
Electronic Journal of Statistics
Vol. 13 (2019) 4527–4572
ISSN: 1935-7524
https://doi.org/10.1214/19-EJS1632

Sample covariances of

random-coefficient AR(1) panel model

Remigijus Leipus

Vilnius University, Faculty of Mathematics and Informatics,
Naugarduko 24, 03225 Vilnius, Lithuania
e-mail: Remigijus.Leipus@mif.vu.lt

Anne Philippe
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1. Introduction

Dynamic panels providing information on a large population of heterogeneous
individuals such as households, firms, etc. observed at regular time periods,
are often described by simple autoregressive models with random parameters
near unity. One of the simplest models for individual evolution is the random-
coefficient AR(1) (RCAR(1)) process

X(t) = aX(t− 1) + ε(t), t ∈ Z, (1.1)

with standardized i.i.d. innovations {ε(t), t ∈ Z} and a random autoregressive
coefficient a ∈ [0, 1) independent of {ε(t), t ∈ Z}. Granger [10] observed that in
the case when the distribution of a is sufficiently dense near unity the stationary
solution of RCAR(1) equation in (1.1) may have long memory in the sense that
the sum of its lagged covariances diverges. To be more specific, assume that the
random coefficient a ∈ [0, 1) has a density function of the following form

φ(x) = ψ(x)(1− x)β−1, x ∈ [0, 1), (1.2)

where β > 0 and ψ(x), x ∈ [0, 1) is a bounded function with limx↑1 ψ(x) =:
ψ(1) > 0. Then for β > 1 the covariance function of stationary solution of
RCAR(1) equation in (1.1) with standardized finite variance innovations decays
as t−(β−1), viz.,

γ(t) := EX(0)X(t) = E
a|t|

1− a2
∼ ψ(1)

2
Γ(β − 1)t−(β−1), t → ∞, (1.3)

implying
∑

t∈Z
|Cov(X(0), X(t))| = ∞ for β ∈ (1, 2]. The same long memory

property applies to the contemporaneous aggregate of N independent individual
evolutions {Xi(t)}, i = 1, . . . , N of (1.1) and the limit Gaussian aggregated pro-
cess arising when N → ∞. Various properties of the RCAR(1) and more general
RCAR equations were studied in Gonçalves and Gouriéroux [9], Zaffaroni [32],
Celov et al. [3], Oppenheim and Viano [18], Puplinskaitė and Surgailis [25],
Philippe et al. [19] and other works, see Leipus et al. [14] for review.
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Statistical inference in the RCAR(1) model was discussed in several works.
Leipus et al. [13], Celov et al. [4] discussed nonparametric estimation of the mix-
ing density φ(x) using empirical covariances of the limit aggregated process. For
panel RCAR(1) data, Robinson [29] and Beran et al. [1] discussed parametric
estimation of the mixing density. In nonparametric context, Leipus et al. [15]
studied estimation of the empirical d.f. of a from panel RCAR(1) observations
and derived its asymptotic properties as N,n → ∞, while [16] discussed esti-
mation of β in (1.2) and testing for long memory in the above panel model.
For a N × n panel comprising N samples {Xi(t), t = 1, . . . , n} of length n,
i = 1, . . . , N of independent RCAR(1) processes in (1.1) with mixing distribu-
tion in (1.2), Pilipauskaitė and Surgailis [20] studied the asymptotic distribution
of the sample mean

X̄N,n :=
1

Nn

N∑
i=1

n∑
t=1

Xi(t) (1.4)

as N,n → ∞, possibly at a different rate. [20] showed that for 0 < β < 2 the
limit distribution of this statistic depends on whether N/nβ → ∞ or N/nβ → 0
in which cases X̄N,n is asymptotically stable with stability parameter depending
on β and taking values in the interval (0, 2]. See Table 2 below. As shown in
[20], under the ‘intermediate’ scaling N/nβ → c ∈ (0,∞) the limit distribution
of X̄N,n is more complicated and is given by a stochastic integral with respect
to a certain Poisson random measure.

The present paper discusses asymptotic distribution of sample covariances
(covariance estimators), for all (t, s) ∈ Z

2,

γ̂N,n(t, s) :=
1

Nn

∑
1≤i,i+s≤N

∑
1≤k,k+t≤n

(Xi(k)−X̄N,n)(Xi+s(k+t)−X̄N,n), (1.5)

computed from a similar RCAR(1) panel {Xi(t), t = 1, . . . , n, i = 1, . . . , N} as
in [20], asN,n jointly increase, possibly at a different rate, and the lag (t, s) ∈ Z

2

is fixed, albeit arbitrary. Particularly, for (t, s) = (0, 0), (1.5) agrees with the
sample variance:

γ̂N,n(0, 0) =
1

Nn

N∑
i=1

n∑
k=1

(Xi(k)− X̄N,n)
2. (1.6)

The true covariance function γ(t, s) := EXi(k)Xi+s(k+t) of the RCAR(1) panel
model with mixing density in (1.2) exists when β > 1 and is given by

γ(t, s) =

{
γ(t), s = 0,

0, s �= 0,
(1.7)

where γ(t) is defined in (1.3). Note that γ(t) cannot be recovered from a single
realization of the nonergodic RCAR(1) process {X(t)} in (1.1). However, the
covariance function in (1.7) can be consistently estimated from the RCAR(1)
N × n panel when N,n → ∞, together with rates. The limit distribution of
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the sample covariance may exist even for 0 < β < 1 when the covariance itself
is undefined. As it turns out, the limit distribution of γ̂N,n(t, s) depends on
the mutual increase rate of N and n, and is also different for temporal, or iso-
sectional lags (s = 0) and cross-sectional lags (s �= 0). The distinctions between
the cases s = 0 and s �= 0 are due to the fact that, in the latter case, the
statistic in (1.5) involves products Xi(k)Xi+s(k + t) of independent processes
Xi and Xi+s, whereas in the former case, Xi(k) and Xi(k + t) are dependent
r.v.s. The main results of this paper are summarized in Table 1 below. Rigorous
formulations are given in Sections 3 and 4. For better comparison, Table 2
presents the results of [20] about the sample mean in (1.4) for the same panel
model.

Table 1

Limit distribution of sample covariances γ̂N,n(t, s) in (1.5).

a) temporal lags (s = 0)

Mutual increase rate of N,n Parameter region Limit distribution

N/nβ → ∞ 0 < β < 2, β �= 1 asymmetric β-stable
N/nβ → 0 0 < β < 2, β �= 1 asymmetric β-stable
N/nβ → c ∈ (0,∞) 0 < β < 2, β �= 1 ‘intermediate Poisson’
arbitrary β > 2 Gaussian

b) cross-sectional lags (s �= 0)

Mutual increase rate of N,n Parameter region Limit distribution

N/n2β → ∞ 1 < β < 3/2 Gaussian
N/n2β → ∞ 1/2 < β < 1 symmetric (2β)-stable
N/n2β → 0 3/4 < β < 3/2 symmetric (4β/3)-stable
N/n2β → c ∈ (0,∞) 3/4 < β < 3/2 ‘intermediate Poisson’
arbitrary β > 3/2 Gaussian

Table 2

Limit distribution of the sample mean X̄N,n in (1.4).

Mutual increase rate of N,n Parameter region Limit distribution

N/nβ → ∞ 1 < β < 2 Gaussian
N/nβ → ∞ 0 < β < 1 symmetric (2β)-stable
N/nβ → 0 0 < β < 2 symmetric β-stable
N/nβ → c ∈ (0,∞) 0 < β < 2 ‘intermediate Poisson’
arbitrary β > 2 Gaussian

Remark 1.1. (i) β-stable limits in Table 1 a) arising when N/nβ → 0 and
N/nβ → ∞ have different scale parameters and hence the limit distribution of
temporal sample covariances is different in the two cases.

(ii) ‘Intermediate Poisson’ limits in Tables 1, 2 refer to infinitely divisible distri-
butions defined through certain stochastic integrals w.r.t. Poisson random mea-
sure. A similar terminology was used in [22].

(iii) It follows from our results (see Theorem 4.1 below) that a scaling transition
similar as in the case of the sample mean [20] arises in the interval 0 < β < 2 for
temporal sample covariances and product random fields Xv(u)Xv(u+t), (u, v) ∈
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Z
2 involving temporal lags, with the critical rate N ∼ nβ separating regimes with

different limit distributions. For ‘cross-sectional’ product fields Xv(u)Xv+s(u+
t), (u, v) ∈ Z

2, s �= 0 involving cross-sectional lags, a similar scaling transition
occurs in the interval 0 < β < 3/2 with the critical rate N ∼ n2β between
different scaling regimes, see Theorem 3.1. The notion of scaling transition for
long-range dependent random fields in Z

2 was discussed in Puplinskaitė and
Surgailis [26, 27], Pilipauskaitė and Surgailis [22, 23].

(iv) The limit distributions of cross-sectional sample covariances in the missing
intervals 0 < β < 1/2 and 0 < β < 3/4 of Table 1 b) are given in Corollary 3.1
below. They are more complicated and not included in Table 1 b) since the term
Nn(X̄N,n)

2 due to the centering by the sample mean in (1.5) may play the
dominating role.

(v) We expect that the asymptotic distribution of sample covariances in the
RCAR(1) panel model with common innovations (see [21]) can be analyzed in
a similar fashion. Due to the differences between the two models (the common
and the idiosyncratic innovation cases), the asymptotic behavior of sample co-
variances might be quite different in these two cases.

(vi) The results in Table 1 a) are obtained under the finite 4th moment con-
ditions on the innovations, see Theorems 4.1 and 4.2 below. Although the last
condition does not guarantee the existence of the 4th moment of the RCAR(1)
process, it is crucial for the limit results, including the CLT in the case β > 2.
Scaling transition for sample variances of long-range dependent Gaussian and
linear random fields on Z

2 with finite 4th moment was established in Pili-
pauskaitė and Surgailis [23]. On the other side, Surgailis [31], Horváth and
Kokoszka [12] obtained stable limits of sample variances and autocovariances
for long memory moving averages with finite 2nd moment and infinite 4th mo-
ment. Finally, we mention the important works of Davis and Resnick [6] and
Davis and Mikosch [5] on limit theory for sample covariance and correlation
functions of moving averages and some nonlinear processes with infinite vari-
ance, respectively.

The rest of the paper is organized as follows. Section 2 presents some prelim-
inary facts, including the definition and properties of the intermediate processes
appearing in Table 1. Section 3 contains rigorous formulations and the proofs
of the asymptotic results for cross-sectional sample covariances (1.5), s �= 0 and
the corresponding partial sums processes. Analogous results for temporal sam-
ple covariances and partial sums processes are presented in Section 4. Section 4
also contains some applications of these results to estimation of the autocovari-
ance function γ(t) in (1.3) from panel data. Some auxiliary proofs are given in
Appendix A.

2. Preliminaries

This section contains some preliminary facts which will be used in the following
sections.



4532 R. Leipus et al.

2.1. Double stochastic integrals and quadratic forms

Let Bi, i = 1, 2 be independent standard Brownian motions (BMs) on the real
line. Let

Ii(f) :=

∫
R

f(s)dBi(s), Iij(g) :=

∫
R2

g(s1, s2)dBi(s1)dBj(s2), i, j = 1, 2,

(2.1)
denote Itô-Wiener stochastic integrals (single and double) w.r.t. Bi, Bj . The
integrals in (2.1) are jointly defined for any (non-random) integrands f ∈ L2(R),
g ∈ L2(R2); moreover, EIi(f) = EIij(g) = 0 and

EIi(f)Ii′(f
′) =

{
0, i �= i′,

〈f, f ′〉, i = i′,
f, f ′ ∈ L2(R), (2.2)

EIi(f)Ii′j′(g) = 0, ∀ i, i′, j′, f ∈ L2(R), g ∈ L2(R2),

EIij(g)Ii′j′(g
′) =

⎧⎪⎨⎪⎩
0, (i, j) /∈ {(i′, j′), (j′, i′)},
〈g, g′〉, (i, j) ∈ {(i′, j′), (j′, i′)}, i �= j, g, g′ ∈ L2(R2),

2〈g, sym g′〉, i = i′ = j = j′,

(2.3)

where 〈f, f ′〉 =
∫
R
f(s)f ′(s)ds (‖f‖ :=

√
〈f, f〉), 〈g, g′〉 =

∫
R2 g(s1, s2)g

′(s1,

s2)ds1ds2 (‖g‖ :=
√

〈g, g〉) denote scalar products (norms) in L2(R) and L2(R2),
respectively, and sym denotes the symmetrization, see, e.g. ([7], Sections 11.5,
14.3). Note that for g(s1, s2) = f1(s1)f2(s2), fi ∈ L2(R), i = 1, 2 we have
Iii(g) = Ii(f1)Ii(f2) − 〈f1, f2〉, I12(g) = I1(f1)I2(f2), in particular, I12(g) =d

‖f1‖‖f2‖Z1Z2, where Zi ∼ N(0, 1), i = 1, 2 are independent standard normal
r.v.s.

Let {εi(s), s ∈ Z}, i = 1, 2 be independent sequences of standardized i.i.d.
r.v.s, Eεi(s) = 0, Eεi(s)εi′(s

′) = 1 if (i, s) = (i′, s′), Eεi(s)εi′(s
′) = 0 if (i, s) �=

(i′, s′), i, i′ = 1, 2, s, s′ ∈ Z. Consider the centered quadratic form

Qij(h) =
∑

s1,s2∈Z

h(s1, s2)[εi(s1)εj(s2)− Eεi(s1)εj(s2)], i, j = 1, 2, (2.4)

where h ∈ L2(Z2). For i = j we additionally assume Eε4i (0) < ∞. Then the sum
in (2.4) converges in L2 and

Var(Qij(h)) ≤ (1 + Eε4i (0)δij)
∑

s1,s2∈Z

h2(s1, s2), (2.5)

see ([7], (4.5.4)). With any h ∈ L2(Z2) and any α1, α2 > 0 we associate its
extension to L2(R2), namely,

h̃(α1,α2)(s1, s2) := (α1α2)
1/2h(�α1s1
, �α2s2
), (s1, s2) ∈ R

2, (2.6)

with ‖h̃(α1,α2)‖2 =
∑

s1,s2∈Z
h2(s1, s2). We shall use the following criterion

for the convergence in distribution of quadratic forms in (2.4) towards double
stochastic integrals (2.1).
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Proposition 2.1 ([7], Proposition 11.5.5). Let i, j = 1, 2 and Qij(hα1,α2),
α1, α2 > 0 be a family of quadratic forms as in (2.4) with coefficients hα1,α2 ∈
L2(Z2). For i = j we additionally assume Eε4i (0) < ∞. Suppose for some
g ∈ L2(R2) we have that

lim
α1,α2→∞

‖h̃(α1,α2)
α1,α2

− g‖ = 0. (2.7)

Then Qij(hα1,α2) →d Iij(g) (α1, α2 → ∞), where Iij(g) is defined as in (2.1).

2.2. The ‘cross-sectional’ intermediate process

Let dMβ ≡ Mβ(dx1, dx2, dB1, dB2) denote Poisson random measure on (R+×
C(R))2 with mean

dμβ ≡ μβ(dx1, dx2, dB1, dB2) := ψ(1)2(x1x2)
β−1dx1dx2PB(dB1)PB(dB2),

(2.8)

where β > 0 is parameter and PB is the Wiener measure on C(R). Let dM̃β :=
dMβ −dμβ be the centered Poisson random measure. We shall often use finite-
ness of the following integrals:∫

R
2
+

min
{
1,

1

x1x2(x1 + x2)

}
(x1x2)

β−1dx1dx2 < ∞, ∀ 0 < β < 3/2, (2.9)∫
R

2
+

min
{
1,

1

x1 + x2

}
(x1x2)

β−2dx1dx2 < ∞, ∀ 1 < β < 3/2, (2.10)

see Appendix A. Let

Yi(u;x) =

∫ u

−∞
e−x(u−s)dBi(s), u ∈ R, x > 0, (2.11)

be a family of stationary Ornstein-Uhlenbeck (O-U) processes subordinated to
Bi = {Bi(s), s ∈ R}, Bi, i = 1, 2 being independent BMs. Let

z(τ ;x1, x2) :=

∫ τ

0

2∏
i=1

Yi(u;xi)du, τ ≥ 0, (2.12)

be a family of integrated products of independent O-U processes indexed by x1,
x2 > 0. We use the representation of (2.12)

z(τ ;x1, x2) =

∫
R2

{∫ τ

0

2∏
i=1

e−xi(u−si)1(u > si)du
}
dB1(s1)dB2(s2) (2.13)

as the double Itô-Wiener integral in (2.1). The ‘cross-sectional’ intermediate
process Zβ is defined as stochastic integral w.r.t. the Poisson measure Mβ , viz.,

Zβ(τ) :=

∫
L1

z(τ ;x1, x2)dMβ +

∫
Lc

1

z(τ ;x1, x2)dM̃β , (2.14)
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where Lc
1 := (R+ × C(R))2 \ L1 and

L1 := {(x1, x2, B1, B2) ∈ (R+ × C(R))2 : x1x2(x1 + x2) ≤ 1} (2.15)

with μβ(L1) < ∞. For 1/2 < β < 3/2 the two integrals in (2.14) can be
combined in a single one:

Zβ(τ) =

∫
(R+×C(R))2

z(τ ;x1, x2)dM̃β . (2.16)

These and other properties of Zβ are stated in the following proposition whose
proof is given in the Appendix A. We also refer to [28, 20] for general properties
of stochastic integrals w.r.t. Poisson random measure.

Proposition 2.2. (i) The process Zβ in (2.14) is well-defined for any 0 <
β < 3/2. It has stationary increments, infinitely divisible finite-dimensional
distributions, and the joint ch.f. given by

Eexp
{
i

m∑
j=1

θjZβ(τj)
}
= exp

{∫
(R+×C(R))2

(ei
∑m

j=1 θjz(τj ;x1,x2)−1)dμβ

}
, (2.17)

where θj ∈ R, τj ≥ 0, j = 1, . . . ,m, m ∈ N. Moreover, the distribution of Zβ is
symmetric: {Zβ(τ), τ ≥ 0} =fdd {−Zβ(τ), τ ≥ 0}.
(ii) E|Zβ(τ)|p < ∞ for p < 2β and EZβ(τ) = 0 for 1/2 < β < 3/2.

(iii) For 1/2 < β < 3/2, Zβ can be defined as in (2.16). Moreover, if 1 < β <
3/2, then EZ2

β(τ) < ∞ and

EZβ(τ1)Zβ(τ2) = (σ2
∞/2)(τ

2(2−β)
1 +τ

2(2−β)
2 −|τ2−τ1|2(2−β)), τ1, τ2 ≥ 0, (2.18)

where σ2
∞ := ψ(1)2Γ(β − 1)2/(4(2− β)(3− 2β)).

(iv) For 1/2 < β < 3/2, the process Zβ has a.s. continuous trajectories.

(v) (Asymptotic self-similarity) As b → 0,

bβ−2Zβ(bτ) →fdd σ∞B2−β(τ), 1 < β < 3/2, (2.19)

b−1(log b−1)−1/(2β)Zβ(bτ) →fdd τV2β , 0 < β < 1, (2.20)

where {B2−β(τ), τ ≥ 0} is a fractional Brownian motion with E[B2−β(τ)]
2 =

τ2(2−β), τ ≥ 0, 2− β ∈ (1/2, 1), σ2
∞ is given in (2.18), and V2β is a symmetric

(2β)-stable r.v. with ch.f. EeiθV2β = e−c∞|θ|2β , θ ∈ R, c∞ := ψ(1)221−2βΓ(β +
(1/2))Γ(1− β)/

√
π. For any 0 < β < 3/2, as b → ∞,

b−1/2Zβ(bτ) →fdd A1/2B(τ), (2.21)

where A > 0 is a (2β/3)-stable r.v. with Laplace transform Ee−θA = e−σ0θ
2β/3

,
θ ≥ 0, σ0 := ψ(1)22−2β/3Γ(1− (2β/3))B(β/3, β/3)/(2β), and {B(τ), τ ≥ 0} is
a standard BM, independent of A. Finite-dimensional distributions of the limit
process in (2.21) are symmetric (4β/3)-stable.
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2.3. The ‘iso-sectional’ intermediate process

Let dM∗
β ≡ M∗

β(dx, dB) denote Poisson random measure on R+ × C(R) with
mean

dμ∗
β ≡ μ∗

β(dx, dB) := ψ(1)xβ−1dxPB(dB), (2.22)

where 0 < β < 2 is parameter and PB is the Wiener measure on C(R). Let

dM̃∗
β := dM∗

β − dμ∗
β be the centered Poisson random measure. Let Y(·;x) ≡

Y1(·;x) be the family of O-U processes as in (2.11), and

z∗(τ ;x) :=

∫ τ

0

Y2(u;x)du, τ ≥ 0, x > 0, (2.23)

be integrated squared O-U processes. Note that Ez∗(τ ;x) = τEY2(0;x) =

τ
∫ 0

−∞ e2xsds = τ/(2x). We will use the representation

z∗(τ ;x) =

∫
R2

{∫ τ

0

2∏
i=1

e−x(u−si)1(u > si)du
}
dB(s1)dB(s2) + τ/(2x) (2.24)

as the double Itô-Wiener integral. The ‘iso-sectional’ intermediate process Z∗
β

is defined for β ∈ (0, 2), β �= 1 as stochastic integral w.r.t. the above Poisson
measure, viz.,

Z∗
β(τ) :=

∫
R+×C(R)

z∗(τ ;x)

{
dM∗

β , 0 < β < 1,

dM̃∗
β , 1 < β < 2,

τ ≥ 0. (2.25)

Proposition 2.3 stating properties of Z∗
β is similar to Proposition 2.2.

Proposition 2.3. (i) The process Z∗
β in (2.25) is well-defined for any 0 < β <

2, β �= 1. It has stationary increments, infinitely divisible finite-dimensional
distributions, and the joint ch.f. given by

Eexp
{
i

m∑
j=1

θjZ∗
β(τj)

}
= exp

{∫
R+×C(R)

(ei
∑m

j=1 θjz
∗(τj ;x) − 1− i

m∑
j=1

θjz
∗(τj ;x)1(1 < β < 2))dμ∗

β

}
,

(2.26)

where θj ∈ R, τj ≥ 0, j = 1, . . . ,m, m ∈ N.

(ii) E|Z∗
β(τ)|p < ∞ for any 0 < p < β < 2, β �= 1 and EZ∗

β(τ) = 0 for 1 <
β < 2.

(iii) For 1 < β < 2, the process Z∗
β has a.s. continuous trajectories.

(iv) (Asymptotic self-similarity) For any 0 < β < 2, β �= 1,

b−1Z∗
β(bτ) →fdd

{
τV ∗

β as b → 0,

τV +
β as b → ∞,

(2.27)
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where V +
β , V ∗

β are a completely asymmetric β-stable r.v.s with ch.f.s EeiθV
+
β =

exp{ψ(1)
∫
R+

(eiθ/(2x) − 1− i(θ/(2x))1(1 < β < 2))xβ−1dx}, EeiθV ∗
β = exp{ψ(1)∫

R+
E(eiθZ

2/(2x)−1−i(θZ2/(2x))1(1 < β < 2))xβ−1dx}, θ ∈ R and Z ∼ N(0, 1).

2.4. Conditional long-run variance of products of RCAR(1)
processes

We use some facts in Proposition 2.4, below, about conditional variance of the
partial sums process of the product Yij(t) := Xi(t)Xj(t) of two RCAR(1) pro-
cesses. Split Yij(t) = Y +

ij (t) + Y −
ij (t), where Y +

ij (t) =
∑

s1∧s2≥1 a
t−s1
i at−s2

j 1(t ≥
s1∨s2)εi(s1)εj(s2), Y

−
ij (t) =

∑
s1∧s2≤0 a

t−s1
i at−s2

j 1(t ≥ s1∨s2)εi(s1)εj(s2). For

i = j we assume additionally that Eε4i (0) < ∞.

Proposition 2.4. We have

Var
[ n∑
t=1

Yij(t)|ai, aj
]
∼ Var

[ n∑
t=1

Y +
ij (t)|ai, aj

]
∼ Aijn, n → ∞, (2.28)

where

Aij :=

⎧⎪⎪⎨⎪⎪⎩
1 + aiaj

(1− a2i )(1− a2j )(1− aiaj)
, i �= j,

1 + a2i
1− a2i

( 2

(1− a2i )
2
+

cum4

1− a4i

)
, i = j

(2.29)

with cum4 being the 4th cumulant of εi(0). Moreover, for any n ≥ 1, i, j ∈
Z, ai, aj ∈ [0, 1)

Var
[ n∑
t=1

Yij(t)|ai, aj
]
≤ Cijn

2

(1− ai)(1− aj)
min

{
1,

1

n(2− ai − aj)

}
, (2.30)

where Cij := 4 (i �= j), := 2(2 + | cum4 |) (i = j).

Proof. Let i �= j. We have

E[Yij(t)Yij(s)|ai, aj ] = E[Xi(t)Xi(s)|ai]E[Xj(t)Xj(s)|aj ] =
(aiaj)

|t−s|

(1− a2i )(1− a2j)

and hence

Jn(ai, aj) := E
[( n∑

t=1

Yij(t)
)2|ai, aj] = n

(1− a2i )(1− a2j )

n∑
t=−n

(aiaj)
|t|(1− |t|

n

)
.

(2.31)
Relation (2.31) implies (2.28). It also implies Jn(ai, aj) ≤ 2n2/((1−ai)(1−aj)).
Note also 1−aiaj ≥ (1/2)((1−ai)+ (1−aj)). Hence and from (2.31) we obtain

Jn(ai, aj) ≤
n

(1− a2i )(1− a2j )

(
1 + 2

∞∑
t=1

(aiaj)
t
)
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≤ 2n

(1− ai)(1− aj)(1− aiaj)
≤ 4n

(1− ai)(1− aj)(2− ai − aj)
,

proving (2.30). The proof of (2.28)–(2.30) for i = j is similar using Cov[Yii(t),

Yii(s)|ai] = 2(a
|t−s|
i /(1− a2i ))

2 + cum4 a
2|t−s|
i /(1− a4i ).

3. Asymptotic distribution of cross-sectional sample covariances

Theorems 3.1 and 3.2 discuss the asymptotic distribution of partial sums process

St,s
N,n(τ) :=

N∑
i=1

�nτ�∑
u=1

Xi(u)Xi+s(u+ t), τ ≥ 0, (3.1)

where t and s ∈ Z, s �= 0 are fixed and N and n tend to infinity, possibly
at a different rate. The asymptotic behavior of sample covariances γ̂N,n(t, s)
is discussed in Corollary 3.1. As it turns out, these limit distributions do not
depend on t, s which is due to the fact that the sectional processes {Xi(t), t ∈ Z},
i ∈ Z are independent and stationary.

Theorem 3.1. Let the mixing distribution satisfy condition (1.2) with 0 < β <
3/2. Let N,n → ∞ so as

λN,n :=
N1/(2β)

n
→ λ∞ ∈ [0,∞]. (3.2)

Then the following statements (i)–(iii) hold for St,s
N,n(τ), (t, s) ∈ Z

2, s �= 0 in
(3.1) depending on λ∞ in (3.2).

(i) Let λ∞ = ∞. Then

n−2λ−β
N,nS

t,s
N,n(τ) →fdd σ∞B2−β(τ), 1 < β < 3/2, (3.3)

n−2λ−1
N,n(log λN,n)

−1/(2β)St,s
N,n(τ) →fdd τV2β , 0 < β < 1, (3.4)

where the limit processes are the same as in (2.19), (2.20).

(ii) Let λ∞ = 0 and E|ε(0)|2p < ∞ for some p > 1. Then

n−2λ
−3/2
N,n St,s

N,n(τ) →fdd A1/2B(τ), (3.5)

where the limit process is the same as in (2.21).

(iii) Let 0 < λ∞ < ∞. Then

n−2λ
−3/2
N,n St,s

N,n(τ) →fdd λ1/2
∞ Zβ(τ/λ∞), (3.6)

where Zβ is the intermediate process in (2.14).
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Theorem 3.2. Let the mixing distribution satisfy condition (1.2) with β > 3/2
and assume E|ε(0)|2p < ∞ for some p > 1. Then for any (t, s) ∈ Z

2, s �= 0 as
N,n → ∞ in arbitrary way,

n−1/2N−1/2St,s
N,n(τ) →fdd σB(τ), σ2 := EA12, (3.7)

where A12 is defined in (2.29).

Remark 3.1. Our proof of Theorem 3.1 (ii) requires establishing the asymptotic
normality of a bilinear form in i.i.d. r.v.s, which has a non-zero diagonal, see
the r.h.s. of (3.52). For this purpose, we use the martingale CLT and impose an
additional condition of E|ε(0)|2p < ∞, p > 1. To establish the CLT for quadratic
forms with non-zero diagonal, [2] took similar approach and also needed 2p finite
moments. In Theorem 3.2 we also assume E|ε(0)|2p < ∞, p > 1. However, it can
be proved under Eε2(0) < ∞ applying another technique that is approximation by
m-dependent r.v.s. Moreover, this result holds if (1.2) is replaced by EA12 < ∞.

Note that the asymptotic distribution of sample covariances γ̂N,n(t, s) in (1.5)
coincides with that of the statistics

γ̃N,n(t, s) := (Nn)−1St,s
N,n(1)− (X̄N,n)

2. (3.8)

For s �= 0 the limit behavior of the first term on the r.h.s. of (3.8) can be
obtained from Theorems 3.1 and 3.2. It turns out that for some values of β, the
second term on the r.h.s. can play the dominating role. The limit behavior of
X̄N,n was identified in [20] and is given in the following proposition, with some
simplifications.

Proposition 3.1. Let the mixing distribution satisfy condition (1.2) with β > 0.

(i) Let 1 < β < 2 and N/nβ → ∞. Then

N1/2n(β−1)/2X̄N,n →d σ̄βZ, (3.9)

where Z ∼ N(0, 1) and σ̄2
β := ψ(1)Γ(β − 1)/((3− β)(2− β)).

(ii) Let 0 < β < 1 and N/nβ → ∞. Then

N1−1/(2β)X̄N,n →d V̄2β , (3.10)

where V̄2β is a symmetric (2β)-stable r.v. with ch.f. EeiθV̄2β = e−K̄β |θ|2β , θ ∈ R,
K̄β := ψ(1)4−βΓ(1− β)/β.

(iii) Let 0 < β < 2 and N/nβ → 0. Then

N1−1/βn1/2X̄N,n →d W̄β , (3.11)

where W̄β is a symmetric β-stable r.v. with ch.f. EeiθW̄β = e−k̄β |θ|β , θ ∈ R and
k̄β := ψ(1)2−β/2Γ(1− β/2)/β.

(iv) Let β > 2. Then as N,n → ∞ in arbitrary way,

N1/2n1/2X̄N,n →d σ̄Z, (3.12)

where Z ∼ N(0, 1) and σ̄2 := E(1− a)−2.



Sample covariances of AR(1) panel model 4539

From Theorems 3.1 and Proposition 3.1 we see that the r.h.s. of (3.8) may
exhibit two ‘bifurcation points’ of the limit behavior, viz., as N ∼ n2β and
N ∼ nβ . Depending on the value of β the first or the second term may domi-
nate, and the limit behavior of γ̂N,n(t, s) gets more complicated. The following
corollary provides this limit without detailing the ‘intermediate’ situations and
also with exception of some particular values of β where both terms on the r.h.s.
may contribute to the limit. Essentially, the corollary follows by comparing the
normalizations in Theorems 3.1 and Proposition 3.1.

Corollary 3.1. Assume that the mixing distribution satisfies condition (1.2)
with β > 0 and E|ε(0)|2p < ∞ for some p > 1 and (t, s) ∈ Z

2, s �= 0 be fixed
albeit arbitrary.

(i) Let N/n2β → ∞ and 1 < β < 3/2. Then

N1/2nβ−1γ̂N,n(t, s) →d σ∞Z,

where Z ∼ N(0, 1) and σ∞ is the same as in Theorem 3.1 (i).

(ii) Let N/n2β → ∞ and 1/2 < β < 1. Then

N1−1/(2β)(log(N1/(2β)/n))−1/(2β)γ̂N,n(t, s) →d V2β ,

where V2β is symmetric (2β)-stable r.v. defined in Theorem 3.1 (i).

(iii) Let N/n2β → ∞ and 0 < β < 1/2. Then

N2−1/β γ̂N,n(t, s) →d −(V̄2β)
2, (3.13)

where V̄2β is a symmetric (2β)-stable r.v. defined in Proposition 3.1 (ii).

(iv) Let N/n2β → 0, N/nβ → ∞ and 3/4 < β < 3/2. Then

N1−3/(4β)n1/2γ̂N,n(t, s) →d W4β/3, (3.14)

where W4β/3 is a symmetric (4β/3)-stable r.v. with ch.f. EeiθW4β/3 =

e−(σ0/2
2β/3)|θ|4β/3

, θ ∈ R and σ0 is the same constant as in Theorem 3.1 (ii).

(v) Let N/n2β → 0, 1/2 < β < 3/4 and N/n2β/(4β−1) → ∞. Then the conver-
gence in (3.14) holds.

(vi) Let N/nβ → ∞, 1/2 < β < 3/4 and N/n2β/(4β−1) → 0. Then the conver-
gence in (3.13) holds.

(vii) Let N/n2β → 0, N/nβ → ∞ and 0 < β < 1/2. Then the convergence in
(3.13) holds.

(viii) Let N/nβ → 0 and 3/4 < β < 3/2. Then the convergence in (3.14) holds.

(ix) Let N/nβ → 0, 0 < β < 3/4 and N/n2β/(5−4β) → ∞. Then

N2−2/β γ̂N,n(t, s) →d −(W̄β)
2, (3.15)
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where W̄β is a symmetric β-stable r.v. defined in Proposition 3.1 (iii).

(x) Let 0 < β < 3/4 and N/n2β/(5−4β) → 0. Then the convergence in (3.14)
holds.

(xi) For 3/2 < β < 2, let N/nβ → λ∗
∞ ∈ [0,∞] and for β > 2, let N,n → ∞ in

arbitrary way. Then

N1/2n1/2γ̂N,n(t, s) →d N(0, σ2), (3.16)

where σ2 is given as in Theorem 3.2.

The proof of Theorem 3.1 in cases (i)–(iii) is given Subsections 3.1–3.3. To
avoid excessive notation, the discussion is limited to the case (t, s) = (0, 1) or

the partial sums process SN,n(τ) :=
∑N

i=1

∑�nτ�
t=1 Xi(t)Xi+1(t). Later on we shall

extend them to general case (t, s), s �= 0.
Let us give an outline of the proof of Theorem 3.1. Similarly to [20] we use the

method of characteristic function combined with ‘vertical’ Bernstein’s blocks,
due to the fact that SN,n is not a sum of row-independent summands as in [20].
Write

SN,n(τ) = SN,n;q(τ) + S†
N,n;q(τ) + S‡

N,n;q(τ), (3.17)

where the main term

SN,n;q(τ) :=

Ñq∑
k=1

Yk,n;q(τ) (3.18)

with

Yk,n;q(τ) =
∑

(k−1)q<i<kq

�nτ�∑
t=1

Xi(t)Xi+1(t), 1 ≤ k ≤ Ñq :=
⌊N
q

⌋
,

is a sum of Ñq ‘large’ blocks of size q − 1 with

q ≡ qN,n → ∞ as N,n → ∞. (3.19)

The convergence rate of q ∈ N in (3.19) will be slow enough (e.g. q = O(logN))
and specified later on. The two other terms in the decomposition (3.17),

S†
N,n;q(τ) :=

Ñq∑
k=1

�nτ�∑
t=1

Xkq(t)Xkq+1(t),

S‡
N,n;q(τ) :=

∑
qÑq<i≤N

�nτ�∑
t=1

Xi(t)Xi+1(t), (3.20)

contain respectively Ñq = o(N) and N − qÑq < q = o(N) row sums and will
be shown to be negligible. More precisely, we show that in each case (i)–(iii) of
Theorem 3.1,

A−1
N,nSN,n;q(τ) →fdd Sβ(τ), (3.21)
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A−1
N,nS

†
N,n;q(τ) = op(1), A−1

N,nS
‡
N,n;q(τ) = op(1), (3.22)

where AN,n and Sβ denote the normalization and the limit process, respectively,
particularly,

AN,n := n2

⎧⎪⎨⎪⎩
λβ
N,n, λ∞ = ∞, 1 < β < 3/2,

λN,n(log λN,n)
1/(2β), λ∞ = ∞, 0 < β < 1,

λ
3/2
N,n, λ∞ ∈ [0,∞), 0 < β < 3/2.

(3.23)

Note that the summands Yk,n;q, 1 ≤ k ≤ Ñq in (3.18) are independent and
identically distributed , and the limit Sβ(τ) is infinitely divisible in cases (i)–(iii)
of Theorem 3.1. Hence use of characteristic functions to prove (3.21) is natural.
The proofs are limited to one-dimensional convergence at a given τ > 0 since
the convergence of general finite-dimensional distributions follows in a similar
way. Accordingly, the proof of (3.21) for fixed τ > 0 reduces to

ΦN,n;q(θ) → Φ(θ) as N,n → ∞, λN,n → λ∞, ∀ θ ∈ R, (3.24)

where

ΦN,n;q(θ) := ÑqE[e
iθA−1

N,nY1,n;q(τ) − 1], Φ(θ) := log EeiθSβ(τ). (3.25)

To prove (3.24) write

A−1
N,nY1,n;q(τ) =

q−1∑
i=1

yi(τ), where yi(τ) := A−1
N,n

�nτ�∑
t=1

Xi(t)Xi+1(t). (3.26)

We use the identity:∏
1≤i<q

(1 + wi)− 1 =
∑

1≤i<q

wi +
∑

|D|≥2

∏
i∈D

wi, (3.27)

where the sum
∑

|D|≥2 is taken over all subsets D ⊂ {1, . . . , q−1} of cardinality

|D| ≥ 2. Applying (3.27) with wi = eiθyi(τ) − 1 we obtain

ΦN,n;q(θ) := Ñq(q − 1)[Eeiθy1(τ) − 1] + Ñq

∑
|D|≥2

E
∏
i∈D

[eiθyi(τ) − 1]. (3.28)

Thus, since Ñq(q − 1)/N → 1, (3.24) follows from

N [Eeiθy1(τ) − 1] → Φ(θ), (3.29)

N
∑

|D|≥2

E
∏
i∈D

[eiθyi(τ) − 1] → 0. (3.30)

Let us explain the main idea of the proof of (3.29). Assuming φ(x) = (1 −
x)β−1 in (1.2) the l.h.s. of (3.29) can be written as

N [Eeiθy1(τ) − 1] = N

∫
(0,1]2

E[eiθy1(τ) − 1
∣∣ai = 1− zi, i = 1, 2](z1z2)

β−1dz1dz2
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=
N

B2β
N,n

∫
(0,BN,n]2

E[eiθzN,n(τ ;x1,x2) − 1](x1x2)
β−1dx1dx2,

(3.31)

where

zN,n(τ ;x1, x2) :=
1

AN,n

∑
s1,s2∈Z

ε1(s1)ε2(s2)

�nτ�∑
t=1

2∏
i=1

(
1− xi

BN,n

)t−si
1(t ≥ si)

(3.32)
and BN,n → ∞ is a scaling factor of the autoregressive coefficient. In cases
(ii) and (iii) of Theorem 3.1 (proof of (3.5) and (3.6)) we choose this scaling

factor BN,n = N1/(2β) so that N/B2β
N,n = 1 and prove that the integral in (3.31)

converges to
∫
R

2
+
E[eiθz(τ ;x1,x2) − 1](x1x2)

β−1dx1dx2 = Φ(θ), where z(τ ;x1, x2)

is a random process and Φ(θ) is the required limit in (3.24). A similar scaling
BN,n = (N log λN,n)

1/(2β) applies in the case λ∞ = ∞, 0 < β < 1 (proof

of (3.4)) although in this case the factor N/B2β
N,n = 1/ log λN,n in front of

the integral in (3.31) does not trivialize and the proof of the limit in (3.24) is
more delicate. On the other hand, in the case of the Gaussian limit (3.3), the

choice BN,n = n leads to N/B2β
N,n = λ2β

N,n → ∞ and (3.31) tends to −(θ2/2)∫
R

2
+
Ez2(τ ;x1, x2)(x1x2)

β−1dx1dx2 = Φ(θ) with z(τ ;x1, x2) defined in (2.12) as

shown in Subsection 3.3 below.
To summarize the above discussion: in each case (i)–(iii) of Theorem 3.1, to

prove the limit (3.21) of the main term, it suffices to verify relations (3.29) and
(3.30). The proof of the first relation in (3.22) is very similar to (3.21) since

S†
N,n;q(τ) is also a sum of i.i.d. r.v.s and the argument of (3.21) applies with

small changes. The proof of the second relation in (3.22) seems even simpler. In
the proofs we repeatedly use the following inequalities:

| eiz − 1| ≤ 2 ∧ |z|, |eiz − 1− iz| ≤ (2|z|) ∧ (z2/2), z ∈ R. (3.33)

3.1. Proof of Theorem 3.1 (iii): case 0 < λ∞ < ∞

Proof of (3.29). For notational brevity, we assume λN,n = λ∞ = 1 since the
general case as in (3.2) requires unsubstantial changes. Recall from (2.17) that
Φ(θ) =

∫
R

2
+
E[eiθz(τ ;x1,x2) − 1](x1x2)

β−1dx1dx2, where z(τ ;x1, x2) is the double

Itô-Wiener integral in (2.12). Also recall the representation (3.31), (3.32), where
AN,n = n2, BN,n = n and zN,n(τ ;x1, x2) = Q12(hn(·; τ ;x1, x2)) is a quadratic
form as in (2.4) with coefficients

hn(s1, s2; τ ;x1, x2) :=
1

n2

�nτ�∑
t=1

2∏
i=1

(
1− xi

n

)t−si
1(t ≥ si), s1, s2 ∈ Z. (3.34)

By Proposition 2.1, with α1 = α2 = n, the point-wise convergence

E[eiθzN,n(τ ;x1,x2) − 1] = E[eiθQ12(hn(·;τ ;x1,x2)) − 1] → E[eiθz(τ ;x1,x2) − 1] (3.35)
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for any fixed x1, x2 ∈ R+ follows from L2-convergence of the kernels:

‖h̃n(·; τ ;x1, x2)− h(·; τ ;x1, x2)‖ → 0, (3.36)

where

h̃n(s1, s2; τ ;x1, x2) := nhn(�ns1
, �ns2
; τ ;x1, x2)

=
1

n

�nτ�∑
t=1

2∏
i=1

(
1− xi

n

)t−�nsi�
1(t ≥ �nsi
)

→
∫ τ

0

2∏
i=1

e−xi(t−si)1(t > si)dt =: h(s1, s2; τ ;x1, x2) (3.37)

point-wise for any xi > 0, si ∈ R, si �= 0, i = 1, 2, τ > 0 fixed. We also use the
dominating bound

|h̃n(s1, s2; τ ;x1, x2)| ≤ Ch(s1, s2; 2τ ;x1, x2), s1, s2 ∈ R, 0 < x1, x2 < n,
(3.38)

with C > 0 independent of si, xi, i = 1, 2 which follows from the definition of
h̃n(·; τ ;x1, x2) and the inequality 1 − x ≤ e−x, x > 0. Since h(·; 2τ ;x1, x2) ∈
L2(R2), (3.37), (3.38) and the dominated convergence theorem imply (3.36) and
(3.35).

It remains to show the convergence of the corresponding integrals, viz.,∫
(0,n]2

E[eiθzN,n(τ ;x1,x2) − 1](x1x2)
β−1dx1dx2 → Φ(θ), (3.39)

where Φ(θ) =
∫
R

2
+
E[eiθz(τ ;x1,x2)−1](x1x2)

β−1dx1dx2. From (3.31) and EzN,n(τ ;

x1, x2) = 0 we obtain

|E[eiθzN,n(τ ;x1,x2) − 1]| ≤ C

{
1, x1x2(x1 + x2) ≤ 1,

Ez2N,n(τ ;x1, x2), x1x2(x1 + x2) > 1,
(3.40)

where

Ez2N,n(τ ;x1, x2) =
1

A2
N,n

E
[( �nτ�∑

t=1

Y12(t)
)2|ai = 1− xi

BN,n
, i = 1, 2

]
=

1

n4
E
[( �nτ�∑

t=1

Y12(t)
)2|ai = 1− xi

n
, i = 1, 2

]
≤ C

n3 x1

n
x2

n

min
{
n,

1
x1+x2

n

}
=

C

x1x2
min

{
1,

1

x1 + x2

}
, (3.41)

see (3.32) and the bound in (2.30). In view of inequality (2.9), the dominated
convergence theorem applies, proving (3.39) and (3.29).
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Proof of (3.30). Choose q = qN,n = �log n
. Let Jq(θ) denote the l.h.s. of (3.30).
Using the identity

∑
D⊂{1,...,q−1}:|D|≥2

∏
i∈D wi =

∑
1≤i<j<q wiwj

∏
i<k<j(1 +

wk) with wi = eiθyi(τ) − 1, see (3.27), we can rewrite Jq(θ) =
∑

1≤i<j<q Tij(θ),
where

Tij(θ) := NE
[
(eiθyi(τ) − 1)(eiθyj(τ) − 1) exp

{
iθ
∑

i<k<j
yk(τ)

}
× (1(ai < aj+1) + 1(ai > aj+1))

]
= T ′

ij(θ) + T ′′
ij(θ). (3.42)

Since |Jq(θ)| ≤ q2 max1≤i<j<q |Tij(θ)| ≤ (logn)2 max1≤i<j<q |Tij(θ)|, (3.30) fol-
lows from

|Tij(θ)| ≤ Cn−δ, ∀ 1 ≤ i < j, (3.43)

with C, δ > 0 independent of n. Using E[yi(τ)|ak, εj(k), k, j ∈ Z, j �= i] = 0 and
(3.41) we obtain

|T ′
ij(θ)| ≤ CNE

[
min

{
1,E[y2i (τ)|ak, k ∈ Z]

}
1(ai < aj+1)

]
(3.44)

≤ C

nβ

∫
(0,n]3

min
{
1,

1

xixi+1(xi + xi+1)

}
1(xi > xj+1)

× (xixi+1xj+1)
β−1dxidxi+1dxj+1

=
C

nβ

∫
(0,n]2

min
{
1,

1

x1x2(x1 + x2)

}
x2β−1
1 xβ−1

2 dx1dx2 ≤ C

nβ
(T ′

n + T ′′
n ),

where

T ′
n :=

∫
0<x1<x2<n

min
{
1,

1

x1x2
2

}
x2β−1
1 xβ−1

2 dx1dx2

≤
∫ 1

0

x2β−1
1 dx1

(∫ x
−1/2
1

x1

xβ−1
2 dx2 + x−1

1

∫ n

x
−1/2
1

xβ−3
2 dx2

)
+

∫ n

1

x2β−2
1 dx1

∫ n

x1

xβ−3
2 dx2 ≤ C

(∫ 1

0

x
3β/2−1
1 dx1 +

∫ n

1

x3β−4
1 dx1

)
≤ Cn3(β−1)∨0(1 + 1(β = 1) log n)

and similarly,

T ′′
n :=

∫
0<x2<x1<n

min
{
1,

1

x2
1x2

}
x2β−1
1 xβ−1

2 dx1dx2

=

∫ 1

0

x2β−1
1 dx1

∫ x1

0

xβ−1
2 dx2

+

∫ n

1

x2β−1
1 dx1

(∫ x−2
1

0

xβ−1
2 dx2 + x−2

1

∫ x1

x−2
1

xβ−2
2 dx2

)
≤ C((logn)1(β < 1) + (logn)21(β = 1) + n3(β−1)1(β > 1)).

Whence, the bound in (3.43) follows for T ′
ij(θ) with any 0 < δ < β ∧ (3 − 2β),

for 0 < β < 3/2. Since |T ′′
ij(θ)| ≤ CNE[min{1,E[y2j (τ)|ak, k ∈ Z]}1(aj+1 < ai)]

can be symmetrically handled, this proves (3.43) and (3.30).
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Proof of (3.22). Since A−1
N,nS

†
N,n;q(τ) =

∑Ñq

k=1 ykq(τ) is a sum of Ñq i.i.d. r.v.s

ykq(τ), k = 1, . . . , Ñq, the first relation in (3.22) follows from

ÑqE[e
iθy1(τ) − 1] → 0, ∀ θ ∈ R. (3.45)

Clearly, (3.45) is a direct consequence of (3.29) and the fact that Ñq/N → 0.

Consider the second relation in (3.22). Let Lq := N − qÑq be the number of

summands in S‡
N,n;q(τ). Then A−1

N,nS
‡
N,n;q(τ) =fdd

∑Lq

i=1 yi(τ) and

EeiθA
−1
N,nS

‡
N,n;q(τ) − 1 = LqE[e

iθy1(τ) − 1] +
∑

|D|≥2

E
∏
i∈D

[eiθyi(τ) − 1], (3.46)

where the last sum is taken over all D ⊂ {1, . . . , Lq}, |D| ≥ 2. Since Lq <
q = o(N) from (3.29), (3.30) we infer that the r.h.s. of (3.46) vanishes, proving
(3.22), and thus completing the proof of Theorem 3.1, case (iii).

3.2. Proof of Theorem 3.1 (ii): case λ∞ = 0, or N = o(n2β)

Proof of (3.29). Note the log-ch.f. of the r.h.s. in (3.5) can be written as

Φ(θ) = log EeiθA
1/2B(τ) = log Ee−(θ2τ/2)A = −σ0(θ

2τ/2)2β/3

= −ψ(1)2
∫
R

2
+

(
1− exp

{
− θ2τ

4x1x2(x1 + x2)

})
(x1x2)

β−1dx1dx2 (3.47)

with σ0 > 0 given by the integral

σ0 :=
ψ(1)2

22β/3

∫
R

2
+

(
1− exp

{
− 1

x1x2(x1 + x2)

})
(x1x2)

β−1dx1dx2. (3.48)

Relation (3.47) follows by change of variable xi → (θ2τ/4)1/3xi, i = 1, 2. The
convergence of the integral in (3.48) follows from (2.9). The explicit value of
σ0 in (3.48) is given in Proposition 2.2 (v) and computed in the Appendix A.

Recall the representation in (3.31), where BN,n = N1/(2β), N/B2β
N,n = 1 and

zN,n(τ ;x1, x2) (3.49)

=
1

N3/(4β)n1/2

∑
s1,s2∈Z

ε1(s1)ε2(s2)

�nτ�∑
t=1

2∏
i=1

(
1− xi

N1/(2β)

)t−si
1(t ≥ si).

Let us prove the (conditional) CLT:

zN,n(τ ;x1, x2) →fdd
B(τ)

(2x1x2(x1 + x2))1/2
, (3.50)

implying the point-wise convergence

E[1− eiθzN,n(τ ;x1,x2)] → 1− exp
{
− θ2τ

4x1x2(x1 + x2)

}
(3.51)
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of the integrands in (3.31) and (3.48), for any fixed (x1, x2) ∈ R
2
+. As in the

rest of the paper, we restrict the proof of (3.50) to one-dimensional convergence,
and set τ = 1 for concreteness. Split (3.49) as zN,n(1;x1, x2) = z+N,n(x1, x2) +

z−N,n(x1, x2), where z
+
N,n(x1, x2) := N−3/(4β)n−1/2

∑n
s1,s2=1 ε1(s1)ε2(s2) · · · cor-

responds to the sum over 1 ≤ s1, s2 ≤ n alone. Thus, we shall prove that

z−N,n(x1, x2) = op(1) and z+N,n(x1, x2) →d N
(
0,

1

2x1x2(x1 + x2)

)
. (3.52)

Arguing as in the proof of (2.30) it is easy to show that

E(z−N,n(x1, x2))
2 ≤ C

N3/(2β)n

(x1 + x2

N1/(2β)

)−2{( x1

N1/(2β)

)−2
+
( x2

N1/(2β)

)−2

+
( x1

N1/(2β)

)−1( x2

N1/(2β)

)−1}
= CλN,n(x1 + x2)

−2{x−2
1 + x−2

2 + (x1x2)
−1},

where λN,n → 0, implying the first relation in (3.52). To prove the second
relation in (3.52) we use the martingale CLT in Hall and Heyde [11]. (The same
approach is used to prove CLT for quadratic forms in [2].) Towards this aim,
write z+N,n(x1, x2) as a sum of zero-mean square-integrable martingale difference
array

z+N,n(x1, x2) =

n∑
k=1

Zk,

Zk := ε1(k)

k−1∑
s=1

f(k, s) ε2(s) + ε2(k)

k−1∑
s=1

f(s, k) ε1(s) + ε1(k)ε2(k)f(k, k)

w.r.t. the filtration Fk generated by {εi(s), 1 ≤ s ≤ k, i = 1, 2}, 0 ≤ k ≤ n,
where

f(s1, s2) :=
1

N3/(4β)n1/2

n∑
t=1

2∏
i=1

(
1− xi

N1/(2β)

)t−si
1(t ≥ si), 1 ≤ s1, s2 ≤ n.

Accordingly, the second convergence in (3.52) follows from

n∑
k=1

E[Z2
k |Fk−1] →p

1

2x1x2(x1 + x2)
and

n∑
k=1

E[Z2
k1(|Zk| > ε)] → 0, (3.53)

for any ε > 0. Note the conditional variance v2k := E[Z2
k |Fk−1] is equal to

v2k =
( k−1∑
s=1

f(k, s)ε2(s)
)2

+
( k−1∑
s=1

f(s, k)ε1(s)
)2

+ f2(k, k),

where
n∑

k=1

EZ2
k =

n∑
k=1

Ev2k =

n∑
s1,s2=1

f2(s1, s2) = E(z+N,n(x1, x2))
2 → 1

2x1x2(x1 + x2)

(3.54)
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is a direct consequence of the asymptotics in (2.28), where ai = 1−x1/N
1/(2β),

aj = 1 − x2/N
1/(2β). Therefore the first relation in (3.53) follows from (3.54)

and

Rn :=

n∑
k=1

(v2k − Ev2k) = op(1). (3.55)

To show (3.55) we split Rn = R′
n + R′′

n into the sum of ‘diagonal’ and ‘off-
diagonal’ parts, viz.,

R′
n :=

2∑
i=1

∑
1≤s<n

ci(s)(ε
2
i (s)− 1),

R′′
n :=

2∑
i=1

∑
1≤s1,s2<n,s1 �=s2

ci(s1, s2)εi(s1)εi(s2),

where

c1(s) :=
∑

s<k≤n

f2(s, k), c2(s) :=
∑

s<k≤n

f2(k, s),

c1(s1, s2) :=
∑

s1∨s2<k≤n

f(s1, k)f(s2, k),

c2(s1, s2) :=
∑

s1∨s2<k≤n

f(k, s1)f(k, s2).

Using the elementary bound for 1 ≤ s1, s2 ≤ n:

n∑
t=1

2∏
i=1

at−si
i 1(t ≥ si) ≤ (as1−s2

2 1(1 ≤ s2 ≤ s1)+as2−s1
1 1(1 ≤ s1 ≤ s2))S(a1, a2),

where S(a1, a2) :=
∑∞

t=0(a1a2)
t = (1− a1a2)

−1 ≤ 2(2− a1 − a2)
−1, we obtain

|ci(s)| ≤ Cn−1x−1
i (x1+x2)

−2,

n∑
s1,s2=1

c2i (s1, s2) ≤ CλN,nx
−3
i (x1+x2)

−4 (3.56)

for i = 1, 2. By (3.56), for 1 < p < 2 and x1, x2 > 0 fixed

E|R′
n|p ≤ C

2∑
i=1

n−1∑
s=1

|ci(s)|p ≤ Cn−(p−1) = o(1), (3.57)

E|R′′
n|2 ≤

2∑
i=1

n∑
s1,s2=1

c2i (s1, s2) ≤ CλN,n = o(1), (3.58)

proving (3.55) and the first relation in (3.53). The proof of the second relation
in (3.53) is similar since it reduces to Tn :=

∑n
k=1 E[|Zk|2p] = o(1) for the same

1 < p ≤ 2, where

E|Zk|2p ≤ C
(
E|

k−1∑
s=1

f(k, s) ε2(s)|2p + E|
k−1∑
s=1

f(s, k) ε1(s)|2p + |f(k, k)|2p
)
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≤ C
(
(

k−1∑
s=1

f2(k, s))p + (

k−1∑
s=1

f2(s, k))p + |f(k, k)|2p
)

by Rosenthal’s inequality, see e.g. ([7], Lemma 2.5.2), and the sum Tn =
O(n−(p−1)) = o(1) similarly to (3.57). This proves (3.53), (3.52), and the point-
wise convergence in (3.51).

Now we return to the proof of (3.29), whose both sides are written as re-
spective integrals (3.31) and (3.47). Due to the convergence of the integrands
(see (3.51)), it suffices to justify the passage to the limit using a dominated
convergence theorem argument. The dominating function independent of N,n
is obtained from (3.31) and EzN,n(τ ;x1, x2) = 0 and from (3.40), (3.41), (2.9)
similarly as in the case λ∞ ∈ (0,∞) above. This proves (3.29).

Proofs of (3.30) and (3.22) are completely analogous to those in the case λ∞ ∈
(0,∞) except that we now choose q = �logN
 and replace n in (3.43) and
elsewhere in the proof of (3.30) and (3.22), case λ∞ ∈ (0,∞), by N1/(2β). This
ends the proof of Theorem 3.1, case (ii).

3.3. Proof of Theorem 3.1 (i): case λ∞ = ∞, or n = o(N1/(2β))

Case 1 < β < 3/2. Proof of (3.29). In this case, Φ(θ) := −σ2
∞τ2(2−β)θ2/2,

BN,n = n and AN,n = n2λβ
N,n = n2−βN1/2. Rewrite the l.h.s. of (3.29) as

N [Eeiθy1(τ) − 1] =

∫
[0,n)2

EΛN,n(θ; τ ;x1, x2)(x1x2)
β−1dx1dx2, (3.59)

where

ΛN,n(θ; τ ;x1, x2) := λ2β
N,n

[
eiθλ

−β
N,nz̃N,n(τ ;x1,x2) − 1− iθλ−β

N,nz̃N,n(τ ;x1, x2)
]

and where z̃N,n(τ ;x1, x2) is defined as in (3.32) with AN,n replaced by ÃN,n :=

n2 = AN,n/λ
β
N,n. As shown in the proof of Case (iii) (the ‘intermediate limit’),

for any x1, x2 > 0

z̃N,n(τ ;x1, x2) →d z(τ ;x1, x2) and Ez̃2N,n(τ ;x1, x2) → Ez2(τ ;x1, x2), (3.60)

see (3.35), where z(τ ;x1, x2) is defined in (2.12) and the last expectation in
(3.60) is given in (A.2). Then using Skorohod’s representation we extend (3.60)
to

z̃N,n(τ ;x1, x2) → z(τ ;x1, x2) a.s.

implying also

ΛN,n(θ; τ ;x1, x2) → −(θ2/2)z2(τ ;x1, x2) a.s.

Since |ΛN,n(θ; τ ;x1, x2)| ≤ Cz̃2N,n(τ ;x1, x2) and (3.60) holds, by Pratt’s lemma
we obtain

EΛN,n(θ; τ ;x1, x2) → −(θ2/2)Ez2(τ ;x1, x2), ∀ (x1, x2) ∈ R
2
+. (3.61)
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Relation (3.29) follows from (3.59), (3.61) and the dominated convergence the-
orem, using the dominating bound

|EΛN,n(θ; τ ;x1, x2)| ≤ CEz̃2N,n(τ ;x1, x2) ≤
C

x1x2
min

{
1,

1

x1 + x2

}
, (3.62)

see (3.41), and integrability of the dominating function, see (2.10).

Proof of (3.30) is similar to that in case (iii) 0 < λ∞ < ∞ above with q =
�logn
. It suffices to check the bound (3.43) for Tij(θ) = T ′

ij(θ)+T ′′
ij(θ) given in

(3.42). By the same argument as in (3.44), we obtain |T ′
ij(θ)| ≤

CNE[y2i (τ)1(ai < aj+1)]. The bound on Ez̃2N,n(τ ;x1, x2) in (3.62) further im-
plies

|T ′
ij(θ)| ≤

C

nβ

∫
(0,n]3

1

x1x2
min

{
1,

1

x1 + x2

}
(x1x2x3)

β−11(x3 < x1)dx1dx2dx3

≤ C

nβ
(T ′

n + T ′′
n ),

where

T ′
n :=

∫ n

0

min
{
1,

1

x1

}
x2β−2
1 dx1

∫ x1

0

xβ−2
2 dx2

= C
(∫ 1

0

x3β−3
1 dx1 +

∫ n

1

x3β−4
1 dx1

)
≤ Cn3β−3

and

T ′′
n :=

∫ n

0

min
{
1,

1

x2

}
xβ−2
2 dx2

∫ x2

0

x2β−2
1 dx1

= C
(∫ 1

0

x3β−3
2 dx2 +

∫ n

1

x3β−4
2 dx2

)
≤ Cn3β−3.

Then |T ′′
ij(θ)| ≤ CNE[y2j (τ)1(ai > aj+1)] can be handled in the same way.

Whence, the bound in (3.43) follows with any 0 < δ < 3− 2β, for 1 < β < 3/2.
This proves (3.30). Proof of (3.22) using Ñq/N → 0 and Lq = N − qÑq < q =
o(N) is completely analogous to that in case (iii) 0 < λ∞ < ∞. This completes
the proof of Theorem 3.1, case (i) for 1 < β < 3/2.

Case 0 < β < 1. Proof of (3.29). In the rest of this proof, write λ ≡ λN,n =
N1/(2β)/n → ∞ for brevity. Also denote λ′ := λ(log λ)1/(2β), log λ′/ log λ → 1.
Let BN,n := λ′n, then

zN,n(τ ;x1, x2) :=
1

λ′n2

∑
s1,s2∈Z

ε1(s1)ε2(s2)

�nτ�∑
t=1

2∏
i=1

(
1− xi

λ′n

)t−si
1(t ≥ si).

(3.63)
Split the r.h.s. of (3.29) as follows:
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NE[eiθy1(τ) − 1]

=
1

log λ

∫
(0,λ′n]2

(
1(1 < x1 + x2 < λ) + 1(x1 + x2 > λ) + 1(x1 + x2 < 1)

)
× E[eiθzN,n(τ ;x1,x2) − 1](x1x2)

β−1dx1dx2 =:

3∑
i=1

Li.

Here, L1 is the main term and Li, i = 2, 3 are remainders. Indeed, |L3| =
O(1/ log λ) = o(1). To estimate L2 we need the bound

Ez2N,n(τ ;x1, x2) ≤
C

x1x2
min

{
1,

λ′

x1 + x2

}
, (3.64)

which follows from (2.30) similarly to (3.41). Using (3.64) we obtain

|L2| ≤
C

log λ

∫
x1+x2>λ

min
{
1,

λ′

x1x2(x1 + x2)

}
(x1x2)

β−1dx1dx2

=
C

log λ
(J ′

λ + J ′′
λ ), (3.65)

where, by change of variables: x1 + x2 = y, x1 = yz,

J ′
λ :=

∫
x1+x2>λ

1(x1x2(x1 + x2) < λ′)(x1x2)
β−1dx1dx2

=

∫ ∞

λ

∫ 1

0

1(y3z(1− z) < λ′)y2β−1(z(1− z))β−1dzdy

≤ C

∫ ∞

λ

y2β−1dy

∫ 1/2

0

zβ−11(y3z < 2λ′)dz

≤ C(λ′)β
∫ ∞

λ

y−β−1dy = C(log λ)1/2

since 0 < β < 1. Similarly,

J ′′
λ := λ′

∫
x1+x2>λ

1(x1x2(x1 + x2) > λ′)(x1 + x2)
−1(x1x2)

β−2dx1dx2

≤ Cλ′
∫ ∞

λ

y2β−4dy

∫ 1/2

0

zβ−21(y3z > λ′)dz ≤ C(log λ)1/2.

This proves |L2| = O(1/ log λ) = o(1).
Consider the main term L1. Although EeiθzN,n(τ ;x1,x2) and hence the inte-

grand in L1 point-wise converge for any (x1, x2) ∈ R
2
+, see below, this fact is

not very useful since the contribution to the limit of L1 from bounded xi’s is
negligible due to the presence of the factor 1/ log λ → 0 in front of this integral.
It turns out that the main (non-negligible) contribution to this integral comes
from unbounded x1, x2 with x1/x2 + x2/x1 → ∞ and x1x2 → z ∈ R+. To see
this, by change of variables y = x1+x2, x1 = yw and then w = z/y2 we rewrite

L1 =
1

log λ

∫ λ

1

VN,n(θ; y)
dy

y
, (3.66)
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where

VN,n(θ; y) := 2

∫ y2/2

0

E
[
exp

{
iθzN,n

(
τ ;

z

y
, y
(
1− z

y2
))}

− 1
]
zβ−1

(
1− z

y2
)β−1

dz.

(3.67)
In view of Li = o(1), i = 2, 3 relation (3.29) follows from representation (3.66)
and the existence of the limit:

lim
y→∞,y=O(λ)

VN,n(θ; y) = V (θ) := −k∞|θ|2θτ2β , (3.68)

where the constant k∞ > 0 is defined below in (3.71). More precisely, (3.68) says
that for any ε > 0 there exists K > 0 such that for any N,n, y ≥ K satisfying
y ≤ λ, λ ≥ K

|VN,n(θ; y)− V (θ)| < ε. (3.69)

To show that (3.69) implies L1 → V (θ) it suffices to split L1−V (θ) = (log λ)−1∫ λ

K
(VN,n(θ; y) − V (θ))dyy + (log λ)−1

∫K

1
(VN,n(θ; y) − V (θ))dyy and use (3.69)

together with the fact that |VN,n(θ; y)| ≤ C is bounded uniformly in N,n, y.

To prove (3.69), rewrite V (θ) of (3.68) as the integral

V (θ) = 2

∫ ∞

0

zβ−1E(eiθτZ1Z2/(2
√
z) − 1)dz

= −2E

∫ ∞

0

zβ−1(1− e−θ2τ2Z2
1/(8z))dz = −k∞|θ|2βτ2β (3.70)

with Z1, Z2 ∼ N(0, 1) independent normals and

k∞ = 2E

∫ ∞

0

zβ−1(1− e−Z2
1/(8z))dz = 21−3βE|Z1|2β

∫ ∞

0

zβ−1(1− e−1/z)dz

= 21−2βΓ(β + 1/2)Γ(1− β)/(
√
πβ). (3.71)

Let

ΛN,n(z; y) := E
[
exp

{
iθzN,n

(
τ ;

z

y
, y
(
1− z

y2
))}

− 1
]
,

Λ(z) := E[eiθτZ1Z2/(2
√
z) − 1],

denote the corresponding expectations in (3.67), (3.70). Clearly, (3.69) follows
from

lim
y→∞,y=O(λ)

ΛN,n(z; y) = Λ(z), ∀ z > 0, (3.72)

and

|ΛN,n(z; y)| ≤ C(1 ∧ (1/z)), ∀ 0 < y < λ, 0 < z < y2/2. (3.73)
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The dominating bound in (3.73) is a consequence of (3.64). To show (3.72) use
Proposition 2.1 by writing zN,n(τ ; z/y, y

′), y′ := y(1 − z/y2) in (3.67) as the
quadratic form: zN,n(τ ; z/y, y

′) = Q12(hα1,α2(·; τ ; z)) with

hα1,α2(s1, s2; τ ; z) :=

√
y

zy′
1√
α1α2

1

n

�nτ�∑
t=1

2∏
i=1

(
1− 1

αi

)t−si
1(t ≥ si), s1, s2 ∈ Z,

(3.74)

α1 := λ′ny/z, α2 := λ′n/y′.

If

n, α1, α2, y, y
′ → ∞ so that y/y′ → 1 and n = o(αi), i = 1, 2, (3.75)

then

h̃(α1,α2)
α1,α2

(s1, s2; τ ; z) :=
√
α1α2hα1,α2(�α1s1
, �α2s2
; τ ; z)

=

√
y

zy′
1

n

�nτ�∑
t=1

2∏
i=1

(
1− 1

αi

)t−�αisi�
1(t ≥ �αisi
)

→ τ√
z

2∏
i=1

esi1(si < 0) =: h(s1, s2; τ ; z) (3.76)

point-wise for any τ > 0, z > 0, si ∈ R, si �= 0, i = 1, 2 fixed. Moreover, under

the same conditions (3.75), ‖h̃(α1,α2)
α1,α2 (·; τ ; z)− h(·; τ ; z)‖ → 0, implying the con-

vergence Q12(hα1,α2(·; τ ; z)) →d I12(h(·; τ ; z)) =d τZ1Z2/(2
√
z), Zi ∼ N(0, 1),

i = 1, 2 by Proposition 2.1. Conditions on n, y, y′, λ′ in (3.75) are obviously
satisfied due to y, y′ = O(λ) = o(λ′). This proves (3.72) and (3.68), thereby
completing the proof of of (3.29).

Proof of (3.30). For Tij(θ) defined by (3.42) let us prove (3.43). Denote N ′
λ :=

(N log λ)1/(2β). Similarly to (3.44) we have that

|Tij(θ)| ≤
C

N1/2(log λ)3/2

∫
(0,N ′

λ]
3

min{1,Ez2N,n(τ ;x1, x2)}1(x3 < x1)

× (x1x2x3)
β−1dx1dx2dx3 (3.77)

with zN,n(τ ;x1, x2) defined by (3.63). Whence using (3.64) similarly as in the
proof of case (i) we obtain

|Tij(θ)| ≤
C

N1/2(log λ)3/2

∫
(0,N ′

λ]
2

min
{
1,

1

x1x2
min

{
1,

λ′

x1 + x2

}}
× x2β−1

1 xβ−1
2 dx1dx2 =

C

N1/2(log λ)3/2

3∑
i=1

Tλ,i,
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where

Tλ,1 :=

∫
(0,N ′

λ]
2

1(x1 + x2 < λ′)min
{
1,

1

x1x2

}
x2β−1
1 xβ−1

2 dx1dx2,

Tλ,2 :=

∫
(0,N ′

λ]
2

1(x1x2(x1 + x2) < λ′, x1 + x2 > λ′)x2β−1
1 xβ−1

2 dx1dx2,

Tλ,3 :=

∫
(0,N ′

λ]
2

1(x1x2(x1 + x2) > λ′, x1 + x2 > λ′)
λ′

x1 + x2
x2β−2
1 xβ−2

2 dx1dx2.

By changing variables x1, x2 as in (3.66)–(3.67) we get Tλ,1 ≤ C
∫ λ′

0
yβ−1dy ≤

C(λ′)β . Also, similarly to the estimation of J ′
λ, J

′′
λ , following (3.65) we obtain

Tλ,2+Tλ,3 ≤ C(λ′)β
∫ 2N ′

λ

λ′ y−1dy ≤ C(λ′)β log(N ′
λ/λ

′). Hence, we conclude that

|Tij(θ)| ≤
C(λ′)β log(N ′

λ/λ
′)

N1/2(log λ)3/2
≤ C logn

nβ log λ
,

proving (3.43) with any 0 < δ < β. This proves (3.30). We omit the proof
of (3.22) which is completely similar to that in case (iii) and elsewhere. This
completes the proof of Theorem 3.1 for (t, s) = (0, 1).

Proof of Theorem 3.1 in the general case (t, s) ∈ Z
2, s ≥ 1. Similarly to (3.17)

we decompose St,s
N,n(τ) in (3.1) as

St,s
N,n(τ) = St,s

N,n;q(τ) + St,s;†
N,n;q(τ) + St,s;‡

N,n;q(τ), (3.78)

where the main term

St,s
N,n;q(τ) :=

Ñq∑
k=1

Y t,s
k,n;q(τ), Y t,s

k,n;q(τ) :=
∑

(k−1)q<i≤kq−s

�nτ�∑
u=1

Xi(u)Xi+s(u+ t)

(3.79)
is a sum of independent Ñq = �N/q
 blocks of size q − s = qN,n − s → ∞, and

St,s;†
N,n;q(τ) :=

Ñq∑
k=1

∑
kq−s<i≤kq

�nτ�∑
u=1

Xi(u)Xi+s(u+ t),

St,s;‡
N,n;q(τ) :=

∑
qÑq<i≤N

�nτ�∑
u=1

Xi(u)Xi+s(u+ t)

are remainder terms. The proof of (3.29)–(3.30) for A−1
N,nY

t,s
1,n;q(τ)=

∑q−s
i=1 y

t,s
i (τ),

yt,si (τ) := A−1
N,n

∑�nτ�
u=1 Xi(u)Xi+s(u + t) is completely analogous since the dis-

tribution of yt,si (τ) does not depend on t and s �= 0.
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3.4. Proof of Theorem 3.2

The proof uses the following result of [23]:

Lemma 3.1 ([23], Lemma 7.1). Let {ξni, 1 ≤ i ≤ Nn}, n ≥ 1, be a triangular
array of m-dependent r.v.s with zero mean and finite variance. Assume that:
(L1) ξni, 1 ≤ i ≤ Nn are identically distributed for any n ≥ 1, (L2) ξn1 →d ξ,

Eξ2n1 → Eξ2 < ∞ for some r.v. ξ and (L3) var(
∑Nn

i=1 ξni) ∼ σ2Nn, σ
2 > 0.

Then N
−1/2
n

∑Nn

i=1 ξni →d N(0, σ2).

For notational simplicity, we consider only one-dimensional convergence
at τ > 0. Let (Nn)−1/2St,s

N,n(τ) = N−1/2
∑N

i=1 ξni, where ξni := n−1/2 ×∑�nτ�
u=1 Xi(u)Xi+s(u + t), 1 ≤ i ≤ N are |s|-dependent, identically distributed

r.v.s with zero mean and finite variance. Since ξni, 1 ≤ i ≤ N are uncorrelated, it

follows that E(
∑N

i=1ξni)
2=NEξ2n1, where ξn1 =d ξn :=n−1/2

∑�nτ�
u=1 X1(u)X2(u).

Proposition 2.4 implies E[ξ2n|a1, a2] ∼ τA12, and so Eξ2n ∼ τσ2, where σ2 :=
EA12 < ∞. It remains to show that ξn →d

√
A12B(τ), where A12 is indepen-

dent of B(τ). This follows from the martingale CLT similarly to (3.50). By the
lemma above, we conclude that (Nn)−1/2St,s

Nn(τ) →d σB(τ). Theorem 3.2 is
proved.

4. Asymptotic distribution of temporal (iso-sectional) sample
covariances

The limit distribution of iso-sectional sample covariances γ̂N,n(t, 0) in (1.5) and

the corresponding partial sums process St,0
N,n(τ) of (3.1) is obtained similarly

as in the cross-sectional case, with certain differences which are discussed be-
low. Since the conditional expectation E[St,0

N,n(τ)|a1, · · · , aN ] =: T t,0
N,n(τ) �= 0, a

natural decomposition is

St,0
N,n(τ) = S̃t,0

N,n(τ) + T t,0
N,n(τ), (4.1)

where S̃t,0
N,n(τ) := St,0

N,n(τ) − T t,0
N,n(τ) is the conditionally centered term with

E[S̃t,0
N,n(τ)|a1, · · · , aN ] = 0, and

T t,0
N,n(τ) := �nτ


N∑
i=1

ati/(1− a2i ), t ≥ 0, (4.2)

is proportional to a sum of i.i.d. r.v.s ati/(1 − a2i ), 1 ≤ i ≤ N with regularly
decaying tail distribution function

P
(
at/(1−a2) > x) ∼ P(a > 1−1/(2x)) ∼ cax

−β , x → ∞, ca := ψ(1)/(2ββ),

see condition (1.2). Accordingly, the limit distribution of appropriately nor-
malized and centered term T t,0

N,n(τ) does not depend on t and can be found
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from the classical CLT and turns out to be a (β ∧ 2)-stable line, under nor-

malization nN1/(β∧2) (β �= 2). The other term, S̃t,0
N,n(τ), in (4.1), is a sum of

mutually independent partial sums processes Y t,0
i,n (τ) :=

∑�nτ�
u=1 (Xi(u)Xi(u +

t)− E[Xi(u)Xi(u+ t)|ai]), 1 ≤ i ≤ N with conditional variance

Var[Y t,0
i,n (1)|ai] ∼ nAt,0

ii , n → ∞, where

At,0
ii :=

1 + a2i
1− a2i

( 1 + a
2|t|
i

(1− a2i )
2
+

a
2|t|
i (2|t|+ cum4)

1− a4i

)
.

The proof of the last fact follows similarly to that of (2.29) and is omitted. As

ai ↑ 1, At,0
ii ∼ 1/(2(1− ai)

3) and the limit distribution of S̃t,0
N,n(τ) can be shown

to exhibit a trichotomy on the interval 0 < β < 3 depending on the limit λ∗
∞

in (4.3). It turns out that for β > 2 the asymptotically Gaussian term T t,0
N,n(τ)

dominates S̃t,0
N,n(τ) in all cases of λ∗

∞, while in the interval 0 < β < 2 T t,0
N,n(τ)

and S̃t,0
N,n(τ) have the same convergence rate. Somewhat surprisingly, the limit

distribution of St,0
N,n(τ) is a β-stable line in both cases λ∗

∞ = ∞ and λ∗
∞ = 0

with different scale parameters of the random slope coefficient of this line.
Rigorous description of the above limit results is given in the following The-

orems 4.1 and 4.2. The proofs of these theorems are similar and actually sim-
pler than the corresponding Theorems 3.1 and 3.2 dealing with non-horizontal
sample covariances, due to the fact that St,0

N,n(τ) is a sum of row-independent

summands contrary to St,s
N,n(τ), s �= 0. Because of this, we omit some details of

the proof of Theorems 4.1 and 4.2. We also omit the more delicate cases β = 1
and β = 2 where the limit results may require a change of normalization or
additional centering.

Theorem 4.1. Let the mixing distribution satisfy condition (1.2) with 0 < β <
2, β �= 1. Let N,n → ∞ so that

λ∗
N,n :=

N1/β

n
→ λ∗

∞ ∈ [0,∞]. (4.3)

In addition, assume Eε4(0) < ∞. Then the following statements (i)–(iii) hold
for St,0

N,n(τ), t ∈ Z in (3.1) depending on λ∗
∞ in (4.3).

(i) Let λ∗
∞ = ∞. Then

n−1N−1/β
(
St,0
N,n(τ)− ESt,0

N,n(τ)1(1 < β < 2)
)
→fdd τV ∗

β , (4.4)

where V ∗
β is a completely asymmetric β-stable r.v. with ch.f. in (4.7) below.

(ii) Let λ∗
∞ = 0. Then

n−1N−1/β
(
St,0
N,n(τ)− ESt,0

N,n(τ)1(1 < β < 2)
)
→fdd τV +

β , (4.5)

where V +
β is a completely asymmetric β-stable r.v. with ch.f. in (4.8) below.
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(iii) Let 0 < λ∗
∞ < ∞. Then

n−1N−1/β
(
St,0
N,n(τ)− ESt,0

N,n(τ)1(1 < β < 2)
)
→fdd λ∗

∞Z∗
β(τ/λ

∗
∞), (4.6)

where Z∗
β is the ‘diagonal intermediate’ process in (2.25).

Remark 4.1. The r.v.s V ∗
β and V +

β in (4.4) and (4.5) have respective stochastic
integral representations

V ∗
β =

∫
R+×C(R)

{∫ 0

−∞
exsdB(s)

}2
d(M∗

β − EM∗
β1(1 < β < 2)),

V +
β =

∫
R+×C(R)

(2x)−1d(M∗
β − EM∗

β1(1 < β < 2))

w.r.t. Poisson random measure M∗
β in (2.22). Note

∫ 0

−∞ exsdB(s) =d Z/
√
2x,

Z ∼ N(0, 1). The fact that both V ∗
β and V +

β have completely asymmetric β-stable
distribution follows from their ch.f.s:

EeiθV
∗
β = exp

{
ψ(1)

∫ ∞

0

E
(
eiθZ

2/(2x) − 1− i(θZ2/(2x))1(1 < β < 2)
)
xβ−1dx

}
= exp

{
− c∗β |θ|β(1− i sign(θ) tan(πβ/2))

}
, (4.7)

EeiθV
+
β = exp

{
ψ(1)

∫ ∞

0

(
eiθ/(2x) − 1− i(θ/(2x))1(1 < β < 2)

)
xβ−1dx

}
= exp

{
− c+β |θ|β(1− i sign(θ) tan(πβ/2))

}
, θ ∈ R, (4.8)

where

c+β :=
ψ(1)Γ(2− β) cos(πβ/2)

2ββ(1− β)
, c∗β := c+β E|Z|2β (4.9)

with E|Z|2β = 2βΓ(β + 1/2)/
√
π �= 1 unless β = 1, implying that V ∗

β and V +
β

have different distributions.

Theorem 4.2. Let the mixing distribution satisfy condition (1.2) with β > 2.
In addition, assume Eε4(0) < ∞. Then for any t ∈ Z, as N,n → ∞ in arbitrary
way,

n−1N−1/2(St,0
N,n(τ)− ESt,0

N,n(τ)) →fdd τσ∗
tZ, (4.10)

where Z ∼ N(0, 1) and (σ∗
t )

2 := Var(a|t|/(1− a2)).

Remark 4.2. If β < 1, then γ(t, 0) is undefined for any t ∈ Z. In the sequel
we use the convention γ(t, 0)1(1 < β < 2) := 0 if β < 1, := γ(t, 0) if β > 1.

Corollary 4.1. (i) Let the conditions of Theorem 4.1 (i) be satisfied. Then for
any t ∈ Z

N1−1/β(γ̂N,n(t, 0)− γ(t, 0)1(1 < β < 2)) →d V ∗
β .
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(ii) Let the conditions of Theorem 4.1 (ii) be satisfied. Then for any t ∈ Z

N1−1/β(γ̂N,n(t, 0)− γ(t, 0)1(1 < β < 2)) →d V +
β .

(iii) Let the conditions of Theorem 4.1 (iii) be satisfied. Then for any t ∈ Z

N1−1/β(γ̂N,n(t, 0)− γ(t, 0)1(1 < β < 2)) →d λ∗
∞Z∗

β(1/λ
∗
∞).

(iv) Let the conditions of Theorem 4.2 be satisfied. Then for any t ∈ Z

N1/2(γ̂N,n(t, 0)− γ(t, 0)) →d σ∗
tZ, Z ∼ N(0, 1).

Proof of Theorem 4.1. Let t ≥ 0 and

yt,0(τ) :=
1

nN1/β

�nτ�∑
u=1

(X(u)X(u+ t)− EX(u)X(u+ t)1(1 < β < 2)). (4.11)

It suffices to prove that

Φt,0
N,n(θ) → Φ∗(θ) as N, n → ∞, λ∗

N,n → λ∗
∞, ∀ θ ∈ R, (4.12)

where, using Eyt,0(τ)1(1 < β < 2) = 0,

Φt,0
N,n(θ) := NE[eiθy

t,0(τ) − 1− iθyt,0(τ)1(1 < β < 2)], Φ∗(θ) := log EeiθS
∗
β(τ),
(4.13)

and S∗
β(τ) denotes the limit process in (4.4)–(4.6). Similarly to (3.31),

Φt,0
N,n(θ) = ψ(1)

∫
(0,1/N1/β ]

E[eiθz
t,0
N,n(τ ;x) − 1− iθzt,0N,n(τ ;x)1(1 < β < 2)]xβ−1dx,

(4.14)
where zt,0N,n(τ ;x) := yt,0(τ)|a=1−x/N1/β . Next we decompose yt,0(τ) = y∗(τ) +

y+(τ), where

y∗(τ) :=
1

nN1/β

�nτ�∑
u=1

(X(u)X(u+ t)− E[X(u)X(u+ t)|a]),

y+(τ) :=
�nτ

nN1/β

(E[X(0)X(t)|a]− E[X(0)X(t)1(1 < β < 2)])

=
�nτ

nN1/β

( at

1− a2
− E

[ at

1− a2
1(1 < β < 2)

])
.

Accordingly, we decompose zt,0N,n(τ ;x) = z∗N,n(τ ;x) + z+N,n(τ ;x), where

z∗N,n(τ ;x) (4.15)

:=
1

nN1/β

∑
s1,s2∈Z

ε(s1)ε(s2)

�nτ�∑
u=1

(
1− x

N1/β

)2u+t−s1−s2
1(u ≥ s1, u+ t ≥ s2),
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z+N,n(τ ;x) :=
�nτ

nN1/β

( (1− x
N1/β )

t

1− (1− x
N1/β )2

− E
[ at

1− a2
1(1 < β < 2)

])
,

where ε(s1)ε(s2) := ε(s1)ε(s2)− Eε(s1)ε(s2).

Proof of (4.12), case 0 < λ∗
∞ < ∞. We have

Φ∗(θ) = ψ(1)

∫ ∞

0

E[eiθλ
∗
∞z∗(τ/λ∗

∞;x)−1−iθλ∗
∞z∗(τ/λ∗

∞;x)1(1 < β < 2)]xβ−1dx,

(4.16)
where the last expectation is taken w.r.t. the Wiener measure PB . Similarly as
in the proof of (3.29) we prove the point-wise convergence of the integrands in
(4.14) and (4.16): for any x > 0

Λt,0
N,n(θ;x) := E[eiθz

t,0
N,n(τ ;x) − 1− iθzt,0N,n(τ ;x)1(1 < β < 2)] (4.17)

→ E[eiθλ
∗
∞z∗(τ/λ∗

∞;x) − 1− iθλ∗
∞z∗(τ/λ∗

∞;x)1(1 < β < 2)].

The proof of (4.17) using Proposition 2.1 is very similar to that of (3.35) and we
omit the details. Using (4.17) and the dominated convergence theorem we can
prove the convergence of integrals, or (4.12). The application of the dominated
convergence theorem is guaranteed by the dominating bound

|Λt,0
N,n(θ;x)| ≤ C(1 ∧ (1/x)){1(0 < β < 1) + (1/x)1(1 < β < 2)}, (4.18)

which is a consequence of |z+N,n(τ ;x)| ≤ C/x, E(z∗N,n(τ ;x))
2 ≤ Cx−2, see

(2.30). Particularly, for 0 < β < 1 we get |Λt,0
N,n(θ;x)| ≤ 2 and |Λt,0

N,n(θ;x)| ≤
E(|z∗N,n(τ ;x)| + |z+N,n(τ ;x)|) ≤ C((E|z∗N,n(τ ;x)|2)1/2 + (1/x)) ≤ C/x, hence
(4.18) follows. For 1 < β < 2 (4.18) follows similarly. This proves (4.12) for
0 < λ∗

∞ < ∞.

Proof of (4.12), case λ∗
∞ = 0. In this case

Φ∗(θ) = ψ(1)

∫
R+

[eiθ(τ/(2x)) − 1− iθ(τ/(2x))1(1 < β < 2)]xβ−1dx,

see (4.8). From (2.30) we have E(z∗N,n(τ ;x))
2 ≤ Cx−2 min{1, λ∗

N,n/x} = o(1)
and hence

Λt,0
N,n(θ;x) → eiθτ/(2x) − 1− iθ(τ/(2x))1(1 < β < 2)

for any x > 0 similarly as in (4.17). Finally, the use of the dominating bound in
(4.18), which is also valid in this case completes the proof of (4.12) for λ∗

∞ = 0.

Proof of (4.12), case λ∗
∞ = ∞. In this case

Φ∗(θ) = ψ(1)

∫
R+

E[eiθ(τZ
2/(2x)) − 1− iθ(τZ2/(2x))1(1 < β < 2)]xβ−1dx,

(4.19)
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see (4.7). Write z∗N,n(τ ;x) in (4.15) as quadratic form: z∗N,n(τ ;x) = Q11(h(τ ;

x; ·)) in (2.4) and apply Proposition 2.1 with α1 = α2 ≡ α := N1/β . Note

h̃(α,α)(τ ;x; s1, s2) = n−1
∑�nτ�

u=1 (1−x/N1/β)u−�N1/βs1�(1−x/N1/β)t+u−�N1/βs2�

1(u ≥ �N1/βs1
, u+t ≥ �N1/βs2
) → g(s1, s2) := τex(s1+s2)1(s1∨s2 ≤ 0) point-
wise a.e. in (s1, s2) ∈ R

2 and also in L2(R2). Then conclude

z∗N,n(τ ;x) →d I11(g) =d

∫
R2 g(s1, s2)dB(s1)dB(s2) =d τ{ (

∫ 0

−∞ esxdB(s))2 −
E(

∫ 0

−∞ esxdB(s))2} =d τ(Z2 − 1)/(2x) for any x > 0, where Z ∼ N(0, 1). On

the other hand, z+N,n(τ ;x) → τ/(2x) and therefore

Λt,0
N,n(θ;x) → E[eiθτZ

2/(2x) − 1− iθ(τZ2/(2x))1(1 < β < 2)]

for any x > 0, proving the point-wise convergence of the integrands in (4.14) and
(4.19). The remaining details are similar as in the previous cases and omitted.
This ends the proof of Theorem 4.1.

Proof of Theorem 4.2. Consider the decomposition in (4.1), where n−1T t,0
N,n(τ)=

(�nτ
/n)
∑N

i=1 a
t
i/(1 − a2i ) is a sum of i.i.d. r.v.s with finite variance (σ∗

t )
2 =

Var(a|t|/(1− a2)) and therefore

n−1N−1/2(T t,0
N,n(τ)− ET t,0

N,n(τ)) →fdd τσ∗
tZ

holds by the classical CLT asN,n → ∞ in arbitrary way and where Z ∼ N(0, 1).

Hence, the statement of the theorem follows from S̃t,0
N,n(1) = op(nN

1/2). By

Proposition 2.4 (2.30) we have that Var(S̃t,0
N,n(1)) = NEVar[

∑n
u=1 X(u)X(u +

t)|a] ≤ CNn2E[(1− a)−2 min{1, (n(1− a))−1}], where the last expectation van-
ishes as n → ∞, due to E(1− a)−2 < ∞. Theorem 4.2 is proved.

Fig 1. Density of the limiting random variables in cases [left] (i), (ii), [right] (iv) of Corollary
4.1 for t = 0 and their kernel density estimates constructed from a random sample of size
1000 from γ̂N,n(0, 0) in (1.6) with N = 5000, a2 ∼ Beta(2, β), ε(0) ∼ N(0, 1).
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To illustrate our results, we use a2 ∼ Beta(α, β), α, β > 0, as in [10]. Then
condition (1.2) holds with the same β and we can explicitly compute parameters
of the limit distributions in cases (i), (ii), (iv) of Corollary 4.1. Figure 1 shows
the density of the corresponding limiting random variables for α = 2, β = 1.5,
2.5 and t = 0. We also plot the kernel density estimates constructed using
1000 RCAR(1) panels with N = 5000, n = 100, 5000, ε(0) ∼ N(0, 1). More
specifically, we use a random sample of N1/β(γ̂N,n (0, 0) − γ(0, 0)) if β = 1.5
and N1/2(γ̂N,n(0, 0) − γ(0, 0)) if β = 2.5. On the l.h.s. we can see that the
empirical distribution of γ̂N,n (0, 0) is different for n = 100, 5000, whereas on
the r.h.s. both kernel density estimates are quite close to the limiting normal
density.

In the finite variance case β > 1, Corollary 4.1 can be used for statistical
inference about the covariance γ(t, 0) = γ(t) in (1.3), provided parameters of
the limit distributions are consistently estimated. Denote by

F ∗
β,ψ(x) := P(V ∗

β ≤ x), F+
β,ψ(x) := P(V +

β ≤ x), x ∈ R, (4.20)

the c.d.f.s of the above stable r.v.s, which are uniquely determined by β, ψ(1) ≡
ψ in (1.2), see (4.7)–(4.9). The same is true for the (marginal) distribution Z∗

β(τ)
of the ‘diagonal intermediate’ process in (2.25). In Corollary 4.2 we suppose the
existence of estimators

β̂N,n = β + op(1/logN), ψ̂N,n = ψ + op(1), (4.21)

σ̂2
N,n,t = (σ∗

t )
2 + op(1), (4.22)

which is discussed in Remark 4.4 below. Corollary 4.2 omits the ‘intermedi-
ate’ case λ∗

∞ ∈ (0,∞), partly because in this case the limit distribution is less
tractable and depends on λ∗

∞ which is difficult to assess in a finite sample.

Corollary 4.2. (i) Let the conditions of Theorem 4.1 (i) be satisfied, 1 < β < 2,

and β̂N,n, ψ̂N,n be estimators as in (4.21). Then for any t ∈ Z

sup
x∈R

∣∣P(N1−1/β̂N,n(γ̂N,n(t, 0)− γ(t)) ≤ x
)
− F ∗

β̂N,n,ψ̂N,n
(x)

∣∣ = op(1). (4.23)

(ii) Let the conditions of Theorem 4.1 (ii) be satisfied, 1 < β < 2, and β̂N,n,

ψ̂N,n be estimators as in (4.21). Then for any t ∈ Z

sup
x∈R

∣∣P(N1−1/β̂N,n(γ̂N,n(t, 0)− γ(t)) ≤ x
)
− F+

β̂N,n,ψ̂N,n
(x)

∣∣ = op(1). (4.24)

(iii) Let the conditions of Theorem 4.2 be satisfied, β > 2, and σ̂2
N,n,t be an

estimator as in (4.22). Then for any t ∈ Z

sup
x∈R

∣∣P((N/σ̂2
N,n,t)

1/2(γ̂N,n(t, 0)− γ(t)) ≤ x
)
− P(Z ≤ x)

∣∣ = op(1), (4.25)

where Z ∼ N(0, 1).
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Proof. Consider (4.23). WriteN1−1/β̂N,n(γ̂N,n(t, 0)−γ(t)) = N1−1/β(γ̂N,n(t, 0)−
γ(t))+ξN,n, where ξN,n := (N (1/β)−(1/β̂N,n)−1)N1−1/β(γ̂N,n(t, 0)−γ(t)) = op(1)

due to (4.21) and Corollary 4.1 (i). Therefore, supx∈R
|P(N1−1/β̂N,n(γ̂N,n(t, 0)−

γ(t)) ≤ x) − F ∗
β,ψ(x)| → 0. Relation supx∈R

|F ∗
β,ψ(x) − F ∗

β̂N,n,ψ̂N,n
(x)| = op(1)

follows from (4.21) and continuity of the c.d.f. F ∗
β,ψ in β, ψ. This proves (4.23).

The proof of (4.24), (4.25) is analogous.

Remark 4.3. Using Corollary 4.2 we can construct asymptotic confidence in-
tervals for γ(t), as follows. For α ∈ (0, 1) denote by qβ,ψ(α) the α-quantile
of the c.d.f. F ∗

β,ψ in (4.20). Then, since α = F ∗
β̂N,n,ψ̂N,n

(qβ̂N,n,ψ̂N,n
(α)) a.s.,

P(N1−1/β̂N,n(γ̂N,n(t, 0) − γ(t)) ≤ qβ̂N,n,ψ̂N,n
(α)) − α = op(1) follows from

(4.23); moreover since the above quantity is non-random, we get that

|P(N1−1/β̂N,n(γ̂N,n(t, 0)− γ(t)) ≤ qβ̂N,n,ψ̂N,n
(α))− α| = o(1), implying that

[
γ̂N,n(t, 0)−

qβ̂N,n,ψ̂N,n
(1− α/2)

N1−1/β̂N,n

, γ̂N,n(t, 0)−
qβ̂N,n,ψ̂N,n

(α/2)

N1−1/β̂N,n

]
is the asymptotic confidence interval for γ(t), for any confidence level α ∈ (0, 1).
Analogous confidence intervals for γ(t) can be defined in the case (4.24); in the
case (4.25) they follow in a standard way.

Remark 4.4. Estimation of the tail parameter β in the RCAR(1) panel model

was studied in [16]. Particularly, [16] developed a modified version β̂N,n of the
Goldie–Smith estimator in [8] and proved its asymptotic normality, under addi-
tional (rather stringent) conditions on the mutual increase rate of N and n. A

similar estimator ψ̂N,n can be defined following [8]. We expect that these esti-
mators satisfy the consistency as in (4.21) under much weaker assumptions on
N,n. Finally, for t ≥ 0 the estimator σ̂2

N,n,t in (4.22) can be defined (see the
proof in Appendix A) as

σ̂2
N,n,t :=

1

N

N∑
i=1

( 1

n

n−t∑
k=1

Xi(k)Xi(k + t)
)2

−
( 1

Nn

N∑
i=1

n−t∑
k=1

Xi(k)Xi(k + t)
)2

.

(4.26)

Remark 4.5. In general, in the RCAR(1) model the autoregressive coefficient
a can take a value from (−1, 1). In the latter case if the distribution of a is
sufficiently dense at −1, the (unconditional) autocovariance function of the
RCAR(1) process oscillates when decaying slowly, which is usually referred to
as seasonal long memory. The restriction a ∈ [0, 1) in the present paper (as well
as in [23, 16] and some other papers) is basically due to technical reasons. We
expect that, under assumption (1.2), most of our results hold in the general case
a ∈ (−1, 1) provided the concentration of the mixing distribution near −1 is not
too strong, e.g. if E(1 + a)−β′

< ∞ for some β′ > β.
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Appendix A

Proof of Proposition 2.2. (i) The existence of Zβ follows from

Jβ :=

∫
Lc

1

|z(τ ;x1, x2)|2dμβ < ∞ (A.1)

and μβ(L1) < ∞. We have μβ(L1) = ψ(1)2
∫
R

2
+
1(x1x2(x1 + x2) < 1)

(x1x2)
β−1dx1dx2 ≤ C

∫∞
0

xβ−1
1 dx1

∫ x1

0
1(x2 < 1/x2

1)x
β−1
2 dx2 = C(

∫ 1

0
xβ−1
1 dx1∫ x1

0
xβ−1
2 dx2+

∫∞
1

xβ−1
1 dx1

∫ 1/x2
1

0
xβ−1
2 dx2) ≤ C(

∫ 1

0
x2β−1
1 dx1+

∫∞
1

x−β−1
1 dx1) <

∞ since β > 0.
Consider (A.1). Then

Jβ = C

∫
R

2
+

1(x1x2(x1 + x2) > 1)E|z(τ ;x1, x2)|2(x1x2)
β−1dx1dx2,

where

E|z(τ ;x1, x2)|2 =

∫
(0,τ ]2

2∏
i=1

E[Yi(u1;xi)Yi(u2;xi)]du1du2

=
1

4x1x2

∫
(0,τ ]2

e−(x1+x2)|u1−u2|du1du2

≤ Cτ2

x1x2

(
1 ∧ 1

τ(x1 + x2)

)
. (A.2)

Hence,

Jβ ≤ C

∫
R

2
+

1(x1x2(x1 + x2) > 1)(x1 + x2)
−1(x1x2)

β−2dx1dx2

≤ C

∫
R

2
+

1(x2 > x1, x1x
2
2 > 1)xβ−2

1 xβ−3
2 dx1dx2

= C
(∫ 1

0

xβ−2
1 dx1

∫ ∞

x
−1/2
1

xβ−3
2 dx2 +

∫ ∞

1

xβ−2
1 dx1

∫ ∞

x1

xβ−3
2 dx2

)
< ∞

if 0 < β < 3/2. The remaining facts in (i) are easy and we omit the details.

(ii) Similarly as in ([20], proof of Proposition 3.1 (ii)) it suffices to show for any
0 < p < 2β that Jp,β(τ) < ∞, where

Jp,β(τ) :=

⎧⎪⎪⎨⎪⎪⎩
∫
R

2
+

E|z(τ ;x1, x2)|p(x1x2)
β−1dx1dx2, 0 < p ≤ 2,∫

R
2
+

E
[
|z(τ ;x1, x2)|p ∨ |z(τ ;x1, x2)|2

]
(x1x2)

β−1dx1dx2, p > 2.

(A.3)
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Let first 0 < p ≤ 2. Using E|z(τ ;x1, x2)|p ≤ (E|z(τ ;x1, x2)|2)p/2 and (A.2), we
obtain

Jp,β(τ) ≤ C

∫
R

2
+

(∫
(0,τ ]2

e−(x1+x2)|u1−u2|du1du2

)p/2

(x1x2)
β−1−p/2dx1dx2

=: Cτ2(p−β)Ip,β , (A.4)

where

Ip,β ≤
∫
R

2
+

(
1 ∧ 1

x1 + x2

)p/2
(x1x2)

β−1−p/2dx1dx2

≤ C

∫ ∞

0

∫ x1

0

(
1 ∧ 1

x1

)p/2
(x1x2)

β−1−p/2dx1dx2

= C

∫ ∞

0

(
1 ∧ 1

x1

)p/2
x2β−p−1
1 dx1 < ∞ (A.5)

if p/2 < β < 3p/4, thus proving (A.3) for 0 < p ≤ 2.
Next for 2 < p < 3 we need the inequality for double Itô-Wiener integrals:

for any p ≥ 2, g ∈ L2(R2)

E
∣∣∣ ∫

R2

g(s1, s2)dB1(s1)dB2(s2)
∣∣∣p ≤ C

(
E
∣∣∣ ∫

R2

g(s1, s2)dB1(s1)dB2(s2)
∣∣∣2)p/2

= C
(∫

R2

|g(s1, s2)|2ds1ds2
)p/2

. (A.6)

Indeed, by using Gaussianity and independence of B1, B2 and Minkowski in-
equality for I2(g) :=

∫
R2 g(s1, s2)dB1(s1)dB2(s2) we obtain(

E|I2(g)|p
)2/p

=
(
EB1EB2 [|I2(g)|p|B1]

)2/p ≤ C
(
EB1

(
EB2 [|I2(g)|2|B1]

)p/2)2/p
≤ CEB2

{
EB1 [|I2(g)|p|B2]

}2/p≤CEB2

{(
EB1 [|I2(g)|2|B2]

)p/2}2/p

= CEB2EB1 [|I2(g)|2|B2] = CE|I2(g)|2.

Using inequality (A.6) and (A.4), (A.5) we obtain

Jp,β(τ) ≤ C
(∫

R
2
+

E|z(τ ;x1, x2)|p(x1x2)
β−1dx1dx2

+

∫
R

2
+

E|z(τ ;x1, x2)|2(x1x2)
β−1dx1dx2

)
≤ C(Ip,β(τ) + I2,β(τ)) < ∞

if p/2 < β < 3p/4, thus proving (A.3) and part (ii).

(iii) Follows from stationarity of increments of Zβ (part (i)) and J2,β(τ) =
σ2
∞τ2(2−β), where according to (A.2),

σ2
∞ =

∫
R

2
+

Ez2(1;x1, x2)dμβ
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=
ψ(1)2

4

∫
(0,1]2

du1du2

(∫ ∞

0

e−x|u1−u2|xβ−2dx
)2

=
ψ(1)2

4
Γ(β − 1)2

∫
(0,1]2

|u1 − u2|2(1−β)du1du2 =
ψ(1)2Γ(β − 1)2

4(2− β)(3− 2β)
.

(iv) Follows from stationarity of increments, E|Zβ(τ)|p ≤ CJp,β(τ), 1 < p ≤ 2,
where Jp,β(τ) is the same as in (A.3), and Kolmogorov’s criterion; cf. ([20], proof
of Proposition 3.1 (iv)).

(v) The proofs are very similar to those of Theorem 3.1 (i), (ii), hence we omit
some details. For notational simplicity, we only prove one-dimensional conver-
gence at τ > 0.

Proof of (2.19). As b → 0, consider

Φb(θ) :=log Eeiθb
β−2Zβ(bτ)=ψ(1)2

∫
R

2
+

EΨ(θbβ−2z(bτ ;x1, x2))(x1x2)
β−1dx1dx2,

where Ψ(z) := eiz−1−iz, z ∈ R. Since b−2z(bτ ;x1, x2) =d z(τ ; bx1, bx2), rewrite

Φb(θ) = ψ(1)2b−2β

∫
R

2
+

EΨ(θbβz(τ ;x1, x2))(x1x2)
β−1dx1dx2,

where b−2βΨ(θbβz(τ ;x1, x2)) → −(θ2/2)z2(τ ;x1, x2) a.s. Note |b−2βΨ(θbβz(τ ;
x1, x2))| ≤ (θ2/2)z2(τ ;x1, x2), where the dominating function satisfies (A.2)
and (2.10). Hence, by the dominated convergence theorem,

Φb(θ) → −(θ2/2)ψ(1)2
∫
R

2
+

Ez2(τ ;x1, x2)(x1x2)
β−1dx1dx2 = log Eeiθσ∞B2−β(τ),

which finishes the proof.

Proof of (2.20) follows that of Theorem 3.1 (i), case 0 < β < 1. As b → 0,
consider

Φb(θ) := log Eeiθb
−1(log b−1)−1/(2β)Zβ(bτ)

= ψ(1)2(log b−1)−1

∫
R

2
+

E[eiθzb(τ ;x1,x2) − 1](x1x2)
β−1dx1dx2,

where

zb(τ ;x1, x2) := b−1(log b−1)−1/(2β)z
(
bτ ; (log b−1)−1/(2β)x1, (log b

−1)−1/(2β)x2

)
satisfies

E|zb(τ ;x1, x2)|2 ≤ C

x1x2

(
1 ∧ b−1(log b−1)1/(2β)

x1 + x2

)
, (A.7)

see (A.2). Split

Φb(θ) = ψ(1)2(log b−1)−1

∫
R

2
+

(1(1 < x1 + x2 < b−1) + 1(x1 + x2 > b−1)
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+ 1(x1 + x2 < 1))E[eiθzb(τ ;x1,x2) − 1](x1x2)
β−1dx1dx2 =:

3∑
i=1

Li.

Using (A.7), we can show that Li, i = 2, 3 are remainders. By change of vari-
ables: y = x1 + x2, x1 = yw and then w = z/y2, we rewrite the main term

L1 =
1

log b−1

∫ b−1

1

Vb(θ; y)
dy

y
,

Vb(θ; y) := 2ψ(1)2
∫ y2/2

0

Λb(z; y)z
β−1

(
1− z

y2
)β−1

dz (A.8)

with Λb(z; y) := E[exp{iθzb(τ ; z
y , y(1 − z

y2 ))} − 1], which satisfies |Λb(z; y)| ≤
C(1 ∧ 1

z ) for all 0 < z
y2 < 1

2 , 0 < y < b−1. Here the dominating bound is a

consequence of (A.7). Then

L1 → log EeiθτV2β = 2ψ(1)2
∫ ∞

0

Λ(z)zβ−1dz, (A.9)

where Λ(z) := E[eiθτZ1Z2/(2
√
z)−1] with Zi ∼ N(0, 1), i = 1, 2 being independent

r.v.s, follows from

lim
y→∞,y=O(b−1)

Λb(z; y) = Λ(z), ∀ z > 0, (A.10)

for more details we refer the reader to the proof of Theorem 3.1 (i) case 0 <
β < 1. More precisely, (A.10) says that for every ε > 0 there exists a small δ > 0
such that for all 0 < b < δ, if δ−1 < y < b−1, then |Λb(z; y)−Λ(z)| < ε. To show
(A.10), note zb(τ ;

z
y , y(1−

z
y2 )) = I12(hb(·; τ ; z)) is a double Itô-Wiener stochastic

integral w.r.t. independent standard Brownian motions {Bi(s), s ∈ R}, i = 1, 2
for

hb(s1, s2; τ ; z) := (log b−1)−1/(2β)

∫ τ

0

2∏
i=1

e
− 1

αi
(bu−si)1(si < bu)du, s1, s2 ∈ R,

α1 := (log b−1)1/(2β)y/z, α2 := (log b−1)1/(2β)/y′, y′ := y
(
1− z

y2
)
.

We have that zb(τ ;
z
y , y(1−

z
y2 )) =d I12(h̃b(·; τ ; z)), where

h̃b(s1, s2; τ ; z) :=
√
α1α2hb(α1s1, α2s2; τ ; z)

=

√
y

zy′

∫ τ

0

2∏
i=1

e
− 1

αi
(bu−αisi)1(αisi < bu)du, s1, s2 ∈ R.

If b → 0, y, y′ → ∞ so that y/y′ → 1 and b/αi → 0, i = 1, 2, then ‖h̃b(·; τ ; z)−
h(·; τ ; z)‖ → 0 with

h(s1, s2; τ ; z) :=
τ√
z

2∏
i=1

esi1(si < 0), s1, s2 ∈ R, (A.11)
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implies the convergence zb(τ ;
z
y , y(1 − z

y2 )) →d I12(h(·; τ ; z)) =d τZ1Z2/2
√
z.

Conditions on b, y, y′ are obviously satisfied due to y, y′ = O(b−1) = o(b−1

(log b−1)1/(2β)). This proves (A.10) and (A.9), thereby completing the proof of
of (2.20).

Proof of (2.21) follows that of Theorem 3.1 (ii). We will prove that as b → ∞,

log Eeiθb
−1/2Zβ(bτ)

= ψ(1)2
∫
R

2
+

E[eiθb
−1/2z(bτ ;x1,x2) − 1](x1x2)

β−1dx1dx2 (A.12)

→ ψ(1)2
∫
R

2
+

[e−θ2τ/(4x1x2(x1+x2)) − 1](x1x2)
β−1dx1dx2

= log EeiθA
1/2B(τ).

By (A.2), we have that E[exp{iθb−1/2z(bτ ;x1, x2)} − 1] ≤ Cmin{1, (x1x2(x1 +
x2))

−1}. In view of (2.9), the dominated convergence theorem applies if the
integrands in (A.12) converge pointwise, i.e. for every (x1, x2) ∈ R

2
+,

b−1/2z(bτ ;x1, x2) →d (2x1x2(x1 + x2))
−1/2B(τ). (A.13)

To simplify notation, let τ = 1 and all b ∈ N. Define

z+b (x1, x2) :=

∫ b

0

∫ b

0

f(s1, s2)dB1(s1)dB2(s2),

where

f(s1, s2) := b−1/2

∫ b

0

2∏
i=1

e−xi(u−si)1(u > si)du,

and z−b (x1, x2) := b−1/2z(b;x1, x2)− z+b (x1, x2). Since E(z−b (x1, x2))
2 = O(b−1)

implies z−b (x1, x2) = op(1), we only need to prove that

z+b (x1, x2) →d N
(
0,

1

2x1x2(x1 + x2)

)
as b → ∞. (A.14)

Write z+b (x1, x2) =
∑b

k=1 Zk as a sum of a sum of a zero-mean square-integrable
martingale difference array

Zk :=

∫ k

k−1

∫ k−1

0

f(s1, s2)dB1(s1)dB2(s2)

+

∫ k−1

0

∫ k

k−1

f(s1, s2)dB1(s1)dB2(s2)

+

∫ k

k−1

∫ k

k−1

f(s1, s2)dB1(s1)dB2(s2)
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w.r.t. the filtration Fk generated by {Bi(s), 0 ≤ s ≤ k, i = 1, 2}, k = 0, . . . , b.
By the martingale CLT in Hall and Heyde [11], (A.14) then follows from

b∑
k=1

E[Z2
k |Fk−1] →p

1

2x1x2(x1 + x2)
and

b∑
k=1

E[Z2
k1(|Zk| > ε)] → 0, (A.15)

for any ε > 0. Since
∑b

k=1 EZ
2
k =

∫ b

0

∫ b

0
f2(s1, s2)ds1ds2 = E(z+b (x1, x2))

2 →
(2x1x2(x1 + x2))

−1, consider Rb :=
∑b

k=1(E[Z
2
k |Fk−1]− EZ2

k), where

E[Z2
k |Fk−1] =

∫ k

k−1

(∫ k−1

0

f(s1, s2)dB2(s2)
)2

ds1

+

∫ k

k−1

(∫ k−1

0

f(s1, s2)dB1(s1)
)2

ds2

+

∫ k

k−1

∫ k

k−1

f2(s1, s2)ds1ds2.

By rewriting Rb =d

∑2
i=1

∫ b

0

∫ b

0
ci(s1, s2)dBi(s1)dBi(s2) with c1(s1, s2) =∫ b

�s1∨s2� f(s1, s)f(s2, s)ds, c2(s1, s2) =
∫ b

�s1∨s2� f(s, s1)f(s, s2)ds and using the

elementary bound:

f(s1, s2) ≤ Cb−1/2(e−x1(s2−s1)1(s1 < s2)

+ e−x2(s1−s2)1(s1 ≥ s2)), 0 ≤ s1, s2 ≤ b, (A.16)

we obtain E|Rb|2 =
∑2

i=1

∫ b

0

∫ b

0
c2i (s1, s2)ds1ds2 = O(b−1) = o(1), which proves

Rb = op(1) and completes the proof of the first relation in (A.15). Finally,

using (A.6), (A.16), we obtain
∑b

k=1 E|Zk|4 = O(b−1) = o(1), which implies the
second relation in (A.15) and completes the proof of (A.14).

Proposition 2.2 is proved.

Proof of Proposition 2.3. (i) Split Z∗
β(τ) = Z̃∗

β(τ) + τV +
β with

Z̃∗
β(τ) :=

∫
R+×C(R)

(
z∗(τ ;x)− τ

2x

)
d(M∗

β − EM∗
β1(1 < β < 2)),

V +
β :=

∫
R+×C(R)

1

2x
d(M∗

β − EM∗
β1(1 < β < 2)),

where M∗
β is a Poisson random measure on R+ × C(R) with mean μ∗

β = EM∗
β

given in (2.22). The existence of V +
β follows from

∫∞
0

min{1, x−1}xβ−1dx < ∞
if β ∈ (0, 1) and

∫∞
0

min{x−1, x−2}xβ−1dx < ∞ if β ∈ (1, 2). The process Z̃∗
β is

well-defined if

J∗
p,β(τ) :=

∫
R+×C(R)

|z∗(τ ;x)− τ/(2x)|pdμ∗
β

= C

∫ ∞

0

E|z∗(τ ;x)− τ/(2x)|pxβ−1dx < ∞, (A.17)
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where 0 < p ≤ 1 for β ∈ (0, 1) and 1 ≤ p ≤ 2 for β ∈ (1, 2). We have
E|z∗(τ ;x)− τ/(2x)|p ≤ (Var(z∗(τ ;x)))p/2, where

Var(z∗(τ ;x)) =

∫
(0,τ ]2

Cov(Y2(u1;x),Y2(u2;x))du1du2

= 2

∫
(0,τ ]2

∫
R2

ds1ds2e
−2x(u1+u2−s1−s2)1(s1 ∨ s2 < u1 ∧ u2)du1du2

=
1

2x2

∫
(0,τ ]2

e−2x|u1−u2|du1du2 =
1

8x4
(2xτ − 1 + e−2xτ )

≤ C
τ2

x2

(
1 ∧ 1

xτ

)
, (A.18)

hence, J∗
p,β(τ) ≤ Cτ2p−β < ∞ for p < β < 3p/2. This completes the proof of

part (i).

(ii) E|V +
β |p < ∞ for 0 < p < β, since V +

β is a β-stable r.v. Similarly to (A.3),

E|Z̃∗
β(τ)|p < ∞ follows from J∗

p,β(τ) < ∞ in (A.17), where p is sufficiently close
to β and such that 0 < p < β < 3p/2. This proves part (ii).

(iii) Follows from part (ii) by Kolmogorov’s criterion, similarly as in the proof
of Proposition 2.2.

(iv) For notational simplicity, we only prove one-dimensional convergence at
τ > 0. We have log E exp{iθb−1Zβ(bτ)} = ψ(1)

∫
R+

Λb(x)x
β−1dx, where

Λb(x) := E
[
exp

{
iθb−1z∗(bτ ;x)

}
− 1− iθb−1z∗(bτ ;x)1(1 < β < 2)

]
.

Substituting E|z∗(bτ ;x)| ≤ (E|z∗(bτ ;x)|2)1/2 and E|z∗(bτ ;x)|2 = Var(z∗(bτ ;x))
+ (bτ/(2x))2 ≤ C(b/x)2 by (A.18) into

|Λb(x)| ≤ C

{
min

{
1, b−1E|z∗(bτ ;x)|

}
, 0 < β < 1,

min
{
b−1E|z∗(bτ ;x)|, b−2E|z∗(bτ ;x)|2

}
, 1 < β < 2,

we obtain the bounds: |Λb(x)| ≤ Cmin{1, x−1} if 0 < β < 1, and |Λb(x)| ≤
Cmin{x−1, x−2} if 1 < β < 2. The result then follows from the dominated
convergence theorem once we show that for all x ∈ R+,

Λb(x) →
{
exp{iθτ/(2x)} − 1− (iθτ/(2x))1(1 < β < 2) as b → ∞,

E[exp{iθZ2τ/(2x)} − 1− (iθZ2τ/(2x))1(1 < β < 2)] as b → 0,

(A.19)

where Z ∼ N(0, 1). Using (A.18), we get E|b−1z∗(bτ ;x) − (τ/(2x))|2 =
b−2 Var(z∗(bτ ;x)) ≤ Cb−1 = o(1) as b → ∞, which implies the first convergence
in (A.19). To prove the second convergence in (A.19), note Z/

√
2x =d Y(0;x).

It suffices to show that as b → 0,

E|b−1z∗(bτ ;x)− τY2(0;x)| = E
∣∣∣ ∫ τ

0

(Y2(bu;x)− Y2(0;x))du
∣∣∣
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≤
∫ τ

0

E|Y2(bu;x)− Y2(0;x)|du = o(1).

Factorizing the difference of squares and applying the Cauchy-Schwarz inequal-
ity, this follows from

E|Y(bu;x)− Y(0;x)|2 =

∫ bu

0

e−2xsds+
1

2x
(e−xbu − 1)2 ≤ Cbu.

Proposition 2.3 is proved.

Calculation of the constant σ0 in Proposition 2.2 (v). We have

σ0 ·
22β/3

ψ(1)2
=

∫
R

2
+

(
1− exp{−(u1 + u2)

−1(u1u2)
−1}

)
(u1u2)

β−1du1du2

=
u2=u1v2

∫
R

2
+

(
1− exp{−u−3

1 (1 + v2)
−1v−1

2 }
)
u2β−1
1 vβ−1

2 du1dv2

=
u1=v

−1/3
1

1

3

∫
R

2
+

(
1− exp{−v1(1 + v2)

−1v−1
2 }

)
v
−2β/3−1
1 vβ−1

2 dv1dv2

=
1

3

∫
R

2
+

(∫ 1/((1+v2)v2)

0

e−v1tdt
)
v
−2β/3
1 vβ−1

2 dv1dv2

=
Γ(1− 2β

3 )

3

∫ ∞

0

vβ−1
2 dv2

∫ 1/((1+v2)v2)

0

t2β/3−1dt

=
Γ(1− 2β

3 )

2β

∫ ∞

0

(1 + v2)
−2β/3v

β/3−1
2 dv2

=
v2=s−1−1

Γ(1− 2β
3 )

2β

∫ 1

0

s2β/3(s−1 − 1)β/3−1s−2ds

=
Γ(1− 2β

3 ) B(β3 ,
β
3 )

2β
.

Proof of (4.22). By Corollary 4.1 (iv), 1
Nn

∑N
i=1

∑n−t
k=1 Xi(k)Xi(k+t) →p γ(t)=

E at

1−a2 . Hence, relation (4.22) for (4.26) follows from

1

N

N∑
i=1

( 1
n

n−t∑
k=1

Xi(k)Xi(k + t)
)2 →p E

( at

1− a2
)2
. (A.20)

By the LLN, 1
N

∑N
i=1(

at
i

1−a2
i
)2 →p E( at

1−a2 )
2. Therefore by Minkowski’s inequal-

ity, for (A.20) we only need to show that

1

N

N∑
i=1

( 1
n

n∑
k=1

Xi(k)Xi(k + t)− ati
1− a2i

)2
= op(1).
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By taking expectations this follows from

E
( 1
n

n∑
k=1

Xi(k)Xi(k + t)− ati
1− a2i

)2
=

1

n2
EVar

[ n∑
k=1

Xi(k)Xi(k + t)
∣∣ai] = o(1).

(A.21)

Using Cov[Xi(k)Xi(k+ t), Xi(k
′)Xi(k

′ + t)|ai] = a2(|k−k′|+t)

1−a4 cum4 + a2|k−k′|

(1−a2)2 +

a2max{|k−k′|,t}

(1−a2)2 and the same bound as in (2.30) we see that the l.h.s. of (A.21)

does not exceed CE[ 1
(1−ai)2

min{1, 1
n(1−ai)

}] which vanishes as n → ∞ by the

dominated convergence theorem, due to E 1
(1−a)2 < ∞.
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[21] Pilipauskaitė, V. and Surgailis, D. (2015) Joint aggregation of random-
coefficient AR(1) processes with common innovations. Statist. Probab. Let-
ters 101, 73–82. MR3332835

[22] Pilipauskaitė, V. and Surgailis, D. (2016) Anisotropic scaling of random
grain model with application to network traffic. J. Appl. Probab. 53, 857–
879. MR3570099
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