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Abstract: In this paper, we investigate quasi-maximum likelihood (QML)
estimation for the parameters of a cointegrated solution of a continuous-
time linear state space model observed at discrete time points. The class
of cointegrated solutions of continuous-time linear state space models is
equivalent to the class of cointegrated continuous-time ARMA (MCARMA)
processes. As a start, some pseudo-innovations are constructed to be able
to define a QML-function. Moreover, the parameter vector is divided ap-
propriately in long-run and short-run parameters using a representation
for cointegrated solutions of continuous-time linear state space models as
a sum of a Lévy process plus a stationary solution of a linear state space
model. Then, we establish the consistency of our estimator in three steps.
First, we show the consistency for the QML estimator of the long-run pa-
rameters. In the next step, we calculate its consistency rate. Finally, we
use these results to prove the consistency for the QML estimator of the
short-run parameters. After all, we derive the limiting distributions of the
estimators. The long-run parameters are asymptotically mixed normally
distributed, whereas the short-run parameters are asymptotically normally
distributed. The performance of the QML estimator is demonstrated by a
simulation study.
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1. Introduction

This paper deals with quasi-maximum likelihood (QML) estimation for the pa-
rameters of a cointegrated solution of a continuous-time linear state space model.
The source of randomness in our model is a Lévy process, i.e., an Rm-valued
stochastic process L = (L(t))t≥0 with L(0) = 0m P-a.s., stationary and indepen-
dent increments, and càdlàg sample paths. A typical example of a Lévy process
is a Brownian motion. More details on Lévy processes can be found, e.g., in the
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monograph of Sato [48]. For deterministic matrices A ∈ R
N×N , B ∈ R

N×m,
C ∈ R

d×N and an R
m-valued Lévy process L, an R

d-valued continuous-time
linear state space model (A,B,C, L) is defined by the state and observation
equation

dX(t) = AX(t)dt+BdL(t),
Y (t) = CX(t).

(1.1)

The state vector process X = (X(t))t≥0 is an RN -valued process and the output
process Y = (Y (t))t≥0 is an R

d-valued process. Since in this model the driving
noise is a Lévy process the model allows flexible margins. In particular, the
margins can be Gaussian if we use a Brownian motion as Lévy process.

The topic of this paper are cointegrated solutions Y of linear state space mod-
els. Cointegrated means that Y is non stationary but has stationary increments,
and there exist linear combinations of Y which are stationary. The cointegration
space is the space spanned by all vectors β so that βTY is stationary. Without
any transformation of the state space model (1.1) it is impossible to see clearly
if there exists a cointegrated solution, not to mention the form of the cointe-
gration space. In the case of a minimal state-space model (see Bernstein [9]
for a definition), the eigenvalues of A determine whether a solution Y may be
stationary or cointegrated. If the eigenvalue 0 of A has the same geometric and
algebraic multiplicity 0 < c < min(d,m), and all other eigenvalues of A have
negative real parts, then there exists a cointegrated solution Y . In that case Y
has the form

Y (t) = C1Z + C1B1L(t) + Yst(t), (1.2)

where B1 ∈ R
c×m and C1 ∈ R

d×c have rank c (see Fasen-Hartmann and Scholz
[18, Theorem 3.3]). The starting vector Z is a c-dimensional random vector. The
process Yst = (Yst(t))t≥0 is a stationary solution of the state space model

dXst(t) = A2X(t)dt+B2dL(t),
Yst(t) = C2Xst(t),

(1.3)

driven by the Lévy process L with A2 ∈ R
(N−c)×(N−c), B2 ∈ R

(N−c)×m and
C2 ∈ R

d×(N−c). The matrices A,A1, A2, B,B1, B2, C,C1, C2 and C3 are related
through an invertible transformation matrix T ∈ R

N×N such that

TAT−1 =

(
0c×c 0c×(N−c)

0(N−c)×c A2

)
=: A′, TB =

(
B1

T, B2
T
)T

=: B′ and

CT−1 =
(
C1, C2

)
=: C ′,

where Bi
T denotes the transpose of Bi (i = 1, 2) and 0(N−c)×c ∈ R(N−c)×c de-

notes a matrix with only zero components. The process Y in (1.2) is obviously
cointegrated with cointegration space spanned by the orthogonal of C1 if the
covariance matrix Cov(L(1)) is non-singular. The probabilistic properties of Y
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are analyzed in detail in Fasen-Hartmann and Scholz [18] and lay the ground-
work for the present paper. Remarkable is that Y is a solution of the state space
model (A′, B′, C ′, L) as well.

The class of cointegrated solutions of linear state space models is huge.
They are equal to the class of cointegrated multivariate continuous-time ARMA
(MCARMA) processes (see Fasen-Hartmann and Scholz [18]). As the name sug-
gests, MCARMA processes are the continuous-time versions of the popular and
well-established ARMA processes in discrete-time. In finance and economics
continuous-time models provide the basis for option pricing, asset allocation
and term structure theory. The underlying observations of asset prices, exchange
rates, and interest rates are often irregularly spaced, in particular, in the con-
text of high frequency data. Consequently, one often works with continuous-
time models which infer the implied dynamics and properties of the estimated
model at different frequencies (see Chen et al. [17]). Fitting discrete-time mod-
els to such kind of data have the drawback that the model parameters are not
time-invariant: If the sampling frequency changes, then the parameters of the
discrete-time model change as well. The advantages of continuous-time mod-
elling over discrete-time modelling in economics and finance are described in
detail, i.a., in the distinguished papers of Bergstrom [7], Phillips [43], Cham-
bers, McCrorie and Thornton [15] and in signal processing, systems and control
they are described in Sinha and Rao [54]. In particular, MCARMA models are
applied in diversified fields as signal processing, systems and control (see Gar-
nier and Wang [22], Sinha and Rao [53]), high-frequency financial econometrics
(see Todorov [58]) and financial mathematics (see Benth et al. [6], Andresen et
al. [1]). Thornton and Chambers [16] use them as well for modelling sunspot
data. Empirical relevance of non-stationary MCARMA processes in economics
and in finance is shown, i.a., in Thornton and Chambers [16, 56, 57].

There is not much known about the statistical inference of cointegrated Lévy
driven MCARMA models. In the context of non-stationary MCARMA pro-
cesses most attention is paid to Gaussian MCAR(p) (multivariate continuous-
time AR) processes: An algorithm to estimate the structural parameters in
a Gaussian MCAR(p) model by maximum-likelihood started already by Har-
vey and Stock [26, 27, 28] and were further explored in the well-known paper
of Bergstrom [8]. Zadrozny [60] investigates continuous-time Brownian motion
driven ARMAX models allowing stocks and flows at different frequencies and
higher order integration. These papers use the state space representation of
the MCARMA process and Kalman filtering techniques to compute the Gaus-
sian likelihood function. In a recent paper Thornton and Chambers [57] extend
the results to MCARMA processes with mixed stock-flow data using an exact
discrete-time ARMA representation of the low-frequency observed MCARMA
process. However, all of the papers have in common on the one hand, that they
do not analyze the asymptotic properties of the estimators. On the other hand,
they are not able to estimate the cointegration space directly or rather relate
their results to cointegrated models.

Besides, statistical inference and identification of continuously and discretely
observed cointegrated Gaussian MCAR(1) processes, which are homogeneous
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Gaussian diffusions, are considered in Kessler and Rahbek [32, 33]; Stockmarr
and Jacobsen [55] and frequency domain estimators for cointegrated Gaussian
MCAR(p) models are topic of Chambers and McCrorie [14]. There are only a
few papers investigating non-Gaussian cointegrated MCARMA processes. For
example, Fasen [20] treats a multiple regression model in continuous-time. There
the stationary part is a multivariate Ornstein-Uhlenbeck process and the process
is observed on an equidistant time-grid. The model in Fasen [21] is similar but
the stationary part is an MCARMA process and the process is observed on a
high-frequency time grid.

The aim of this paper is to investigate QML estimators for C1, B1 and the
parameters of the stationary process Yst from the discrete-time observations
Y (h), . . . , Y (nh) where h > 0 is fixed. The parameters of C1 are the long-
run parameters, whereas the other parameters are the short-run parameters.
Although there exist results on QML for discrete-time cointegrated processes
they can unfortunately not directly be applied to the sampled process for the
following reasons.

MCARMA processes sampled equidistantly belong to the class of ARMA pro-
cesses (see Thornton and Chambers [57] and Chambers, McCrorie and Thornton
[15]). But identification problems arise from employing the ARMA structure for
the estimation of MCARMA parameters. That is until now an unsolved prob-
lem (see as well the overview article Chambers, McCrorie and Thornton [15]).
Moreover, in this representation the innovations are only uncorrelated and not
iid (independent and identically distributed). However, statistical inference for
cointegrated ARMA models has been done only for an iid noise elsewise even a
Gaussian white noise, see, e.g., the monographs of Johansen [30], Lütkepohl [35]
and Reinsel [44], and cannot be used for estimation of Lévy driven MCARMA
processes.

Another attempt is to use the representation of the sampled continuous-
time state space model as discrete-time state space model (see Zadrozny [60]).
That is what we do in this paper. Sampling Y with distance h > 0 results in

Y (h) := (Y (kh))k∈N0 =: (Y
(h)
k )k∈N0 , a cointegrated solution of the discrete time

state-space model

X
(h)
k = eAhX

(h)
k + ξ

(h)
k ,

Y
(h)
k = CX

(h)
k ,

(1.4)

where (ξ
(h)
k )k∈N0 := (

∫ kh

(k−1)h
eA(kh−t)BdL(t))k∈N0 is an iid sequence. For coin-

tegrated solutions of discrete-time state space models of the form

Xk = AXk + εk,
Yk = CXk + εk,

(1.5)

where (εk)k∈N0 is a white noise, asymptotic properties of the QML estimator
were investigated in the unpublished work of Bauer and Wagner [4]. An essential
difference between the state space model (1.4) and (1.5) is that in (1.4) the noise
is only going into the state equation, whereas in (1.5) it is going into both the
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state and the observation equation. An advantage of model (1.5) over our state
space model is that it is already in innovation form, i.e., the white noise (εk)k∈N0

can be represented by finitely many past values of (Yk)k∈N0 due to

εk = Yk − C(A−BC)kX0 − C

k∑
j=1

(A−BC)j−1BYk−j . (1.6)

But in our model (1.4) it is not possible to write the noise (ξ
(h)
k )k∈N0 by the

past of (Y
(h)
k )k∈N0 . Therefore, we are not able to apply the asymptotic results

of Bauer and Wagner [4] to the setting of our paper.
We use the Kalman-filter to calculate the linear innovations and to construct

an error correction form (see Fasen-Hartmann and Scholz [18, Proposition 5.5
and Theorem 5.8]). However, the linear innovations and the error correction
form use infinitely many past values in contrast to the usual finite order form
for VARMA models and discrete-time state space models as, e.g., in Lütkepohl
and Claessen [36], Saikkonen [45], Yap and Reinsel [59] and respectively, Aoki [2],
Bauer and Wagner [4] (see (1.6)). Indeed, the linear innovations are stationary,
but in general it is not possible to say anything about their mixing properties.
Hence, standard limit results for stationary mixing processes cannot be applied.
For more details in the case of stationary MCARMAmodels we refer to Schlemm
and Stelzer [50].

The representation of the innovations motivates the definition of the pseudo-
innovations and hence, the pseudo-Gaussian likelihood function. The term
pseudo reflects in the first case that we do not use the real innovations and in
the second case that we do not have a Gaussian model. This approach is stan-
dard for stationary models (see Schlemm and Stelzer [51]) but it is not so well
investigated for non-stationary models. In our model, the pseudo-innovations
are as well non-stationary and hence, classical methods for QML estimation for
stationary models do not work, e.g., the convergence of the quasi-maximum-
likelihood function by a law of large numbers or an ergodic theorem.

Well-known achievements on ML estimation for integrated and cointegrated
processes in discrete time are Saikkonen [46, 47]. Under the constraint that
the ML estimator is consistent and the long-run parameter estimator satisfies
some appropriate order of consistency condition, the papers present stochastic
equicontinuity criteria for the standardized score vector and the standardized
Hessian matrix such that the asymptotic distribution of the ML estimator can
be calculated. The main contributions of these papers are the derivation of
stochastic equicontinuity and weak convergence results of various first and sec-
ond order sample moments from integrated processes. The concepts are applied
to a ML estimator in a simple regression model with integrated and stationary
regressors.

In this paper, we follow the ideas of Saikkonen [47] to derive the asymp-
totic distribution of the QML estimator by providing evidence that these three
criteria are satisfied. However, our model does not satisfy the stochastic equicon-
tinuity conditions of Saikkonen [46, 47] such that the weak convergence results
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of these papers cannot be applied directly. But we use a similar approach. In
the derivation of the consistency of the QML estimator we even require local
Lipschitz continuity for some parts of the likelihood-function which is stronger
than local stochastic equicontinuity. For this reason we pay our attention in this
paper to local Lipschitz continuity instead of stochastic equicontinuity.

Although Saikkonen [46, 47] presents no general conditions for the analysis
of the consistency and the order of consistency of a ML estimator in an in-
tegrated or cointegrated model, the verification of the consistency of the ML
estimator in the regression example of Saikkonen [47] suggests, how to proceed
in more general models. That is done by a stepwise approach: In the first step,
we prove the consistency of the long-run parameter estimator and in the second
step its consistency rate; the long-run parameter estimator is super-consistent.
In the third step, we are able to prove the consistency of the short-run param-
eter estimator. However, important for the proofs is, as in Saikkonen [47], the
appropriate division of the likelihood-function where one part of the likelihood-
function depends only on the short-run parameters and is based on stationary
processes. This decomposition is not obvious and presumes as well a splitting
of the pseudo-innovations in a non-stationary and a stationary part depending
only on the short-run parameters.

The paper is structured on the following way. An introduction into QML
estimation for cointegrated continuous-time linear state space models is given
in Section 2. First, we state in Section 2.1 the assumptions about our para-
metric family of cointegrated output processes Y . Then, we define the pseudo-
innovations for the QML estimation by the Kalman filter in Section 2.2. Based
on the pseudo-innovations we calculate the pseudo-Gaussian log-likelihood func-
tion in Section 2.3. In Section 2.4 we introduce some identifiability conditions
to get a unique minimum of the likelihood function. The main results of this
paper are given in Section 3 and Section 4. First, we show the consistency of
the QML estimator in Section 3. Next, we calculate the asymptotic distribution
of the QML estimator in Section 4. The short-run QML estimator is asymp-
totically normally distributed and mimics the properties of QML estimators for
stationary models. In contrast, the long-run QML estimator is asymptotically
mixed normally distributed with a convergence rate of n instead of

√
n as oc-

curring in stationary models. Finally, in Section 5 we show the performance of
our estimator in a simulation study, and in Section 6 we give some conclusions.
Eventually, in Appendix A we present some asymptotic results and local Lips-
chitz continuity conditions which we use throughout the paper. Because of their
technicality and to keep the paper readable, they are moved to the appendix.

Notation We use as norms the Euclidean norm ‖·‖ in Rd and the Frobenius
norm ‖·‖ for matrices, which is submultiplicative. 0d×s denotes the zero matrix
in R

d×s and Id is the identity matrix in R
d×d. For a matrix A ∈ R

d×d we
denote by AT its transpose, tr(A) its trace, det(A) its determinant, rank A its
rank, λmin(A) its smallest eigenvalue and σmin(A) its smallest singular value.

If A is symmetric and positive semi-definite, we write A
1
2 for the principal

square root, i.e., A
1
2 is a symmetric, positive semi-definite matrix satisfying
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A
1
2A

1
2 = A. For a matrix A ∈ R

d×s with rank A = s, A⊥ is a d × (d − s)-
dimensional matrix with rank (d− s) satisfying ATA⊥ = 0s×(d−s) and A⊥TA =

0(d−s)×s. For two matrices A ∈ R
d×s and B ∈ R

r×n, we denote by A ⊗ B the

Kronecker product which is an element of Rdr×sn, by vec(A) the operator which
converts the matrix A into a column vector and by vech(A) the operator which
converts a symmetric matrix A into a column vector by vectorizing only the
lower triangular part of A. We write ∂i for the partial derivative operator with
respect to the ith coordinate and ∂i,j for the second partial derivative operator
with respect to the ith and jth coordinate. Further, for a matrix function f(ϑ)
in Rd×m with ϑ ∈ Rs the gradient with respect to the parameter vector ϑ is

denoted by ∇ϑf(ϑ) = ∂vec(f(ϑ))
∂ϑT ∈ Rdm×s. Let ξ = (ξk)k∈N and η = (ηk)k∈N

be d-dimensional stochastic processes then Γξ,η(l) = Cov(ξ1, η1+l) and Γξ(l) =

Cov(ξ1, ξ1+l), l ∈ N0, are the covariance functions. Finally, we denote with
w−−→

weak convergence and with
p−−→ convergence in probability. In general C denotes

a constant which may change from line to line.

2. Step-wise quasi-maximum likelihood estimation

2.1. Parametric model

Let Θ ⊂ R
s, s ∈ N, be a parameter space. We assume that we have a parametric

family (Yϑ)ϑ∈Θ of solutions of continuous-time cointegrated linear state space
models of the form

Yϑ(t) = C1,ϑZ + C1,ϑB1,ϑLϑ(t) + Yst,ϑ(t), t ≥ 0, (2.1)

where Z is a random starting vector, Lϑ = (Lϑ(t))t≥0 is a Lévy process and
Yst,ϑ = (Yst,ϑ(t))t≥0 is a stationary solution of the state-space model

dXst,ϑ(t) = A2,ϑXst,ϑ(t)dt+B2,ϑdLϑ(t),
Yst,ϑ(t) = C2,ϑXst,ϑ(t),

(2.2)

with A2,ϑ ∈ R
(N−c)×(N−c), B1,ϑ ∈ R

c×m, B2,ϑ ∈ R
(N−c)×m, C1,ϑ ∈ R

d×c and
C2,ϑ ∈ R

d×(N−c) where c ≤ min(d,m) ≤ N . In the parameterization of the Lévy
process Lϑ only the covariance matrix ΣL

ϑ of Lϑ is parameterized.
The parameter vector of the underlying process Y is denoted by ϑ0, i.e.,

(A2, B1, B2, C1, C2, L) = (A2,ϑ0 , B1,ϑ0 , B2,ϑ0 , C1,ϑ0 , C2,ϑ0 , Lϑ0) where Yst is a
stationary solution of the state space model (A2, B2, C2, L). Throughout the pa-
per, we shortly write (A2,ϑ, B1,ϑ, B2,ϑ, C1,ϑ, C2,ϑ, Lϑ) for the cointegrated state
space model with solution Yϑ as defined in (2.1). To be more precise we have
the following assumptions on our model.

Assumption A. For any ϑ ∈ Θ the cointegrated state space model (A2,ϑ, B1,ϑ,
B2,ϑ, C1,ϑ, C2,ϑ, Lϑ) satisfies the following conditions:

(A1) The parameter space Θ is a compact subset of Rs.
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(A2) The true parameter vector ϑ0 lies in the interior of Θ.
(A3) The Lévy process Lϑ has mean zero and non-singular covariance ma-

trix ΣL
ϑ = E[Lϑ(1)Lϑ(1)

T]. Moreover, there exists a δ > 0 such that
E‖Lϑ(1)‖4+δ < ∞ for any ϑ ∈ Θ.

(A4) The eigenvalues of A2,ϑ have strictly negative real parts.
(A5) The triplet (A2,ϑ, B2,ϑ, C2,ϑ) is minimal with McMillan degree N −c (see

Hannan and Deistler [24, Chapter 4.2] for the definition of McMillan
degree).

(A6) The matrices B1,ϑ ∈ R
c×m and C1,ϑR

d×c have full rank c ≤ min(d,m).
(A7) The c-dimensional starting random vector Z does not depend on ϑ,

E‖Z‖2 < ∞ and Z is independent of Lϑ.
(A8) The functions ϑ �→ A2,ϑ, ϑ �→ Bi,ϑ, ϑ �→ Ci,ϑ for i ∈ {1, 2}, ϑ �→ ΣL

ϑ

and ϑ1 �→ C⊥
1,ϑ1

are three times continuously differentiable, where C⊥
1,ϑ is

the unique lower triangular matrix with C⊥T
1,ϑC

⊥
1,ϑ = Id−c and C⊥T

1,ϑC1,ϑ =
0(d−c)×c.

(A9) Aϑ := diag(0c×c, A2,ϑ) ∈ R
N×N , Bϑ := (BT

1,ϑ, B
T
2,ϑ)

T ∈ R
N×m, Cϑ :=

(C1,ϑ, C2,ϑ) ∈ R
d×N . Moreover, Cϑ has full rank d ≤ N .

(A10) For any λ, λ′ ∈ σ(Aϑ) = σ(A2,ϑ)∪{0} and any k ∈ Z\{0}: λ−λ′ �= 2πk/h
(Kalman-Bertram criterion).

Remark 2.1.

(i) (A1) and (A2) are standard assumptions for QML estimation.
(ii) Assumption (A3)-(A4) are sufficient assumptions to guarantee that there

exists a stationary solution Yst,ϑ of the state space model (2.2) (see Mar-
quardt and Stelzer [38]).

(iii) Due to assumption (A5) the state space representation of Yst,ϑ in (2.2)
with A2,ϑ ∈ R

(N−c)×(N−c), B2,ϑ ∈ R
(d−c)×m and C2,ϑ ∈ R

d×(N−c) is
unique up to a change of basis.

(iv) We require that c respectively the cointegration rank r = d − c is known
in advance to be able to estimate the model adequately. In reality, it is
necessary to estimate first the cointegration rank r and obtain from this
c = d− r. Possibilities to do this is via information criteria.

(v) Using the notation in (A9) it is possible to show that Yϑ is the solution of
the state space model (Aϑ, Bϑ, Cϑ, Lϑ). Furthermore, on account of (A5)
and (A6), the state space model (Aϑ, Bϑ, Cϑ) is minimal with McMillan
degree N (see Fasen-Hartmann and Scholz [18, Lemma 2.4]) and hence,
as well unique up to a change of basis. That in combination with (A10)

is sufficient that Y
(h)
ϑ := (Y

(h)
ϑ (k))k∈N0 := (Yϑ(kh))k∈N0 is a solution of a

discrete-time state space model with McMillan degree N as well.

Furthermore, we assume that the parameter space Θ is a product space of
the form Θ = Θ1 × Θ2 with Θ1 ⊂ R

s1 and Θ2 ⊂ R
s2 , s = s1 + s2. The vector

ϑ = (ϑT
1 , ϑ

T
2 )

T ∈ Θ is a s-dimensional parameter vector where ϑ1 ∈ Θ1 and
ϑ2 ∈ Θ2. The idea is that ϑ1 is the s1-dimensional vector of long-run parameters
modelling the cointegration space and hence, responsible for the cointegration
of Yϑ. Whereas ϑ2 is the s2-dimensional vector of short-run parameters which
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has no influence on the cointegration of the model. Since the matrix C1,ϑ is
responsible for the cointegration property (see Fasen-Hartmann and Scholz [18,
Theorem 3.3]) we parameterize C1,ϑ with the sub-vector ϑ1 and use for all the
other matrices ϑ2. In summary, we parameterize the matrices with the following
sub-vectors (A2,ϑ2 , B1,ϑ2 , B2,ϑ2 , C1,ϑ1 , C2,ϑ2 , Lϑ2) for (ϑ1, ϑ2) ∈ Θ1 ×Θ2 = Θ.

2.2. Linear and pseudo-innovations

In this section, we define the pseudo-innovations which are essential to define
the QML function. Sampling at distance h > 0 maps the class of continuous-
time state space models to discrete-time state space models. That class of state
space models is not in innovation form and hence, we use a result from Fasen-
Hartmann and Scholz [18] to calculate the linear innovations ε∗ϑ(k) = Yϑ(kh)−
Pk−1Yϑ(kh) where Pk is the orthogonal projection onto span{Yϑ(lh) : −∞ < l ≤
k} where the closure is taken in the Hilbert space of square-integrable random
variables with inner product (Z1, Z2) �→ E(ZT

1 Z2). Thus, ε
∗
ϑ(k) is orthogonal to

the Hilbert space generated by span{Yϑ(lh),−∞ < l < k}. In our setting, the
linear innovations are as follows.

Proposition 2.2 (Fasen-Hartmann and Scholz [18]). Let Ω
(h)
ϑ be the unique

solution of the discrete-time algebraic Riccati equation

Ω
(h)
ϑ =eAϑhΩ

(h)
ϑ eA

T
ϑh − eAϑhΩ

(h)
ϑ CT

ϑ

(
CϑΩ

(h)
ϑ CT

ϑ

)−1
CϑΩ

(h)
ϑ eA

T
ϑh +Σ

(h)
ϑ ,

where

Σ
(h)
ϑ =

∫ h

0

(
B1,ϑΣ

L
ϑB

T
1,ϑ eA2,ϑuB2,ϑΣ

L
ϑB

T
1,ϑ

B1,ϑΣ
L
ϑB

T
2,ϑe

AT
2,ϑu eA2,ϑuB2,ϑΣ

L
ϑB

T
2,ϑe

AT
2,ϑu

)
du,

and K
(h)
ϑ = eAϑhΩ

(h)
ϑ CT

ϑ

(
CϑΩ

(h)
ϑ CT

ϑ

)−1
be the steady-state Kalman gain matrix.

Then, the linear innovations ε∗ϑ = (ε∗ϑ(k))k∈N of Y
(h)
ϑ := (Y

(h)
ϑ (k))k∈N :=

(Yϑ(kh))k∈N are the unique stationary solution of the state space equation

ε∗ϑ(k) = Y
(h)
ϑ (k)− CϑX

∗
ϑ(k), where

X∗
ϑ(k) = (eAϑh −K

(h)
ϑ Cϑ)X

∗
ϑ(k − 1) +K

(h)
ϑ Y

(h)
ϑ (k − 1).

(2.3)

Moreover, V
(h)
ϑ = E(ε∗ϑ(1)ε

∗
ϑ(1)

T) = CϑΩ
(h)
ϑ CT

ϑ is the prediction covariance
matrix of the Kalman filter.

We obtain recursively from (2.3)

ε∗ϑ(k) = Y
(h)
ϑ (k)− Cϑ(e

Aϑh −K
(h)
ϑ Cϑ)

k−1X∗
ϑ(1)

−
k−1∑
j=1

Cϑ(e
Aϑh −K

(h)
ϑ Cϑ)

j−1K
(h)
ϑ Y

(h)
ϑ (k − j).

However, the question arises which choice of X∗
ϑ(1) of the Kalman recursion

results in the stationary (ε∗ϑ(k))k∈N. This we want to elaborate in the following.
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Since all eigenvalues of (eAϑh −K
(h)
ϑ Cϑ) lie inside the unit circle (see Scholz

[52, Lemma 4.6.7]) the matrix function

l(z, ϑ) := Id − Cϑ

∞∑
j=1

(
eAϑh −K

(h)
ϑ Cϑ

)j−1
K

(h)
ϑ zj for z ∈ C

is well-defined and due to Fasen-Hartmann and Scholz [18, Lemma 5.7] has the
representation as

l(z, ϑ) = −α(ϑ)C⊥T
1,ϑ z + k(z, ϑ)(1− z)

for the linear filter

k(z, ϑ) := Id −
∞∑
j=1

kj(ϑ)z
j

with kj(ϑ) :=
∑∞

i=j Cϑ(e
Aϑh − K

(h)
ϑ Cϑ)

iK
(h)
ϑ ∈ R

d×d and a matrix

α(ϑ) ∈ R
d×(d−c) with full rank d − c. This representation of l(z, ϑ) helps us

to choose the initial condition X∗
ϑ(1) in the Kalman recursion appropriate so

that the linear innovations (ε∗ϑ(k))k∈N are really stationary. Therefore, it is
important to know that the stationary process Yst,ϑ can be defined on R as

Yst,ϑ(t) =
∫ t

−∞ fst,ϑ(t−s) dLϑ(s), t ∈ R, with fst,ϑ(u)= C2,ϑe
A2,ϑuB2,ϑ1[0,∞)(u)

and the Levy process (Lϑ(t))t∈R is defined on the negative real-line as

Lϑ(t) = L̃ϑ(−t−) for t < 0 with an independent copy (L̃ϑ(t))t≥0 of (Lϑ(t))t≥0.

Then, we have an adequate definition of ΔY
(h)
ϑ (k) := Y

(h)
ϑ (k)− Y

(h)
ϑ (k − 1) for

negative values as well as ΔY
(h)
ϑ (k) =

∫ kh

−∞ fΔ,ϑ(kh − s) dLϑ(s), k ∈ Z, with
fΔ,ϑ(u) = fst,ϑ(u)− fst,ϑ(u− h) +C1,ϑB1,ϑ1[0,h)(u). As notation, we use B for

the backshift operator satisfying BY
(h)
ϑ (k) = Y

(h)
ϑ (k − 1).

Lemma 2.3. Let Assumption A hold. Then,

ε∗ϑ(k) = −Π(ϑ)Y
(h)
ϑ (k − 1) + k(B, ϑ)ΔY

(h)
ϑ (k), k ∈ N,

where Π(ϑ)=α(ϑ)C⊥T
1,ϑ and k(B, ϑ)ΔY

(h)
ϑ (k)=ΔY

(h)
ϑ (k)−

∑∞
j=1 kj(ϑ)ΔY

(h)
ϑ (k−

j). The matrix sequence (kj(ϑ))j∈N is uniformly exponentially bounded, i.e.,
there exist constants C > 0 and 0 < ρ < 1 such that supϑ∈Θ ‖kj(ϑ)‖ ≤ Cρj ,
j ∈ N.

Proof. It remains to show that (kj(ϑ))j∈N is uniformly exponentially bounded.
The proof follows in the same line as Schlemm and Stelzer [51, Lemma 2.6] using

that all eigenvalues of (eAϑh −K
(h)
ϑ Cϑ) lie inside the unit circle (see Scholz [52,

Lemma 4.6.7]).

Due to Π(ϑ)Y
(h)
ϑ (k − 1) = Π(ϑ)Y

(h)
ϑ,st(k − 1) we receive from Lemma 2.3

ε∗ϑ(k) = −Π(ϑ)Y
(h)
ϑ,st(k − 1) + k(B, ϑ)ΔY

(h)
ϑ (k).
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From this representation we see nicely that (ε∗ϑ(k))k∈N is indeed a stationary

process. Defining Y
(h)
ϑ on the negative integers as

Y
(h)
ϑ (−k) = C1,ϑZ + Yst,ϑ(0)−

k−1∑
j=0

ΔY
(h)
ϑ (−j)

= C1,ϑZ + Lϑ(−kh) + Y
(h)
st,ϑ(−k), k ∈ N0,

the initial condition in the Kalman recursion is

X∗
ϑ(1) :=

∞∑
j=0

(eAϑh −K
(h)
ϑ Cϑ)

jK
(h)
ϑ Y

(h)
ϑ (−j)

so that

ε∗ϑ(k) = Y
(h)
ϑ (k)−

∑∞
j=1 Cϑ(e

Aϑh −K
(h)
ϑ Cϑ)

j−1K
(h)
ϑ Y

(h)
ϑ (k − j).

The representation of the linear innovations in Lemma 2.3 motivates the
definition of the pseudo-innovations which are going in the likelihood function.

Definition 2.4. The pseudo-innovations are defined for k ∈ N as

ε
(h)
k (ϑ) = −Π(ϑ)Y

(h)
k−1 + k(B, ϑ)ΔY

(h)
k

= Y
(h)
k −

∞∑
j=1

Cϑ(e
Aϑh −K

(h)
ϑ Cϑ)

j−1K
(h)
ϑ Y

(h)
k−j .

The main difference of the linear innovations and the pseudo-innovations is

that in the linear innovation Y
(h)
ϑ is going in, whereas in the pseudo-innovations

Y (h) is going in. For ϑ = ϑ0 the pseudo-innovations (ε
(h)
k (ϑ0))k∈N are the linear-

innovations (ε∗ϑ0(k))k∈N. In Appendix B we present some probabilistic properties
of the pseudo-innovations which we use throughout the paper. In particular, we
see that the pseudo-innovations are three times differentiable.

2.3. Quasi-maximum likelihood estimation

We estimate the model parameters via an adapted quasi-maximum likelihood es-
timation method. Minus two over n times the logarithm of the pseudo-Gaussian
likelihood function is given by

L(h)
n (ϑ) =

1

n

n∑
k=1

[
d log 2π + log detV

(h)
ϑ + ε

(h)
k (ϑ)T

(
V

(h)
ϑ

)−1
ε
(h)
k (ϑ)

]
.

The pseudo-innovations ε
(h)
k (ϑ) are constructed by the infinite past

{Y (h)(l) : −∞ < l < k}. However, the infinite past is not known, we only

have the finite observations Y
(h)
1 , . . . , Y

(h)
n . Therefore, we have to approximate
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the pseudo-innovations and the likelihood-function. For a starting value X̂
(h)
1 (ϑ),

which is usually a deterministic constant, we define recursively based on (2.3)
the approximate pseudo-innovations as

X̂
(h)
k (ϑ) = (eAϑh −K

(h)
ϑ Cϑ)X̂

(h)
k−1(ϑ) +K

(h)
ϑ Y

(h)
k−1,

ε̂
(h)
k (ϑ) = Y

(h)
k − CϑX̂

(h)
k (ϑ),

and the approximate likelihood-function as

L̂(h)
n (ϑ) =

1

n

n∑
k=1

[
d log 2π + log detV

(h)
ϑ + ε̂

(h)
k (ϑ)T

(
V

(h)
ϑ

)−1
ε̂
(h)
k (ϑ)

]
.

Then, the QML estimator

ϑ̂n := (ϑ̂T
n,1, ϑ̂

T
n,2)

T := argminϑ∈ΘL̂(h)
n (ϑ)

is defined as the minimizer of the pseudo-Gaussian log-likelihood function

L̂(h)
n (ϑ). The estimator ϑ̂n,1 estimates the long-run parameter ϑ1 and the esti-

mator ϑ̂n,2 estimates the short-run parameter ϑ2. However, for our asymptotic

results it does not matter if we use L̂(h)
n (ϑ) or L(h)

n (ϑ) as a conclusion of the next
proposition. But, for that proposition to hold, we require Assumption B which

assumes uniform bounds on the second moments of the starting value X̂
(h)
1 (ϑ)

of the Kalman recursion and its partial derivatives.

Assumption B.

For every u, v ∈ {1, . . . , s} we assume that E
(
sup
ϑ∈Θ

‖X̂(h)
1 (ϑ)‖2

)
< ∞,

E

(
supϑ∈Θ ‖∂uX̂(h)

1 (ϑ)‖2
)
< ∞, E

(
supϑ∈Θ ‖∂u,vX̂(h)

1 (ϑ)‖2
)
< ∞ and X̂

(h)
1 (ϑ)

is independent of (Lϑ(t))t≥0.

This assumption is not very restrictive, e.g., if X̂
(h)
1 (ϑ) = X̂

(h)
1 (ϑ0) for any

ϑ ∈ Θ and X̂
(h)
1 (ϑ0) is a deterministic vector, which we usually have in practice,

Assumption B is automatically satisfied.

Proposition 2.5. Let Assumption A and B hold. Moreover, let γ < 1 and
u, v ∈ {1, . . . , s}. Then,

(a) nγ sup
ϑ∈Θ

|L̂(h)
n (ϑ)− L(h)

n (ϑ)| p−−→ 0,

(b) nγ sup
ϑ∈Θ

|∂uL̂(h)
n (ϑ)− ∂uL(h)

n (ϑ)| p−−→ 0,

(c) nγ sup
ϑ∈Θ

|∂u,vL̂(h)
n (ϑ)− ∂u,vL(h)

n (ϑ)| p−−→ 0.

The proof of this proposition is similarly to the proof of Schlemm and Stelzer
[50, Lemma 2.7 and Lemma 2.15]. However, they are some essential differences

since in their paper (Y
(h)
k )k∈N and (ε

(h)
k (ϑ))k∈N are stationary sequences where in

our setup they are non-stationary. Furthermore, we require different convergence
rates. A detailed proof can be found in Appendix C.
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We split now the pseudo-innovation sequence based on the decomposition
ϑ = (ϑT

1 , ϑ
T
2 )

T so that one part is stationary and depends only on ϑ2:

ε
(h)
k (ϑ) = ε

(h)
k,1(ϑ) + ε

(h)
k,2(ϑ),

ε
(h)
k,1(ϑ) :=−

[
Π(ϑ1, ϑ2)−Π(ϑ0

1, ϑ2)
]
Y

(h)
k−1 +

[
k(B, ϑ1, ϑ2)− k(B, ϑ0

1, ϑ2)
]
ΔY

(h)
k ,

ε
(h)
k,2(ϑ) := ε

(h)
k,2(ϑ2) = −Π(ϑ0

1, ϑ2)Y
(h)
k−1 + k(B, ϑ0

1, ϑ2)ΔY
(h)
k . (2.4)

Due to similar calculations as in (B.1) we receive that

Π(ϑ0
1, ϑ2)Y

(h)
k−1 = Π(ϑ0

1, ϑ2)Y
(h)
st,k−1.

Hence,

ε
(h)
k,2(ϑ2) = −Π(ϑ0

1, ϑ2)Y
(h)
st,k−1 + k(B, ϑ0

1, ϑ2)ΔY
(h)
k , k ∈ N, (2.5)

is indeed stationary. Moreover, ε
(h)
k,1(ϑ

0
1, ϑ2) = 0 for any ϑ2 ∈ Θ2 and k ∈ N.

Finally, we separate the log-likelihood function L(h)
n (ϑ) in

L(h)
n (ϑ) = L(h)

n,1(ϑ) + L(h)
n,2(ϑ2),

where

L(h)
n,1(ϑ) := L(h)

n (ϑ1, ϑ2)− L(h)
n (ϑ0

1, ϑ2)

= log detV
(h)
ϑ − log detV

(h)

ϑ0
1,ϑ2

+
1

n

n∑
k=1

ε
(h)
k,1(ϑ)

T
(
V

(h)
ϑ

)−1
ε
(h)
k,1(ϑ)

+
2

n

n∑
k=1

ε
(h)
k,1(ϑ)

T
(
V

(h)
ϑ

)−1
ε
(h)
k,2(ϑ2)+

1

n

n∑
k=1

ε
(h)
k,2(ϑ2)

T
(
V

(h)
ϑ

)−1
ε
(h)
k,2(ϑ2)

− 1

n

n∑
k=1

ε
(h)
k,2(ϑ2)

T
(
V

(h)

ϑ0
1,ϑ2

)−1
ε
(h)
k,2(ϑ2),

L(h)
n,2(ϑ2) := L(h)

n (ϑ0
1, ϑ2)

= d log 2π + log detV
(h)

ϑ0
1,ϑ2

+
1

n

n∑
k=1

ε
(h)
k,2(ϑ2)

T
(
V

(h)

ϑ0
1,ϑ2

)−1
ε
(h)
k,2(ϑ2).

Obviously, L(h)
n,2(ϑ2) depends only on the short-run parameters, whereas L(h)

n,1(ϑ)
depends on all parameters. Furthermore, we have the following relations:

L(h)
n,1(ϑ

0
1, ϑ2) = 0 and L(h)

n (ϑ0
1, ϑ2) = L(h)

n,2(ϑ2) for any ϑ2 ∈ Θ2. (2.6)

This immediately implies L(h)
n (ϑ0) = L(h)

n,2(ϑ
0
2). In the remaining part of the

paper, we will see that the asymptotic properties of ϑ̂n,1 are determined by

L(h)
n,1(ϑ), whereas the asymptotic properties of ϑ̂n,2 are completely determined

by L(h)
n,2(ϑ2). Since L(h)

n,2(ϑ2) is based only on stationary processes it is not sur-

prising that ϑ̂n,2 exhibits the same asymptotic properties as QML estimators
for stationary processes.
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2.4. Identifiability

In order to properly estimate our model, we need a unique minimum of the
likelihood function and therefore we need some identifiability criteria for the
family of stochastic processes (Yϑ, ϑ ∈ Θ). The first assumption guarantees the
uniqueness of the long-run parameter ϑ0

1.

Assumption C. There exists a constant C∗ > 0 so that

‖C⊥T
1,ϑ1

C1‖ ≥ C∗‖ϑ1 − ϑ0
1‖ for ϑ ∈ Θ.

Remark 2.6.

(i) Without Assumption C we have only that ‖C⊥T
1,ϑ1

C1‖ has a zero in ϑ0
1 but

not that ‖C⊥T
1,ϑ1

C1‖ �= 0 for ϑ1 �= ϑ0
1. In particular, ‖C⊥T

1,ϑ1
C1‖ �= 0 for

ϑ1 �= ϑ0
1 implies that the space spanned by C1 and C1,ϑ1 are not the same.

(ii) Due to the Lipschitz-continuity of C⊥T
1,ϑ1

and C⊥T
1,ϑ0

1
C1 = 0(d−c)×c the upper

bound ‖C⊥T
1,ϑ1

C1‖ ≤ C‖ϑ1 − ϑ0
1‖ for some constant C > 0 is valid as well.

(iii) Assumption C implies that ‖Π(ϑ)C1B1‖ = ‖α(ϑ)C⊥T
1,ϑ1

C1B1‖ > 0 for

ϑ0
1 �=ϑ1 since α(ϑ) and B1 have full rank, and thus, the process

(
ε
(h)
k,1(ϑ)

)
k∈N

is indeed non-stationary for all long-run parameters ϑ1 �= ϑ0
1.

(iv) The matrix function α(ϑ) is continuous and has full column rank d− c so
that necessarily infϑ∈Θ σmin(α(ϑ)) > 0. Applying Bernstein [9, Corollary
9.6.7] gives for some constant C > 0:

‖Π(ϑ)C1‖ ≥ inf
ϑ∈Θ

{σmin(α(ϑ))} ‖C⊥T
1,ϑ1

C1‖ ≥ C‖ϑ1 − ϑ0
1‖.

The next assumption guarantees the uniqueness of the short-run parame-
ter ϑ0

2.

Assumption D. For any ϑ0
2 �= ϑ2 ∈ Θ2 there exists a z ∈ C such that either

Cϑ0
1,ϑ2

[
IN −

(
eAϑ2

h −K
(h)

ϑ0
1,ϑ2

Cϑ0
1,ϑ2

)
z
]−1

K
(h)

ϑ0
1,ϑ2

�= C
[
IN −

(
eAh −K(h)C

)
z
]−1

K(h)

or V
(h)

ϑ0
1,ϑ2

�= V (h).

Lemma 2.7. Let Assumption A and D hold. The function L(h)
2 : Θ2 → R

defined by

L(h)
2 (ϑ2) := d log(2π) + log detV

(h)

ϑ0
1,ϑ2

+ E

(
ε
(h)
1,2(ϑ2)

T
(
V

(h)

ϑ0
1,ϑ2

)−1
ε
(h)
1,2(ϑ2)

)
(2.7)

has a unique global minimum at ϑ0
2.

Proof. The proof is analogous to the proof of Lemma 2.10 in Schlemm and
Stelzer [51].
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Without the additional Assumption D we obtain only that L(h)
2 (ϑ2) has a

minimum in ϑ0
2 but not that the minimum is unique.

Due to Fasen-Hartmann and Scholz [18, Theorem 3.2] a canonical form for
cointegrated state space processes already exists and can be used to construct
a model class satisfying Assumption C and Assumption D. Further details are
presented in Fasen-Hartmann and Scholz [19]. Moreover, criteria to overcome
the aliasing effect (see Blevins [10], Hansen and Sargent [25], McCrorie [40, 41],
Phillips [42, 43], Schlemm and Stelzer [51]) are given there.

3. Consistency of the QML estimator

In order to show the consistency of the QML estimator, we follow the ideas
of Saikkonen [47] in his regression model. Thus, we prove the consistency in
three steps. In the first step, we prove the consistency of the long-run QML
estimator ϑ̂n,1 and next we determine its consistency rate. Thirdly, we prove

the consistency of the short-run QML estimator ϑ̂n,2 by making use of the
consistency rate of the long-run QML estimator. Throughout the rest of this
paper, we assume that Assumption A–D always hold. Furthermore, we denote
by (W (r))0≤r≤1 = ((W1(r)

T,W2(r)
T,W3(r)

T)T)0≤r≤1 a (2d + m)-dimensional
Brownian motion with covariance matrix

ΣW = ψ(1)

∫ h

0

(
ΣL ΣLe

AT
2 u

eA2uB2ΣL eA2uB2ΣLB
T
2 e

AT
2 u

)
duψ(1)T, (3.1)

where

ψ0 :=

⎛⎝ C1B1 C2

0d×m C2

Im×m 0m×N−c

⎞⎠ , ψj =

⎛⎝ 0d×m C2(e
A2hj − eA2h(j−1))

0d×m C2e
A2hj

Im×m 0m×N−c

⎞⎠ ,

ψ(z) =

∞∑
j=0

ψjz
j , z ∈ C, (3.2)

(Wi(r))0≤r≤1, i = 1, 2, are d-dimensional Brownian motions and (W3(r))0≤r≤1

is an m-dimensional Brownian motion.

3.1. Consistency of the long-run QML estimator

To show the consistency for the long-run parameter, Saikkonen [47, p. 903]
suggests in his example that it is sufficient to show the following theorem, where
B(ϑ0

1, δ) := {ϑ1 ∈ Θ1 : ‖ϑ1 − ϑ0
1‖ ≤ δ} denotes the closed ball with radius δ

around ϑ0
1, and B(ϑ0

1, δ) := Θ1\B(ϑ0
1, δ) denotes its complement.

Theorem 3.1. For any δ > 0 we have

lim
n→∞

P

(
inf

ϑ∈B(ϑ0
1,δ)×Θ2

L̂(h)
n (ϑ)− L̂(h)

n (ϑ0) > 0

)
= 1.

Corollary 3.2. In particular, ϑ̂n,1 − ϑ0
1 = op(1).
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3.1.1. Proof of Theorem 3.1

The following lemmata are important for the proof of the theorem.

Lemma 3.3. Let L(h) := (L
(h)
k )k∈Z := (L(kh))k∈Z and define

L(h)
n,1,1(ϑ) :=

1

n

n∑
k=1

[
Π(ϑ)C1B1L

(h)
k−1

]T (
V

(h)
ϑ

)−1
Π(ϑ)C1B1L

(h)
k−1,

L(h)
n,1,2(ϑ) := L(h)

n,1(ϑ)− L(h)
n,1,1(ϑ).

Then, |L(h)
n,1,2(ϑ)| ≤ C‖ϑ1 − ϑ0

1‖Un for ϑ ∈ Θ with Un = 1 + Vn +Qn = Op(1),
and Vn and Qn are defined as in Proposition A.3.

To conclude L(h)
n,1,2(·, ϑ2) is local Lipschitz continuous in ϑ0

1.

Proof of Lemma 3.3. Define

ε
(h)
k,1,1(ϑ) := −

[
Π(ϑ1, ϑ2)−Π(ϑ0

1, ϑ2)
]
C1B1L

(h)
k−1 = −Π(ϑ1, ϑ2)C1B1L

(h)
k−1,

ε
(h)
k,1,2(ϑ) := ε

(h)
k,1(ϑ)− ε

(h)
k,1,1(ϑ)

= −
[
Π(ϑ1, ϑ2)−Π(ϑ0

1, ϑ2)
]
Y

(h)
st,k−1

+
[
k(B, ϑ1, ϑ2)− k(B, ϑ0

1, ϑ2)
]
ΔY

(h)
k .

Then, (ε
(h)
k,1,2(ϑ))k∈N is a stationary sequence and ε

(h)
k,1(ϑ) = ε

(h)
k,1,1(ϑ)+ ε

(h)
k,1,2(ϑ).

First, note that

L(h)
n,1,2(ϑ) = log detV

(h)
ϑ1,ϑ2

− log detV
(h)

ϑ0
1,ϑ2

+
2

n

n∑
k=1

ε
(h)
k,1,1(ϑ)

T
(
V

(h)
ϑ

)−1
[ε

(h)
k,2(ϑ2) + ε

(h)
k,1,2(ϑ)]

+
1

n

n∑
k=1

ε
(h)
k,1,2(ϑ)

T
(
V

(h)
ϑ

)−1
[2ε

(h)
k,2(ϑ2) + ε

(h)
k,1,2(ϑ)]

+
1

n

n∑
k=1

ε
(h)
k,2(ϑ2)

T
((

V
(h)
ϑ

)−1 −
(
V

(h)

ϑ0
1,ϑ2

)−1
)
ε
(h)
k,2(ϑ2).

In the following, we use Bernstein [9, (2.2.27) and Corollary 9.3.9] to get the
upper bound∣∣∣∣∣ 1n

n∑
k=1

ε
(h)
k,1,1(ϑ)

T
(
V

(h)
ϑ

)−1
[ε

(h)
k,2(ϑ) + ε

(h)
k,1,2(ϑ)]

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

k=1

tr
(
ε
(h)
k,1,1(ϑ)

T
(
V

(h)
ϑ

)−1
[ε

(h)
k,2(ϑ) + ε

(h)
k,1,2(ϑ)]

)∣∣∣∣∣
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=

∣∣∣∣∣tr
((

V
(h)
ϑ

)−1 1

n

n∑
k=1

[ε
(h)
k,2(ϑ) + ε

(h)
k,1,2(ϑ)]ε

(h)
k,1,1(ϑ)

T

)∣∣∣∣∣
≤ ‖(V (h)

ϑ

)−1‖
∥∥∥∥∥ 1n

n∑
k=1

[ε
(h)
k,2(ϑ) + ε

(h)
k,1,2(ϑ)]ε

(h)
k,1,1(ϑ)

T

∥∥∥∥∥ .
Similarly we find upper bounds for the other terms. Moreover, due to Lemma
B.1(b)

|L(h)
n,1,2(ϑ)| ≤ | log detV (h)

ϑ1,ϑ2
− log detV

(h)

ϑ0
1,ϑ2

|

+C

∥∥∥∥∥ 1n
n∑

k=1

[ε
(h)
k,2(ϑ) + ε

(h)
k,1,2(ϑ)]ε

(h)
k,1,1(ϑ)

T

∥∥∥∥∥
+C

∥∥∥∥∥ 1n
n∑

k=1

[2ε
(h)
k,2(ϑ) + ε

(h)
k,1,2(ϑ)]ε

(h)
k,1,2(ϑ)

T

∥∥∥∥∥
+C

∥∥∥(V (h)
ϑ1,ϑ2

)−1 −
(
V

(h)

ϑ0
1,ϑ2

)−1
∥∥∥ ∥∥∥∥∥ 1n

n∑
k=1

ε
(h)
k,2(ϑ2)ε

(h)
k,2(ϑ2)

T

∥∥∥∥∥ .
Since V −1

ϑ and log detVϑ are Lipschitz continuous by Lemma B.1(a), we obtain

|L(h)
n,1,2(ϑ)| ≤ C

(
‖ϑ1 − ϑ0

1‖+
∥∥∥∥∥ 1n

n∑
k=1

[ε
(h)
k,2(ϑ) + ε

(h)
k,1,2(ϑ)]ε

(h)
k,1,1(ϑ)

T

∥∥∥∥∥
+

∥∥∥∥∥ 1n
n∑

k=1

[2ε
(h)
k,2(ϑ) + ε

(h)
k,1,2(ϑ)]ε

(h)
k,1,2(ϑ)

T

∥∥∥∥∥
+ ‖ϑ1 − ϑ0

1‖
∥∥∥∥∥ 1n

n∑
k=1

ε
(h)
k,2(ϑ2)ε

(h)
k,2(ϑ2)

T

∥∥∥∥∥
)
. (3.3)

Moreover, Π(ϑ) is Lipschitz continuous as well (see Lemma B.1(a)) and the
sequence of matrix functions (kj(ϑ))j∈N and (∇ϑkj(ϑ))j∈N are exponentially

bounded (see Lemma 2.3 and Lemma B.2). Due to (A.4) and ε
(h)
k,1,1(ϑ

0
1, ϑ2) = 0

we receive∥∥∥∥∥ 1n
n∑

k=1

[ε
(h)
k,2(ϑ) + ε

(h)
k,1,2(ϑ)]ε

(h)
k,1,1(ϑ)

T

∥∥∥∥∥ ≤ C‖ϑ1 − ϑ0
1‖Vn. (3.4)

Due to (A.6) and ε
(h)
k,1,2(ϑ

0
1, ϑ2) = 0 we get∥∥∥∥∥ 1n

n∑
k=1

[2ε
(h)
k,2(ϑ) + ε

(h)
k,1,2(ϑ)]ε

(h)
k,1,2(ϑ)

T

∥∥∥∥∥ ≤ C‖ϑ1 − ϑ0
1‖Qn. (3.5)

Finally, ∥∥∥∥∥ 1n
n∑

k=1

ε
(h)
k,2(ϑ2)ε

(h)
k,2(ϑ2)

T

∥∥∥∥∥ ≤ CQn (3.6)
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as well. Then, (3.3)-(3.6) result in the upper bound

|L(h)
n,1,2(ϑ)| ≤ C‖ϑ1 − ϑ0

1‖(1 + Vn +Qn).

A direct consequence of Proposition A.3 is Un = 1 + Vn +Qn = Op(1).

Lemma 3.4.

(a) sup
ϑ2∈Θ2

|L(h)
n,2(ϑ2)−L(h)

2 (ϑ2)|
p−−→ 0 as n → ∞.

(b)
1

n
L(h)
n,1(ϑ)

w−−→
∫ 1

0

‖(V (h)
ϑ )−1/2Π(ϑ)C1B1W3(r)‖2 dr and the convergence

holds in the space of continuous functions on Θ with the supremum norm.

Proof.
(a) is a consequence of Proposition A.1(a) and the continuous mapping theo-
rem.

(b) First, supϑ∈Θ | 1nLn,1,2(ϑ)| = op(1) due to Lemma 3.3 and Θ compact.
Second, a conclusion of Proposition A.1(b) and the continuous mapping theorem
is that

1

n
L(h)
n,1,1(ϑ)

= tr

((
V

(h)
ϑ

)−1/2
Π(ϑ)C1B1

(
1

n2

n∑
k=1

L
(h)
k−1L

(h)T

k−1

)
BT

1C
T
1 Π(ϑ)

T
(
V

(h)
ϑ

)−1/2

)
w−−→ tr

((
V

(h)
ϑ

)−1/2
Π(ϑ)C1B1

(∫ 1

0

W3(r)W3(r)
T dr

)
BT

1C
T
1 Π(ϑ)

T
(
V

(h)
ϑ

)−1/2
)

=

∫ 1

0

‖(V (h)
ϑ )−1/2Π(ϑ)C1B1W3(r)‖2 dr,

and the convergence holds in the space of continuous functions on Θ with the

supremum norm due to the continuity of Π(ϑ) and (V
(h)
ϑ )−1 (see Lemma B.1(a)).

In the first and in the last equality we used Bernstein [9, 2.2.27] which allows
us to permutate matrices in the trace.

Proof of Theorem 3.1. On the one hand, due to Proposition 2.5

inf
ϑ∈B(ϑ0

1,δ)×Θ2

L̂(h)
n (ϑ)− L̂(h)

n (ϑ0)

≥ inf
ϑ∈B(ϑ0

1,δ)×Θ2

(L(h)
n (ϑ)− L(h)

n (ϑ0))− 2 sup
ϑ∈Θ

|L̂(h)
n (ϑ)− L(h)

n (ϑ)|

= inf
ϑ∈B(ϑ0

1,δ)×Θ2

(
L(h)
n (ϑ)− L(h)

n (ϑ0)
)
+ op(1).

On the other hand, due to Lemma 2.7 and Lemma 3.4(a)∣∣∣∣ inf
ϑ2∈Θ2

L(h)
n,2(ϑ2)− L(h)

n,2(ϑ
0
2)

∣∣∣∣
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≤ sup
ϑ2∈Θ2

|L(h)
n,2(ϑ2)−L(h)

2 (ϑ2)|+
∣∣∣∣ inf
ϑ2∈Θ2

L(h)
2 (ϑ2)−L(h)

2 (ϑ0
2)

∣∣∣∣
+|L(h)

2 (ϑ0
2)− L(h)

n,2(ϑ
0
2)|

= op(1).

Using (2.6) and the above results we receive

inf
ϑ∈B(ϑ0

1,δ)×Θ2

L̂(h)
n (ϑ)− L̂(h)

n (ϑ0)

≥ inf
ϑ∈B(ϑ0

1,δ)×Θ2

(
L(h)
n (ϑ)− L(h)

n (ϑ0)
)
+ op(1)

≥ inf
ϑ∈B(ϑ0

1,δ)×Θ2

L(h)
n,1(ϑ) + inf

ϑ∈Θ2

(
L(h)
n,2(ϑ2)− L(h)

n,2(ϑ
0
2)
)
+ op(1)

= inf
ϑ∈B(ϑ0

1,δ)×Θ2

L(h)
n,1(ϑ) + op(1).

Hence, it suffices to show that for any τ > 0

lim
n→∞

P

(
inf

ϑ∈B(ϑ0
1,δ)×Θ2

L(h)
n,1(ϑ) > τ

)
= 1. (3.7)

An application of Lemma 3.4(b) and the continuous mapping theorem yield

inf
ϑ∈B(ϑ0

1,δ)×Θ2

1

n
L(h)
n,1(ϑ)

w−−→ inf
ϑ∈B(ϑ0

1,δ)×Θ2

∫ 1

0

‖(V (h)
ϑ )−1/2Π(ϑ)C1B1W3(r)‖2 dr.

(3.8)

Due to Bernstein [9, Corollary 9.6.7]∫ 1

0

‖(V (h)
ϑ )−1/2Π(ϑ)C1B1W3(r)‖2 dr

≥ σmin((V
(h)
ϑ )−1)

∫ 1

0

‖Π(ϑ)C1B1W3(r)‖2 dr. (3.9)

Moreover,∫ 1

0

‖Π(ϑ)C1B1W3(r)‖2 dr

=

∫ 1

0

tr
(
[B1W3(r)]

T[Π(ϑ)C1]
T[Π(ϑ)C1][B1W3(r)]

)
dr

= tr

(
[Π(ϑ)C1]

T[Π(ϑ)C1]

∫ 1

0

[B1W3(r)][B1W3(r)]
T dr

)
,

where we used Bernstein [9, 2.2.27] to permutate the matrices in the trace.

The random matrix
∫ 1

0
[B1W3(r)]

T[B1W3(r)] dr is P-a.s. positive definite since
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B1 and the covariance matrix of W3 have full rank. Hence, there exists an
m × m-dimensional symmetric positive random matrix W ∗ with W ∗W ∗T =∫ 1

0
[B1W3(r)][B1W3(r)]

T dr. Then, we obtain similarly as above with Bernstein
[9, 2.2.27]∫ 1

0

‖Π(ϑ)C1B1W3(r)‖2 dr=tr
(
[W ∗]T[Π(ϑ)C1]

T[Π(ϑ)C1]W
∗) = ‖Π(ϑ)C1W

∗‖2.

Again an application of Bernstein [9, Corollary 9.6.7] and (3.9) yields∫ 1

0

‖(V (h)
ϑ )−1/2Π(ϑ)C1B1W3(r)‖2 dr (3.10)

≥ σmin((V
(h)
ϑ )−1)

∫ 1

0

‖Π(ϑ)C1B1W3(r)‖2 dr

= σmin((V
(h)
ϑ )−1)‖Π(ϑ)C1W

∗‖2

≥ σmin((V
(h)
ϑ )−1)σmin

(
W ∗W ∗T) ‖Π(ϑ)C1‖2

= σmin((V
(h)
ϑ )−1)σmin

(∫ 1

0

B1W3(r)[B1W3(r)]
T dr

)
‖Π(ϑ)C1‖2.

Since B1

∫ 1

0
W3(r)W3(r)

TdrBT
1 is P-a.s. positive definite

σmin

(
B1

∫ 1

0

W3(r)W3(r)
TdrBT

1

)
> 0 P-a.s.

On the one hand, infϑ∈B(ϑ0
1,δ)×Θ2

σmin((V
(h)
ϑ )−1) > 0 due Lemma B.1(c). On

the other hand, Assumption C (see Remark 2.6) implies that

inf
ϑ∈B(ϑ0

1,δ)×Θ2

‖Π(ϑ)C1‖2 > C2δ2 > 0.

To conclude

inf
ϑ∈B(ϑ0

1,δ)×Θ2

∫ 1

0

‖(V (h)
ϑ )−1/2Π(ϑ)C1B1W3(r)‖2 dr > 0 P-a.s.,

which finally gives with (3.8) that infϑ∈B(ϑ0
1,δ)×Θ2

L(h)
n,1(ϑ)

p−−→ ∞ and thus, (3.7)
is proven.

3.2. Super-consistency of the long-run QML estimator

From the previous section we already know that the QML estimator ϑ̂n,1 for
the long-run parameter is consistent. In the following, we will calculate its con-
sistency rate. For 0 ≤ γ < 1 define the set

Nn,γ(ϑ
0
1, δ) :=

{
ϑ1 ∈ Θ1 : ‖ϑ1 − ϑ0

1‖ ≤ δn−γ
}
, n ∈ N, (3.11)

and Nn,γ(ϑ
0
1, δ) := Θ1\Nn,γ(ϑ

0
1, δ) as its complement. As Saikkonen [47, eq.

(26)] we receive the consistency rate from the next statement.
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Theorem 3.5. Let 0 ≤ γ < 1. For any δ > 0 we have

lim
n→∞

P

(
inf

ϑ∈Nn,γ(ϑ0
1,δ)×Θ2

L̂(h)
n (ϑ)− L̂(h)

n (ϑ0) > 0

)
= 1.

Corollary 3.6. In particular, ϑ̂n,1 − ϑ0
1 = op(n

−γ) for 0 ≤ γ < 1.

3.2.1. Proof of Theorem 3.5

The proof uses the next lemma.

Lemma 3.7. Let the notation of Lemma 3.3 hold. Then,

(a) L(h)
n,1,1(ϑ) ≥ Cσmin((V

(h)
ϑ )−1)‖ϑ1 − ϑ0

1‖2σmin

(
1

n

n∑
k=1

B1L
(h)
k−1[B1L

(h)
k−1]

T

)
.

(b) L(h)
n,1,1(ϑ) ≤ C‖(V (h)

ϑ )−1‖‖ϑ1 − ϑ0
1‖2 tr

(
1

n

n∑
k=1

B1L
(h)
k−1[B1L

(h)
k−1]

T

)
.

Proof.
(a) Several applications of Bernstein [9, Corollary 9.6.7] give, similarly as in
(3.10),

L(h)
n,1,1(ϑ) =

1

n

n∑
k=1

‖(V (h)
ϑ )−1/2Π(ϑ)C1B1L

(h)
k−1‖2

≥ σmin((V
(h)
ϑ )−1)σmin

(
1

n

n∑
k=1

B1L
(h)
k−1[B1L

(h)
k−1]

T

)
‖Π(ϑ)C1‖2.

An application of Assumption C (see Remark 2.6) yields (a).

(b) The submultiplicativity of the norm gives

L(h)
n,1,1(ϑ) =

1

n

n∑
k=1

‖(V (h)
ϑ )−1/2Π(ϑ)C1B1L

(h)
k−1‖2

≤ ‖(V (h)
ϑ )−1/2‖2‖Π(ϑ)C1‖2

1

n

n∑
k=1

‖B1L
(h)
k−1‖2

= ‖(V (h)
ϑ )−1/2‖2‖Π(ϑ)C1‖2 tr

(
1

n

n∑
k=1

[B1L
(h)
k−1][B1L

(h)
k−1]

T

)
.

In the last line we applied Bernstein [9, 2.2.27]. Due to Π(ϑ0
1, ϑ2)C1 = 0d×c we

have

L(h)
n,1,1(ϑ)≤‖(V (h)

ϑ )−1‖‖Π(ϑ)C1 −Π(ϑ0
1, ϑ2)C1‖2 tr

(
1

n

n∑
k=1

B1L
(h)
k−1[B1L

(h)
k−1]

T

)
.

Finally, the Lipschitz continuity of Π(ϑ) and hence, of Π(ϑ)C1 yield the state-
ment.
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A conclusion of Lemma 3.3 and Lemma 3.7 is the local Lipschitz continuity

of L(h)
n,1(·, ϑ2) in ϑ0

1. Essential for the proof of Theorem 3.5 is as well the local

Lipschitz continuity of L(h)
n,1,2(·, ϑ2) in ϑ0

1.

Proof of Theorem 3.5. Due to Proposition 2.5 the lower bound

inf
ϑ∈Nn,γ(ϑ0

1,δ)×Θ2

n
(
L̂(h)
n (ϑ)− L̂(h)

n (ϑ0)
)

≥ inf
ϑ∈Nn,γ(ϑ0

1,δ)×Θ2

n
(
L(h)
n (ϑ)− L(h)

n (ϑ0)
)
+ op(1)

≥ inf
ϑ∈Nn,γ(ϑ0

1,δ)×Θ2

nL(h)
n,1(ϑ) + inf

ϑ∈Θ2

n
(
L(h)
n,2(ϑ2)− L(h)

n,2(ϑ
0
2)
)
+ op(1)

holds. We investigate now the second term. Note that L(h)
n,2(ϑ2) depends only on

the short-run parameters. Therefore, we take the infeasible estimator

ϑ̂st
n,2 := argmin

ϑ2∈Θ2

L(h)
n,2(ϑ2)

for the short-run parameter ϑ0
2 minimizing L(h)

n,2(ϑ2). For this reason, we can
interpret this as a “classical” stationary estimation problem. Applying a Taylor-

expansion of nL(h)
n,2 around ϑ0

2 yields

n ·
(
L(h)
n,2(ϑ̂

st
n,2)− L(h)

n,2(ϑ
0
2)
)
=

(√
n∇ϑ2L

(h)
n,2(ϑn,2)

)
·
(√

n(ϑ̂st
n,2 − ϑ0

2)
)

for an appropriate intermediate value ϑn,2 ∈ Θ2 with ‖ϑn,2 − ϑ0
2‖ ≤ ‖ϑ̂st

n,2 −
ϑ0
2‖. Since

√
n∇ϑ2L

(h)
n,2(ϑn,2) and

√
n(ϑ̂st

n,2 − ϑ0
2) are asymptotically normally

distributed (these are special and easier calculations as in Section 4.2) we can
conclude

n ·
(
L(h)
n,2(ϑ̂

st
n,2)− L(h)

n,2(ϑ
0
2)
)
= Op(1).

Finally,

inf
ϑ∈Nn,γ(ϑ0

1,δ)×Θ2

n ·
(
L̂(h)
n (ϑ)− L̂(h)

n (ϑ0)
)
≥ inf

ϑ∈Nn,γ(ϑ0
1,δ)×Θ2

n · L(h)
n,1(ϑ) +Op(1).

Thus, if we can show that

sup
ϑ∈Nn,γ(ϑ0

1,δ)×Θ2

nL(h)
n,1(ϑ)

p−−→ ∞, (3.12)

then for any τ > 0

lim
n→∞

P

(
inf

ϑ∈Nn,γ(ϑ0
1,δ)×Θ2

L̂(h)
n (ϑ)− L̂(h)

n (ϑ0) > 0

)
≥ lim

n→∞
P

(
inf

ϑ∈Nn,γ(ϑ0
1,δ)×Θ2

n
(
L̂(h)
n (ϑ)− L̂(h)

n (ϑ0)
)
> τ

)
= 1.
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Before we prove (3.12) we first note that due to (3.7) we only have to consider
the set

Mn,γ(ϑ
0
1, δ1) := Nn,γ(ϑ

0
1, δ1) ∩ B(ϑ0

1, δ1) ⊆ Θ1 ∩ B(ϑ0
1, δ1)

for n large enough instead of the whole setNn,γ(ϑ
0
1, δ1) in the infimum. Note that

infϑ∈Θ σmin((V
(h)
ϑ )−1) > 0 by Lemma B.1(c). Then, Lemma 3.3 and Lemma 3.7

give the lower bound

L(h)
n,1(ϑ)

≥ L(h)
n,1,1(ϑ)− |L(h)

n,1,2(ϑ)|

≥ C‖ϑ1 − ϑ0
1‖2σmin

(
1

n

n∑
k=1

B1L
(h)
k−1[B1L

(h)
k−1]

T

)
− C‖ϑ1 − ϑ0

1‖Un

≥ Cn‖ϑ1 − ϑ0
1‖2

(
σmin

(
1

n2

n∑
k=1

B1L
(h)
k−1[B1L

(h)
k−1]

T

)
− 1

n‖ϑ1 − ϑ0
1‖

Un

)
︸ ︷︷ ︸

=:Zn(ϑ)

.

Finally,

inf
ϑ∈Mn,γ(ϑ0

1,δ)×Θ2

nL(h)
n,1(ϑ)

≥
(

inf
ϑ∈Mn,γ(ϑ0

1,δ)×Θ2

Cn2‖ϑ1 − ϑ0
1‖2

)(
inf

ϑ∈Mn,γ(ϑ0
1,δ)×Θ2

Zn(ϑ)

)
≥ Cn2−2γ inf

ϑ∈Mn,γ(ϑ0
1,δ)×Θ2

Zn(ϑ).

Due to Proposition A.1(b) and Lemma 3.3, we receive

inf
ϑ∈Mn,γ(ϑ0

1,δ)×Θ2

Zn(ϑ)
w−−→ σmin

(
B1

∫ 1

0

W3(r)W3(r)
TdrBT

1

)
where the right hand side is almost surely positive. Thus, finally

supϑ∈Mn,γ(ϑ0
1,δ)×Θ2

nL(h)
n,1(ϑ)

p−−→ ∞ for 0 ≤ γ < 1.

3.3. Consistency of the short-run QML estimator

Next, we consider the consistency of the short-run parameter estimator ϑ̂n,2

with the help of the order of consistency of the long-run parameter estimator
ϑ̂n,1 which we determined in Corollary 3.6. Similarly to Saikkonen [47, eq. (31)]
we show a sufficient condition given by the next theorem. Therefore, define for
δ > 0 the set B(ϑ0

2, δ) := {ϑ2 ∈ Θ2 : ‖ϑ2 − ϑ0
2‖ ≤ δ} as closed ball with radius δ

around ϑ0
2 and B(ϑ0

2, δ) := Θ2\B(ϑ0
2, δ) as its complement.
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Theorem 3.8. Then, for any δ > 0 we have

lim
n→∞

P

(
inf

ϑ∈Θ1×B(ϑ0
2,δ)

L̂(h)
n (ϑ)− L̂(h)

n (ϑ0) > 0

)
= 1.

Corollary 3.9. In particular, ϑ̂n,2 − ϑ0
2 = op(1).

3.3.1. Proof of Theorem 3.8

Again we prove some auxiliary results before we state the proof of the theo-
rem. Lemma 3.10 corresponds to Saikkonen [47, eq. (32)] and Lemma 3.11 to
Saikkonen [47, eq. (33)] for the regression model.

Lemma 3.10. For 1
2 < γ < 1, δ1 > 0 and τ > 0 we have

lim
n→∞

P

(
sup

ϑ∈Nn,γ(ϑ0
1,δ1)×Θ2

|L(h)
n,1(ϑ)| ≤ τ

)
= 1.

Proof. Due to Lemma 3.3 and Lemma 3.7 we have the upper bound

|L(h)
n,1(ϑ)|

≤ |L(h)
n,1,1(ϑ)|+ |L(h)

n,1,2(ϑ)|

≤ C‖(V (h)
ϑ )−1‖‖ϑ1 − ϑ0

1‖2 tr
(
1

n

n∑
k=1

B1L
(h)
k−1[B1L

(h)
k−1]

T

)
+ C‖ϑ1 − ϑ0

1‖Un.

Then, Lemma B.1(b) results in

sup
ϑ∈Nn,γ(ϑ0

1,δ1)×Θ2

L(h)
n,1(ϑ) ≤ Cδ21n

1−2γ tr

(
1

n2

n∑
k=1

B1L
(h)
k−1[B1L

(h)
k−1]

T

)
+ Cδ1n

−γUn.

(3.13)

Since Un = Op(1) by Lemma 3.3, and

tr

(
1

n2

n∑
k=1

B1L
(h)
k−1[B1L

(h)
k−1]

T

)
w−−→ tr

(
B1

∫ 1

0

W3(r)W3(r)
TdrBT

1

)

by Proposition A.1(b) and the continuous mapping theorem, the right hand side
of (3.13) converges to 0 in probability if 1

2 < γ < 1. This proves the lemma.

Lemma 3.11. For any δ > 0 and τ > 0 we have

lim
n→∞

P

(
inf

ϑ2∈B(ϑ0
2,δ)

L(h)
n,2(ϑ2)− L(h)

n,2(ϑ
0
2) > τ

)
= 1.



5176 V. Fasen-Hartmann and M. Scholz

Proof. We have

inf
ϑ2∈B(ϑ0

2,δ)

(
L(h)
n,2(ϑ2)− L(h)

n,2(ϑ
0
2)
)

≥ inf
ϑ2∈B(ϑ0

2,δ)

(
L(h)
n,2(ϑ2)−L(h)

2 (ϑ2)
)
+ inf

ϑ2∈B(ϑ0
2,δ)

(
−L(h)

n,2(ϑ
0
2) +L(h)

2 (ϑ0
2)
)

+ inf
ϑ2∈B(ϑ0

2,δ)

(
L(h)

2 (ϑ2)−L(h)
2 (ϑ0

2)
)
.

On the one hand, the first two terms converge to zero in probability, due to
Lemma 3.4(a) and the continuous mapping theorem. On the other hand,

inf
ϑ2∈B(ϑ0

2,δ)

(
L(h)

2 (ϑ2)−L(h)
2 (ϑ0

2)
)
> 0

since L(h)
2 (ϑ2) has a unique minimum in ϑ0

2 by Lemma 2.7.

Proof of Theorem 3.8. Let us assume that 1
2 < γ < 1. Apparently, the pa-

rameter subspace Θ1 is the union of Θ1 = Nn,γ(ϑ
0
1, δ1) ∪ Nn,γ(ϑ

0
1, δ1) and

thus, we have already shown Theorem 3.8 for the set Nn,γ(ϑ
0
1, δ1) × B(ϑ0

2, δ)
instead of Θ1 × B(ϑ0

2, δ) in Theorem 3.5. It remains to investigate the set
Nn,γ(ϑ

0
1, δ1)× B(ϑ0

2, δ). For any δ1 > 0 we obtain by Proposition 2.5

lim
n→∞

P

(
inf

ϑ∈Nn,γ(ϑ0
1,δ1)×B(ϑ0

2,δ)

(
L̂(h)
n (ϑ)− L̂(h)

n (ϑ0)
)
> 0

)
= lim

n→∞
P

(
inf

ϑ∈Nn,γ(ϑ0
1,δ1)×B(ϑ0

2,δ)

(
L(h)
n (ϑ)− L(h)

n (ϑ0)
)
> 0

)
≥ lim

n→∞
P

(
inf

ϑ∈Nn,γ(ϑ0
1,δ1)×B(ϑ0

2,δ)
L(h)
n,1(ϑ) + inf

ϑ2∈B(ϑ0
2,δ)

(
L(h)
n,2(ϑ2)− L(h)

n,2(ϑ
0
2)
)
> 0

)
≥ lim

n→∞
P

(
sup

ϑ∈Nn,γ(ϑ0
1,δ1)×B(ϑ0

2,δ)

|L(h)
n,1(ϑ)|≤τ ; inf

ϑ2∈B(ϑ0
2,δ)

L(h)
n,2(ϑ2)− L(h)

n,2(ϑ
0
2)>τ

)
.

Then, a consequence of Lemma 3.10 and Lemma 3.11 is

lim
n→∞

P

(
inf

ϑ∈Nn,γ(ϑ0
1,δ1)×B(ϑ0

2,δ)

(
L̂(h)
n (ϑ)− L̂(h)

n (ϑ0)
)
> 0

)
≥ 1,

which proves in combination with Theorem 3.5 the claim.

4. Asymptotic distributions of the QML estimator

The aim of this section is to derive the asymptotic distributions of the long-run
parameter estimator ϑ̂n,1 and the short-run parameter estimator ϑ̂n,2. These
two estimators have a different asymptotic behavior and a different convergence
rate. On the one hand, we prove the asymptotic normality of the short-run QML
estimator and on the other hand, we show that the long-run QML estimator is
asymptotically mixed normally distributed.
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4.1. Asymptotic distribution of the long-run parameter estimator

We derive in this section the asymptotic distribution of the long-run QML esti-
mator ϑ̂n,1. From Corollary 3.6 we already know that ϑ̂n,1 − ϑ0

1 = op(n
−γ), for

0 ≤ γ < 1. Since the true parameter ϑ0 = ((ϑ0
1)

T, (ϑ0
2)

T)T is an element of the
interior of the compact parameter space Θ = Θ1 × Θ2 due to Assumption A,
the estimator ϑ̂n,1 is at some point also an element of the interior of Θ1 with
probability one. Because the parametrization is assumed to be threefold contin-
uously differentiable, we can find the minimizing ϑ̂n = (ϑ̂T

n,1, ϑ̂
T
n,2)

T via the first

order condition ∇ϑ1L̂
(h)
n (ϑ̂n,1, ϑ̂n,2) = 0s1 . We apply a Taylor-expansion of the

score vector around the point (ϑ0
1, ϑ̂n,2) resulting in

0s1 = ∇ϑ1L̂(h)
n (ϑ0

1, ϑ̂n,2) + n−1∇2
ϑ1
L̂(h)

n (ϑn,1, ϑ̂n,2)n(ϑ̂n,1 − ϑ0
1), (4.1)

where ∇2
ϑ1
L̂(h)

n (ϑn,1, ϑ̂n,2) denotes the matrix whose ith row, i = 1, . . . , s1, is

equal to the ith row of ∇2
ϑ1
L̂(h)
n (ϑi

n,1, ϑ̂n,2) with ϑi
n,1 ∈ Θ1 such that

‖ϑi
n,1 − ϑ0

1‖ ≤ ‖ϑ̂n,1 − ϑ0
1‖. In the case ∇2

ϑ1
L̂(h)

n (ϑn,1, ϑ̂n,2) is non-singular we
receive

n(ϑ̂n,1 − ϑ0
1) = −

(
n−1∇2

ϑ1
L̂(h)

n (ϑn,1, ϑ̂n,2)
)−1

∇ϑ1L̂(h)
n (ϑ0

1, ϑ̂n,2).

Thus, we have to consider the asymptotic behavior of the score vector∇ϑ1L̂
(h)
n (ϑ)

and the Hessian matrix ∇2
ϑ1
L̂(h)
n (ϑ). Based on Proposition 2.5 it is sufficient to

consider ∇2
ϑ1
L(h)
n (ϑ) and ∇ϑ1L

(h)
n (ϑ), respectively.

4.1.1. Asymptotic behavior of the score vector

First, we show the convergence of the gradient with respect to the long-run
parameter ϑ1. For this, we consider the partial derivatives with respect to the
ith-component of the parameter vector ϑ, i = 1, . . . , s1, of the log-likelihood
function. These partial derivatives are given due to differentiation rules for ma-
trix functions (see, e.g., Lütkepohl [35, Appendix A.13]) by

∂iL(h)
n (ϑ) = tr

((
V

(h)
ϑ

)−1
∂iV

(h)
ϑ

)
− 1

n

n∑
k=1

tr
((

V
(h)
ϑ

)−1
ε
(h)
k (ϑ)ε

(h)
k (ϑ)T

(
V

(h)
ϑ

)−1
∂iV

(h)
ϑ

)
+

2

n

n∑
k=1

(
∂iε

(h)
k (ϑ)T

)(
V

(h)
ϑ

)−1
ε
(h)
k (ϑ). (4.2)

From Appendix B we already know that the pseudo-innovations are indeed three
times differentiable.
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For reasons of brevity, we write ∂1
i := ∂

∂ϑ1i
for the partial derivatives with

respect to the ith-component of the long-run parameter vector ϑ1 ∈ Θ1, i ∈
{1, . . . , s1}, and similarly ∂st

j := ∂
∂ϑ2j

for the partial derivatives with respect to

the jth-component of the short-run parameter vector ϑ2 ∈ Θ2, j ∈ {1, . . . , s2}.
Analogously we define ∂1

i,j and ∂st
i,j , respectively for the second partial deriva-

tives.

Proposition 4.1. The score vector with respect to the long-run parameter ϑ1

satisfies

∇ϑ1L(h)
n (ϑ0)

w−−→ J1(ϑ
0) :=

(
J (1)
1 (ϑ0) · · · J (s1)

1 (ϑ0)
)T

,

where

J (i)
1 (ϑ0)

= 2 tr

[(
V

(h)
ϑ0

)−1 (−∂1
i Π(ϑ

0), 0d×d

) ∫ 1

0

W#(r) dW#(r)T
(

k(1, ϑ0)
−Π(ϑ0)

)]
+2 tr

[(
V

(h)
ϑ0

)−1
(
Γ∂1

i k(B,ϑ
0)ΔY (h),ε(h)(ϑ0)(0)

)]
+2 tr

⎡⎣(V (h)
ϑ0

)−1

⎛⎝ ∞∑
j=1

Γ−∂1
i Π(ϑ0)ΔY (h),ε(h)(ϑ0)(j)

⎞⎠⎤⎦
and (W#(r))0≤r≤1 = ((W1(r)

T,W2(r)
T)T)0≤r≤1 is defined on p. 5166.

Proof. Equation (4.2) implies for i = 1, . . . , s1 that

∂1
i L(h)

n (ϑ0) = tr

((
V

(h)
ϑ0

)−1
∂1
i V

(h)
ϑ0

)
− tr

((
V

(h)
ϑ0

)−1(
∂1
i V

(h)
ϑ0

)(
V

(h)
ϑ0

)−1 1

n

n∑
k=1

ε
(h)
k (ϑ0)ε

(h)
k (ϑ0)T

)

+2 tr

((
V

(h)
ϑ0

)−1 1

n

n∑
k=1

(
∂1
i ε

(h)
k (ϑ0)

)
ε
(h)
k (ϑ0)T

)
=: In,1 + In,2 + In,3.

Note that the second term In,2 converges due to the ergodicity of (ε
(h)
k (ϑ0))k∈N,

E(ε
(h)
k (ϑ0)ε

(h)
k (ϑ0)T) = V

(h)
ϑ0 (see Lemma B.3(a,e)) and Birkhoff’s Ergodic The-

orem (see Bradley [12, 2.3 Ergodic Theorem]) so that

In,2
a.s.−−→ − tr

((
V

(h)
ϑ0

)−1(
∂1
i V

(h)
ϑ0

)(
V

(h)
ϑ0

)−1
V

(h)
ϑ0

)
= − tr

((
V

(h)
ϑ0

)−1
∂1
i V

(h)
ϑ0

)
.

Hence, In,1 + In,2
a.s.−−→ 0. Thus, it only remains to show the convergence of the

last term In,3. We obtain with Proposition A.1(a,c) and the continuous mapping
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theorem

1

n

n∑
k=1

(
∂1
i ε

(h)
k (ϑ0)

)
ε
(h)
k (ϑ0)T

=− 1

n

n∑
k=1

[
(
∂1
i Π(ϑ

0)
)
Y

(h)
k−1][k(B, ϑ

0)ΔY
(h)
k ]T

+
1

n

n∑
k=1

[
(
∂1
i Π(ϑ

0)
)
Y

(h)
k−1][Π(ϑ0)Y

(h)
st,k−1]

T

+
1

n

n∑
k=1

[
(
∂1
i k(B, ϑ

0)
)
ΔY

(h)
k ]ε

(h)
k (ϑ0)T

w−−→−
(
∂1
i Π(ϑ

0)
) ∫ 1

0

W1(r)dW1(r)
Tk(1, ϑ0)T

−
∞∑
j=1

Γ∂1
i Π(ϑ0)ΔY (h),k(B,ϑ0)ΔY (h)(j)

+
(
∂1
i Π(ϑ

0)
) ∫ 1

0

W1(r) dW2(r)
TΠ(ϑ0)T +

∞∑
j=1

Γ
∂1
i Π(ϑ0)ΔY (h),Π(ϑ0)Y

(h)
st

(j)

+ Γ∂1
i k(B,ϑ

0)ΔY (h),ε(h)(ϑ0)(0). (4.3)

Then, the continuous mapping theorem results in In,3
w−−→ J (i)

1 (ϑ0) which con-

cludes the proof.

4.1.2. Asymptotic behavior of the Hessian matrix

The second partial derivatives of the log-likelihood function L(h)
n (ϑ) are given

by

∂i,jL(h)
n (ϑ)

= tr
((

V
(h)
ϑ

)−1
∂2
i,jV

(h)
ϑ −

(
V

(h)
ϑ

)−1(
∂iV

(h)
ϑ

)(
V

(h)
ϑ

)−1(
∂jV

(h)
ϑ

))
− 1

n

n∑
k=1

tr
((

V
(h)
ϑ

)−1
ε
(h)
k (ϑ)ε

(h)
k (ϑ)T

(
V

(h)
ϑ

)−1
∂2
i,jV

(h)
ϑ

)
+

1

n

n∑
k=1

tr
((

V
(h)
ϑ

)−1(
∂jV

(h)
ϑ

)(
V (h)

)−1
ε
(h)
k (ϑ)ε

(h)
k (ϑ)T

(
V

(h)
ϑ

)−1
∂iV

(h)
ϑ

)
+

1

n

n∑
k=1

tr
((

V
(h)
ϑ

)−1
ε
(h)
k (ϑ)ε

(h)
k (ϑ)T

(
V

(h)
ϑ

)−1(
∂jV

(h)
ϑ

)(
V

(h)
ϑ

)−1
∂iV

(h)
ϑ

)
− 1

n

n∑
k=1

tr
((

V
(h)
ϑ

)−1(
∂jε

(h)
k (ϑ)ε

(h)
k (ϑ)T

)(
V

(h)
ϑ

)−1
∂iV

(h)
ϑ

)
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+
2

n

n∑
k=1

(
∂i,jε

(h)
k (ϑ)T

) (
V

(h)
ϑ

)−1
ε
(h)
k (ϑ)

− 2

n

n∑
k=1

tr
((

V
(h)
ϑ

)−1
ε
(h)
k (ϑ)

(
∂iε

(h)
k (ϑ)T

)(
V

(h)
ϑ

)−1
∂jV

(h)
ϑ

)
+

2

n

n∑
k=1

(
∂iε

(h)
k (ϑ)T

) (
V

(h)
ϑ

)−1
(
∂jε

(h)
k (ϑ)

)
=:

8∑
j=1

In,j . (4.4)

Since the Hessian matrix should be asymptotically positive definite we need
an additional assumption.

Assumption E. The ((d − c)c × s1)-dimensional gradient matrix

∇ϑ1

(
C⊥T

1,ϑ1
C1

)∣∣∣
ϑ1=ϑ0

1

is of full column rank s1.

The asymptotic distribution of the Hessian matrix is given in the next propo-
sition.

Proposition 4.2. Let Assumption E additionally hold. Define the (s1 × s1)-
dimensional random matrix Z1(ϑ

0) as

[Z1(ϑ
0)]i,j := 2 · tr

((
V

(h)
ϑ0

)−1
∂1
i Π(ϑ

0)

∫ 1

0

W1(r)W1(r)
T dr

(
∂1
jΠ(ϑ

0)
)T)

for i, j = 1, . . . , s1. Then, Z1(ϑ
0) is almost surely positive definite and

n−1∇2
ϑ1
L(h)
n (ϑ0)

w−−→ Z1(ϑ
0).

Proof. First, we prove the asymptotic behavior of the score vector and then, in
the next step, that the limit is almost surely positive definite.

Step 1: The first term 1
nIn,1 in (4.4) converges to zero due to the additional nor-

malizing rate of n−1. Due to Proposition A.1 (a,c) we have for j = 2, . . . , 7 that

In,j = Op(1) (see exemplarily (4.3) for In,5) and hence, 1
n

∑7
j=2 In,j converges

in probability to zero. To summarize,

n−1∂1
i,jL(h)

n (ϑ0) =
1

n
In,8 + op(1)

= 2 tr

((
V

(h)
ϑ0

)−1 1

n2

n∑
k=1

∂1
i ε

(h)
k (ϑ0)∂1

j ε
(h)
k (ϑ0)T

)
+ op(1).

Due to Lemma B.2 and Proposition A.1 (a,c) we receive

n−1∂1
i,jL(h)

n (ϑ0) = 2 tr

((
V

(h)
ϑ0

)−1 1

n2

n∑
k=1

∂1
i Π(ϑ

0)Y
(h)
k−1Y

(h)T
k−1 ∂1

jΠ(ϑ
0)T

)
+ op(1).
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Then, Proposition A.1(b) and the continuous mapping theorem result in

n−1∂1
i,jL(h)

n (ϑ0)
w−−→ 2 tr

((
V

(h)
ϑ0

)−1
∂1
i Π(ϑ

0)

∫ 1

0

W1(r)W1(r)
T dr

(
∂1
jΠ(ϑ

0)
)T)

.

In particular, we have also the joint convergence of the partial derivatives.

Step 2: Let W1 = C1B1W3 and define M := B1

∫ 1

0
W3(r)W3(r)

T drBT
1 , which

is a P-a.s. positive definite c× c matrix. We apply the Cholesky decomposition
M = M∗M

T
∗ . By using properties of the vec operator and the Kronecker product

(see Bernstein [9, Chapter 7.1]) we have

[Z1(ϑ
0)]i,j (4.5)

= 2 tr
((

V
(h)
ϑ0

)− 1
2 ∂1

i Π(ϑ
0)C1M

((
V

(h)
ϑ0

)− 1
2 ∂1

jΠ(ϑ
0)C1

)T)
= 2vec

((
V

(h)
ϑ0

)− 1
2α(ϑ0)∂1

i C
⊥T
1,ϑ0

1
C1M∗

)T

vec
((

V
(h)
ϑ0

)− 1
2α(ϑ0)∂1

jC
⊥T
1,ϑ0

1
C1M∗

)
= 2vec

(
∂1
i C

⊥T
1,ϑ0

1
C1

)T (
M ⊗

(
α(ϑ0)T

(
V

(h)
ϑ0

)−1
α(ϑ0)

))
vec

(
∂1
jC

⊥T
1,ϑ0

1
C1

)
.

Furthermore,

rank
(
M ⊗

(
α(ϑ0)T

(
V

(h)
ϑ0

)−1
α(ϑ0)

) )
= rank(M) · rank

(
α(ϑ0)T

(
V

(h)
ϑ0

)−1
α(ϑ0)

)
due to Bernstein [9, Fact 7.4.23] and thus, M⊗

(
α(ϑ0)T

(
V

(h)
ϑ0

)−1
α(ϑ0)

)
has full

rank c · (d− c) a.s. Now, if we consider the Hessian matrix Z1(ϑ
0), we have

Z1(ϑ
0) =

2
[
∇ϑ1

(
C⊥T

1,ϑ1
C1

)T]
ϑ1=ϑ0

1

M ⊗
(
α(ϑ0)T

(
V

(h)
ϑ0

)−1
α(ϑ0)

) [
∇ϑ1

(
C⊥T

1,ϑ1
C1

)]
ϑ1=ϑ0

1

.

Due to Assumption E the ((d− c)c× s1)-dimensional matrix ∇ϑ1

(
C⊥T

1,ϑ0
1
C1

)
is

of full column rank and hence, the product has full rank s1. Therefore, we have
the positive definiteness almost surely.

4.1.3. Asymptotic mixed normality of the long-run QML estimator

We are able now to show the weak convergence of the long-run QML estimator
and thus, we have one main result.

Theorem 4.3. Let Assumption E additionally hold. Then, we have as n → ∞

n(ϑ̂n,1 − ϑ0
1)

w−−→ −Z1(ϑ
0)−1 · J1(ϑ

0),

where J1(ϑ
0) is defined as in Proposition 4.1 and Z1(ϑ

0) as in Proposition 4.2,
respectively.
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Proof. From (4.1) we know that

0s1 = ∇ϑ1L̂(h)
n (ϑ0

1, ϑ̂n,2) + n−1∇2
ϑ1
L̂(h)

n (ϑn,1, ϑ̂n,2)n(ϑ̂n,1 − ϑ0
1). (4.6)

In Proposition 4.1 we already derived the asymptotic behavior of the score vector

∇ϑ1L
(h)
n (ϑ0

1, ϑ
0
2) and in Proposition 4.2 the asymptotic behavior of the Hessian

matrix n−1∇2
ϑ1
L(h)
n (ϑ0

1, ϑ
0
2). However, for the proof of Theorem 4.3 we require

now the asymptotic behavior of ∇ϑ1L
(h)
n (ϑ0

1, ϑ̂n,2) and n−1∇2
ϑ1
L(h)
n (ϑn,1, ϑ̂n,2).

Therefore, we use a local stochastic equicontinuity condition on the family

∇ϑ1L
(h)
n (ϑ0

1, ·) in ϑ0
2 (n ∈ N) and on the family n−1∇2

ϑ1
L(h)
n (·) in ϑ0 (n ∈ N).

Lemma 4.4. For every τ > 0 and every η > 0, there exist an integer n(τ, η)
and real numbers δ1, δ2 > 0 such that for 1

2 < γ < 1 and n ≥ n(τ, η):

(a) P

(
supϑ2∈B(ϑ0

2,δ2)
‖∇ϑ1L

(h)
n (ϑ0

1, ϑ2)−∇ϑ1L
(h)
n (ϑ0

1, ϑ
0
2)‖ > τ

)
≤ η,

(b) P

(
supϑ∈Nn,γ(ϑ0

1,δ1)×B(ϑ0
2,δ2)

‖n−1∇2
ϑ1
L(h)
n (ϑ)−n−1∇2

ϑ1
L(h)
n (ϑ0)‖ > τ

)
≤ η.

The stochastic equicontinuity conditions SE and SEo in Saikkonen [47] are
global conditions whereas Lemma 4.3 is weaker and presents only a local stochas-
tic equicontinuity condition for the standardized score in ϑ0

2 and for the stan-
dardized Hessian matrix in ϑ0.

Proof of Lemma 4.4.

(a) Note that on the one hand, ∇ϑ1L
(h)
n,1,1(ϑ

0
1, ϑ2) = 0 since ε

(h)
n,1,1(ϑ

0
1, ϑ2) = 0

and on the other hand, ∇ϑ1L
(h)
n,2(ϑ2) = 0. Hence,

sup
ϑ2∈B(ϑ0

2,δ2)

‖∇ϑ1L(h)
n (ϑ0

1, ϑ2)−∇ϑ1L(h)
n (ϑ0

1, ϑ
0
2)‖

= sup
ϑ2∈B(ϑ0

2,δ2)

‖∇ϑ1L
(h)
n,1,2(ϑ

0
1, ϑ2)−∇ϑ1L

(h)
n,1,2(ϑ

0
1, ϑ

0
2)‖.

We can conclude with similar calculations as in Lemma 3.3 applying (A.4) and
(A.6) that

sup
ϑ2∈B(ϑ0

2,δ2)

‖∇ϑ1L
(h)
n,1,2(ϑ

0
1, ϑ2)−∇ϑ1L

(h)
n,1,2(ϑ

0
1, ϑ

0
2)‖

≤ sup
ϑ2∈B(ϑ0

2,δ2)

C‖ϑ2 − ϑ0
2‖Un ≤ Cδ2Un.

Since Un = Op(1) due to Lemma 3.3 we obtain the statement.

(b) Due to ∇2
ϑ1
L(h)
n,2(ϑ2) = 0 we have

sup
ϑ∈Nn,γ(ϑ0

1,δ1)×B(ϑ0
2,δ2)

‖n−1∇2
ϑ1
L(h)
n (ϑ)− n−1∇2

ϑ1
L(h)
n (ϑ0)‖

≤ sup
ϑ∈Nn,γ(ϑ0

1,δ1)×B(ϑ0
2,δ2)

‖n−1∇2
ϑ1
L(h)
n,1,1(ϑ)− n−1∇2

ϑ1
L(h)
n,1,1(ϑ

0)‖
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+ sup
ϑ∈Nn,γ(ϑ0

1,δ1)×B(ϑ0
2,δ2)

‖n−1∇2
ϑ1
L(h)
n,1,2(ϑ)− n−1∇2

ϑ1
L(h)
n,1,2(ϑ

0)‖.

Then, the first term is bounded by (A.2) and the second term by (A.4) and
(A.6), respectively. Hence,

≤ sup
ϑ∈Nn,γ(ϑ0

1,δ1)×B(ϑ0
2,δ2)

(
C‖ϑ− ϑ0‖

∥∥∥∥∥ 1

n2

n∑
k=1

L
(h)
k−1[L

(h)
k−1]

T

∥∥∥∥∥+
1

n
C‖ϑ− ϑ0‖Un

)

≤ Cδ2

∥∥∥∥∥ 1

n2

n∑
k=1

L
(h)
k−1[L

(h)
k−1]

T

∥∥∥∥∥+
1

n
Cδ2Un.

Since Un = Op(1) due to Lemma 3.3 and 1
n2

∑n
k=1 L

(h)
k−1[L

(h)
k−1]

T = Op(1) due to
Proposition A.1(b), statement (b) follows.

The weak convergence of ∇ϑ1L̂
(h)
n (ϑ0

1, ϑ̂n,2) to J1(ϑ
0) follows then by Propo-

sition 2.5, Proposition 4.1 and Lemma 4.4(a). Due to Proposition 2.5, Propo-

sition 4.2 and Lemma 4.4(b) we have that n−1∇2
ϑ1
L̂(h)

n (ϑn,1, ϑ̂n,2) converges

weakly to the random matrix Z1(ϑ
0). In particular, Proposition A.1 also guar-

antees the joint convergence of both terms. Finally, the almost sure positive
definiteness of Z1(ϑ

0) allows us to take the inverse and reorder (4.1) so that

n(ϑ̂n,1 − ϑ0
1) = −

(
n−1∇2

ϑ1
L̂(h)

n (ϑn,1, ϑ̂n,2)
)−1

∇ϑ1L̂(h)
n (ϑ0

1, ϑ̂n,2)

w−−→ −Z1(ϑ
0)−1 · J1(ϑ

0).

4.2. Asymptotic distribution of the short-run parameter estimator

Lastly, we derive the asymptotic normality of the short-run QML estimator ϑ̂n,2

which we prove by using a Taylor-expansion of the QML-function similarly as in
Section 4.1. Before we state the proof we want to derive some mixing property of

the process (Y
(h)
st,k,ΔY

(h)
k )k∈Z because this will be used throughout this section.

Lemma 4.5. The process (Y
(h)
st,k,ΔY

(h)
k )k∈Z is strongly mixing with mixing co-

efficients α
ΔY (h),Y

(h)
st

(l) ≤ Cρl for some 0 < ρ < 1. In particular, for any δ > 0,

∞∑
l=1

α
ΔY (h),Y

(h)
st

(l)
δ

2+δ < ∞.

Proof. Due to (2.2) the process Y
(h)
st has the state space representation

Y
(h)
st,k = C2X

(h)
st,k with X

(h)
st,k = eA2hX

(h)
st,k−1 +

∫ kh

(k−1)h

eA2(kh−u)B2 dLu
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for k ∈ N. Masuda [39, Theorem 4.3] proved that (X
(h)
st,k)k∈N is β-mixing with

an exponentially rate since E‖X(h)
st,k‖2 < ∞. Having E‖ΔL

(h)
k ‖2 < ∞ in mind as

well we can conclude on the same way as in Masuda [39, Theorem 4.3] that the
Markov process(

ΔL
(h)
k

X
(h)
st,k

)
=

(
0m×m 0m×(N−c)

0(N−c)×m eA2h

)(
ΔL

(h)
k−1

X
(h)
st,k−1

)

+

∫ kh

(k−1)h

(
Im

eA2(kh−u)B2

)
dLu

is β-mixing with mixing coefficient βΔL(h),X(h)(l) ≤ Cρl1 for some 0 < ρ1 < 1.
Hence, it is as well α-mixing with mixing coefficient

αΔL(h),X(h)(l) ≤ βΔL(h),X(h)(l) ≤ Cρl1.

Finally, it is obvious of the definition of α-mixing that(
ΔY

(h)
k

Y
(h)
st,k

)
=

(
C1B1 C2 −C2

0d×m C2 0d×N−c

)⎛⎜⎝ ΔL
(h)
k

X
(h)
st,k

X
(h)
st,k−1

⎞⎟⎠
is α-mixing with α

ΔY (h),Y
(h)
st

(l) ≤ αΔL(h),X(h)(l − 1) ≤ Cρl−1
1 .

4.2.1. Asymptotic behavior of the score vector

First, we prove that the partial derivatives have finite variance.

Lemma 4.6. E|∂st
i L(h)

n (ϑ0)|2 < ∞ for any n ∈ N and i = 1, . . . , s2.

Proof. We have due to Lemma B.3(b) and the Cauchy-Schwarz inequality

E

∣∣∣− tr
((

V
(h)
ϑ0

)−1
ε
(h)
k (ϑ0)ε

(h)
k (ϑ0)T

(
V

(h)
ϑ0

)−1
∂st
i V

(h)
ϑ0

)
2 ·

(
∂st
i ε

(h)
k (ϑ0)T

)(
V

(h)
ϑ0

)−1
ε
(h)
k (ϑ0)

∣∣∣2
≤ C · E‖ε(h)k (ϑ0)‖4 + C ·

(
E‖ε(h)k (ϑ0)‖4E‖∂st

i ε
(h)
k (ϑ0)‖4

) 1
2

< ∞,

so that the statement follows with (4.2).

Now we can prove the convergence of the covariance matrix of the score vector
where we plug in the true parameter.

Lemma 4.7. Define �
(h)
k,2(ϑ2) := ε

(h)
k,2(ϑ2)

T
(
V

(h)

ϑ0
1,ϑ2

)−1
ε
(h)
k,2(ϑ2) for ϑ2 ∈ Θ2.

Then,

lim
n→∞

Var
(
∇ϑ2L(h)

n (ϑ0)
)

=
[∑

l∈Z

Cov
(
∂st
i �

(h)
1,2(ϑ

0
2), ∂

st
j �

(h)
1+l,2(ϑ

0
2)
) ]

1≤i,j≤s2

=: I(ϑ0
2). (4.7)
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Proof. We can derive the result in a similar way as in Schlemm and Stelzer
[51, Lemma 2.14]. Hence, we only sketch the proof to show the differences. A
detailed proof can be found in Scholz [52, Section 5.9]. It is sufficient to show
that for all i, j = 1, . . . , s2 the sequence

[Var
(
∇ϑ2L(h)

n (ϑ0)
)
]i,j = n−1

n∑
k1=1

n∑
k2=1

Cov
(
∂st
i �

(h)
k1,2

(ϑ0
2), ∂

st
j �

(h)
k2,2

(ϑ0
2)
)

=: I(i,j)n (ϑ0
2) (4.8)

converges as n → ∞. By the representation of the partial derivatives in (4.2)
and (B.1) the sequence

∂st
i �

(h)
k,2(ϑ

0
2) = − tr

((
V

(h)
ϑ0

)−1
ε
(h)
k,2(ϑ

0
2)ε

(h)
k,2(ϑ

0
2)

T
(
V

(h)
ϑ0

)−1
∂st
i V

(h)
ϑ0

)
+
(
∂st
i ε

(h)
k,2(ϑ

0
2)

T
)(
V

(h)
ϑ0

)−1
ε
(h)
k,2(ϑ

0
2)

= − tr
((

V
(h)
ϑ0

)−1
ε
(h)
k (ϑ0)ε

(h)
k (ϑ0)T

(
V

(h)
ϑ0

)−1
∂st
i V

(h)
ϑ0

)
+
(
∂st
i ε

(h)
k (ϑ0)T

)(
V

(h)
ϑ0

)−1
ε
(h)
k (ϑ0)

is stationary and the covariance in (4.8) depends only on the difference l =
k1 − k2. If we can show that∑

l∈Z

∣∣∣Cov (∂st
i �

(h)
1,2(ϑ

0
2), ∂

st
j �

(h)
1+l,2(ϑ

0
2)
)∣∣∣ < ∞, (4.9)

then the Dominated Convergence Theorem implies

I(i,j)n (ϑ0
2) = n−1

n∑
l=−n

(n− |l|) Cov
(
∂st
i �

(h)
1,2(ϑ

0
2), ∂

st
j �

(h)
1+l,2(ϑ

0
2)
)

n→∞−−−−→
∑
l∈Z

Cov
(
∂st
i �

(h)
1,2(ϑ

0
2), ∂

st
j �

(h)
1+l,2(ϑ

0
2)
)
.

Due to Lemma 4.5 and the uniformly exponentially bound of (kj(ϑ)) and
(∂st

i kj(ϑ)) finding the dominant goes in the same vein as in the proof of Schlemm
and Stelzer [51, Lemma 2.14].

In the following, we derive the convergence of the score vector with respect
to the short-run parameters by a truncation argument.

Proposition 4.8. For the gradient with respect to the short-run parameters the
asymptotic behavior

√
n · ∇ϑ2L(h)

n (ϑ0)
w−−→ N (0, I(ϑ0

2))

holds, where I(ϑ0
2) is the asymptotic covariance matrix given in (4.7).



5186 V. Fasen-Hartmann and M. Scholz

Proof. First, we realize that representation (4.2) and Lemma B.3(c,d) result in

E
(
∇ϑ2L

(h)
n (ϑ0)

)
= 0s2 . Due to (B.1) we can rewrite (4.2) for M ∈ N as

∂st
i L(h)

n (ϑ0) = 1
n

∑n
k=1

(
Y

(i)
M,k − EY

(i)
M,k

)
+ 1

n

∑n
k=1

(
Z

(i)
M,k − EZ

(i)
M,k

)
, (4.10)

where

Y
(i)
M,k := tr

((
V

(h)
ϑ0

)−1
∂st
i V

(h)
ϑ0

)
− tr

((
V

(h)
ϑ0

)−1
Π(ϑ0)Y

(h)
st,k−1Y

(h)T
st,k−1Π(ϑ

0)T
(
V

(h)
ϑ0

)−1
∂st
i V

(h)
ϑ0

)
+

M∑
ι1=0

tr
((

V
(h)
ϑ0

)−1
kι1(ϑ

0)ΔY
(h)
k−ι1

Y
(h)T
st,k−1Π(ϑ

0)T
(
V

(h)
ϑ0

)−1
∂st
i V

(h)
ϑ0

)

+

M∑
ι2=0

tr
((

V
(h)
ϑ0

)−1
Π(ϑ0)Y

(h)
st,k−1ΔY

(h)T
k−ι2

kι2(ϑ
0)T

(
V

(h)
ϑ0

)−1
∂st
i V

(h)
ϑ0

)

−
M∑

ι1,ι2=0

tr
((

V
(h)
ϑ0

)−1
kι1(ϑ

0)ΔY
(h)
k−ι1

ΔY
(h)T
k−ι2

kι2(ϑ
0)T

(
V

(h)
ϑ0

)−1
∂st
i V

(h)
ϑ0

)
+ 2 · tr

((
∂st
i Π(ϑ0)Y

(h)
st,k−1

)(
V

(h)
ϑ0

)−1
Y

(h)T
st,k−1Π(ϑ

0)T
)

− 2 ·
M∑

ι1=0

tr
((

∂st
i kι1(ϑ

0)ΔY
(h)
k−ι1

)(
V

(h)
ϑ0

)−1
Y

(h)T
st,k−1Π(ϑ

0)T
)

− 2 ·
M∑

ι2=0

tr
((

∂st
i Π(ϑ0)Y

(h)
st,k−1

)(
V

(h)
ϑ0

)−1
ΔY

(h)T
k−ι2

kι2(ϑ
0)T

)

+ 2 ·
M∑

ι1,ι2=0

tr
((

∂st
i kι1(ϑ

0)ΔY
(h)
k−ι1

)(
V

(h)
ϑ0

)−1
ΔY

(h)T
k−ι2

kι2(ϑ
0)T

)
,

Z
(i)
M,k := V

(i)
M,k + U

(i)
M,k,

and

V
(i)
M,k :=

∞∑
ι1=M+1

tr
((

V
(h)
ϑ0

)−1
kι1(ϑ

0)ΔY
(h)
k−ι1

Y
(h)T
st,k−1Π(ϑ

0)T
(
V

(h)
ϑ0

)−1
∂st
i V

(h)
ϑ0

)
−

∞∑
ι1=M+1

∞∑
ι2=0

tr
((

V
(h)
ϑ0

)−1
kι1(ϑ

0)ΔY
(h)
k−ι1

ΔY
(h)T
k−ι2

kι2(ϑ
0)T

(
V

(h)
ϑ0

)−1
∂st
i V

(h)
ϑ0

)
− 2 ·

∞∑
ι1=M+1

tr
((

∂st
i kι1(ϑ

0)ΔY
(h)
k−ι1

)(
V

(h)
ϑ0

)−1
Y

(h)T
st,k−1Π(ϑ

0)T
)

+ 2 ·
∞∑

ι1=M+1

∞∑
ι2=0

tr
((

∂st
i kι1(ϑ

0)ΔY
(h)
k−ι1

)(
V

(h)
ϑ0

)−1
ΔY

(h)T
k−ι2

kι2(ϑ
0)T

)
,
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U
(i)
M,k :=

∞∑
ι2=M+1

tr
((

V
(h)
ϑ0

)−1
Π(ϑ)Y

(h)
st,k−1ΔY

(h)T
k−ι2

kι2(ϑ
0)T

(
V

(h)
ϑ0

)−1
∂st
i V

(h)
ϑ0

)
−

∞∑
ι1=0

∞∑
ι2=M+1

tr
((

V
(h)
ϑ0

)−1
kι1(ϑ

0)ΔY
(h)
k−ι1

ΔY
(h)T
k−ι2

kι2(ϑ
0)T

(
V

(h)
ϑ0

)−1
∂st
i V

(h)
ϑ0

)
− 2 ·

∞∑
ι2=M+1

tr
((

∂st
i Π(ϑ0)Y

(h)
st,k−1

)(
V

(h)
ϑ0

)−1
ΔY

(h)T
k−ι2

kι2(ϑ
0)T

)
+ 2 ·

∞∑
ι1=0

∞∑
ι2=M+1

tr
((

∂st
i kι1(ϑ

0)ΔY
(h)
k−ι1

)(
V

(h)
ϑ0

)−1
ΔY

(h)T
k−ι2

kι2(ϑ
0)T

)
.

We define YM,k := (Y
(1)T
M,k , . . . , Y

(s2)T
M,k )T as well as ZM,k := (Z

(1)T
M,k , . . . , Z

(s2)T
M,k )T

and use a truncation argument analogous to Schlemm and Stelzer [51, Lemma
2.16]. The main difference to Schlemm and Stelzer [51] is that in our case the

definition of Y
(i)
M,k, V

(i)
M,k and U

(i)
M,k are more complex including the two stochastic

processes ΔY (h), Y
(h)
st and additional summands. We show the claim in three

steps.

Step 1: The process YM,k depends only on M+1 past values of ΔY (h) and Y
(h)
st .

Hence, it inherits the strong mixing property of (ΔY (h), Y
(h)
st ) and satisfies

αYM
(l) ≤ α

ΔY (h),Y
(h)
st

(max{0, l −M− 1}).

Thus, by Lemma 4.5 we have
∑∞

l=1 (αYM
(l))

δ/(2+δ)
< ∞. Using the Cramér-

Wold device and the univariate central limit theorem of Ibragimov [29, Theorem
1.7] for strongly mixing random variables we obtain

1√
n

n∑
k=1

(YM,k − EYM,k)
w−−→ N (0s2 , IM(ϑ

0
2))

as n → ∞ where IM(ϑ
0
2) :=

∑
l∈Z

Cov(YM,1,YM,1+l). Next, we need to show
that

IM(ϑ
0
2)

M→∞−−−−→ I(ϑ0
2). (4.11)

Therefore, we prove that Cov
(
Y

(i)
M,k, Y

(j)
M,k+l

)
→ Cov

(
∂st
i �

(h)
1,2(ϑ

0), ∂st
j �

(h)
1+l,2(ϑ

0)
)

as M → ∞. Note that the bilinearity property of the covariance operator implies

|Cov
(
Y

(i)
M,k, Y

(j)
M,k+l

)
− Cov

(
∂st
i �

(h)
k,2(ϑ

0), ∂st
j �

(h)
k+l,2(ϑ

0)
)
|

= |Cov
(
Y

(i)
M,k, Y

(j)
M,k+l − ∂st

j �
(h)
k+l,2(ϑ

0)
)

+Cov
(
Y

(i)
M,k − ∂st

i �
(h)
k,2(ϑ

0), ∂st
j �

(h)
k+l,2(ϑ

0)
)
|

≤ Var
(
Y

(i)
M,1

)1/2
Var

(
Y

(j)
M,1 − ∂st

j �
(h)
1,2(ϑ

0)
)1/2

+Var
(
Y

(i)
M,1 − ∂st

i �
(h)
1,2(ϑ

0)
)1/2

Var
(
∂st
j �

(h)
l,2 (ϑ

0)
)1/2

, (4.12)
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where

Y
(i)
M,k − ∂st

i �
(h)
k,2(ϑ

0)

=−
∞∑

ι1=M+1

tr
((

V
(h)
ϑ0

)−1
kι1(ϑ

0)ΔY
(h)
k−ι1

Y
(h)T
st,k−1Π(ϑ

0)T
(
V

(h)
ϑ0

)−1
∂st
i V

(h)
ϑ0

)
−

∞∑
ι2=M+1

tr
((

V
(h)
ϑ0

)−1
Π(ϑ0)Y

(h)
st,k−1ΔY

(h)T
k−ι2

kι2(ϑ
0)T

(
V

(h)
ϑ0

)−1
∂st
i V

(h)
ϑ0

)
+

∑
ι1,ι2

max{ι1,ι2}>M

tr
((

V
(h)
ϑ0

)−1
kι1(ϑ

0)ΔY
(h)
k−ι1

ΔY
(h)T
k−ι2

kι2(ϑ
0)T

(
V

(h)
ϑ0

)−1
∂st
i V

(h)
ϑ0

)

+ 2 ·
∞∑

ι1=M+1

tr
((

∂st
i kι1(ϑ

0)ΔY
(h)
k−ι1

)(
V

(h)
ϑ0

)−1
Y

(h)T
st,k−1Π(ϑ

0)T
)

+ 2 ·
∞∑

ι2=M+1

tr
((

∂st
i Π(ϑ0)Y

(h)
st,k−1

)(
V

(h)
ϑ0

)−1
ΔY

(h)T
k−ι2

kι2(ϑ
0)T

)
− 2 ·

∑
ι1,ι2

max{ι1,ι2}>M

tr
((

∂st
i kι1(ϑ

0)ΔY
(h)
k−ι1

)(
V

(h)
ϑ0

)−1
ΔY

(h)T
k−ι2

kι2(ϑ
0)T

)
.

We obtain with the Cauchy-Schwarz inequality, the exponentially decreasing

coefficients (kj(ϑ
0))j∈N and the finite 4th-moment of Y

(h)
st and ΔY (h) due to

Assumption A that for some 0 < ρ < 1,

Var
(
Y

(i)
M,1 − ∂st

i �
(h)
1,2(ϑ

0)
)
≤ CρM.

Moreover, by the proof of Lemma 4.6 we have Var
(
∂st
j �

(h)
1,2(ϑ

0)
)
< ∞ and then,

Var
(
Y

(i)
M,1) ≤ 2E

(
Y

(i)
M,1 − ∂st

i �
(h)
1,2(ϑ

0)
)2

+ 2E
(
∂st
j �

(h)
1,2(ϑ

0)
)2

< ∞ as well. Thus,
(4.12) converges uniformly in l at an exponential rate to zero as M → ∞ and

Cov
(
Y

(i)
M,k, Y

(j)
M,k+l

) M→∞−−−−→ Cov
(
∂st
i �

(h)
1,2(ϑ

0), ∂st
j �

(h)
1+l,2(ϑ

0)
)
.

Then, the same arguments as in Schlemm and Stelzer [51, Lemma 2.16] guaran-
tee that there exists a dominant (see Scholz [52, Section 5.9]) so that dominated
convergence results in (4.11) (see proof of Lemma 4.7).
Step 2: In this step, we show that 1√

n

∑n
k=1 (ZM,k − EZM,k) is asymptotically

negligible. We have

tr

(
Var

(
1√
n

n∑
k=1

ZM,k

))

≤ 2 · tr
(
Var

(
1√
n

n∑
k=1

UM,k

))
+ 2 · tr

(
Var

(
1√
n

n∑
k=1

VM,k

))
, (4.13)
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where UM,k and VM,k are defined in the same vein as ZM,k. Since both terms
can be treated similarly we consider only the first one

tr

(
Var

(
1√
n

n∑
k=1

UM,k

))
=

1

n

n∑
k,k′=1

tr (Cov(UM,k,UM,k′))

≤
s2∑

i,j=1

∞∑
l=−∞

|Cov(U (i)
M,1, U

(j)
M,1+l)|. (4.14)

With the same arguments as in Schlemm and Stelzer [51, Lemma 2.16] we obtain
independent of i and j the upper bound

∞∑
l=0

|Cov(U (i)
M,1, U

(j)
M,1+l)| ≤

2M∑
l=0

|Cov(U (i)
M,1, U

(j)
M,1+l)|+

∞∑
l=2M+1

|Cov(U (i)
M,1, U

(j)
M,1+l)|

≤ CρM
(
M+

∞∑
l=0

[
α
ΔY (h),Y

(h)
st

(l)
] δ

δ+2

)
,

which implies tr
(
Var

(
1√
n

∑n
k=1 UM,k

))
≤ CρM(M+C), due to (4.14), for some

constant C > 0. With the same ideas one obtains an equivalent bound for

tr
(
Var

(
1√
n

∑n
k=1 VM,k

))
and thus, we have with (4.13) that

tr

(
Var

(
1√
n

n∑
k=1

ZM,k

))
≤ CρM(M+ C). (4.15)

Step 3: With the multivariate Chebyshev inequality (see Schlemm [49, Lemma
3.19]) and (4.15) from Step 2 we obtain for every τ > 0 that

lim
M→∞

lim sup
n→∞

P

(∥∥∥∥√n∇ϑ2L(h)
n (ϑ0)− 1√

n

n∑
k=1

[YM,k − EYM,k]

∥∥∥∥ > τ

)

≤ lim
M→∞

lim sup
n→∞

s2
τ2

tr

(
Var

(
1√
n

n∑
k=1

ZM,k

))
≤ lim

M→∞

s2
τ2

CρM(M+ C) = 0.

All in all, the results of Step 1 and Step 3 combined with Brockwell and Davis
[13, Proposition 6.3.9] yield the asymptotic normality in Lemma 4.8.

4.2.2. Asymptotic behavior of the Hessian matrix

We require an additional assumption for the Hessian matrix (with respect to the
short-run parameters) to be positive definite. Therefore, we need some notation.

We write shortly Fϑ := eAϑh −K
(h)
ϑ Cϑ. The function is similar to the function

in Schlemm and Stelzer [51, Assumption C11]. However, we define Fϑ different
since we do not have a moving average representation of Y (h) with respect to
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the innovations ε(h). Hence, we have to adapt the criterion in Schlemm and
Stelzer [51] and define the function

ψϑ,j :=

⎛⎝[
Ij+1 ⊗K

(h)T
ϑ ⊗ Cϑ

] [
(vec IN )T (vec Fϑ)

T . . . (vec F j
ϑ)

T
]T

vec V
(h)
ϑ

⎞⎠ .

(4.16)

Assumption F. Let there exist a positive index j0 such that the [(j0+2)d2×s2]
matrix ∇ϑ2ψϑ0,j0 has rank s2.

Proposition 4.9. Let Assumption F additionally hold. Then,

∇2
ϑ2
L(h)
n (ϑ0)

p−−→ Zst(ϑ
0),

where the (s2 × s2)-dimensional matrix Zst(ϑ
0) is given by

[Zst(ϑ
0)]i,j =2E

(
∂st
i ε

(h)
1 (ϑ0)T

)(
V

(h)
ϑ0

)−1(
∂st
j ε

(h)
1 (ϑ0)

)
+ tr

((
V

(h)
ϑ0

)− 1
2
(
∂st
i V

(h)
ϑ0

)(
V

(h)
ϑ0

)−1
∂st
j V

(h)
ϑ0

(
V

(h)
ϑ0

)− 1
2

)
.

Moreover, the limiting matrix Zst(ϑ
0) is almost surely a non-singular determin-

istic matrix.

Proof. We proceed as in the proof of Proposition 4.2.

Step 1: Since (∂st
i,jε

(h)
k (ϑ0), ∂st

j ε
(h)
k (ϑ0), ε

(h)
k (ϑ0))k∈N is a stationary and an er-

godic sequence with finite absolute moment (see Lemma B.3(a)) we obtain with
Birkhoff’s Ergodic Theorem

∂st
i,jL(h)

n (ϑ0)

p−−→ tr
((

V
(h)
ϑ0

)−1
∂st
i,jV

(h)
ϑ0 −

(
V

(h)
ϑ0

)−1(
∂st
i V

(h)
ϑ0

)(
V

(h)
ϑ0

)−1(
∂st
j V

(h)
ϑ0

))
− tr

((
V

(h)
ϑ0

)−1
E

[
ε
(h)
1 (ϑ0)ε

(h)
1 (ϑ0)T

] (
V

(h)
ϑ0

)−1
∂st
i,jV

(h)
ϑ0

)
+tr

((
V

(h)
ϑ0

)−1(
∂st
j V

(h)
ϑ0

)(
V

(h)
ϑ0

)−1
E

[
ε
(h)
1 (ϑ0)ε

(h)
1 (ϑ0)T

] (
V

(h)
ϑ0

)−1
∂st
i V

(h)
ϑ0

)
+tr

((
V

(h)
ϑ0

)−1
E

[
ε
(h)
1 (ϑ0)ε

(h)
1 (ϑ0)T

] (
V

(h)
ϑ0

)−1(
∂st
j V

(h)
ϑ0

)(
V

(h)
ϑ0

)−1
∂st
i V

(h)
ϑ0

)
− tr

((
V

(h)
ϑ0

)−1
E

[
∂st
j ε

(h)
1 (ϑ0)ε

(h)
1 (ϑ0)T

] (
V

(h)
ϑ0

)−1
∂st
i V

(h)
ϑ0

)
+2 · tr

((
V

(h)
ϑ0

)−1
E

[
ε
(h)
1 (ϑ0)

(
∂st
i,jε

(h)
1 (ϑ0)T

)])
−2 · tr

((
V

(h)
ϑ0

)−1
E

[
ε
(h)
1 (ϑ0)∂st

i ε
(h)
1 (ϑ0)T

] (
V

(h)
ϑ0

)−1
∂st
j V

(h)
ϑ0

)
+2 · E

[(
∂st
i ε

(h)
1 (ϑ0)T

) (
V

(h)
ϑ0

)−1
(
∂st
j ε

(h)
1 (ϑ0)

)]
.

Combining this with Lemma B.3(c,d) results in

∂st
i,jL(h)

n (ϑ0)
p−−→ tr

((
V

(h)
ϑ0

)−1(
∂st
i V

(h)
ϑ0

)(
V

(h)
ϑ0

)−1
∂st
j V

(h)
ϑ0

)
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+2 · E
[(
∂st
i ε

(h)
1 (ϑ0)T

)(
V

(h)
ϑ0

)−1(
∂st
j ε

(h)
1 (ϑ0)

)]
.

Step 2: Next we check that Zst(ϑ
0) is positive definite with probability one.

That we show by contradiction similarly to the corresponding proofs in Schlemm
and Stelzer [51, Lemma 3.22] or Boubacar and Francq [11, Lemma 4], respec-
tively. From Step 2 we know that

∇2
ϑ2
L(h)
n (ϑ0)

p−−→ Zst(ϑ
0) = Zst,1(ϑ

0) + Zst,2(ϑ
0), (4.17)

where Zst,1(ϑ
0) := 2 ·

[
E

(
∂st
i ε

(h)
1 (ϑ0)T

) (
V

(h)
ϑ0

)−1
(
∂st
j ε

(h)
1 (ϑ0)

)]
1≤i,j≤s2

and Zst,2(ϑ
0) :=

[
tr
((

V
(h)
ϑ0

)− 1
2
(
∂st
i V

(h)
ϑ0

)(
V

(h)
ϑ0

)−1
∂st
j V

(h)
ϑ0

(
V

(h)
ϑ0

)− 1
2

)]
1≤i,j≤s2

.

We can factorize Zst,2(ϑ
0) in the following way:

Zst,2(ϑ
0) =

(
a1 . . . as2

)T (
a1 . . . as2

)
with

ai :=
((

V
(h)
ϑ0

)− 1
2 ⊗

(
V

(h)
ϑ0

)− 1
2

)
vec

(
∂st
i V

(h)
ϑ0

)
.

Thus, Zst,2(ϑ
0) is obviously positive semi-definite. Similarly, Zst,1(ϑ

0) is pos-
itive semi-definite. It remains to check that for any b ∈ R

s2 \ {0s2} we have
bTZst,1(ϑ

0)b + bTZst,2(ϑ
0)b > 0. We assume for the sake of contradiction that

there exists a vector b ∈ R
s2\{0s2} such that

bTZst,1(ϑ
0)b+ bTZst,2(ϑ

0)b = 0. (♦)

In order to be zero, each summand bTZst,1(ϑ
0)b and bTZst,2(ϑ

0)b must be zero,
since Zst,1(ϑ

0) as well as Zst,2(ϑ
0) are positive semi-definite. But bTZst,1(ϑ

0)b =
0 is only possible if

0d = (∇ϑ2ε
(h)
1 (ϑ0))b = −

∞∑
j=1

(
∇ϑ2

[
Cϑ0F j−1

ϑ0 K
(h)
ϑ0 Y

(h)
k−j

])
b P-a.s.

Rewriting this equation yields

(
∇ϑ2

[
Cϑ0K

(h)
ϑ0 Y

(h)
k−1

])
b = −

∞∑
j=2

(
∇ϑ2

[
Cϑ0F j−1

ϑ0 K
(h)
ϑ0 Y

(h)
k−j

])
b P-a.s. (4.18)

Hence, for every row i = 1, . . . , d and b = (b1, . . . , bs2)
T we obtain

s2∑
u=1

[
d∑

l=1

∂st
u (Cϑ0K

(h)
ϑ0 )i,lY

(h)
k−1,l

]
bu

= −
∞∑
j=2

s2∑
u=1

[
d∑

l=1

∂st
u (Cϑ0F j−1

ϑ0 K
(h)
ϑ0 )i,lY

(h)
k−j,l

]
bu P-a.s.,
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which is equivalent to

(
∇ϑ2

[
eTi Cϑ0K

(h)
ϑ0

]
b
)T

Y
(h)
k−1 = −

∞∑
j=2

(
∇ϑ2

[
eTi Cϑ0F j−1

ϑ0 K
(h)
ϑ0

]
b
)T

Y
(h)
k−j P-a.s.

But then
(
∇ϑ2

[
eTi Cϑ0K

(h)
ϑ0

]
b
)T

Y
(h)
k−1 lies in span{Y (h)

j : j ≤ k−2}. By the defi-

nition of the linear innovations, this is only possible if
(
∇ϑ2

[
eTi Cϑ0K

(h)
ϑ0

]
b
)T

ε
(h)
k−1

= 0 P-a.s. However, V
(h)
ϑ0 = E(ε

(h)
k−1(ε

(h)
k−1)

T) is non-singular due to Scholz [52,

Lemma 5.9.1] so that necessarily ∇ϑ2

[
eTi Cϑ0K

(h)
ϑ0

]
b = 0d for i = 1, . . . , d. This

is again equivalent to ∇ϑ2(Cϑ0K
(h)
ϑ0 )b = 0d2 . Plugging this in (4.18) gives

∇ϑ2

[
Cϑ0Fϑ0K

(h)
ϑ0 Y

(h)
k−2

]
b = −

∞∑
j=3

∇ϑ2

[
Cϑ0F j−1

ϑ0 K
(h)
ϑ0 Y

(h)
k−j

]
b.

Then, we can show similarly ∇ϑ2(Cϑ0Fϑ0K
(h)
ϑ0 )b = 0d2 and obtain recursively

that

∇ϑ2(Cϑ0F j
ϑ0K

(h)
ϑ0 )b = 0d2 for j ∈ N0. (4.19)

On the other hand, we obtain due bTZst,2(ϑ
0)b = 0 under assumption (♦) that(

∇ϑ2V
(h)
ϑ0

)
b = 0d2 . (4.20)

The definition of ψϑ,j in (4.16), (4.19) and (4.20) imply that
(
∇ϑ2ψϑ0,j

)
b =

0(j+2)d2 holds for all j ∈ N, which contradicts Assumption F. Hence, Zst(ϑ
0) is

almost surely positive definite.

4.2.3. Asymptotic normality of the short-run QML estimator

We conclude this section with the last main result of this paper, namely the
asymptotic distribution of the short-run QML estimator.

Theorem 4.10. Let Assumption F additionally hold. Furthermore, suppose

I(ϑ0) = lim
n→∞

Var
(
∇ϑ2L(h)

n (ϑ0)
)

and Zst(ϑ
0) = lim

n→∞
∇2

ϑ2
L(h)
n (ϑ0).

Then, as n → ∞,

√
n(ϑ̂n,2 − ϑ0

2)
w−−→ N (0, Zst(ϑ

0)−1I(ϑ0)Zst(ϑ
0)−1).

Again we need the following auxiliary result for the proof.
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Lemma 4.11. For every τ > 0 and every η > 0, there exist an integer n(τ, η)
and real numbers δ1, δ2 > 0 such that for 3

4 < γ < 1 and n ≥ n(τ, η):

(a) P

(
supϑ1∈Nn,γ(ϑ0

1,δ1)
‖√n∇ϑ2L

(h)
n (ϑ1, ϑ

0
2)−

√
n∇ϑ2L

(h)
n (ϑ0

1, ϑ
0
2)‖ > τ

)
≤ η,

(b) P

(
supϑ∈Nn,γ(ϑ0

1,δ1)×B(ϑ0
2,δ2)

‖∇2
ϑ2
L(h)
n (ϑ)−∇2

ϑ2
L(h)
n (ϑ0)‖ > τ

)
≤ η.

This local stochastic equicontinuity condition for the standardized score√
n∇ϑ2L

(h)
n (·, ϑ0

2) in ϑ0
1 and for the standardized Hessian matrix ∇2

ϑ2
L(h)
n (·)

in ϑ0 do not hold for general ϑ1 and ϑ, respectively. Accordingly the stochastic
equicontinuity conditions of Saikkonen [47] are not satisfied.

Proof of Lemma 4.11.
(a) We use the upper bound

sup
ϑ1∈Nn,γ(ϑ0

1,δ1)

‖
√
n∇ϑ2L(h)

n (ϑ1, ϑ
0
2)−

√
n∇ϑ2L(h)

n (ϑ0
1, ϑ

0
2)‖

≤ sup
ϑ1∈Nn,γ(ϑ0

1,δ1)

‖
√
n∇ϑ2L

(h)
n,1,1(ϑ1, ϑ

0
2)−

√
n∇ϑ2L

(h)
n,1,1(ϑ

0
1, ϑ

0
2)‖

+ sup
ϑ1∈Nn,γ(ϑ0

1,δ1)

‖
√
n∇ϑ2L

(h)
n,1,2(ϑ1, ϑ

0
2)−

√
n∇ϑ2L

(h)
n,1,2(ϑ

0
1, ϑ

0
2)‖. (4.21)

Since Π(ϑ0)C1 = 0d×c and ∇ϑ2(Π(ϑ0)C1) = 0dc×s2 we can apply (A.3) and
receive

sup
ϑ1∈Nn,γ(ϑ0

1,δ1)

‖
√
n∇ϑ2L

(h)
n,1,1(ϑ1, ϑ

0
2)−

√
n∇ϑ2L

(h)
n,1,1(ϑ

0
1, ϑ

0
2)‖

≤ C sup
ϑ1∈Nn,γ(ϑ0

1,δ1)

n
3
2 ‖ϑ1 − ϑ0

1‖2 tr
(

1

n2

n∑
k=1

L
(h)
k−1[L

(h)
k−1]

T

)

≤ Cn
3
2−2γ tr

(
1

n2

n∑
k=1

L
(h)
k−1[L

(h)
k−1]

T

)
p−−→ 0, (4.22)

where we used γ > 3/4 and tr
(

1
n2

∑n
k=1 L

(h)
k−1[L

(h)
k−1]

T
)
= Op(1) due to Propo-

sition A.1(b). For the second term we get by (A.4) and (A.6), and similar cal-
culations as in Lemma 3.3 that

sup
ϑ1∈Nn,γ(ϑ0

1,δ1)

‖
√
n∇ϑ2L

(h)
n,1,2(ϑ1, ϑ

0
2)−

√
n∇ϑ2L

(h)
n,1,2(ϑ

0
1, ϑ

0
2)‖

≤ sup
ϑ1∈Nn,γ(ϑ0

1,δ1)

√
nC‖ϑ1 − ϑ0

1‖Un ≤ Cn
1
2−γUn

p−−→ 0 (4.23)

due to γ > 3/4 and Un = Op(1). A combination of (4.21)-(4.23) proves (a).
(b) The proof is similar to (a).

Proof of Theorem 4.10. The proof is similar to the proof of Theorem 4.3 using
Proposition 4.8, Proposition 4.9, Proposition 2.5 and Lemma 4.11.
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5. Simulation study

In this section we want to demonstrate the validity of the proposed QML-method
by a simulation study. The simulated state space processes are driven either
by a standard Brownian motion or by a NIG (normal inverse Gaussian) Lévy
process with mean value 0m. The increment of an m-dimensional NIG Lévy
process L(t)− L(t− 1) has the density

fNIG(x;μ, α, β, δ,Δ) =
δeδκ

2π
· e

〈β,x〉(1 + αg(x))

eαg(x)g(x)3
, x ∈ R

m,

where g(x) =
√

δ2 + 〈x− μ,Δ(x− μ)〉 and κ2=α2−〈β,Δβ〉 > 0,

μ ∈ R
m is a location parameter, α ≥ 0 is a shape parameter, β ∈ R

m is a
symmetry parameter, δ ≥ 0 is a scale parameter and Δ ∈ R

m×m is positive
semi-definite with detΔ = 1 determining the dependence of the components of
(L(t))t≥0. The covariance of the process is then

ΣL = δ(α− βTΔβ)−
1
2

(
Δ+ (α2 − βTΔβ)−1ΔββTΔ

)
.

For more details on NIG Lévy processes see, e.g., Barndorff-Nielsen [3]. In all
simulation studies we have simulated 350 independent replications of a coin-
tegrated state space process on an equidistant time grid 0, 0.01, . . . , 2000 by
applying an Euler scheme to the stochastic differential equation (1.1) with ini-
tial value X(0) = 0N and h in the observation scheme is chosen as 1.

Moreover, we use canonical representations of the state space models. On the
one hand, C1,ϑ1 are chosen on such a way that C1,ϑ1 are lower triangular matri-
ces with CT

1,ϑ1
C1,ϑ1 = Ic and similarly C⊥

1,ϑ1
are lower triangular matrices with

C⊥T
1,ϑ1

C⊥
1,ϑ1

= Id−c satisfying Assumption A, Assumption C, and Assumption E
for a properly chosen parameter space Θ. On the other hand, the parametriza-
tion of the stationary part Yst,ϑ is based on the echelon canonical form as given
in Schlemm and Stelzer [51] such that as well Assumption A and Assumption D
are satisfied for the properly chosen parameter space Θ. The echelon canonical
form is widely used in the VARMA context, see, e.g., Lütkepohl and Poskitt
[37] and the textbooks of Lütkepohl [35], or Hannan and Deistler [24]. In the
context of linear state space models canonical representations can also be found
in Guidorzi [23]. For the asymptotic normality of the short-run parameters we
require additionally Assumption F. However, this condition cannot be checked
analytically, this is only possible numerically.

5.1. Bivariate state space model

As canonical parametrization of the family of cointegrated state space models
we take

A2,ϑ =

⎛⎝ϑ1 ϑ2 0
0 0 1
ϑ3 ϑ4 ϑ5

⎞⎠ , B2,ϑ =

⎛⎝ ϑ1 ϑ2

ϑ6 ϑ7

ϑ3 + ϑ5ϑ6 ϑ4 + ϑ5ϑ7

⎞⎠ , B1,ϑ =
(
ϑ8 ϑ9

)
,
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vech(ΣL
ϑ) = (ϑ10, ϑ11, ϑ12), C1,ϑ =

(
ϑ2
13−1

ϑ2
13+1
2·ϑ13

ϑ2
13+1

)
, C2,ϑ =

(
1 0 0
0 1 0

)
.

This implies that we have one cointegration relation and the cointegration rank
is equal to 1. In total we have 13 parameters. We use

ϑ0 =
(
−1 −2 1 −2 −3 1 2 1 1 0.4751 −0.1622 0.3708 3

)T
.

In order to obtain the covariance matrix of the NIG Lévy process, we have to
set the parameters of the NIG Lévy process to

δ = 1, α = 3, β =

(
1
1

)
, Δ =

(
1.2 −0.5
−0.5 1

)
and μ = − 1

2
√
31

(
3
2

)
.

On this way the parameters of the stationary process Yst,ϑ are chosen as in
Schlemm and Stelzer [51, Section 4.2], who performed a simulation study for
QML estimation of stationary state space processes.

Table 1

Sample mean, bias and sample standard deviation of 350 replications of the QML estimator
for a two-dimensional NIG driven and Brownian motion driven cointegrated state space

process.

NIG Brownian motion
True Mean Bias Std. dev. Mean Bias Std. dev.

ϑ1 -1 -0.9857 -0.0143 0.0515 -0.9895 -0.0105 0.0425
ϑ2 -2 -2.0025 0.0025 0.0573 -1.9934 -0.0066 0.0459
ϑ3 1 0.9919 0.0081 0.0749 0.9898 0.0102 0.0570
ϑ4 -2 -1.9758 -0.0242 0.1126 -1.9701 -0.0299 0.0872
ϑ5 -3 -2.9774 -0.0226 0.0497 -2.9898 -0.0102 0.0324
ϑ6 1 1.0129 -0.0129 0.1071 1.0155 -0.0155 0.0789
ϑ7 2 2.0005 -0.0005 0.0690 2.0068 -0.0068 0.0441
ϑ8 1 1.0078 -0.0078 0.0684 1.0096 -0.0096 0.0482
ϑ9 1 0.9872 0.0128 0.0761 0.9777 0.0223 0.0599
ϑ10 0.4751 0.4715 0.0036 0.0678 0.5200 -0.0449 0.0518
ϑ11 -0.1622 -0.1572 -0.0050 0.0381 -0.1283 -0.0339 0.0266
ϑ12 0.3708 0.3698 0.0010 0.0314 0.3195 0.0513 0.0213
ϑ13 3 2.9999 0.0001 0.0075 2.9981 0.0019 0.0068

In Table 1 the sample mean, bias and sample standard deviation of the 350
replications of the estimated parameters are summarized. From this we see that
in both the NIG driven as well the Brownian motion driven model the bias and
the sample standard deviation are quite low which reflect the consistency of our
estimator. Moreover, for the Brownian motion driven model the sample standard
deviation is for all parameters lower than for the NIG driven model which is
not surprising since the Kalman filter as well as the quasi-maximum likelihood
function are motivated from the Gaussian case. In contrast, the bias in the NIG
driven model is often lower than in the Gaussian model. It attracts attention
that in both models the cointegration parameter ϑ13 has the lowest bias and
sample standard deviation of all estimated parameters. This is in accordance
with the fact that the consistency rate for the long-run parameters is faster
than that for the short-run parameters.
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Next, we investigate what happens if we use as underlying parameter space
in the QML method a space which does not contain the true model. In the first
parameter space ΘI , we set B2,ϑ = 03×2 and all other matrices as above. Hence,
Yϑ for ϑ ∈ ΘI is integrated but not cointegrated. In the second parameter space
ΘW , we set C1,ϑ = (0, 1)T and all other matrices as above such that Yϑ for
ϑ ∈ ΘW is cointegrated but the cointegration space does not model the true
cointegration space. Finally, in the last parameter space ΘS , we set C1,ϑ =
(0, 0)T and all other matrices as above such that Yϑ for ϑ ∈ ΘS is stationary
and coincides with Yϑ,st. The sample mean, sample standard deviation, minimal
value and maximal value of the minimum of the quasi-maximum likelihood
function for 100 replications of the Brownian motion driven model in the four
different spaces is presented in Table 2. Of course in the space Θ, containing

Table 2

Sample mean, sample standard deviation, minimum and maximum of 100 replications of
the minimum of the quasi-maximum likelihood function of the Brownian motion driven

model in four different parameter spaces.

Θ ΘI ΘW ΘS

true pro. int. pro. wrong coint. pro. stat. pro.
Mean 5.2303 5.2851 16.2713 23.8473

St. dev. 0.0449 0.0956 11.3465 16.0159
Min 5.1226 5.1367 6.0526 9.4492
Max 5.3356 5.7509 79.3741 88.2747

the true model, the sample mean of the minimum of the likelihood function is
lowest. However, the sample mean for the space ΘI is not to far away because
there at least the long-run parameter is estimated more or less appropriate

such that due to Proposition 2.5 and Lemma 3.4 we get infϑ∈ΘI
L̂(h)
n (ϑ) =

infϑ∈ΘI
L(h)
n,2(ϑ2)+op(1)

p−−→ infϑ∈ΘI
L(h)

2 (ϑ2). However, the standard deviation

is much lower in Θ than in ΘI . In contrast to the spaces ΘW and ΘS where
the likelihood function seems to diverge. This is in accordance to the results
of this paper because due to Proposition 2.5, Lemma 3.4 and (3.8) we have

inf
ϑ∈ΘW

L̂(h)
n (ϑ)

p−−→ ∞ and inf
ϑ∈ΘS

L̂(h)
n (ϑ)

p−−→ ∞.

5.2. Three-dimensional state space model

In this example, the canonical parametrization of the cointegrated state space
model has the form

A2,ϑ =

⎛⎜⎜⎝
ϑ1 ϑ2 0 ϑ3

0 0 1 0
ϑ4 ϑ5 ϑ6 ϑ7

ϑ8 ϑ9 ϑ10 ϑ11

⎞⎟⎟⎠ ,

B2,ϑ =

⎛⎜⎜⎝
ϑ1 ϑ2 ϑ3

ϑ12 ϑ13 ϑ14

ϑ4 + ϑ6ϑ12 ϑ5 + ϑ6ϑ13 ϑ7 + ϑ6ϑ14

ϑ8 + ϑ10ϑ12 ϑ9 + ϑ10ϑ13 ϑ11 + ϑ10ϑ14

⎞⎟⎟⎠ ,
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C2,ϑ =

⎛⎝1 0 0 0
0 1 0 0
0 0 0 1

⎞⎠ ,

B1,ϑ =

(
ϑ15 ϑ16 ϑ17

ϑ18 ϑ19 ϑ20

)
,

vech(ΣL
ϑ) = (ϑ21, ϑ22, ϑ23, ϑ24, ϑ25, ϑ26),

C1,ϑ =

⎛⎜⎜⎜⎝
ϑ2
27+ϑ2

28−1

ϑ2
27+ϑ2

28+1
0

2·ϑ27

ϑ2
27+ϑ2

28+1
ϑ28√

ϑ2
27+ϑ2

28
2·ϑ28

ϑ2
27+ϑ2

28+1
− ϑ27√

ϑ2
27+ϑ2

28

⎞⎟⎟⎟⎠ .

The state space model has two common stochastic trends and the cointegration
space is a one-dimensional subspace of R3. In total we have 28 parameters. In
Table 3 the sample mean, bias and sample standard deviation of the estimated
parameters of 350 replications are summarized for both the NIG driven as well
the Brownian motion driven model. In order to obtain the covariance matrix
of the NIG Lévy process, we have had to set the parameters of the NIG Lévy
process to

δ = 1, α = 3, β =

⎛⎝1
1
1

⎞⎠ , Δ =

⎛⎝1.25 −0.5 1
6

√
3

−0.5 1 −1
3

√
3

1
6

√
3 −1

3

√
3 4

3

⎞⎠ and

μ = − 1

2
√
31

(
3
2

)
.

The results are very similar to the two-dimensional example. In most cases
the sample standard deviation in the Brownian motion driven model is lower
than in the NIG driven model. Moreover, the bias and the standard deviation
of the long-run parameters (ϑ27, ϑ28) are lower than the values of the other
parameters.

6. Conclusion

The main contribution of the present paper is the development of a QML estima-
tion procedure for the parameters of cointegrated solutions of continuous-time
linear state space models sampled equidistantly allowing flexible margins. We
showed that the QML estimator for the long-run parameter is super-consistent
and that of the short-run parameter is consistent. Moreover, the QML estimator
for the long-run parameter converges with a n-rate to a mixed normal distri-
bution, whereas the short-run parameter converges with a

√
n-rate to a normal

distribution. In the simulation study, we saw that the estimator works quite well
in practice.
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Table 3

Sample mean, bias and sample standard deviation of 350 replications of the QML estimator
for a three-dimensional NIG driven and Brownian motion driven cointegrated state space

process.

NIG Brownian motion
True Mean Bias Std. dev. Mean Bias Std. dev.

ϑ1 -2 -1.9910 -0.0090 0.0583 -1.9958 -0.0042 0.0475
ϑ2 -3 -3.0042 0.0042 0.0407 -3.0005 0.0005 0.0339
ϑ3 -3 -3.0194 0.0194 0.0456 -3.0309 0.0309 0.0401
ϑ4 1 0.9887 0.0113 0.0440 0.9987 0.0013 0.0381
ϑ5 1 0.9977 0.0023 0.0351 0.9895 0.0105 0.0316
ϑ6 -1 -0.9861 -0.0139 0.0544 -0.9763 -0.0237 0.0431
ϑ7 2 2.0122 -0.0122 0.0396 2.0113 -0.0113 0.0342
ϑ8 -1 -1.0039 0.0039 0.0442 -1.0075 0.0075 0.0399
ϑ9 -3 -2.9937 -0.0063 0.0342 -2.9896 -0.0104 0.0348
ϑ10 -3 -2.9904 -0.0096 0.0490 -2.9892 -0.0108 0.0444
ϑ11 -1 -1.0055 0.0055 0.0449 -1.0097 0.0097 0.0461
ϑ12 -1 -1.0023 0.0023 0.0386 -1.0242 0.0242 0.0367
ϑ13 2 1.9984 0.0016 0.0363 2.0077 -0.0077 0.0295
ϑ14 1 1.0034 -0.0034 0.0353 0.9740 0.0260 0.0353
ϑ15 1 0.9984 0.0016 0.0351 1.0175 -0.0175 0.0284
ϑ16 0 -0.0345 0.0345 0.0644 -0.0361 0.0361 0.0513
ϑ17 1 0.9840 0.0160 0.0521 0.9623 0.0377 0.0417
ϑ18 1 1.0010 -0.0010 0.0314 0.9877 0.0123 0.0303
ϑ19 -2 -1.9841 -0.0159 0.0388 -1.9868 -0.0132 0.0306
ϑ20 0 0.0111 -0.0111 0.0347 -0.0090 0.0090 0.0362
ϑ21 0.5310 0.5279 0.0031 0.0605 0.5849 -0.0539 0.0478
ϑ22 -0.1934 -0.1870 -0.0064 0.0385 -0.2037 0.0103 0.0328
ϑ23 0.1678 0.1678 0.0000 0.0467 0.1513 0.0165 0.0396
ϑ24 0.3784 0.3816 -0.0032 0.0293 0.4209 -0.0425 0.0259
ϑ25 -0.2227 -0.2127 0.0100 0.0334 -0.2209 -0.0018 0.0300
ϑ26 0.5632 0.5585 0.0047 0.0476 0.4814 0.0818 0.0356
ϑ27 1 1.0002 0.0002 0.0030 0.9995 0.0005 0.0033
ϑ28 2 2.0000 0.0000 0.0079 2.0004 -0.0004 0.0091

In this paper, we lay the mathematical basis for QML estimation for coin-
tegrated solutions of linear state-space models. In a separate paper Fasen-
Hartmann and Scholz [19] we present an algorithm to construct canonical forms
for the state space model satisfying the assumptions of this paper, which is nec-
essary to apply the method to data. We decided to split the paper because
the introduction into a canonical form is quite lengthy and would blow up
the present paper. Moreover, a drawback of our estimation procedure is that
we assume that the cointegration rank is known in advance which is not the
case in reality. First, we have to estimate and test the cointegration rank. For
this it is possible to incorporate some well-known results for estimating and
testing the cointegration rank of cointegrated VARMA processes as, e.g., pre-
sented in Bauer and Wagner [5], Lütkepohl and Claessen [36], Saikkonen [45],
Yap and Reinsel [59]. This will also be considered in Fasen-Hartmann and
Scholz [19]. Some parts of Fasen-Hartmann and Scholz [19] can already be found
in Scholz [52].
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Appendix A: Auxiliary results

A.1. Asymptotic results

For the derivation of the asymptotic behavior of our estimators we require the
asymptotic behavior of the standardized score vector and the standardized Hes-
sian matrix. To obtain these asymptotic results we use the next proposition.

Proposition A.1. Let Assumption A hold. Furthermore, let (L
(h)
k )k∈N0 :=

(L(kh))k∈N0 be the Lévy process sampled at distance h and ΔL
(h)
k = L(kh) −

L((k − 1)h). Define for n ∈ N, k ∈ N0,

ξ
(h)
k :=

⎛⎜⎝ ΔY
(h)
k

Y
(h)
st,k

ΔL
(h)
k

⎞⎟⎠ and S(h)
n :=

n∑
k=1

ξ
(h)
k .

Let l(z, ϑ) :=
∑∞

i=0 li(ϑ)z
i and l(z, ϑ) :=

∑∞
i=0 li(ϑ)z

i, ϑ ∈ Θ, z ∈ C, where
(li(ϑ))i∈N0 is a deterministic uniformly exponentially bounded continuous ma-

trix sequence in Rd×(2d+m) and similarly (li(ϑ))i∈N0 is a nonstochastic uni-
formly exponentially bounded continuous matrix sequence in R

d×(2d+m). More-

over, Π(ϑ) ∈ R
d×(2d+m), Π(ϑ) ∈ R

d×(2d+m) are continuous matrix functions as

well. We write l(B, ϑ)ξ(h) = (l(B, ϑ)ξ
(h)
k )k∈N0 with l(B, ϑ)ξ

(h)
k =

∑∞
i=0 li(ϑ)ξ

(h)
k−i

and similarly l(B, ϑ)ξ(h). Let (W (r))0≤r≤1 = ((W1(r)
T,W2(r)

T,W3(r)
T)T)0≤r≤1

be the Brownian motion as defined on p. 5166. Then, the following statements
hold for j ∈ N0.

(a) sup
ϑ∈Θ

∥∥∥∥∥ 1n
n∑

k=1

[l(B, ϑ)ξ
(h)
k ][l(B, ϑ)ξ

(h)
k+j ]

T− E

[
[l(B, ϑ)ξ

(h)
1 ][l(B, ϑ)ξ

(h)
1+j ]

T
]∥∥∥∥∥ p−−→ 0.

(b) n−2
n∑

k=1

Π(ϑ)S
(h)
k−1[S

(h)
k−1]

TΠ(ϑ)T
w−−→ Π(ϑ)

∫ 1

0

W (r)W (r)T drΠ(ϑ)T.

(c) n−1
n∑

k=1

Π(ϑ)S
(h)
k−1[l(B, ϑ)ξ

(h)
k ]T

w−−→ Π(ϑ)

∫ 1

0

W (r)dW (r)Tl(1, ϑ)T

+

∞∑
j=1

ΓΠ(ϑ)ξ(h),l(B,ϑ)ξ(h)(j).

The stated weak convergence results also hold jointly.

Before we state the proof of Proposition A.1 we need some auxiliary results.

Lemma A.2. Let ψ be defined as in (3.2). Then, the following statements hold
for l ∈ N0.

(a) E(ξ
(h)
k ) = 02d+m and E‖ξ(h)k ‖4 < ∞.

(b)
1

n

n∑
k=1

ξ
(h)
k

p−−→ 02d+m,
1

n

n∑
k=1

ξ
(h)
k [ξ

(h)
k+l]

T p−−→ E(ξ
(h)
1 [ξ

(h)
1+l]

T) =: Γξ(h)(l).
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(c)

∞∑
l=0

E‖ξ(h)1 [ξ
(h)
1+l]

T‖ < ∞.

(d)

(
1√
n
S
(h)

nr�

)
0≤r≤1

w−−→ (ψ(1)W ∗(r))0≤r≤1 where (W ∗(r))0≤r≤1 is a

(m+ (N − c))-dimensional Brownian motion with covariance matrix

ΣW∗ =

∫ h

0

(
ΣL ΣLB

T
2 e

AT
2 u

eA2uB2ΣL eA2uB2ΣLB
T
2 e

AT
2 u

)
du

and ψ is defined as in (3.2).

(e)
1

n

n∑
k=2

S
(h)
k−1[ξ

(h)
k ]T

w−−→ ψ(1)

∫ 1

0

W ∗(r)dW ∗(r)Tψ(1)T +
∞∑
l=1

Γξ(h)(l).

Proof. We shortly sketch the proof. The sequence (ξ
(h)
k )k∈N has the MA repre-

sentation ⎛⎜⎝ ΔY
(h)
k

Y
(h)
st,k

ΔL
(h)
k

⎞⎟⎠ = ξ
(h)
k =

k∑
j=−∞

ψk−jη
(h)
j (A.1)

with the iid sequence

η
(h)
k :=

(
ΔL

(h)T
k , R

(h)T
k

)T

and R
(h)
k :=

∫ kh

(k−1)h

eA2(kh−u)B2 dLu.

Hence, (ξ
(h)
k )k∈N is stationary and ergodic as a measurable map of a stationary

ergodic process (see Krengel [34, Theorem 4.3 in Chapter 1]).

(a) is due to Assumption A.

(b) is a direct consequence of Birkhoff’s ergodic theorem.

(c) follows from E‖η(h)k ‖4 < ∞, ‖ψj‖ ≤ Cρj for some C > 0, 0 < ρ < 1 and the
MA-representation (A.1).

(d, e) are conclusions of Johansen [31, Theorem B.13] and the MA-represen-
tation (A.1).

Proof of Proposition A.1. (a) The proof follows directly by Theorem 4.1 of
Saikkonen [46] and the comment of Saikkonen [46, p.163, line 4] if we can show
that Assumption 4.1 and 4.2 of that paper are satisfied. Since we have uniformly
exponentially bounded families of matrix sequences, Saikkonen [46, Assumption
4.1] is obviously satisfied. Saikkonen [46, Assumption 4.2] is satisfied due to
Lemma A.2.

Note that we have two different coefficient matrices, whereas the results in
Saikkonen [46] are proved for the same coefficient matrix. However, Saikko-
nen [46, Theorem 4.1] also holds if the coefficient matrices are different as long
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as each sequence of matrix coefficients satisfies the necessary conditions as men-
tioned in the paper of Saikkonen [46, p. 163].

(b, c) Due to Lemma A.2, Saikkonen [46, Assumption 4.3] is satisfied as well.
Hence, we can conclude the weak convergence result from Saikkonen [46, The-
orem 4.2(iii)] and [46, Theorem 4.2(iv)], respectively.

A.2. Lipschitz continuity results

A kind of local Lipschitz continuity in ϑ0 for the processes in Proposition A.1
is presented next. The local Lipschitz continuity in ϑ0 implies, in particular,
local stochastic equicontinuity in ϑ0. However, this kind of local Lipschitz con-
tinuity in ϑ0 is stronger than local stochastic equicontinuity in ϑ0 so that we
are not able to apply the stochastic equicontinuity results of Saikkonen [46, 47]
directly. The stochastic equicontinuity of the process in Proposition A.3(a) and
(c) can be deduced with some effort from Saikkonen [46, 47] but the process in
Proposition A.3(b) is not covered in these papers.

Proposition A.3. Let the assumption and notation of Proposition A.1 hold.
Assume further that Π(ϑ), Π(ϑ) are Lipschitz-continuous and the sequence of
matrix functions (∇ϑ(li(ϑ)))i∈N0 and (∇ϑ(li(ϑ)))i∈N0 are uniformly exponen-
tially bounded.

(a) Define Xn(ϑ) =
n∑

k=1

Π(ϑ)S
(h)
k−1[S

(h)
k−1]

TΠ(ϑ)T. Then,

‖Xn(ϑ)− Xn(ϑ
0)‖ ≤ C‖ϑ− ϑ0‖

∥∥∥∥∥
n∑

k=1

S
(h)
k−1[S

(h)
k−1]

T

∥∥∥∥∥ . (A.2)

If additionally Π(ϑ0) = 0d×(2d+m) and Π(ϑ0) = 0d×(2d+m) then

‖Xn(ϑ)−Xn(ϑ
0)‖ ≤ C‖ϑ− ϑ0‖2

∥∥∥∥∥
n∑

k=1

S
(h)
k−1[S

(h)
k−1]

T

∥∥∥∥∥ . (A.3)

(b) Define Xn(ϑ) =
n∑

k=1

Π(ϑ)S
(h)
k−1[l(B, ϑ)ξ

(h)
k ]T. Then,

‖Xn(ϑ)−Xn(ϑ
0)‖ ≤ Cn‖ϑ− ϑ0‖Vn (A.4)

where

Vn =

∥∥∥∥∥ 1n
n∑

k=1

S
(h)
k−1[ξ

(h)
k ]T

∥∥∥∥∥+ ‖S(h)
n ‖[kρ(B)‖ξ(h)n ‖]]

+
1

n

n∑
k=1

‖ΔS
(h)
k ‖[kρ(B)‖ξ(h)k ‖+

∥∥∥∥∥ 1n
n∑

k=1

S
(h)
k−1

[
l(B, ϑ0)ξ

(h)
k

]T∥∥∥∥∥
= Op(1), (A.5)
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kρ(z) = c
∑∞

j=0 ρ
jzj for some 0 < ρ < 1, c > 0, and

kρ(B)‖ξ(h)k ‖ := c
∑∞

j=0 ρ
j‖ξ(h)k−j‖.

(c) Define Xn(ϑ) =
n∑

k=1

[l(B, ϑ)ξ
(h)
k ][l(B, ϑ)ξ

(h)
k ]T. Then, there exists a random

variable Qn = Op(1) so that

‖Xn(ϑ)− Xn(ϑ
0)‖ ≤ Cn‖ϑ− ϑ0‖Qn. (A.6)

In particular, Vn +Qn = Op(1).

Proof.
(a) We have the upper bound

‖Xn(ϑ)− Xn(ϑ
0)‖

≤
∥∥∥∥∥

n∑
k=1

[Π(ϑ)−Π(ϑ0)]S
(h)
k−1[S

(h)
k−1]

TΠ(ϑ)T

∥∥∥∥∥
+

∥∥∥∥∥
n∑

k=1

Π(ϑ0)S
(h)
k−1[S

(h)
k−1]

T[Π(ϑ)−Π(ϑ0)]T

∥∥∥∥∥
≤

(
‖Π(ϑ)−Π(ϑ0)‖‖Π(ϑ)‖+ ‖Π(ϑ)−Π(ϑ0)‖‖Π(ϑ0)‖

) ∥∥∥∥∥
n∑

k=1

S
(h)
k−1[S

(h)
k−1]

T

∥∥∥∥∥ .
Since Π(ϑ) and Π(ϑ) are Lipschitz continuous,

max(‖Π(ϑ)−Π(ϑ0)‖, ‖Π(ϑ)−Π(ϑ0)‖) ≤ C‖ϑ− ϑ0‖

and supϑ∈Θ max(‖Π(ϑ)‖, ‖Π(ϑ)‖) ≤ C. Thus, (A.2) holds. Moreover, (A.3) is
valid because for Π(ϑ0) = 0d,2d+m, Π(ϑ0) = 0d,2d+m the upper bound

‖Xn(ϑ)− Xn(ϑ
0)‖ = ‖Xn(ϑ)‖

≤ ‖Π(ϑ)‖‖Π(ϑ)‖
∥∥∥∥∥

n∑
k=1

S
(h)
k−1[S

(h)
k−1]

T

∥∥∥∥∥
≤ ‖Π(ϑ)−Π(ϑ0)‖‖Π(ϑ)−Π(ϑ0)‖

∥∥∥∥∥
n∑

k=1

S
(h)
k−1[S

(h)
k−1]

T

∥∥∥∥∥
≤ C‖ϑ− ϑ0‖2

∥∥∥∥∥
n∑

k=1

S
(h)
k−1[S

(h)
k−1]

T

∥∥∥∥∥
is valid.

(b) Using a Taylor expansion leads to

vec(l(z, ϑ))− vec(l(z, ϑ0)) =

∞∑
j=0

[vec(lj(ϑ))− vec(lj(ϑ
0))]zj
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=

∞∑
j=0

∇ϑvec(l
∗
j (ϑ(j)))(ϑ− ϑ0)zj ,

where vec(l∗j (ϑ(j))) denotes the matrix whose ith row is equal to the ith row of

vec(lj(ϑ
i(j))) with ϑi(j) ∈ Θ such that ‖ϑi(j) − ϑ0‖ ≤ ‖ϑ − ϑ0‖ for

i = 1, . . . , d(2d + m). Due to assumption, ‖∇ϑvec(l
∗
j (ϑ(j)))‖ ≤ Cρj for j ∈ N0

and some 0 < ρ < 1 so that

‖l(z, ϑ)− l(z, ϑ0)‖ ≤ kρ(|z|)‖ϑ− ϑ0‖. (A.7)

Hence,

‖
(
l(B, ϑ)− l(B, ϑ0)

)
ξ
(h)
k ‖ ≤ ‖ϑ− ϑ0‖

[
kρ(B)‖ξ(h)k ‖

]
. (A.8)

Define l∇(z, ϑ, ϑ0) := l(z, ϑ) − l(z, ϑ0) =:
∑∞

j=0 l
∇
j (ϑ, ϑ0)zj . Then, we apply a

Beveridge-Nelson decomposition (see Saikkonen [46, (9)]) to get

l∇(B, ϑ, ϑ0)ξ
(h)
k = l∇(1, ϑ, ϑ0)ξ

(h)
k + ηk(ϑ, ϑ

0)− ηk−1(ϑ, ϑ
0)

with ηk(ϑ, ϑ
0) := −

∑∞
j=0

∑∞
i=j+1 l

∇
i (ϑ, ϑ0)ξ

(h)
k−j . Thus,

1

n

n∑
k=1

Π(ϑ)S
(h)
k−1

[(
l(B, ϑ)− l(B, ϑ0)

)
ξ
(h)
k

]T
= Π(ϑ)

1

n

n∑
k=1

S
(h)
k−1[ξ

(h)
k ]Tl∇(1, ϑ, ϑ0)T +Π(ϑ)

1

n

n∑
k=1

S
(h)
k−1[ηk(ϑ, ϑ

0)]T

−Π(ϑ)
1

n

n∑
k=1

S
(h)
k−1[ηk−1(ϑ, ϑ

0)]T

= Π(ϑ)
1

n

n∑
k=1

S
(h)
k−1[ξ

(h)
k ]Tl∇(1, ϑ, ϑ0)T +Π(ϑ)S(h)

n [ηn(ϑ, ϑ
0)]T

−Π(ϑ)
1

n

n∑
k=1

ΔS
(h)
k [ηk(ϑ, ϑ

0)]T.

Due to (A.7), ‖l∇(1, ϑ, ϑ0)‖ ≤ C‖ϑ−ϑ0‖ and ‖l∇j (ϑ, ϑ0)‖ ≤ C‖ϑ−ϑ0‖ρj so that

‖ηk(ϑ, ϑ0)‖ ≤ ‖ϑ− ϑ0‖
[
kρ(B)‖ξ(h)k ‖

]
as well. Finally, we receive∥∥∥∥∥Π(ϑ) 1n

n∑
k=1

S
(h)
k−1

[(
l(B, ϑ)− l(B, ϑ0)

)
ξ
(h)
k

]T∥∥∥∥∥
≤ C‖ϑ− ϑ0‖

[∥∥∥∥∥ 1n
n∑

k=1

S
(h)
k−1[ξ

(h)
k ]T

∥∥∥∥∥
+‖S(h)

n ‖
[
kρ(B)‖ξ(h)n ‖

]
+

1

n

n∑
k=1

‖ΔS
(h)
k ‖

[
kρ(B)‖ξ(h)k ‖

]]
(A.9)
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and ∥∥∥∥∥[Π(ϑ)−Π(ϑ0)]
1

n

n∑
k=1

S
(h)
k−1

[
l(B, ϑ0)ξ

(h)
k

]T∥∥∥∥∥
≤ C‖ϑ− ϑ0‖

∥∥∥∥∥ 1n
n∑

k=1

S
(h)
k−1

[
l(B, ϑ0)ξ

(h)
k

]T∥∥∥∥∥ . (A.10)

Then, (A.9) and (A.10) result in (A.4).

It remains to prove (A.5). The first term 1
n

∑n
k=1 S

(h)
k−1[ξ

(h)
k ]T in the defini-

tion of Vn is Op(1) by Lemma A.2. Moreover, 1
nS

(h)
n = 1

n

∑n
k=1 ξ

(h)
k = Op(1)

by Birkhoff’s Ergodic Theorem; similarly the third term 1
n

∑n
k=1 ‖ΔS

(h)
k ‖ ×[

kρ(B)‖ξ(h)k ‖
]
is Op(1) by Birkhoff’s Ergodic Theorem. Finally, the last term

1
n

n∑
k=1

S
(h)
k−1

[
l(B, ϑ0)ξ

(h)
k

]T
is Op(1) by Proposition A.1(c).

(c) The proof is similarly to the proof of (b).

Appendix B: Properties of the pseudo-innovations

In this section we present some probabilistic properties of the pseudo-innova-
tions. Therefore, we start with an auxiliary lemma on the functions defining the
pseudo-innovations and the prediction covariance matrix which we require for
the pseudo-innovations to be partial differentiable.

Lemma B.1. Let Assumption A hold.

(a) The matrix functions Π(ϑ), k(z, ϑ), V
(h)
ϑ and (V

(h)
ϑ )−1 are Lipschitz con-

tinuous on Θ and three times partial differentiable.

(b) supϑ∈Θ ‖(V (h)
ϑ )−1‖ ≤ C.

(c) infϑ∈Θ σmin((V
(h)
ϑ )−1) > 0.

Proof. (a) is a consequence of Assumption A and Scholz [52, Lemma 5.9.3].
However, Scholz [52, Lemma 5.9.3] shows only the twice continuous differentia-
bility but the proof of the existence of the third partial differential is analog.
(b) follows from (a) and the compactness of Θ.

(c) Due to Scholz [52, Lemma 5.9.1] the matrix (V
(h)
ϑ )−1 is non-singular. Hence,

we can conclude the statement from (a) and the compactness of Θ.

Thus, the pseudo-innovations are three times differentiable and we receive an
analog version of Lemma 2.3.

Lemma B.2. Let Assumption A hold and let u, v ∈ {1, . . . , s}. Then, the fol-
lowing results are valid.

(a) The matrix sequence (∂vkj(ϑ))j∈N in R
d×d is uniformly exponentially

bounded such that ∂vε
(h)
k (ϑ) = −∂vΠ(ϑ)

TY
(h)
k−1 −

∑∞
j=1 ∂vkj(ϑ)ΔY

(h)
k−j .
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(b) The matrix sequence (∂u,vkj(ϑ))j∈N in R
d×d is uniformly exponentially

bounded such that ∂u,vε
(h)
k (ϑ) = −∂u,vΠ(ϑ)

TY
(h)
k−1−

∑∞
j=1 ∂u,vkj(ϑ)ΔY

(h)
k−j .

Proof. Recall the representation given in Lemma 2.3 where (kj(ϑ))j∈N is an
uniformly exponentially bounded matrix sequence. Then, the proof is analog to
Schlemm and Stelzer [51, Lemma 2.11].

Lemma B.3. Let Assumption A hold and i, j ∈ {1, . . . , s2}. Then, the following
results are valid.

(a) (ε
(h)
k (ϑ0)T, ∂st

j ε
(h)
k (ϑ0)T, ∂st

i,jε
(h)
k (ϑ0)T)k∈N is a stationary and ergodic se-

quence.

(b) E‖ε(h)k (ϑ0)‖4 < ∞, E‖∂st
j ε

(h)
k (ϑ0)‖4 < ∞ and E‖∂st

i,jε
(h)
k (ϑ0)‖4 < ∞.

(c) E(∂st
i ε

(h)
k (ϑ0)ε

(h)
k (ϑ0)T) = 0d×d and E(∂st

i,jε
(h)
k (ϑ0)ε

(h)
k (ϑ0)T) = 0d×d.

(d) E(ε
(h)
k (ϑ0)ε

(h)
k (ϑ0)T) = V

(h)
ϑ0

.

Proof.
(a) Representation (1.2) and Lemma B.1 yield

Π(ϑ0)Y
(h)
k = α(ϑ0

1, ϑ
0
2)(C

⊥
1,ϑ0

1
)TY

(h)
k = Π(ϑ0)Y

(h)
st,k,

∂st
i Π(ϑ0)Y

(h)
k =

(
∂st
i α(ϑ0)

)
(C⊥

1,ϑ0
1
)TY

(h)
st,k,

∂st
i,jΠ(ϑ

0)Y
(h)
k =

(
∂st
i,jα(ϑ

0)
)
(C⊥

1,ϑ0
1
)TY

(h)
st,k,

and hence,

ε
(h)
k (ϑ0) = −Π(ϑ0)Y

(h)
st,k−1 + k(B, ϑ)ΔY

(h)
k ,

∂st
i ε

(h)
k (ϑ0) = −∂st

i Π(ϑ0)TY
(h)
st,k−1 −

∞∑
l=1

∂st
i kl(ϑ

0)ΔY
(h)
k−l, (B.1)

∂st
i,jε

(h)
k (ϑ0) = −∂st

i,jΠ(ϑ
0)TY

(h)
st,k−1 −

∞∑
l=1

∂st
i,jkl(ϑ

0)ΔY
(h)
k−l.

These are obviously stationary processes. Fasen-Hartmann and Scholz [18, Prop-

osition 5.9] state already that (ε
(h)
k (ϑ0))k∈N is ergodic with finite second mo-

ments. The same arguments lead to the ergodicity of

(ε
(h)
k (ϑ0)T, ∂st

j ε
(h)
k (ϑ0)T, ∂st

i,jε
(h)
k (ϑ0)T)k∈N.

(b) The finite fourth moment of (ε
(h)
k (ϑ0))k∈N and its partial derivatives are

consequences of their series representation (B.1) with uniformly exponentially

bounded coefficient matrices and the finite fourth moment of Y
(h)
st,k and ΔY

(h)
k

due to Assumption (A3) and Marquardt and Stelzer [38, Proposition 3.30].

(c) A consequence of (B.1) is that both ∂st
i ε

(h)
k (ϑ0) and ∂st

i,jε
(h)
k (ϑ0) are ele-

ments of the Hilbert space generated by {Y (h)
l ,−∞ < l < k}. But ε

(h)
k (ϑ0) is

orthogonal to the Hilbert space generated by {Y (h)
l ,−∞ < l < k} so that the
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statements follow.
(d) is a conclusion of the construction of the linear innovations by the Kalman
filter.

Appendix C: Proof of Proposition 2.5

First, we present some auxiliary results for the proof of Proposition 2.5.

Lemma C.1. Let Assumption A and B hold. Define

X
(h)
1 (ϑ) =

∞∑
j=0

(eAϑh −K
(h)
ϑ Cϑ)

jK
(h)
ϑ Y

(h)
−j .

Then, the following results are valid.

(a) E

(
supϑ∈Θ ‖X(h)

1 (ϑ)‖2
)
< ∞ and

maxk∈N

{
1

(1+k)E

(
supϑ∈Θ ‖ε̂(h)k (ϑ)‖2

)}
< ∞.

(b) E

(
supϑ∈Θ ‖∂uX(h)

1 (ϑ)‖2
)
< ∞ and

maxk∈N

{
1

(1+k)E

(
supϑ∈Θ ‖∂uε̂(h)k (ϑ)‖2

)}
< ∞.

(c) E

(
supϑ∈Θ ‖∂u,vX(h)

1 (ϑ)‖2
)
< ∞ and

maxk∈N

{
1

(1+k)E

(
supϑ∈Θ ‖∂u,v ε̂(h)k (ϑ)‖2

)}
< ∞.

Proof. We prove (a) exemplary for (b) and (c). First, remark that

E‖Y (h)
j ‖2 ≤ C(1 + |j|) for j ∈ Z.

Since all eigenvalues of (eAϑh−K
(h)
ϑ Cϑ) lie inside the unit circle (see Scholz [52,

Lemma 4.6.7]) and all matrix functions are continuous on the compact set Θ and,

hence, bounded, we receive for some 0 < ρ < 1 that supϑ∈Θ ‖eAϑh−K
(h)
ϑ Cϑ‖ ≤ ρ

and supϑ∈Θ ‖X(h)
1 (ϑ)‖ ≤ C

∑∞
j=0 ρ

j‖Y (h)
−j ‖. Thus,

E

(
sup
ϑ∈Θ

‖X(h)
1 (ϑ)‖2

)
≤ C

⎛⎝ ∞∑
j=0

ρj(E‖Y (h)
−j ‖2)1/2

⎞⎠2

≤ C

⎛⎝ ∞∑
j=0

ρj(1 + j)1/2

⎞⎠2

< ∞.

Similarly,

sup
ϑ∈Θ

‖ε̂(h)k (ϑ)‖ ≤ ‖Yk‖+ Cρk−1 sup
ϑ∈Θ

‖X̂(h)
1 (ϑ)‖+

k−1∑
j=1

Cρj‖Y (h)
k−j‖,
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such that

E

(
sup
ϑ∈Θ

‖ε̂(h)k (ϑ)‖2
)

≤ 3E‖Yk‖2 + 3C2ρ2k−2
E

(
sup
ϑ∈Θ

‖X̂(h)
1 (ϑ)‖2

)
+ 3

⎛⎝k−1∑
j=1

Cρj(E‖Y (h)
k−j‖2)1/2

⎞⎠2

≤ C

⎛⎜⎝(1 + k) + ρ2k−2
E

(
sup
ϑ∈Θ

‖X̂(h)
1 (ϑ)‖2

)
+ k

⎛⎝ ∞∑
j=0

ρj

⎞⎠2
⎞⎟⎠ .

Finally, due to Assumption B

max
k∈N

{
1

(1 + k)
E

(
sup
ϑ∈Θ

‖ε̂(h)k (ϑ)‖2
)}

≤ C

⎛⎜⎝1 + E

(
sup
ϑ∈Θ

‖X̂(h)
1 (ϑ)‖2

)
+

⎛⎝ ∞∑
j=0

ρj

⎞⎠2
⎞⎟⎠ < ∞.

Lemma C.2. Let Assumption A and B hold. Furthermore, let u, v ∈ {1, . . . , s}.

(a) Then, there exist a positive random variable ζ with E(ζ2) < ∞ and a

constant 0 < ρ < 1 so that supϑ∈Θ ‖ε̂(h)k (ϑ) − ε
(h)
k (ϑ)‖ ≤ Cρk−1ζ for any

k ∈ N.
(b) Then, there exist a positive random variable ζ(u) with E(ζ(u))2 < ∞ and

a constant 0 < ρ < 1 so that supϑ∈Θ ‖∂uε̂(h)k (ϑ)− ∂uε
(h)
k (ϑ)‖ ≤ Cρk−1ζ(u)

for any k ∈ N.
(c) Then, there exist a positive random variable ζ(u,v) with E(ζ(u,v))2 < ∞

and a constant 0 < ρ < 1 so that supϑ∈Θ ‖∂u,v ε̂(h)k (ϑ) − ∂u,vε
(h)
k (ϑ)‖ ≤

Cρk−1ζ(u,v) for any k ∈ N.

Proof. (a) We use the representation

ε̂
(h)
k (ϑ)− ε

(h)
k (ϑ) = Cϑ(e

Aϑh −K
(h)
ϑ Cϑ)

k−1(X̂
(h)
1 (ϑ)−X

(h)
1 (ϑ))

and define ζ := supϑ∈Θ ‖X̂(h)
1 (ϑ)‖ + supϑ∈Θ ‖X(h)

1 (ϑ)‖. Due to Assumption B
and Lemma C.1(a) we know that E(ζ2) < ∞. Since all eigenvalues of

(eAϑh − K
(h)
ϑ Cϑ) lie inside the unit circle and Cϑ is bounded as a continu-

ous function on the compact set Θ there exists constants C > 0 and 0 < ρ < 1

so that supϑ∈Θ ‖Cϑ(e
Aϑh −K

(h)
ϑ Cϑ)

k−1‖ ≤ Cρk−1 and

sup
ϑ∈Θ

‖ε̂(h)k (ϑ)− ε
(h)
k (ϑ)‖

≤ sup
ϑ∈Θ

‖Cϑ(e
Aϑh −K

(h)
ϑ Cϑ)‖k−1 sup

ϑ∈Θ
‖X̂(h)

1 (ϑ)−X
(h)
1 (ϑ)‖
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≤ Cρk−1ζ.

(b, c) can be proven similarly.

Proof of Proposition 2.5.
(a) First,

L̂(h)
n (ϑ)− L(h)

n (ϑ) =
1

n

n∑
k=1

[
(ε̂

(h)
k (ϑ)− ε

(h)
k (ϑ))T

(
V

(h)
ϑ

)−1
ε̂
(h)
k (ϑ)

−ε
(h)
k (ϑ)T

(
V

(h)
ϑ

)−1
(ε

(h)
k (ϑ)− ε̂

(h)
k (ϑ))

]
.

Then,

n sup
ϑ∈Θ

|L̂(h)
n (ϑ)− L(h)

n (ϑ)|

≤ sup
ϑ∈Θ

‖(V (h)
ϑ )−1‖

n∑
k=1

sup
ϑ∈Θ

‖ε̂(h)k (ϑ)− ε
(h)
k (ϑ)‖

(
sup
ϑ∈Θ

‖ε̂(h)k (ϑ)‖+ sup
ϑ∈Θ

‖ε(h)k (ϑ)‖
)
.

Due to Lemma B.1 and Lemma C.2(a)

≤ Cζ

n∑
k=1

ρk
[
sup
ϑ∈Θ

‖ε̂(h)k (ϑ)‖+ sup
ϑ∈Θ

‖ε(h)k (ϑ)‖
]

with E(ζ2) < ∞. From this and Cauchy-Schwarz inequality we can conclude
that

nE

(
sup
ϑ∈Θ

|L̂(h)
n (ϑ)− L(h)

n (ϑ)|
)

≤ C(Eζ2)1/2
n∑

k=1

ρk

[
E

(
sup
ϑ∈Θ

‖ε̂(h)k (ϑ)‖2
)1/2

+ E

(
sup
ϑ∈Θ

‖ε(h)k (ϑ)‖2
)1/2

]
.

An application of Lemma C.1(a) yields

≤ C(Eζ2)1/2
∞∑
k=1

ρk(1 + k)1/2 < ∞.

This proves, n supϑ∈Θ |L̂(h)
n (ϑ)−L(h)

n (ϑ)| = Op(1) so that (a) follows. Again (b)
and (c) can be proven similarly.
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driven by a general Lévy process. Bernoulli 10 97–120. MR2044595

[40] McCrorie, J. R. (2003). The problem of aliasing in identifying finite pa-
rameter continuous time stochastic models. Acta Applicandae Mathemati-
cae 79 9–16. MR2021872

[41] McCrorie, J. R. (2009). Estimating continuous-time models on the basis
of discrete data via an exact discrete analog. Econometric Theory 25 1120–
1137. MR2515474

[42] Phillips, P. C. B. (1973). The problem of identification in finite param-
eter continuous time models. J. Econometrics 1 351–362. MR0452554

[43] Phillips, P. C. B. (1991). Error correction and long-run equilibrium in
continuous time. Econometrica 59 967–980. MR1113542

[44] Reinsel, G. C. (1997). Elements of Multivariate Time Series Analysis,
2nd ed. Springer-Verlag, New York. MR1451875

[45] Saikkonen, P. (1992). Estimation and testing of cointegrated systems by
an autoregressive approximation. Econometric Theory 8 1–27. MR1162612

[46] Saikkonen, P. (1993). Continuous weak convergence and stochastic
equicontinuity results for integrated processes with an application to
the estimation of a regression model. Econometric Theory 9 155–188.
MR1229412

[47] Saikkonen, P. (1995). Problems with the asymptotic theory of maximum
likelihood estimation in integrated and cointegrated systems. Econometric
Theory 11 888–911. MR1458944
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