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Abstract: A new (unadjusted) Langevin Monte Carlo (LMC) algorithm
with improved rates in total variation and in Wasserstein distance is pre-
sented. All these are obtained in the context of sampling from a target
distribution π that has a density π̂ on R

d known up to a normalizing con-
stant. Moreover, − log π̂ is assumed to have a locally Lipschitz gradient and
its third derivative is locally Hölder continuous with exponent β ∈ (0, 1].
Non-asymptotic bounds are obtained for the convergence to stationarity of
the new sampling method with convergence rate 1 + β/2 in Wasserstein
distance, while it is shown that the rate is 1 in total variation even in the
absence of convexity. Finally, in the case where − log π̂ is strongly convex
and its gradient is Lipschitz continuous, explicit constants are provided.
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1. Introduction

In Bayesian statistics and machine learning, one challenge, which has attracted
substantial attention in recent years due to its high importance in data-driven
applications, is the creation of algorithms which can efficiently sample from
a high-dimensional target probability distribution π. In particular, its smooth
version assumes that there exists a density on R

d, denoted by π̂, such that

π̂(x) = e−U(x)/

∫
Rd

e−U(y) dy,
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with
∫
Rd e

−U(y) dy < ∞, where U is typically continuously differentiable. Within
such a setting, consider a filtered probability space (Ω,F , (Ft)t≥0,P), then the
Langevin SDE associated with π is defined by

dxt = −∇U(xt)dt+
√
2dwt, (1)

where (wt)t≥0 is a d-dimensional Brownian motion. It is a classical result that
under mild conditions, the SDE (1) admits π as its unique invariant measure.
The corresponding numerical scheme of the Langevin SDE obtained by using
the Euler-Maruyama (Milstein) method yields the unadjusted Langevin algo-
rithm (ULA), known also as the Langevin Monte Carlo (LMC), which has been
well studied in the literature. For a globally Lipschitz ∇U , the non-asymptotic
bounds in total variation and Wasserstein distance between the n-th iteration
of the ULA algorithm and π have been provided in [4], [6] and [7]. As for the
case of superlinear ∇U , the difficulty arises from the fact that the algorithms
constructed based on explicit numerical schemes, for example ULA, is unsta-
ble (see [20]), and its Metropolis adjusted version, MALA, loses some of its
appealing properties as discussed in [25] and demonstrated numerically in [1].
However, recent research has developed new types of explicit numerical schemes
for SDEs with superlinear coefficients, and it has been shown in [3], [13], [16],
[26], [27], [30], that the tamed Euler (Milstein) scheme converges to the true so-
lution of the SDE (1) in L p on any given finite time horizon with optimal rate.
This progress led to the creation of the tamed unadjusted Langevin algorithm
(TULA) in [1], where the aforementioned convergence results are extended to
an infinite time horizon and, moreover, one obtains rate of convergence results
in total variation and in Wasserstein distance.

The new higher order LMC algorithm (HOLA) considered in this article has
the following representation, for any n ∈ N,

Xn+1 = Xn + μγ(Xn)γ +
√

2γσγ(Xn)Zn+1, (2)

where γ ∈ (0, 1) is the step size, (Zn)n∈N are i.i.d. standard d-dimensional
Gaussian random variables, for all x ∈ R

d,

μγ(x) = −∇Uγ(x) + (γ/2)(
(
∇2U∇U

)
γ
(x)− �Δ(∇U)γ(x)),

and

σγ(x) =
√
Id − γ∇2Uγ(x) + (γ2/3)(∇2Uγ(x))2

with Id being the d× d identity matrix. The dependences of the coefficients on
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γ are given by, for x ∈ R
d

∇Uγ(x) =
∇U(x)

(1 + γ3/2|∇U(x)|3/2)2/3 ,

∇2Uγ(x) =
∇2U(x)

1 + γ|∇2U(x)| ,(
∇2U∇U

)
γ
(x) =

∇2U(x)∇U(x)

1 + γ|x||∇2U(x)||∇U(x)| ,

�Δ(∇U)γ(x) =
�Δ(∇U)(x)

1 + γ1/2|x||�Δ(∇U)(x)|
.

(3)

The tamed coefficients in (3) are chosen such that the exponential moments
and the desired rate of convergence of the scheme can be obtained, see Sec-
tion 3 for further discussions. One notes that σ2

γ is a positive definite matrix
which has a unique square-root. In practice, σγ can be computed by gener-

ating two independent standard Gaussian noise ξ and ξ̃, then one considers(
Id − (1/2)γ∇2Uγ(Xn)

)
ξn+1 + (

√
3/6)γ∇2Uγ(x)ξ̃n+1, which has the same dis-

tribution as σγ(Xn)Zn+1 (see [5] and Chapter 10.4 in [15]). The HOLA algo-
rithm (2) is constructed based on the order 1.5 scheme (4) of the SDE (1), which
is obtained using the Itô-Taylor (known also as Wagner-Platen) expansion (see
Chapter 10 in [15]) and can be written explicitly as:

Xn+1 = Xn −∇Uγ(Xn)γ +
γ2

2

((
∇2U∇U

)
γ
(Xn)− �Δ(∇U)γ(Xn)

)
+
√
2γZ̄n+1 −

√
2∇2Uγ(Xn)Z̃n+1

(4)

where (Z̄n)n∈N are i.i.d. standard d-dimensional Gaussian random variables,
and (Z̃n)n∈N are i.i.d. d-dimensional Gaussian random variables with mean 0

and covariance 1
3γ

3Id defined by Z̃n+1 =
∫ tn+1

tn

∫ s

tn
dwr ds. Moreover, Z̄n+1 and

Z̃n+1 are not independent, and for any n ∈ N, k, l = 1, . . . , d,

E

(√
γZ̄

(k)
n+1Z̃

(l)
n+1

)
=

{
1
2γ

2, for k = l,

0, otherwise.

One observes that the scheme (4) is Markovian, and Law(Xn) is the same as
Law(Xn), for any n ∈ N.

For the HOLA algorithm (2), by extending the techniques used in [1] and
[28], it can be shown that the scheme (2) has a unique invariant measure πγ ,
and one can obtain convergence results between πγ and the target distribution
π in some proper distance. More precisely, assume the potential U is three times
differentiable, and its third derivative is locally Hölder continuous with expo-
nent β ∈ (0, 1]. Then, under certain conditions (specified in Section 2), Theorem
1 and 2 state that the rate of convergence between the n-th iteration of the new
algorithm and the target measure π is 1+β/2 in Wasserstein distance, whereas
the rate is 1 in total variation. Here, one notes that these results are obtained
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in the context of having superlinear ∇U . To the best of the authors’ knowl-
edge, these are the first such results which provide a higher rate of convergence
in Wasserstein distance compared to the existing literature. As for the total
variation distance, [6] proves that the rate of convergence is 1 for the case of a
strongly convex U , whereas our result yields the same convergence rate without
assuming convexity.

The paper is organised as follows. Section 2 presents the assumptions and
main results in both super-linear and Lipschitz settings. Section 3 discusses the
contribution of our work with comparison to the existing literature. In Section
4, the proofs of Theorem 1 and Theorem 2 are provided, while the proofs of
Theorem 3 and Corollary 1 can be found in Section 5. An example is provided
in Section 5.3 illustrating the applicability of the proposed algorithm in the
Lipschitz case. Auxiliary results are provided in Appendices.

We conclude this section by introducing some notation. The Euclidean norm
of a vector b ∈ R

d, the spectral norm and the Frobenius norm of a matrix
σ ∈ R

d×m are denoted by |b|, |σ| and |σ|F respectively. σT is the transpose matrix
of σ. The i-th element of b and (i, j)-th element of σ are denoted respectively by
b(i) and σ(i,j), for every i = 1, . . . , d and j = 1, . . . , d. In addition, denote by �a�
the integer part of a positive real number a, and �a	 = �a�+1. The inner product
of two vectors x, y ∈ R

d is denoted by xy. For all x ∈ R
d and M > 0, denote by

B(x,M) (respectively B(x,M)) the open (respectively close) ball centered at x
with radius M . Let f : Rd → R be a twice continuously differentiable function.
Denote by∇f ,∇2f and Δf the gradient of f , the Hessian of f and the Laplacian
of f respectively. Denote by �Δg : Rd → R

d the vector Laplacian of g, i.e., for

all x ∈ R
d, �Δg(x) is a vector in R

d whose i-th entry is
∑d

u=1
∂2g(i)

∂x(u)∂x(u) (x). For
m,m′ ∈ N

∗, define

Cpoly(R
m,Rm′

)

=
{
P ∈ C(Rm,Rm′

)|∃Cq, q ≥ 0, ∀x ∈ R
d, |P (x)| ≤ Cq(1 + |x|q)

}
.

For any t ≥ 0, denote by C([0, t],Rd) the space of continuous R
d-valued paths

defined on the time interval [0, t].
Let μ be a probability measure on (Rd,B(Rd)) and f be a μ-integrable func-

tion, define μ(f) =
∫
Rd f(x) dμ(x). Given a Markov kernel R on R

d and a
function f integrable under R(x, ·), denote by Rf(x) =

∫
Rd f(y)R(x, dy). Let

V : Rd → [1,∞) be a measurable function. The V -total variation distance be-
tween μ and ν is defined as ‖μ − ν‖V = sup|f |≤V |μ(f) − ν(f)|. If V = 1, then
‖ · ‖V is the total variation denoted by ‖ · ‖TV . Let μ and ν be two probability
measures on a state space Ω with a given σ-algebra. If μ � ν, we denote by
dμ/dν the Radon-Nikodym derivative of μ w.r.t. ν. Then, the Kullback-Leibler
divergence of μ w.r.t. ν is given by

KL(μ|ν) =
∫
Ω

dμ

dν
log

(
dμ

dν

)
dν.

We say that ζ is a transference plan of μ and ν if it is a probability measure on
(Rd×R

d,B(Rd)×B(Rd)) such that for any Borel set A of Rd, ζ(A×R
d) = μ(A)
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and ζ(Rd ×A) = ν(A). We denote by Π(μ, ν) the set of transference plans of μ
and ν. Furthermore, we say that a couple of Rd-valued random variables (X,Y )
is a coupling of μ and ν if there exists ζ ∈ Π(μ, ν) such that (X,Y ) is distributed
according to ζ. For two probability measures μ and ν, the Wasserstein distance
of order p ≥ 1 is defined as

Wp(μ, ν) =

(
inf

ζ∈Π(μ,ν)

∫
Rd×Rd

|x− y|p dζ(x, y)
)1/p

.

2. Main results

Assume U is three times continuously differentiable. The following conditions
are stated:

H1 lim inf |x|→+∞ |∇U(x)| = +∞, and lim inf |x|→+∞
x∇U(x)

|x||∇U(x)| > 0.

H2 There exists L > 0, ρ ≥ 2, and β ∈ (0, 1], such that for any i = 1, . . . , d
and for all x, y ∈ R

d,

|∇2(∇U)(i)(x)−∇2(∇U)(i)(y)| ≤ L(1 + |x|+ |y|)ρ−2|x− y|β ,

where (∇U)(i) denotes the i-th element of ∇U .
H3 U is strongly convex, i.e. there exists m > 0 such that for all x, y ∈ R

d,

(x− y) (∇U(x)−∇U(y)) ≥ m|x− y|2.

Remark 1. Unless otherwise specified, the constants C,K > 0 may take differ-
ent values at different places, but these are always independent of the step size
γ ∈ (0, 1).

Remark 2. Assume H2 holds, then for any i = 1, . . . , d and for all x ∈ R
d,

|∇2(∇U)(i)(x)| ≤ K(1 + |x|)ρ−2+β ,

where K = max{L, |∇2(∇U)(i)(0)|}, moreover, for all x, y ∈ R
d,

|∇(∇U)(i)(x)−∇(∇U)(i)(y)| ≤ K(1 + |x|+ |y|)ρ−2+β |x− y|,

which implies,
|∇(∇U)(i)(x)| ≤ K1(1 + |x|)ρ−1+β ,

where K1 = max{K, |∇(∇U)(i)(0)|}. Furthermore, for all x, y ∈ R
d,

|∇U (i)(x)−∇U (i)(y)| ≤ K1(1 + |x|+ |y|)ρ−1+β |x− y|,

and one obtains
|∇U (i)(x)| ≤ K2(1 + |x|)ρ+β ,

where K2 = max{K1, |∇U (i)(0)|}. One notes that the above inequality implies

|�Δ(∇U)(x)− �Δ(∇U)(y)| ≤ d3/2L(1 + |x|+ |y|)ρ−2|x− y|β ,
|�Δ(∇U)(x)| ≤ dK(1 + 2|x|)ρ−1.
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Proof. See Appendix A.

Remark 3. By the definition of the tamed coefficients (3) and H2, one obtains
for all x ∈ R

d,

|∇Uγ(x)| ≤ 3
√
2γ−1, |∇2Uγ(x)| ≤ γ−1,

|
(
∇2U∇U

)
γ
(x)| ≤ (1 + 22ρ+1dK1K2)γ

−1,

|�Δ(∇U)γ(x)| ≤ (1 + 3ρ−1dK)γ−1/2.

In particular, when |x| ≥ 1, x ∈ R
d, one obtains

|∇Uγ(x)| ≤ 3
√
2γ−1, |∇2Uγ(x)| ≤ γ−1,

|
(
∇2U∇U

)
γ
(x)| ≤ γ−1, |�Δ(∇U)γ(x)| ≤ γ−1/2.

The Markov kernel Rγ associated with (2) is given by

Rγ(x,A) = (2π)−d/2

∫
Rd

1A

(
x+ μγ(x)γ +

√
2γσγ(x)z

)
e−|z|2/2 dz,

for all x ∈ R
d and A ∈ B(Rd). Denote by (Pt)t≥0 the semigroup associated with

(1). For all x ∈ R
d and A ∈ B(Rd), we have Pt(x,A) = E[1{xt∈A}|x0 = x].

In addition, for all x ∈ R
d and h ∈ C2(Rd), the infinitesimal generator A

associated with (1) is defined by

A h(x) = −∇U(x)∇h(x) + Δh(x).

For any a > 0, define the Lyapunov function Va : Rd → [1,+∞) for all x ∈ R
d

by

Va(x) = exp
(
a(1 + |x|2)1/2

)
.

Then, for the local Lipschitz drift, one obtains the following convergence results.

Theorem 1. Assume H1, H2 and H3 are satisfied. Then, there exist constants
C > 0 and λ ∈ (0, 1) such that for all x ∈ R

d, γ ∈ (0, 1) and n ∈ N,

W 2
2 (δxR

n
γ , π) ≤ C(λnγVc(x) + γ2+β), (5)

where c is given in (15) and for all γ ∈ (0, 1),

W 2
2 (πγ , π) ≤ Cγ2+β.

Theorem 2. Assume H1 and H2 are satisfied. There exist C > 0 and λ ∈ (0, 1)
such that for all x ∈ R

d, γ ∈ (0, 1) and n ∈ N,

‖δxRn
γ − π‖

V
1/2
c

≤ C(λnγVc(x) + γ), (6)

where c is given in (15) and for all γ ∈ (0, 1),

‖πγ − π‖
V

1/2
c

≤ Cγ. (7)
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In the case of super-linear coefficients, tracking the explicit constants involves
tedious calculations, and it is less informative compared to the case of Lipschitz
coefficients, in the sense that the dependence on the dimension of the constant
C (appearing in Theorem 1 and Theorem 2) is O(ed). One notes that this is
due to the fact that exponential moments of the scheme 2 is obtained when
a log-Sobolev inequality is used. To illustrate the explicit dependence on the
dimension, and to provide explicit constants for the moment bounds and the
convergence in Wasserstein distance, the Lipschitz case is considered. Four times
continuous differentiability on U is required and the following conditions are
assumed:

H4 There exists L1 > 0, such that for all x, y ∈ R
d,

|∇U(x)−∇U(y)| ≤ L1|x− y|.

H5 There exists L2 > 0, such that for all x, y ∈ R
d,

|∇2U(x)−∇2U(y)| ≤ L2|x− y|.

H6 There exists L > 0, such that for all x, y ∈ R
d,

|∇2(∇U)(i)(x)−∇2(∇U)(i)(y)| ≤ L|x− y|.

One notices that, in the Lipschitz case, there is no need to use the tamed
coefficients, and one can consult Theorem 10.6.3 in [15] for the classical strong
convergence result for the order 1.5 scheme in a finite time. The counterpart of
algorithm (2) in the Lipschitz case becomes: for any n ∈ N

X̃n+1 = X̃n + μ(X̃n)γ +
√

2γσ(X̃n)Zn+1, (8)

where γ ∈ (0, 1) is the step size, (Zn)n∈N are i.i.d. standard d-dimensional Gaus-
sian random variables, for all x ∈ R

d, μ(x) = −∇U(x)+(γ/2)(∇2U(x)∇U(x)−
�Δ(∇U)(x)), and σ(x) =

√
Id − γ∇2U(x) + (γ2/3)(∇2U(x))2. The Markov ker-

nel R̃γ associated with (8) is given by

R̃γ(x,A) = (2π)−d/2

∫
Rd

1A

(
x+ μ(x)γ +

√
2γσ(x)z

)
e−|z|2/2 dz,

for all x ∈ R
d and A ∈ B(Rd)

Theorem 3. Assume H3–H6 are satisfied. Let γ ∈
(
0, 1

m̃ ∧ 8m̃2

m(2L2
1+7m̃L1)

)
.

Then, for all x ∈ R
d and n ∈ N,

W 2
2 (δxR̃

n
γ , π) ≤ e−mnγ

(
2|x− x∗|2 + 2d

m

)
+ C̄γ3,

where m̃ is given in (35), C̄ = O(d4) and its the explicit expression is given in
the proof.
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Corollary 1. Assume H3–H6 are satisfied. Let γ ∈
(
0, 1

m̃ ∧ 8m̃2

m(2L2
1+7m̃L1)

)
.

If one considers a multivariate Gaussian as the target distribution, then for all
x ∈ R

d and n ∈ N,

W 2
2 (δxR̃

n
γ , π) ≤ e−mnγ

(
2|x− x∗|2 + 2d

m

)
+ C̃γ3,

where m̃ is given in (35), C̃ = O(d) and its the explicit expression is given in
the proof.

Remark 4. One notices that only three times continuous differentiability on the
potential U is required in the case of super-linear coefficients, while we assume
four times continuous differentiability in the case of Lipschitz coefficients. This
further smoothness in the Lipschitz case is required in order to obtain a better
dependence on the dimension of the bound in Wasserstein distance, i.e. to obtain
C̄ = O(d4) in Theorem 3. While one can still obtain similar results in Theo-
rem 3 and Corollary 1 without assuming further smoothness, the dependence on
dimension of the bound will increase to O(d6).

3. Related work and discussion

Higher order scheme The higher order LMC algorithm (2) is obtained using
the Itô-Taylor (Wagner-Platen) expansion, see [24] and Section 10.4 in [15].
It is suggested in Section 10.6 in [15] that any higher order schemes can be
constructed using such an approach. One notices that the LMCO’ algorithm
considered in [5], which is obtained using the LMC algorithm with the Ozaki
discretization, is close to the algorithm (8), which is the counterpart of the
algorithm (2) in the Lipschitz case. The difference between the two algorithms

is that there is one more term �Δ(∇U) in (8). Without this term, the rate of
convergence of the algorithm (8) reduces from 1.5 to 1 in the Wasserstein-2
distance.

Tamed coefficients The algorithm (2) of the SDE (1) with superlinear coef-
ficient is constructed using a taming technique, which is first introduced in [13]
for the Euler scheme and is further developed in [26]. Then, a uniform taming
approach is suggested in [16] which allows natural extensions of the taming tech-
nique to higher order schemes. In other words, it suggests that each coefficient
in the numerical scheme should be multiplied by the same taming factor (see
Remark 2 in [16]). However, in this article, different terms in the scheme (2)
have different taming factors as defined in (3). The reason is that, instead of
a direct application of Itô’s formula, one uses the derivation of the log-Sobolev
inequality to obtain exponential moment bounds for the numerical scheme (2)
in an infinite time horizon (see Proposition 2 for a detailed proof). This requires
an additional assumption H1. Moreover, the choice of the taming factors is
crucial in the sense that the tamed coefficients should converge to the original
coefficients with a desired rate.
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Rate of convergence In the context of SDEs with superlinear coefficients,
the strong convergence results of the tamed numerical schemes have been stud-
ied in depth in literature. One may refer to [3], [13], [16], [26], [27], [30] for
the convergence results of tamed Euler and Milstein schemes in a finite time.
In addition, Theorem 1 in [28] provides a strong convergence result in L 2 of
the tamed order 1.5 scheme. As mentioned in the introduction, while the afore-
mentioned results focused on the convergence rates in finite time horizons, [1]
considers a TULA algorithm which provides rate 1 in Wasserstein-2 distance
and rate 1/2 in total variation. By extending the results in [28] and [1], Theo-
rem 1 and Theorem 2 state that the convergence results of the HOLA algorithm
(2) in Wasserstein-2 distance and in total variation can be improved to rate
1 + β/2 and rate 1 respectively. One notices that the assumptions H1 and H3
are the same as the assumptions in [1], while the local Hölder condition H2 is
the same as the assumption A-4 in [28].

As for the SDEs with Lipschitz coefficients, [4], [5], [6] and [7] provide con-
vergence results in Wasserstein-2 distance and in total variation for the ULA
algorithm. In addition, LMCO and LMCO’ algorithms are considered in [4]
and [5] which make use of the Hessian of U , however, the rate of convergence is
shown to have the same order as ULA in Wasserstein-2 distance. Under H3–H6,
Theorem 3 provides a convergence result for the scheme (2) in Wasserstein-2 dis-
tance, which is of order 1.5. It improves existing results by imposing four times
differentiability on the potential U and an additional assumption H6.

Non-asymptotic bounds and computational complexity The nonas-
ymptotic bounds in total variation between the ULA algorithm and SDE (1) are
established in [4]. Subsequently, improved results, including the Wasserstein-2
distance, are provided in [5], [6] and [7] with better dependence on the dimen-
sion. Theorem 3 in this article provides the non-asymptotic bound between the
HOLA algorithm (2) and the target distribution π in Wasserstein-2 distance for
the Lipschitz case. It shows that the dependence on dimension is O(d4), and
the number of iterations required to reach ε percision level is given precisely by

n ≥
(
(2C̄)

1
3 /mε

2
3

)
log
(
4(|x− x∗|2 + d/m)/ε2

)
with C̄ = O(d4). This implies

that compared to results in [5] and [6], the HOLA algorithm (2) requires fewer
steps to reach a suitably high precision level, i.e. for ε < O(d−1). As for the com-
putational complexity of the algorithm (2), it shows in [8] that the computational
cost for the Hessian-vector product is not more expensive than evaluating the
gradient. Moreover, although the computational cost for one iteration increases
due to third derivatives of U , there are techniques which can be employed to
reduce the computational cost dramatically, see [9], [10] and references therein.

4. Local Lipschitz case

4.1. Moment bounds

It is a well-known result that by H1 and H2, the SDE (1) has a unique strong
solution. One then needs to obtain moment bounds of the SDE (1) and the
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numerical scheme (2) before considering the convergence results.
By using Foster-Lyapunov conditions, one can obtain the exponential moment

bounds for the solution of SDE (1). More concretely, the application of Theorem
1.1, 6.1 in [25] and Theorem 2.2 in [21] yields the following results.

Proposition 1. Assume H1 and H2 are satisfied. For all a > 0, there exists
ba > 0, such that for all x ∈ R

d,

A Va(x) ≤ −aVa(x) + aba,

and
sup
t≥0

PtVa(x) ≤ Va(x) + ba.

Furthermore, there exist Ca > 0 and ρa ∈ (0, 1) such that for all t > 0 and
probability measures μ0, ν0 on (Rd,B(Rd)) satisfying μ0(Va) + ν0(Va) < +∞,

‖μ0Pt − ν0Pt‖Va ≤ Caρ
t
a‖μ0 − ν0‖Va , ‖μ0Pt − π‖Va ≤ Caρ

t
aμ0(Va).

Proof. One can refer to Proposition 1 in [1] for the detailed proof.

The proposition below provides a uniform bound for exponential moments of
the Markov chain (Xk)k≥0.

Proposition 2. Assume H1 and H2 are satisfied. Then, there exist constants
b, c,M > 0, such that for all x ∈ R

d and γ ∈ (0, 1),

RγVc(x) ≤ e−
7
3 c

2γVc(x) + γb1B(0,M)(x),

and for all n ∈ N

Rn
γVc(x) ≤ e−

7
3 c

2nγVc(x) +
3b

7c2
e

7
3 c

2γ .

Moreover, this guarantees that the Gaussian kernel Rγ has a unique invariant
measure πγ and Rγ is geometrically ergodic w.r.t. πγ .

Proof. We use the scheme (2) throughout the proof. First, one observes that by
H1, for γ ∈ (0, 1), the following holds

lim inf
|x|→+∞

x

|x|∇Uγ(x)−
γ

2|x| |∇Uγ(x)|2 > 0. (9)

Indeed, by H1, there exist M ′, κ > 0 such that for all |x| ≥ M ′, x ∈ R
d,

x∇U(x) ≥ κ|x||∇U(x)|. Then, we have for all |x| ≥ M ′, x ∈ R
d,

x

|x|∇Uγ(x)−
γ

2|x| |∇Uγ(x)|2

≥ 1

2|x|(1 + γ3/2|∇U(x)|3/2)2/3

(
2κ|x||∇U(x)| − γ|∇U(x)|2

(1 + γ3/2|∇U(x)|3/2)2/3

)

≥ |∇U(x)|
2|x|(1 + γ3/2|∇U(x)|3/2)2/3

(
2κ|x| −

3
√
2γ|∇U(x)|

1 + γ|∇U(x)|

)
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≥ |∇U(x)|
2(1 + γ3/2|∇U(x)|3/2)2/3

(
2κ−

3
√
2

|x|

)
.

Meanwhile, by H1, there exist M ′′,K > 0 such that for all |x| ≥ M ′′, x ∈ R
d,

|∇U | ≥ K. Note that f(x) = x/(1+x3/2)2/3 is a non-decreasing function for all
x ≥ 0. Then, one obtains (9), since for all x ∈ R

d, |x| ≥ max(M ′,M ′′, 3
√
2κ−1)

x

|x|∇Uγ(x)−
γ

2|x| |∇Uγ(x)|2 ≥ κK

2(1 + γ3/2K3/2)2/3
> 0.

The function f(x) = (1+|x|2)1/2 is Lipschitz continuous with Lipschitz constant
equal to 1. Let X0 = x, then for all x ∈ R

d, applying log-Sobolev inequality
(see Proposition 5.5.1 in [2] and Appendix B for a detailed proof) gives,

RγVa(x) = Ex(Va(X1)) ≤ e
7
3γa

2

exp
{
aE((1 + |X1|2)1/2|X0 = x)

}
, (10)

which using Jensen’s inequality yields

RγVa(x)

≤ e
7
3γa

2

exp

{
a

(
1 + E

(∣∣∣X0 + μγ(X0)γ + σγ(X0)
√

2γZ1

∣∣∣2∣∣∣∣X0 = x

))1/2
}
.

(11)

One calculates

E

[∣∣∣σγ(X0)
√

2γZ1

∣∣∣2∣∣∣∣X0 = x

]

≤ 2γ |σγ(x)|2 E
[
|Z1|2

]
≤ 2γd+

2γ3

3

∣∣∇2Uγ(x)
∣∣2 d+ 2γ2

∣∣∇2Uγ(x)
∣∣ d

≤ 14

3
dγ.

(12)

Then, by inserting (12) into (11), one obtains

RγVa(x) ≤ e
7
3γa

2

exp

{
a

(
1 +Aγ(x) +

14

3
dγ

)1/2
}
, (13)

where

Aγ(x) =

∣∣∣∣x−∇Uγ(x)γ +
γ2

2

((
∇2U∇U

)
γ
(x)− �Δ(∇U)γ(x)

)∣∣∣∣
2

.

Then, expanding the square yields

Aγ(x) = |x|2 − 2γx∇Uγ(x) + γ2 |∇Uγ(x)|2 − γ2x�Δ(∇U)γ(x)
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+
γ4

4

∣∣∣�Δ(∇U)γ(x)
∣∣∣2 + γ2x

(
∇2U∇U

)
γ
(x)

− γ3∇Uγ(x)
(
∇2U∇U

)
γ
(x) + γ3∇Uγ(x)�Δ(∇U)γ(x)

+
γ4

4

∣∣∣(∇2U∇U
)
γ
(x)
∣∣∣2 − γ4

2

(
∇2U∇U

)
γ
(x)�Δ(∇U)γ(x).

By (9), there exist M1, κ1 > 0 such that for all |x| ≥ M1,

x∇Uγ(x)−
γ

2
|∇Uγ(x)|2 > κ1|x|.

Thus, by using Remark 3, for all |x| ≥ max{1,M1},

Aγ(x) +
14

3
dγ ≤ |x|2 − 2γκ1|x|+ γ3/2 +

1

4
γ3

+ 3γ + 2γ3/2 +
1

4
γ2 +

1

2
γ5/2 +

14

3
dγ

≤ |x|2 − 2γκ1|x|+
35

3
dγ.

Denote by M = max{1,M1,
35
3 d(κ1)

−1}, for all x ∈ R
d, |x| ≥ M ,

Aγ(x) +
14

3
dγ ≤ |x|2 − γκ1|x|.

For t ∈ [0, 1], (1− t)1/2 ≤ 1− t/2 and g(x) = x/(1 + x2)1/2 is a non-decreasing
function for all x ≥ 0. Then, for all x ∈ R

d, |x| ≥ M

(
1 +Aγ(x) +

14

3
dγ

)1/2

≤
(
1 + |x|2

)1/2(
1− 7γ

3

3κ1|x|
7(1 + |x|2)

)1/2

≤
(
1 + |x|2

)1/2 − 7γ

3

3κ1M

14(1 +M2)1/2
. (14)

By substituting (14) into (13) and completing the square, one obtains, for |x| ≥
M ,

RγVc(x) ≤ e−
7
3 c

2γVc(x),

where

c =
3κ1M

28(1 +M2)1/2
. (15)

For the case |x| ≤ M , by Remark 3, the following result can be obtained:

Aγ(x) ≤ |x|2 + c3γ(1 +M)4ρ+2,

where c3 is a positive constant (that depends on d and L). Then, by using
(1 + s1 + s2)

1/2 ≤ (1 + s1)
1/2 + s2/2 for s1, s2 ≥ 0,

(
1 +Aγ(x) +

14

3
dγ

)1/2

≤ (1 + |x|2)1/2 + γ

(
c3
2
(1 +M)4ρ+2 +

7d

3

)
.
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Thus,
RγVc(x) ≤ eθγVc(x),

where θ = 7
3c

2 + c( c32 (1 +M)4ρ+2 + 7
3d). Moreover, for |x| ≤ M ,

RγVc(x)− e−
7
3 c

2γVc(x) ≤ eθγ(1− e−γ( 7
3 c

2+θ))Vc(x) ≤ γeθγ
(
7

3
c2 + θ

)
Vc(x).

Denote by b = e(θγ+c
√
1+M2)

(
7
3c

2 + θ
)
, one obtains

RγVc(x) ≤ e−
7
3 c

2γVc(x) + γb1B(0,M)(x).

Then by induction, for all n ∈ N and x ∈ R

Rn
γVc(x) ≤ e−

7
3 c

2nγVc(x) +
1− e−

7
3 c

2nγ

1− e−
7
3 c

2γ
γb

≤ e−
7
3 c

2nγVc(x) +
3b

7dc2
e

7
3 c

2γ ,

the last inequality holds since 1 − e−
7
3 c

2γ =
∫ γ

0
7
3c

2e−
7
3 c

2s ds ≥ 7
3c

2γe−
7
3 c

2γ .

Finally, since any compact set on R
d is accessible and small for Rγ , then by

section 3.1 in [25] and Theorem 15.0.1 in [22], for all γ ∈ (0, 1), Rγ has a unique
invariant measure πγ and it is geometrically ergodic w.r.t. πγ .

The results in Proposition 1 and 2 provide exponential moment bounds for
the solution of SDE (1) and the scheme (2), which enable us to consider the
total variation and Wasserstein distance between the target distribution π and
the n-th iteration of the MCMC algorithm.

4.2. Proof of Theorem 1

In order to obtain the convergence rate in Wasserstein distance, the assump-
tion H3 is needed, which assumes the convexity of U . We consider the linear
interpolation of the scheme (4) given by

x̄t = x̄0 −
∫ t

0

∇Ũγ(s, x̄�s/γ�γ) ds+
√
2wt, (16)

for all t ≥ 0, where

∇Ũγ(s, x̄�s/γ�γ) = ∇Uγ(x̄�s/γ�γ) +∇U1,γ(s, x̄�s/γ�γ) +∇U2,γ(s, x̄�s/γ�γ),

with

∇U1,γ(s, x̄�s/γ�γ) = −
∫ s

�s/γ�γ

(
(∇2U∇U)γ(x̄�s/γ�γ)− �Δ(∇U)γ(x̄�s/γ�γ)

)
dr,

∇U2,γ(s, x̄�s/γ�γ) =
√
2

∫ s

�s/γ�γ
∇2Uγ(x̄�s/γ�γ) dwr.
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Note that the linear interpolation (16) and the scheme (4) coincide at grid
points, i.e. for any n ∈ N, Xn = x̄nγ . Let (Ft)t≥0 be a filtration associated with
(wt)t≥0. For any n ∈ N, denote by E

Fnγ [·] the expectation conditional on Fnγ .

Lemma 1. Assume H1 and H2 are satisfied. Then, there exists a constant
C > 0 such that for all p > 0, γ ∈ (0, 1), n ∈ N, and t ∈ [nγ, (n+ 1)γ),

E
Fnγ [|∇U1,γ(t, x̄nγ)|p] ≤ CγpVc(x̄nγ),

E
Fnγ [|∇U2,γ(t, x̄nγ)|p] ≤ Cγ

p
2 Vc(x̄nγ).

Proof. Consider a polynomial function f(|x|) ∈ Cpoly(R+,R+), then there exists
a constant C > 0 such that for all x ∈ R

d, f(|x|) ≤ CVc(x). For p > 1, by
applying Hölder’s inequality and Remark 2, one obtains

E
Fnγ [|∇U1,γ(t, x̄nγ)|p]

= E
Fnγ

[∣∣∣∣−
∫ t

nγ

(
(∇2U∇U)γ(x̄nγ)− �Δ(∇U)γ(x̄nγ)

)
dr

∣∣∣∣
p
]

≤ Cγp−1

∫ t

nγ

E
Fnγ

[∣∣(∇2U∇U)γ(x̄nγ)
∣∣p] dr

+ Cγp−1

∫ t

nγ

E
Fnγ

[∣∣∣�Δ(∇U)γ(x̄nγ)
∣∣∣p] dr

≤ CγpV (x̄nγ).

The second inequality can be proved using similar arguments. For the case
0 < p ≤ 1, Jensen’s inequality is used to obtain the desired result.

Lemma 2. Assume H1 and H2 are satisfied. Then, there exists a constant
C > 0 such that for all p > 0, γ ∈ (0, 1), n ∈ N, and t ∈ [nγ, (n+ 1)γ),

E
Fnγ [|x̄t − x̄nγ |p] ≤ Cγ

p
2 Vc(x̄nγ),

E
Fnγ [|xt − xnγ |p] ≤ Cγ

p
2 Vc(xnγ).

Proof. For p > 1, by using Hölder’s inequality, Remark 2 and Lemma 1, we have

E
Fnγ [|x̄t − x̄nγ |p]

= E
Fnγ

[∣∣∣∣−
∫ t

nγ

∇Ũγ(s, x̄nγ) ds+
√
2

∫ t

nγ

dws

∣∣∣∣
p
]

≤ Cγp−1

∫ t

nγ

E
Fnγ [|∇Uγ(x̄nγ) +∇U1,γ(s, x̄nγ) +∇U2,γ(s, x̄nγ)|p] ds+ Cγ

p
2

≤ Cγ
p
2 Vc(x̄nγ).

For the case 0 < p ≤ 1, one can use Jensen’s inequality to obtain
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E
Fnγ [|x̄t − x̄nγ |p] ≤

(
E

Fnγ

∣∣∣∣
∫ t

nγ

∇Ũγ(s, x̄nγ) ds+
√
2

∫ t

nγ

dws

∣∣∣∣
)p

≤ Cγ
p
2 Vc(x̄nγ).

Similarly, for p > 1, by using Hölder’s inequality, one obtains

E
Fnγ [|xt − xnγ |p] = E

Fnγ

[∣∣∣∣−
∫ t

nγ

∇U(xs) ds+
√
2

∫ t

nγ

dws

∣∣∣∣
p
]

≤ Cγp−1

∫ t

nγ

E
Fnγ

(
1 + |xs|p(ρ+β)

)
ds+ Cγ

p
2

≤ Cγ
p
2 Vc(xnγ),

where the last inequality holds due to Proposition 1. The case p ∈ (0, 1] follows
from the application of Jensen’s inequality.

Lemma 3. Assume H1 and H2 are satisfied. Then, there exists a constant
C > 0 such that for all γ ∈ (0, 1), n ∈ N, and t ∈ [nγ, (n+ 1)γ),

E
Fnγ

[
|∇U(x̄t)−∇U(x̄nγ)−∇U1,γ(t, x̄nγ)−∇U2,γ(t, x̄nγ)|2

]
≤ Cγ2Vc(x̄nγ).

Proof. For any t ∈ [nγ, (n+1)γ), applying Itô’s formula to ∇U(x̄t) gives, almost
surely

∇U(x̄t)−∇U(x̄nγ)

= −
∫ t

nγ

(
∇2U(x̄r)∇Ũγ(r, x̄nγ)− �Δ(∇U)(x̄r)

)
dr +

√
2

∫ t

nγ

∇2U(x̄r) dwr

= −
∫ t

nγ

(
∇2U(x̄r)−∇2U(x̄nγ)

)
∇Uγ(x̄nγ) dr −

∫ t

nγ

∇2U(x̄nγ)∇Uγ(x̄nγ) dr

−
∫ t

nγ

∇2U(x̄r)(∇U1,γ(r, x̄nγ) +∇U2,γ(r, x̄nγ)) dr

+
√
2

∫ t

nγ

(
∇2U(x̄r)−∇2U(x̄nγ)

)
dwr +

√
2

∫ t

nγ

∇2U(x̄nγ) dwr

+

∫ t

nγ

(
�Δ(∇U)(x̄r)− �Δ(∇U)(x̄nγ)

)
dr +

∫ t

nγ

�Δ(∇U)(x̄nγ) dr.

By substracting ∇U1,γ(t, x̄nγ), ∇U2,γ(t, x̄nγ), squaring both sides and taking
conditional expectation yields,

E
Fnγ

[
|∇U(x̄t)−∇U(x̄nγ)−∇U1,γ(t, x̄nγ)−∇U2,γ(t, x̄nγ)|2

]
≤ C

5∑
i=1

Gi(t),

(17)
where

G1(t) = E
Fnγ

[∣∣∣∣−
∫ t

nγ

(
∇2U(x̄r)−∇2U(x̄nγ)

)
∇Uγ(x̄nγ) dr

∣∣∣∣
2
]
,
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G2(t) = E
Fnγ

[∣∣∣∣−
∫ t

nγ

∇2U(x̄r) (∇U1,γ(r, x̄nγ) +∇U2,γ(r, x̄nγ)) dr

∣∣∣∣
2
]
,

G3(t) = E
Fnγ

[∣∣∣∣√2

∫ t

nγ

(
∇2U(x̄r)−∇2U(x̄nγ)

)
dwr

∣∣∣∣
2
]
,

G4(t) = E
Fnγ

[∣∣∣∣
∫ t

nγ

(
�Δ(∇U)(x̄r)− �Δ(∇U)(x̄nγ)

)
dr

∣∣∣∣
2
]
,

G5(t) = E
Fnγ

[(
|∇2U(x̄nγ)||∇U(x̄nγ)|2γ2 + |x̄nγ ||∇2U(x̄nγ)|2|∇U(x̄nγ)|2γ2

+ γ3/2|x̄nγ ||�Δ(∇U)(x̄nγ)|2 +
√
2γ|∇2U(x̄nγ)|2|wt − wnγ |

)2]
.

By using Cauchy-Schwarz inequality, Proposition 2, Remark 2 and Lemma 2,
one obtains

G1(t) ≤ γ

∫ t

nγ

E
Fnγ

[
|(∇2U(x̄r)−∇2U(x̄nγ))∇Uγ(x̄nγ)|2

]
dr

≤ Cγ

∫ t

nγ

E
Fnγ

[
(1 + |x̄r|+ |x̄nγ |)4ρ−4+4β |x̄r − x̄nγ |2

]
dr

≤ Cγ

∫ t

nγ

√
EFnγ [Vc(x̄r) + Vc(x̄nγ)]EFnγ [|x̄r − x̄nγ |4] dr

≤ Cγ3Vc(x̄nγ).

(18)

Similarly, applying Cauchy-Schwarz inequality, Proposition 2 and Remark 2
yield

G2(t) ≤ γ

∫ t

nγ

E
Fnγ

[
|∇2U(x̄r)(∇U1,γ(r, x̄nγ) +∇U2,γ(r, x̄nγ))|2

]
dr

≤ Cγ

∫ t

nγ

E
Fnγ

[
(1 + |x̄r|)2ρ−2+2β|∇U1,γ(r, x̄nγ) +∇U2,γ(r, x̄nγ)|2

]
dr

≤ Cγ

∫ t

nγ

√
EFnγ [Vc(x̄r)]EFnγ [|∇U1,γ(r, x̄nγ)|4 + |∇U2,γ(r, x̄nγ)|4] dr

≤ Cγ3Vc(x̄nγ),

(19)

where the last inequality is obtained by applying Lemma 1. Moreover, one ob-
tains

G3(t) ≤ C

∫ t

nγ

E
Fnγ

[
|∇2U(x̄r)−∇2U(x̄nγ)|2

]
dr

≤ C

∫ t

nγ

E
Fnγ

[
(1 + |x̄r|+ |x̄nγ |)2ρ−4+2β |x̄r − x̄nγ |2

]
dr
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≤ C

∫ t

nγ

√
EFnγ [Vc(x̄r) + Vc(x̄nγ)]EFnγ [|x̄r − x̄nγ |4] dr

≤ Cγ2Vc(x̄nγ).

Furthermore, using Cauchy-Schwarz inequality, Proposition 2, Lemma 2 and
H2 yield

G4(t) ≤ γ

∫ t

nγ

E
Fnγ

[∣∣∣�Δ(∇U)(x̄r)− �Δ(∇U)(x̄nγ)
∣∣∣2] dr

≤ Cγ

∫ t

nγ

E
Fnγ

[
(1 + |x̄r|+ |x̄nγ |)2ρ−4|x̄r − x̄nγ |2β

]
dr

≤ Cγ

∫ t

nγ

√
EFnγ [Vc(x̄r) + Vc(x̄nγ)]EFnγ [|x̄r − x̄nγ |4β ] dr

≤ Cγ2+βVc(x̄nγ).

(20)

The estimate of G5(t) can be obtained by straightforwad calculations, which
implies G5(t) ≤ Cγ3Vc(x̄nγ). Therefore,

E
Fnγ

[
|∇U(x̄t)−∇U(x̄nγ)−∇U1,γ(t, x̄nγ)−∇U2,γ(t, x̄nγ)|2

]
≤ Cγ2Vc(x̄nγ).

For any x, x̄ ∈ R
d, denote by M(x, x̄) a matrix whose (i, j)-th entry is∑d

k=1
∂3U(x̄)

∂x(i)∂x(j)∂x(k) (x
(k) − x̄(k)). One then obtains the following results.

Lemma 4. Assume H2 holds. Then, there exists a constant C > 0 such that
for any x, x̄ ∈ R

d, and i = 1, . . . , d,∣∣∇2U(x)−∇2U(x̄)−M(x, x̄)
∣∣ ≤ √

dL(1 + |x|+ |x̄|)ρ−2|x− x̄|1+β .

Proof. Denote by g(t) = ∇2U(tx + (1 − t)x̄), for any x, x̄ ∈ R
d and t ∈ [0, 1].

One notes that for any i, j = 1, . . . , d,

∇2U (i,j)(x)−∇2U (i,j)(x̄)−M (i,j)(x, x̄)

=

∫ 1

0

∇(∇2U (i,j))(tx+ (1− t)x̄)(x− x̄) dt−∇(∇2U (i,j))(x̄)(x− x̄)

One obtains that by Cauchy-Schwarz inequality and H2∣∣∇2U(x)−∇2U(x̄)−M(x, x̄)
∣∣

≤
∫ 1

0

∣∣∣∣∣
d∑

k=1

(
∇2(∇U)(k)(tx+ (1− t)x̄)−∇2(∇U)(k)(x̄)

)
(x(k) − x̄(k))

∣∣∣∣∣ dt

≤
∫ 1

0

∣∣∣∣∣∣
(

d∑
k=1

∣∣∣∇2(∇U)(k)(tx+ (1− t)x̄)−∇2(∇U)(k)(x̄)
∣∣∣2
)1/2

∣∣∣∣∣∣ dt|x− x̄|

≤
√
dL(1 + |x|+ |x̄|)ρ−2|x− x̄|1+β .
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Lemma 5. Assume H1 and H2 are satisfied. Then, there exists a constant
C > 0 such that for all γ ∈ (0, 1), n ∈ N, and t ∈ [nγ, (n+ 1)γ),

E
Fnγ

[∣∣∣∣
∫ t

nγ

M(x̄r, x̄nγ) dwr

∣∣∣∣
2
]
≤ Cγ2Vc(x̄nγ).

Proof. By using conditional Itô’s isometry and Lemma 2, one obtains,

E
Fnγ

[∣∣∣∣
∫ t

nγ

M(x̄r, x̄nγ) dwr

∣∣∣∣
2
]

≤ CE
Fnγ

[∫ t

nγ

|M(x̄r, x̄nγ)|2 dr

]

= CE
Fnγ

⎡
⎣∫ t

nγ

⎛
⎝ d∑

i,j=1

∣∣∣∣∣
d∑

k=1

∂3U(x̄nγ)

∂x(i)∂x(j)∂x(k)
(x̄(k)

r − x̄(k)
nγ )

∣∣∣∣∣
2
⎞
⎠ dr

⎤
⎦

≤ C

∫ t

nγ

E
Fnγ

[
(1 + |x̄nγ |)2(ρ−2+β)|x̄r − x̄nγ |2

]
dr

≤ Cγ2Vc(x̄nγ).

Lemma 6. Assume H1 and H2 are satisfied. Then, there exists a constant
C > 0 such that for all γ ∈ (0, 1), n ∈ N, and t ∈ [nγ, (n+ 1)γ),

E
Fnγ

[∫ t

nγ

(∇U(xr)−∇U(x̄r)) dr

∫ t

nγ

M(x̄r, x̄nγ) dwr

]
≤ Cγ3(Vc(x̄nγ) + Vc(xnγ)).

Proof. For any t ∈ [nγ, (n+ 1)γ), one observes that

E
Fnγ

[∫ t

nγ

(∇U(xr)−∇U(x̄r)) dr

∫ t

nγ

M(x̄r, x̄nγ) dwr

]

= E
Fnγ

[∫ t

nγ

{∇U(xr)−∇U(xnγ)− (∇U(x̄r)−∇U(x̄nγ))

−
√
2

∫ r

nγ

∇2U(xnγ) dws +
√
2

∫ r

nγ

∇2U(x̄nγ) dws

}
dr

∫ t

nγ

M(x̄r, x̄nγ) dwr

]

+
√
2EFnγ

[∫ t

nγ

∫ r

nγ

(∇2U(xnγ)−∇2U(x̄nγ)) dws dr

∫ t

nγ

M(x̄r, x̄nγ) dwr

]
.

(21)

The second term in (21) can be rewritten as

√
2EFnγ

[∫ t

nγ

∫ r

nγ

(∇2U(xnγ)−∇2U(x̄nγ)) dws dr

∫ t

nγ

M(x̄r, x̄nγ) dwr

]
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=
√
2EFnγ

[
d∑

i=1

∫ t

nγ

d∑
l=1

∫ r

nγ

(∇2U (i,l)(xnγ)−∇2U (i,l)(x̄nγ)) dw
(l)
s dr

×
d∑

j=1

∫ t

nγ

d∑
k=1

∂3U(x̄nγ)

∂x(i)∂x(j)∂x(k)

(
−
∫ r

nγ

∇Ũ (k)
γ (s, x̄nγ) ds+

√
2

∫ r

nγ

dw(k)
s

)
dw(j)

r

⎤
⎦

≤ Cγ3(Vc(xnγ) + Vc(x̄nγ)),

where the last inequality holds due to Cauchy-Schwarz inequality, Lemma 1,
Proposition 1, 2 and the fact that for any i, l, j, k = 1, . . . , d

E
Fnγ

[∫ t

nγ

∫ r

nγ

(∇2U (i,l)(xnγ)−∇2U (i,l)(x̄nγ)) dw
(l)
s dr

×
∫ t

nγ

∂3U(x̄nγ)

∂x(i)∂x(j)∂x(k)

∫ r

nγ

√
2 dw(k)

s dw(j)
r

]
= 0.

Then, to estimate the first term of (21), one applies Itô’s formula to ∇U(xr)
and ∇U(x̄r) to obtain, almost surely

∇U(xr)−∇U(xnγ)− (∇U(x̄r)−∇U(x̄nγ))

−
√
2

∫ r

nγ

∇2U(xnγ) dws +
√
2

∫ r

nγ

∇2U(x̄nγ) dws

= −
∫ r

nγ

(
∇2U(xs)∇U(xs)− �Δ(∇U)(xs)

)
ds

+
√
2

∫ r

nγ

(∇2U(xs)−∇2U(xnγ)) dws

+

∫ r

nγ

(
∇2U(x̄s)∇Ũγ(s, x̄nγ)− �Δ(∇U)(x̄s)

)
ds

−
√
2

∫ r

nγ

(∇2U(x̄s)−∇2U(x̄nγ)) dws.

(22)

By using Cauchy-Schwarz inequality and Lemma 5, equation (21) yields

E
Fnγ

[∫ t

nγ

(∇U(xr)−∇U(x̄r)) dr

∫ t

nγ

M(x̄r, x̄nγ) dwr

]

≤
√
Cγ2Vc(x̄nγ)

(
E

Fnγ

[
γ

∫ t

nγ

|∇U(xr)−∇U(xnγ)− (∇U(x̄r)−∇U(x̄nγ))

−
√
2

∫ r

nγ

∇2U(xnγ) dws +
√
2

∫ r

nγ

∇2U(x̄nγ) dws|2 dr
])1/2

+ Cγ3(Vc(x̄nγ) + Vc(xnγ)).

Then, by taking into consideration (22), and by applying Proposition 1 and 2,
one obtains

E
Fnγ

[∫ t

nγ

(∇U(xr)−∇U(x̄r)) dr

∫ t

nγ

M(x̄r, x̄nγ) dwr

]
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≤
√
Cγ2Vc(x̄nγ)

×
(
E

Fnγ

[
γ2

∫ t

nγ

∫ r

nγ

∣∣∣∇2U(xs)∇U(xs)− �Δ(∇U)(xs)
∣∣∣2 ds dr

])1/2

+
√
Cγ2Vc(x̄nγ)

×
(
E

Fnγ

[
γ2

∫ t

nγ

∫ r

nγ

∣∣∣∇2U(x̄s)∇Ũγ(s, x̄nγ)− �Δ(∇U)(x̄s)
∣∣∣2 ds dr

])1/2

+
√
Cγ2Vc(x̄nγ)

(
γ

∫ t

nγ

∫ r

nγ

E
Fnγ

[∣∣∇2U(xs)−∇2U(xnγ)
∣∣2] ds dr)1/2

+
√
Cγ2Vc(x̄nγ)

(
γ

∫ t

nγ

∫ r

nγ

E
Fnγ

[∣∣∇2U(x̄s)−∇2U(x̄nγ)
∣∣2] ds dr)1/2

+ Cγ3(Vc(x̄nγ) + Vc(xnγ))

≤
√
Cγ2Vc(x̄nγ)

(
γ

∫ t

nγ

∫ r

nγ

E
Fnγ

[
(1 + |xs|+ |xnγ |)2ρ−2|xs − xnγ |2

]
ds dr

)1/2

+
√

Cγ2Vc(x̄nγ)

(
γ

∫ t

nγ

∫ r

nγ

E
Fnγ

[
(1 + |x̄s|+ |x̄nγ |)2ρ−2|x̄s − x̄nγ |2

]
ds dr

)1/2

+ Cγ3(Vc(x̄nγ) + Vc(xnγ)).

Finally by using Cauchy-Schwarz inequality and Lemma 2, one obtains

E
Fnγ

[∫ t

nγ

(∇U(xr)−∇U(x̄r)) dr

∫ t

nγ

M(x̄r, x̄nγ) dwr

]
≤ Cγ3(Vc(x̄nγ) + Vc(xnγ)).

Proof of Theorem 1. For t > 0, consider the coupling{
xt = x0 −

∫ t

0
∇U(xr)dr +

√
2wt,

x̄t = x̄0 −
∫ t

0
∇Ũγ(r, x̄�r/γ�γ) dr +

√
2wt,

where −∇Ũγ(r, x̄�r/γ�γ) is defined in (16). Let (x0, x̄0) be distributed according

to ζ0, where ζ0 = π ⊗ δx for all x ∈ R
d. Define et = xt − x̄t, for all t ∈

[nγ, (n+ 1)γ), n ∈ N. By Itô’s formula, one obtains, almost surely,

|et|2 = |enγ |2 − 2

∫ t

nγ

es(∇U(xs)−∇Ũγ(s, x̄nγ)) ds.

Then, taking the expectation and taking the derivative on both sides yield

d

dt
E
[
|et|2

]
= −2E

[
et(∇U(xt)−∇Ũγ(t, x̄nγ))

]
= 2E [et(−(∇U(xt)−∇U(x̄t)))]



Higher order Langevin Monte Carlo algorithm 3825

+ 2E [et(−(∇U(x̄t)−∇U(x̄nγ)−∇U1,γ(t, x̄nγ)−∇U2,γ(t, x̄nγ)))]

+ 2E [et(−(∇U(x̄nγ)−∇Uγ(x̄nγ)))] ,

which implies by using H3 and |a||b| ≤ εa2 + (4ε)−1b2, ε > 0,

d

dt
E
[
|et|2

]
≤ (2ε)−1γ3

E
[
|∇U(x̄nγ)|5

]
− 2(m− ε)E

[
|et|2

]
+ 2E [et(−(∇U(x̄t)−∇U(x̄nγ)−∇U1,γ(t, x̄nγ)−∇U2,γ(t, x̄nγ)))] .

(23)

By applying Itô’s formula to ∇U(x̄t), and by calculating ∇U(x̄t)−∇U(x̄nγ)−
∇U1,γ(t, x̄nγ)−∇U2,γ(t, x̄nγ), one obtains (17). Substituting (17) into (23) gives

d

dt
E
[
|et|2

]
≤ (2ε)−1γ3

E
[
|∇U(x̄nγ)|5

]
− 2(m− ε)E

[
|et|2

]
+ 2E

[
|et||

∫ t

nγ

(∇2U(x̄r)−∇2U(x̄nγ))∇Uγ(x̄nγ) dr|
]

+ 2E

[
|et||

∫ t

nγ

∇2U(x̄r)(∇U1,γ(r, x̄nγ) +∇U2,γ(r, x̄nγ)) dr|
]

+ 2
√
2E

[
et

(
−
∫ t

nγ

(∇2U(x̄r)−∇2U(x̄nγ)) dwr

)]

+ 2E

[
|et||

∫ t

nγ

(�Δ(∇U)(x̄r)− �Δ(∇U)(x̄nγ)) dr|
]

+ 2E
[
|et|(|∇2U(x̄nγ)||∇U(x̄nγ)|2γ2 + |x̄nγ ||∇2U(x̄nγ)|2|∇U(x̄nγ)|2γ2

+γ3/2|x̄nγ ||�Δ(∇U)(x̄nγ)|2 +
√
2γ|∇2U(x̄nγ)|2(wt − wnγ))

]
.

By Young’s inequality and Cauchy-Schwarz inequality,

d

dt
E
[
|et|2

]
≤ J1(t) + J2(t), (24)

where

J1(t) = 2
√
2E

[
et

(
−
∫ t

nγ

(∇2U(x̄r)−∇2U(x̄nγ)) dwr

)]
,

and

J2(t)

= (2ε)−1γ3
E
[
|∇U(x̄nγ)|5

]
− 2(m− 5ε)E

[
|et|2

]
+ (2ε)−1γE

[∫ t

nγ

|(∇2U(x̄r)−∇2U(x̄nγ))∇Uγ(x̄nγ)|2 dr
]

+ (2ε)−1γE

[∫ t

nγ

|∇2U(x̄r)(∇U1,γ(r, x̄nγ) +∇U2,γ(r, x̄nγ))|2 dr
]
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+ (2ε)−1γE

[∫ t

nγ

|�Δ(∇U)(x̄r)− �Δ(∇U)(x̄nγ)|2 dr
]

+ 4(2ε)−1γ3
E
[
|∇2U(x̄nγ)|2|∇U(x̄nγ)|4 + |x̄nγ |2|∇2U(x̄nγ)|4|∇U(x̄nγ)|4

+|x̄nγ |2|�Δ(∇U)(x̄nγ)|4 + 2|∇2U(x̄nγ)|4
]
.

By taking ε = m
12 , and by using the results form (18)–(20) in Lemma 3, one

obtains

J2(t) ≤ Cγ2+β
E [Vc(x̄nγ)]−

7

6
mE
[
|et|2

]
, (25)

where β = (0, 1]. Moreover, one can rewrite J1(t) as follows

J1(t) = −2
√
2E

[
et

∫ t

nγ

(∇2U(x̄r)−∇2U(x̄nγ)−M(x̄r, x̄nγ)) dwr

]

− 2
√
2E

[
(et − enγ)

∫ t

nγ

M(x̄r, x̄nγ) dwr

]

− 2
√
2E

[
enγ

∫ t

nγ

M(x̄r, x̄nγ) dwr

]
,

which implies due to Young’s inequality, Lemma 4, 2 and the fact that the last
term above is zero,

J1(t) ≤ 2εE
[
|et|2

]
+ Cγ2+β

E [Vc(x̄nγ)]

+ 2
√
2E

[∫ t

nγ

(∇U(xr)−∇Ũγ(r, x̄nγ)) dr

∫ t

nγ

M(x̄r, x̄nγ) dwr

]
.

It can be further rewritten as

J1(t) ≤ 2εE
[
|et|2

]
+ Cγ2+β

E [Vc(x̄nγ)]

+ 2
√
2E

[∫ t

nγ

(∇U(xr)−∇U(x̄r)) dr

∫ t

nγ

M(x̄r, x̄nγ) dwr

]

+ 2
√
2E

[∫ t

nγ

(∇U(x̄r)−∇U(x̄nγ)−∇U1,γ(r, x̄nγ)−∇U2,γ(r, x̄nγ)) dr

×
∫ t

nγ

M(x̄r, x̄nγ) dwr

]

+ 2
√
2E

[∫ t

nγ

(∇U(x̄nγ)−∇Uγ(x̄nγ)) dr

∫ t

nγ

M(x̄r, x̄nγ) dwr

]
,

which, by using Cauchy-Schwarz inequality, Remark 2, Lemma 6, 3 and 5, yields

J1(t) ≤ 2εE
[
|et|2

]
+ Cγ2+β

E [Vc(xnγ) + Vc(x̄nγ)] (26)

Substituting (26) and (25) into (24) with ε = m
12 , one obtains the following

result,

d

dt
E
[
|et|2

]
≤ −mE

[
|et|2

]
+ Cγ2+β

E [Vc(xnγ) + Vc(x̄nγ)] .
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The application of Gronwall’s lemma yields

E
[
|et|2

]
≤ e−m(t−nγ)

E
[
|enγ |2

]
+ Cγ3+β

E [Vc(xnγ) + Vc(x̄nγ)] .

Finally, by induction, Proposition 1 and 2, one obtains

E
[
|e(n+1)γ |2

]
≤ e−mγ(n+1)

E
[
|e0|2

]
+ Cγ3+β

n∑
k=0

E [Vc(x̄kγ) + Vc(xkγ)] e
−mγ(n−k)

≤ e−mγ(n+1)
E
[
|x0 − x̄0|2

]
+

3bC

7c2m
e(

7
3 c

2+m)γγ2+β

+
C

m
γ2+β(E [Vc(x0)] + ba)e

mγ

+ Cγ3+β
E [Vc(x̄0)]

n∑
k=0

e−
7
3 c

2γk−mγ(n−k),

where the last inequality holds by using 1−e−mγ ≥ mγe−mγ , and this indicates
(see Appendix C for a detailed proof)

E
[
|e(n+1)γ |2

]
≤ e−mγ(n+1)

E
[
|x0 − x̄0|2

]
+ Cγ2+β . (27)

Note that (x0, x̄0) is distributed according to ζ0, then (5) can be obtained by
using Theorem 1 in [6] and the triangle inequality.

4.3. Proof of Theorem 2

By applying the following lemma, one can show that without using H3, the rate
of convergence in total variation norm is of order 1, which is properly stated in
Theorem 2.

Lemma 7. Asuume H1 and H2 are satisfied. Let p ∈ N and ν0 be a probability
measure on (Rd,B(Rd)). There exists C > 0 such that for all γ ∈ (0, 1)

KL(ν0R
p
γ |ν0Ppγ) ≤ Cγ3

∫
Rd

p−1∑
i=0

(∫
Rd

Vc(z)R
i
γ(y, dz)

)
ν0(dy).

Proof. Denote by μy
p and μ̄y

p the laws on C([0, pγ],Rd) of the SDE (1) and of

the linear interpolation (16) of the scheme both started at y ∈ R
d. Denote by

(Ft)t≥0 the filtration associated with (wt)t≥0, and by (xt, x̄t)t≥0 the unique
strong solution of {

dxt = −∇U(xt)dt+
√
2dwt,

dx̄t = −∇Ũγ(t, x̄�t/γ�γ) dt+
√
2wt,

(28)

where −∇Ũγ(t, x̄�t/γ�γ) is defined in (16). Then, by taking into consideration
Definition 7 concerning diffusion type processes and Lemma 4.9 which refers
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to their representations in section 4.2 from [17], Theorem 7.19 in [17] can be
applied to obtain the Radon-Nikodym derivative of μy

p w.r.t. μ̄y
p, i.e.

dμy
p

dμ̄y
p
((x̄t)t∈[0,pγ]) = exp

(
1

2

∫ pγ

0

(−∇U(x̄s) +∇Ũγ(s, x̄�s/γ�γ))dx̄s

−1

4

∫ pγ

0

(
|∇U(x̄s)|2 − |∇Ũγ(s, x̄�s/γ�γ)|2

)
ds

)
.

(29)

Note that the assumptions of Theorem 7.19 in [17] are satisfied due to proposi-
tion 1 and 2. By using (29), one obtains

KL(μ̄y
p|μy

p) = Ey

(
− log

(
dμy

p

dμ̄y
p
((x̄t)t∈[0,pγ])

))

=
1

4

∫ pγ

0

Ey

(∣∣∣∇U(x̄s)−∇Ũγ(s, x̄�s/γ�γ)
∣∣∣2) ds

=
1

4

p−1∑
i=0

∫ (i+1)γ

iγ

Ey

(∣∣∣∇U(x̄s)−∇Ũγ(s, x̄iγ)
∣∣∣2) ds

≤ 1

2

p−1∑
i=0

∫ (i+1)γ

iγ

Ey

(
E

Fiγ (|∇U(x̄s)−∇U(x̄iγ)

−∇U1,γ(s, x̄iγ)−∇U2,γ(s, x̄iγ)|2
))

ds

+
1

2

p−1∑
i=0

∫ (i+1)γ

iγ

Ey

(
E

Fiγ

(
|∇U(x̄iγ)−∇Uγ(x̄iγ)|2

))
ds

≤ Cγ3

p−1∑
i=0

Ey (Vc(x̄iγ)) ,

where the last inequality holds due to Lemma 3. Then, by Theorem 4.1 in [14],
it follows that

KL(δyR
p
γ |δyPpγ) ≤ KL(μ̄y

p|μy
p) ≤ Cγ3

p−1∑
i=0

Ey (Vc(x̄iγ)) .

Finally, applying the tower property yields the desired result,

KL(ν0R
p
γ |ν0Ppγ) ≤ Cγ3

p−1∑
i=0

E (Ey (Vc(x̄iγ)))

= Cγ3

∫
Rd

p−1∑
i=0

(∫
Rd

Vc(z)R
i
γ(y, dz)

)
ν0(dy).

Proof of Theorem 2. The proof follows along the same lines as the proof of
Theorem 4 in [1], but for the completeness, the details are given below.
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By Proposition 1, for all n ∈ N and x ∈ R
d, we have

‖δxRn
γ − π‖

V
1/2
c

≤ ‖δxPnγ − π‖
V

1/2
c

+ ‖δxRn
γ − δxPnγ‖V 1/2

c

≤ Cc/2ρ
nγ
c/2V

1/2
c (x) + ‖δxRn

γ − δxPnγ‖V 1/2
c

.

Denote by kγ = �γ−1	, and by qγ , rγ the quotient and the remainder of the
Euclidian division of n by kγ , i.e. n = qγkγ + rγ . Then,

‖δxRn
γ − δxPnγ‖V 1/2

c
≤ I1 + I2,

where

I1 = ‖δxRqγkγ
γ Prγγ − δxR

n
γ‖V 1/2

c

I2 =

qγ∑
i=1

‖δxR(i−1)kγ
γ P(n−(i−1)kγ)γ − δxR

ikγ
γ P(n−ikγ)γ‖V 1/2

c

≤
qγ∑
i=1

Cc/2ρ
(n−ikγ)γ

c/2 ‖δxR(i−1)kγ
γ Pkγγ − δxR

ikγ
γ ‖

V
1/2
c

By applying Lemma 24 in [7] to I1, we have

‖δxRqγkγ
γ Prγγ − δxR

n
γ‖2V 1/2

c
≤ 2
(
δxR

qγkγ
γ Prγγ(Vc) + δxR

n
γ (Vc)

)
×KL(δxR

n
γ |δxRqγkγ

γ Prγγ). (30)

Then, by Proposition 2 and Lemma 7, one obtains

KL(δxR
n
γ |δxRqγkγ

γ Prγγ) ≤ Cγ3

rγ−1∑
j=0

∫
Rd

Vc(z)δxR
qγkγ+j
γ (dz)

≤ Cγ3(1 + γ−1)

(
e−

7
3 c

2qγkγγVc(x) +
3b

7c2
e

7
3 c

2γ

)
,

(31)

where the last inequality holds since rγ ≤ kγ ≤ 1 + γ−1. Furthermore, by
Proposition 1 and Proposition 2,

δxR
qγkγ
γ Prγγ(Vc) + δxR

n
γ (Vc) ≤ 2

(
e−

7
3 c

2qγkγγVc(x) +
3b

7c2
e

7
3 c

2γ + bc

)
. (32)

Substituting (31) and (32) into (30) yields

I1 ≤ 2C1/2γ3/2(1 + γ−1)1/2
(
e−

7
3 c

2qγkγγVc(x) +
3b

7c2
e

7
3 c

2γ + bc

)
≤ C(λnγVc(x) + γ),

where λ ∈ (0, 1). By using similar arguments to I2, one obtains (6).
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5. Lipschitz case

In the context of a Lipschitz gradient, assume H3–H6 hold. Then, by H4 and
H5, one obtains, for any x, y ∈ R

d

|∇2U(x)y| ≤ L1|y|, |�Δ(∇U(x))| ≤ dL2. (33)

One also notice that by [23, Theorem 2.1.12], underH3 andH4, for all x, y ∈ R
d,

(x− y) (∇U(x)−∇U(y)) ≥ m̃|x− y|2 + 1

m+ L1
|∇U(x)−∇U(y)|2, (34)

where we have set

m̃ =
mL1

m+ L1
. (35)

The linear interpolation of the algorithm (8) becomes

x̃t = x̃0 −
∫ t

0

∇Ũ(s, x̃�s/γ�γ) ds+
√
2wt, (36)

for all t ≥ 0, where

∇Ũ(s, x̃�s/γ�γ) = ∇U(x̃�s/γ�γ) +∇U1(s, x̃�s/γ�γ) +∇U2(s, x̃�s/γ�γ),

with

∇U1(s, x̃�s/γ�γ)

= −
∫ s

�s/γ�γ

(
∇2U(x̃�s/γ�γ)∇U(x̃�s/γ�γ)− �Δ(∇U)(x̃�s/γ�γ)

)
dr,

and

∇U2(s, x̃�s/γ�γ) =
√
2

∫ s

�s/γ�γ
∇2U(x̃�s/γ�γ) dwr.

One notes that for any n ∈ N, X̃n = x̃nγ .

5.1. Moment bounds

Proposition 3. Assume H3–H6 are satisfied. Let x∗ be the unique minimizer

of U . Then, for all x ∈ R
d, γ ∈

(
0, 1

m̃ ∧ 8m̃2

m(2L2
1+7m̃L1)

)
and n ∈ N,

E
F0 |x̃(n+1)γ − x∗|2 ≤ (1− m̃γ)n+1|x̃0 − x∗|2 + q1

m̃
,

where q1 =
(

L2
2

2m̃ +
3L2

2

2

)
d2 + (4L2

1 + 4)d and m̃ is given in (35).
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Proof. Denote by

Δn = x̃nγ − x∗ −∇U(x̃nγ)γ +
γ2

2

(
∇2U(x̃nγ)∇U(x̃nγ)− �Δ(∇U)(x̃nγ)

)
,

where x∗ is the unique minimizer of U and one calculates

E
Fnγ |x̃(n+1)γ − x∗|2

= E
Fnγ

∣∣∣∣∣Δn −
√
2

∫ (n+1)γ

nγ

∫ r

nγ

∇2U(x̃nγ) dws dr +
√
2

∫ (n+1)γ

nγ

dwr

∣∣∣∣∣
2

= |Δn|2 + 4EFnγ

∣∣∣∣∣
∫ (n+1)γ

nγ

∫ r

nγ

∇2U(x̃nγ) dws dr

∣∣∣∣∣
2

+ 4dγ

≤ |Δn|2 + 4γ3L2
1d+ 4γd,

(37)

where the last inequality holds due to (33). Then, by using (33), (34) and the

strong convexity condition of U , one obtains, for γ ∈
(
0, 1

m̃ ∧ 8m̃2

m(2L2
1+7m̃L1)

)
and

n ∈ N,

|Δn|2

= |x̃nγ − x∗|2 +
∣∣∣∣−∇U(x̃nγ)γ +

γ2

2

(
∇2U(x̃nγ)∇U(x̃nγ)− �Δ(∇U)(x̃nγ)

)∣∣∣∣
2

+ 2(x̃nγ − x∗)

(
−∇U(x̃nγ)γ +

γ2

2

(
∇2U(x̃nγ)∇U(x̃nγ)− �Δ(∇U)(x̃nγ)

))

≤ (1− 2m̃γ)|x̃nγ − x∗|2 − 2γ

m+ L1
|∇U(x̃nγ)−∇U(x∗)|2

+ m̃γ|x̃nγ − x∗|2 + γ3

4m̃

∣∣∣∇2U(x̃nγ)∇U(x̃nγ)− �Δ(∇U)(x̃nγ)
∣∣∣2

+ γ2|∇U(x̃nγ)−∇U(x∗)|2 + γ4

4

∣∣∣∇2U(x̃nγ)∇U(x̃nγ)− �Δ(∇U)(x̃nγ)
∣∣∣2

+ γ3∇U(x̃nγ)�Δ(∇U)(x̃nγ),

which by using (a+ b)2 ≤ 2a2 + 2b2 and 2ab ≤ a2 + b2 for a, b ≥ 0 yield

|Δn|2 ≤ (1− m̃γ)|x̃nγ − x∗|2

+

(
− 2γ

m+ L1
+

5γ2

4
+

γ3L2
1

2m̃
+

γ4L2
1

2

)
|∇U(x̃nγ)−∇U(x∗)|2

+
γ3L2

2

2m̃
d2 +

γ4L2
2

2
d2 + γ4L2

2d
2

≤ (1− m̃γ)|x̃nγ − x∗|2 + γ3

(
L2
2

2m̃
+

3L2
2

2

)
d2, (38)

where m̃ is defined in (35). Substituting the above upper bound into (37) yields

E
Fnγ |x̃(n+1)γ − x∗|2 ≤ (1− m̃γ)|x̃nγ − x∗|2 + γq1,
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where q1 =
(

L2
2

2m̃ +
3L2

2

2

)
d2 + (4L2

1 + 4)d, and the result can be obtained by

induction.

Proposition 4. Assume H3–H6 are satisfied. Let x∗ be the unique minimizer

of U . Then, for all x ∈ R
d, γ ∈

(
0, 1

m̃ ∧ 8m̃2

m(2L2
1+7m̃L1)

)
,

E
F0 |x̃(n+1)γ − x∗|4 ≤

(
1− m̃γ

8

)n+1

|x̃0 − x∗|4 + 8q2
m̃

,

where q2 =
(
2 + 8

m̃γ

)(
L2

2

2m̃ +
3L2

2

2

)2
d4 +32γ

(
1 + 42

m̃

)
(L4

1 +3)d2 and m̃ is given

in (35).

Proof. Denote by

Δn = x̃nγ − x∗ −∇U(x̃nγ)γ +
γ2

2

(
∇2U(x̃nγ)∇U(x̃nγ)− �Δ(∇U)(x̃nγ)

)
,

and

Δ̃n+1 = −
√
2

∫ (n+1)γ

nγ

∫ r

nγ

∇2U(x̃nγ) dws dr +
√
2

∫ (n+1)γ

nγ

dwr.

One obtains by using Jensen’s inequality

E
Fnγ |x̃(n+1)γ − x∗|4 (39)

= E
Fnγ

∣∣∣Δn + Δ̃n+1

∣∣∣4
= E

Fnγ

(
|Δn|2 + 2ΔnΔ̃n+1 + |Δ̃n+1|2

)2
= E

Fnγ

(
|Δn|4 + 4ΔnΔ̃n+1|Δn|2 + 2|Δn|2|Δ̃n+1|2 + 4|ΔnΔ̃n+1|2 (40)

+4ΔnΔ̃n+1|Δ̃n+1|2 + |Δ̃n+1|4
)

≤ |Δn|4 + 6|Δn|2EFnγ |Δ̃n+1|2 + E
Fnγ |Δ̃n+1|4 + 4|Δn|EFnγ |Δ̃n+1|3

≤
(
1 +

m̃γ

2

)
|Δn|4 +

36

m̃γ

(
E

Fnγ |Δ̃n+1|2
)2

+

(
1 +

6

m̃γ

)
E

Fnγ |Δ̃n+1|4

≤
(
1 +

m̃γ

2

)
|Δn|4 + 32γ

(
1 +

42

m̃

)
(L4

1 + 3)d2. (41)

Then, by using (38) and the inequality (a + b)2 ≤ (1 + ε)a2 + (1 + ε−1)b2, for

any a, b ≥ 0, ε > 0, one obtains, for γ ∈
(
0, 1

m̃ ∧ 8m̃2

m(2L2
1+7m̃L1)

)
,

E
Fnγ |x̃(n+1)γ − x∗|4

≤
(
1 +

m̃γ

2

)(
(1− m̃γ)|x̃nγ − x∗|2 + γ3

(
L2
2

2m̃
+

3L2
2

2

)
d2
)2
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+ 32γ

(
1 +

42

m̃

)
(L4

1 + 3)d2

≤
(
1 +

m̃γ

2

)(
1 +

m̃γ

4

)
(1− m̃γ)|x̃nγ − x∗|4

+

(
1 +

m̃γ

2

)(
1 +

4

m̃γ

)
γ6

(
L2
2

2m̃
+

3L2
2

2

)2

d4

+ 32γ

(
1 +

42

m̃

)
(L4

1 + 3)d2

≤
(
1− m̃γ

8

)
|x̃nγ − x∗|4 + γ6

(
2 +

8

m̃γ

)(
L2
2

2m̃
+

3L2
2

2

)2

d4

+ 32γ

(
1 +

42

m̃

)
(L4

1 + 3)d2,

which implies

E
Fnγ |x̃(n+1)γ − x∗|4 ≤

(
1− m̃γ

8

)
|x̃nγ − x∗|4 + γq2, (42)

where q2 =
(
2 + 8

m̃

) ( L2
2

2m̃ +
3L2

2

2

)2
d4+32

(
1 + 42

m̃

)
(L4

1+3)d2. The desired result

follows by induction.

5.2. Proof of Theorem 3

The explicit constants for the second and the fourth moments are obtained,
then by using the following lemmas, one can show the rate of convergence in
Wasserstein distance.

Lemma 8. Assume H3–H6 are satisfied. Let γ ∈
(
0, 1

m̃ ∧ 8m̃2

m(2L2
1+7m̃L1)

)
.

Then, for all n ∈ N, and t ∈ [nγ, (n+ 1)γ),

E
Fnγ

[
|∇U1(t, x̃nγ)|2

]
≤ 2γ2(L4

1|x̃nγ − x∗|2 + d2L2
2),

E
Fnγ

[
|∇U1(t, x̃nγ)|4

]
≤ 8γ4(L8

1|x̃nγ − x∗|4 + d4L4
2),

E
Fnγ

[
|∇U2(t, x̃nγ)|2

]
≤ 2γdL2

1, E
Fnγ

[
|∇U2(t, x̃nγ)|4

]
≤ 12L4

1d
2γ2.

Proof. The proof is straightforward by using (33).

Lemma 9. Assume H3–H6 are satisfied. Let γ ∈
(
0, 1

m̃ ∧ 8m̃2

m(2L2
1+7m̃L1)

)
.

Then, for all n ∈ N, and t ∈ [nγ, (n+ 1)γ),

E
Fnγ

[
|x̃t − x̃nγ |2

]
≤ γ(c1|x̃nγ − x∗|2 + c2),

where c1 =
5L2

1

4 +
L4

1

2 and c2 =
3L2

2

2 d2 + 4L2
1d+ 4d,

E
Fnγ

[
|x̃t − x̃nγ |4

]
≤ γ2(c3|x̃nγ − x∗|4 + c4),
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where c3 = 9
(

25
16L

4
1 +

L8
1

4

)
and c4 =

81L4
2

4 d4 + 416(L4
1 + 3)d2, and

E
Fnγ

[
|xt − xnγ |2

]
≤ 2γ2L2

1|xnγ − x∗|2 + 4γ3L2
1d+ 4γd.

Proof. One observes that

E
Fnγ |x̃t − x̃nγ |2

=

∣∣∣∣−∇U(x̃nγ)(t− nγ) +
(t− nγ)2

2

(
∇2U(x̃nγ)∇U(x̃nγ)− �Δ(∇U)(x̃nγ)

)∣∣∣∣
2

+ 4EFnγ

∣∣∣∣
∫ t

nγ

∫ r

nγ

∇2U(x̃nγ) dws dr

∣∣∣∣
2

+ 4d(t− nγ)

≤ |∇U(x̃nγ)−∇U(x∗)|2γ2 +
γ4

4
|∇2U(x̃nγ)∇U(x̃nγ)− �Δ(∇U)|2

+ γ3∇U �Δ(∇U) + 4γ3dL2
1 + 4dγ

≤
(
5γ2

4
+

γ4L2
1

2

)
|∇U(x̃nγ)−∇U(x∗)|2 + γ2L2

2

2
d2 + γ4L2

2d
2 + 4γ3L2

1d+ 4γd

(43)

≤ γ(c1|x̃nγ − x∗|2 + c2),

where c1 =
5L2

1

4 +
L4

1

2 and c2 =
3L2

2

2 d2 + 4L2
1d+ 4d. Then, denote by

Δ̄n = −∇U(x̃nγ)(t− nγ) +
(t− nγ)2

2

(
∇2U(x̃nγ)∇U(x̃nγ)− �Δ(∇U)(x̃nγ)

)
and recall

Δ̃t = −
√
2

∫ t

nγ

∫ r

nγ

∇2U(x̃nγ) dws dr +
√
2

∫ t

nγ

dwr.

Notice that |Δ̄n|2 ≤ γ((
5L2

1

4 +
L4

1

2 )|x̃nγ − x∗|2 +
3L2

2

2 d2) by equation (43), and
then one calculates

E
Fnγ |x̃t − x̃nγ |4

= E
Fnγ |Δ̄n + Δ̃t|4

= E
Fnγ

(
|Δ̄n|2 + 2Δ̄nΔ̃t + |Δ̃t|2

)2
≤ |Δ̄n|4 + 6|Δ̄n|2EFnγ |Δ̃t|2 + E

Fnγ |Δ̃t|4 + 4|Δ̄n|EFnγ |Δ̃t|3

≤ 3|Δ̄n|4 + 13EFnγ |Δ̃t|4

≤ 9γ2

(
25

16
L4
1 +

L8
1

4

)
|x̃nγ − x∗|4 + γ2 81L

4
2

4
d4 + 416γ2(L4

1 + 3)d2

≤ γ2(c3|x̃nγ − x∗|4 + c4),
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where c3 = 9
(

25
16L

4
1 +

L8
1

4

)
and c4 =

81L4
2

4 d4 + 416(L4
1 + 3)d2. As for the third

result, consider

E
Fnγ

[
|xt − xnγ |2

]
= E

Fnγ

[∣∣∣∣−
∫ t

nγ

∇U(xr) dr +
√
2

∫ t

nγ

dwr

∣∣∣∣
2
]

≤ 2γL2
1

∫ t

nγ

E
Fnγ |xr − x∗|2 dr + 4γd

≤ 2γ2L2
1|xnγ − x∗|2 + 4γ3L2

1d+ 4γd,

where the last inequality holds by using Theorem 1 in [6].

Lemma 10. Assume H3–H6 are satisfied. Let γ ∈
(
0, 1

m̃ ∧ 8m̃2

m(2L2
1+7m̃L1)

)
.

Then, for all n ∈ N, and t ∈ [nγ, (n+ 1)γ),

E
Fnγ

[
|∇U(x̃t)−∇U(x̃nγ)−∇U1(t, x̃nγ)−∇U2(t, x̃nγ)|2

]
≤ γ2(c5|x̃nγ − x∗|4 + c6|x̃nγ − x∗|2 + c7),

where c5, c6 and c7 are given explicitly in the proof.

Proof. For any t ∈ [nγ, (n+ 1)γ), applying Itô’s formula to ∇U(x̃t)−∇U(x̃nγ)
gives, almost surely

∇U(x̃t)−∇U(x̃nγ)−∇U1(t, x̃nγ)−∇U2(t, x̃nγ)

= −
∫ t

nγ

(
∇2U(x̃r)−∇2U(x̃nγ)

)
∇U(x̃nγ) dr

−
∫ t

nγ

∇2U(x̃r) (∇U1(r, x̃nγ) +∇U2(r, x̃nγ)) dr

+
√
2

∫ t

nγ

(
∇2U(x̃r)−∇2U(x̃nγ)

)
dwr

+

∫ t

nγ

(
�Δ(∇U)(x̃r)− �Δ(∇U)(x̃nγ)

)
dr

(44)

Then, squaring both sides and taking conditional expectation gives

E
Fnγ

[
|∇U(x̃t)−∇U(x̃nγ)−∇U1(t, x̃nγ)−∇U2(t, x̃nγ)|2

]
≤ 4

4∑
i=1

Ḡi(t).

(45)
By using Cauchy-Schwarz inequality, H4, H5 and Lemma 9, one obtains

Ḡ1(t) ≤ γ

∫ t

nγ

E
Fnγ

[
|(∇2U(x̃r)−∇2U(x̃nγ))∇U(x̃nγ)|2

]
dr

≤ γL2
1L

2
2|x̃nγ − x∗|2

∫ t

nγ

E
Fnγ |x̃r − x̃nγ |2 dr

≤ γ3(c1L
2
1L

2
2|x̃nγ − x∗|4 + c2L

2
1L

2
2|x̃nγ − x∗|2).
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Similarly, by Cauchy-Schwarz inequality, (33) and Lemma 8, we have

Ḡ2(t) ≤ γ

∫ t

nγ

E
Fnγ

[
|∇2U(x̃r)(∇U1(r, x̃nγ) +∇U2(r, x̃nγ))|2

]
dr

≤ 2γL2
1

∫ t

nγ

E
Fnγ

[
|∇U1(r, x̃nγ)|2 + |∇U2(r, x̃nγ)|2

]
dr

≤ 2γ2L2
1(2γ

2(L4
1|x̃nγ − x∗|2 + d2L2

2) + 2γdL2
1)

≤ γ3(4γL6
1|x̃nγ − x∗|2 + 4γL2

1L
2
2d

2 + 4dL4
1).

Moreover, applying Cauchy-Schwarz inequality, H5 and Lemma 9 yields

Ḡ3(t) = 2

∫ t

nγ

E
Fnγ

[
|∇2U(x̃r)−∇2U(x̃nγ)|2F

]
dr

≤ 2dL2
2

∫ t

nγ

E
Fnγ |x̃r − x̃nγ |2 dr

≤ γ2(2L2
2dc1|x̃nγ − x∗|2 + 2L2

2dc2).

Furthermore, one obtains by using Cauchy-Schwarz inequality, H6 and Lemma
9

Ḡ4(t) ≤ γ

∫ t

nγ

E
Fnγ

[∣∣∣�Δ(∇U)(x̃r)− �Δ(∇U)(x̃nγ)
∣∣∣2] dr

≤ d3/2Lγ

∫ t

nγ

E
Fnγ |x̃r − x̃nγ |2 dr

≤ γ3(d3/2Lc1|x̃nγ − x∗|2 + d3/2Lc2).

The proof completes by substituting all the estimates above into (45), i.e.

E
Fnγ

[
|∇U(x̃t)−∇U(x̃nγ)−∇U1(t, x̃nγ)−∇U2(t, x̃nγ)|2

]
≤ γ2(c5|x̃nγ − x∗|4 + c6|x̃nγ − x∗|2 + c7),

where c5 = 4c1L
2
1L

2
2, c6 = 4(L2

1L
2
2c2 + Lc1d

3/2 + 2L2
2c1d + 4L6

1) and c7 =
4(Lc2d

3/2 + 2L2
2c2d+ 4L2

1L
2
2d

2 + 4L4
1d).

Lemma 11. Assume H3–H6 are satisfied. Let γ ∈
(
0, 1

m̃ ∧ 8m̃2

m(2L2
1+7m̃L1)

)
.

Then, for all n ∈ N, and t ∈ [nγ, (n+ 1)γ),

E
Fnγ

[∫ t

nγ

(∇U(xr)−∇U(x̃r)) dr

∫ t

nγ

(∇2U(x̃r)−∇2U(x̃nγ)) dwr

]
≤ γ3(c8|xnγ − x∗|2 + c9|x̃nγ − x∗|2 + c10),

where the constants c8, c9 and c10 are given explicitly in the proof.
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Proof. The proof follows the same lines as in Lemma 6 with
∫ t

nγ
M(x̃r, x̃nγ) dwr

replaced by
∫ t

nγ
(∇2U(x̃r) − ∇2U(x̃nγ)) dwr, thus, the main focus here is to

provide explicit constants. For any t ∈ [nγ, (n+ 1)γ), one observes that

E
Fnγ

[∫ t

nγ

(∇U(xr)−∇U(x̃r)) dr

∫ t

nγ

(∇2U(x̃r)−∇2U(x̃nγ)) dwr

]

= E
Fnγ

[∫ t

nγ

{∇U(xr)−∇U(xnγ)− (∇U(x̃r)−∇U(x̃nγ))

−
√
2

∫ r

nγ

∇2U(xnγ) dws +
√
2

∫ r

nγ

∇2U(x̃nγ) dws

}
dr

×
∫ t

nγ

(∇2U(x̃r)−∇2U(x̃nγ)) dwr

]

+
√
2EFnγ

[∫ t

nγ

∫ r

nγ

(∇2U(xnγ)−∇2U(x̃nγ)) dws dr

×
∫ t

nγ

(∇2U(x̃r)−∇2U(x̃nγ)) dwr

]
.

(46)

By applying Itô’s formula to ∇2U(x̃r), the second term in (46) can be estimated
as

√
2EFnγ

[∫ t

nγ

∫ r

nγ

(∇2U(xnγ)−∇2U(x̃nγ)) dws dr∫ t

nγ

(∇2U(x̃r)−∇2U(x̃nγ)) dwr

]

=
√
2EFnγ

[
d∑

i=1

(∫ t

nγ

d∑
l=1

∫ r

nγ

(∇2U (i,l)(xnγ)−∇2U (i,l)(x̃nγ)) dw
(l)
s dr

)

×

⎛
⎝ d∑

j=1

∫ t

nγ

(
−
∫ r

nγ

d∑
k=1

∂3U(x̃s)

∂x(i)∂x(j)∂x(k)
∇Ũ (k)(s, x̃nγ) ds

+

∫ r

nγ

d∑
k=1

∂4U(x̃s)

∂x(i)∂x(j)∂x(k)∂x(k)
ds+

√
2

∫ r

nγ

d∑
k=1

∂3U(x̃s)

∂x(i)∂x(j)∂x(k)
dw(k)

s

)
dw(j)

r

)]

≤ 1

2

d∑
i=1

E
Fnγ

∣∣∣∣∣
∫ t

nγ

d∑
l=1

∫ r

nγ

(∇2U (i,l)(xnγ)−∇2U (i,l)(x̃nγ)) dw
(l)
s dr

∣∣∣∣∣
2

+

d∑
i=1

E
Fnγ

∣∣∣∣∣∣
d∑

j=1

∫ t

nγ

(
−
∫ r

nγ

d∑
k=1

∂3U(x̃s)

∂x(i)∂x(j)∂x(k)
∇Ũ (k)(s, x̃nγ) ds

+

∫ r

nγ

d∑
k=1

∂4U(x̃s)

∂x(i)∂x(j)∂x(k)∂x(k)
ds

)
dw(j)

r

∣∣∣∣∣
2
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≤ 2L2
2|xnγ − x∗|2dγ3

+ γ3((2L2
2 + 6L2

1L
2
2 + 12L4

1L
2
2)d|x̃nγ − x∗|2 + 2L2d4 + 12L4

2d
3 + 12L2

1L
2
2d

2),
(47)

where the first inequality holds due to Young’s inequality and the fact that for
any i, l, j, k = 1, . . . , d

E
Fnγ

[∫ t

nγ

∫ r

nγ

(∇2U (i,l)(xnγ)−∇2U (i,l)(x̃nγ)) dw
(l)
s dr

∫ t

nγ

∫ r

nγ

√
2

∂3U(x̃s)

∂x(i)∂x(j)∂x(k)
dw(k)

s dw(j)
r

]
= 0,

while the last inequality holds due to Young’s inequality, results in Appendix D
and E, and Lemma 8. By using Cauchy-Schwarz inequality, (46) becomes

E
Fnγ

[∫ t

nγ

(∇U(xr)−∇U(x̃r)) dr

∫ t

nγ

(∇2U(x̃r)−∇2U(x̃nγ)) dwr

]

≤

√
EFnγ

∣∣∣∣
∫ t

nγ

(∇2U(x̃r)−∇2U(x̃nγ)) dwr

∣∣∣∣
2(

E
Fnγ

[
γ

∫ t

nγ

|∇U(xr)−∇U(xnγ)

− (∇U(x̃r)−∇U(x̃nγ))−
√
2

∫ r

nγ

∇2U(xnγ) dws

+
√
2

∫ r

nγ

∇2U(x̃nγ) dws|2 dr
])1/2

+ 2L2
2|xnγ − x∗|2dγ3

+ γ3((2L2
2 + 6L2

1L
2
2 + 12L4

1L
2
2)d|x̃nγ − x∗|2 + 2L2d4 + 12L4

2d
3 + 12L2

1L
2
2d

2).

Then, to estimate the first term of (46), one applies Itô’s formula to ∇U(xr)−
∇U(xnγ) and ∇U(x̃r)−∇U(x̃nγ) to obtain, almost surely(

E
Fnγ

[
γ

∫ t

nγ

|∇U(xr)−∇U(xnγ)− (∇U(x̃r)−∇U(x̃nγ))

−
√
2

∫ r

nγ

∇2U(xnγ) dws +
√
2

∫ r

nγ

∇2U(x̃nγ) dws|2 dr
])1/2

≤ 2

(
E

Fnγ

[
γ2

∫ t

nγ

∫ r

nγ

∣∣∣∇2U(xs)∇U(xs)− �Δ(∇U)(xs)
∣∣∣2 ds dr

]

+ E
Fnγ

[
γ2

∫ t

nγ

∫ r

nγ

∣∣∣∇2U(x̃s)∇Ũ(s, x̃nγ)− �Δ(∇U)(x̃s)
∣∣∣2 ds dr

]

+ 2dγ

∫ t

nγ

∫ r

nγ

E
Fnγ

[∣∣∇2U(xs)−∇2U(xnγ)
∣∣2] ds dr

+2dγ

∫ t

nγ

∫ r

nγ

E
Fnγ

[∣∣∇2U(x̃s)−∇2U(x̃nγ)
∣∣2] ds dr)1/2
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≤ 2

(
γ2

∫ t

nγ

∫ r

nγ

E
Fnγ

[
2L4

1|xs − x∗|2 + 2L2
2d

2
]
ds dr

+ γ2

∫ t

nγ

∫ r

nγ

E
Fnγ

[
2L2

1

∣∣∣∇Ũ(s, x̃nγ)
∣∣∣2 + 2L2

2d
2

]
ds dr

+ 2dγ

∫ t

nγ

∫ r

nγ

E
Fnγ

[
L2
2 |xs − xnγ |2

]
ds dr

+2dγ

∫ t

nγ

∫ r

nγ

E
Fnγ

[
L2
2 |x̃s − x̃nγ |2

]
ds dr

)1/2

≤ 2γ2
(
2L4

1|xnγ − x∗|2 + 4γL4
1d+ 2L2

2d
2

+ (6L4
1 + 12γ2L6

1)|x̃nγ − x∗|2 + 12γ2L2
1L

2
2d

2 + 12γL4
1d+ 2L2

2d
2

+ 2d
(
2γL2

1L
2
2|xnγ − x∗|2 + 4γ2L2

1L
2
2d+ 4L2

2d
)

+2d
(
L2
2c1|x̃nγ − x∗|2 + L2

2c2
))1/2

,

where the first inequality holds due to Cauchy-Schwarz inequality and Young’s
inequality, the second inequality holds by using (33) and H5, while the last in-
equality is obtained due to Lemma 8 and 9. Finally, by using Young’s inequality,
one obtains

E
Fnγ

[∫ t

nγ

(∇U(xr)−∇U(x̃r)) dr

∫ t

nγ

(∇2U(x̃r)−∇2U(x̃nγ)) dwr

]
≤ γ3(c8|xnγ − x∗|2 + c9|x̃nγ − x∗|2 + c10),

where c8 = 2L4
1+4L2

1L
2
2d+2L2

2d, c9 = (4L2
2c1+2L2

2+6L2
1L

2
2+12L4

1L
2
2)d+6L4

1+
12L6

1 and c10 = 2L2d4 + 4L2
2c2d+ 12L4

2d
3 + 32L2

1L
2
2d

2 + 12L2
2d

2 + 16L4
1d.

Proof of Theorem 3. Note that in the Lipschitz case, there are restrictions for

the stepsize γ ∈
(
0, 1

m̃ ∧ 8m̃2

m(2L2
1+7m̃L1)

)
. Consider the synchronous coupling of xt

and x̃t for t ≥ 0, where x̃t is defined by (36). Let (x0, x̃0) distributed according to
ζ0, where ζ0 = π⊗δx for all x ∈ R

d. Define et = xt− x̃t, for all t ∈ [nγ, (n+1)γ),
n ∈ N. By Itô’s formula, one obtains, almost surely,

|et|2 = |enγ |2 − 2

∫ t

nγ

es(∇U(xs)−∇Ũ(s, x̃nγ)) ds.

Then, taking the expectation and taking the derivative on both sides yield

d

dt
E
[
|et|2

]
= −2E

[
et(∇U(xt)−∇Ũ(t, x̃nγ))

]
= 2E [et(−(∇U(xt)−∇U(x̃t)))]

+ 2E [et(−(∇U(x̃t)−∇U(x̃nγ)−∇U1(t, x̃nγ)−∇U2(t, x̃nγ)))] .

By applying Itô’s formula to ∇U(x̃t)−∇U(x̃nγ), and by calculating ∇U(x̃t)−
∇U(x̃nγ)−∇U1(t, x̃nγ)−∇U2(t, x̃nγ), one obtains (44). Substituting (44) into
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the above equation and by using H3 yield

d

dt
E
[
|et|2

]
≤ −2mE

[
|et|2

]
+ 2E

[
|et||

∫ t

nγ

(∇2U(x̃r)−∇2U(x̃nγ))∇Uγ(x̃nγ) dr|
]

+ 2E

[
|et||

∫ t

nγ

∇2U(x̃r)(∇U1,γ(r, x̃nγ) +∇U2,γ(r, x̃nγ)) dr|
]

+ 2
√
2E

[
et

(
−
∫ t

nγ

(∇2U(x̃r)−∇2U(x̃nγ)) dwr

)]

+ 2E

[
|et||

∫ t

nγ

(�Δ(∇U)(x̃r)− �Δ(∇U)(x̃nγ)) dr|
]

(48)

≤ −(2m− 3ε)E
[
|et|2

]
+

1

ε
E

[∣∣∣∣
∫ t

nγ

(∇2U(x̃r)−∇2U(x̃nγ))∇Uγ(x̃nγ) dr

∣∣∣∣
2
]

+
1

ε
E

[∣∣∣∣
∫ t

nγ

∇2U(x̃r)(∇U1,γ(r, x̃nγ) +∇U2,γ(r, x̃nγ)) dr

∣∣∣∣
2
]

+
1

ε
E

[∣∣∣∣
∫ t

nγ

(�Δ(∇U)(x̃r)− �Δ(∇U)(x̃nγ)) dr

∣∣∣∣
2
]

− 2
√
2E

[
(et − enγ)

∫ t

nγ

(∇2U(x̃r)−∇2U(x̃nγ)) dwr

]

− 2
√
2E

[
enγ

∫ t

nγ

(∇2U(x̃r)−∇2U(x̃nγ)) dwr

]
,

where the second inequality holds due to Young’s inequality and the last term is
zero. Then, by using the results in Lemma 9 and by taking ε = m

4 , one obtains

d

dt
E
[
|et|2

]
≤ −mE

[
|et|2

]
+

4

m
γ3

E
[
(c1L

2
1L

2
2|x̃nγ − x∗|4 + c2L

2
1L

2
2|x̃nγ − x∗|2)

]
+

4

m
γ3

E
[
(4γL6

1|x̃nγ − x∗|2 + 4γL2
1L

2
2d

2 + 4dL4
1)
]

+
4

m
γ3

E

[
(d3/2Lc1|x̃nγ − x∗|2 + d3/2Lc2)

]
+ 2

√
2E

[∫ t

nγ

(∇U(xr)−∇U(x̃r)) dr

∫ t

nγ

(∇2U(x̃r)−∇2U(x̃nγ)) dwr

]

+ 2
√
2E

[∫ t

nγ

(∇U(x̃r)−∇U(x̃nγ)−∇U1(r, x̃nγ)−∇U2(r, x̃nγ)) dr
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×
∫ t

nγ

(∇2U(x̃r)−∇2U(x̃nγ)) dwr

]
≤ −mE

[
|et|2

]
+

4

m
γ3

E
[
(c1L

2
1L

2
2|x̃nγ − x∗|4 + c2L

2
1L

2
2|x̃nγ − x∗|2)

]
+

4

m
γ3

E
[
(4γL6

1|x̃nγ − x∗|2 + 4γL2
1L

2
2d+ 4dL4

1)
]

+
4

m
γ3

E

[
(d3/2Lc1|x̃nγ − x∗|2 + d3/2Lc2)

]
+ 2

√
2γ3

E
[
(c8|xnγ − x∗|2 + c9|x̃nγ − x∗|2 + c10)

]
+ 2γ3

E
[
(c5|x̃nγ − x∗|4 + c6|x̃nγ − x∗|2 + c7)

]
+ 2γ3

E
[
d(L2

2c1|x̃nγ − x∗|2 + L2
2c2)
]

where the last inequality holds by using Cauchy-Schwarz inequality, Young’s
inequality and Lemma 9, 11, 10. Then, after simplification, one obtains

d

dt
E
[
|et|2

]
≤ −mE

[
|et|2

]
+ γ3

E
[
(c11|x̃nγ − x∗|4 + c12|x̃nγ − x∗|2 + c13|xnγ − x∗|2 + c14)

]
,

where c11 = 4
mL2

1L
2
2c1+2c5, c12 = 4

m (L2
1L

2
2c2+4L6

1+ d3/2Lc1)+2
√
2c9+2c6+

2dL2
2c1, c13 = 2

√
2c8 and c14 = 4

m (4L2
1L

2
2d+ 4L4

1d+ d3/2Lc2) + 2
√
2c10 + 2c7 +

2L2
2dc2. Then, the application of Gronwall’s lemma yields

E
[
|et|2

]
≤ e−m(t−nγ)

E
[
|enγ |2

]
+ γ4

E
[
(c11|x̃nγ − x∗|4 + c12|x̃nγ − x∗|2 + c13|xnγ − x∗|2 + c14)

]
.

Finally, by induction, Proposition 3 and 4, one obtains

E
[
|e(n+1)γ |2

]
≤ e−mγ(n+1)

E
[
|e0|2

]
+

γ4c14
1− e−mγ

+ γ4c11

n∑
k=0

E
[
|x̃kγ − x∗|4

]
e−mγ(n−k)

+ γ4c12

n∑
k=0

E
[
|x̃kγ − x∗|2

]
e−mγ(n−k) + γ4c13

n∑
k=0

E
[
|xkγ − x∗|2

]
e−mγ(n−k)

≤ e−mγ(n+1)
E
[
|x0 − x̃0|2

]
+

γ3em

m

(
c14 + c11

(
E
[
|x̃0 − x∗|4

]
+

8q2
m̃

)

+c12

(
E
[
|x̃0 − x∗|2

]
+

q1
m̃

)
+ c13

(
E
[
|x0 − x∗|2

]
+ 2d

))
where the last inequality holds by using 1− e−mγ ≥ mγe−mγ . The application
of Theorem 1 in [6] with the initial distribution ζ0 yields

W 2
2 (δxR̃

n
γ , π) ≤ e−mnγ

(
2|x− x∗|2 + 2d

m

)
+ C̄γ3,
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where C̄ = O(d4) with

C̄=
em

m

(
c14 + c11

(
|x− x∗|4 + 8q2

m̃

)
+ c12

(
|x− x∗|2 + q1

m̃

)
+ c13

(
d

m
+ 2d

))

Proof of Corollary 1. In the case that the target distribution π is a multivariate
Gaussian distribution, by using the same arguments, one notices that for γ ∈(
0, 1

m̃ ∧ 8m̃2

m(2L2
1+7m̃L1)

)
, Proposition 3 holds with q1 = (4L2

1 + 4)d. Then, one

obtains the following bound

E
[
|et|2

]
≤ e−m(t−nγ)

E
[
|enγ |2

]
+ γ4

E

[
4

m

(
4L6

1|x̃nγ − x∗|2 + 4dL4
1

)]
,

which indicates

W 2
2 (δxR̃

n
γ , π) ≤ e−mnγ

(
2|x− x∗|2 + 2d

m

)
+ C̃γ3,

where C̃ =
16L4

1e
m

m2

(
d+ L2

1

(
|x− x∗|2 + q1

m̃

))
.

5.3. Example: Logistic regression with Gaussian prior

We provide an example of the logistic regression in dimension d. Denote by θk,
k ∈ N the k-th iteration of the algorithm (8). One observes a sequence of i.i.d.
sample {(xi, yi)}i=1,...,n, where xi ∈ R

d and yi ∈ {0, 1} for all i. The likelihood

function is given by p(yi|xi, θ) = (1/(1+ e−xT
i θ))yi(1− 1/(1+ e−xT

i θ))1−yi . Con-
sider a Gaussian prior with mean zero and covariance matrix proportional to
the inverse of the matrix ΣX = 1

n

∑n
i=1 xix

T
i . For θ ∈ R

d, the gradient ∇U(θ)
and Hessian ∇2U(θ) with n data points are

∇U(θ) = cΣXθ+

n∑
i=1

(
xi

1 + e−xT
i θ

− yixi

)
, ∇2U(θ) = cΣX+

n∑
i=1

xix
T
i e

−xT
i θ

(1 + e−xT
i θ)2

,

where c > 0. This implies that L1 ≤ (c+n)maxi |xix
T
i | with |xix

T
i | the spectral

norm of the matrix xix
T
i for each i. One notices that maxi |xix

T
i | is much smaller

than maxi |xi|2 = O(d) due to the fact that the matrix xix
T
i is typically sparse

in statistical and machine learning applications. One may refer to dimension
reduction techniques in sparse matrices in data science for more discussions, see
e.g. [11] and [19].

To calculate the Lipschitz constant L2 in H5, one denotes g(λ) = ∇2U(λy+
(1− λ)x), for any x, y ∈ R

d and λ ∈ [0, 1]. By fundamental theorem of calculus,
one obtains, for any l = 1, . . . , d

g(l,·)(1)− g(l,·)(0) = ∇2U (l,·)(y)−∇2U (l,·)(x)
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=

∫ 1

0

∇2(∇U)(l)(λy + (1− λ)x)(y − x) dλ,

where ∇2(∇U)(l) is a matrix with (j, k)-th entry ∂3U
∂xl∂xj∂xk and for any θ ∈ R

d

∇2(∇U)(l)(θ) =

n∑
i=1

(
2x

(l)
i xix

T
i e

−2xT
i θ

(1 + e−xT
i θ)3

− x
(l)
i xix

T
i e

−xT
i θ

(1 + e−xT
i θ)2

)

Moreover, one notices

|∇2U(y)−∇2U(x)| ≤
(

d∑
l=1

∣∣∣∇2U (l,·)(y)−∇2U (l,·)(x)
∣∣∣2
)1/2

≤ 3nmax
i

|xi||xix
T
i ||y − x|

which implies L2 = 3nmaxi |xi||xix
T
i |.

Finally, for the constant L in H6, define for any k = 1, . . . , d, fk(λ) =
∇2(∇U)(k)(λy + (1 − λ)x), for any x, y ∈ R

d and λ ∈ [0, 1], and one uses
the same technique to obtain, for any l = 1, . . . , d

f
(l,·)
k (1)− f

(l,·)
k (0) = (∇2(∇U)(k))(l,·)(y)− (∇2(∇U)(k))(l,·)(x)

=

∫ 1

0

∇2(∇2U)(k,l)(λy + (1− λ)x)(y − x) dλ,

where ∇2(∇2U)(k,l) is a matrix with (j,m)-th entry ∂4U
∂xk∂xl∂xj∂xm and for any

θ ∈ R
d

∇2(∇2U)(k,l)(θ) ≤
n∑

i=1

∣∣∣∣∣x
(k)
i x

(l)
i xix

T
i e

−xT
i θ

(1 + e−xT
i θ)2

−6x
(k)
i x

(l)
i xix

T
i e

−2xT
i θ

(1 + e−xT
i θ)3

+
6x

(k)
i x

(l)
i xix

T
i e

−3xT
i θ

(1 + e−xT
i θ)4

∣∣∣∣∣
Then, one obtains for k = 1, . . . , d,

|∇2(∇U)(k)(y)−∇2(∇U)(k)(x)|

=

(
d∑

l=1

∣∣∣(∇2(∇U)(k))(l,·)(y)− (∇2(∇U)(k))(l,·)(x)
∣∣∣2
)1/2

≤ 13nmax
i

|x(k)
i ||xi||xix

T
i ||y − x|,

which implies L ≤ 13nmaxi |x(k)
i ||xi||xix

T
i |, and effectively, it has the same

dimension dependence as L2.



3844 S. Sabanis and Y. Zhang

Appendix A: Proof of Remark 2

H2 states there exists L > 0, ρ ≥ 2, and β ∈ (0, 1], such that for any i = 1, . . . , d
and for all x, y ∈ R

d,

|∇2(∇U)(i)(x)−∇2(∇U)(i)(y)| ≤ L(1 + |x|+ |y|)ρ−2|x− y|β .

By H2, one obtains

|∇2(∇U)(i)(x)| ≤ L(1 + |x|)ρ−2|x|β + |∇2(∇U)(i)(0)| ≤ K(1 + |x|)ρ−2+β ,

where K = max{L, |∇2(∇U)(i)(0)|}. Then by fundamental theorem of calculus,

|∇(∇U)(i)(x)−∇(∇U)(i)(y)| =
∣∣∣∣
∫ 1

0

∇2(∇U)(i)(tx+ (1− t)y) dt(x− y)

∣∣∣∣
≤
∫ 1

0

|∇2(∇U)(i)(tx+ (1− t)y)| dt|x− y|

≤
∫ 1

0

K(1 + |x|+ |y|)ρ−2+β dt|x− y|

≤ K(1 + |x|+ |y|)ρ−2+β |x− y|.

Moreover, notice that

|∇2U(x)−∇2U(y)| ≤ |∇2U(x)−∇2U(y)|F

=

⎛
⎝ d∑

i=1

d∑
j=1

∣∣∣∣ ∂2U(x)

∂x(i)∂x(j)
− ∂2U(y)

∂x(i)∂x(j)

∣∣∣∣
2
⎞
⎠

1/2

=

(
d∑

i=1

|∇(∇U)(i)(x)−∇(∇U)(i)(y)|2
)1/2

≤
√
dK(1 + |x|+ |y|)ρ−2+β |x− y|.

Furthermore, one obtains

|�Δ(∇U)(x)− �Δ(∇U)(y)|

=

⎛
⎜⎝ d∑

i=1

∣∣∣∣∣∣
d∑

j=1

∂3U(x)

∂x(i)∂x(j)∂x(j)
− ∂3U(y)

∂x(i)∂x(j)∂x(j)

∣∣∣∣∣∣
2
⎞
⎟⎠

1/2

≤

⎛
⎝d

d∑
i=1

d∑
j=1

∣∣∣∣ ∂3U(x)

∂x(i)∂x(j)∂x(j)
− ∂3U(y)

∂x(i)∂x(j)∂x(j)

∣∣∣∣
2
⎞
⎠

1/2

≤
(
d

d∑
i=1

|∇2(∇U)(i)(x)−∇2(∇U)(i)(y)|2F

)1/2
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≤
(
d2

d∑
i=1

L2(1 + |x|+ |y|)2ρ−4|x− y|2β
)1/2

= d3/2L(1 + |x|+ |y|)ρ−2|x− y|β .

Notice that the last inequality in Remark 2 is not obtained directly by using
the above result, but it is obtained by using the arguments in page 24 of [5].
However, the rest of the inequalities in Remark 2 can be obtained by using
similar arguments as above.

Appendix B: Proof of inequality (10) in Proposition 2

In order to prove (10), one needs the following definition and the propositions.

Definition 1. Consider a probability measure space (Rd,B(Rd), ν). Let A be
the set of continuously differentiable, Lipschitz functions on R

d. We say that ν
satisfies a Log-Sobolev inequality if there exists C > 0 such that

Entν(f
2) ≤ 2C

∫
Rd

|∇f |2 dν,

for every function f ∈ A with Entν(f
2 log+ f2) < ∞, where

Entν(f) = Eν(f log f)− Eν(f) logEν(f).

For more details about the definition of the Log-Sobolev inequality, please
refer to Chapter 2 in [18].

Proposition 5 (Proposition 5.4.1 in [2]). If ν satisfies a logarithmic Sobolev
inequality with constant C > 0, then for every 1-Lipschitz function f and every
α2 < 1/C, ∫

Rd

eα
2f2/2 dν < ∞.

More precisely, any 1-Lipschitz function f is integrable and for every s ∈ R,∫
Rd

esf dν < es
∫
Rd

f dν+Cs2/2.

Proposition 6 (Proposition 5.5.1 in [2]). The standard Gaussian measure ν
on the Borel sets of Rd satisfies, for every f ∈ A,

Entν(f
2) ≤ 2

∫
Rd

|∇f |2 dν.

Proposition 6 implies that, for a Gaussian measure ν with mean μ and co-
variance matrix Q, by using change of variables, one obtains for every f ∈ A on
R

d,

Entν(f
2) ≤ 2

∫
Rd

(Q∇f)∇f dν. (49)
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One notes that the scheme (2) shows that for any n ∈ N and x ∈ R
d, conditional

on the previous step Xn−1 = x, Xn is a Gaussian random variable with mean
μ(x) = x+ μγ(x)γ where

μγ(x) = −∇Uγ(x) +
γ

2

((
∇2U∇U

)
γ
(x)− �Δ(∇U)γ(x)

)
,

and covariance matrix Q(x) = 2γ
(
Id − γ∇2Uγ(x) +

γ2

3 (∇2Uγ(x))
2
)
. Then, by

using (49), one obtains

Entν(f
2) ≤ 2

∫
Rd

(Q∇f)∇f dν ≤ 2

∫
Rd

14

3
γ|∇f |2 dν.

Therefore, applying Proposition 5 with s = a, f =
√
1 + |x|2 and C = 14

3 γ
yields the desired result, i.e.

RγVa(x) = Ex(Va(X1)) ≤ e
7
3γa

2

exp
{
aE((1 + |X1|2)1/2|X0 = x)

}
.

Appendix C: Proof of inequality (27) in Theorem 1

To obtain (27), one consider the following cases

(i) If m > 7
3c

2,

Cγ3+β
E [Vc(x̄0)]

n∑
k=0

e−
7
3 c

2γk−mγ(n−k)

= Cγ3+βe−mγn
E [Vc(x̄0)]

n∑
k=0

e−
7
3 c

2γk+mγk

= Cγ3+βe−mγn
E [Vc(x̄0)]

e(n+1)(m− 7
3 c

2)γ − 1

e(m− 7
3 c

2)γ − 1

≤ Cγ3+βe−mγn
E [Vc(x̄0)]

en(m− 7
3 c

2)γ

1− e−(m− 7
3 c

2)γ

≤ CE [Vc(x̄0)]

m− 7
3c

2
emγγ2+βe−

7
3 c

2(n+1)γ .

(ii) For the case m < 7
3c

2, we have

Cγ3+βe−mγn
E [Vc(x̄0)]

n∑
k=0

e−
7
3 c

2γk+mγk

≤ Cγ3+βe−mγn
E [Vc(x̄0)]

1

1− e−( 7
3 c

2−m)γ

≤ CE [Vc(x̄0)]
7
3c

2 −m
e

7
3 c

2γγ2+βe−m(n+1)γ .
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(iii) As for the case m = 7
3c

2, it can be shown that

Cγ3+βe−mγn
E [Vc(x̄0)]

n∑
k=0

e−
7
3 c

2γk+mγk

= C(n+ 1)γ3+βe−mγn
E [Vc(x̄0)]

≤ CE [Vc(x̄0)]

m
emγγ2+β .

Appendix D: Proof of inequality (47) in Lemma 11

For all x, y ∈ R
d and a constant c > 0, denote by g(t) = ∇2U(x+tc(y−x)). One

notes that for any i, j = 1, . . . , d, (g(i,j))′(t) = c
∑d

k=1
∂3U(x+tc(y−x))
∂x(i)∂x(j)∂x(k) (y

(k)−x(k)).
By mean value theorem, there exists tij ∈ [0, 1], such that

∇2U (i,j)(x+ c(y − x))−∇2U (i,j)(x) = g(i,j)(1)− g(i,j)(0) = (g(i,j))′(tij).

Then, one obtains

|∇2U(x+ c(y − x))−∇2U(x)|F
= |g(1)− g(0)|F

= c

√√√√√ d∑
i,j=1

∣∣∣∣∣
d∑

k=1

∂3U(x+ tijc(y − x))

∂x(i)∂x(j)∂x(k)
(y(k) − x(k))

∣∣∣∣∣
2

≤
√
dL2|c(y − x)|,

which, by sending c to zero yields√√√√√ d∑
i,j=1

∣∣∣∣∣
d∑

k=1

∂3U(x)

∂x(i)∂x(j)∂x(k)
(y(k) − x(k))

∣∣∣∣∣
2

≤
√
dL2|y − x|.

Appendix E: Proof of inequality (47) in Lemma 11

For any x ∈ R
d, our goal is to find an upper bound for

d∑
i,j=1

∣∣∣∣∣
d∑

k=1

∂4U(x)

∂x(i)∂x(j)∂x(k)∂x(k)

∣∣∣∣∣
2

≤ d

d∑
k=1

d∑
i,j=1

∣∣∣∣ ∂4U(x)

∂x(i)∂x(j)∂x(k)∂x(k)

∣∣∣∣
2

.

For any i, j, k = 1, . . . , d, for all x, y ∈ R
d and a constant c > 0, define a function

g : R → R
d by

g
(k)
(i,j)(t) = (∇(∇2U)(i,j)(x+ tcy))(k) =

∂3U(x+ tcy)

∂x(i)∂x(j)∂x(k)
.
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One notes that by mean value theorem, there exists tk ∈ [0, 1], such that

g
(k)
(i,j)(1)− g

(k)
(i,j)(0) = (∇(∇2U)(i,j)(x+ cy))(k) − (∇(∇2U)(i,j)(x))(k)

= c

d∑
l=1

(∇2(∇2U)(i,j)(x+ tkcy))
(k,l)y(l).

Then, since∣∣∣∇((∇2U)(i,j)(x+ cy))−∇((∇2U)(i,j)(x))
∣∣∣

=

(
d∑

k=1

∣∣∣(∇(∇2U)(i,j)(x+ cy))(k) − (∇(∇2U)(i,j)(x))(k)
∣∣∣2
)1/2

= c

⎛
⎝ d∑

k=1

∣∣∣∣∣
d∑

l=1

(∇2(∇2U)(i,j)(x+ tkcy))
(k,l)y(l)

∣∣∣∣∣
2
⎞
⎠

1/2

=

(
d∑

k=1

∣∣∣∣ ∂3U(x+ cy)

∂x(i)∂x(j)∂x(k)
− ∂3U(x)

∂x(i)∂x(j)∂x(k)

∣∣∣∣
2
)1/2

≤
∣∣∣∇2(∇U)(i)(x+ cy)−∇2(∇U)(i)(x)

∣∣∣
F

≤
√
dLc|y|,

one obtains for any i, j = 1, . . . , d and x ∈ R
d,⎛

⎝ d∑
k=1

∣∣∣∣∣
d∑

l=1

(∇2(∇2U)(i,j)(x+ tkcy))
(k,l)y(l)

∣∣∣∣∣
2
⎞
⎠

1/2

≤
√
dL|y|,

which, by sending c to zero yields∣∣∣∇2(∇2U)(i,j)(x)y
∣∣∣ ≤ √

dL|y|

and this implies
∣∣∇2(∇2U)(i,j)(x)

∣∣ ≤ √
dL. Finally, we have for any x ∈ R

d,

d

d∑
k=1

d∑
i,j=1

∣∣∣∣ ∂4U(x)

∂x(i)∂x(j)∂x(k)∂x(k)

∣∣∣∣
2

≤ d

d∑
k=1

∣∣∣∇2(∇2U)(k,k)(x)
∣∣∣2
F

≤ d2
d∑

k=1

∣∣∣∇2(∇2U)(k,k)(x)
∣∣∣2 ≤ d4L2.
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