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Abstract: This paper proposes inferential methods for high-dimensional
repeated measures in factorial designs. High-dimensional refers to the situ-
ation where the dimension is growing with sample size such that either one
could be larger than the other. The most important contribution relates
to high-accuracy of the methods in the sense that p-values, for example,
are accurate up to the second-order. Second-order accuracy in sample size
as well as dimension is achieved by obtaining asymptotic expansion of the
distribution of the test statistics, and estimation of the parameters of the
approximate distribution with second-order consistency. The methods are
presented in a unified and succinct manner that it covers general facto-
rial designs as well as any comparisons among the cell means. Expression
for asymptotic powers are derived under two reasonable local alternatives.
A simulation study provides evidence for a gain in accuracy and power com-
pared to limiting distribution approximations and other competing meth-
ods for high-dimensional repeated measures analysis. The application of
the methods are illustrated with a real-data from Electroencephalogram
(EEG) study of alcoholic and control subjects.
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1. Introduction

Repeated measures data arise in various disciplines of the sciences, social sci-
ences, engineering and humanities. Study designs such as time course studies,
cross-over designs and split-plot designs naturally lead to repeated measures
data. The distinctive feature of repeated measures data is that the observations
from the same study unit (observational or experimental) are commensurate and
exhibit correlations. Analysis of continuous repeated measures data to make in-
ference on the effects of one or many between- or within-subject crossed or
nested factor effects fall into three broad categories: multivariate analysis, uni-
variate analysis and mixed model analyses. Mixed model analyses involve some
assumption concerning the correlations of the repeated measures. Despite its
generality in modeling the correlation and leading to exact inference, classic
multivariate methods are not applicable when the number of repeated measures
is larger than the error degrees of freedom.

Univariate methods on the other hand focus on adjusting the analysis of
variance (ANOVA) for the within-unit correlation. It is well known that when all
observations are independent, ANOVA test statistics have exact F distribution.
In the presence of the within-unit correlation, the ANOVA tests are valid only
if these correlations satisfy a condition known as sphericity (Bock, 1963; Huynh
and Feldt, 1970). Box (1954) suggested a correction which involves adjustment
of the numerator and denominator degrees of freedom of the F-distribution by a
constant multiplying factor, commonly referred to as Box’s ε. Since the constant
factor ε depends on the unknown within-unit covariance matrix, solution such
as using a lower bound for ε (Geisser and Greenhouse, 1958) or estimates of the
within-unit covariance matrix in the calculation of ε (Huynh and Feldt, 1976;
Huynh, 1978; Lecoutre, 1991) have been implemented in practical applications.
These solutions have been shown to work satisfactorily in terms of controlling
type-I error rate when the number of repeated measures is low compared to the
degrees of freedom for estimating the covariance matrix. However, the univariate
approach is obviously approximate and Rencher and Christensen (2012, p. 219)
argue that it has no power advantage over the exact multivariate test. They
continue to say “... The only case in which we need to fall back on univariate
test is when there are insufficient degrees of freedom to perform multivariate
test...”, i.e., when the number of repeated measures is larger than the error
degrees of freedom to estimate the within-unit covariance.

Well before most researchers embarked on the high-dimension-low-sample-
size (HDLSS) problem, Collier et al. (1967), Stoloff (1970) and Maxwell and
Arvey (1982) have numerically demonstrated that the univariate approaches for
repeated measures tend to be very conservative. In an attempt to improve the
estimation of ε in the high dimensional situation, Chi et al. (2012) used “dual”
forms of the within sum-of-squares and cross-products matrices. They claim
that, besides giving stable estimates of ε, the use of the “dual” version has com-
putational advantage. The approaches of Brunner et al. (2012) and Happ et al.
(2015), on the other hand, overcome the high dimensional problem by using
the so-called ANOVA-type statistic (Brunner et al., 1997, 1999) and then use
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F-approximation to their null distribution by matching first two moments of the
numerator and denominator quadratic forms with that of a scaled-gamma distri-
bution, an approach shown to be successful in a related problem for independent
observations by Brunner et al. (1997). Again, these approaches although were
shown to be numerically satisfactory, they are only approximate solutions. On
the other hand, by deriving asymptotic distributions of some suitable statistics
in the high-dimensional asymptotic framework, Pauly et al. (2015), Takahashi
and Shutoh (2016) and Harrar and Kong (2016) devised asymptotically-valid
tests. Pauly et al. (2015) consider high-dimensional repeated measures analysis
for one sample situation but with the possibility of several within subject fac-
tors. The two-sample situation was considered by Takahashi and Shutoh (2016)
assuming equal covariance matrices for the two populations. More generally,
Harrar and Kong (2016) addressed the multi-group as well as the unequal co-
variance cases. Other works such as Wang and Akritas (2010a,b) and Wang
et al. (2010) are also high-dimensional asymptotic results applicable for repeated
measures but additionally assume that the repeated measurements are inher-
ently ordered and the dependence between the measurements decays as the
separation between them increases. High-dimensional asymptotic mean vector
comparisons have recently received attention in the statistics literature (see Bai
and Saranadasa, 1996; Chen and Qin, 2010; Katayama et al., 2013; Cai et al.,
2014, and the references there in) under assumptions different from that of Pauly
et al. (2015), Takahashi and Shutoh (2016), and Harrar and Kong (2016). These
recent results are based on limiting distributions (i.e. first-order asymptotics)
and are not applicable in the multi-factor repeated measures settings.

More specifically, Harrar and Kong (2016) have proven asymptotic normality
for their test statistics under certain assumptions on the covariances. In their
simulation study, Harrar and Kong (2016) noticed that the error of approxima-
tion from these asymptotic distributions could be considerable unless both the
number of repeated measurements and replication sizes are large. The present
paper aims to derive second order asymptotics for the tests considered in Harrar
and Kong (2016). In addition, the results in the current manuscript are more
general in the sense that they are applicable in situations where there are mul-
tiple within and/or between unit crossed and/or nested factors. However, to get
second-order asymptotic results that are valid for general design, we need to
assume equality of covariance matrices in this paper.

This paper is organized as follows. Section 2 introduces the statistical model,
hypotheses and notations used in the remainder of the paper. Test statistics for
the various effects are presented in Section 3 together with asymptotic expan-
sions for their null distributions. The asymptotic power are derived in Section 4.
Numerical studies are carried out in Section 5. First, Monte Carlo simulations
are used to show the gain in accuracy from the asymptotic expansions for a
selection of covariance matrices and wide choices of values for the number of re-
peated measures and replication sizes. Data from a large Electroencephalogram
(EEG) study of alcoholic and control subjects is used to illustrate the applica-
tion of the results in Section 6. Also, simulation results by generating data with
similar design parameters as the real data is considered later in the section. Sec-
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tion 7 contains discussions and conclusions. All proofs and preliminary results
are placed in the Appendix.

2. Model and hypotheses

Suppose ni independent b-dimensional observations; for i = 1, . . . , a; are avail-
able from multivariate normal populations Nb(μi,Σ) denoted by Xi1, . . . ,Xini

and assume that the a samples are mutually independent. The number of sam-
ples a is assumed fixed. The aim of this paper is to derive second order asymp-
totic result for testing hypotheses in repeated measures analysis when both the
total sample size

∑a
i=1 ni and the number of repeated measurements b tend to

infinity.
Let X = (X ′

11, . . . ,X
′
1n1

,X ′
21, . . . ,X

′
2n2

, . . . ,X ′
a1, . . . ,X

′
ana

)′, where Xik =

(Xi1k, . . . , Xibk)
′. Further, let X = (X

′
1, . . . ,X

′
a)

′, where Xi = n−1
i

∑ni

k=1 Xik.
The usual setting gives the interpretation that Xijk is the response from the
kth subject treated with the ith level of factor A (e.g., treatment) and the jth
level of factor B (e.g. time). In this model Xijk and Xi′j′k′ are assumed to be
independent only if i �= i′ or k �= k′. Otherwise the dependence is completely
unspecified.

Throughout this paper, 0 will denote a matrix of all zeros where the dimen-
sion will be clear from the context, and 1k denotes the k-dimensional vector
consisting of all ones. The matrix Ik is the identity matrix, whereas Jk and
Pk are defined as Jk = 1k1

′
k and Pk = Ik − k−1Jk, respectively. We will use

extensively the Kronecker (or direct) product A⊗B and the direct sum A⊕B

of matrices A and B. The symbol
D→ stands as an abbreviation for “converges

in distribution to” and
P→ for “converges in probability to”. In estimating a

sequence of parameters θb = O(1) by a sequence of estimators Tn,b, consistency
is meant in the sense of E(Tn,b − θb)

2 → 0 as (n, b) go to infinity.
Note that from the distributional assumption made above E[Xik] = μi =

(μi1, . . . , μib)
′ and Var(Xik) = Σ, where Σ is a b × b positive definite matrix.

Let μ = (μ11, . . . , μ1b, . . . , μa1, . . . , μab)
′ and Σ̃ =

⊕a
i=1 Σ/ni = D ⊗ Σ where

D = diag(1/n1, . . . , 1/na). Then we have E[X] = μ and Var(X) = Σ̃.
The hypotheses of interest can be expressed as

H0 : Kμ = 0 VS H1 : Kμ �= 0 (1)

with K = T1⊗T2, where T1 and T2 are a×a and b×b matrices respectively. We
require that the two matrices T1 and T2 are symmetric and there exist positive
definite matrices Gi, such that TiGiTi = Ti (i.e. Gi = I if Ti is idempotent).

Actually, we can apply the linear transformation G
−1/2
1 ⊗ G

−1/2
2 on the data

X and use the symmetric and idempotent matrix G
1/2
i TiG

1/2
i instead of Ti.

With this manipulation, the new K still defines the same hypotheses as in (1).
Without loss of generality, we can assume that T1, T2 and, therefore, K are
symmetric and idempotent matrices. For such Ti, K is positive semidefinite
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matrix. In the following Theorem we establish an equivalent quadratic form
expressions for the hypotheses (1).

Theorem 2.1. The null hypotheses (1) are equivalent to

H′
0 : μ′Kμ = 0 vs. H′

1 : μ′Kμ > 0.

The above setup may give the impression that the paper is dealing with
one between-subject and one within-subject factor with levels a and b, respec-
tively. However, the indices i = 1, . . . , a and j = 1, . . . , b are to be viewed
as lexicographic order of the between-subject factor level combinations and
within-subject factor level combinations, respectively. Therefore, the setup cov-
ers repeated measures in factorial designs with crossed and nested factors.
The factors T1 and T2 of matrix K can be viewed as parts of the contrast
matrix concerning the between-subject factors and the within-subject factors,
respectively. More specifically, suitable choices of T1 and T2 allow between-
subject and within-subject mean comparisons. For a concrete example, con-
sider a factorial design in which there are two between-subject crossed fac-
tors, say A and C with a and c levels, respectively, and two within-subject
factors, say B and D, where the levels of D are nested within that of B
(see also other specific designs considered in Section 5). Suppose B has b lev-
els and the jth level of B has dj levels of D nested within it. The mean
vector in this set up would be μ = (μ′

11, . . . ,μ
′
1c, . . . ,μ

′
a1, . . . ,μ

′
ac)

′ where
μik = (μ′

ik11, . . . ,μ
′
ik1d1

, . . . ,μ′
ikb1, . . . ,μ

′
ikbdb

)′. To test the interaction effect

of A and B, for instance, we would use T1 = Pa ⊗ 1
cJc and T2 = Q(Q′Q)−Q′

where Q = Pb(
⊕b

j=1 d
−1
j 1′

dj
) and (Q′Q)− is the generalized inverse of Q′Q.

Further, the set up above can be reset accordingly. For example a would be re-
placed by ac, and D = diag{n11, . . . , n1c, . . . , na1, . . . , nac}−1. See also Brunner
et al. (2017) and Konietschke et al. (2015) for other covered designs. Another
example is found in the data analysis section (Section 6).

3. Higher-order asymptotic tests

We have seen in Theorem 2.1 that Kμ = 0 if and only if μ′Kμ = 0. A reason-

able estimator of μ′Kμ is given by H = X
′
KX. The mean and variance the

quadratic form H are

E(H) = tr(T1D)c1 + μ′Kμ and

Var(H) = 2tr(T1D)2c2 + 4μ′KΣ̃Kμ

where
ck := tr(T2Σ)k = tr(Σ1/2T2Σ

1/2)k,

for k = 1, . . . , 8. Let n =
∑a

i=1 ni − a.
In this section, we will devise a test statistic for testing (1) under the following

high-dimensional asymptotic framework,
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A1 : c8/c
4
2 = O(b−3) as b → ∞ .

A2 : n → ∞ and b → ∞ such that b/n = γ → γ0 ∈ (0,∞).

A3 : μ′Kμ/
√
tr(T1D)2c2 = O(b−3/2) as b → ∞.

It is apparent that assumption A1 is a sparsity condition on the covariance
matrix. Using the well known trace inequality (e.g. Yang et al., 2001)

tr(AB)m ≤ {tr(A2m)tr(B2m)}1/2,

for any positive semidefinite matrices A and B, we have

ck

c
k/2
2

= O(b−k/2+1) as b → ∞ for any 1 ≤ k ≤ 7. (2)

To see this, for example, when k = 4 the inequality yields

c4 = tr(T2Σ)4 = tr(T2ΣT2I)
4 ≤

{
tr(T2ΣT2)

8tr(I8)
}1/2

≤ (c8 · b)1/2.

Now, using condition A1,

c4/c
2
2 ≤ (c8 · b)1/2/c22 = O(b−1).

Similarly, when k = 6, c6 ≤ (c8c4)
1/2. Thus,

c6/c
3
2 ≤ (c8c4/c

6
2)

1/2 = (c8/c
4
2)

1/2(c4/c
2
2)

1/2 = O(b−2).

The conditions used in Pauly et al. (2015), Takahashi and Shutoh (2016), and
Harrar and Kong (2016) are ck = O(b) for k = 1, 2, 3, 4. These conditions
are stronger compared to (2) for k = 1, 2, 3, 4. To get higher order accuracy,
however, we would in addition need ck = O(b) for k = 5, 6, 7, 8, and condition
A1 is satisfied under these assumptions.

Assumption A2 states that the sample size and dimension grow at the same
rate but otherwise either one can be larger than the other. It is weaker than
the usual requirement that each of sample sizes diverge and have the same
relation with b. Condition A3 is local alternative assumption which, according
to Theorem 4.1, implies that the power of the test can be accurately calculated
for alternatives approach to the null at a rate slower than b−3/2.

Assume Σ is known. A centered and suitably-scaled version of H = X
′
KX

given by:

T =
H − tr(T1D)c1 − μ′Kμ√

2tr(T1D)2c2

yields a reasonable test statistic for testing H0. In order to generalize the test
statistic T for the unknown covariance case, we need to estimate c1 and c2 to
the appropriate order. The estimators ĉ1 and ĉ2 are defined by

ĉ1 = tr(T2S) and ĉ2 =
n2

(n− 1)(n+ 2)

{
tr(T2S)

2 − 1

n
{tr(T2S)}2

}
, (3)
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where

S =
1

n

a∑
k=1

(ni − 1)Si and Si =
1

ni − 1

ni∑
k=1

(Xik −Xi)(Xik −Xi)
′,

have desirable asymptotic properties given in Theorem 3.1. Here, it should be
noted that ĉ1 and ĉ2 are unbiased estimators of c1 and c2, respectively (Srivas-
tava, 2005; Harrar and Kong, 2016).

Theorem 3.1. Under the high-dimensional asymptotic frameworks A1 and A2,
the estimators ĉ1 and ĉ2 have the following asymptotic properties:

(i) Asymptotic equivalence: (ĉ1 − c1)/
√
c2 = Op(b

−1/2) and (ĉ2 − c2)/c2 =
Op(b

−1).

(ii) Ratio consistency: ĉ2/c2
p→ 1.

Let δk = tr(T1D)k/{tr(T1D)}k for k = 1, 2, 3, 4 (δ1 = 1). Since T1 is a
symmetric and idempotent matrix, one can see that 0 < δk ≤ 1 and, hence,
δk = O(1) as n → ∞. Next we study the asymptotic sampling distribution of
the test-statistic,

T̂ =
{tr(T1D)}−1

H − ĉ1√
2δ2ĉ2

which is obtained from T by replacing c1 and c2 by their empirical counterparts
under H0. It is shown in the Appendix that T̂ can be expanded as

T̂ = T − V√
b
− 1

b

TW

2
+ Op(b

−3/2),

where

V =

√
b(ĉ1 − c1)√
2δ2c2

and W =
b(ĉ2 − c2)

c2
,

are Op(1) by Theorem 3.1. The characteristic function of T̂ can be expanded as
given in the following Theorem.

Theorem 3.2. If the null hypothesis H0 holds, then under the high-dimensional
asymptotic frameworks A1 and A2, the characteristic function of T̂ can be ex-
panded as

φT̂ (t) = e
1
2 ı

2t2
{
1 +

1√
b
ı3t3η3 +

1

b
(ı2t2

γ

2δ2
+ ı4t4η4 + ı6t6

η23
2
) + O(b−3/2)

}
,

where η3 =
4b1/2δ3c3
3(2δ2c2)3/2

and η4 =
2bδ4c4
(2δ2c2)2

.

Note that, by Assumption A1, η3 and η4 are O(1). Inverting the characteristic
function term by term, we get an asymptotic expansion for the distribution
function of T̂ as follows.
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Theorem 3.3. If the null hypothesis H0 holds, then under the high-dimensional
asymptotic frameworks A1 and A2, the distribution function of T̂ can be ex-
panded as

FT̂ (x) = GT̂ (x) + O(b−3/2),

uniformly in x where

GT̂ (x) = Φ(x)− 1√
b
η3Φ

(3)(x) +
1

b

{ γ

2δ2
Φ(2)(x) + η4Φ

(4)(x) +
η23
2
Φ(6)(x)

}
and Φ(j)(x) is the jth derivative of the standard normal cumulative distribution
function Φ(x).

More specifically, Theorem 3.3 states that supx∈R
|FT̂ (x)−GT̂ (x)| =O(b−3/2).

The function GT̂ (x) can alternatively be expressed as

GT̂ (x) = Φ(x)− φ(x)

[
1√
b
η3h2(x) +

1

b

{ γ

2δ2
h1(x) + η4h3(x) +

η23
2
h5(x)

}]
where φ(x) is the standard normal density functions and hi(x) is the ith Hermite
polynomial. The first five Hermite polynomials are:

h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − 3x,

h4(x) = x4 − 6x2 + 3 and h5(x) = x5 − 10x3 + 15x.

It should be emphasized that when the terms of orders b−1/2 and b−1 are
ignored, assumptions A1 and A2 can be relaxed as: (i) the assumption of pro-
portional divergence of n and b in A2 is not needed (Harrar and Kong, 2016) and
(ii) the sparsity condition on the covariance matrix (assumption A1) is needed
only for c4/c

2
2 = o(1), in which case, the assumption reduces to that of Chen

and Qin (2010).

Let u(z) be defined by P (T̂ ≤ u(z)) = P (Z ≤ z) where Z is a standard nor-
mal random variable. In what follows, asymptotic expansion of u(z) in terms of
z known as Cornish-Fisher expansion (Hill and Davis, 1968) is given in Corollary
3.4.

Corollary 3.4. If the null hypothesis H0 holds, then under the high-dimensional
asymptotic frameworks A1 and A2, u(z) = uA(z) + O(b−3/2) where

uA(z)=z+
1√
b
η3h2(z)+

1

b

{ γ

2δ2
h1(z)+η4h3(z)+

η23
2
h5(z)−zη23h2(z)

(1
2
h2(z)−2

)}
.

The expansions GT̂ (x) and uA(z) are approximations for the CDF and quan-

tile, respectively, of T̂ under the null hypothesis. In these approximations, η3
and η4 depend on c2, c3, and c4 which are unknown quantities. Therefore, for
practical applications, we need an estimated version of the expansions which is
uniformly correct up to Op(b

−3/2) in the sense that supx∈R
|FT̂ (x) − F̂T̂ (x)| =
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Op(b
−3/2) where F̂T̂ (x) is the estimated version of FT̂ (x). To that end, let ĉ1

and ĉ2 be as defined in (3) and define ĉ3 and ĉ4 as

ĉ3 =
n4

m1

[
tr(T2S)

3 − 3

n
tr(T2S)

2tr(T2S) +
2

n2
{tr(T2S)}3

]
and

ĉ4 =
n5(n2 + n+ 2)

m2

[
tr(T2S)

4 − 4

n
tr(T2S)

3tr(T2S)

− 2n2 + 3n− 6

n(n2 + n+ 2)
{tr(T2S)

2}2 + 2(5n+ 6)

n(n2 + n+ 2)
tr(T2S)

2{tr(T2S)}2

− 5n+ 6

n2(n2 + n+ 2)
{tr(T2S)}4

]
,

where m1 = (n−2)(n−1)(n+2)(n+4) and m2 = m1(n+1)(n−3)(n+6). These
estimators are unbiased and enjoy some higher order asymptotic properties that
makes them suitable for use in asymptotic expansions.

Theorem 3.5. Under the high-dimensional asymptotic frameworks A1 and A2,
the estimators ĉ2, ĉ3 and ĉ4 have the following properties:

(i) Unbiasedness: E[ĉk] = ck for k = 2, 3, 4.

(ii) Asymptotic equivalence:
b1/2ĉ3

c
3/2
2

=
b1/2c3

c
3/2
2

+ Op(b
−1) and

bĉ4
c22

=
bc4
c22

+

Op(b
−1)

Now, by using Theorems 3.1 and 3.5, we know that

η̂3 :=
4b1/2δ3ĉ3
3(2δ2ĉ2)3/2

= η3 +Op(b
−1), η̂23 = η23 +Op(b

−1)

and η̂4 :=
2bδ4ĉ4
(2δ2ĉ2)2

= η4 +Op(b
−1).

Therefore, we can define the estimated version ĜT̂ (x) of GT̂ (x) of Theorem 3.3
by replacing η3 and η4 with η̂3 and η̂4, respectively.

Before we close this section we shed some light on how the asymptotics
(b, n) → ∞ is working. Let R = rank(T2) be the number of nonzero eigen-
values of T2Σ and denote the eigenvalues by λb,k in decreasing order, i.e.
λb,1 ≥ λb,2 ≥ · · · ≥ λb,R > 0 = λb,R+1 = · · · = λb,b. Furthermore, assume
there are r dominant eigenvalues. That is, there exists 0 < M ≤ 1 such that

lim inf
b→∞

λb,r

λb,1
= M and lim sup

b→∞

λb,r+1

λb,1
= 0.

If the rank of T2 is finite, then r is bounded and, consequently, condition A1 is
violated. Thus, for condition A1 to be satisfied, the rank of T2 needs to grow
with b. Especially, when all eigenvalues are bounded, A1 holds only if r/b � 0.
If r grows with b at a slower rate, a limiting normal distribution still holds for T
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but not the second order accuracy results. This case is interesting and we plan
to investigate asymptotic expansion under this framework in future researches.

Next we provide an approximate solution in the situation where r is bounded.
In this case, T has the same distribution as a linear combination of centered
and independent Chi-square random variables with one degrees of freedom (see
also Pauly et al., 2015). More precisely,

T
D
=

r∑
k=1

λb,k√
c2

(Yk − 1)√
2

,

where Yk are iid χ2
1 random variables. When n, p → ∞, T̂ = T + oP (1), if the

limit of λb,k/
√
c2 exists, for all k = 1, . . . , r.

The exact distribution cannot be used directly as the eigenvalues are unknown
and their consistent estimators are difficult to come by. We may use the following
approximations

H
approx∼ tr(T1D)δ2c2

c1
χ2
c21/(c2δ2)

and ĉ1
approx∼ n−1c2

c1
χ2
nc21/c2

.

These approximations are obtained by matching the first two moments with
that of a scaled Chi-Square distribution under H0. Further, it is known that H
is independent of ĉ1. Thus, a reasonable test statistic is,

T̃ =
H

tr(T1D)ĉ1
.

Under H0, the distribution of T̃ can be approximated by Fc21/(c2δ2), nc21/c2

where Fν1,ν2 is the F distribution with degrees of freedom ν1 and ν2. When
the rank of T2 is 1, it turns out that T2Σ has only one nonzero eigenvalue c1,
and c2 = c21. Then T̃ has exact F1/δ2, n distribution. For example, for testing
the main effect of A or C or their interaction in the four-factor design men-
tioned in the last paragraph of Section 2, we shall use Q = Jb/b(

⊕b
j=1 d

−1
j 1′

dj
),

in which Rank(T2) = 1. For another example, let T1 = diag(n1, . . . , na) −
(n1, . . . , na)

′(n1, . . . , na)/(n + a) and T2 = Jb/b. These are matrices of special
interest in testing the equality of mean vectors given that they are parallel (see

Harrar and Kong, 2016). Under this set up, T̂ has exact Fa−1, n distribution.
In the more general case, ĉ21/ĉ2 is a consistent estimate of c21/c2. From the proof
of Theorem 3.1, we know that E[ĉk] = ck, k = 1, 2 and V ar(ĉ1) = 2c2/n. Thus,

ĉ1/
√
c2

P→ c1/
√
c2 and c2/ĉ2

P→ 1 as n, b → ∞. Therefore, by Slutsky theorem

and continuous mapping theorem, ĉ21/ĉ2
P→ c21/c2, as n, b → ∞.

4. Power under local alternatives

It turns out that the power functions under the local alternatives A3 depend on
the mean vectors through Δ = μ′Kμ. Specifically, define the power function of
T̂ by

β(Δ) = P(T̂ > u(zα)).
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where zα is the upper α (significant level) quantile of the standard normal
distribution. Then, we can obtain the power functions under the local alternative
A3 as given in Theorem 4.1.

Theorem 4.1. Under the assumption A1, A2 and A3, the function β(Δ) can
be asymptotically expanded as

β(Δ) = 1−GT̂

(
u(zα)−

{tr(T1D)}−1Δ√
2δ2c2

)
,

where GT̂ (·) is as defined in Theorem 3.3.

It follows from Corollary 3.4 that u(zα) − ûA(zα) = Op(b
−3/2). Therefore,

Theorem 4.1 could still provide accurate approximation to the power function
of the test that rejects H0 if T̂ > ûA(zα). It can be easily seen that when terms
of orders b−1/2 and b−1 are ignored from the quantiles uA(zα) and the power
function β(Δ) reduces to

β(Δ) = Φ

(
{tr(T1D)}−1Δ√

2δ2c2
− zα

)
.

When a = 2,T1 = Pa and T2 = Ib, it has the same form as Bai and Saranadasa
(1996) and Chen and Qin (2010). It should be noted, however, that for this later
test, Theorem 4.1 gives a second order approximation to the power function
which is more accurate than Bai and Saranadasa (1996) and Chen and Qin
(2010).

5. Simulation study

To exhibit the improvement resulting from the asymptotic expansion and, hence,
facilitate comparison with the limiting distributions in Harrar and Kong (2016),
the simulation study will mainly focus on the model where there is one between-
and one within-subject factors. We generate 10, 000 replications of data from
Nb(μ,Σ). Although the assumed asymptotic frameworks stipulate n to grow
proportionally with b, in reality the actual ratio varies from application to ap-
plication. To investigate the effect of various proportionality of growth, we look
at values of several combinations of a, b and n′

is. For practical reasons, we also
consider small b and large n1, . . . , na (and vice-versa) combinations with bal-
anced as well as unbalanced designs. For the number of groups (number of levels
of factor A), we will consider a = 2, 3, 4, 6. and we set significant level α at 0.01
and 0.05.

Tables 2–7 present actual type I error rates (test sizes) for the covariance
structures Σ = ρIb + (1 − ρ)Jb, Σ = (ρ|j−j′|) and Σ = (σjj′) where σjj = 1
and, for j �= j′, σjj′ = ρ/(j − j′)1/4. We consider a range of values for ρ. For
the first covariance structure, the assumptions in A1 are satisfied uniformly in
ρ because ci = (1− ρ)i(b− 1). However, for the other two covariance structures
these assumptions do not hold except for ρ = 0. Especially, when ρ is close
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to 1, the quantities b2c6/c
3
2 and b3c8/c

4
2 could diverge very fast. To illustrate

this concretely, Table 1 shows the values of b3/2c5/c
5/2
2 and b3c8/c

4
2 for different

values of b and ρ.

Table 1

Covariance Sparsity Assumptions Evaluated for Σ = (σjj′ ) where σjj = 1 and, for j �= j′,

σjj′ = ρ/(j − j′)1/4. Here, T2 = Pb.

ρ b = 12 b = 25 b = 50 b = 100 b = 200 b = 400

b3/2c5/c
5/2
2 0.5 2.98 6.58 16.65 46.14 133.50 392.58

b3c8/c42 0.5 16.69 99.25 694.56 5513.85 46366.55 397877.62

b3/2c5/c
5/2
2 0.9 14.84 29.66 61.35 135.15 314.17 763.47

b3c8/c42 0.9 302.75 1349.69 6311.86 33055.11 190299.63 1182933.54

It should be noted that the covariance matrix structure Σ = ρIb + (1− ρ)Jb

will be positive definite if and only if −1/(b − 1) < ρ < 1. The empty cells in
Tables 2–7 correspond to the cases where b and ρ combinations do not yield
positive definitive covariance matrices. In all the three tables we consider the
contrast matrices T1 = Pa or Ja/a and T2 = Pb. Another matrix of particular
interest in repeated measures analysis is T2 = Jb/b which is useful to test the

group effect. However, the distribution of T̂ in this case does not depend on b.
Hence, we do not carry out simulation for this contrast matrix.

First and foremost, comparing Table 2, 4 and 6 (results for α = 0.05) with
the results in Harrar and Kong (2016), one can clearly see a marked gain in
accuracy resulting from the inclusion of higher-order terms in the asymptotic
expansion. We can see in Table 2 that for both tests (i.e. T1 = Pa and Ja/a), a
large number of the achieved error rates are within a tenth of the actual values.
This phenomena happens more for weaker correlations than for stronger ones.
Further, it is clear from the tables that the performance of the tests in controlling
type I error rates is excellent when either the sample sizes or the dimension is
large. This might be due to the homoscedastic nature. It seems also the case
that when ni’s are small, the tests control type I error rate better as a gets
larger. For example, looking at the rows for a = 6, performance appear to be
satisfactory for small sample sizes but large dimension. Tables 4 and 6 seem to
exhibit similar patters and behaviors. Likewise, for α = 0.01, the asymptotic
expansion provides a gain in accuracy in controlling type-I error rates (see Tables
3, 5 and 7).

To investigate performance in terms of power, we compare the power of the
method by Chi et al. (2012) with the methods proposed in this paper taking
T2 = Pb and setting T1 to either Pa or Ja/a. The power comparison is re-
stricted to Chi et al. (2012) because, to the best of our knowledge, this is the
only work for high-dimensional repeated measures data that covers the general
factorial design. Their approach uses a property of the Wishart random matrix
to avoid the singularity problem that arises due to high dimensionality. This
manipulation could, however, potentially compromise the power properties of
the test. That is one objective of the power comparison in addition to evalu-
ating the power performance of the proposed method. To keep the comparison
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Table 2

Achieved Type I error rates (×100%) for the testing procedures when T2 = Pb and sampling
from Nb(μ,Σ) where Σ = (1− ρ)Ib + ρJb. The nominal size is α = 0.05.

T1 = Pa T1 = Ja/a
ρ = ρ =

a b (n1, . . . , na) −0.01 0 0.2 0.5 −0.01 0 0.2 0.5

2 5 (10,10) 5.60 7.20 5.10 6.70 5.30 5.80 6.60 6.80
2 10 (10,10) 5.70 5.30 4.80 5.70 6.60 5.60 6.00 5.50
2 15 (10,10) 6.30 5.70 6.60 5.00 6.00 5.30 4.70 5.90
2 12 (50,100) 5.19 4.98 4.84 4.99 5.10 5.12 5.35 5.05
2 12 (100,100) 4.96 4.94 5.12 4.91 4.65 5.43 4.78 4.98
2 25 (50,100) 5.12 4.83 5.04 4.90 5.02 4.81 4.84 4.80
2 25 (100,100) 5.20 4.95 5.08 5.14 5.25 5.16 4.93 5.25
2 50 (50,100) 4.73 5.25 5.06 5.30 5.01 4.97 5.41 5.14
2 50 (100,100) 4.82 4.89 5.04 4.96 4.65 5.00 4.97 4.33
2 100 (12,13) 5.11 5.56 5.08 5.22 5.30 4.94 5.31 5.58
2 100 (12,25) 5.02 5.10 5.11 5.42 5.08 5.10 5.02 4.97
2 100 (25,25) 4.96 5.35 4.75 4.83 4.89 4.85 5.06 4.79
2 100 (25,50) 5.28 5.31 5.20 5.21 4.61 5.18 5.28 4.97
2 200 (25,25) 4.87 4.95 5.06 5.36 5.33 5.04
2 200 (25,50) 5.24 5.23 4.69 4.98 4.92 4.95
2 200 (50,50) 5.08 4.99 4.98 4.98 5.45 4.96
2 200 (50,100) 5.20 4.97 4.89 4.96 4.91 5.13
2 400 (50,50) 4.98 4.98 4.71 4.79 5.01 4.81
2 400 (50,100) 4.81 4.96 4.95 4.93 4.74 4.95
2 400 (100,100) 5.04 4.91 5.07 5.36 5.53 5.19
2 400 (100,200) 5.04 4.57 5.35 5.07 5.19 5.31

3 5 (10,10,10) 5.90 6.30 4.60 6.10 5.70 5.60 5.30 5.20
3 10 (10,10,10) 6.70 5.50 5.30 6.10 5.80 5.60 4.80 5.10
3 15 (10,10,10) 5.70 4.60 5.50 6.00 5.50 4.60 4.20 4.30
3 12 (50,100,100) 5.15 5.08 4.82 4.92 4.81 4.61 4.73 5.19
3 12 (100,100,100) 4.80 4.90 5.05 5.15 4.88 4.92 5.02 4.85
3 25 (50,100,100) 5.15 5.05 5.11 5.20 5.14 5.20 4.84 5.16
3 25 (100,100,100) 4.79 4.87 4.94 5.20 4.87 4.87 5.50 4.92
3 50 (50,100,100) 5.06 5.63 5.03 5.18 4.82 4.78 4.90 4.80
3 50 (100,100,100) 5.15 5.18 5.15 4.72 4.66 5.13 5.22 4.97
3 100 (16,17,17) 4.95 5.27 4.87 5.19 4.99 5.32 5.23 5.07
3 100 (16,17,33) 4.86 5.21 4.85 5.46 4.70 5.18 5.17 5.01
3 200 (33,33,34) 5.18 5.20 5.29 5.09 5.09 5.32
3 200 (33,34,67) 4.53 5.10 5.17 4.99 5.10 5.19
3 200 (50,50,50) 4.62 4.88 4.86 5.02 4.92 5.08
3 200 (50,50,100) 4.85 5.03 5.10 4.60 4.68 5.20

4 12 (50,50,100,100) 5.13 5.20 5.32 4.96 4.93 5.05 5.12 5.57
4 12 (100,100,100,100) 5.01 5.04 4.94 5.08 5.03 4.77 5.23 5.06
4 25 (50,50,100,100) 4.81 4.64 4.99 4.65 5.26 5.27 5.01 5.11
4 25 (100,100,100,100) 5.19 5.14 4.89 5.05 4.99 5.14 4.70 5.33
4 50 (50,50,100,100) 5.36 5.10 4.70 5.06 5.22 4.92 5.04 5.08
4 50 (100,100,100,100) 5.11 5.32 5.29 5.08 5.06 4.95 4.94 4.93
4 100 (12,12,13,13) 5.02 5.38 5.63 4.97 5.36 5.16 5.20 5.43
4 100 (12,13,25,25) 5.02 5.29 4.98 5.27 5.11 5.33 5.03 5.12
4 200 (25,25,25,25) 5.19 5.17 4.34 4.82 4.72 4.61
4 200 (25,25,50,50) 4.96 4.89 5.17 4.89 5.04 4.52
4 200 (50,50,50,50) 5.31 4.84 5.66 5.07 5.09 4.91
4 200 (50,50,100,100) 4.97 4.95 4.76 4.71 4.74 5.14

6 100 (8,8,8,8,9,9) 4.98 5.57 5.7 5.34 5.07 5.46 5.22 4.83
6 100 (8,8,9,16,17,17) 5.13 5.08 4.78 4.74 4.88 4.89 5.07 5.18
6 200 (16,16,17,17,17,17) 4.97 5.13 5.15 5.39 4.74 5.25
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Table 3

Achieved Type I error rates (×100%) for the testing procedures when T2 = Pb and sampling
from Nb(μ,Σ) where Σ = (1− ρ)Ib + ρJb. The nominal size is α = 0.01.

T1 = Pa T1 = Ja/a
ρ = ρ =

a b (n1, . . . , na) −0.01 0 0.2 0.5 −0.01 0 0.2 0.5

2 5 (10,10) 2.00 2.10 1.90 1.80 1.50 1.50 1.50 1.50
2 10 (10,10) 1.10 1.70 0.90 1.60 0.80 1.70 1.60 1.70
2 15 (10,10) 0.80 1.50 1.60 1.90 2.30 1.30 1.70 1.40
2 12 (50,100) 1.00 0.99 1.00 1.13 1.03 1.27 0.81 0.95
2 12 (100,100) 1.16 0.91 1.01 1.07 1.06 0.92 1.00 1.05
2 25 (50,100) 0.99 1.06 1.10 1.10 1.04 1.08 0.99 1.01
2 25 (100,100) 0.95 0.76 0.96 0.96 1.10 1.14 1.12 1.00
2 50 (50,100) 1.27 1.02 1.03 1.04 0.84 1.01 0.94 1.01
2 50 (100,100) 1.04 1.09 0.84 1.05 0.96 0.89 1.04 0.89
2 100 (12,13) 1.17 1.02 1.22 1.07 1.24 1.01 0.99 1.21
2 100 (12,25) 1.06 1.02 0.93 0.94 1.14 0.98 1.00 1.16
2 100 (25,25) 1.07 1.04 0.95 1.01 1.15 1.14 1.07 1.04
2 100 (25,50) 0.91 1.03 0.9 0.98 1.12 0.93 1.01 1.08
2 200 (25,25) 1.17 0.85 1.07 1.00 1.06 1.11
2 200 (25,50) 0.95 0.85 1.00 1.00 0.99 0.94
2 200 (50,50) 1.03 0.92 1.03 0.98 1.05 1.06
2 200 (50,100) 1.02 1.30 1.07 0.95 0.95 0.88
2 400 (50,50) 1.01 1.22 0.94 0.95 0.94 0.88
2 400 (50,100) 1.06 0.95 1.10 1.07 1.04 0.98
2 400 (100,100) 0.92 1.03 0.92 1.05 0.94 0.85
2 400 (100,200) 1.08 1.08 0.82 1.11 1.04 0.92

3 5 (10,10,10) 1.40 1.70 1.90 1.40 1.70 1.40 0.90 1.40
3 10 (10,10,10) 1.70 1.30 1.10 1.60 1.10 0.80 1.20 0.70
3 15 (10,10,10) 0.60 1.10 0.30 0.60 1.70 0.70 1.00 0.60
3 12 (50,100,100) 1.08 1.13 1.19 1.04 1.09 1.17 0.97 0.96
3 12 (100,100,100) 0.94 1.11 1.10 1.03 0.92 1.00 0.99 0.99
3 25 (50,100,100) 1.07 0.94 0.96 1.14 0.93 1.12 1.02 1.05
3 25 (100,100,100) 1.07 1.13 0.79 1.05 1.08 0.81 1.04 0.84
3 50 (50,100,100) 1.00 0.78 0.92 0.97 1.19 1.02 0.82 1.00
3 50 (100,100,100) 1.16 0.94 1.12 1.10 0.94 1.04 0.76 0.93
3 100 (16,17,17) 1.06 0.92 1.13 1.13 1.09 0.94 1.10 0.95
3 100 (16,17,33) 1.17 1.16 0.92 0.91 1.17 1.04 1.03 1.06
3 200 (33,33,34) 0.91 1.17 0.98 0.97 1.00 1.13
3 200 (33,34,67) 0.94 0.91 0.84 1.08 0.99 1.15
3 200 (50,50,50) 0.86 1.07 1.09 0.92 0.85 1.01
3 200 (50,50,100) 0.98 1.01 1.02 1.16 0.95 1.12

4 12 (50,50,100,100) 0.71 0.97 0.92 1.09 0.99 1.00 1.01 0.96
4 12 (100,100,100,100) 1.06 1.04 1.03 1.07 0.98 1.09 1.09 0.90
4 25 (50,50,100,100) 1.00 1.08 1.01 1.21 0.89 1.07 0.90 0.87
4 25 (100,100,100,100) 0.88 0.91 0.72 0.95 0.92 1.09 1.07 0.89
4 50 (50,50,100,100) 1.00 0.95 1.08 1.09 1.11 0.92 1.12 0.96
4 50 (100,100,100,100) 1.04 1.02 1.07 1.24 0.93 1.11 1.00 0.90
4 100 (12,12,13,13) 1.04 0.86 1.14 1.16 1.05 1.03 0.80 0.97
4 100 (12,13,25,25) 1.07 0.99 1.04 1.12 1.02 1.03 1.03 1.03
4 200 (25,25,25,25) 1.04 0.95 1.02 0.84 0.96 1.10
4 200 (25,25,50,50) 1.02 1.06 1.07 0.95 1.19 1.09
4 200 (50,50,50,50) 1.06 0.95 1.02 0.98 1.00 1.25
4 200 (50,50,100,100) 0.95 1.11 1.12 0.96 0.91 0.98

6 100 (8,8,8,8,9,9) 1.03 0.91 1.21 1.23 0.99 1.07 0.99 0.98
6 100 (8,8,9,16,17,17) 0.86 1.12 1.26 1.16 1.01 1.08 0.98 0.95
6 200 (16,16,17,17,17,17) 1.00 1.11 1.07 0.99 0.94 0.98
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Table 4

Achieved Type I error rates (×100%) for the testing procedures when T2 = Pb and sampling

from Nb(μ,Σ) where Σ = (ρ|j−j′|). The nominal size is α = 0.05.

T1 = Pa T1 = Ja/a
ρ = ρ =

a b (n1, . . . , na) −0.01 0 0.2 0.5 −0.01 0 0.2 0.5

2 5 (10,10) 5.50 5.60 6.50 7.90 6.90 6.70 6.40 7.00
2 10 (10,10) 5.90 5.70 6.50 4.50 7.20 5.90 6.00 6.80
2 15 (10,10) 4.80 5.80 6.30 5.40 4.50 4.00 6.30 6.20
2 12 (50,100) 4.78 5.10 5.08 4.69 4.89 5.72 5.33 4.69
2 12 (100,100) 4.84 5.04 5.29 5.34 5.00 5.07 4.94 5.01
2 25 (50,100) 4.83 4.92 5.31 4.79 5.23 5.08 5.07 5.31
2 25 (100,100) 5.27 4.89 5.51 5.04 4.89 5.28 5.09 4.87
2 50 (50,100) 4.48 4.82 5.34 5.41 4.98 4.85 4.86 4.85
2 50 (100,100) 4.93 4.48 5.31 5.20 4.81 5.34 4.73 5.12
2 100 (12,13) 5.24 5.04 5.04 5.46 5.61 5.18 5.29 5.30
2 100 (12,25) 4.99 5.47 4.93 5.08 5.11 5.28 4.88 5.19
2 100 (25,25) 5.01 5.13 4.67 5.12 5.56 5.12 4.88 4.78
2 100 (25,50) 5.03 5.11 4.92 4.97 5.23 4.77 4.93 5.19
2 200 (25,25) 5.65 5.33 4.66 4.98 4.96 5.33 5.36 4.58
2 200 (25,50) 4.53 5.00 4.72 4.89 5.01 5.18 5.05 4.94
2 200 (50,50) 5.17 5.09 5.12 4.81 5.22 4.92 5.22 5.12
2 200 (50,100) 5.20 4.67 4.85 5.29 5.16 4.90 5.28 4.82
2 400 (50,50) 4.86 4.74 5.03 5.15 4.92 4.94 4.99 4.99
2 400 (50,100) 4.91 5.03 5.02 4.41 5.10 4.97 5.08 5.07
2 400 (100,100) 4.83 5.10 5.37 4.87 4.76 5.29 4.69 5.19
2 400 (100,200) 5.05 5.08 5.42 4.60 5.18 4.74 4.51 5.19

3 5 (10,10,10) 5.50 6.50 5.60 5.80 5.30 5.60 4.30 5.90
3 10 (10,10,10) 5.60 5.20 6.10 6.10 5.30 4.80 4.70 5.50
3 15 (10,10,10) 5.60 6.20 7.30 5.40 5.70 5.70 4.50 5.70
3 12 (50,100,100) 4.95 5.32 4.63 4.61 4.79 5.14 4.90 4.89
3 12 (100,100,100) 5.10 5.11 5.05 4.75 5.18 4.62 4.79 4.70
3 25 (50,100,100) 4.95 4.78 4.58 5.24 5.13 5.04 5.30 4.73
3 25 (100,100,100) 4.97 4.93 5.17 5.01 5.28 5.03 5.17 5.06
3 50 (50,100,100) 5.03 4.66 4.86 5.09 5.08 5.23 4.80 5.05
3 50 (100,100,100) 5.23 4.79 4.78 5.09 5.32 5.02 4.79 5.24
3 100 (16,17,17) 5.35 5.12 5.04 5.15 4.90 5.02 4.93 5.35
3 100 (16,17,33) 5.39 5.12 5.27 4.83 5.26 5.03 4.98 5.09
3 200 (33,33,34) 5.43 5.23 5.19 5.39 5.16 5.12 5.16 4.80
3 200 (33,34,67) 4.97 5.18 5.32 5.23 5.04 4.95 5.12 4.97
3 200 (50,50,50) 4.74 5.11 4.92 5.35 4.98 5.34 5.08 4.98
3 200 (50,50,100) 5.01 5.18 5.39 5.00 5.38 5.01 5.06 4.98

4 12 (50,50,100,100) 5.02 4.97 5.03 4.95 4.87 4.83 4.68 5.22
4 12 (100,100,100,100) 5.17 5.34 4.49 5.16 4.75 4.83 4.66 4.62
4 25 (50,50,100,100) 5.06 5.10 5.16 4.67 5.47 5.03 5.13 5.13
4 25 (100,100,100,100) 5.38 5.52 4.38 5.13 4.74 4.99 5.22 4.77
4 50 (50,50,100,100) 5.02 5.11 4.76 5.12 5.15 5.15 5.03 5.05
4 50 (100,100,100,100) 4.88 4.83 5.01 4.78 4.76 4.94 4.96 5.07
4 100 (12,12,13,13) 5.31 5.26 4.64 4.99 5.12 5.17 4.91 5.35
4 100 (12,13,25,25) 5.27 5.24 5.45 5.2 5.36 5.38 4.89 5.11
4 200 (25,25,25,25) 5.15 5.26 4.88 5.01 5.18 5.07 5.03 5.15
4 200 (25,25,50,50) 4.98 5.26 4.93 5.00 5.03 4.90 4.93 5.53
4 200 (50,50,50,50) 5.26 5.11 4.70 5.02 5.30 4.92 4.78 4.94
4 200 (50,50,100,100) 5.58 5.10 4.84 5.30 4.81 5.13 4.93 5.22

6 100 (8,8,8,8,9,9) 5.54 4.96 5.29 5.38 5.37 5.02 5.29 5.38
6 100 (8,8,9,16,17,17) 5.28 4.76 5.01 5.04 4.80 5.11 5.17 5.23
6 200 (16,16,17,17,17,17) 5.12 4.97 5.28 5.08 4.92 5.20 4.75 5.15
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Table 5

Achieved Type I error rates (×100%) for the testing procedures when T2 = Pb and sampling

from Nb(μ,Σ) where Σ = (ρ|j−j′|). The nominal size is α = 0.01.

T1 = Pa T1 = Ja/a
ρ = ρ =

a b (n1, . . . , na) −0.01 0 0.2 0.5 −0.01 0 0.2 0.5

2 5 (10,10) 1.30 2.20 1.70 2.10 1.90 1.60 1.80 2.60
2 10 (10,10) 1.70 1.40 1.50 1.40 2.30 1.30 2.00 1.60
2 15 (10,10) 0.70 1.50 1.20 0.80 1.70 1.50 1.20 1.70
2 12 (50,100) 1.12 0.96 1.11 1.07 1.07 1.00 0.95 1.05
2 12 (100,100) 1.23 1.03 0.94 0.89 0.98 1.08 1.04 0.99
2 25 (50,100) 1.01 1.05 1.12 1.22 1.04 1.01 0.99 1.03
2 25 (100,100) 1.00 1.20 0.95 0.86 0.93 1.00 1.01 1.02
2 50 (50,100) 0.79 0.86 0.93 1.00 1.13 1.01 0.96 0.79
2 50 (100,100) 0.98 0.81 1.23 0.96 0.99 1.00 1.04 0.78
2 100 (12,13) 1.17 1.17 1.01 1.26 1.17 1.17 1.14 0.97
2 100 (12,25) 1.18 1.16 0.91 1.36 1.13 1.22 1.02 1.05
2 100 (25,25) 1.07 0.95 1.18 0.98 0.91 0.90 1.15 0.98
2 100 (25,50) 1.00 0.92 0.93 1.19 1.15 0.90 0.81 1.04
2 200 (25,25) 0.95 0.95 1.08 0.87 1.12 1.01 0.95 0.97
2 200 (25,50) 1.11 1.04 0.92 1.07 1.00 0.89 1.14 0.85
2 200 (50,50) 1.04 0.94 1.02 0.92 1.01 1.04 0.98 0.86
2 200 (50,100) 0.85 1.13 1.02 1.06 1.01 0.85 0.93 1.05
2 400 (50,50) 1.09 1.09 1.04 1.08 0.98 1.05 1.12 0.86
2 400 (50,100) 1.07 1.02 1.04 0.83 1.10 1.05 0.87 0.92
2 400 (100,100) 1.01 1.01 1.12 1.07 1.00 1.05 1.03 1.12
2 400 (100,200) 0.97 0.96 0.88 1.06 1.06 0.98 1.02 1.04

3 5 (10,10,10) 1.30 1.50 1.50 2.00 1.20 0.80 1.60 1.70
3 10 (10,10,10) 1.70 1.40 0.70 1.20 1.10 1.70 1.80 1.50
3 15 (10,10,10) 1.00 1.30 1.20 1.60 1.40 1.30 0.70 1.20
3 12 (50,100,100) 0.92 0.98 1.18 1.09 0.93 1.07 1.09 1.05
3 12 (100,100,100) 0.82 1.24 0.99 0.94 1.10 0.89 0.99 0.92
3 25 (50,100,100) 0.90 0.95 1.05 0.99 1.09 0.98 0.84 0.96
3 25 (100,100,100) 1.00 1.25 1.08 1.04 1.00 1.15 0.91 1.06
3 50 (50,100,100) 1.05 1.12 0.92 0.97 1.02 0.82 1.04 1.08
3 50 (100,100,100) 0.85 0.91 1.11 0.90 1.01 0.88 1.06 1.04
3 100 (16,17,17) 1.11 0.92 1.29 1.02 1.07 0.84 0.93 0.98
3 100 (16,17,33) 1.14 1.28 0.98 0.95 1.03 1.01 1.07 1.28
3 200 (33,33,34) 1.26 1.11 0.97 1.12 1.07 0.99 1.04 0.93
3 200 (33,34,67) 1.06 1.04 0.99 1.05 0.99 0.99 1.02 0.99
3 200 (50,50,50) 1.01 0.95 1.04 1.09 1.12 1.05 1.10 1.12
3 200 (50,50,100) 0.99 1.03 0.87 1.26 1.11 1.06 0.98 1.08

4 12 (50,50,100,100) 0.79 1.02 1.10 0.85 1.08 1.03 1.17 1.03
4 25 (50,50,100,100) 1.08 0.90 1.36 0.92 1.12 0.87 1.09 0.95
4 25 (100,100,100,100) 0.89 1.23 1.11 1.08 0.99 1.14 1.12 0.96
4 50 (50,50,100,100) 1.02 0.97 0.87 0.96 1.22 0.98 1.01 0.95
4 50 (100,100,100,100) 0.97 1.03 1.04 0.92 0.98 1.13 1.29 0.92
4 100 (12,12,13,13) 1.06 1.07 1.16 1.03 1.09 1.03 1.08 1.01
4 100 (12,13,25,25) 0.97 1.04 1.10 1.12 1.19 0.93 1.03 0.91
4 200 (25,25,25,25) 1.01 0.99 1.00 0.99 0.90 0.95 0.96 1.00
4 200 (25,25,50,50) 0.91 1.05 0.90 1.04 0.72 1.08 0.94 0.95
4 200 (50,50,100,100) 0.93 0.88 1.04 1.08 0.84 0.87 1.06 0.88

6 100 (8,8,8,8,9,9) 1.11 1.24 1.14 1.33 0.99 0.92 1.14 1.00
6 100 (8,8,9,16,17,17) 1.16 1.05 0.95 1.29 1.04 0.91 1.04 1.19
6 200 (16,16,17,17,17,17) 1.12 1.05 0.90 1.05 0.99 1.05 0.99 0.90
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Table 6

Achieved Type I error rates (×100%) for the testing procedures when T2 = Pb and sampling
from Nb(μ,Σ) where Σ = (ρ/(j − j′)1/4). The nominal size is α = 0.05.

T1 = Pa T1 = Ja/a
ρ = ρ =

a b (n1, . . . , na) −0.01 0 0.2 0.5 −0.01 0 0.2 0.5

2 5 (10,10) 6.00 6.50 5.20 6.80 4.60 6.60 5.70 7.20
2 10 (10,10) 6.10 5.10 6.20 6.40 5.60 5.40 4.30 7.60
2 15 (10,10) 4.50 3.60 5.40 5.80 6.30 5.40 5.90 6.10
2 12 (50,100) 5.04 5.06 5.28 5.41 5.40 4.95 5.63 4.92
2 12 (100,100) 5.12 4.83 5.55 4.88 5.13 4.82 5.29 4.84
2 25 (50,100) 5.24 5.20 4.90 5.02 5.23 5.25 4.89 4.42
2 25 (100,100) 5.15 5.00 4.97 4.63 5.05 4.68 5.26 4.48
2 50 (50,100) 5.24 4.95 5.06 4.97 4.80 4.97 4.83 4.70
2 50 (100,100) 4.85 4.69 5.42 5.15 5.06 5.46 5.13 5.11
2 100 (12,13) 4.88 5.46 5.05 5.58 5.51 5.07 5.25 5.23
2 100 (12,25) 4.94 4.72 5.08 5.15 4.44 5.00 5.24 4.64
2 100 (25,25) 4.94 4.57 5.01 4.45 5.90 5.18 5.18 5.12
2 100 (25,50) 5.32 4.85 5.19 4.98 4.76 5.59 4.87 5.28
2 200 (25,25) 5.12 5.45 5.19 4.88 5.05 4.99 5.18 5.03
2 200 (25,50) 5.07 4.90 4.90 5.21 5.28 5.20 5.12 4.99
2 200 (50,50) 5.24 5.32 5.20 4.60 4.93 5.46 4.42 5.01
2 200 (50,100) 4.53 5.32 5.14 4.97 4.99 5.18 4.91 4.46
2 400 (50,50) 5.45 4.74 4.73 4.70 5.13 4.33
2 400 (50,100) 5.10 4.85 4.65 5.50 5.05 4.84
2 400 (100,100) 4.93 4.88 4.87 4.91 4.87 4.94
2 400 (100,200) 4.77 5.17 5.09 4.61 4.83 4.68

3 5 (10,10,10) 5.70 6.20 7.10 6.50 5.20 5.60 5.80 4.50
3 10 (10,10,10) 4.70 6.30 4.70 5.20 6.20 4.90 6.00 4.90
3 15 (10,10,10) 6.30 3.70 6.00 5.10 4.70 5.00 4.50 6.40
3 12 (50,100,100) 4.97 5.10 4.89 4.71 4.87 5.18 5.21 5.43
3 12 (100,100,100) 4.83 4.61 5.18 5.41 4.84 4.75 4.88 4.84
3 25 (50,100,100) 5.42 4.71 5.12 5.21 4.92 4.64 5.35 4.97
3 25 (100,100,100) 5.13 5.05 5.05 4.69 5.29 4.72 4.83 4.77
3 50 (50,100,100) 5.12 4.76 5.26 4.96 5.02 5.21 4.89 5.12
3 50 (100,100,100) 4.89 5.11 5.06 5.06 5.36 5.12 5.41 4.63
3 100 (16,17,17) 4.70 5.15 5.03 5.33 4.69 5.15 4.97 4.90
3 100 (16,17,33) 5.11 5.18 5.26 5.35 4.99 4.74 5.05 5.07
3 200 (33,33,34) 5.00 4.91 5.12 5.04 4.86 5.15 5.01 4.88
3 200 (33,34,67) 4.80 4.91 5.00 4.41 5.29 5.14 5.03 4.78
3 200 (50,50,50) 5.22 4.65 4.67 4.99 5.23 5.10 5.35 4.75
3 200 (50,50,100) 4.93 4.92 4.75 5.29 5.32 4.98 5.13 4.81

4 12 (50,50,100,100) 4.72 5.04 4.86 5.26 5.14 5.05 4.64 5.05
4 12 (100,100,100,100) 5.41 5.01 5.30 4.90 4.97 4.74 5.15 4.85
4 25 (50,50,100,100) 4.98 4.97 4.81 5.46 5.38 4.93 4.66 4.75
4 25 (100,100,100,100) 5.19 4.57 5.16 4.75 4.79 5.05 5.24 4.81
4 50 (50,50,100,100) 4.87 5.13 4.74 4.94 5.25 5.18 5.38 4.75
4 50 (100,100,100,100) 5.41 5.63 5.32 5.20 5.54 5.03 4.80 4.89
4 100 (12,12,13,13) 5.43 5.39 5.22 4.93 5.13 5.24 5.07 5.07
4 100 (12,13,25,25) 5.21 4.97 5.07 5.16 5.24 5.12 4.97 4.76
4 200 (25,25,25,25) 4.78 5.34 4.86 5.07 5.14 5.08 5.32 5.10
4 200 (25,25,50,50) 4.97 4.83 4.90 4.83 4.85 5.11 4.83 4.72
4 200 (50,50,50,50) 4.96 4.68 5.23 5.00 4.93 5.33 4.97 5.12
4 200 (50,50,100,100) 4.95 4.92 4.88 4.76 4.95 5.15 5.01 4.87

6 100 (8,8,8,8,9,9) 5.27 4.76 5.19 5.57 5.35 5.33 5.12 5.25
6 100 (8,8,9,16,17,17) 5.27 4.91 4.90 5.30 5.02 5.17 5.01 4.92
6 200 (16,16,17,17,17,17) 5.27 5.05 4.93 5.36 4.78 5.20 4.72 4.84
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Table 7

Achieved Type I error rates (×100%) for the testing procedures when T2 = Pb and sampling
from Nb(μ,Σ) where Σ = (ρ/(j − j′)1/4). The nominal size is α = 0.01.

T1 = Pa T1 = Ja/a
ρ = ρ =

a b (n1, . . . , na) −0.01 0 0.2 0.5 −0.01 0 0.2 0.5

2 5 (10,10) 1.70 1.90 1.30 1.70 1.80 1.10 2.10 1.90
2 10 (10,10) 1.40 1.70 1.80 1.40 0.70 1.80 1.20 1.50
2 15 (10,10) 1.00 1.80 2.10 1.30 0.90 1.20 1.30 2.60
2 12 (50,100) 1.03 1.10 0.97 1.01 1.17 0.93 1.02 0.90
2 12 (100,100) 0.91 0.86 1.02 0.89 1.26 1.11 0.93 1.12
2 25 (50,100) 1.32 1.13 0.86 0.99 1.14 1.08 1.15 0.92
2 25 (100,100) 0.93 1.04 0.95 1.12 1.04 1.08 1.07 0.97
2 50 (50,100) 0.99 0.91 0.94 1.04 1.06 1.07 0.97 1.09
2 50 (100,100) 1.11 0.97 1.13 1.06 1.13 1.00 1.02 0.78
2 100 (12,13) 1.10 1.09 1.15 1.13 1.04 1.22 1.19 1.24
2 100 (12,25) 1.23 1.04 1.01 1.02 0.93 1.02 1.01 1.26
2 100 (25,25) 1.03 1.05 0.93 1.11 1.08 0.97 1.08 1.00
2 100 (25,50) 0.96 1.08 0.98 1.03 1.00 0.92 1.14 1.21
2 200 (25,25) 0.96 1.09 0.71 0.90 1.02 1.02 1.07 1.12
2 200 (25,50) 0.94 1.03 1.02 0.95 1.13 1.05 1.09 1.08
2 200 (50,50) 1.00 1.02 0.84 1.02 1.03 0.98 1.14 1.06
2 200 (50,100) 0.88 1.20 0.98 0.94 1.21 0.99 0.99 1.20
2 400 (50,50) 1.14 1.02 0.87 1.14 1.06 0.91
2 400 (50,100) 0.98 1.04 1.00 0.85 1.02 0.94
2 400 (100,100) 1.10 0.91 1.07 0.90 1.11 0.86
2 400 (100,200) 0.93 0.97 0.78 0.87 1.04 0.89

3 5 (10,10,10) 1.80 1.80 1.70 1.40 1.30 1.60 1.60 0.50
3 10 (10,10,10) 1.30 1.10 1.30 2.20 0.40 1.50 1.00 1.40
3 15 (10,10,10) 1.00 1.90 0.90 1.20 2.30 1.60 1.10 1.20
3 12 (50,100,100) 1.01 1.22 0.83 1.00 1.05 0.92 1.00 0.86
3 12 (100,100,100) 0.86 1.26 1.09 1.12 0.96 0.84 1.08 0.87
3 25 (50,100,100) 1.03 1.16 1.15 1.06 1.00 0.94 0.94 1.02
3 25 (100,100,100) 1.09 1.02 0.93 0.99 1.12 1.06 0.99 0.87
3 50 (50,100,100) 0.98 1.05 1.11 1.06 0.99 1.06 0.92 0.99
3 50 (100,100,100) 1.13 1.22 1.18 1.20 1.05 1.02 1.10 0.63
3 100 (16,17,17) 1.13 1.21 1.11 1.08 1.04 0.98 0.97 0.96
3 100 (16,17,33) 1.12 1.05 1.14 1.23 1.11 0.91 0.96 0.90
3 200 (33,33,34) 1.15 1.02 1.10 0.90 0.98 0.95 1.22 0.90
3 200 (33,34,67) 0.97 1.04 0.98 1.03 0.98 0.92 1.06 1.06
3 200 (50,50,50) 1.19 0.83 1.11 0.95 0.98 0.98 1.19 0.97
3 200 (50,50,100) 0.84 1.10 1.03 1.09 1.06 1.18 1.19 1.07

4 12 (50,50,100,100) 0.98 1.02 1.10 1.07 1.05 1.05 0.94 0.89
4 12 (100,100,100,100) 0.89 0.95 1.02 1.13 1.06 1.01 1.16 1.07
4 25 (50,50,100,100) 1.05 1.02 0.97 0.99 1.16 0.95 1.00 0.97
4 25 (100,100,100,100) 1.15 1.00 1.09 1.10 1.15 0.93 1.01 0.90
4 50 (50,50,100,100) 0.98 0.97 1.11 1.10 1.00 1.12 0.95 0.87
4 50 (100,100,100,100) 1.04 1.08 0.85 0.94 1.17 0.85 0.97 0.91
4 100 (12,12,13,13) 0.91 1.16 1.02 1.36 1.07 0.96 1.21 1.20
4 100 (12,13,25,25) 0.85 1.15 0.91 1.08 1.10 1.01 1.07 1.09
4 200 (25,25,25,25) 1.12 1.01 1.00 1.08 1.20 1.02 1.12 1.03
4 200 (25,25,50,50) 1.07 0.82 1.21 0.90 1.02 1.04 1.16 0.85
4 200 (50,50,50,50) 0.89 0.77 1.00 0.99 1.00 0.92 0.85 0.83
4 200 (50,50,100,100) 1.05 1.06 1.03 1.07 0.98 1.03 0.89 0.95

6 100 (8,8,8,8,9,9) 0.96 1.08 1.09 1.22 1.02 0.91 1.01 1.18
6 100 (8,8,9,16,17,17) 1.11 0.97 1.15 0.97 0.89 0.98 1.02 1.04
6 200 (16,16,17,17,17,17) 0.98 1.05 1.02 1.33 1.20 1.09 1.04 0.93
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manageable, we fix a = 3 and Σ = ρIb + (1 − ρ)Jb where ρ = 0.2. In re-
gards to sample sizes and dimension, we use the combinations (b;n1, n2, n3) =
(10; 5, 10, 10), (10; 50, 100, 100), (100; 5, 10, 10) and (100; 50, 100, 100). For the al-
ternative hypotheses, when T1 = Pa, we take μ2 = μ3 = 0 and consider
two structures for μ1. The first one represents a dense alternative, namely
μ1i = (1+δ) for i odd and μ1i = (1−δ) for i even, and the other one represents
a sparse alternative, namely μ1 = (1+ δ,1′

b−1)
′. In both cases δ is made to vary

from 0 to 1. When T1 = Ja/a, we take μ1 = 1b+μ2, μ2 = μ3 and consider two
structures of μ2 representing dense and sparse alternatives. For the first one, we
take μ2i = δ for i odd and μ2i = −δ for i even, and for the second one we take
μ2 = (0′

b−1, δ)
′. Here also, δ varies from 0 to 1. The latter structure for both

values of T1 represent departures that approach to the null hypotheses at the
rate b1/2. More precisely, the scaled departure from the null ||μ1−1b||/tr(Σ)1/2

are δ and |δ|/
√
b, respectively. Figures 1 and 2 show power results for T1 = Pa

and T1 = Ja/a, respectively. For dense alternatives (left panels), our methods
has a clear advantage in all cases. More pronounced dominance is observed,
in particular, when n is small. On the other hand, Chi et al. (2012) has an
advantage for sparse alternatives (right panels).

Fig 1. Power comparison of the proposed methods and the test by Chi et al. (2012) for
T1 = Pa and T2 = Pb. Data is generated from Nb(μi,Σ), where Σ = 0.8Ib + 0.2Jb. In the
both panel of the plot, μ2 = μ3 = 0. In the left panel μ1i = (1 + δ) for i odd, μ1i = (1 − δ)
for i even and in the right panel μ1 = (1 + δ,1′

b−1)
′

6. Real data analysis

In this section, we analyze a publicly available data obtained from the Univer-
sity of California-Irvine Machine Learning Repository.1 The data arose from a

1web address: https://archive.ics.uci.edu/ml/datasets/EEG+Database

https://archive.ics.uci.edu/ml/datasets/EEG+Database
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Fig 2. Power comparison of the proposed methods and the test by Chi et al. (2012) for
T1 = Ja/a and T2 = Pb. Data is generated from Nb(μi,Σ), where Σ = 0.8Ib + 0.2Jb. In the
both panel of the plot, μ1 = 1b + μ2 and μ2 = μ3. In the left panel μ2i = δ for i odd and
μ2i = −δ for i even and in the right panel μ2 = (0′

b−1, δ)
′

large study to examine Electroencephalograph (EEG) correlates of genetic pre-
disposition to alcoholism. Measurements from 64 electrodes placed on subject’s
scalps were recorded 256 times for 1 second. The study involved two groups of
subjects: alcoholic (n1 = 77) and control (n2 = 45). Each subject was exposed
to either a single stimulus (S1) or two stimuli (S1 and S2) which were pictures
of objects chosen from a picture set. The sixty-four electrodes (channels) are
divided into groups based on their location on the scalp (frontal, temporal,
parietal and occipital lobes). To illustrate the application of the methods con-
cisely, we focus the analysis on data from the stimulus S1 and the seventeen
frontal-lobe channels. The outcome measurements are Event-Related Potentials
(ERP) indicating the level of electrical activity (in volts) in the region of the
brain where each of the electrodes is placed. This repeated measures data has
two within-subject factors (time and channels) and one between-subject factor
(alcohol use). The within-subject factors time and channel have 256 and 17
levels, respectively.

To assess the plausibility of the assumptions in the model, we checked channel-
by-channel marginal normality after testing for equality of covariance matrices
in the alcoholic and control groups. To date, there does not exist a satisfac-
tory test of multivariate normality in the high-dimensional repeated measures.
Neither of the high-dimensional tests Li and Chen (2012) nor Zhang et al.
(2018) indicated violation of equality of covariance for any of the channels
(p-values ≥ 0.512). However, the tests did not give a clean bill of normality.
The proportion of fail to rejections (not adjusted for multiplicity) ranged from
24% to 41% for all but five of the frontal periphery channels. For these later
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Table 8

Analysis for EEG data for a = 2, b = 256 and d = 17.

Hypothesis T1 T2 T̂ p-value

H01 P2 P256 ⊗ P17 0.535 0.196

H02 J2/2 P256 ⊗ P17 26.252 <0.001

H03 P2 P256 ⊗ J17/17 0.489 0.205

H04 J2/2 P256 ⊗ J17/17 42.430 <0.001

channels, the proportions (unadjusted) ranged from 57% to 82%. Considering
the multiplicity of the tests, this may only represent a mild violation of normal-
ity.

The main research questions of interest are: (H01) whether the ERP profiles
over time differ between channels and groups (three-way interaction: alcohol×
time × channel); (H02) whether ERP profiles are similar between the channels
when averaged over groups (similar time profiles for all the channels); (H03)
if the time profiles of ERP are similar between the two groups averaged over
channels; (H04) whether the ERP profiles are constant (flat) when averaged
over channels and groups. For describing the contrast matrices, we assume the
data vectors from each subject are arranged by grouping the 17 channels within
each time point, i.e. the data vector from the jth subject in the ith group is
Xij = (Xij11, . . . , Xij1,17, . . . , Xij,256,1, . . . , Xij,256,17)

′. In the notations of the
paper, the four hypotheses of interest, H0i for i = 1, 2, 3, 4, can be tested by
using the contrast matrices T1 = P2 and T2 = P256 ⊗ P17; T1 = J2/2 and
T2 = P256 ⊗ P17; T1 = P2 and T2 = P256 ⊗ J17/17; and T1 = J2/2 and
T2 = P256 ⊗ J17/17, respectively. The results of the analysis are presented in
Table 8. Overall time-profile similarity across groups (averaged over channels)
cannot be rejected (p-values = 0.205). In fact, channel-by-channel similarity
of time profiles of ERP across groups cannot be rejected (p-values = 0.196).
However, the flatness over time is rejected overall for all channels as well as
channel-by-channel.

As a way of ascertaining the reproducibility and reliability of the results in
Table 8, we conducted a simulation study using parameters similar to that of the
EEG data. For table 9, we generate 1000 replications of data from Nbd(0,Σi).
We look at values of b = 256, d = 17, a = 2 and n1 = 77 n2 = 45 and take
α = 0.05. Table 9 present actual type I error rates (test sizes) for the covariance
structures Σ1 = ρIb + (1 − ρ)Jb, for ρ = 0.2 and random matrices Σi for
i = 2, 3, 4 defined as follows. Let Σi = Q′

iΛiQi, where Λi is a diagonal matrix
with diagonal entries taken from Unif(0, 1) andQi is orthogonal matrix. Indeed,
Qi can be defined from the QR decomposition of a random matrix Zi = (Zi,jj′)
where Zi,jj′ are iid random variables. Here, we consider three distributions for
Zi,jj′ , namely Z2,jj′ = 1{j=j′} with probability 1, Z3,jj′ ∼ Exp(1) and Z4,jj′ ∼
N (0, 1). Here, it is clear that assumption A1 is satisfied only for Σ1. It is clear
from Table 9 that the achieved type I error rates are satisfactorily close to 5%
regardless of the covariance matrix assumed.
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Table 9

Achieved Type I error rates (×100%) for the testing procedures with parameters similar to
EEG data, i.e. a = 2, b = 256, d = 17, n1 = 77, n2 = 45.

T1 T2 Σ1 Σ2 Σ3 Σ4

P2 P256 ⊗ P17 5.0 5.9 4.5 5.8
J2/2 P256 ⊗ P17 4.5 4.0 5.4 5.8
P2 P256 ⊗ J17/17 4.6 4.6 5.4 5.4
J2/2 P256 ⊗ J17/17 5.6 4.8 5.2 4.6

7. Discussion and conclusion

The paper derives approximations for the null distributions and quantiles of
some test statistics in repeated measures. The approximations ensure the er-
rors to be of order O(b−3/2) where b is the dimension, i.e. the number of re-
peated measures. Factorial designs are treated in a unified manner where mul-
tiple between- and within-subjects factors which may be crossed or nested are
allowed. General covariance structure is allowed where no pre-determined se-
quence is assumed among the repeated measurements. Therefore, the repeated
measurements could be over time or under different treatment conditions.

The asymptotic results require some regularity condition on the covariance
matrix. Such assumption appears to be inevitable as long as one prefers to con-
sider unstructured covariance matrix. Our observation from the simulation is
that this assumption does not appear to restrict the utility of the results for
application in more general situations. Nevertheless, we made somewhat milder
requirements compared to similar works (see, for example, Bai and Saranadasa,
1996; Takahashi and Shutoh, 2016). The paper also assumes proportional diver-
gence of the sample size and dimension, i.e. n/b → γ0 ∈ (0,∞), but either one
can be larger than the other. We should point out that this assumption can be
relaxed to cover other cases, namely n = O(bε) for ε > 1 or ε < 1. However, the
expanded cumulative distribution function may have terms with order different
from b−j/2 for j = 1, 2, . . . in which case the standard Cornish-Fisher formula
for the quantile will not apply. Non standard expansions will need to be derived
for the quantiles. Regardless, our impression from the simulation is that the
effect of these terms is likely to be insignificant. This is an open problem that
needs further investigation.

The development of the paper is under normality. We recommend assessing
the plausibility of this assumption before applying the methods. Transformation
that improve normality could also be attempted in the event non-normality is
detected or suspected. In the proofs, multivariate normality of the repeated mea-
sures is mostly needed for its nice property of independence up to correlation and
independence of some linear and quadratic forms. Limiting distribution results
under statistical models that include independence up to correlation assumption
have been derived in Bai and Saranadasa (1996) and Chen and Qin (2010) for
two-sample and Katayama et al. (2013) for multiple-sample comparison of mean
vectors. In the interest of space, we opted to relegate the investigation of these
models for limiting distribution as well as asymptotic expansion in the repeated
measures context to a follow-up manuscript.
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Appendix A: Proofs

Proof of Theorem 3.1 and Theorem 3.5. We know that nS ∼ Wb(Σ, n), where
Wb(Σ, n) stands for b-dimensional Wishart distribution with degrees of freedom
n and scale matrix Σ. Denote ak = tr(T2S)

k for k = 1, . . . , 8 and define

bT2Σ = (ck1 , c
k−2
1 c2, . . . , ck)

′ and bT2S = (ak1 , a
k−2
1 a2, . . . , ak)

′

to be the vector of traces of the kth order moments. That means, for each
partition of k, for example k = ν1 + · · · νq, where ν1 ≤ · · · ≤ νq and q ≤ k,
we include cν1 . . . cνq and aν1 . . . aνq to the vectors bT2Σ and bT2S , respectively,
at same position. It is known (Fujikoshi, 1973) that E[bT2S ] = FkbT2Σ, where
the matrices Fk have been calculated by Fujikoshi (1973) up to k = 6 and by
Watamori (1990) for k = 7, 8. Using these result, it can be shown that

E[ĉk] = ck, for k = 1, 2, 3, 4.

Further, under the high-dimensional asymptotic frameworks A1 and A2 and
after lengthy algebraic calculation, it can be seen that

Var
( ĉ1

c
1/2
2

)
=

2

n
= O(n−1),

Var
( ĉ2
c2

)
=

4

n(n− 1)(n+ 2)c22

[
nc22 + (2n2 + 3n− 6)c4

]
= O(n−2),

Var
(√

bĉ3

c
3/2
2

)
=

6b

nm1c32

[
n2c32 + 3n(n− 1)(n+ 4)c23 + 3n(n2 + 3n− 12)c2c4 +

(3n4 + 15n3 − 20n2 − 120n+ 160)c6

]
= O(n−2) and

Var
(bĉ4
c22

)
=

8b2

nm2c42

[
f1c

4
2 +f2c2c

2
3 +f3c

2
2c4 +f4c

2
4 +f5c3c5 +f6c2c6 +f7c8

]
= O(n−2),

where

f1 = n2(n2 + n+ 2), f2 = 8n2(n+ 1)(n− 3)(n+ 6),

f3 = 2n2(2n3 + 11n2 − 47n+ 54),

f4 = n(6n5 + 40n4 − 85n3 − 631n2 + 726n+ 1224),

f5 = 8n(n+ 1)(n− 3)(n+ 6)(n2 + 4n− 16),

f6 = 4n(n5 + 10n4 − 11n3 − 220n2 + 276n+ 480) and

f7 = 2(2n7 + 23n6 + 38n5 − 423n4 − 992n3 + 4066n2 − 420n− 5040).

Obviously, ĉ2/c2 is L
2, so that in probability, convergent to 1. All the asymptotic

equivalence results in Theorem 3.1 and Theorem 3.5 can be proved similarly, and
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we only include the proof of (ĉ1 − c1)/
√
c2 = Op(b

−1/2) here. By Chebyshev’s
inequality and under the condition A2, we have

Pr

(∣∣∣∣∣
√
b(ĉ1 − c1)√

c2

∣∣∣∣∣ > M

)
≤ bVar(ĉ1/c

1/2
2 )

M2
=

2b

nM2
→ 2γ0

M2
,

for any M > 0. Therefore, for any ε > 0, there exists M(>
√

2γ0/ε ), such that
the above probability is bounded by ε. For similar results see Srivastava (2005)
and Hyodo et al. (2014).

Theorem A.1. Under the high-dimensional asymptotic frameworks A1 and A3,
the characteristic function of T can be expanded as

φT (t) = e
1
2 ı

2t2
{
1 +

1√
b
ı3t3η3 +

1

b
(ı4t4η4 + ı6t6η23/2) + O(b−3/2)

}
,

as n, b → ∞, where ı =
√
−1.

Proof of Theorem A.1. Let Z = Σ̃−1/2(X − μ) ∼ Nab(0, Iab). Then

T =
{tr(T1D)}−1(Z ′Σ̃1/2KΣ̃1/2Z + 2μ′KΣ̃1/2Z)− c1√

2δ2c2
.

Denote σ2
1 = 2δ2c2 with σ1 > 0. The characteristic function of T is derived as

follows,

φT (t) = E
[
exp

{ ıt

σ1

{
{tr(T1D)}−1

(
Z ′Σ̃1/2KΣ̃1/2Z + 2μ′KΣ̃1/2Z

)
− c1

}}]
= exp

(−ıtc1
σ1

) ∫
Z

(2π)−ab/2

× exp
{
−1

2
Z ′MZ +

2ıt

σ1
{tr(T1D)}−1μ′KΣ̃1/2Z

}
dZ

= exp
(−ıtc1

σ1

) ∫
Z

(2π)−ab/2

× exp
{
− 1

2

(
Z − 2ıt

σ1
{tr(T1D)}−1M−1Σ̃1/2Kμ

)′

·M ·
(
Z − 2ıt

σ1
{tr(T1D)}−1M−1Σ̃1/2Kμ

)
+

2ı2t2

σ2
1

{tr(T1D)}−2μ′KΣ̃1/2M−1Σ̃1/2Kμ
}
dZ

= exp
(−ıtc1

σ1

)
|M |−1/2 exp

{2ı2t2

σ2
1

{tr(T1D)}−2μ′KΣ̃1/2M−1Σ̃1/2Kμ
}
,

where M = I − 2ıt
σ1

{tr(T1D)}−1Σ̃1/2KΣ̃1/2 and |M | is the determinant of M .

Let αi’s be the eigenvalues of T1D, βj ’s be the eigenvalues of Σ
1/2T2Σ

1/2, then

|M | =
a∏

i=1

b∏
j=1

(
1− 2ıt

σ1
{tr(T1D)}−1αiβj

)
.
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Thus, by Taylor’s series expansion, we have

log |M |−1/2 = −1

2

a∑
i=1

b∑
j=1

log

(
1− 2ıt

σ1
{tr(T1D)}−1αiβj

)

=
1

2

a∑
i=1

b∑
j=1

∞∑
k=1

2k(ıt)k

kσk
1

·
αk
i β

k
j

{tr(T1D)}k

=

∞∑
k=1

2k/2−1(ıt)k

k
· δkck

δ
k/2
2 c

k/2
2

=
ıtc1
σ1

+
1

2
ı2t2 +

1√
b
ı3t3η3 +

1

b
ı4t4η4 +O(b−3/2),

where the last equality holds by condition A1 and equation (2).
Since

M−1=I+
2ıt

σ1
{tr(T1D)}−1Σ̃1/2KΣ̃1/2+

4ı2t2

σ2
1

{tr(T1D)}−2Σ̃1/2KΣ̃KΣ̃1/2+· · ·

Under assumption A3, as n, b → ∞, we have

μ′KΣ̃Kμ ≤ μ′Kμ ·
√

tr(KΣ̃)2 = μ′Kμ ·
√
tr(T1D)2 · c2 ,

and, therefore,

1

σ2
1

{tr(T1D)}−2μ′KΣ̃Kμ ≤ μ′Kμ

2
√
tr(T1D)2 · c2

= O(b−3/2).

Similarly,

1

σ3
1

{tr(T1D)}−3μ′KΣ̃KΣ̃Kμ ≤ 1

σ2
1

{tr(T1D)}−2μ′KΣ̃Kμ = O(b−3/2),

1

σ4
1

{tr(T1D)}−4μ′KΣ̃KΣ̃KΣ̃Kμ ≤ 1

σ2
1

{tr(T1D)}−2μ′KΣ̃Kμ = O(b−3/2),

and so on. Thus, we have

1

σ2
1

{tr(T1D)}−1μ′KΣ̃1/2M−1Σ̃1/2Kμ
}
= O(b−3/2).

By Taylor’s series expansion, the characteristic function of T can be expanded
as

φT (t) = e
1
2 ı

2t2
{
1 +

1√
b
ı3t3η3 +

1

b
(ı4t4η4 + ı6t6η23/2) + O(b−3/2)

}
.

Proof of Theorem 3.2. Denote H∗ = {tr(T1D)}−1H. Note that

ĉ2
c2

= 1 +
1

b
W and

ĉ1 − c1√
2δ2c2

=
V√
b
.
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By Taylors’ expansion, we have(
ĉ2
c2

)−1/2

= 1− 1

2b
W +Op(b

−2).

Then

T̂ =
H∗ − ĉ1√
2δ2ĉ2

=
(H∗ − c1)− (ĉ1 − c1)√

2δ2c2
√

ĉ2/c2

=
(H∗ − c1)− (ĉ1 − c1)√

2δ2c2

{
1− 1

2b
W +Op(b

−2)

}
= T − V√

b
− TW

2b
+Op(b

−3/2),

where T =
(H∗ − c1)√

2δ2c2
. So the characteristic function of T̂ is

φT̂ (t) = E[eıtT̂ ] = E

[
eıtT · eıt

(
− V√

b
−TW

2b +Op(b
−3/2)

)]
= E

[
eıtT ·

{
1− ıtV√

b
− ıtTW

2b
+

ı2t2V 2

b
+Op(b

−3/2)

}]
= E[eıtT ] +

ı2t2

2b
E[eıtT ]E[V 2] + O(b−3/2),

since T is independent with both (V,W ) and E[V ] = E[W ] = 0.
Finally, using Theorem A.1 and the fact (see Proof of Theorem 3.1) that

E[V 2] = b
2δ2c2

Var(ĉ1) =
b

nδ2
=

γ

δ2
, we have the desired result.

Proof of Theorem 3.3. In view of the expanded characteristic function in The-
orem 3.2, the desired result follows from a term-by-term inversion by using the
inversion formula

1

2π

∫ x

−∞

∫ ∞

−∞
(−ıt)je−ıtue−t2/2dtdu =

∫ x

−∞

dj

duj

{
1

2π

∫ ∞

−∞
e−ıtue−t2/2dt

}
du

=

∫ x

−∞
φ(j)(u)du = Φ(j)(x)

for any nonnegative integer j. For more details see, for example, Theorem 3 in
(Shiryaev and Chibisov, 2016, pp. 340).

Proof of Theorem 4.1.

T̂ − {tr(T1D)}−1
Δ√

2δ2c2
= T − V√

b
− WU

2b
+Op(b

−3/2),

where U = {tr(T1D)}−1(H∗ − c1)/
√
2δ2c2 . Since U and W are independent

and E(U) = E(V ) = E(W ) = 0, application of Theorem A.1 leads to,
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β(Δ) = P (T̂ > u(zα))

= P

(
T̂ − {tr(T1D)}−1Δ√

2δ2c2
> u(zα)−

{tr(T1D)}−1Δ√
2δ2c2

)
= 1−GT̂

(
u(zα)−

{tr(T1D)}−1Δ√
2δ2c2

)
,

as to be proved.
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