

h h
et (9) + 61 ()
L]o(9) = logdet Vi, —logdet Vyo"
2 ¢ _(h hy—1(_(h h
e ()T (V") T (02) + e 5(0)]
k=1
1 h h h
3 2T (V") T 23 (92) 4 e 5 (9)
k=1

— (V)T el wa).

In the following, we use Bernstein [9, (2.2.27) and Corollary 9.3.9] to get the
upper bound

1
n

Z V")
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a1 &
tr ((Vé’”) = lea () + eé’?%,ﬂﬁ)]e,i’?%,lwf)

1
=D lea (@) e o)), ()T
k=1

Similarly we find upper bounds for the other terms. Moreover, due to Lemma
B.1(b)

128 ()]

IN

| log det Vﬂ(i)ﬂz — log det Vﬁ[’f)ﬁ \

1
||~ e () + ) s (Dl ()

1 n
+€|| = 3 1269(9) + £ (D]l o (9)
k=

- h
=D ek (W25 (9)"
k=1

-1 -1
e[ v T - i)

Since Vﬂ_1 and log det Vy are Lipschitz continuous by Lemma B.1(a), we obtain

1 n
=D leia (@) e 20, ()T

£, < ¢<|ﬁ1—ﬁ9+
k=1

1 = h h h
|5 D123 0) + e el ()T

> . (3.3)

Moreover, II(1) is Lipschitz continuous as well (see Lemma B.1(a)) and the
sequence of matrix functions (k;(?));en and (Vyk;(9)) en are exponentially
bounded (see Lemma 2.3 and Lemma B.2). Due to (A.4) and €k i 1(19 ¥2) =0
we receive

n

e a)e 0

no

+ [0 — 97|

LS 0 + L O <l - 34
k=1
Due to (A.6) and 61(6}2,2 (19(1) ¥3) = 0 we get
H LS 2 0) + €00, 001, 0)7 | < € - 20 (35)
k=1
Finally,
LS et < e, (3.
k=1
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as well. Then, (3.3)-(3.6) result in the upper bound

1L (9] < €[ — (1 + Vi + Q).

A direct consequence of Proposition A3 is U, =1+ V,, + Q,, = Oy(1). O
Lemma 3.4.

(a) sup |£n2(192) L',éh)(ﬁgﬂ 250 asn — .
1926 2

(b) E(h)( )—>/ ||(V(h))71/21_[(19)0131W3( Y|?dr and the convergence
0
holds in the space of continuous functions on © with the supremum norm.

Proof.
(a) is a consequence of Proposition A.1(a) and the continuous mapping theo-
rem.

(b)  First, supgee |+ Ln1,2(9)] = 0p(1) due to Lemma 3.3 and © compact.
Second, a conclusion of Proposition A.1(b) and the continuous mapping theorem
is that

1
~" )

= tr ((Vé’”)‘“ (0)C1 By (—2 LEJ%LEJ”I) BlcT H<19>T(Véh>)‘“2>
k=1

— b <(V$h))” I(9)C, By < /O 1 W (r) Wy ()T dr> BICTTI(0)T (V")™Y 2)
/ (V) 1211(9)Cy By W (),

and the convergence holds in the space of contlnuous functlons on © with the
supremum norm due to the continuity of II(}) and (V19 ) (see Lemma B.1(a)).
In the first and in the last equality we used Bernstein [9, 2.2.27] which allows
us to permutate matrices in the trace. UJ

Proof of Theorem 3.1. On the one hand, due to Proposition 2.5
_inf LM @) - L (")
DEB(99,8) % O

> inf (LM @) - P ) - 2sup [L(9) — LM (9)]
YEB(99,6)x O YEO

_inf (L) = £0(0) + 0,(1).
9EB(99,6) X Oy

On the other hand, due to Lemma 2.7 and Lemma 3.4(a)

(h h
S £5(02) = £,5(08)
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< sup [LV)(02) — £57(92)] + | inf £V (02) — £57(99)
V2 EO9 ’ Y2€O2
L) (99) — £ (99)]

= op(1).

Using (2.6) and the above results we receive
_nf L) = L)
DEB(99,6)x O

> it (L0@) - £0°) +0,(1)
IEB(99,6)x Oy

> inf LMW+ inf (£8)(0) — £8(99)) + 0p(1)
YEB(99,6)x O

= _iof LMW +0,(1).
YEB(Y],6) xO2

Hence, it suffices to show that for any 7 > 0

lim IP’( inf cnh{w)>7) =1. (3.7)
n—00  \ YeB(99,0)x0s

An application of Lemma 3.4(b) and the continuous mapping theorem yield

1 w !
inf M) s nf / (V™)=Y 211(0) O By W (r) |2 dr.
)X@z 0

9EB(99,6)x02 M 7 9EB(99,8
(3.8)
Due to Bernstein [9, Corollary 9.6.7]
1
|1y e n@)e B dr
0
1
> Umin((Véh))_l)/ [TL(9)CL By W3 (r) || dr-. (3.9)
0

Moreover,
1
/0 [TL(9)Cy By W (r)||* dr
= [ (BT @G B Wa(r) dr
’ 1
= tr ([H(ﬁ)CﬂT[H(ﬁ)Cﬂ/O [ByW3(r)][ByWs(r)]T dr) ,

where we used Bernstein [9, 2.2.27] to permutate the matrices in the trace.
The random matrix fol [B1Ws5(r)]T[B1Ws(r)] dr is P-a.s. positive definite since



QMLE for cointegrated state space models 5171

B; and the covariance matrix of W3 have full rank. Hence, there exists an
m x m-dimensional symmetric positive random matrix W* with W*W*T =

fol [B1W3(r)][B1W3(r)]" dr. Then, we obtain similarly as above with Bernstein
(9, 2.2.27]

1

/ L) C1 By W ()| dr =tx ([W*]T [IL(0)C1] T [IL(9) C1IW™) = |[LL()CLW* 1%,
0

Again an application of Bernstein [9, Corollary 9.6.7] and (3.9) yields

/o (Ve =/ 210(0)Cy By W () | dr (3.10)

> i (VD)) / IT1(9)C By Wa(r) | dr

= ouin (V") ™) |[IL(0) C, W2
> Gin (V") ™) omin (W W) TL(0)C |2

1
= oV i ([ BB W] ar ) [1HO)C P
0
Since By fol Ws(r)Ws(r)Tdr BT is P-a.s. positive definite
1
Ormin <31 / Wg(r)Wg(r)TdrBlT) >0 P-as.
0

On the one hand, infy g0 550, amin((Vﬂ(h))’l) > 0 due Lemma B.1(c). On
the other hand, Assumption C (see Remark 2.6) implies that

_inf ITL(9)Cy||* > €262 > 0.
YEB(YY,6) X O

To conclude

1
_inf / (VI =1210(9) Oy By W (r) |2 dr > 0 P-aus.,
YEB(¥9,8)x02 Jo

which finally gives with (3.8) that infycg99.5)x0, £ hi (1) £ oo and thus, (3.7)

77/7

is proven. O

3.2. Super-consistency of the long-run QML estimator

From the previous section we already know that the QML estimator 5,“1 for
the long-run parameter is consistent. In the following, we will calculate its con-
sistency rate. For 0 < v < 1 define the set

Nuy(99,6) := {01 €Oy : |9 =9} <n™7"}, neN, (3.11)

and N, ,(99,9) := ©1\N,,(99,0) as its complement. As Saikkonen [47, eq.
(26)] we receive the consistency rate from the next statement.
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Theorem 3.5. Let 0 <y < 1. For any § > 0 we have
lim P( inf LM (9) — LM (9°) > 0) =1
n—roo YEN, ~(99,6)xO2

Corollary 3.6. In particular, @L,l — 99 =0,(n77) for 0 <y < 1.

3.2.1. Proof of Theorem 3.5

The proof uses the next lemma.

Lemma 3.7. Let the notation of Lemma 3.3 hold. Then,

(a) L8 1(8) > Comn((V3") )01 — ﬁ?n?amm< ZBlL“” L%T)

h h)\— h h
() £ (9) < €| (VM) 1||z91199||2tr< ZBlL“ L;_’lJT)

Proof.
(a) Several applications of Bernstein [9, Corollary 9.6.7] give, similarly as in
(3.10),

, RN )y—
L0 = =3I B LY, |
k=1

Tmin((VA™)~ amm< ZBlL“” L,‘fﬁf) T Ch 1>

v

An application of Assumption C (see Remark 2.6) yields (a).
(b) The submultiplicativity of the norm gives

h 1 & R)\— h
LO20) = =NV PGB |1
k=1
h h
< V)P I)cy R ZHB LM |2

= V)TV @) O b (1 SoBiLy uBlLé’”JT> '

k=1

In the last line we applied Bernstein [9, 2.2.27]. Due to II(99,92)C1 = 04x. we
have

£ @) <[V HIIT)Cy — T1(99, 9) an?u( 231 W 1BlL“’_>11T>-

Finally, the Lipschitz continuity of II(9) and hence, of II(9)C} yield the state-
ment. |
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A conclusion of Lemma 3.3 and Lemma 3.7 is the local Lipschitz continuity
of ,ng(',’l?Q) in 9. Essential for the proof of Theorem 3.5 is as well the local

Lipschitz continuity of 57(1’2’2(.7 ¥3) in Y.
Proof of Theorem 3.5. Due to Proposition 2.5 the lower bound

_inf n(LP@) - L))
YEN 1, (99,8)xO2
> inf n(L(9) — £ (9°)) + 0,(1)
YEN 1,4 (09,6) X O
> inf nL0@)+ inf n(L30s) - LIL09)) + 0,(1)
19€NT,,Y7(19?,(§)><92 ’ YEO, ’ ’

holds. We investigate now the second term. Note that L;h% (92) depends only on
the short-run parameters. Therefore, we take the infeasible estimator
AfoQ := arg min L;h% (92)
V2 €02

for the short-run parameter 99 minimizing Egg(ﬁg). For this reason, we can
interpret this as a “classical” stationary estimation problem. Applying a Taylor-
. (h) 0 .-
expansion of nL, 5 around J; yields
h) (% h h ~
n- (L0 Dits) = £13(99)) = (VaVa, L5 (0,,2)) - (Va(Tit, — 93))
for an appropriate intermediate value ¥,, , € O with ||, 5 — 99 < H@fo —

¥9]|. Since \/ﬁngﬁgg(ﬁn)Q) and \/ﬁ(gffg — 1Y) are asymptotically normally
distributed (these are special and easier calculations as in Section 4.2) we can
conclude

- (L005) — £9599)) = 0,(1).

Finally,
ﬁeﬁn,wi(%g,a)xef. (Eglh) (0) — E;h)(ﬁo)) 2 ﬁeﬁn,wi(%{;ﬁ)x@f : En}ﬂ(ﬁ) + Op(1).
Thus, if we can show that
sup L) (9) L oo, (3.12)

VEN 4 (99,6)xO2

then for any 7 > 0

lim IP’( _inf LM (9) — LMW (9°) > 0>
n—00 YEN 1, (99,8) X O

> lim ]P’( inf n (Z;h) (¥) — ng‘) (190)) > T> —1.

n—o0 YEN 4 (99,6)xO2
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Before we prove (3.12) we first note that due to (3.7) we only have to consider
the set

M, 4 (99,61) :== Npqy (99, 61) N BWY,61) € ©1 NB(Y,61)

for n large enough instead of the whole set N, - (99, d1) in the infimum. Note that

infyco Umin((Vl,(h))_l) > 0 by Lemma B.1(c). Then, Lemma 3.3 and Lemma 3.7
give the lower bound

£ )
h h
> £% @) - 12 ,0)]
1 n
> o = R Pomin (EZBlL,@I[BlL,&%j — iy — 9| U
k=1
1 <& 1
9012 . L (h) (h) 1T _
> oo (o (53 st ) - )
=:Z,(9)
Finally,

inf ne™ (9)
VEM ,,,(99,0) x O ’

> ( _inf an2||191—19(1)|2>< _inf Zn(z?)>
VEM p ~(09,8) x O VEM 5, (99,5) X Oo

> e inf Zn(9).
OEM,, (99,6)x O

Due to Proposition A.1(b) and Lemma 3.3, we receive

1
_inf Zn(9) 2 Ounin (Bl / Wg(T)Wg(T)TdrB1T>
YEM .~ (09,6)x O 0

where the right hand side is almost surely positive. Thus, finally
SUDYERT, . (99,6)xOs nﬁg,hi(ﬂ) Ly sofor0<y<1. O

3.3. Consistency of the short-run QML estimator

Next, we consider the consistency of the short-run parameter estimator 5,1’2
with the help of the order of consistency of the long-run parameter estimator
¥y,,1 which we determined in Corollary 3.6. Similarly to Saikkonen [47, eq. (31)]
we show a sufficient condition given by the next theorem. Therefore, define for
§ > 0 the set B(99,9) := {2 € Oq : ||¥2 — 99| < §} as closed ball with radius §
around 99 and B(d93,6) := ©2\B(9,§) as its complement.
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Theorem 3.8. Then, for any § > 0 we have

lim IP’( inf E(h) (9) — E;h)(ﬁo) > O) =1

n—=oo  \ YeO, xB(99,5)

Corollary 3.9. In particular, §n72 — 99 = 0,(1).

3.83.1. Proof of Theorem 3.8

Again we prove some auxiliary results before we state the proof of the theo-
rem. Lemma 3.10 corresponds to Saikkonen [47, eq. (32)] and Lemma 3.11 to
Saikkonen [47, eq. (33)] for the regression model.

Lemma 3.10. For % <y<1,61 >0 and >0 we have

lim IP’( sup |££1h%(19)| < 7') =1
N0 \ 9eN, 4 (199,61)x0y

Proof. Due to Lemma 3.3 and Lemma 3.7 we have the upper bound

|[’n 1( )|
h h
< 1M @)+ 12 L)

IN

h)\— h h
¢l|(vs") 1|||z9119?|2tr< ZBlL“ L;JJ>+¢||19119?|UW

Then, Lemma B.1(b) results in

sup L;’f{(ﬂ)ge(s%nl?Vtr( ZBlL(h) L;’?l]T>+¢5mWUﬂ.
DEN, ~(99,61)x O

(3.13)

Since U,, = O,(1) by Lemma 3.3, and

( ZBlL (B, LM T ) sty <31 /O W3(r)W3(r)TdrBlT)

by Proposition A.1(b) and the continuous mapping theorem, the right hand side
of (3.13) converges to 0 in probability if < v < 1. This proves the lemma. [

Lemma 3.11. For any § > 0 and 7 > 0 we have

lim IE”( inf £ (0,) — £<h>(ﬂg)>7):1.

=00\ 9,eB(03,6)
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Proof. We have

. h h
inf - (L(02) — L15(09))
92€B(99,5)

> ol (L) - £02)) +  inf(—£0w9) + £87 (98))
92€B(99,8) 92€B(99,8)

+ nf o (£8002) - £87(05)).
V2€B(99,5)

On the one hand, the first two terms converge to zero in probability, due to

Lemma 3.4(a) and the continuous mapping theorem. On the other hand,

inf  (£(92) — £ (99)) > 0
92€B(09,8)

since £ (195) has a unique minimum in 99 by Lemma 2.7. O

Proof of Theorem 3.8. Let us assume that % < v < 1. Apparently, the pa-
rameter subspace ©; is the union of ©1 = N, ,(99,01) U N, ,(99,61) and
thus, we have already shown Theorem 3.8 for the set N, ~(99,61) x B(99,6)
instead of ©1 x B(¥3,6) in Theorem 3.5. It remains to investigate the set
Ny (09,61) x B(99,6). For any §; > 0 we obtain by Proposition 2.5

lim 1P>< inf  (ZM(@0) - LW @%) > 0)
n—00 VEN, 4 (99,61)xB(93,5)

= lim IE”( inf (M) - M%) > o)
n—00 YEN,, 4 (99,61) xB(99,5)

> lim IP’( inf ™MW+ if (c;h;(m)—c;h;wg))>o)
n—r00 YEN, 4 (99,61)xB(99,8) 92 €B(99,5) ’ ’

> lim IP’( sup |£5Lh%(19)| <7; inf Egbh%(ﬁg) - £ff%(198) > T) )
O N YEN, 4 (99,60)xB(99.8) 02€B(99,6) ’

Then, a consequence of Lemma 3.10 and Lemma 3.11 is

lim IP’( inf _ (LM@) - LW @) > 0) > 1,
n—=00  \ YeN, ,(99,8:)xB(¥9,6)

which proves in combination with Theorem 3.5 the claim. u

4. Asymptotic distributions of the QML estimator

The aim of this section is to derive the asymptotic distributions of the long-run
parameter estimator v, ; and the short-run parameter estimator ¥, 2. These
two estimators have a different asymptotic behavior and a different convergence
rate. On the one hand, we prove the asymptotic normality of the short-run QML
estimator and on the other hand, we show that the long-run QML estimator is
asymptotically mixed normally distributed.
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4.1. Asymptotic distribution of the long-run parameter estimator

We derive in this section the asymptotic distribution of the long-run QML esti-
mator 19n 1. From Corollary 3.6 we already know that ﬁn 1 — 99 =o0,(n77), for
0 < v < 1. Since the true parameter ¥° = ((99)7, (¥9)7)T is an element of the
interior of the compact parameter space © = ©1 x Oz due to Assumption A,
the estimator 9, ; is at some point also an element of the interior of ©; with
probability one. Because the parametrization is assumed to be threefold contin-
uously differentiable, we can find the minimizing 9,, = (1?,';1, 1?,';2)-'- via the first

order condition wlf,;’“ (1%71, 1%2) = 05,. We apply a Taylor-expansion of the
score vector around the point (99,4, 2) resulting in

~ h ~ ~
0s, = Vo, L0 (09, 02) + 07 V3, £, (0, 1,0 2)n(Ps = 9), (4)
2 ’\(h) a3 . -th . .
where Vi L, " (¥, 1,Un2) denotes the matrix whose i"" row, i = 1,..., sy, is

equal to the ith row of V2 C(h)( nl,zgn’g) with Qﬁ“ € 0O; such that

~(h)
H_n =9 < H19n71 —99||. In the case V%lén

receive

(J,,,1,Un,2) is non-singular we

0B~ 99) =~ (0703 L 1. 02)) Vo BP0, D).

Thus, we have to consider the asymptotic behavior of the score vector WIES’) ()
and the Hessian matrix V?%ﬁ%h)(ﬁ). Based on Proposition 2.5 it is sufficient to

consider V%lﬁgﬁ) (9) and Vglﬁslh)(ﬂ), respectively.

4.1.1. Asymptotic behavior of the score vector

First, we show the convergence of the gradient with respect to the long-run
parameter ;. For this, we consider the partial derivatives with respect to the
it"-component of the parameter vector ¥, i = 1,...,s1, of the log-likelihood
function. These partial derivatives are given due to differentiation rules for ma-
trix functions (see, e.g., Liitkepohl [35, Appendix A.13]) by

DRCAZRY

azﬁ(h) ( (
1
n

Mw

(V") e @)= )T (v o)

=

Sl

—

+

S

@ ) T) (V") el (). (4.2)
k

I
—

From Appendix B we already know that the pseudo-innovations are indeed three
times differentiable.



5178 V. Fasen-Hartmann and M. Scholz

For reasons of brevity, we write 9} := 55— 19 - for the partial derivatives with

respect to the i*"-component of the long-run parameter vector ¥ € ©1, @ €

{1,...,s1}, and similarly Bjt = 819 - for the partial derivatives with respect to

the j*"-component of the short-run parameter vector ¥y € Oy, j € {1,...,52}.
Analogously we define (“)il, - and 6;7;, respectively for the second partial deriva-
tives.

Proposition 4.1. The score vector with respect to the long-run parameter ¥
satisfies

Vo, LD (%) o Z(0°) = (V@) - TV)
where
I W°)
. [(vgzﬁ)l (~OMI(0°), 04xca) /Olw#(r) dW#(r)T< E%’(g(;; ”
+2tr {(Vﬁ(?))_l (Failk(B,ﬂO)AYW),e(h)(190)(0))}
+2tr | (Vi)™ X;F DITI(90) AY () ) (90) (7)
j

and (W#(r))o<r<1 = (W1(r)T, Wa(r)")"o<r<1 is defined on p. 5166.
Proof. Equation (4.2) implies for ¢ = 1,...,s; that

oL (00) = tr((‘c§?)>‘183Vé?))
tr<(v§3>) Hotve (Ve T Z (9% ( 190)>
k:
V) 11~ o )M (g0)7
2t = @)™ (9
+ r( n; ask ( ))

=: Iy +1Ip2+1,3.
Note that the second term I,, o converges due to the ergodicity of (sgl) (9°)) ken,

(h) 90)e (h) 90T V(?) see Lemma B.3(a,e)) and Birkhoff’s Ergodic The-
0
orem (see Bradley [12, 2.3 Ergodic Theorem]) so that

In$2 &> ((V(h)) (al 0 )(V ) V(h)> —tr ((Vﬂ(él))_lallvﬁ((?)) .

Hence, I, 1 + Ip2 2%, 0. Thus, it only remains to show the convergence of the

last term I, 3. We obtain with Proposition A.1(a,c) and the continuous mapping
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theorem

0))€](€h)(190)T

S|
NE
=

~
Il
_

[(0H11(9°)) v, ][k(B, 9°) AY,™M]T

|

|
S
M=

=~
Il
—

[(0M1(9)) v, w)y )T

+
S|
M=

>
Il
-

[(87k(B, %)) AV, Ml ()T

+
S|
NE

ES
Il
—

— — (0/11(¥")) /01 Wi (r)dWy (r) Tk(1,9%)"

- Z Lormwoyay k(@00 aym (5)
=1
T .
+ (9 11(°)) / Wi (r) dWs(r)TTI(9")T +ZF31H (W) Ay () 11(90)y M U ) (4)
j=1
+ Lok, 00) Ayt e (90 (0). (4.3)

Then, the continuous mapping theorem results in I, 3 - jl(i)(ﬁo) which con-

cludes the proof.

4.1.2. Asymptotic behavior of the Hessian matriz

The second partial derivatives of the log-likelihood function ) (9) are given

by
0 LI (V)
= tr ((V(h))_la-2 Vi - (Vﬁ(h))_l (@) (s ™ (@‘Vﬂ(h)))

(V) 7 @) (V) e @)l o) (v o)

- % Ztr (V) @) )T (V) @V (v o)
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+2 z(a,ﬁ“” ) (Vi) P w)

k=1
(h) (T (h) (h)
+ ;(&ek @7) (") (95" @)
S L (1.4)

Since the Hessian matrix should be asymptotically positive definite we need
an additional assumption.

Assumption E. The ((d — c¢)c x s1)-dimensional gradient matric
Vo (C1 19101)‘19 , i of full column rank s;.

1=
The asymptotic distribution of the Hessian matrix is given in the next propo-
sition.

Proposition 4.2. Let Assumption E additionally hold. Define the (s1 X s1)-
dimensional random matriz Z,(9°) as

1
220y o= 2w (V) o) [ w7 ar )" )
0
fori,j=1,...,s1. Then, Z1(9°) is almost surely positive definite and
n='v3 LM (90) s Z,(9°).

Proof. First, we prove the asymptotic behavior of the score vector and then, in
the next step, that the limit is almost surely positive definite.

Step 1: The first term 117, ; in (4.4) converges to zero due to the additional nor-
malizing rate of n~!. Due to Proposition A.1 (a,c) we have for j = 2,...,7 that
L,; = Oy(1) (see exemplarily (4.3) for I,, 5) and hence, %

l . On‘rerges
3 J*z J ¢
m pr()bablhty tO Zero. IO SllIIlIIlaIIZG,

_ 1
n 181'1,j££zh) (790) = o8 + op(1)
1 n
- 2tr< _22 P (90)atel (9°)T ) +0p(1).
k=
Due to Lemma B.2 and Proposition A.1 (a,c) we receive

a1 &
n—la;jc;’l)w%:2tr<(vg£>) 1§Za )y, v ot (00)T>+op(1).
k=1
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Then, Proposition A.1(b) and the continuous mapping theorem result in

1

— w h)y—1 T
n=loL LM (%) s 24r ((Vg())) a}nwo)/o Wi (r)Wh ()T dr (9H1(9°)) )
In particular, we have also the joint convergence of the partial derivatives.

Step 2: Let Wy = C;B1W3 and define M := B; fol Ws(r)W3(r)T dr B] , which
is a [P-a.s. positive definite ¢ X ¢ matrix. We apply the Cholesky decomposition
M = M,M]. By using properties of the vec operator and the Kronecker product
(see Bernstein [9, Chapter 7.1]) we have

[21(9%));.5 (4.5)
1 1 T
= 26 (Vi) ol m (Vi) Fom)cr ) )
1 T 1
= 2vee((V) T a(@®)0lC I CiML ) vee (Vi) F a(o”)alCi T €M)
T _
— 2vec (a}cﬂ?(}l) (M ® (a(ﬁO)T(Vﬂ(g)) 104(190)) )vec (a;cfggcl) .
Furthermore,
rank (M ® (a(ﬂO)T(Véf))_la(ﬂo)) ) = rank(M) - rank (a(ﬂO)T(Vﬁ(f))_la(ﬁo))
due to Bernstein [9, Fact 7.4.23] and thus, M ® (a(ﬁO)T(Vﬂ((]})) _104(190)) has full
rank ¢ (d — ¢) a.s. Now, if we consider the Hessian matrix Z;(9°), we have
Zy(0°) =

2[Va, (C5,00)], M © (a)T (V) ") [Va, (CLF,C)],oy-

91 =09

Due to Assumption E the ((d — ¢)c x s1)-dimensional matrix Vy, (C’llgo Cl) is
of full column rank and hence, the product has full rank s;. Therefore, we have
the positive definiteness almost surely. ([

4.1.3. Asymptotic mized normality of the long-run QML estimator

We are able now to show the weak convergence of the long-run QML estimator
and thus, we have one main result.

Theorem 4.3. Let Assumption E additionally hold. Then, we have as n — oo

n(On1 —99) 5 —Z1(9°) "1 - F1(0°),

where J1(9°) is defined as in Proposition 4.1 and Z1(9°) as in Proposition 4.2,
respectively.
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Proof. From (4.1) we know that

(h)
n

05, = Vo, LD (09, 92) + 07"V Ly (1, O 2)n(O = 99). (4.6)

In Proposition 4.1 we already derived the asymptotic behavior of the score vector
Wlﬁﬁﬁ) (99,99) and in Proposition 4.2 the asymptotic behavior of the Hessian
matrix n—lvgl.c&“ (99,99). However, for the proof of Theorem 4.3 we require
now the asymptotic behavior of wlﬁﬁf)(ﬁ?, @ng) and n’lvglégh) (U 1/9\,12)
Therefore, we use a local stochastic equicontinuity condition on the family
Vglﬁﬁf) (99,-) in ¥ (n € N) and on the family n—lvgl,c;h)(-) in 90 (n € N).

Lemma 4.4. For every 7 > 0 and every n > 0, there exist an integer n(7,n)
and real numbers 01,85 > 0 such that for 3 <~ <1 and n > n(r,n):

(@) B( subocatopon 19, £000.02) = Vo, £0080.09)] > 7) <

_ h _ h
) P( subocr, s esagsn 0V, 60005, LO@ > 7) <.

The stochastic equicontinuity conditions SE and SE, in Saikkonen [47] are
global conditions whereas Lemma 4.3 is weaker and presents only a local stochas-
tic equicontinuity condition for the standardized score in ¥ and for the stan-
dardized Hessian matrix in 9°.

Proof of Lemma 4.4.
(a) Note that on the one hand, Vglﬁgil(ﬁ(l),ﬁg) = 0 since 52}271(19(1),192) =0
and on the other hand, Vﬁlﬁgg(ﬁg) = 0. Hence,
sup [V, L (0], 92) = Vo, £ (91, 93)|
19265(19‘2],52)
h h
= sup([[Va, £ 5(07,02) = Vo £ 5(90, 93]

Vo 66(193 ,52)

We can conclude with similar calculations as in Lemma 3.3 applying (A.4) and
(A.6) that

h h
sup  [|Vg, £ 599, 92) — Vg, L 509, 99))|
19268(192,62)
< sup @Yy — 9||U, < EoU,.
92€B(99,62)

Since U,, = O,(1) due to Lemma 3.3 we obtain the statement.
(b) Due to V%lﬁgg(ﬁg) = 0 we have

sup In= w3, LM (@) —n=tv3 L (9
VEN, ~(99,61)xB(99,52)
< sup In=tv2 £%) | (0) —ntv3, L ()]

OEN,, . (99,61)x B(99,62)
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+ sup In=tv3, £ 5(0) — 13 L0 (9.
YE N, (99,81) x B(99,52)

Then, the first term is bounded by (A.2) and the second term by (A.4) and
(A.6), respectively. Hence,

IN

ZLk AL

sup ¢l — 9
VEN, - (99,61)x B(99,62)

QRTARN
2ZL L}

1
+ =Y — 19°||Un>
n

\ /\

1
+ —&5U,.
n

Since U, = Op(1) due to Lemma 3.3 and 5 >, L (h) 1L ]ih)l] = O,(1) due to
Proposition A 1(b), statement (b) follows. O

The weak convergence of Vlglﬂlh) (99, 3,12) to J1(9°) follows then by Propo-
sition 2.5, Proposition 4.1 and Lemma 4.4(a). Due to Proposition 2.5, Propo-

~(h ~
sition 4.2 and Lemma 4.4(b) we have that n_lvl%léi )(19”71,19%2) converges

weakly to the random matrix Z;(9"). In particular, Proposition A.1 also guar-
antees the joint convergence of both terms. Finally, the almost sure positive
definiteness of Z;(9°) allows us to take the inverse and reorder (4.1) so that

- C1on AW = N lo A ~
W01 =) = =(n V3L, WarsT2)) Vo £ (9,00 2)

2 —Z1 (07 (9. O

4.2. Asymptotic distribution of the short-run parameter estimator

Lastly, we derive the asymptotic normality of the short-run QML estimator 5n72
which we prove by using a Taylor-expansion of the QML-function similarly as in
Section 4.1. Before we state the proof we want to derive some mixing property of
the process (Y. Sth,l, AY(h )kez because this will be used throughout this section.

Lemma 4.5. The process (Y;(th,)€7 AY(h))kGZ s strongly mixing with mixing co-
efficients &\ y- 1y 3-(m) (1) < €p! for some 0 < p < 1. In particular, for any 6 > 0,
1t st

i
Z Apy )y ()7F5 < oo.
Proof. Due to (2.2) the process Ys(th) has the state space representation

st,

kh
Y = Cox(, with X0 =ethX() o+ / A2k By gL,
’ (k—1)h
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for k € N. Masuda [39, Theorem 4.3] proved that (X (t)k)kGN is f-mixing with

an exponentially rate since IE||X( k||2 < o0. Having ]E||AL(h) > < oo in mind as
well we can conclude on the same way as in Masuda [39, Theorem 4.3] that the
Markov process

A[(/g) _ < Opmxcm OmXAI\ZC)) AI}’Ll(ch)l
Xt O(N—c)xm e th)lf 1

kh I
+ m dL,,
/(kl)h( 2k By )

is f-mixing with mixing coefficient Sxm xm (1) < €ph for some 0 < py < 1.
Hence, it is as well a-mixing with mixing coefficient

anpm xm (1) < Barm xa (1) < €ph.

Finally, it is obvious of the definition of a-mixing that
AL(h)
AY,fh) _( CiBy Cy —Cy X(}lf)
Ys(t}jl)g B Odxm C2 OgxN—c st,k
is a-mixing with a ) 30 (1) < aapom xm(l—1) < €t -

4.2.1. Asymptotic behavior of the score vector
First, we prove that the partial derivatives have finite variance.
Lemma 4.6. ]E|8ft£7(1h) (9°)|> < oo for anyn € N andi=1,...,ss.
Proof. We have due to Lemma B.3(b) and the Cauchy-Schwarz inequality
E‘ r ((Vﬂ((};)) 1 (h)(ﬂo) (h) (8°)T (Vﬁ(go)flaftvﬂ(m
_ 2
2. (07 (1)) (Vi) e )|
1
h h h 2
< B @) + ¢ (Bllel” 005" (0)]*) < o,
so that the statement follows with (4.2). O

Now we can prove the convergence of the covariance matrix of the score vector
where we plug in the true parameter.

Lemma 4.7. Define Z,(;fz)(ﬁg) = 62@(?92) (V(h) )_15(h2)(192) for Y2 € Os.

99,05 k,
Then,
nh—>nolo Var (Vﬁz ’C’Slh) (?90)) = [Z COV (aSté g 190) aStg(lZ)l 2(19(2))) :| 1<,j<s2

I1€Z

= I(03). (4.7)
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Proof. We can derive the result in a similar way as in Schlemm and Stelzer
[61, Lemma 2.14]. Hence, we only sketch the proof to show the differences. A
detailed proof can be found in Scholz [52, Section 5.9]. It is sufficient to show
that for all 4,7 = 1,..., s the sequence

Var (Vo £y = 0t Y0 3 Cov (9560,(09), 05,99
k1:1k2:1
= I (9)) (4.8)

converges as n — oo. By the representation of the partial derivatives in (4.2)
and (B.1) the sequence

oY = —u (V) o
I

(
; o)) el )
=~ ()P 0T (V) o)
(

@' )T (V) e 0)

A=) (V) oV
1
(h

is stationary and the covariance in (4.8) depends only on the difference | =
k1 — ko. If we can show that

3 ’cov (a;tzg’}g (09), a14%), 2(193))‘ < o0, (4.9)
le7
then the Dominated Convergence Theorem implies

y e st p(h st p(h
I69) (99) = nt Z (n —|I]) Cov (51‘%5,2)(190) 9; ltgng)l 2(19(2)))

l=—n

2% 3" Cov (asteghg ®9), asteﬁ)”wg)).

leZ

Due to Lemma 4.5 and the uniformly exponentially bound of (k;(?)) and
(07'k;(¥9)) finding the dominant goes in the same vein as in the proof of Schlemm
and Stelzer [51, Lemma 2.14]. d

In the following, we derive the convergence of the score vector with respect
to the short-run parameters by a truncation argument.

Proposition 4.8. For the gradient with respect to the short-run parameters the
asymptotic behavior

V- Vg, £ (%) 25 N(0, 1(99))

holds, where 1(199) is the asymptotic covariance matriz given in (4.7).
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Proof. First, we realize that representation (4.2) and Lemma B.3(c,d) result in
E(V@E%h) (9°)) = 0s,. Due to (B.1) we can rewrite (4.2) for M € N as

L) = LYl (M BN + L (2 - EZGL) . (410)

ity o=t (V) T orv))

=t (V) T )y 8y T @) T (V) oVl

S

M=

3t (V) h 0)ARE YT et T (v otV )

st,
0

-

1

_|_

M=

tr (V) @)y, AV Tk, (00T (V) T oV

§
I
=)

2

M=

o (Vi) ™k (0, A Tk, (00T (Vi) o)
L1,L2=0
+ 2t (@)Y ) (V) Tyt me)T)
M
=23 (0, () AV ) (Vi) YT )T

L1 =0

M
—2- Y e (@Y ) (Vi) T Ar T, 0°)7)
L2=O
M
#2037 (0K, (AR ) (Vi) T AY Tk, 0)T)

t1,t2=0

Zuk = Vink + Uit

and
o0
= Dt (V) e (00)AY ), v T )T (V) o)
11=M+1
= Y > e (V) ke AR, AY Tk, 00T (Vi) T orv)
t1=M+1 t2=0
Sa 3 (Ot ()Y, ) (V) YT )T
11=M+1

+20 3 3 e (@, AR (Vi) T AV Tk, (0°)T)

11=M+112=0
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(oo}
U= >t (V) @)y av) Tk, (00T (Vi) " orvY)
1o=M+1
=3 Y w (V) Tk 00AY) AV T, (00T (Vi) oY)
11=013=M+1

—20 Y e (O ) (V) AY T, 00)T)
to=M+1

+2:30 3 (0K, AV, (VD) T ATk, (0)T) |
11=012=M+1

We define Yu i := (YRS,%])CT, ... ,Yhslfi)T)T as well as 2y 1= (Z,E,ll,)kT, A Z,E,lsi)T)T
and use a truncation argument analogous to Schlemm and Stelzer [51, Lemma
2.16]. The main difference to Schlemm and Stelzer [51] is that in our case the

definition of Y,\Sf;)k, V,é,l)k and U, ,\(,T )),C are more complex including the two stochastic

processes AY (") Ys(th) and additional summands. We show the claim in three
steps.

Step 1: The process Y, depends only on M+1 past values of AY (M) and Ys(th).
Hence, it inherits the strong mixing property of (AY ("), Ys(th)) and satisfies

ay, () <« (max{0,l — M —1}).

AY () 7Ys(th)

Thus, by Lemma 4.5 we have > %, (ayM(l))S/(QH) < oo. Using the Cramér-
Wold device and the univariate central limit theorem of Ibragimov [29, Theorem
1.7] for strongly mixing random variables we obtain

1 n
i —E w oo 1 99
Tn };()}M,k Imk) — N(0s,, Im(03))
as n — oo where In(99) := 3,7 Cov(Ym,1, Ym,141)- Next, we need to show
that
In(99) X222 1(99). (4.11)

Therefore, we prove that Cov (Y,\Slz)k, Y,\;{;CH) — Cov (8{”55}12) (190),6?(5}2[12(190))
as M — oo. Note that the bilinearity property of the covariance operator implies

| Cov (Y ks Yailhys) — Cov (9762(8°), 054, ,(9°)))|
= [Cov <YI\SIZ)k’ YI\SI],?HZ - a;tgl(:k)lzwo))

+Cov (Vg — 07 043(0°). 9561, 5 (9%))

Var (Yih) " Var (V] — 954" (9°))

+ Var (G = 9763 (0) * Var (951411 (0°))

)

1/2 1/2

IN

20 (412)
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where

i st o(h
Yo, — 05ty (0°)

oo

== 2w (V) e ) aY ) T )T (V) o vy)
11=M+1
= 3 ()T mEOy AY Tk, (0T (V) oY)
to=M+1
0> () k00 aY, AT, (00T (V) T ostv)
max {1117,11122 >M
w20 0w (@K, 0)AYY,) (i) YT )T
11=M+1
+2- > e (@Y ) (V) AR T (0)T)
to=M+1

—20 0 3 (0 00)AR") (Vi) T Ay Tk, (0)T)

L
L1,t2
max{t1,t2}>M

We obtain with the Cauchy-Schwarz inequality, the exponentially decreasing

coefficients (k;j(9°))jen and the finite 4th-moment of Yg(th) and AYM due to
Assumption A that for some 0 < p < 1,

Var (Y1) — 0510} (9°)) < epM.

Moreover, by the proof of Lemma 4.6 we have Var (8;%5’12) (190)) < 0o and then,
Var (Y,1) < 2B(Y\) — 0540 (9°))” + 2B (9544") (9°))” < o0 as well. Thus,
(4.12) converges uniformly in [ at an exponential rate to zero as M — oo and

7 j M—o00 st o(h st g(h
Cov (ks Vatha) — Cov (B 13(0°), 05417, 5 (%)),
Then, the same arguments as in Schlemm and Stelzer [51, Lemma 2.16] guaran-
tee that there exists a dominant (see Scholz [52, Section 5.9]) so that dominated
convergence results in (4.11) (see proof of Lemma 4.7).

Step 2: In this step, we show that ﬁ Sori (Zmp — EZw ) is asymptotically
negligible. We have

" (Var (%Z”)
<2.tr (Var <% kz::luM,kD +2.tr (Var (\/Lﬁng>> . (4.13)
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where Unm ; and Vi, are defined in the same vein as Zy ;. Since both terms
can be treated similarly we consider only the first one

N (Var(% Zu))

1 n
" Z (Cov(Un i, Un i)

52

3 Z | Cov(Uyh U1l (4.14)

ij=1l=—00

IA

With the same arguments as in Schlemm and Stelzer [51, Lemma 2.16] we obtain
independent of 7 and j the upper bound

Z|COV Ul\(/TpUl\(A])Hz )| < Z|COV M)lvUM 1+z)|+ Z |COV(U|\(/?,)17U|\(/|{)1+1)‘
1=0 1=0 1=2M+1

5
=" (M + Z Ay )y ™ l)] H2)7

which implies tr (Var (ﬁ >ory Z/{Mﬁk)> < ¢pM(M +€), due to (4.14), for some
constant € > 0. With the same ideas one obtains an equivalent bound for
tr (Var (% Sy VM,k)) and thus, we have with (4.13) that

tr (Var (% zn:zw)> < epM(M + ). (4.15)
k=1

Step 3: With the multivariate Chebyshev inequality (see Schlemm [49, Lemma
3.19]) and (4.15) from Step 2 we obtain for every 7 > 0 that

>)

<Mhm hmsup 2 (Var(\/_ZZMk>> < lglloo?@p (M+¢)=0.

—00 n—oo

n

hm lim sup]P’(H\/ﬁVgQESZ) (¥°) — % Z Vv — EVw k]

M—oo n—oo =1

All in all, the results of Step 1 and Step 3 combined with Brockwell and Davis
[13, Proposition 6.3.9] yield the asymptotic normality in Lemma 4.8. ]

4.2.2. Asymptotic behavior of the Hessian matriz

We require an additional assumption for the Hessian matrix (with respect to the
short-run parameters) to be positive definite. Therefore, we need some notation.
We write shortly Fy := e?h — Klgh)C’g. The function is similar to the function
in Schlemm and Stelzer [51, Assumption C11]. However, we define Fy different

since we do not have a moving average representation of ¥ (") with respect to
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the innovations ). Hence, we have to adapt the criterion in Schlemm and
Stelzer [51] and define the function

T
oy = Iit1® Kéh)T ® 019:| [(Vec IN)T  (vec Fg)T ... (vec Fg)T}
vec Vﬁ(h)

(4.16)

Assumption F. Let there exist a positive index jo such that the [(jo+2)d? X s3]
matriz Vg, Pgo j, has rank sa.

Proposition 4.9. Let Assumption F additionally hold. Then,
Vo, L3 (0°) == Z(9°),
where the (sg X s2)-dimensional matriz Zg(9°) is given by
[Za(0°)]s,; =2B(9;<") (0°)T) (Vi) (95" (0°)
o (Vi) 2 @) (Vi) v (vi) 7).

Moreover, the limiting matriz Z(9°) is almost surely a non-singular determin-
1stic matriz.

Proof. We proceed as in the proof of Proposition 4.2.
Step 1: Since (6;9’535,(c (10°), 95'e (h)( ¥9), s,ih) (9°))ren is a stationary and an er-
godic sequence with finite absolute moment (see Lemma B.3(a)) we obtain with
Birkhoff’s Ergodic Theorem
aGL (9°)
Lot (V) v - () ) (vi) T 03v))
—tr (V) TR [P @000 (i) o)
(Vi) " @ vg) (Vi) TE [ wowwor] (Vi) " otviy)
(V) B[ @0 00T (Vi) @5V ) (V) e v)
—tr ((Vﬂ(?)) e [8st€1h)(190) (h) (¥°) } ( ) 1
w2t (Vi) T [ 0°) (052 00)7)])
((Vﬁ(?)) [ (h)(,ﬂ())ast (h)( ) } (Vﬁ(h)) 18;’5‘/19(?))
+2-E[ (0= 007) (vi) T (05 (07)] -

Combining this with Lemma B.3(c,d) results in

+tr
+tr

V)

—2-tr

e o w (V) TN @) (Vi) o)
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+2-E [ (0= (0)T) (Vi) T @5 (0)]

Step 2: Next we check that Z(9Y) is positive definite with probability one.
That we show by contradiction similarly to the corresponding proofs in Schlemm
and Stelzer [51, Lemma 3.22] or Boubacar and Francq [11, Lemma 4], respec-
tively. From Step 2 we know that

V2, LM (9°) Lo Zo(0°) = Zgp 1 (9°) + Zor2(9°), (4.17)
1<4,j<s2

where Zy, 1 (9°) 1= 2- []E (a;tsgh) (00)T) (v (a;tsﬁh) (190))}
h

and Zu () = [ir (V)74 @0tV (Vi) opvis (Vi) )]

1<4,j<s2

We can factorize Zg; 2(99) in the following way:

T .
Zgr2(0°) = (a1 ... as,) (a1 ... as) with
1 _1
aii= (V)72 @ (V)7 ) vee(951V,0).
Thus, Zg 2(9°) is obviously positive semi-definite. Similarly, Zg 1(9°) is pos-
itive semi-definite. It remains to check that for any b € R%2 \ {0s,} we have

b Z 1 (9°)b + 0T Zg 2(9°)b > 0. We assume for the sake of contradiction that
there exists a vector b € R*2\{0,,} such that

T Zst 1 (9°)b + bT Zgy 2(9°)b = 0. 0)

In order to be zero, each summand bTZSt’l(ﬁo)b and bTZSt,g(ﬁO)b must be zero,
since Zg; 1(0°) as well as Zg; 2(9°) are positive semi-definite. But b7 Zg; 1 (9°)b =
0 is only possible if

04 = (Ve (@b = — 3 (WQ [CﬁoFgglKéﬁ)Y,ﬁ)jD b P-as.
1

j=

Rewriting this equation yields

(Wz [CﬁoKéﬁ)Yk(f)l]) b=—3" (v% {CﬁoFgglKéﬁ)Yk(f)jD b P-as. (4.18)
j=2

Hence, for every row i = 1,...,d and b = (b1, ...,bs,)T we obtain

S2 d
3 [Zaz%cmfféﬁ))i,méﬁh by

u=1 Li=1

oo S2 d
S [z ot (Con Pl K v,

j=2u=1 Li=1

b, P-a.s.,
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which is equivalent to

(Vﬁz [e;rCﬂngg)} b)T Yk@l = — i (ng [eICﬁoFgJIKéﬁ)] b)T Yk(ﬁ)J P-a.s.

Jj=2

T DI FANE T R TIPS
But then <v192 [ei Cyo K 0 ] b) Y, lies in span{Yj : j < k—2}. By the defi-
nition of the linear innovations, this is only possible if (V192 [eZ-TCM Kigﬁ)} b)TE,ih'_)l
= 0 P-a.s. However, V( ) = (6,(€ )1(51(ch)1) ) is non-singular due to Scholz [52,

Lemma 5.9.1] so that necessarily Vy, [ TCpK, } b=04 fori=1,...,d. This
is again equivalent to Vy, (Cyo ng’;))b = 0g42. Plugging this in (4.18) gives

Vo, C’goFﬁng;)Yk(ﬁ)} Zv% [C.goFJ L Y(")} b.
Then, we can show similarly Vy, (CﬁoFﬁoKéﬁ))b = 042 and obtain recursively
that
Vi, (Coo FI KS)b = 042 for j € N. (4.19)
On the other hand, we obtain due b' Z; 2(9°)b = 0 under assumption () that
(Va, VI = 0. (4.20)
The definition of 1y ; in (4.16), (4.19) and (4.20) imply that (Vg,1g0 ;)b

0(j+2)q2 holds for all j € N, which contradicts Assumption F. Hence, Z (9°) is
almost surely positive definite.

O

4.2.8. Asymptotic normality of the short-run QML estimator

We conclude this section with the last main result of this paper, namely the
asymptotic distribution of the short-run QML estimator.

Theorem 4.10. Let Assumption F' additionally hold. Furthermore, suppose

1(9°) = lim Var (wzc,@(qao)) and  Zy(9°) = Tim V3,L0(9°).

n— oo

Then, as n — oo,
V(.2 — 199) —25 N(0, Zgy (9°) 11 (9°) Zoy (9°) ).

Again we need the following auxiliary result for the proof.
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Lemma 4.11. For every 7 > 0 and every n > 0, there exist an integer n(T,n)
and real numbers 01,65 > 0 such that for 3 <~y <1 and n > n(r,n):

(a) P(supmmm,m||ﬁw2£%h’<wo> ViV, L] (19?,190)||>T><n,

h h
) IP(supﬂem,wwg,mXmg,52> 192, 289 (9) — V3 £49 (90 > ) <.

This local stochastic equicontinuity condition for the standardized score

ViV, £ 99) in 99 and for the standardized Hessian matrix Vi, £y
in ¥° do not hold for general ¥¥; and 1, respectively. Accordingly the stochastlc
equicontinuity conditions of Saikkonen [47] are not satisfied.

Proof of Lemma 4.11.
(a) We use the upper bound

sup  [[VnVe, L0 (01,99) — v/nVe, L8 (99, 99)]]
ﬁlENn,'y(79(1)761)

< sup WaVe, £ (90,99) — Vave, £V (99, 99)]
’191€Nn1.y(19[1),51)

+ o osup WAV, £ 501,93 — VaVe, £ (99, 09)].  (4.21)
1916Nn,,(19‘1),61)

Since T(9°)Cy = 04x. and Vy,(IL(9°)C1) = Ogexs, we can apply (A.3) and

receive

sup ViV, £ 1 (91,99) — Vave, £ (99, 99)|

19161\/”),\,(19(1]751)

¢ sw n%nm—ﬂﬂﬁtr( ZLML“ )

Y1EN, 4 (99,61)

IN

¢ng27tr< ZL(h) L) >L>07 (4.22)

where we used v > 3/4 and tr (# >ory L,({h_)l[L,(ch_)l]T) = Op(1) due to Propo-
sition A.1(b). For the second term we get by (A.4) and (A.6), and similar cal-
culations as in Lemma 3.3 that

sup |V, £ 5 (01,95) = ViV, £, (99, 93)
Y1EN, 4 (99,61)
< sup  Va€|9 —PU, < €U, L0 (4.23)
’191€Nn,—y(19(1),51)
due to v > 3/4 and U,, = Op(1). A combination of (4.21)-(4.23) proves (a).
(b) The proof is similar to (a). O

Proof of Theorem 4.10. The proof is similar to the proof of Theorem 4.3 using
Proposition 4.8, Proposition 4.9, Proposition 2.5 and Lemma 4.11. O
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5. Simulation study

In this section we want to demonstrate the validity of the proposed QML-method
by a simulation study. The simulated state space processes are driven either
by a standard Brownian motion or by a NIG (normal inverse Gaussian) Lévy
process with mean value 0,,. The increment of an m-dimensional NIG Lévy
process L(t) — L(t — 1) has the density

686/-@ e<5’$>(1 + ag($))
fN[G(xy,u’aaﬁ76? ) o eag(w)g({t)?’

where g(z) = /0> + (z — p, A(x —p)) and ~*=a’—(8,A8) >0,

, T €R™,

u € R™ is a location parameter, « > 0 is a shape parameter, § € R™ is a
symmetry parameter, § > 0 is a scale parameter and A € R"*™ is positive
semi-definite with det A = 1 determining the dependence of the components of
(L(t))1>0- The covariance of the process is then

S =0(a—BTAB) " (A+ (o — BTAB)TABATA).

For more details on NIG Lévy processes see, e.g., Barndorff-Nielsen [3]. In all
simulation studies we have simulated 350 independent replications of a coin-
tegrated state space process on an equidistant time grid 0,0.01,...,2000 by
applying an Euler scheme to the stochastic differential equation (1.1) with ini-
tial value X (0) = Oy and h in the observation scheme is chosen as 1.

Moreover, we use canonical representations of the state space models. On the
one hand, C; y, are chosen on such a way that C; y, are lower triangular matri-
ces with C’I 9,C1,9, = 1. and similarly Cl%m are lower triangular matrices with
C’ﬁgl Ciﬂl = I4_. satisfying Assumption A, Assumption C, and Assumption E
for a properly chosen parameter space ©. On the other hand, the parametriza-
tion of the stationary part Y » is based on the echelon canonical form as given
in Schlemm and Stelzer [51] such that as well Assumption A and Assumption D
are satisfied for the properly chosen parameter space ©. The echelon canonical
form is widely used in the VARMA context, see, e.g., Liitkepohl and Poskitt
[37] and the textbooks of Liitkepohl [35], or Hannan and Deistler [24]. In the
context of linear state space models canonical representations can also be found
in Guidorzi [23]. For the asymptotic normality of the short-run parameters we
require additionally Assumption F. However, this condition cannot be checked
analytically, this is only possible numerically.

5.1. Bivariate state space model

As canonical parametrization of the family of cointegrated state space models
we take

H P2 0 Al o
Asg=10 0 1 ],Byy= g U7 , Biy=(0s ),
U3 U4 Us U3 + 9506 U4 + U507
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Pl 100
2

vech(2§) = (010, 911,%12), Cro = | STt |, 02,192(0 1 O)'
9i5+1

This implies that we have one cointegration relation and the cointegration rank
is equal to 1. In total we have 13 parameters. We use

P =(-1 -2 1 -2 =3 1 2 1 1 04751 —0.1622 0.3708 3) .

In order to obtain the covariance matrix of the NIG Lévy process, we have to
set the parameters of the NIG Lévy process to

1 1.2 —05 L (3
5=1, a=3 5<1)’ A<—0.5 1> and “2\/3—1<2>'

On this way the parameters of the stationary process Yy are chosen as in
Schlemm and Stelzer [51, Section 4.2], who performed a simulation study for
QML estimation of stationary state space processes.

TABLE 1
Sample mean, bias and sample standard deviation of 350 replications of the QML estimator
for a two-dimensional NIG driven and Brownian motion driven cointegrated state space

process.
NIG Brownian motion

[ | True || Mean | Bias [ Std. dev. Mean | Bias [ Std. dev.
J1 -1 -0.9857 | -0.0143 0.0515 -0.9895 | -0.0105 0.0425
Jo -2 -2.0025 0.0025 0.0573 -1.9934 | -0.0066 0.0459
I3 1 0.9919 0.0081 0.0749 0.9898 0.0102 0.0570
Vg -2 -1.9758 | -0.0242 0.1126 -1.9701 | -0.0299 0.0872
oI5 -3 -2.9774 | -0.0226 0.0497 -2.9898 | -0.0102 0.0324
g 1 1.0129 | -0.0129 0.1071 1.0155 | -0.0155 0.0789
I 2 2.0005 | -0.0005 0.0690 2.0068 | -0.0068 0.0441
g 1 1.0078 | -0.0078 0.0684 1.0096 | -0.0096 0.0482
g 1 0.9872 0.0128 0.0761 0.9777 0.0223 0.0599
Y10 0.4751 0.4715 0.0036 0.0678 0.5200 | -0.0449 0.0518
Y11 | -0.1622 -0.1572 | -0.0050 0.0381 -0.1283 | -0.0339 0.0266
Y12 0.3708 0.3698 0.0010 0.0314 0.3195 0.0513 0.0213
Y13 3 2.9999 0.0001 0.0075 2.9981 0.0019 0.0068

In Table 1 the sample mean, bias and sample standard deviation of the 350
replications of the estimated parameters are summarized. From this we see that
in both the NIG driven as well the Brownian motion driven model the bias and
the sample standard deviation are quite low which reflect the consistency of our
estimator. Moreover, for the Brownian motion driven model the sample standard
deviation is for all parameters lower than for the NIG driven model which is
not surprising since the Kalman filter as well as the quasi-maximum likelihood
function are motivated from the Gaussian case. In contrast, the bias in the NIG
driven model is often lower than in the Gaussian model. It attracts attention
that in both models the cointegration parameter 113 has the lowest bias and
sample standard deviation of all estimated parameters. This is in accordance
with the fact that the consistency rate for the long-run parameters is faster
than that for the short-run parameters.
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Next, we investigate what happens if we use as underlying parameter space
in the QML method a space which does not contain the true model. In the first
parameter space Oy, we set By y = 03x2 and all other matrices as above. Hence,
Yy for ¥ € Oy is integrated but not cointegrated. In the second parameter space
Ow, we set C1y = (0,1)7 and all other matrices as above such that Yy for
¥ € O is cointegrated but the cointegration space does not model the true
cointegration space. Finally, in the last parameter space ©g, we set Ci 9 =
(0,0)T and all other matrices as above such that Yy for ¥ € Og is stationary
and coincides with Yy 4. The sample mean, sample standard deviation, minimal
value and maximal value of the minimum of the quasi-maximum likelihood
function for 100 replications of the Brownian motion driven model in the four
different spaces is presented in Table 2. Of course in the space O, containing

TABLE 2
Sample mean, sample standard deviation, minimum and mazimum of 100 replications of
the minimum of the quasi-mazimum likelihood function of the Brownian motion driven
model in four different parameter spaces.

© Or Ow Og
true pro. | int. pro. | wrong coint. pro. | stat. pro.
Mean 5.2303 5.2851 16.2713 23.8473
St. dev. 0.0449 0.0956 11.3465 16.0159
Min 5.1226 5.1367 6.0526 9.4492
Max 5.3356 5.7509 79.3741 88.2747

the true model, the sample mean of the minimum of the likelihood function is
lowest. However, the sample mean for the space O is not to far away because
there at least the long-run parameter is estimated more or less appropriate

such that due to Proposition 2.5 and Lemma 3.4 we get infyce, P (W9) =
infyco, Eflh% (92)+0,(1) = infyeo, £(2h)('l92). However, the standard deviation
is much lower in © than in ©;. In contrast to the spaces Oy and ©g where

the likelihood function seems to diverge. This is in accordance to the results
of this paper because due to Proposition 2.5, Lemma 3.4 and (3.8) we have

inf £ (1) %= oo and inf E%h)(ﬁ) 2 .
YEOW V€O s

5.2. Three-dimensional state space model

In this example, the canonical parametrization of the cointegrated state space
model has the form

91 P2 0 3

0 0 1 0
A2’19 - vy U5 Vg Dy
¥g Y9 VYo Y11
Al Uy U3
B V12 P13 V14
2.9 Uy + 96012 I5 + 96013 Ir+ 96014 |

Ug + ot Yo + Y10tz Vi1 + Potha
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Copy =

OO =

000
1 0 0],
00 1

B — Y15 Ve Vi
14 Y1g Y19 Va20)’

vech(25) = (Y21, Va2, V23, Vo4, V25, Va6,

P40% 1 0
037 +03s+1

C o0 — _ 207 U2z

Lo = | BT o
2'1928 1927

93,4035 +1 V3,493

The state space model has two common stochastic trends and the cointegration
space is a one-dimensional subspace of R3. In total we have 28 parameters. In
Table 3 the sample mean, bias and sample standard deviation of the estimated
parameters of 350 replications are summarized for both the NIG driven as well
the Brownian motion driven model. In order to obtain the covariance matrix
of the NIG Lévy process, we have had to set the parameters of the NIG Lévy
process to

1 125 —05 i3
§=1, a=3, B8=[1], A=]|-05 1 -3V3 and
4

1 IR

=5 ()

The results are very similar to the two-dimensional example. In most cases
the sample standard deviation in the Brownian motion driven model is lower
than in the NIG driven model. Moreover, the bias and the standard deviation
of the long-run parameters (Jo7,125) are lower than the values of the other
parameters.

6. Conclusion

The main contribution of the present paper is the development of a QML estima-
tion procedure for the parameters of cointegrated solutions of continuous-time
linear state space models sampled equidistantly allowing flexible margins. We
showed that the QML estimator for the long-run parameter is super-consistent
and that of the short-run parameter is consistent. Moreover, the QML estimator
for the long-run parameter converges with a n-rate to a mixed normal distri-
bution, whereas the short-run parameter converges with a y/n-rate to a normal
distribution. In the simulation study, we saw that the estimator works quite well
in practice.
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TABLE 3
Sample mean, bias and sample standard deviation of 850 replications of the QML estimator
for a three-dimensional NIG driven and Brownian motion driven cointegrated state space

process.
NIG Brownian motion
‘ | True ‘ Mean | Bias | Std. dev. Mean | Bias ‘ Std. dev.
¥ -2 -1.9910 | -0.0090 0.0583 -1.9958 | -0.0042 0.0475
Yo -3 -3.0042 0.0042 0.0407 -3.0005 0.0005 0.0339
U3 -3 -3.0194 0.0194 0.0456 -3.0309 0.0309 0.0401
g 1 0.9887 0.0113 0.0440 0.9987 0.0013 0.0381
U5 1 0.9977 0.0023 0.0351 0.9895 0.0105 0.0316
6 -1 -0.9861 | -0.0139 0.0544 -0.9763 | -0.0237 0.0431
e 2 2.0122 | -0.0122 0.0396 2.0113 | -0.0113 0.0342
g -1 -1.0039 0.0039 0.0442 -1.0075 0.0075 0.0399
Yo -3 -2.9937 | -0.0063 0.0342 -2.9896 | -0.0104 0.0348
Y10 -3 -2.9904 | -0.0096 0.0490 -2.9892 | -0.0108 0.0444
J11 -1 -1.0055 0.0055 0.0449 -1.0097 0.0097 0.0461
Y12 -1 -1.0023 0.0023 0.0386 -1.0242 0.0242 0.0367
Y13 2 1.9984 0.0016 0.0363 2.0077 | -0.0077 0.0295
V14 1 1.0034 | -0.0034 0.0353 0.9740 0.0260 0.0353
Y15 1 0.9984 0.0016 0.0351 1.0175 | -0.0175 0.0284
Y16 0 -0.0345 0.0345 0.0644 -0.0361 0.0361 0.0513
Y17 1 0.9840 0.0160 0.0521 0.9623 0.0377 0.0417
P18 1 1.0010 | -0.0010 0.0314 0.9877 0.0123 0.0303
Y19 -2 -1.9841 | -0.0159 0.0388 -1.9868 | -0.0132 0.0306
Y20 0 0.0111 | -0.0111 0.0347 -0.0090 0.0090 0.0362
Y21 0.5310 0.5279 0.0031 0.0605 0.5849 | -0.0539 0.0478
Y22 | -0.1934 || -0.1870 | -0.0064 0.0385 -0.2037 0.0103 0.0328
Yo3 0.1678 0.1678 0.0000 0.0467 0.1513 0.0165 0.0396
o 0.3784 0.3816 | -0.0032 0.0293 0.4209 | -0.0425 0.0259
Vo5 -0.2227 -0.2127 0.0100 0.0334 -0.2209 | -0.0018 0.0300
Y26 0.5632 0.5585 0.0047 0.0476 0.4814 0.0818 0.0356
Jo7 1 1.0002 0.0002 0.0030 0.9995 0.0005 0.0033
Va8 2 2.0000 0.0000 0.0079 2.0004 | -0.0004 0.0091

In this paper, we lay the mathematical basis for QML estimation for coin-
tegrated solutions of linear state-space models. In a separate paper Fasen-
Hartmann and Scholz [19] we present an algorithm to construct canonical forms
for the state space model satisfying the assumptions of this paper, which is nec-
essary to apply the method to data. We decided to split the paper because
the introduction into a canonical form is quite lengthy and would blow up
the present paper. Moreover, a drawback of our estimation procedure is that
we assume that the cointegration rank is known in advance which is not the
case in reality. First, we have to estimate and test the cointegration rank. For
this it is possible to incorporate some well-known results for estimating and
testing the cointegration rank of cointegrated VARMA processes as, e.g., pre-
sented in Bauer and Wagner [5], Liitkepohl and Claessen [36], Saikkonen [45],
Yap and Reinsel [59]. This will also be considered in Fasen-Hartmann and
Scholz [19]. Some parts of Fasen-Hartmann and Scholz [19] can already be found
in Scholz [52].
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Appendix A: Auxiliary results
A.1. Asymptotic results

For the derivation of the asymptotic behavior of our estimators we require the
asymptotic behavior of the standardized score vector and the standardized Hes-
sian matrix. To obtain these asymptotic results we use the next proposition.

Proposition A.1. Let Assumption A hold. Furthermore, let (L(h))keNo =

(L(kh))ken, be the Lévy process sampled at distance h and AL( ) = L(kh) —
L((k — 1)h). Define for n € N, k € Ny,

AY n
§,(ch) = Ys(th,)C and S,(Ih) = Zféh)
AL

Let 1(z,9) := Y20 li(0)2" and 1(z,9) := Y2 1;(9)z", 9 € ©, z € C, where
(I;(9))ien, is a deterministic uniformly exponentially bounded continuous ma-
triz sequence in RTXRm) and similarly (1;(9))ien, is a nonstochastic uni-
formly exponentially bounded continuous matriz sequence in RE*(2d+m) - Mope-
over, TI(9) € R*(2d+m) T1(9) € REX(2d+m) qre continuous matriz functions as
well. We write 1(B, 9)€™) = (I(B,9)e" ) ren, with 1(B,9)e = 322 T, (9)e™.
and similarly T(B,ﬁ)f(h) Let (W(T))ogrgl = ((Wl(T)T,W2<’r')T, Wg( ) ) )OST§1
be the Brownian motion as defined on p. 5166. Then, the following statements
hold for j € Ny.

p

(a) sup

ST, ) B, e 1T E (1B, )18, )l TT]

(b) 02> )8V [T W) T 2 TI(0) / W W )T dr L)
k=1

() n*liﬁ(ﬁ)s,i’i’lu(&ﬁ) T T /W )AW () T1(1,9) T

>
Il
—

+ Z Tiem i,0em (7)-
j=1

The stated weak convergence results also hold jointly.
Before we state the proof of Proposition A.1 we need some auxiliary results.

Lemma A.2. Let 1) be defined as in (3.2). Then, the following statements hold
forl € Ny.

(a) E(E™M) = Oagym and E||g,j>||4 < 0.

1 n
(b) E Zfl(ch) L> 02d+m7 Zg(h) ](:i,)l ( [§1+l] ) =: FE(}L) (l)
k=1
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(¢) S EleM )T < oo

=0

(d) (TSEZTOOQQL(w(l)W*(T))MKl where (W*(r))o<r<1 is @

(m + (N — ¢))-dimensional Brownian motion with covariance matriz

h T, ATy
S :/ Lre o mBet )
0 e2"BoXYr e 2uB22LB2 ez U
and w is deﬁned as in (3.2).
ZS T / W™ (r)dW* (r Lt ng(m

Proof. We shortly sketch the proof. The sequence (fk )keN has the MA repre-
sentation

h
w R N
Yor | =& Z Vg (A.1)
AL j==o0

with the iid sequence

T kh
i = ( ALWT RWT ) and R .= / eA2(bh=w) B, 4L,
(k—1)h

Hence, (§,ih))keN is stationary and ergodic as a measurable map of a stationary
ergodic process (see Krengel [34, Theorem 4.3 in Chapter 1]).

(a) is due to Assumption A.

(b) is a direct consequence of Birkhoff’s ergodic theorem.

(c) follows from IE||77,(€h)||4 < 00, ||| < €p’ for some € > 0,0 < p < 1 and the
MA-representation (A.1).

(d, e) are conclusions of Johansen [31, Theorem B.13] and the MA-represen-
tation (A.1). O

Proof of Proposition A.1. (a) The proof follows directly by Theorem 4.1 of
Saikkonen [46] and the comment of Saikkonen [46, p.163, line 4] if we can show
that Assumption 4.1 and 4.2 of that paper are satisfied. Since we have uniformly
exponentially bounded families of matrix sequences, Saikkonen [46, Assumption
4.1] is obviously satisfied. Saikkonen [46, Assumption 4.2] is satisfied due to
Lemma A.2.

Note that we have two different coefficient matrices, whereas the results in
Saikkonen [46] are proved for the same coefficient matrix. However, Saikko-
nen [46, Theorem 4.1] also holds if the coefficient matrices are different as long
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as each sequence of matrix coefficients satisfies the necessary conditions as men-
tioned in the paper of Saikkonen [46, p. 163].

(b, ¢) Due to Lemma A.2, Saikkonen [46, Assumption 4.3] is satisfied as well.
Hence, we can conclude the weak convergence result from Saikkonen [46, The-
orem 4.2(iii)] and [46, Theorem 4.2(iv)], respectively. |

A.2. Lipschitz continuity results

A kind of local Lipschitz continuity in 90 for the processes in Proposition A.1
is presented next. The local Lipschitz continuity in ¢¥° implies, in particular,
local stochastic equicontinuity in ¥°. However, this kind of local Lipschitz con-
tinuity in 9° is stronger than local stochastic equicontinuity in 99 so that we
are not able to apply the stochastic equicontinuity results of Saikkonen [46, 47]
directly. The stochastic equicontinuity of the process in Proposition A.3(a) and
(c) can be deduced with some effort from Saikkonen [46, 47] but the process in
Proposition A.3(b) is not covered in these papers.

Proposition A.3. Let the assumption and notation of Proposition A.1 hold.
Assume further that 11(9), IL(Y) are Lipschitz-continuous and the sequence of

matriz functions (Vy(1;(9)))ien, and (Vo (l;(9)))ien, are uniformly exponen-
tially bounded.

(a) Define X,(9) = 32 T0)S™, [S™TH(O)T. Then,
k=1

1, (9) — X (9] < €l — 00| | S S, 15T (A-2)
k=1
If additionally IL(V°) = O4x (2d+m) and (0 = 03 (2d-+m) then
126, (9) — X (90 < €0 —0°2 || S (ST (A.3)
n n ~ k—1~k—1
k=1
(b) Define X, (9) = ;;1 (9)S™, (1B, 9)¢M]T. Then,
126, (9) — X, (9°)]] < €nfl9 —3°| Vi, (A4)
where
1 n
Vo = |12 D ST+ 1S5 ko (B) 161
k=1

n

]_ n 1 ) T
= IS ko )M |+ ||~ 0 S (108,90 |
k=1 k=1

Op(1), (A.5)
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ko(z) = CZ Coplz for some 0 < p < 1, ¢ > 0, and
KB | i= e 520 o7 1" -
(c) Define X, (¥) = Z [l (B,ﬁ)fkh)]ﬂ(B,ﬁ) ,(ch)]T. Then, there exists a random
k

variable Q,, = O,(1) so that
1%2(9) — X (9°)|| < Enlld — 0°(|Qy. (A.6)

In particular, Vi, + Qn = Op(1).

Proof.
(a) We have the upper bound

1 (9) — X, (0°)

n

STIIW) — ()]s, (4, TI(w) "

k=1

<

n

+ | DTS IS T (o) — )T

k=1

< (ITE(@) = T [IIE@)I| + [ILL(9) — II(°) [ [TL")]))

- h h
>SS

k=1

Since II(¥) and II(¥) are Lipschitz continuous,
max(|[TL(®) — TI(9°)[|, [ILL() — LL(9°)[}) < €[|9 —9°|

and supyce max(||II(9)|, [|IL(9)||) < €. Thus, (A.2) holds. Moreover, (A.3) is
valid because for I(10°) = 0g,2d1m, (%) = 05 54, ,,, the upper bound

1, (9) = X, ()] = [ X (D)
< [lm)| T || " s
< |I(9) — I |[||TL(0) — TI(9°) ||
< ey — 0| SIS T
k=1
is valid.

(b) Using a Taylor expansion leads to

vec(l(z,9)) — vec(l(z,9")) Z vec(l — vee(l;(19°))]27
7=0
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Z Vgvec (I3 (9(4))) (9 — 9°)27,
7=0

where vec(I7(9(j))) denotes the matrix whose i*" row is equal to the i" row of

vec(l; (191( 1)) with 9¢(j) € © such that [9(j) — 9°| < |9 — ¥°| for
i =1,...,d(2d + m). Due to assumption, ||[Vyvec(l5(9(j)))|| < €p’ for j € No
and some 0 < p < 1 so that

(2, 9) = 1(2,9°)|| < ko(|2D]I9 = 0. (A7)

Hence,

I (1B, 9) = 18, 9°) &1 < 19— 0| [k, (B)ligf™ 1] - (A8)

Define 1Y (z,9,9°) := I(z,9) — I(2,9°) =: Z;io 1?(19,190)zj. Then, we apply a
Beveridge-Nelson decomposition (see Saikkonen [46, (9)]) to get

1V (B,0,9°)M =1V (1,0, %)™ + ni(9,9°) — mi_1.(8,9°)

with ne(1,9°) = — Y020 S 1Y (9, 190)5 . Thus,

=TI ZS(h) TV (1, 9,9°)T Zs,g”)l [0k (9, 9°)]T

—ﬁ(ﬁ)ﬁ Z S;(fi)l (k1. (9,9°)]7

k=1
— 1 —
=T(0)~ > SN T (1, 0,9°)T + TH0)SE [ (9, 9°)]"
AS (9, 9]

Due to (A.7), 17 (1, 9,0°) < €] — 9] and |1 (9,0°) < €]l = 9]} so that
7 (9, 9°)]| < |9 — 9| [k,,(B)Hg,gh)n} as well. Finally, we receive

1 < .
19)% Zsl(ch_)1 [(1(8,19) — 1(8,190)) gl(ch)} H
k=1
1 n
n Z S/(c}i)l[ z(qh)]T
k=1

HISMI ko (B) €] + %i\ms I [k Bl
k=1

<y -9

(A.9)
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and

T1(0) Zs(h [ (B, 0°) g‘”} H

< ¢l — 0"

Zs(h [Bﬁo h> H (A.10)

Then, (A.9) and (A.10) result in (A.4).

It remains to prove (A.5). The first term 137 'S (h) nl (h)] in the defini-
tion of V,, is O,(1) by Lemma A.2. Moreover, 7S(h = Ly lf(h = 0,(1)
by Birkhoff’s Ergodic Theorem; similarly the third term 1Y) ||AS,(ch)H X
[kp(B)Hﬁ,(Ch)H} is Op(1) by Birkhoff’s Ergodic Theorem. Finally, the last term

1§~ () 0y .
D D e {1(8,19 )&, ] is Op(1) by Proposition A.1(c).
k=1

(¢) The proof is similarly to the proof of (b). O

Appendix B: Properties of the pseudo-innovations

In this section we present some probabilistic properties of the pseudo-innova-
tions. Therefore, we start with an auxiliary lemma on the functions defining the
pseudo-innovations and the prediction covariance matrix which we require for
the pseudo-innovations to be partial differentiable.

Lemma B.1. Let Assumption A hold.

(a) The matriz functions I1(9), k(z,9), Vﬂ(h) and (Vﬂ(h))_1 are Lipschitz con-
tinuous on © and three times partial differentiable.
h)\—

() suppeo (V")) < €.

(¢) infyeo Tmn((Va")™1) > 0.
Proof. (a) is a consequence of Assumption A and Scholz [52, Lemma 5.9.3].
However, Scholz [52, Lemma 5.9.3] shows only the twice continuous differentia-
bility but the proof of the existence of the third partial differential is analog.
(b) follows from (a) and the compactness of ©.

(c) Due to Scholz [52, Lemma 5.9.1] the matrix (Vﬂ(h))’1 is non-singular. Hence,
we can conclude the statement from (a) and the compactness of ©. ]

Thus, the pseudo-innovations are three times differentiable and we receive an
analog version of Lemma 2.3.

Lemma B.2. Let Assumption A hold and let u,v € {1,...,s}. Then, the fol-
lowing results are valid.

(a) The matriz sequence (Oyk;(9))jen in R¥*4 is uniformly exponentially

bounded such that d,el” (9) = —9,T1(9)TY ") — 322, 9,k;(9) AV,
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(b) The matriz sequence (O vk;(9))jen in R¥*9 is uniformly exponentially
bounded such that 0, va,(ch)(ﬁ) = —au,vﬂ(ﬁ)TYk(ﬁ)l —> i (i)u,vkj(ﬁ)AYk(ﬁ)j.
Proof. Recall the representation given in Lemma 2.3 where (k;(?))jen is an

uniformly exponentially bounded matrix sequence. Then, the proof is analog to
Schlemm and Stelzer [51, Lemma 2.11]. O

Lemma B.3. Let Assumption A hold andi,j € {1,...,s2}. Then, the following
results are valid.

(a) (e h)(ﬁo) ,Ojtagl)(ﬁo) ,85’; M (9T pen is a stationary and ergodic se-
quence.
() Elef” (9°)]|* < oo, EJ|0sel” (90)[|* < oo and E||05ke (90)||* < co.
(c) E(asf PP ()T) = 04xa and Bl (0°)el (09)T) = 0gxa.
h h
(1) Bl (90)e (90)T) = vy,
Proof.
(a) Representation (1.2) and Lemma B.1 yield

W)Y, = (o) 190><cmo>TY,§h )y,
st h) h
o5 II(9°) Y( ( ) 1190)T}/s(t,l)c7
o3I, (6“ 7)) (1) TV
and hence,
Pty = )y +kB,9)AY",
ote (%) = —orm@)Ty Zastk @)AY",  (B.I)
o) = oIV, - 30 otk (o) AV,

=1

These are obviously stationary procesbes Fasen-Hartmann and Scholz [18, Prop-

osition 5.9] state already that (sk (190))keN is ergodic with finite second mo-
ments. The same arguments lead to the ergodicity of

((h)( ) ast (h)(ﬁO) ast (h)( ) ) ke

(b) The finite fourth moment of (Ek (190)) ren and its partial derivatives are
consequences of their series representation (B.1) with uniformly exponentially

bounded coefficient matrices and the finite fourth moment of Y(th,)C and AY(h)
due to Assumption (A3) and Marquardt and Stelzer [38, Proposition 3.30].

(c) A consequence of (B.1) is that both 9f'e;’ (h) (90 and O5e (h)( ) are ele-
ments of the Hilbert space generated by {Yl( —oo < I < k}. But sk (190)
orthogonal to the Hilbert space generated by {Yl(h), —00 < I < k} so that the
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statements follow.
(d) is a conclusion of the construction of the linear innovations by the Kalman
filter. O

Appendix C: Proof of Proposition 2.5

First, we present some auxiliary results for the proof of Proposition 2.5.

Lemma C.1. Let Assumption A and B hold. Define

XM (@) = Y (et - K Co Y KV,
=0

Then, the following results are valid.
(a) E (supyee X" (@)2) <00 and
maxien { i E (spsee 5" ()2) } < .
(b) E (suppeo 10.X" (9)]2) < 00 and
maxeen { i E (suppee 102" (9)[2) } < oc.
(¢) E (suppeo 105, X" (0)]2) < 00 and
maxyen {ﬁE (supﬁee ||5u,v§§€h) (19)||2)} < 0.

Proof. We prove (a) exemplary for (b) and (c). First, remark that
E|YVIP < e+ i) forjez.

Since all eigenvalues of (e?" — K éh)Cg) lie inside the unit circle (see Scholz [52,
Lemma 4.6.7]) and all matrix functions are continuous on the compact set © and,

hence, bounded, we receive for some 0 < p < 1 that supycg ||eA”h—K1(9h)C’19H <p

h T
and supyee | X{" (9] < €352, o7V} Thus,

2
h) 2 — (R)12y1/2
B (s IX0P) < e ¥ pErR)

90 iz

2
< e[ Y P+ <oo.
§=0

Similarly,

k—1
h _ S(h ; h
sup [[E (90) | < [|Yall + €0 sup | X{V @) + 3 ep [y,
9EO 9EO =
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such that

E (sup 607(0)1?)

k—1
< BE|Yi|?+3¢%%E (sup Bl ||2) 13 S el @IV )
9€O =
2
< ¢e|l@+k)+p*E (sup ||)?§h>(19)2) +k o
9e0 =

Finally, due to Assumption B

o { (s 1500017 }
2

<C|1+E (Sup H)?fh) ||2> ij < 0.
JeO
0

Lemma C.2. Let Assumption A and B hold. Furthermore, let u,v € {1,...,s}.

(a) Then, there exist a positive random variable ¢ with E((?) < oo and a
constant 0 < p < 1 so that supycg ||A(h)( ) — 5](€h) ()| < €p*~1(¢ for any
ke N.

(b) Then, there exist a positive random variable (W) with E(¢™)? < oo and
a constant 0 < p < 1 so that supyce ||8u§§€h) (9) — 8u5](€h) (V)] < €ph1¢
for any k € N.

(¢) Then, there exist a positive random variable ((“¥) with E(¢(**))? < oo
and a constant 0 < p < 1 so that supycg ||y, v’s\il)(ﬁ) — O, &t;ch)( | <

pF=1¢Y) for any k € N.

Proof. (a) We use the representation

() = eV (0) = Cyleth — KOy 1 (XM (9) - X (M (9)
and define ¢ := supycg ||)A(1(h) (D] + supgeo ||X1(h) (9)]]. Due to Assumption B
and Lemma C.1(a) we know that E(¢?) < oo. Since all eigenvalues of
(eAoh — Kéh)C’lg) lie inside the unit circle and Cy is bounded as a continu-
ous function on the compact set © there exists constants € > 0 and 0 < p < 1
so that supyce [|[Co (et — KM Cy)k=1|| < €pF~1 and

h h
sup [ (9) = 21 (9)]
YeO
< sup |Gy — KV Co) | sup | K17 (0) - X1V ()]
Y€O LSOl
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< ¢
(b, ¢) can be proven similarly. O
Proof of Proposition 2.5.
(a) First,
~ 1 < h h hy —1~(h
EP@) - LPw) = -3 [EP0 - o)) e )
k=1
h h)\—1 h h
ERONACUORESON
Then,
nsup L) (9) — £ (9))]
JEO
h)y\— = h h h h
< sup (V)1 S sup [0 () — £ () (sup 1M @) + sup [ ><z9>||).
JYEO JEO JEO JYEO

k=1

Due to Lemma B.1 and Lemma C.2(a)
<0y ot s [E )]+ sup 7 0]
o lvee 90

with E(¢?) < oo. From this and Cauchy-Schwarz inequality we can conclude
that

nE (sup 20 (9) — awwn)
JEO

n 1/2 1/2
< e(Be) Y ot [E(gggnéﬁ)wnﬁ) + (sup |7 0)1?) ]

k=1

An application of Lemma C.1(a) yields
< EEC)V2Y 1+ k)2 < 0.
k=1

This proves, nsupyecg |E§Lh) (9) — i (9)] = Op(1) so that (a) follows. Again (b)
and (c) can be proven similarly. O
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