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Abstract: In statistical research there usually exists a choice between
structurally simpler or more complex models. We argue that, even if a
more complex, locally stationary time series model were true, then a sim-
ple, stationary time series model may be advantageous to work with under
parameter uncertainty. We present a new model choice methodology, where
one of two competing approaches is chosen based on its empirical, finite-
sample performance with respect to prediction, in a manner that ensures
interpretability. A rigorous, theoretical analysis of the procedure is pro-
vided. As an important side result we prove, for possibly diverging model
order, that the localised Yule-Walker estimator is strongly, uniformly con-
sistent under local stationarity. An R package, forecastSNSTS, is provided
and used to apply the methodology to financial and meteorological data in
empirical examples. We further provide an extensive simulation study and
discuss when it is preferable to base forecasts on the more volatile time-
varying estimates and when it is advantageous to forecast as if the data
were from a stationary process, even though they might not be.
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1. Introduction

A well-trodden path in applied statistical research is to propose a model be-
lieved to be a good approximation to the data-generating process, and then to
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estimate the model parameters with a view to performing a specific task, for ex-
ample, prediction. However, even if the analyst were ‘lucky’ and chose the right
model family, thereby reducing modelling bias, the resulting parameter estima-
tors could be so variable that the selected model might well be sub-optimal from
the point of view of the task in question. Choosing a slightly wrong model but
with less variable parameter estimates may well lead to superior performance
in, for example, prediction. This effect is usually referred to as the bias-variance
trade-off and it has frequently been discussed in the literature. In this paper
we explore how this unsurprising but interesting phenomenon could and should
affect model choice in the analysis of non-stationary time series.

Choosing between stationary and non-stationary modelling is, typically, an
important step in the analysis of time series data. Stationarity, which assumes
that certain probabilistic properties of the time series model do not evolve over
time, is a key assumption in time series analysis, and several excellent mono-
graphs focus on stationary modelling; see, e.g., [10], [11] or [47]. However, in
practice, many time series are deemed to be better-suited for non-stationary
modelling; this judgement can be based on diverse factors, such as, for exam-
ple, visual inspection, formal tests against stationarity, or the observation that
the data have been collected in a time-evolving environment and therefore are
unlikely to have come from a stationary model.

Early contributions to the literature of non-stationary time series are [56],
where the tvAR model was introduced, and [27], who defined the tvARMA
model. A general non-stationary time series framework was provided by [46],
who defined the evolutionary spectrum. A now particularly popular framework
for the rigorous description of non-stationary time series models is that of local
stationarity, in which the data are modelled locally as approximately stationary
[18, 19]. We now illustrate the main idea of the paper using a simple example
of a locally stationary time series model, the time-varying autoregressive model
(of order 1)

Xt,T = a(t/T )Xt−1,T + Zt, t = 1, ..., T,

with T denoting the sample size, a : [0, 1] → (−1, 1) being some suitable func-
tion and Zt being an i.i.d. sequence with mean zero and variance one. Typically,
to forecast future observations, one would require an estimate of a(1), see e.g.
[14]. Before constructing a suitable estimator, some analysts would wish to test
if a was indeed time-varying, and there exist a vast amount of techniques to
validate the assumption of a constant second-order structure in this framework;
see [59], [40], [23], [41], [22], [38], [45] or [58]. If the process was found to be
non-stationary, it would be tempting to estimate a(1) by a localised estimate
based on the most recent observations of Xt,T . This localisation would most
likely reduce the bias of the estimator if the true dependency structure was in-
deed time-varying, but also increase its variance. However, if, for example, the
function a was varying only slowly over time, this estimation procedure might
result in sub-optimal estimation from the point of view of the mean squared
prediction error, yielding inferior forecasts compared to the classical stationary
AR(1) model. This would be particularly likely if the test of stationarity em-
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ployed at the start was not constructed with the same performance measure in
mind (i.e., mean squared prediction error) and was therefore ‘detached’ from
the task in question (i.e., prediction). One of the findings of this paper is that
even if the function a varied over time, one should in some cases treat it as
constant in order to obtain smaller prediction errors, or in other words, ‘prefer
the wrong model’ from the point of view of prediction.

The main aim of this paper is to propose an alternative model choice method-
ology in time series analysis that avoids the pitfalls of the above-mentioned
process of testing followed by model choice. More precisely, our work has the
following objectives:

• To propose a generic procedure for finite-sample model choice which avoids
the path of hypothesis testing but instead chooses the model that offers
better empirical finite-sample performance in terms of prediction on a
validation set, with associated performance guarantees for the test set of
yet unobserved data. Although the procedure is proposed and analysed
theoretically in the framework of choice between stationarity and local
stationarity and in the context of prediction, the procedure is applicable
more generally whenever a decision needs to be made between two compet-
ing approaches, and can therefore be viewed as model- and problem-free.
At the end of Section 3.2, we provide two examples of other situations in
which the general principle of our procedure can be applied.

• To suggest ‘rules of thumb’ indicating when the (wrong) stationary model
may be preferred in a time-varying, locally stationary situation from the
point of view of forecasting; and when a time-varying model should be
preferred.

Our procedure validates and puts on a solid footing the possibly counter-
intuitive observation that it is sometimes beneficial to choose the ‘wrong’ (but
possibly simpler) model in time series analysis, if that model relies on more
reliable estimators of its parameters than the right (but possibly more complex)
model. While we stop short of conveying the message that simplicity in time
series should always be preferred, part of our aim is to draw time series analysts’
attention to the fact that particularly complex time series models may well
appear attractive on first glance as they have the potential to capture features
of the data well, but on the other hand can be so hard to estimate that this
makes them inferior to simple and easy-to-estimate alternative models, even if
the latter are wrong.

We now briefly describe related recent literature. The work of [60], who, while
discussing time series prediction, select the model based on the minimisation
of up to m-step ahead prediction errors (rather than the usual 1-step ahead
ones) also appears to carry the general message that different models may be
preferred for the same dataset depending on the task in question, or, in the
language of the authors, on the ‘features to be matched’. Besides similarities in
this general outlook, our model-fitting methodology and the context in which
it is proposed are entirely different. Forecasting in the presence of structural
changes is a widely studied topic in the econometrics literature, see e.g. the



3714 T. Kley et al.

comprehensive review by [52] and the references therein. In particular, [26] also
use the minimisation of the 1-step ahead prediction error as a basis for model
choice under non-stationarity, but, unlike us, do not consider the question of
how this may lead to the preference for the ‘wrong’ model in finite samples.
[21] apply the model-free prediction principle of [43] in the context of locally
stationary time series and construct 1-step-ahead point and interval predictors.

Instead of pursuing the cross-validation approach, [35] evaluate the upper
bound on the generalisation error in time series forecasting, and use its heuris-
tically estimated version to guide model choice. We note, however, that this
approach requires the estimation of some possibly difficult to estimate param-
eters, unlike cross-validation-based approaches. The empirical mean squared
prediction error (MSPE) which we will employ in our method is closely related
to the population MSPE under parameter uncertainty. The strand of literature
discussing this population quantity includes [3] and [49], where approximating
expressions were derived for stationary VAR time series. For locally stationary
tvMA(∞) processes, [39] discuss optimal h-step ahead forecasting, in terms of
the true model characteristics. Yet, they do not take parameter uncertainty into
account.

While the main question we are concerned with is whether a stationary or
a time-varying autoregressive model should be used for prediction, a nested
question is what order the stationary or non-stationary model should have. Tra-
ditionally, order selection is done via minimisation of an information criterion,
see, e.g., [11], p.301. [62] develop an adaptive criterion for model selection based
on predictive risk. [1] introduced the Final Prediction Error (FPE) as a figure of
merit for a potential predictor and adopts a decision theoretic approach, called
the minimum FPE procedure, where the predictor with the best FPE is chosen.
In practice, the decision is then based on an estimate of the FPE. In [2] a the-
oretical basis of the procedure is provided. [42] derive and compare MSPE for
univariate and multivariate predictors when the parameters are known. They
then define and estimate a criterion (a measure of predictability) to choose be-
tween these two prediction options. Their approach is similar to ours in spirit,
but, firstly, it chooses between univariate and multivariate models while we
consider stationary and non-stationary models and, secondly, their methodol-
ogy works with the population MSPE (which moves the focus away from the
observed data to the postulated model), while we work with the correspond-
ing empirical quantity directly. This difference in approaching the problem also
holds for another, more general class of special-purpose-criteria: the focused in-
formation criteria (FIC), which were introduced in [16]. The FIC methodology
with the focus on choosing the model best suited for prediction was then ap-
plied in the field of time series analysis in [15], where the best AR(p) model for
prediction is chosen, in [51], where the best ARMA(p, q) model for this purpose
is chosen, and in [12], where models for volatility forecasting are chosen. The
idea of the FIC is that the model which minimises the asymptotic MSPE is the
best one and the FIC is then based on an estimator of that asymptotic MSPE.
Contrary to this, our approach is based on the empirical MSPE directly, which
we believe to be the more relevant quantity in many applications. Contrary to
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the FIC which is based on the large-sample theory of the estimators involved,
we provide finite-sample exponential bounds that imply a performance guaran-
tee for our method. This approach can be advantageous, when it is preferred
that the model choice also depends on the size of the sample, which in our view
should be a natural requirement.

Our paper is organised as follows. In Section 2 we provide a simple motivating
example. In Sections 3.1 and 3.2 we introduce and comment on our new time
series model choice methodology. The statistical properties of our procedure are
discussed in Section 3.3, where also the performance guarantee (Theorem 3.1) is
provided. The results of a simulation study and the analysis of three empirical
examples can be found in Sections 4 and 5. In Section 6 we discuss statistical
properties of the local Yule-Walker estimator and prove its strong uniform con-
sistency under local stationarity (Corollary 6.2). We conclude with a summary
in Section 7. Proofs, technical details, additional tables and figures from the
simulations section are gathered in Appendices A–J. Note that Appendices F–J
are only available in the arXiv’ed version of the manuscript [32].

2. Motivating example

We consider the time-varying autoregressive (tvAR) model of order 2:

Xt,T = a1(t/T )Xt−1,T + a2(t/T )Xt−2,T + Zt, t = 1, ..., T,

where a1(u) := 0.15 + 0.15u, a2(u) := 0.25 − 0.15u, and Zt is Gaussian white
noise. Xt,T is a non-stationary process which lies in the locally stationary class
of [18]. We will now compare different forecasting procedures for X0.9T,T , where
T ∈ {50, 500, 5000}. The predictor that minimises the mean squared prediction
error is given by

X̂oracle
0.9T,T = 0.285X0.9T−1,T + 0.115X0.9T−2,T .

Yet, since in practice the underlying model is unknown, the analyst needs to

(1) make assumptions regarding the model, and
(2) estimate the assumed model’s parameters.

For the purpose of this illustration, we discuss four possible models. In the first
two models we falsely assume that the data were stationary and model Xt,T to
satisfy a traditional, autoregressive (AR) equation.

• In the first of the two cases we assume an AR(1) model and
• in the second case we assume the model to be an AR(2) model.

We further, discuss cases 3–4, where the correct class of models (tvAR) is as-
sumed. Yet,

• in case three, we falsely assume a tvAR(1) model, before
• in case four, we correctly assume the model to be a tvAR(2) model.
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Fig 1. Mean squared prediction errors (MSPEs) for forecasting X0.9T,T with predictors

X̂1,N
0.9T,T and X̂2,N

0.9T,T associated with tvAR(1) and tvAR(2) modelling of the data, where

N varies. Left, middle and right column correspond to T = 50, T = 500 or T = 5000, re-

spectively. The solid lines corresponds to E(X̂1,N
0.9T,T −X0.9T,T )2, the dashed line corresponds

to E(X̂2,N
0.9T,T − X0.9T,T )2. The endpoints of each line indicate the MSPEs of the predictor

associated with the stationary AR(1) and AR(2) models. The dotted horizontal lines (at level
1.00) indicate the MSPE of the oracle predictor. The dashed-dotted line (approximately at
level 1.13) indicates the variance of X0.9T,T .

Note that the true model, the tvAR(2) model, is the most complex one of the
four choices. In each of the models we estimate the parameters by solving the
empirical Yule-Walker equations. In the case of the tvAR models we localise by
using the segment X0.9T−N,T , . . . X0.9T−1,T . In the case of the traditional, sta-
tionary AR models we use all available observations X1,T , . . . X0.9T−1,T . Details
on the estimation are deferred to Section 3.1.

Denoting the localised Yule-Walker estimates of order 1 by â
(1)
N,T (0.9T − 1)

and the ones of order 2 by â
(2)
1;N,T (0.9T − 1) and â

(2)
2;N,T (0.9T − 1) we obtain the

predictors

X̂1,N
0.9T,T := â

(1)
N,T (0.9T − 1)X0.9T−1,T ,

X̂2,N
0.9T,T := â

(2)
1;N,T (0.9T − 1)X0.9T−1,T + â

(2)
2;N,T (0.9T − 1)X0.9T−2,T ,

where X̂1,N
0.9T,T corresponds to the models of order 1 and X̂2,N

0.9T,T corresponds to
the models of order 2. The segment length N will be chosen as 0.9T − 1 in the
AR models and strictly smaller than this in the tvAR models.

In Figure 1, we observe that the predictors associated with the simpler, sta-
tionary AR model perform better than or similarly well as the predictors as-
sociated with the more complex, locally stationary tvAR model if T = 50 or
T = 500. If T = 5000 the predictor associated with the locally stationary tvAR
model performs visibly better in terms of its MSPE when the segment size N is
chosen appropriately. In conclusion, this example illustrates how it can be ad-
vantageous to assume a wrong, but structurally simpler model when only a short
time series is available. In particular, the model chosen should depend on the
task at hand (here: prediction) and on the amount of data available. For T = 50
the best result is obtained by assuming the AR(1) model which is the simplest
of the four candidates. When T = 500 the more complex AR(2) model becomes
advantageous. Note that this model is more complex than the AR(1) model and
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thus provides a better approximation to the true tvAR(2) mechanism, but is
still simplifying, because it does not take the time-varying characteristics into
account at all. Only when even more data (here: T = 5000) are available, then
the variability of the parameter estimates of the tvAR(2) model is small enough
not to overshadow the modelling bias, which in this example is rather small.

Obviously, the bias-variance trade-off is at work here, which is well-known
but interestingly, to our knowledge, has previously been unexplored in the im-
portant context of stationary versus non-stationary modelling for prediction.
The observation to be made here, thus, is that finding the ‘right’ model may
not always be a suitable way of proceeding when it comes to the prediction
of future observations. We point out that this observation was made in other
contexts of time series analysis. For example, basic exponential smoothing is
a widely used forecasting and trend extrapolation technique, and although it
is well-known that it corresponds to standard Box-Jenkins forecasting in the
ARIMA(0, 1, 1) model, it is also frequently used for data that does not follow
it.

This paper investigates the question of what is the best model in terms of
forecasting performance in the context of the choice between stationarity and
non-stationarity. To ask this question explicitly instead of applying a test for
stationarity is important since the smallest sample size T needed to reject the
null hypothesis of stationarity may be smaller than the sample size needed to
obtain improvement in terms of our task of interest, namely forecasting. In the
following section, we will elaborate more on this question. Further, in Section 4,
we see, as results of a simulation study, under which conditions using the true
model is advantageous and when it can become disadvantageous.

3. When (not) to use locally stationary models under local
stationarity: the new model choice methodology

3.1. Precise description of the procedure

We work in the framework of general locally stationary time series (a rigorous
definition is deferred to Section 3.3), in which the available data is a finite
stretch X1,T , . . . , XT,T from an array (Xt,T )t∈Z,T∈N∗ of random variables with
mean zero and finite variances. Our aim is to determine a linear predictor for
the unobserved XT+h,T from the observed X1,T , . . . , XT,T .

Our proposal is to compare candidate h-step ahead predictors in terms of
their empirical mean squared prediction error and choose the predictor with the
best forecasting performance. To this end, we proceed as follows:

Step 1. Separate the final 2m observations from the T available observations.
The observations with indicesM0 := {1, . . . , T−2m},M1 := {T−2m+1, . . . , T−
m} and M2 := {T −m + 1, . . . , T} will be referred to as the training set, first
validation set and second validation set, respectively. The set of unobserved data
with the indices M3 := {T+1, . . . , T +m} will be referred to as the test set. The
size m of the separated sets will be small in comparison to the sample size T
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(and hence also to the training set). Comments on why we require two distinct
validation set are deferred to Section 3.2.

Step 2. Compute the linear 1-step ahead prediction coefficients

â
(p)
N,T (t) :=

(
Γ̂
(p)
N,T (t)

)−1
γ̂
(p)
N,T (t) =

(
â
(p)
1;N,T (t), . . . , â

(p)
p;N,T (t)

)′
, (1)

(a′ denotes the transposed vector a) for t+h ∈ M1∪M2, p = 1, . . . ,maxP , and
N ∈ N ,

Γ̂
(p)
N,T (t) :=

[
γ̂i−j;N,T (t)

]
i,j=1,...,p

, γ̂
(p)
N,T (t) :=

(
γ̂1;N,T (t), . . . , γ̂p;N,T (t)

)′
(2)

and

γ̂k;N,T (t) :=
1

N

t∑
�=t−N+|k|+1

X�−|k|,TX�,T , k = 0, . . . ,maxP . (3)

The set of possible model orders P ⊂ {0, 1, . . . ,minN − 1}, with P �= ∅ and
maxP ≥ 1, and the set of possible segment lengths N ⊂ {maxP + 1, . . . , T −
2m − h + 1}, with N �= ∅, are parameters to be specified by the user. Further
comments on how they are to be chosen are deferred to Section 3.2.

Step 3. Compute the linear h-step ahead prediction coefficients(
v̂
(p,h)
N,T (t)

)′
:=
(
v̂
(p,h)
1;N,T (t), · · · , v̂

(p,h)
p;N,T (t)

)
:= e′1

(
Â

(p)
N,T (t)

)h
:= e′1

(
e1
(
â
(p)
N,T (t)

)′
+H

)h
,

(4)

where â
(p)
N,T (t) is defined in (1), e1 denotes the first canonical unity vector of

dimension p and H denotes a p × p Jordan block with all eigenvalues equal to
zero; cf. equation (39), in the appendix. Comments on an equivalent, recursive
definition are provided in Section 3.2. Next, define f loc.

t,h;0,N := 0, f stat.
t,h;0 := 0 and,

for p ∈ P \ {0} and N ∈ N , compute

f loc.
t,h;p,N := e′1

(
Â

(p)
N,T (t)

)h
(Xt, Xt−1, . . . , Xt−p+1)

′ :=

p∑
i=1

v̂
(p,h)
i;N,T (t)Xt−i+1,T , (5)

f stat.
t,h;p := e′1

(
Â

(p)
t,T (t)

)h
(Xt, Xt−1, . . . , Xt−p+1)

′ :=

p∑
i=1

v̂
(p,h)
i;t,T (t)Xt−i+1,T (6)

In Figure 2, a time line is shown that illustrates the relation of the sets Mj ,
j = 0, 1, 2, 3 and the quantities t, p, and N .

Step 4. Amongst predictors (5) select f loc.
t,h := f loc.

t,h;p̂loc.,N̂loc.
, with

(p̂loc., N̂loc.) := arg min
p∈P
N∈N

∑
t+h∈M1

(
Xt+h,T − f loc.

t,h;p,N

)2
,

and, amongst predictors (6) select f stat.
t,h := f stat.

t,h;p̂stat.
, with

p̂stat. := argmin
p∈P

∑
t+h∈M1

(
Xt+h,T − f stat.

t,h;p

)2
.
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Fig 2. Time line to illustrate the sets Mj , j = 0, 1, 2, 3 and relations of t, p, h, m and N .
Downward pointing arrows indicate first or last indices of the four sets. The three upward
pointing arrows from the left and braces indicate the indices of the observations used to
compute the forecasting coefficients and the observations that are weighted by the coefficients
to constitute the forecasts. The upward pointing arrow second from the right indicates the
index of an observation for which the forecast is computed. The rightmost upward pointing
arrow indicates s1 := T − m − h, the observation up to which the MSPEs can be evaluated;
cf. eq. (24).

Note that f loc.
t,h and f stat.

t,h are the forecasts of type (5) and (6) that minimise the
empirical MSPE (on M1) within the classes of tvAR and AR models of orders
p ∈ P , respectively.

Step 5. Use f loc.
t,h as h-step ahead forecast of Xt+h, with t+ h > T , if

R̂T,j(h) :=
MSPEstat.

T,j (h)

MSPEloc.
T,j (h)

≥ 1 + δ (7)

holds for j = 2, and f stat.
t,h otherwise, where

MSPE∗
T,j(h) :=

1

m

∑
t+h∈Mj

(Xt+h,T − f∗
t,h)

2, (8)

with ∗ indicating the corresponding model (we write ‘loc.’ for the locally station-
ary approach and ‘stat.’ for the stationary model) and δ ≥ 0 is a parameter by
which the user of the procedure specifies which degree of superiority of the more
complex procedure is required before it is preferred over the simpler alternative
(cf. the end of Section 3.2).

By Theorem 3.1 we have that, with an appropriately chosen δ, the decision
rule of type (7) will, with high probability, prefer the same models for forecasting
observations from the second validation set (j = 2) and the test set (j = 3).

3.2. Remarks on the procedure

Some further explanations regarding the procedure are in order now. Our com-
ments are organised according to the steps of the previous section.
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Step 1. While it is common practice to separate one validation set when tun-
ing the model parameters to avoid over-fitting, we require two such sets. This
is necessary, because we would otherwise compare candidates in an unbalanced
situation where |P| stationary predictors compete with |N | × |P| locally sta-
tionary ones. In our procedure, where we first choose the hyper-parameters by
minimising the mean squared error on the first validation set and then choose
between the two model classes by minimisation of the mean squared error on the
second validation set, we achieve a fairer competition of the two model classes.

Step 2. The coefficients (1) are estimates for the coefficient functions
a1(t/T ), . . . , ap(t/T ) if the data follows the tvAR(p) model

Xt,T =

p∑
j=1

aj(t/T )Xt−j,T + σ(t/T )Zt, t = 1, ..., T, (9)

(see, for example, [20]). Recall that Zt is usually assumed to be white noise and
that Xt,T is non-stationary if at least one of the functions aj , j = 1, . . . , p, or σ
is non-constant. A recursive algorithm to estimate the parameters was described
and analysed in [37].

We are interested in linear forecasts that will perform well for time series
possessing a general dependency structure. The tvAR(p) model (9) is a natu-
ral choice to approximate the linear dynamics of the observed, non-stationary
time series, because in this model the coefficient functions at time t/T coincide
with the 1-step ahead prediction coefficients (of order p) which define the best

linear predictor. In Section 6, we show that â
(p)
N,T (t) from Step 2 can be used as

estimates for the 1-step ahead linear prediction coefficients

ã
(p)
T (t) := arg min

a=(a1,...,ap)′∈Rp
E

[(
Xt,T −

p∑
j=1

ajXt−j,T

)2]
,

also when the observations do not satisfy (9). A forecasting procedure derived
within the tvAR(p) model can therefore be expected to behave reasonably, ir-
respective of whether the tvAR(p) model is true or just an approximation to
the truth. Note that we use the tvAR(p) model to approximate the dynamic
structure of the data in Section 3.2 and most of our examples in Section 4 are
of this kind, but we do not assume that the data actually satisfies it.

Step 3. Linear h-step ahead predictors can either be obtained by iterating
model equation (9) or by using a separate model for each h in which the indices
of the sum on the right hand side run from j = h, . . . , p+h−1. These approaches
have been referred to as the plug-in method and the direct method, respectively.
A comparison of the two approaches can, for example, be found in [8], where
results for a class of linear, stationary processes were derived. We employ the
plug-in method.

The coefficients v̂
(p,h)
N,T (t) defined in (4) can be computed efficiently via the

recursion:

v̂
(p,1)
i;N,T (t) := â

(p)
i;N,T (t), i = 1, . . . , p,

v̂
(p,η)
i;N,T (t) := â

(p)
i;N,T (t)v̂

(p,η−1)
1;N,T (t) + v̂

(p,η−1)
i+1;N,T (t)I{i ≤ p− 1}, η = 2, 3, . . . , h.
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From the previous comments it can be seen how the predictors f loc.
t,h;p,N and

f stat.
t,h;p relate to the choice of modelling the time series’ dynamics by a tvAR(p)
or AR(p) model, respectively. In each of these model classes, increasing the
order p will give a better approximation of the dynamics, but increase the com-
plexity of the model, and make it more difficult to deal with under parameter
uncertainty.

The parameters P and N are sets of integers to be chosen by the user. The
choice should depend on T . p ∈ P determines the order of the tvAR(p) model
that is used to approximate the dynamics. N ∈ N determines the degree of
locality in the estimation of the coefficients. The parameters p ∈ P and N ∈ N
will influence the degree of bias and variance of the predictor. Our selection
mechanism will balance them implicitly.

Traditional choice of N . It is obvious that the variance of the estimator can
decrease when a larger segment is used, but that the non-stationarity will po-
tentially inflict an additional bias that increases with N . Under the condition
that N/T + T/N2 = o(1), [20] derive asymptotic expansions for the local Yule-
Walker estimator’s bias and variance for a centred sample. It follows from their
results, that for the one-sided sample we require for forecasting, N should be
chosen at the order of T 2/3, with the constant depending on the second deriva-
tives of the true model quantities, which are unknown and difficult to estimate.
The choice of N should thus, ideally, be such that N � T 2/3, for all N ∈ N .
In practice, since the true model parameters are unknown, this rate provides
very little guidance to the user of the method. We recommend, though, to ad-
here to two facts: the upper and lower bound of N should be bounded away
from 0 and T , respectively. In other words, we recommend to choose N with
minN large enough, for the performance guarantee to be valid (cf. Theorem 3.1)
and maxN being substantially smaller than T , to ensure that there is a clear
boundary between the locally stationary and the stationary approach. [50] pro-
pose to adaptively choose a bandwidth for local M-estimators by minimising a
cross-validation functional.

Traditional choice of p. As described in the beginning of this section we use
the tvAR(p) model to approximate the dynamic structure of the data. Intu-
itively, we have that the larger the order p the better the approximation to the
true dynamic structure. In opposition to the previously discussed question of
how to choose the segment length N , we here have that a smaller p will inflict
a modelling bias, while a larger p will typically be accompanied by an infla-
tion of the variance of the estimation, because it implies that more parameters
need to be estimated. Traditionally, the model order is chosen by minimizing
information criteria as for example AIC or BIC. [15] propose to use a version
of the focused information criterion (FIC, see [16]) to select the model order
of a stationary AR(p) model optimal with respect to forecasting when the true
model is known to be AR(∞). However, as mentioned in the introduction, the
FIC-based methods employs an estimator of the asymptotic MSPE, while our
approach is based on the empirical MSPE, which facilitates our focus on the
finite sample performance.
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Step 4 and 5. Our procedure performs two stages of selections. Firstly (in
Step 4), it selects the model order p and, for the locally stationary approach,
the segment length N by comparing predictors within each class of models un-
der consideration (i.e., time-varying or non-time-varying autoregressive models).
The parameters p and N are chosen such that the empirical MSPE (predicting
observations from M1) is minimised. Secondly (in Step 5), a final competition
of the winners is performed to select among the two classes of models. The
procedure that minimises the empirical MSPE (predicting M2) is selected and
used for forecasting of the test set (M3). In our theoretical analysis of the next
section (see, in particular, Theorem 3.1) we show that the proposed procedure
will, with high probability, choose the same class of models on the validation as
on the test set, implying that the procedure with the best empirical performance
will be selected.

The parameter δ. By introduction of the parameter δ ≥ 0 the user is given
additional control over which model the procedure prefers. In the simplest case,
δ = 0, this reduces to a straight choice between the two model classes, whereby
the time-varying model is chosen if it performs better or equally well. Choosing
δ > 0 introduces penalisation against the choice of more complex models. In this
case, the predictor derived from the more complex, locally stationary model is
only chosen if it performs at least δ · 100% better than the one derived from the
simpler, stationary model.

Generalisations. Besides linear predictions for stationary or locally station-
ary time series models, the general principle of our method can also be applied
in many other situation. To illustrate this, we outline two examples below.

Non-linear predictions with neural networks. In this scenario we either choose
a neural network trained with the N most recent observations (i.e., loc.) or with
all available observations (i.e., stat.). To this end proceed as follows: with the
available data partitioned as described in Step 1, consider a range of candidate
networks (with different network topologies) suitable for forecasting the obser-
vations from the first validation set. Train them either with the N most recent
observations (loc.) or with all available observations (stat.). After first choos-
ing the network for which we see the smallest MSPE on the first validation set
within each class (loc. or stat.), we then choose that class for which the winner
from the previous step obtains the best performance on the second validation
set.

Predictors obtained from locally stationary or long-memory time series mod-
els. Long-range dependence and non-stationarity can lead to the same stylised
facts in financial time series; cf. [36]. Choosing a test, for example from [44],
to distinguish between the two model classes seems to be a sensible approach,
but this might not lead to the best choice if the aim is to choose a model for
the purpose of prediction. With the model choice methodology in this paper,
one proceeds as follows: first, fit a set of long-range dependence models and a
range of locally stationary models, use the implied predictors to forecast the
observations from the first validation set and choose the model with the best
forecasting performance within each model class. Then, choose between the two
model classes by comparing the winning models within each class with respect
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to their empirical performance in predicting the observations from the second
validation set.

3.3. Performance guarantee: theoretical result for the general case

In this section, we establish theoretical results that will facilitate our analysis of
the model choice suggested by decision rule (7). We show that the probability
of choosing different models on the validation and the test set decays to zero
at an exponential rate, which can be viewed as a performance guarantee of our
model choice methodology.

To rigorously prove the results, some definitions and assumptions are in order.
Throughout this paper, we work with the doubly indexed process (Xt,T )t∈Z,T∈N∗.
The first index (i.e., t) refers to the time. The second index (i.e., T ) indicates how
well the covariance structure of (Xt,T )t∈Z can be approximated locally by the
autocovariance function of a stationary process. We will assume that, for large
T , segments of observations Xt,T with their indices t ≈ uT are approximately
weakly stationary. The parameter u is continuous and often referred to as the
rescaled time. If the index T coincides with the number of observations in a
time series, then u ∈ [0, 1] (cf. [17]). This restriction is not necessary and in
fact, because we will consider m unobservables (to be forecast) in addition to
the T observations (available at the time when the forecasting is done) it is more
convenient to allow u > 1, as was also done by [54].

The following definitions from [54] are required for our assumptions. For an
array (Xt,T )t∈Z,T∈N∗ with finite variances, the time-varying covariance function
is defined for all t ∈ Z, T ∈ N

∗ and k ∈ Z as

γ̃k,T (t) = Cov (Xt,T , Xt−k,T ) . (10)

A local spectral density f is a R
2 → R+ function, (2π)-periodic and locally

integrable with respect to the second variable. The local covariance function γ
associated with the time-varying spectral density f is defined for (k, u) ∈ Z×R

by

γk(u) =

π∫
−π

exp (ikλ) f(u, λ)dλ. (11)

The first five assumptions are specific to the kind of data we may apply our
result to.

Assumption 1 (Local stationarity, [54]). Let the array of random variables
(Xt,T )t∈Z,T∈N∗ have finite variances. We say that (Xt,T )t∈Z,T∈N∗ is locally sta-
tionary with local spectral density f if the time-varying covariance function of
(Xt,T )t∈Z,T∈N∗ and the local covariance function associated with f satisfy∣∣∣∣γ̃k,T (t)− γk

(
t

T

)∣∣∣∣ ≤ C

T
, (12)

where C ≥ 0 is a constant.
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Assumption 2 (Geometrically α-mixing). There exist constants K > 0 and
ρ > 1 such that, for every n ∈ N,

α(n) := sup
T∈N∗

sup
t∈Z

sup
A∈σ(Xs,T :s≤t)

sup
B∈σ(Xs,T :s≥t+n)

∣∣P(A∩B)− P(A)P(B)
∣∣ ≤ Kρ−n.

(13)

Assumption 3. The local spectral density f is bounded from above and below:

0 < mf ≤ f(u, λ) ≤ Mf . (14)

Assumption 4. The local spectral density f is continuously differentiable with
respect to the first argument and the partial derivative is uniformly bounded.
More precisely, assume the existence of M ′

f ≥ 0 such that

∣∣∣ ∂
∂u

f(u, λ)
∣∣∣ ≤ M ′

f . (15)

Assumption 5 (Bernstein-type condition). There exist c > 0 and d ≥ 1/2,
such that

E|Xt,T |k ≤ ck−2(k!)dVar(Xt,T ) t ∈ Z; k = 2, 3, . . .

The assumptions are reasonable and non-restrictive in the sense that many
popular and widely used time series models (e.g., a wide range of tvARMA
models) satisfy the full set of assumptions. The notion of local stationarity we
impose (Assumption 1) goes beyond that of locally stationary linear processes
and, in particular, we do not require the data to be tvAR. Assumption 1 is
satisfied for second order stationary process (then we have C = 0), the general
(linear) locally stationary process introduced by [17], but also non-linear pro-
cesses as elaborated by [54]. Assumption 2 is satisfied for a broad class of (linear
and non-linear) locally stationary time series models; see, for example, [25] or
[57]. Assumptions 3 and 4 can be verified by considering the local spectral den-
sity when it is given explicitly. For example, in the tvAR model that we used
to motivate our prediction approach in Section 3.2, see (9), and as examples in
Section 4, the local spectral density and local covariances are naturally those of
the stationary AR process when the parameter u of the coefficient functions is
chosen as t/T . We will refer to these AR processes as the tangent processes of
the tvAR process. Similar assumptions with respect to the local spectral density
are common in the literature; cf. [18]. Processes with sub-Gaussian marginal dis-
tributions satisfy Assumption 5; cf. Lemma E.8 in the appendix. We recall, from
Section 3.2, that the tvAR(p) model is used to approximate the linear dynamic
structure of the data, but that we do not assume that the data actually satisfies
it. Thus our results apply in a more general context. We require Assumptions 2
and 5 to prove that the probabilities in our results decay at an exponential rate.

As a consequence of Assumptions 1 and 3, we have

πmf ≤ σ2
t,T := Var(Xt,T ) ≤ 3πMf , for all T ≥ C

πmf
. (16)
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Further, by Assumption 4 and Leibniz’s integral rule, we have that γ′
k(u) exists

and has the following form

γ′
k(u) :=

∂

∂u
γk(u) =

∂

∂u

π∫
−π

exp (i�λ) f(u, λ)dλ =

π∫
−π

exp (i�λ)
∂

∂u
f(u, λ)dλ,

(17)
which, in particular, implies that |γ′

k(u)| ≤ 2πM ′
f .

Assumptions 6 and 7, which we state below, are more specific to our proce-
dure. They concern minimum requirements for the size m of the validation sets
and the minimum segment size minN which are used to compute the forecast
as well as the number T of observations required to be available at the time
the forecasts are to be determined. To precisely state the final two assumptions,
we will define q(δ) that quantifies the difference between the two approaches
in terms of their expected empirical mean square prediction error forecasting
performance.

To make the definition of q(δ) precise in an accessible manner we now present
it from the inside outwards. At the core we have the local covariance function
defined in (11) and averaged versions

γ
(p)
Δ (u) :=

∫ 1

0

γ(p)(u+Δ(x− 1))dx, γ(p)(u) := [γ1(u) . . . γp(u)]
′,

Γ
(p)
Δ (u) :=

∫ 1

0

Γ(p)(u+Δ(x− 1))dx, Γ(p)(u) := (γi−j(u); i, j = 1, . . . , p).

(18)

If Δ := (N−|k|)/T or N/T and u = t/T , then the entries
∫ 1

0
γk(u+Δ(x−1))dx

in γ
(p)
Δ (u) and Γ

(p)
Δ (u) are approximations for the expectation Eγ̂k;N,T (t) of

the lag k autocovariance estimate γ̂k;N,T (t) computed from Xt−N+1,T , . . . , Xt,T ;
cf. Lemma D.1. This seemingly complicated construction is necessary, because
we do not require that N/T is negligible. By allowing Δ > 0 we can capture
the evolving second moments of the processes. Further note that, for every
u ∈ R and Δ ≥ 0, the averaged local autocovariances form the autocovariance
function of a stationary process that can be seen as an average of the stationary
approximations Xt(·) over the local times in [u−Δ, u]. Solving the Yule-Walker
equations for this average process yields

a
(p)
Δ (u) :=

(
a
(p)
1,Δ(u), . . . , a

(p)
p,Δ(u)

)′
:= Γ

(p)
Δ (u)−1γ

(p)
Δ (u). (19)

As can be seen from Theorem 6.1 and Lemma B.2, a
(p)
Δ (u) is an approximation

to the limit of the Yule-Walker estimate obtained from Xt−N+1,T , . . . , Xt,T . It
further is related to the 1-step ahead linear forecasting coefficients, as can be

seen from Lemma B.1. The h-step ahead counterpart of a
(p)
Δ (u) is defined as

(
v
(p,h)
Δ (u)

)′
:=
(
v
(p,h)
1;Δ (u), v

(p,h)
2;Δ (u), · · · , v(p,h)p;Δ (u)

)
:= e′1

(
A

(p)
Δ (u)

)h
:= e′1

(
e1
(
a
(p)
Δ (t)

)′
+H

)h
,

(20)
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where e1 and H are the same as in (4). Then, for u ∈ R, Δ1,Δ2 ≥ 0, the

functions MSPE
(p,h)
Δ1,Δ2

(u) are defined as

MSPE
(p,h)
Δ1,Δ2

(u) :=

∫ 1

0

g
(p,h)
Δ1

(
u+Δ2(1− x)

)
dx, (21)

where g
(0,h)
Δ (u) :=γ0(u) and, for p∈N

∗, with γ
(p,h)
0 (u) :=

(
γh(u), . . . , γh+p−1(u)

)′
,

g
(p,h)
Δ (u) := γ0(u)− 2

(
v
(p,h)
Δ (u)

)′
γ
(p,h)
0 (u) +

(
v
(p,h)
Δ (u)

)′
Γ
(p)
0 (u)v

(p,h)
Δ (u). (22)

From Lemmas A.1 and A.3, it can be seen that

MSPE
(p,h)
s,m,N,T :=

1

m

s+m∑
t=s+1

(
Xt+h,T −

p∑
i=1

v̂
(p,h)
i;N,T (t)Xt−i+1,T

)2
,

concentrates around MSPE
(p,h)
Δ1,Δ2

(u) with Δ1 = N/T , Δ2 = m/T and u = s/T .
Note that two arguments Δ1 and Δ2 are required to allow for the averaging of
possible effects due to non-stationarity originating from (a) either the computa-
tion of the forecasting coefficients or (b) the computation of the mean squared

prediction errors. The quantity g
(p,h)
N/T (t/T ) approximates the MSPE of f loc.

t,h;p,N

defined in (5). In the case of 1-step ahead forecasts we can simplify the expres-
sion in (22) to

g
(p,1)
Δ (u) = E[(X̂

(p)
t (u)−Xt(u))

2] +
∥∥a(p)Δ (u)− a

(p)
0 (u)

∥∥2
Γ
(p)
0 (u)

, (23)

where X̂
(p)
t (u) :=

∑p
j=1 a

(p)
j,0 (u)Xt−j(u) is the best linear 1-step ahead forecast

for Xt(u) and ‖x‖2Γ := x′Γx denotes the quadratic form associated with Γ.
Decomposition (23) is into two non-negative quantities. The first term only de-
pends on the characteristics of the stationary tangent process Xt(u) and will be
a decreasing sequence with index p for any u. The second term is the squared
weighted difference of the forecasting coefficients obtained from the station-
ary approximation at time u and the forecasting coefficients obtained from the
non-stationary data; more precisely from the stationary approximations Xt(·)
“averaged” over [u−Δ, u].

The final two assumptions require that the size m of the validation sets,
the smallest segment size minN from which locally stationary forecasting co-
efficients are computed, and the number of available observations T are large
enough in relation to the maximum model order maxP , the forecasting horizon
h, and the minimum possible difference of performance of stationary and locally
stationary forecasts in terms of MSPE, which we measure by

q(δ) := min
p1,p2∈P
N∈N

∣∣∣MSPE
(p1,h)
s1/T,m/T (

s1
T
)− (1 + δ) ·MSPE

(p2,h)
N/T,m/T (

s1
T
)
∣∣∣, (24)

where s1 := T −m− h.
Assumption 6 requires the size m of the validation sets and the smallest pos-

sible segment lengths N ∈ N from which to estimate the forecasting coefficients
to be ‘large enough’.
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Assumption 6 (Minimum size for m and minN ). Let K0 := 4C0(2C0+1). For
δ ≥ 0, m,T, h ∈ N

∗, P ⊂ {0, 1, . . . ,minN − 1}, such that P �= ∅, maxP ≥ 1,
and ∅ �= N ⊂ {maxP + 1, . . . , T − 2m− h+ 1}, assume that

minN ≥ 8h2h
(
C0

)2h+1
(maxP)2 max

{20(1 + δ)

q(δ)
, 1
}[

6(2πM ′
f + C) + 1

]

and

max
{(h+maxP

m

) 1+4d
3+8d

Kh
0 (maxP)2,

( maxP
minN −maxP

) 1+2d
3+4d

Kh
0 (maxP)3h

}
<

q(δ)

20(1 + δ)
. (25)

Assumption 7 requires the sample size T to be ‘large enough’.

Assumption 7 (Minimum sample size T ). With C0 and C1 defined in (36), in
the appendix, and C and M ′

f from Assumptions 1 and 4, respectively,

T ≥ max
{
6h2hC1(maxP)2, 4m

(
2h+ 1

)(
C0

)2h+1
M ′

f

20(1 + δ)

q(δ)

}
.

The intuition behind the final two assumptions is that if two forecasts exist,
one stationary and one locally stationary, that behave similarly well in terms of
approximations to their expected empirical mean squared errors, then m and
minN need to be large enough (in relation to q(δ), h, and maxP). Further, we
require that T exceeds a specified level (depending on q(δ), h,maxP , and m) to
be able to provide bounds of the error of approximation of the local stationary
process with the tangent process. The specific form of Assumptions 6 and 7
are due to technical reasons in our proof and, in fact, our simulation results
in Section 4 suggest that the probability bounded in Theorem 3.1 will also be
large for T smaller than the threshold, as long as δ is chosen appropriately. The
quantity q(δ) is constructed to measure the difference between the MSPEs of the
stationary predictors for different p1 and the MSPEs of the locally stationary
predictors for different (p2, N) scaled by a factor of 1+δ. Assumptions 6 and 7 are
slightly stronger than necessary, as we do not only require only those procedures
to perform differently for the p1 and (p2, N) that yield the best result, but we
require it for any combination. This is due to our method of proof. On the other
hand, it is obvious that some condition like this is required for consistency of the
procedure, because if there is no difference in performance either approach may
equally likely be chosen. It is important to note that in the situation where both
approaches perform equally well we do not need the selection to be consistent.

The quantity q(δ) depends on the model under consideration and, as |P|
and |N | get larger, may potentially tend to zero. Thus, to employ Theorem 3.1
in practice, one has to analyse q(δ) to determine the right bounds stated in
Assumptions 6 and 7. In Section 3.4 we show how this can be done in the
special case where P = {1} and h = 1. There we show that if δ is chosen large
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enough or, in the case where the true model is non-stationary, if δ is chosen
small enough, then q is bounded away from 0. If q(δ) > ε0 > 0, then, even in
an asymptotic framework where h and maxP do not need to be bounded and
m,minN → ∞ as T → ∞, then condition (25) will hold for T large enough, if

(h+maxP)
(
Kh

0 (maxP)2
) 3+8d

1+4d = o(m), and

(maxP)
10+14d
1+2d

(
Kh

0 h
) 3+4d

1+2d = o(minN ).

Note that, (maxP)1+2 3+8d
1+4d ≤ (maxP)17/3 and (maxP)

10+14d
1+2d ≤ (maxP)17/2.

Therefore, if h = O(1), we have that condition (25) will hold for T large enough,
if maxP = O(m3/17) and maxP = O

(
(minN )2/17

)
.

For the finite sample case, the quantity q(δ) can easily be computed for any
tvAR(p) model. A function performing the necessary calculations is provided in
our R package forecastSNSTS. Numerical illustrations are provided in Section 4.

We are now ready to state the main result that guarantees that our procedure
will, with high probability, choose the predictor that achieves the best empirical
performance on the test set.

Theorem 3.1. Let (Xt,T )t∈Z,T∈N∗ satisfy Assumptions 1–5 and EXt,T = 0.
Further, let δ,m, T, h,P, and N be such that Assumptions 6–7 are satisfied.
Then, with R̂T,j(h), j = 2, 3, defined in (7), we have

P

(
(R̂T,2(h) ≥ 1 + δ and R̂T,3(h) ≥ 1 + δ) or (R̂T,2(h) < 1 + δ

and R̂T,3(h) < 1 + δ)
)

≥ 1− 6D1|P|2|N |
[
(maxP)2 exp

(
−D2

( m

h+maxP
)1/(3+8d)

)

+m(maxP)3 exp

(
−D3

(minN −maxP
maxP

)1/(3+4d)
)]

,

where D1, D2 and D3 are constants, defined in (41), in the appendix, that only
depend on K and ρ, mf and Mf , and c and d the constants from Assumption 2,
3 and 5, respectively.

The proof of Theorem 3.1 is long and technical and therefore deferred to
Section A. The probability in Theorem 3.1 tends to one if m � (h+maxP)×
[log(|P|2|N |(maxP)2)]3+8d and minN � maxP [log(|P|2|N |m(maxP)3)]3+4d,
where we have used the notation aT � bT for aT /bT → ∞, as T → ∞. Thus,
Theorem 3.1 provides a “performance guarantee” of our model choice method-
ology in the sense that it asserts that, with high probability, the method which
we have observed to perform better empirically in forecasting the observations
from the second validation set will also perform better empirically in forecasting
the future, not yet observed values of the test set.
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3.4. Theoretical results for a simple, special cases

To illustrate the usefulness of Theorem 3.1 we now discuss the special case in
which the model order is pre-determined to be 1, for both locally stationary and
stationary forecasts, and the forecasting horizon is 1-step ahead; i.e., P := {1}
and h = 1. Though this special case is usually not of practical interest, restricting
ourselves will allow to illustrate how the general conditions simplify and can
more easily be understood. For the simplification we proceed by finding lower
bounds for q(δ) (uniformly in T and N ∈ N ) which in turn allows us to state
more explicit conditions that imply Assumptions 6 and 7.

To apply Theorem 3.1, we require that the MSPE of the stationary predictors
are not to close to 1+ δ times the MSPE of the locally stationary predictors (cf.
Assumption 6). Therefore, we now consider the following two cases:

(a) The parameter δ is chosen large enough.
(b) The parameter δ is chosen small enough and the true model is non-

stationary.

To make the requirements precise, we define

ρ := sup
1−m/T≤u≤1

∣∣∣γ1(u)
γ0(u)

∣∣∣, (26)

Dsup := sup
1−m/T≤u≤1

∣∣∣∣∣
∫ 1

0
γ1
(
u+ s1

T (x− 1)
)
dx∫ 1

0
γ0
(
u+ s1

T (x− 1)
)
dx

− γ1(u)

γ0(u)

∣∣∣∣∣, (27)

and

Dinf := inf
1−m/T≤u≤1

∣∣∣∣∣
∫ 1

0
γ1
(
u+ s1

T (x− 1)
)
dx∫ 1

0
γ0
(
u+ s1

T (x− 1)
)
dx

− γ1(u)

γ0(u)

∣∣∣∣∣, (28)

where γ0(u) and γ1(u) are the local autocovariances from Assumption 1. The
suprema and the infimum are with respect to points u of the second validation
set. Averaging of autocovariances in the first terms of Dinf and Dsup is across
the training set and first validation set. Note that Dinf ≤ Dsup ≤ 2 and that
Dinf is a measure for the non-stationarity of the training set. In particular, it
will vanish if the data stems from a stationary process. Further, note that ρ is
a measure for the strength of serial dependence.

The simplified conditions that imply Assumptions 6 and 7 for the special
case, will be stated in terms of ρ, Dsup and Dinf . Note that, also in the case
where P = {1}, the quantity q(δ) in Assumptions 6 and 7 depends on N , but the
Dinf , Dsup and ρ only depend on m, T , γ1(·) and γ0(·). Therefore, the conditions
in Lemmas 3.2 and 3.3 are indeed simpler than Assumptions 6 and 7. Further
note that the local autocovariances γk(·) can be determined easily for many
time series models. If, for example the data stems from a tvAR(1) process with
coefficient function a, then we have γk(u) = a(u)|k|/(1− a(u)2), k ∈ Z.

We now state two results about the special case of the procedure for 1-step
ahead forecasting. The first result illustrates that the modified procedure will
be consistent if δ is chosen large enough:
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Lemma 3.2. Let (Xt,T )t∈Z,T∈N∗ satisfy Assumptions 1–5, and EXt,T = 0.
Assume that ρ < 1 and δ ≥ 2D2

sup/
(
1 − ρ2

)
, where ρ and Dsup are defined

in (26) and (27). Then, q(δ) ≥ δπmf (1− ρ2), where mf is from Assumption 3.
In particular, this implies that constants K1, K2 and K3, defined in the proof,
exist such that, if m > K1 and minN > K2 then Assumption 6 holds. Further,
if T ≥ K3m, then Assumption 7 holds.

Further more, we have as a second result that if the true model is non-
stationary in the sense that the quantity Dinf is large compared to N/T for all
N ∈ N , then we also have consistency for δ’s that are small enough:

Lemma 3.3. Let (Xt,T )t∈Z,T∈N∗ satisfy Assumptions 1–5, EXt,T = 0, and

D2
inf ≥ 2

(M ′
f

mf

maxN
T

)2
, (29)

with Dinf defined in (28). Assume that δ ≤ 1
8D

2
inf . Then, q(δ) ≥ πD2

infmf/2,
where mf is from Assumption 3. In particular, this implies that constants K4,
K5 and K6, defined in the proof, exist such that, if m > K4 and minN > K5

then Assumption 6 holds. Further, if T ≥ K6m then Assumption 7 holds.

By Lemma 3.2 we have that, in the case where P = {1}, h = 1 and δ ≥ 0
have been fixed, Assumption 6 will hold if m and minN are chosen larger
than some constant. This requirement is not restrictive, in the sense that we
would typically consider m and minN to diverge as T diverges, such that by
Theorem 3.1 the probability for consistent model choice will tend to one. In
Lemma 3.3 the restrictions on m and minN are even weaker, as in a typical
application maxN/T will tend to 0. In both Lemmas 3.2 and 3.3 the condition
that implies Assumption 7 to hold is that T is chosen larger than a multiple of
m, which is eventually satisfied if m/T tends to zero.

Remark 3.4. In Lemmas 3.2 and 3.3 a lower bound of the form

q(δ)

20(1 + δ)
≥ ε0 (30)

is proven, for the special case where P = {1} and h = 1. This lower bound
implies that Assumption 6 holds, but it is in fact stronger, as Assumption 6
allows for q(δ) tending to 0, as |N | and |P| increase, as long as m and minN are
increasing fast enough. Under condition (30) and the conditions of Theorem 3.1
we have the following, stronger result:

P

(
(R̂T,2(h) ≥ 1 + δ and R̂T,3(h) ≥ 1 + δ) or (R̂T,2(h) < 1 + δ

and R̂T,3(h) < 1 + δ)
)

≥ 1− 6D1|P|2|N |
[
(maxP)2 exp

(
−D2ε

1
2+4d

0

( m

Kh
0 (maxP)2(h+maxP)

) 1
2+4d

)

+m(maxP)3 exp

(
−D3ε

1
2+2d

0

(minN −maxP
hKh

0 (maxP)4

) 1
2+2d

)]
,
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which can be proved along the same lines of the proof of Theorem 3.1, together
with inequality (70) from the proof of Lemma A.2, which is available in the
arXiv’ed version of the manuscript [32].

In particular, when the parameters maxP = (maxP)(T ), h = h(T ) and
ε0 = ε0(T ) are bounded sequences (ε0 also bounded away from zero), we get the
following bound:

P

(
(R̂T,2(h) ≥ 1 + δ and R̂T,3(h) ≥ 1 + δ) or (R̂T,2(h) < 1 + δ

and R̂T,3(h) < 1 + δ)
)

≥ 1− κ1|N |
(
exp(−m1/(2+4d)κ2) +m exp(−N1/(2+2d)κ3)

)
(31)

where κ1, κ2, κ3 are constants that do not depend on m or N and d is the con-
stant from Assumption 5 (e.g., for sub-Gaussian processes: d = 1/2).

4. Simulations

In this section we discuss finite sample properties of the estimates R̂T,i(h),
defined in (7), and their population counterparts RT,j(h) := (E(MSPEstat.

T,j (h)))/

(E(MSPEloc.
T,j (h))). The simulation study was conducted with the R package

forecastSNSTS [48, 31], available from The Comprehensive R Archive Network
(CRAN). In particular, we investigate the performance of decision rule (7). To
this end, we have considered 15 different tvAR models. Three of the models
are stationary, the other 12 are non-stationary. Amongst the non-stationary
processes we have some where the covariance structure changes quickly and
some where the covariances change slowly. Further, we will have examples where
the processes given by the parameters at some local time u are almost unit root
and some where they are not.

For each of the models we proceed as follows. We simulate sequences of length
T + m = n ∈ {100, 200, 500, 1000, 2000, 4000, 6000, 8000, 10000}. The T + m
observations, with T and m as in Section 3, contain the training, validation and
test set. We separate the test and validation sets of length m := �n.85/4�. Thus,
ni := n−(3−i)�n.85/4�, i = 0, ..., 3, mark the end indices of the training set, the
validation sets and the test set, respectively. We have chosen m as a function
of n in such a way that m = o(n) and m → ∞, as n → ∞. The sizes of the
three sets therefore are 12, 22, 49, 88, 159, 288, 406, 519, and 627 for the different
sequence sizes, respectively.

As described in Section 3.1 we then, for any h = 1, . . . , H := 10, determine
linear h-step ahead predictions for Xt+h,T with t + h ∈ {n0 + 1, . . . , n1}. We
determine the ‘stationary predictions’, with coefficients estimated for a given p =

0, . . . , pmax := 7, from X1,T , . . . , Xt,T by v̂
(p,h)
t,T (t) from Step 3 of the procedure.

For simplicity, we have chosen the same pmax for every T . We further determine

‘locally stationary predictions’ where the coefficients v̂
(p,h)
N,T (t) are used for p =

0, . . . , pmax and

N = {N := Nmin + i�(Nmax −Nmin)/25� : i ∈ N, N ≤ Nmax},
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Fig 3. Plot of h �→ RT,i(h) for model (32) and different values of n (from left to right: n=100,
n=200, n=500, n=1000 [first row], n=4000, n=6000, n=8000, n=10000 [second row]). Solid
line: i = 3 (test set), dashed line: i = 2 (second validation set).

where Nmin := �(n/2)4/5� and Nmax := �n4/5�. Instead of considering every in-
teger between Nmin and Nmax as a possible segment size, we restrict the number
#N of possible values for N to a maximum of 25 elements to reduce compu-
tation time. The results did not change significantly when a larger number of
elements was used. We then compare the predictors with respect to their em-
pirical mean squared prediction error (MSPE) on the first validation set and,
according to Step 4 of the procedure, choose the stationary predictor with p̂stat.
that minimises the MSPE on M1 amongst all stationary predictors and the lo-
cally stationary predictor with (p̂loc., N̂loc.) which minimizes the MSPE on M1

amongst all the locally stationary predictors.
For those two predictors we then determine the empirical mean squared pre-

diction errors MSPE∗
T,2 and MSPE∗

T,3, defined in (8), on the validation and

test set, respectively. We record seven pieces of information: p̂stat., p̂loc., N̂loc.,
MSPEstat.

T,2 , MSPEloc.
T,2 , MSPEstat.

T,3 , and MSPEloc.
T,3 . We replicate the experiment

10000 times.
Now we define the first two models. Both are tvAR(1) models defined by two

periodic coefficient functions, namely the models are

Xt,T = (0.8 + 0.19 sin(4π
t

T
))Xt−1,T + Zt, (32)

Xt,T = (0.3 + 0.19 sin(4π
t

T
))Xt−1,T + Zt. (33)

The innovations Zt are i.i.d Gaussian white noise. In this section we discuss the
above two models in detail. The remaining processes are defined in Appendix J
[32], where to also the corresponding tables and figures for them are being
deferred.

In Figure 3, note that, since in the numerator we have the MSPE for the
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Table 1

Proportions of the individual events in (34) for the process (32) and selected combinations
of n and δ.

n
Rs,ls

T,2(1) Rs,ls
T,2(5)

≥ 1.01 < 1.01 ≥ 1.01 < 1.01

100
Rs,ls

T,3(1) ≥ 1.01 0.1825 0.2777 Rs,ls
T,3(5) ≥ 1.01 0.1747 0.2479

Rs,ls
T,3(1) < 1.01 0.1888 0.351 Rs,ls

T,3(5) < 1.01 0.1424 0.435

n
Rs,ls

T,2(1) Rs,ls
T,2(5)

≥ 1.2 < 1.2 ≥ 1.2 < 1.2

1000
Rs,ls

T,3(1) ≥ 1.2 5e-04 0.0055 Rs,ls
T,3(5) ≥ 1.2 0.0758 0.0636

Rs,ls
T,3(1) < 1.2 0.0063 0.9877 Rs,ls

T,3(5) < 1.2 0.0699 0.7907

n
Rs,ls

T,2(1) Rs,ls
T,2(5)

≥ 1 < 1 ≥ 1 < 1

10000
Rs,ls

T,3(1) ≥ 1 0.9916 0 Rs,ls
T,3(5) ≥ 1 0.7567 0.2054

Rs,ls
T,3(1) < 1 0.0084 0 Rs,ls

T,3(5) < 1 0.0251 0.0128

n
Rs,ls

T,2(1) Rs,ls
T,2(5)

≥ 1.05 < 1.05 ≥ 1.05 < 1.05

10000
Rs,ls

T,3(1) ≥ 1.05 0.4917 4e-04 Rs,ls
T,3(5) ≥ 1.05 0.0019 0.1698

Rs,ls
T,3(1) < 1.05 0.5077 2e-04 Rs,ls

T,3(5) < 1.05 0.0025 0.8258

n
Rs,ls

T,2(1) Rs,ls
T,2(5)

≥ 1.1 < 1.1 ≥ 1.1 < 1.1

10000
Rs,ls

T,3(1) ≥ 1.1 0.0033 9e-04 Rs,ls
T,3(5) ≥ 1.1 1e-04 0.0119

Rs,ls
T,3(1) < 1.1 0.7025 0.2933 Rs,ls

T,3(5) < 1.1 1e-04 0.9879

n
Rs,ls

T,2(1) Rs,ls
T,2(5)

≥ 1.15 < 1.15 ≥ 1.15 < 1.15

10000
Rs,ls

T,3(1) ≥ 1.15 0 0 Rs,ls
T,3(5) ≥ 1.15 0 7e-04

Rs,ls
T,3(1) < 1.15 0.0188 0.9812 Rs,ls

T,3(5) < 1.15 2e-04 0.9991

best stationary predictor and in the denominator the MSPE for the best locally
stationary predictor, a ratio above 1 corresponds to the situation where the
best locally stationary predictor outperforms the best stationary predictor. It
can be seen whether this happens on average, while in Table 2 we can see the
proportion of simulated cases in which this has happens. In Figure 3, we thus
observe that, for n = 100, the stationary approach performs better on average
across all values of h on both the test and the second validation set. For n = 200
the locally stationary approach performs better for 3 ≤ h ≤ 6 on the test set,
while the stationary approach still excels for all h on the second validation set.
For n ≥ 500 the locally stationary approach is better across all values of h on
the test set and for 2 ≤ h ≤ 4 it outperforms the stationary approach on the
second validation set. For n ≥ 1000 the locally stationary approach is always
as least as good as the stationary approach for all h. It is striking that, for
this particular model and for the larger n’s we see that as h gets larger the
two approaches (stationary and locally stationary) perform almost equally well
on average, which can be seen from the lines in Figure 3 being close to one.
Another important observation is that, as n gets larger and m/n gets smaller,
we see the lines for the validation and test set converging, which is in line with
what Theorem 3.1 suggests should happen.

We now, briefly, compare the outcome of model (32) to that of model (33);
details are shown in Appendix J [32]. Note that in model (32) the coefficient
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Table 2

Proportion of (7) being fulfilled for the process (32) and different values of h, δ and n.

(34) holds for h = 1, i = 2

δ n=100 n=200 n=500 n=1000 n=2000 n=4000 n=6000 n=8000 n=10000

0 0.4182 0.4414 0.5873 0.8844 0.9962 0.9999 1 1 1
0.01 0.3713 0.3821 0.5152 0.8422 0.993 0.9999 1 1 1
0.05 0.2431 0.2172 0.27 0.5986 0.9106 0.9855 0.9958 0.9985 0.9994
0.1 0.1518 0.1029 0.0893 0.2347 0.4748 0.6212 0.67 0.6995 0.7058
0.15 0.0983 0.0483 0.024 0.0475 0.071 0.0617 0.0449 0.0305 0.0188
0.2 0.0622 0.0233 0.0072 0.0068 0.0046 6e-04 1e-04 0 0
0.4 0.0138 0.0026 8e-04 2e-04 5e-04 1e-04 0 0 0
0.6 0.0059 0.0015 4e-04 2e-04 4e-04 0 0 0 0

(34) holds for h = 1, i = 3

δ n=100 n=200 n=500 n=1000 n=2000 n=4000 n=6000 n=8000 n=10000

0 0.4968 0.5118 0.5989 0.6929 0.8099 0.9279 0.9681 0.9829 0.9916
0.01 0.4602 0.4671 0.5436 0.6357 0.7485 0.8725 0.9276 0.9559 0.9751
0.05 0.3357 0.3103 0.3372 0.3905 0.416 0.4577 0.4776 0.4732 0.4921
0.1 0.2292 0.1745 0.1481 0.1427 0.0954 0.0458 0.0195 0.0113 0.0042
0.15 0.1487 0.0942 0.0536 0.0313 0.0098 3e-04 2e-04 0 0
0.2 0.0983 0.0491 0.0194 0.006 7e-04 1e-04 0 0 0
0.4 0.0209 0.006 0.0013 3e-04 5e-04 1e-04 0 0 0
0.6 0.0078 0.0023 7e-04 2e-04 5e-04 1e-04 0 0 0

(34) holds for h = 5, i = 2

δ n=100 n=200 n=500 n=1000 n=2000 n=4000 n=6000 n=8000 n=10000

0 0.3365 0.3525 0.3646 0.323 0.1831 0.1944 0.2508 0.3045 0.359
0.01 0.3171 0.3246 0.3416 0.3137 0.1648 0.1409 0.1642 0.1853 0.2101
0.05 0.2535 0.236 0.2609 0.2798 0.1216 0.0307 0.0121 0.0073 0.0044
0.1 0.1968 0.159 0.18 0.2378 0.0985 0.0132 0.0013 3e-04 2e-04
0.15 0.1541 0.1101 0.1235 0.1929 0.0844 0.012 0.0011 1e-04 2e-04
0.2 0.1244 0.0757 0.0843 0.1457 0.0696 0.0101 9e-04 1e-04 2e-04
0.4 0.0575 0.0207 0.0164 0.0263 0.0101 0.0013 1e-04 0 0
0.6 0.0321 0.0068 0.0032 0.0033 4e-04 0 0 0 0

(34) holds for h = 5, i = 3

δ n=100 n=200 n=500 n=1000 n=2000 n=4000 n=6000 n=8000 n=10000

0 0.4423 0.5487 0.5253 0.3178 0.2155 0.2979 0.3955 0.4736 0.5393
0.01 0.4226 0.5269 0.5054 0.3086 0.1943 0.2561 0.3474 0.4249 0.4931
0.05 0.3563 0.4417 0.4281 0.2705 0.1312 0.0999 0.1168 0.1477 0.1717
0.1 0.2823 0.3492 0.3378 0.2245 0.0859 0.0243 0.0153 0.0119 0.012
0.15 0.2291 0.2779 0.2602 0.1806 0.0625 0.0098 0.0023 8e-04 7e-04
0.2 0.1864 0.2192 0.1923 0.1394 0.0451 0.0065 8e-04 1e-04 0
0.4 0.0815 0.0823 0.0561 0.0398 0.0081 5e-04 0 0 0
0.6 0.0406 0.0303 0.0164 0.0071 4e-04 0 0 0 0

function ranges from 0.61 to 0.99, placing some of its tangent processes close to
the unit root. In model (33) the coefficient function ranges from 0.11 to 0.49.
Thus, the two models have the same variation of the coefficient function, but
in model (33) the tangent processes are further away from the unit root. In
Figure 15, it can be seen that the stationary approach is preferred over the
locally stationary approach for sequences up to length n = 1000. Further, we
observe that the advantage of using the locally stationary approach for sequences
of length n ≥ 4000 is minuscule and visible only for 1-step ahead forecasting.
For the other models we can make similar observations:

Rules of Thumb. The locally stationary approach outperforms the sta-
tionary approach only if either the sequence is long, or the coefficient function
exhibits considerable variation, or the tangent processes (cf. the comment after
Assumptions 1–5) are close to the unit root. In any other case the stationary
approach can be chosen without (a large) loss.

Our observation that the locally stationary forecast performs better when
the stationary approximations are near unit root may possibly be explained by
the fact that the coefficient of a near unit root AR(1) process can be estimated
at a better rate than in the classical case where the rate is T−1/2; cf. [13, 24].
A rigorous analysis of the issue is beyond the scope of this paper and left for
future research.
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Table 3

Proportion of (34) being fulfilled for the process (32) and different values of h, δ and n.

(34) holds for h = 1

δ n=100 n=200 n=500 n=1000 n=2000 n=4000 n=6000 n=8000 n=10000

0 0.5254 0.5176 0.5088 0.6377 0.8071 0.9278 0.9681 0.9829 0.9916
0.01 0.5335 0.5308 0.4984 0.5877 0.7441 0.8724 0.9276 0.9559 0.9751
0.05 0.606 0.6265 0.5928 0.4899 0.4346 0.46 0.4776 0.4737 0.4919
0.1 0.7114 0.7714 0.7972 0.7034 0.53 0.395 0.3381 0.3054 0.2966
0.15 0.8028 0.8743 0.9284 0.9256 0.9214 0.9384 0.9549 0.9695 0.9812
0.2 0.8667 0.9358 0.9756 0.9882 0.9957 0.9995 0.9999 1 1
0.4 0.9727 0.9936 0.9995 0.9999 1 1 1 1 1
0.6 0.9903 0.9982 0.9993 1 0.9999 0.9999 1 1 1

(34) holds for h = 5

δ n=100 n=200 n=500 n=1000 n=2000 n=4000 n=6000 n=8000 n=10000

0 0.6054 0.5684 0.6755 0.8888 0.879 0.7975 0.7729 0.7699 0.7695
0.01 0.6097 0.5711 0.673 0.8851 0.8819 0.783 0.7324 0.6858 0.6538
0.05 0.633 0.5991 0.6752 0.8705 0.9246 0.9008 0.8801 0.8492 0.8277
0.1 0.6817 0.6582 0.7082 0.8601 0.9546 0.9825 0.9854 0.988 0.988
0.15 0.7252 0.715 0.7547 0.8583 0.9551 0.9938 0.998 0.9993 0.9991
0.2 0.7664 0.7677 0.807 0.8665 0.9553 0.9944 0.9991 1 0.9998
0.4 0.8816 0.9046 0.9373 0.9463 0.9872 0.9984 0.9999 1 1
0.6 0.9337 0.9647 0.9814 0.99 0.9992 1 1 1 1

Table 4

Values of q(δ), defined in (25), for the process (32) and different values of h, δ and n.

Value of q(δ), defined in (25), for h = 1

δ n=100 n=200 n=500 n=1000 n=2000 n=4000 n=6000 n=8000 n=10000

0 0 0 0 0 0 0 0 0 0
0.01 6.2e-05 1.1e-05 7.6e-05 0.02 0.02 0.021 0.021 0.021 0.021
0.05 0.00018 1.7e-05 2e-05 6.4e-05 0.012 0.0087 0.0054 0.0032 0.0014
0.1 0.023 6.4e-05 2.6e-05 3.7e-06 0.0056 0.011 0.015 0.017 0.018
0.15 0.076 0.051 0.044 0.049 0.056 0.062 0.066 0.067 0.069
0.2 0.13 0.1 0.094 0.1 0.11 0.11 0.12 0.12 0.12
0.4 0.2 0.28 0.3 0.3 0.31 0.31 0.32 0.32 0.32
0.6 3e-04 0.054 0.19 0.33 0.42 0.47 0.49 0.51 0.52

Value of q(δ), defined in (25), for h = 5

δ n=100 n=200 n=500 n=1000 n=2000 n=4000 n=6000 n=8000 n=10000

0 0 0 0 0 0 0 0 0 0
0.01 3.3e-06 0.00029 0.00041 6.5e-05 0.02 0.021 0.021 0.021 0.021
0.05 0.00016 4.9e-06 0.001 0.042 0.034 0.026 0.021 0.018 0.015
0.1 0.005 0.0015 3.9e-05 0.14 0.13 0.13 0.12 0.12 0.12
0.15 0.094 5.5e-05 0.00022 0.055 0.16 0.13 0.12 0.11 0.1
0.2 0.2 0.00088 0.00018 0.00091 0.058 0.031 0.015 0.0046 0.0035
0.4 4e-04 0.05 0.099 0.14 0.17 0.2 0.22 0.23 0.24
0.6 0.33 0.4 0.46 0.52 0.56 0.6 0.62 0.64 0.65

The proportions shown in Table 3 provide information on the consistency of
the procedure, as we see the proportion of cases in which the same procedure
(stationary or locally stationary) is chosen on both the test set and the second
validation set. This validates Theorem 3.1 for the example. It is interesting to
compare the observed proportions with the corresponding value of q(δ), which
we provide in Table 4. We see that a larger proportion typically goes along
with a larger value of q(δ) indicating the relevance of condition (25). To make it
more precise: the tables are concerned with the proportion for which the decision
rule (7) yields the same result no matter if we take i = 2 or i = 3, i.e. we count
what proportion of runs satisfies

(R̂T,2(h) ≥ 1+δ and R̂T,3(h) ≥ 1+δ) or (R̂T,2(h) < 1+δ and R̂T,3(h) < 1+δ).
(34)

We see that if δ is chosen large enough then the probability for the event (34)
approaches 1, as T and m increase. More precisely, this is the case, if δ is chosen
smaller than the ratio of MSPEs depicted in Figure 3 on both the validation and
test set or larger than both those ratios. This is as expected from Corollary 3.2
and 3.3. A more detailed analysis is possible, employing the information provided
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in Table 1. In the third row of tables we see, for example, that for n = 10000
and δ = 0 the procedure will consistently choose the locally stationary approach
on both the test set and the second validation set for 1-step ahead forecasting.
For n = 10000 and δ = 0.05, on the other hand, we see that the procedure
almost consistently chooses the locally stationary approach on the validation
set while it is rather undecided (50%-50%) on the test set. For δ = 0.1 the
procedure almost consistently chooses the stationary approach on the test set
and is to some degree undecided (70%-30%) on the second validation set. Finally,
if δ = 0.15, we see that the stationary approach gets chosen almost consistently
on both validation and test sets. This is just what we would expect, as a smaller
δ must lead to the locally stationary approach being preferred, as the more
complex locally stationary approach only gets selected if the empirical MSPE
of the stationary approach is at least (1 + δ)-times of the empirical MSPE of
the locally stationary approach.

The remaining part of the simulation studied is deferred to Section J [32].

5. Data examples

5.1. London housing prices

We analyse average housing prices from the UK House Price Index (HPI). The
HPI is updated monthly with data from the Land Registry, the Registers of
Scotland, and the Land and Property Services Northern Ireland. The data is
combined by the Office of National Statistics using hedonic regression; cf. [34].
The sequence we used for the analysis contains 264 monthly index values from
1995 to 2016. It was obtained as follows: In the ‘customise your search’ part of
the ‘search the UK house price index’ form we have selected the ‘English region’
London, the period from 01-1995 to 12-2016, and then obtained the ‘average
price’ for ‘all property types’. The data is depicted in the left panel of Figure 4.
For the analysis we consider T + m = 263 monthly changes (in percent). The
prices are centred by subtracting the arithmetic mean prior to the analysis. We
clearly see autocorrelation at lags less or equal than 4 and at lag 12 in the right
panel of Figure 4.

We then compute the 1-step to 6-step prediction coefficients, defined in (4),
with which we can predict an observation Xt+h from Xt, . . . , Xt−p+1, where
Xt+h is an observation made either in 2014, 2015 or 2016, respectively. We
choose p = 0, 1, . . . , 18, where p = 0 shall mean that we are predicting with 0.
Note that the maximum p was chosen larger than 12, as we are dealing with
monthly data and dependence at lag 12 can be seen from the autocorrelation
function. We consider the stationary predictors as well as locally stationary
predictors with N = 50, 51, . . . , 87 = �2634/5�.

Interestingly, in Figure 5, we observe that the MSPE of the locally station-
ary forecasts are typically larger than corresponding ones of the stationary fore-
casts.
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Fig 4. Data for London from the UK House Price Index. Left: average monthly housing
prices. Middle: monthly changes of average housing prices in percent, demeaned by subtracting
arithmetic mean. Right: autocorrelation function, computed from the sequence in the middle.

Table 5

Minimum empirical mean squared prediction errors (MSPEs) for h-step ahead prediction,
h = 1, . . . , 6, of the house price data. Top table shows values computed on the first validation
set. Bottom table shows values computed on the second validation set and on the test set.

h p̂stat. MSPEstat.
T,1 (h) p̂loc. N̂loc. MSPEloc.

T,1(h)

1 18 8.033024e-05 18 73 7.701586e-05
2 18 8.547987e-05 18 72 9.027318e-05
3 18 9.362087e-05 18 71 9.512262e-05
4 18 1.079008e-04 18 71 1.039368e-04
5 18 1.164369e-04 18 87 1.291897e-04
6 18 1.097551e-04 18 86 1.160201e-04

h MSPEstat.
T,2 (h) MSPEloc.

T,2(h) R̂T,2(h) MSPEstat.
T,3 (h) MSPEloc.

T,3(h) R̂T,3(h)

1 3.473298e-05 3.501655e-05 0.992 9.740925e-05 0.0001385059 0.703
2 3.560845e-05 4.308688e-05 0.826 9.547598e-05 0.0001351634 0.706
3 4.31916e-05 4.21518e-05 1.025 0.0001052688 0.0001309526 0.804
4 4.57004e-05 4.429208e-05 1.032 0.0001053983 0.0001421635 0.741
5 5.970928e-05 4.943228e-05 1.208 0.0001210628 0.0001195622 1.012
6 6.412237e-05 5.234349e-05 1.225 0.0001152908 0.0001146555 1.006

As described in our procedure we now determine the p̂stat., p̂loc., and N̂ that
minimise the MSPE within each class of predictors. For 1-step ahead prediction
we find p̂stat. = 18, p̂loc. = 18, and N̂ = 73. For 6-step ahead prediction we find
p̂stat. = 18, p̂loc. = 18, and N̂ = 86. The numbers are summarised in Table 5.

We then determine the MSPE for forecasting the observations from the
second validation set (here: the year 2015) using these predictors. For 1-step
ahead prediction we find that MSPEstat.

251,2(1) = 3.47 · 10−5 and MSPEloc.
251,2(1) =

3.50 ·10−5, with MSPE∗
T,j(h) defined in (8). For 6-step ahead prediction we find

that MSPEstat.
251,2(6) = 6.41 · 10−5 and MSPEloc.

251,2(6) = 5.23 · 10−5. Consequently,
we decide to use the stationary approach for 1-step and the locally stationary
approach for 6-step ahead forecasting of the observations made in 2016.

The MSPEs computed from 1-step ahead forecasting the observations from
the test set (here: the year 2016) are MSPEstat.

251,3(1) = 9.74 · 10−5 and

MSPEloc.
251,3(1) = 1.39·10−4. The MSPEs computed from 6-step ahead forecasting

the observations from 2016 are MSPEstat.
251,3(6) = 1.153·10−4 and MSPEloc.

251,3(6) =
1.147 · 10−4. We have thus chosen the better performing procedure for 1-step
and 6-step ahead forecasting.
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Fig 5. Empirical mean squared prediction errors (MSPEs) computed on the frist validation
set (predicting the 12 observations from 2014). Top panel shows MSPEs for 1-step ahead
prediction. Bottom panel shows MSPEs for 6-step ahead prediction. The colours indicate
which p was used. The colour code is described in the plot’s legend. The solid lines correspond
to the MSPEs for different N when the locally stationary approach is used. The dashed lines
show the MSPE when the stationary approach is used. The horizontal grey line indicates the
MSPE for the trivial forecasts (f loc.

t,h;0,N and f stat.
t,h;0). The MSPE in this case is 0.000175.

In conclusion, our analysis has revealed that, from the point of view of 1-
month ahead prediction of the 2016 observations, treating the data as stationary
does not have a negative effect. We were able to see that using the estimates
from the stationary AR(18) model gave us better predictions than using the
(locally stationary) estimates of segments of 73 month (roughly 6 years). For
the 6-month ahead prediction the local estimates are better, but only by a small
margin. Contrary to what one might naively expect, the impact of, for example,
the 2008-2009 financial crisis on the stationary estimates is not profound enough
to substantially worsen the predictors’ performance.
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Fig 6. Temperature data Hohenpeißenberg. Left: daily temperatures and fitted harmonic re-
gression model. Middle: adjusted data (demeaned and detrended). Right: autocorrelation func-
tion, computed from the sequence in the middle.

5.2. Temperatures Hohenpeißenberg

In this example, we analyse seasonally adjusted, daily temperature data col-
lected at the meteorological observatory in Hohenpeißenberg (Germany). More
precisely, we use n = T +m = 11680 observations of daily mean temperatures
that were recorded between 1985 and 2016.1 The data are shown in the left
panel of Figure 6. To eliminate the clearly visible trend and seasonality, we have
fitted a harmonic linear regression model of the form

yt = c+ αt+

4∑
i=1

(
βi sin(2πti/365) + γi cos(2πti/365)

)
,

to capture the trend and annual variation. The red curve in the left panel of
Figure 6 is the prediction of the fitted model. We then consider the residuals
of this model which are shown in the middle panel of Figure 6. The right panel
of Figure 6 shows the autocorrelation function, which clearly indicates that
serial dependence is present. [9] analyse the same data set and fit a stationary
ARMA(3,1) model to capture the serial dependence.

In Figure 7, the MSPE are presented in the same manner as in Section 5.1.
In this example we have chosen pmax = 10 and N := {365, 366 . . . , �n4/5�} =
{365, 366, . . . , 1794, 1795} and m := 365. The MSPE corresponding to p = 0 is
110.2 in this example and therefore not visible in the plot.

By minimising the empirical MSPE on the first validation set the proce-
dure chooses, for the stationary approach p̂stat. = 2 for h = 1, 2. For the lo-
cally stationary approach the procedure chooses (p̂loc., N̂loc.) = (3, 910) and
(p̂loc., N̂loc.) = (2, 985) for h = 1 and h = 2, respectively. Empirical MSPEs for
other values of p and N are shown in Figure 7. The numbers are summarised
in Table 6.

For 1-step ahead forecasting and on validation 2 set this yields, given the
p̂stat. chosen by the procedure, that MSPEstat.

11315,2(1) = 8.11 and, given the p̂loc.

1The data was obtained from http://www.dwd.de/DE/klimaumwelt/cdc/cdc_node.html.

http://www.dwd.de/DE/klimaumwelt/cdc/cdc_node.html
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Fig 7. Empirical mean squared prediction errors (MSPEs) computed on the first validation
set (predicting the 365 observations from 2014) of the temperature data. Top panel shows
MSPEs for 1-step ahead prediction. Bottom panel shows MSPEs for 2-step ahead prediction.
The colours indicate which p was used. The colour code is described in the plot’s legend. The
solid lines correspond to the MSPEs for different N when the locally stationary approach is
used. The dashed lines show the MSPE when the stationary approach is used.

and N chosen by the procedure, that MSPEloc.
11315,2(1) = 8.06. Similarly, for 2-

step ahead forecasting, we have MSPEstat.
11315,2(2) = 14.87 and MSPEloc.

11315,2(2) =
14.94. The respective ratios are both very close to 1. The procedure thus chooses
the stationary approach over the locally stationary approach if δ = 0.01 is chosen
and, obviously, this superiority will continue to hold if δ is chosen larger than
that. On the test set we have MSPEstat.

11315,3(1) = 8.09 and MSPEloc.
11315,3(1) =

7.97 for 1-step ahead forecasting. Likewise, for 2-step ahead forecasting, we
have MSPEstat.

11315,3(2) = 15.43 and MSPEloc.
11315,3(2) = 15.41. Thus, again, both

approaches for 1-step and 2-step ahead forecasting behave almost equally well
and we see that had we chosen δ > 0.015 our procedure chose the stationary
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Table 6

Minimum empirical mean squared prediction errors (MSPEs) for h-step ahead prediction,
h = 1, 2, 3, 4, 5, of the temperature data Hohenpeißenberg. Top table shows values computed
on the first validation set. Bottom table shows values computed on the second validation set

and on the test set.

h p̂stat. MSPEstat.
T,1 (h) p̂loc. N̂loc. MSPEloc.

T,1(h)

1 2 7.185208 3 910 7.173272
2 2 12.886257 2 985 12.870544
3 2 15.397509 2 870 15.343298
4 2 16.605640 2 800 16.504915
5 2 17.226943 2 800 17.093823

h MSPEstat.
T,2 (h) MSPEloc.

T,2(h) R̂T,2(h) MSPEstat.
T,3 (h) MSPEloc.

T,3(h) R̂T,3(h)

1 8.10974 8.058095 1.006 8.08899 7.967895 1.015
2 14.86848 14.94354 0.995 15.42535 15.39907 1.001
3 17.72551 17.92775 0.989 17.4254 17.3617 1.004
4 19.63724 19.8143 0.991 17.68487 17.60241 1.005
5 20.97236 21.0989 0.994 17.92979 17.83498 1.005

approach, which performs almost equally well as the more complicated locally
stationary approach.

In conclusion, in this example, we have provided clear evidence that the
temperature data, after adjusting for trend and seasonality, collected in the Ho-
henpeißenberg observatory, from the point of view of prediction, can be treated
as if they were stationary. We see that using the estimates related to a AR(2)
[or AR(3)] model yielded forecasts that in all cases perform almost equally well
as the estimates localised to the segment suggested by the procedure (using the
past 2.2–2.7 years; 800–910 days). This observation is remarkable, in the sense
that, in 30 years of data an analyst might typically expect non-stationarity (e.g.,
changes due to global warming) to worsen the predictions. Our conclusion indi-
cates that the variation of covariance structure might be less substantial than
the change in mean. Note that our procedure did not consistently chose the
approach with the better performance on the test set, but that both approaches
perform almost equally well on either set. It is thus legitimate to use the simpler,
stationary approach.

5.3. Volatility around the time of the EU referendum in the UK,
2016

This example is about forecasting volatility of the FTSE 100 stock index. More
precisely, we consider a sequence of n = T + m = 607 (daily) opening prices
popen and closing prices pclose, dated from 2 January 2015 to 26 May 2017.2 The
analysis is then based on the sequence ((pclose − popen)/pclose)

2, centred by sub-
tracting the arithmetic mean of this sequence. The data are shown in Figure 8.

We separate the final 60 observations of the data as test set, first validation set
and second validation set (used for determining the model orders and segment
sizes). Each set is of size m := 20. Visual inspection of these 60 observations
suggested that some returns are unusually small or large. Indeed, the returns

2The data was obtained from http://www.finanzen.net/index/FTSE_100/Historisch.

http://www.finanzen.net/index/FTSE_100/Historisch
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Fig 8. Volatility of the FTSE 100 Index, for 2 January 2015 to 26 May 2017. Left: FTSE
100 closing price. Middle: squared and centred returns. Right: autocorrelation function, com-
puted from the sequence in the middle. Red vertical line in the left and middle plot marks
23/06/2016, the day of the EU referendum in the UK.

of 1 March, 18 April, and 24 April 2017 are either more than 1.5 times the
interquartile range (IQR) smaller than the lower quartile or 1.5 times the IQR
larger than the upper quartile. By Tukey’s criterion they can thus be classified
as outliers. To better deal with the outliers, we use a robustified measure of
accuracy to compare the forecasts in this example. More precisely, instead of
the MSPE in Steps 4 and 5 of our procedure, we now use an empirical trimmed
mean of absolute prediction errors (trMAPE), where we trim the largest 25%,
averaging only the remaining 15 out of 20 absolute errors. We have further
chosen pmax = 8 and N := {40, 41, . . . , 250}.

First, we consider the trMAPEs of forecasting the 20 observations from the
first validation set to determine the optimal p̄stat., p̄loc. and N̄loc.. We use a
bar instead of the hat to indicate that the trMAPEs were used instead of the
MSPEs. In Figure 9 we can see, for the 1-step, 2-step and 3-step ahead forecasts,
that the lines depicting the trMAPEs have a characteristic shape: as N increases
the trMAPEs slightly decreases (for each p at a different level) until it starts
increasing around N ≈ 60. After this follows another phase of slight decreasing
and increasing with the new minimum higher than the minimum of the previous
phase. We further observe that the overall level is typically lower than that of
the trMAPEs of the stationary approach. The last such minimum in our plots
is obtained when N is around 170–180.

The observations 1 through to 373 were recorded from 2 January 2015 to
23 June 2016 (the day of the EU referendum) and observations 374 through to
607 were recorded from 24 June 2016 to 26 May 2017. This implies that the
final 234 observations were recorded after the EU referendum, meaning that
there are 175 observations between the EU referendum and the observations
to be forecast in the first step. Thus, the last minimum of the lines, when N
is roughly about 170, corresponds to the time of the referendum. The sudden
increase of the trMAPE indicates the change in bias of the Yule Walker estimator
due to non-stationarity when pre-referendum data is starting to be used for the
estimation of the prediction coefficients. Another important observation is that
also the post-referendum part of the diagram (40 ≤ N ≤ 175) shows signs of
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Fig 9. Empirical trimmed mean absolute prediction errors (trMAPE) computed on the first
validation set (predicting the observations 548 to 567) of the squared and centred FTSE
returns. Top, middle and bottom panel show the trMAPE for the 1, 2 and 3-step ahead
predictions, respectively. The colours indicate which p was used. The colour code is described
in the plot’s legend. The solid lines correspond to the trMAPE for different N when the locally
stationary approach is used. The dashed lines show the trMAPE when the stationary approach
is used. The horizontal grey line indicates the trMAPE for the trivial forecasts (f loc.

t,h;0,N and

f stat.
t,h;0). The trMAPE in this case is 8.2× 10−5.
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Table 7

Minimum empirical trimmed mean absolute prediction errors (trMAPE) for h-step ahead
prediction, h = 1, 2, 3, 4, 5, of the squared and centred FTSE 100 data. Analysis performed
with m := 20 and pmax = 8. Top table shows values computed on the first validation set.
Bottom table shows values computed on the second validation set and on the test set.

h p̄stat. trMAPEstat.
T,1 (h) p̄loc. N̄loc. trMAPEloc.

T,1(h)

1 8 2.838118e-05 4 79 1.628012e-05
2 8 3.440985e-05 5 78 1.736197e-05
3 8 3.892572e-05 5 63 1.610966e-05
4 8 4.786001e-05 6 65 1.731724e-05
5 8 5.161963e-05 5 53 2.209272e-05

h trMAPEstat.
T,2 (h) trMAPEloc.

T,2(h) R̄T,2(h) trMAPEstat.
T,3 (h) trMAPEloc.

T,3(h) R̄T,3(h)

1 2.838118e-05 1.628012e-05 1.743 3.33206e-05 2.395498e-05 1.391
2 3.440985e-05 1.736197e-05 1.982 3.817851e-05 2.505271e-05 1.524
3 3.892572e-05 1.610966e-05 2.416 4.369565e-05 2.750278e-05 1.589
4 4.786001e-05 1.731724e-05 2.764 4.974355e-05 2.81844e-05 1.765
5 5.161963e-05 2.209272e-05 2.336 5.390384e-05 4.560496e-05 1.182

non-stationarity. More specifically, each phase of up-movement indicate that
the variance is reduced less than the squared bias increases. The increase from
the first (and global) minimum at around N ≈ 60 onwards corresponds to
taking data from the end of November 2016 and earlier into account and might
correspond to changes due to effects of the election of the US president. The
minimum trMAPE for forecasting the data from the end of the estimation set
are summarised in Table 7. We observe that for h = 1, 2, 3, 4 the optimum
segment size is roughly 60 such that no observations prior to November 2016
are used for estimation. For h = 5 the optimum segment size is 41 and thus
even smaller. This implies that no observation prior to the presidential election
in the US are used for estimation of the forecasting coefficients.

Using these predictors to forecast the 20 observations from the second vali-
dation set we see, in Table 7, that the trMAPE of the stationary approach are
typically (2.1 to 3.7 times) larger than the trMAPE of the locally stationary
approach. We thus choose to work with the locally stationary approach. In Ta-
ble 7 we denote the ratios of the trMAPE of the stationary approach over the
trMAPE of the locally stationary approach by R̄T,j(h), where the bar indicates
that the trMAPE and not the MSPE is used. Forecasting the 20 observations
from the test set we see that the trMAPEs of the stationary approach are again
larger than those of the locally stationary approach, but not quite as much as
on the second validation set. Still, following our procedure, we chose the better
performing approach (the locally stationary one).

For this example, we further conducted a sensitivity analysis, by varying the
parameters m and pmax. Selected results, in which we see the results are mostly
stable when changing the parameters are shown in Appendix I [32].

6. Analysis of the localised Yule-Walker estimator under general
conditions and local stationarity

In this section we discuss the probabilistic properties of the localised Yule-

Walker estimator â
(p)
N,T (t) defined in (1). We believe the results to be of inde-



Predictive, finite-sample model choice for time series 3745

pendent interest and therefore present them in this separate section. They are
also key results for the proofs of the result in Section 3.3. Our results will hold
under Assumptions 1–5 (cf. Section 3.3). The assumptions are not restrictive
and, in particular, the concentration result in this section will hold for a broad
class of locally stationary processes and, in particular, does not require that the
data come from a tvAR(p) model. Further, we allow for any 1 + p ≤ N ≤ T
and, in particular, allow for a diverging model order p, as T → ∞. We do not,
as do for example [20], require that N = o(T ).

The main result of this section (Theorem 6.1) provides a non-asymptotic

bound for the Euclidean distance of â
(p)
N,T (t) to the following population quantity:

ā
(p)
N,T (t) :=

(
EΓ̂

(p)
N,T (t)

)−1(
Eγ̂

(p)
N,T (t)

)
=
(
ā
(p)
1,N,T (t), . . . , ā

(p)
p,N,T (t)

)′
. (35)

The Yule-Walker estimator is widely used in practice and â
(p)
N,T (t) and its

properties have been studied in detail under various conditions. [6, 5] and [4]
derive large deviation principles for Gaussian AR processes when the model
order is 1. A simple exponential inequality, also for model order 1, is given in
Section 5.2 of [7]. [61] prove a large deviation principle for general, but fixed,
model order. [29, 30] derives simultaneous confidence bands. The cited results
all require that the underlying process is stationary. [20] analyse the bias and
variance of the localised Yule-Walker estimator in the framework of local sta-
tionarity. They do not, however, provide an exponential inequality, and, as far
as we are aware, no result as the one we provide below is available at present.
The exponential inequality in Theorem 6.1, which we now state, is explicit in
terms of all parameters and constants. We make use of the explicitness to derive
Corollary 6.2, by which the localised Yule-Walker estimator is strongly, uni-
formly consistent, even when the model order is diverging as the sample size
grows.

Theorem 6.1. Let (Xt,T )t∈Z,T∈N∗ satisfy Assumptions 1–5 and EXt,T = 0.
Then, for every T ≥ 2C1p

2, N ≥ 1 + p ≥ 2 and ε > 0, we have:

P
(
‖â(p)N,T (t)− ā

(p)
N,T (t)‖ > ε

)

≤ 3p exp

(
−

(
mf

4p min
{
1, ε 1

8C0

})2
2
(
C1,1

p
N−p +

(mf

4p min
{
1, ε 1

8C0

})(3+4d)/(2+2d)(
C2,1

p
N−p

)1/(2+2d))
)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3p exp

(
− m2

f

32C1,1
p3

N−p+m
(3+4d)/(2+2d)
f

(
32C2,1

p2

N−p

)1/(2+2d))
)

ε ≥ 1/(8C0)

3p exp

(
−ε2

m2
f

212C1,1

(
C2

0
p3

N−p

)−1
)

ε ≤ min{Up,N , 1
8C0

}

3p exp

(
−ε1/(2+2d)

(
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29+4dC2,1

)1/(2+2d)(
C0

p2

N−p

)−1/(2+2d)
)

1
8C0

> ε ≥ min{Up,N , 1
8C0

}
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where â
(p)
N,T (t) is defined in (1), ā

(p)
N,T (t) is defined in (35),

Up,N :=
32C0

mf

(C2+2d
1,1

C2,1

)1/(3+4d)( p(4+6d)/(3+4d)

(N − p)(1+2d)/(3+4d)

)
,

and C0, C1 and C1,1, C2,1 are defined in (36) and (42), respectively.

The proof of Theorem 6.1 is deferred to Section A of the appendix.
Theorem 6.1 is a key ingredient to the proof of Lemma A.1 which is es-

sential to the proof of the performance-guarantee-result (Theorem 3.1) of our
procedure. Further, it implies

Corollary 6.2. Let (Xt,T )t∈Z,T∈N∗ satisfy Assumptions 1–5, EXt,T = 0 and
let P = PT and N = NT be sequences of integers that satisfy 2 ≤ 1 + P ≤
N ≤ T . Assume that P = o(N (1+2d)/(4+6d)) and N → ∞, as T → ∞. Further,
assume that there exists a sequence RT with 0 ≤ RT → ∞ and RT log(T ) =
o
(
(N/P )1/(3+4d)

)
, as T → ∞, where d is the constant from Assumption 5. Then,

we have

sup
p=1,...,P

sup
t=N,...,T

‖â(p)N,T (t)− ā
(p)
N,T (t)‖ = O

(
P 3/2

( log(T )
N

)1/2)
,

almost surely, as T → ∞.

Remark 6.3. For any stationary AR(p) model we have that ā
(p)
N,T (u) corre-

sponds to the vector of coefficients. This can be seen from Lemma B.2 and
the fact that C1 = 0 if the model is stationary. Thus, choosing NT = T and
PT = p, our result yields the same rate as Theorem 1 in [33], by which the
(least squares) estimator is strongly consistent with rate (log(T )/T )1/2. An early
consistency result for the Yule-Walker estimate with diverging model order is
Theorem 6 in [28]. Under the assumption that P = O(log(T )a), a > 1 or
P = C log T , C sufficiently large, they prove that the rate of convergence is
O
(
(log log T/T )1/2

)
.

7. Conclusion

In this paper, we have presented a method to choose between different forecast-
ing procedures, based on the empirical mean squared prediction errors the pro-
cedures achieve. Using the empirical rather than the asymptotic mean squared
prediction error, our procedure automatically takes into account that different
models should be preferred depending on the amount of data available, which is
an important difference to the Focused Information Criterion by [16]. Working
in the general framework of locally stationary time series we choose from two
classes of forecasts that were motivated by approximating the serial dependence
of the time series by time-varying or traditional autoregressive models. The
procedure implicitly balances the modelling bias (which is lower if the model is
more complex) and the variance of estimation (which increases for more complex
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models). Our two step procedure automatically chooses the number of forecast-
ing coefficients to be used and the segment size from which the forecasting
coefficients are estimated.

In a comprehensive simulation study we have illustrated that it is often ad-
visable to use a forecasting procedure derived from a simpler model when not
a vast amount of data is available. In particular, in the tvAR models of our
simulations, if the variation over time is not very pronounced and when the
tangent processes are not close to being unit root it is advisable to work with
the simpler stationary model, even when the data are non-stationary.

As an important side result of our rigorous theoretical analysis of the method,
we have shown that the localised Yule-Walker estimator is strongly, uniformly
consistent under local stationarity.

Appendix

In Section A we provide proofs of the results in the main text. In Section A.3,
we provide a proof for Theorem 3.1, the performance guarantee of our model se-
lection procedure. The proof relies on properties of the empirical mean squared
prediction errors for fixed model order and segment (Lemmas A.1–A.3) which
we state in Section A.2. Theorem 6.1 which is about concentration properties
of the localised Yule-Walker estimate under local stationarity, is proved in Sec-
tion A.4. Corollary 6.2 which is about the strong consistency of the localised
Yule-Walker estimate is proved in Section A.5. Lemmas 3.2 and 3.3, which
fascilitate our discussion of the special case of our procedure are proved in Sec-
tion A.6.

In Sections B–D we provide technical results about the properties of quanti-
ties related to the second order moments. In Section B we state results about
the vector ā

(p)
N,T (u), defined in (19), around which the localised Yule-Walker

estimator concentrates. We also discuss how it is related to the mean square
minimising 1-step ahead forecasting coefficients. In Section C we discuss prop-

erties of v̄
(p,h)
N,T (u), the h-step ahead version of ā

(p)
N,T (u). Further, we establish

properties of g
(p,h)
Δ (u) and MSPE

(p,h)
Δ1,Δ2

(u) from the definition of q(δ) that is
important for Assumptions 6 and 7. In Section D.2, we provide approxima-
tion results for expectations of Toepliz matrices of empirical localised auto-
covariances γ̂k;N,T (t), defined in (3) and in Section D.3 we establish concen-
tration results. In Section E we state a number of technical lemmas that we
use in the proofs of our results. We state these results in a separate section,
because we believe that they are useful for proving similar results in the fu-
ture.

Sections F–J that are only available in the extended, arXiv’ed version of the
manuscript, cf. [32], contain supplementary material. In Section F we provide the
proofs of Lemmas A.1–A.3. In Section H we cite two results from [55] which we
use for our proof in Section G.4. In Sections I–J we provide additional material
for our simulation and empirical study.
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Fig 10. Map of the results proved in Section A.

Appendix A: Proofs of Theorems 3.1 and 6.1, of Corollary 6.2, and
of Lemmas 3.2 and 3.3

A.1. Outlook

In this section we provide the proofs of the results from Sections 3.3 and 6. In
Section A.2 we state and discuss three auxiliary results (Lemmas A.1–A.3) which
facilitate the proof of our main result (Theorem 3.1). The auxiliary results are
about the empirical mean squared prediction error. Their proofs are deferred
to Section F [32]. The proof of Theorem 3.1, by which our model selection
procedure chooses models consistently with high probability, is then stated in
Section A.3. Because the proof of Lemma A.1 heavily relies on our result about
the Yule-Walkers estimators (Theorem 6.1), our proof of Theorem 3.1, implicitly,
also depends on it. The proof of Theorem 6.1 and its corollary (Corollary 6.2),
by which the localised Yule-Walker estimator is uniformly, strongly consistent,
are stated in Sections A.4 and A.5, respectively. For the proof of Theorem 6.1
we employ some of our results about the localised empirical autocovariance
estimate from Section D and a technical result from Section E. For the readers
convenience, we include Figure 10 in which the dependence of the various results
is illustrated graphically.

A.2. Three technical lemmas for the proof

We now introduce two quantities that combine constants from the assumptions.
Stating the results in terms of these constants will help to better interpret the
bounds and significantly shorten otherwise complicated expressions. To this end,
we define

C0 := (2π)1/2Mf/mf , and C1 := (2πM ′
f + C)m−1

f . (36)

The constant C0 can be interpreted in terms of the strength of serial corre-
lation. Note that C0 will be smaller if there is little variation (uniform in local



Predictive, finite-sample model choice for time series 3749

time) of the spectral density with respect to frequency. In particular, it will be
minimal if the spectral density is constant. This would corresponds to the case
of white noise. The constant C1 can be interpreted as divergence from station-
arity. In particular, note the meaning of the two summands of the first factor.
The constant M ′

f corresponds to the rapidity of changes in stationarity and
will vanish in case of stationarity. The constant C corresponds to the quality
of locally approximating the correlation structure with a stationary processes
correlation structure. It, also, vanishes if the underlying process is stationary.

The aim of the auxiliary results is to approximate general mean squared
prediction errors of the form

MSPE
(p,h)
s,m,N,T :=

1

m

s+m∑
t=s+1

(
Xt+h,T −

p∑
i=1

v̂
(p,h)
i;N,T (t)Xt−i+1,T

)2
, (37)

with v̂
(p,h)
i;N,T (t) defined in (4) and v̂

(p,h)
i;0,T (t) := v̂

(p,h)
i;t,T (t).

The first auxiliary result (Lemma A.1) entails that the quantity defined
in (37) is, with high probability, close to

MSPE
(p,h)

s,m,N,T :=
1

m

s+m∑
t=s+1

E
(
Xt+h,T −

p∑
i=1

v̄
(p,h)
i,N,T (t)Xt−i+1,T

)2
, (38)

with (
v̄
(p,h)
N,T (t)

)′
:=
(
v̄
(p,h)
1;N,T (t), v̄

(p,h)
2;N,T (t), · · · , v̄

(p,h)
p;N,T (t)

)
:= e′1

(
Ā

(p)
N,T (t)

)h
:= e′1

(
e1
(
ā
(p)
N,T (t)

)′
+H

)h
,

e1 :=

⎛
⎜⎜⎜⎝
1
0
...
0

⎞
⎟⎟⎟⎠ , H :=

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

. . . · · · 0 0
0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠ , (39)

where ā
(p)
N,T (t) is defined in (35), e1 denotes the first canonical unity vector of

dimension p and H denotes a p × p Jordan block with all eigenvalues equal to
zero. The second auxiliary result (Lemma A.2) provides a simplified probability
bound for the result in Lemma A.1 that can be applied in an especially relevant
case.

By our third auxiliary result (Lemma A.3) we have that MSPE
(p,h)

s,m,N,T in

turn can be approximated by MSPE
(p,h)
N/T,m/T (s/T ), where MSPE

(p,h)
Δ1,Δ2

(u) is the

quantity defined in (21), with continuous time indices Δ1 and Δ2. Note that
this quantity also appears in q(δ) defined in (24) which is a relevant component
of Assumptions 6 and 7.
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Some comparison of MSPE
(p,h)

s,m,N,T , defined in (38), and MSPE
(p,h)
N/T,m/T (s/T ),

as defined in (21) are in order: Note that MSPE
(p,h)

s,m,N,T is defined as the expecta-

tion of a modified version of MSPE
(p,h)
s,m,N,T , the modification being that v̂

(p,h)
N,T (t)

is exchanged by v̄
(p,h)
N,T (t). As before, we will denote v̄

(p,h)
0,T (t) := v̄

(p,h)
t,T (t).

We have that g
(p,h)
N/T (t/T ) approximates E[(Xt+h,T − f loc.

t,h;p,N )2], with f loc.
t,h;p,N

defined in (5). Therefore, the expectation of the empirical mean squared predic-
tion error (37) we are considering is naturally an average of these quantities:

E[MSPE
(p,h)
s,m,N,T ] =

1

m

s+m∑
t=s+1

E[(Xt+h,T − f loc.
t,h;p,N )2].

We now state the results that the quantities defined in (37) and (38) are
close, with high probability.

Lemma A.1. Let (Xt,T )t∈Z,T∈N∗ satisfy Assumptions 1–5 and EXt,T = 0.
Then, for every m,h ∈ N

∗, p ∈ N, N ≥ 6C0p
2, ε > 0 and T ≥ 10C1p

2, with

MSPE
(p,h)
s,m,N,T defined in (37) and MSPE

(p,h)

s,m,N,T defined in (38), we have that

P

(∣∣∣MSPE
(p,h)
s,m,N,T −MSPE

(p,h)

s,m,N,T

∣∣∣ > ε
)
≤ P

(p,h)
m,N (ε)

and
P

(∣∣∣MSPE
(p,h)
s,m,0,T −MSPE

(p,h)

s,m,0,T

∣∣∣ > ε
)
≤ P (p,h)

m,s (ε)

with

P
(p,h)
m,N (ε) := (1 + 4p+ 2p2)

·exp
(
−

ε2

(p+1)4

8((2C0+1)4h
C1,2(h+p−1)

m
+( ε

2(p+1)2
)(3+8d)/(2+4d)((2C0+1)2h

C2,2(h+p−1)

m
)1/(2+4d))

)

+ 6mp2(p+ 1) exp

(
− η2

2
(
C1,1

p
N−p

+ η(3+4d)/(2+2d)(C2,1
p

N−p
)1/(2+2d)

)),
where

η :=
mf

4p
min

{
1, μ̄/(8C0)

}
, μ̄ := 21−h μ

μ+ h(2C0)h−1
,

μ :=
ε̄

2
((

2C0 + 1
)2h

+ ε̄
)1/2 , ε̄ :=

ε/(p+ 1)2

2
(
(6πMf c224d)2 + ε2/(p+ 1)4

)1/4 ,
and the constants C0, C1, and C1,1, C1,2, C2,1, C2,2, and mf , Mf , and c, d are
defined in (36), (42), and Assumptions 3 and 5, respectively.

In a typical application the bound P
(p,h)
m,N (ε) will be small. More precisely, the

following, more accessible bound for P
(p,h)
m,N (ε), proved in Section F [32], will be

useful
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Lemma A.2. There exist constants D1, D2, D3 > 0 and K0 > 1, defined in the
proof, such that for any

max
{(h+ p

m

) 1+4d
3+8d

Kh
0 p

2,
( p

N − p

) 1+2d
3+4d

Kh
0 p

3h
}

< ε ≤ min{6πMfc
224d, 1}(p+ 1)2, (40)

we have

P
(p,h)
m,N (ε) ≤ D1

[
p2 exp

(
−D2

( m

h+ p

)1/(3+8d)
)

+mp3 exp

(
−D3

(N − p

p

)1/(3+4d)
)]

.

Note that we are interested in the scenario where ε > 0 may be small. There-
fore, if we allow that p and h may be large, we have to require m and N to be
of a minimum size.

We now state the result that the quantities defined in (38) and (21) are close.
The quality of the approximation depends on the parameters T , p and h, but is
uniform with respect to s, m and N :

Lemma A.3. Let (Xt,T )t∈Z,T∈N∗ satisfy Assumptions 1–5 and EXt,T = 0.
Then, for every m,h ∈ N

∗, p ∈ N, T ≥ 6h2hC1p
2, and N ≥ 4h2hC0p

2, with

MSPE
(p,h)

s,m,N,T defined in (38) and MSPE
(p,h)
Δ1,Δ2

(u) defined in (21), we have∣∣∣MSPE
(p,h)

s,m,N,T −MSPE
(p,h)
N/T,m/T (s/T )

∣∣∣ ≤ 8h2h
(
C0

)2h+1
[
6(2πM ′

f +C)
p2

T
+

p2

N

]
and∣∣∣MSPE

(p,h)

s,m,0,T −MSPE
(p,h)
s/T,m/T (s/T )

∣∣∣ ≤ 8h2h
(
C0

)2h+1
[
6(2πM ′

f + C)
p2

T
+

p2

N

]
.

The proofs of the three lemmas are long and technical. We therefore defer
them to Section F [32].

A few comments about Lemma A.3 are in order. Note that the approxima-
tion error is zero in case of a stationary time series, as then 2πM ′

f + C = 0.
Note further, that the approximation will be better, if h and p are small com-
pared to T . More precisely, if h(2C2

0 )
hp2 = o(T ), then the difference will vanish

asymptotically. In particular, if h = O(1), then it would suffice to assume that
p = o(T 1/2), for the approximation error to vanish asymptotically.

A.3. Proof of Theorem 3.1

The constants D1, D2 and D3 are defined as

D1 := 12,

D2 :=
(
28 max{C1,2, C

1/(2+4d)
2,2 }

)−1
, and

D3 := K2
1/
(
212 max{C1,1, (K

3+4d
1 C2,1)

1/(2+2d)}
)
,

(41)
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where K1 := mf/(32min{(6πMfc
224d)1/2, 1}) and

C1,α := 12 · 210αd+7α4αd
(
max{c2, 3πMf , 1}

)2α
e
(
1 +

1

log ρ

)(
1 +K1/2

)
,

C2,α := 12 · 24αd+3α2αd
(
max{c2, 3πMf , 1}

)α
e
(
1 +

1

log ρ

)
,

(42)

with α ∈ {1, 2}. In the definitions, we have K and ρ the constants from As-
sumption 2, Mf and mf the constants from Assumption 3, and c and d the
constants from Assumption 5.

To compact notation, we denote s2 := T − h, MSPE
(p1,h)
si,m,N,T by Xi and

MSPE
(p2,h)
si,m,0,T by Yi. Further, denote MSPE

(p1,h)
N/T,m/T (

si
T ) and MSPE

(p2,h)
s1/T,m/T (

si
T )

by Ȳi and X̄i, respectively. Further, we abbreviate A := Y1 − X1(1 + δ) and
B := Y1 − Y2 + (X2 −X1)(1 + δ).

First note that Assumptions 6 and 7 imply that

T ≥ max
{
10C1(maxP)2, 6h2hC1(maxP)2

}
, minN ≥ 4h2hC0(maxP)2

Therefore, the conditions of Lemmas A.1 and A.3 are satisfied. Further, note
that since

minN ≥ 8h2h
(
C0

)2h+1(
maxP

)2[
6(2πM ′

f + C) + 1
](

20(1 + δ)/q(δ)
)

and because N ≤ T for all N ∈ N , we have that the bound from Lemma A.3
can again be bounded

8h2h
(
C0

)2h+1(
maxP

)2[
6(2πM ′

f + C)
1

T
+

1

N

]
≤ q(δ)

20(1 + δ)
=: ε (43)

Finally, note that by Assumption 7, we have

T ≥ 4m
(
2h+ 1

)(
C0

)2h+1
M ′

f

20(1 + δ)

q(δ)

which implies that (a quantity related to the bound from Lemma C.4(iv)) can
be bounded

4
(
2h+ 1

)(
C0

)2h+1
M ′

f

∣∣∣s1 − s2
T

∣∣∣ ≤ ε. (44)

Now, for the proof of the Theorem, note that

P

(
(R̂T,2(h) ≥ 1 + δ and R̂T,3(h) ≥ 1 + δ) or (R̂T,2(h) < 1 + δ

and R̂T,3(h) < 1 + δ)
)

≥ 1−
∑

p1,p2∈P

∑
N∈N

(
P
(
|A| ≤ q(δ)/2

)
+ P
(
|B| > q(δ)/2

))
, (45)

which we prove in Section G.1 [32].
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We now bound the part of the right hand side of (45) that involves the
quantity A. Using the fact that

|Ȳ1 − X̄1(1 + δ)| = |Y1 + Ȳ1 − Y1 −X1(1 + δ) + (X1 − X̄1)(1 + δ)|
≤ |Y1 −X1(1 + δ)|+ |Ȳ1 − Y1|+ |X1 − X̄1|(1 + δ),

we have the first inequality of

P

(
|A| ≤ q(δ)/2

)
= P

(
|Y1 −X1(1 + δ)| ≤ q(δ)/2

)
≤ P

(
|Y1 − Ȳ1|+ |X1 − X̄1|(1 + δ) ≥ |Ȳ1 − X̄1(1 + δ)| − q(δ)/2

)
≤ P

(
|Y1 − Ȳ1| ≥

1

2
(|Ȳ1 − X̄1(1 + δ)| − q(δ)/2)

)
+ P

(
|X1 − X̄1| ≥

1

2(1 + δ)
(|Ȳ1 − X̄1(1 + δ)| − q(δ)/2)

)

≤ P

(
|Y1 − Ȳ1| > q(δ)/10)

)
+ P

(
|X1 − X̄1| >

q(δ)

10(1 + δ)
)
)

(46)

≤ P
(p2,h)
m,T−m

(q(δ)
20

)
+ P

(p1,h)
m,N

( q(δ)

20(1 + δ)

)
≤ 2P

(pmax,h)
m,Nmin

( q(δ)

20(1 + δ)

)
, (47)

where pmax := maxP and Nmin := minN . For the inequality in (46) we have
used the definition of q(δ) and 1/4 > 1/10. For the first inequality in (47) we
have used Lemmas A.1 and A.3 and (43) to obtain

P

(∣∣∣MSPE
(p,h)
s,m,N,T −MSPE

(p,h)
N/T,m/T (s/T )

∣∣∣ > 2ε
)
≤ P

(p,h)
m,N (ε) (48)

and

P

(∣∣∣MSPE
(p,h)
s,m,0,T −MSPE

(p,h)
s/T,m/T (s/T )

∣∣∣ > 2ε
)
≤ P (p,h)

m,s (ε). (49)

For the second inequality in (47) we have used that

p1 ≤ p2 ⇒ P
(p1,h)
m,N (ε) ≤ P

(p2,h)
m,N (ε), N1 ≤ N2 ⇒ P

(p,h)
m,N1

(ε) ≥ P
(p,h)
m,N2

(ε),

and ε1 ≤ ε2 ⇒ P
(p,h)
m,N (ε1) ≥ P

(p,h)
m,N (ε2).

We now bound the part of the right hand side of (45) that involves the
quantity B. We have

P

(
|B| > q(δ)/2

)
= P

(
|Y1 − Y2 + (X2 −X1)(1 + δ)| > q(δ)/2

)
≤ P

(
|Y1 − Y2| > q(δ)/4

)
+ P

(
|X2 −X1| >

q(δ)

4(1 + δ)

)

≤ 2P
(p2,h)
m,T−m

(q(δ)
20

)
+ 2P

(p1,h)
m,N

( q(δ)

20(1 + δ)

)
≤ 4P

(pmax,h)
m,Nmin

( q(δ)

20(1 + δ)

)
. (50)



3754 T. Kley et al.

Note that we have

P

(∣∣∣MSPE
(p,h)
s1,m,N,T −MSPE

(p,h)
s2,m,N,T > 5ε

)
≤ P

(∣∣∣MSPE
(p,h)
s1,m,N,T −MSPE

(p,h)
N/T,m/T (s1/T )

∣∣∣ > 2ε
)

+ P

(∣∣∣MSPE
(p,h)
s2,m,N,T −MSPE

(p,h)
N/T,m/T (s2/T )

∣∣∣ > 2ε
)

+ I
{∣∣∣MSPE

(p,h)
N/T,m/T (s1/T )−MSPE

(p,h)
N/T,m/T (s2/T )

∣∣∣ > ε
)}

,

where the first two terms can be bound by an application of (48) and the
indicator function vanishes for all T satisfying the condition of the Theorem,
because ∣∣∣MSPE

(p,h)
N/T,m/T (s1/T )−MSPE

(p,h)
N/T,m/T (s2/T )

∣∣∣
≤ 4
(
2h+ 1

)(
C0

)2h+1
M ′

f

∣∣∣s1 − s2
T

∣∣∣,
where Lemma C.4(iv) was employed to obtain (44) for the last inequality.

Thus, combining (45), (47) and (50), we have shown that

P

(
(R̂T,2(h) ≥ 1 + δ and R̂T,3(h) ≥ 1 + δ) or (R̂T,2(h) < 1 + δ

and R̂T,3(h) < 1 + δ)
)

≥ 1− 6|P|2|N |P (pmax,h)
m,Nmin

( q(δ)

20(1 + δ)

)
.

An application of Lemma A.2 finishes the proof of the theorem.

Remark A.4. Equations (48)–(49), which are immediate consequences of Lem-
mas A.1 and A.3, can be used to derive the almost sure convergence of

∣∣∣MSPE
(p,h)
s,m,N,T −MSPE

(p,h)
N/T,m/T (s/T )

∣∣∣ and ∣∣∣MSPE
(p,h)
s,m,0,T−MSPE

(p,h)
s/T,m/T (s/T )

∣∣∣,
under appropriate conditions, using a classical Borel-Cantelli argument.

This asymptotic view of MSPE
(p,h)
s,m,N,T and MSPE

(p,h)
s,m,0,T , in particular, im-

plies that we may interpret MSPE
(p,h)
Δ1,Δ2

(u) as an approximation of the expec-
tation of the empirical MSPE for an h-step ahead linear forecast of order p,
where observations up to (local) time u have been made. The Δ1 and Δ2 are
(localised) length which are related to the segment length of observations used
for the estimation of the forecasting coefficients and the segment from which the
observations Xt+h,T that are being forecasted are taken, respectively.

We now proceed with the proofs of the results from Section 6.
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A.4. Proof of Theorem 6.1

Let M := Γ̂
(p)
N,T (t), M0 := EM , v := γ̂

(p)
N,T (t), and v0 := Ev. By Lemma D.3(ii-c)

we deduce that M0 is invertible for T ≥ 2p2C1, because it is positive definite
with smallest eigenvalue larger or equal to mf/2. An application of Lemma E.6,
with the spectral norm as the matrix norm and the Euclidean norm as the vector
norm yields

P
(
‖â(p)N,T (t)− ā

(p)
N,T (t)‖ > ε

)
= P
(
‖M−1v −M−1

0 v0‖ > ε
)

≤ P

(
‖M −M0‖ >

1

2‖M−1
0 ‖

)
+ P

(
‖v − v0‖ >

ε

4

1

‖M−1
0 ‖

)

+ P

(
‖M −M0‖ >

ε

4

1

(‖M−1
0 ‖)2 ‖v0‖

)
I{‖v0‖ �= 0}

≤ P

(
max

k=0,...,p−1
|γ̂k;N,T (t)− Eγ̂k;N,T (t)| >

1

4p
mf

)
+ P

(
max

k=1,...,p
|γ̂k;N,T (t)− Eγ̂k;N,T (t)| >

ε

8p1/2
mf

)
+ P

(
max

k=0,...,p−1
|γ̂k;N,T (t)− Eγ̂k;N,T (t)| >

ε

32(2π)1/2Mfp
m2

f

)

≤ 3p max
k=0,...,p

P

(
|γ̂k;N,T (t)− Eγ̂k;N,T (t)| >

mf

4p
min

{
1,

εp1/2

2
,

ε

8C0

})
,

= 3p max
k=0,...,p

P

(
|γ̂k;N,T (t)− Eγ̂k;N,T (t)| >

mf

4p
min

{
1,

ε

8C0

})
,

where we have use Lemma D.3(ii-c) again to bound 1/‖M−1
0 ‖. In the last step

we employed that p1/2

2 ≥ 1
8C0

. Further, we have used that M −M0 satisfies

‖M −M0‖1 = ‖M −M0‖∞ = max
1≤�≤p

p∑
h=1

|γ̂h−�;N,T (t)− Eγ̂h−�;N,T (t)|

≤ p max
k=0,...,p−1

|γ̂k;N,T (t)− Eγ̂k;N,T (t)|.

Thus, by Hölder’s inequality

‖M−M0‖ ≤
(
‖M−M0‖1‖M−M0‖∞

)1/2
≤ p max

k=0,...,p−1
|γ̂k;N,T (t)−Eγ̂k;N,T (t)|.

For the Euclidean norm we have used

‖v − v0‖ ≤ p1/2‖v − v0‖∞ = p1/2 max
k=1,...,p

|γ̂k;N,T (t)− Eγ̂k;N,T (t)|.

Finally, by Corollary D.2(iii) and Lemma D.3(i-b), we have

‖v0‖ = ‖Eγ̂(p)
N,T (t/T )‖ ≤ ‖fp,N ◦ γ(p)

N/T (t/T )‖+‖Eγ̂(p)
N,T (t/T )−fp,N ◦ γ(p)

N/T (t/T )‖

≤ (2π)1/2Mf + 2T−1p3/2C1mf ≤ 2(2π)1/2Mf ,
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where the second inequality holds for T ≥ 2
p3/2C1mf

(2π)1/2Mf
= 2C1p

3/2/C0, which is

the case, as T ≥ 2C1p
2 is assumed. Here we also have used that ‖fp,N ◦x‖ ≤ ‖x‖,

as all entries of fp,N are between 0 and 1. Applying Lemma D.4 yields the
assertion, because

P
(
‖â(p)N,T (t)− a

(p)
N,T (t)‖ > ε

)
≤ 3p max

h=0,...,p
exp

(
− η2

2
(
C1,1

h∗
N−|h| + η(3+4d)/(2+2d)

(
C2,1

h∗
N−|h|

)1/(2+2d))
)

= 3p exp

(
− η2

2
(
C1,1

p
N−p + η(3+4d)/(2+2d)

(
C2,1

p
N−p

)1/(2+2d))
)

where η :=
mf

4p min
{
1, ε 1

8C0

}
, and the third line follows from the fact, for any

two integers N and p with N ≥ 1 + p ≥ 2 we have that ( h∗
N−|h| )h=0,1,...,p is an

increasing sequence. This is easy to see: 1
N−0 ≤ 1

N−1 ≤ . . . ≤ p−1
N−p+1 ≤ p

N−p .

Note that T ≥ 2pC1 ≥ C/(πmf ), such that this condition of Lemma D.4 is
met.

A.5. Proof of Corollary 6.2

Note the fact that, if Rn ≥ 0 is a sequence with Rn → ∞, as n → ∞, then

bn = O(1) ⇔ bn = o(rn), ∀ 0 ≤ rn ≤ Rn, with rn → ∞, as n → ∞.

Thus, employing the Borel-Cantelli lemma, it suffices to show that, for any given

ε > 0 and sequence 0 ≤ rT ≤ R
1/2
T with rT → ∞, we have

∞∑
T=1

P

(
sup

p=1,...,P
sup

t=N,...,T
‖â(p)N,T (t)− ā

(p)
N,T (t)‖ > εP 3/2

( log(T )
N

)1/2
rT

)
< ∞.

This follows, since we have

P

(
sup

p=1,...,P
sup

t=N,...,T
‖â(p)N,T (t)− a

(p)
N,T (t)‖ > εP 3/2

( log(T )
N

)1/2
rT

)

≤ P · T · sup
p=1,...,P

sup
t=N,...,T

P

(
‖â(p)N,T (t)− a

(p)
N,T (t)‖ > εP 3/2

( log(T )
N

)1/2
rT

)

≤ P · T · sup
p=1,...,P

sup
t=N,...,T

P

(
‖â(p)N,T (t)− a

(p)
N,T (t)‖ > εp3/2C̃1/2

( log(T )
N − p

)1/2
rT

)

≤ P · T · sup
p=1,...,P

sup
t=N,...,T

3p exp

(
− ε2

p3 log(T )

N − p
C̃r2T

m2
f

212C1,1

(
C2

0

p3

N − p

)−1
))

= 3T 3 exp

(
− ε2 log(T )C̃r2T

m2
f

212C1,1
C−2

0

))
≤ 3T−2,
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for T large enough. In the second inequality we have used the fact that, due
to P = o(N), there exists a C̃ > 0 such that 1/N ≥ C̃/(N − P ), for T large
enough. Note that we have P = o(T 1/2), from N ≤ T , P = o(N (1+2d)/(4+6d))
and d ≥ 1/2, such that, in the third inequality, Theorem 6.1 can be applied,
where we have also used the fact that, under the assumptions made

p3/2
( log(T )
N − p

)1/2
R

1/2
T = o

( P (4+6d)(3+4d)

N (1+2d)/(3+4d)

)
,

implying that, for T large enough, we have

εp3/2
( log(T )
N − p

)1/2
rT ≤ min{Up,N , 1/(8C0)} = Up,N .

This completes the proof.

A.6. Proofs of Lemmas 3.2 and 3.3

For the proof of Lemma 3.2 it suffices to show that

q(δ) := min
N∈N

∣∣∣MSPE
(1,1)
s1/T,m/T (

s1
T
)−(1+δ)·MSPE

(1,1)
N/T,m/T (

s1
T
)
∣∣∣ ≥ δπmf

(
1−ρ2

)
.

Likewise, to show Lemma 3.3, we bound q(δ) with πmfD
2
inf/2 on the right hand

side.
Denoting

γk(u,Δ) :=

∫ 1

0

γk(u+Δ(x− 1))dx = Δ−1

∫ u

u−Δ

γk(v)dv

we have, by definition (21), that

MSPE
(1,1)
Δ1,Δ2

(u) =

∫ 1

0

g
(1,1)
Δ1

(
u+Δ2(1− x)

)
dx

= Δ−1
2

∫ u+Δ2

u

(
γ0(w)− 2

γ1
(
w; Δ1

)
γ0
(
w; Δ1

)γ1(w) + (γ1
(
w; Δ1

)
γ0
(
w; Δ1

))2γ0(w))dw.
To find the lower bound we want, it therefore suffices to proof lower bounds,

for every w ∈ [s1/T, (s1 +m)/T ], of the following difference

((
γ0(w)− 2

γ1
(
w; s1/T

)
γ0
(
w; s1/T

)γ1(w) + (γ1
(
w; s1/T

)
γ0
(
w; s1/T

))2γ0(w))

− (1 + δ)
(
γ0(w)− 2

γ1
(
w;N/T

)
γ0
(
w;N/T

)γ1(w) + (γ1
(
w;N/T

)
γ0
(
w;N/T

))2γ0(w))).
(51)

For Lemma 3.3 we will bound −1 × (51). For notational convenience we omit
the w’s and denote

E :=
γ1(w,N/T )

γ0(w,N/T )
, and F :=

γ1(w, s1/T )

γ0(w, s1/T )
.
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By elementary considerations it can be shown that

(51) = γ0

((
F − γ1

γ0

)2
−
(γ1
γ0

− E
)2

− δ
(
1−
(γ1
γ0

)2
+
(γ1
γ0

− E
)2))

. (52)

By (28), we have |F − γ1

γ0
| ≥ Dinf and by (27), we have |F − γ1

γ0
| ≤ Dsup.

Further, we have that |γ1

γ0
− E| ≤ M ′

fN/(mfT ), uniformly with respect to ω,
which can be seen as follows: first, note that

∣∣∣γk(w,N/T )− γk(w, 0)
∣∣∣ ≤ ∫ 1

0

∣∣∣γk(w)− γk(w − N

T
(1− x))

∣∣∣dx
≤ 2πM ′

f

∫ 1

0

N

T
(1− x)dx = πM ′

f

N

T

Further, note that we have x
y − x0

y0
= 1

y0

(
x
y (y0 − y) + (x− x0)

)
and thus

∣∣∣γ1
γ0

− E
∣∣∣ ≤ 1

γ0(w;N/T )

( |γ1|
γ0

+ 1
)
πM ′

f

N

T
≤

M ′
f

mf

N

T
, (53)

where we have used that 2πmf ≤ γ0(w; Δ) :=
∫ 1

0
γ0(w + Δ(x − 1))dx and

|γ1|/γ0 ≤ 1. Employing (52), we have now brought the tools together to prove
Lemma 3.2:

−1× (51) = γ0

(
δ
(
1−
(γ1
γ0

)2
+
(γ1
γ0

− E
)2)

−
(
F − γ1

γ0

)2
+
(γ1
γ0

− E
)2)

≥ 2πmf

(
1− ρ2

)(
δ/2 + δ/2−D2

sup/
(
1− ρ2

))))
≥ πmfδ

(
1− ρ2

)
.

For the first inequality we have used the fact that (γ1/γ0 − E)2 ≥ 0 and the
definitions of ρ and Dsup. For the second inequality we have used the condition
imposed on δ.

Finally, employing (52) again, we prove Lemma 3.3:

(51) = γ0

((
F − γ1

γ0

)2
−
(γ1
γ0

− E
)2

− δ
(
1−
(γ1
γ0

)2
+
(γ1
γ0

− E
)2))

≥ 2πmf

((
F − γ1

γ0

)2
−
(γ1
γ0

− E
)2

− 2δ
)

≥ 2πmf

(
D2

inf −
(M ′

f

mf

N

T

)2
− 2δ

)
≥ 2πmf

(
D2

inf/2− 2δ
)
≥ πmfD

2
inf/2,

where in the first inequality we have used

(γ1
γ0

− E
)2

≤
(M ′

f

mf

N

T

)2
≤ 1,
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as we have Dinf ≤ 2 and thus maxN ≤ (mf/M
′
f )T follows from condition (29).

For the second inequality we have used the definition of Dinf and again condi-

tion (29), by which we have D2
inf/2 ≥

(
M ′

fN/(mfT )
)2
. Finally, for the third

inequality we have used that by assumption in the Corollary 2δ ≤ D2
inf/4.

The first bound, q(δ) ≥ δπmf (1− ρ2), implies that if

m > 2
(πmf (1− ρ2)

20K0

δ

1 + δ

) 3+8d
1+4d

and minN >
(πmf (1− ρ2)

20K0

δ

1 + δ

) 3+4d
1+2d

+1

and

minN ≥ 16
(
C0

)3
max

{ 20(1 + δ)

δπmf (1− ρ2)
, 1
}[

6(2πM ′
f + C) + 1

]
then Assumption 6 holds, and if

T ≥ max
{
12C1, 12m

(
C0

)3
M ′

f

20

πmf (1− ρ2)

1 + δ

δ

}
,

then Assumption 7 holds. Hence, we have proven Lemma 3.2 where the constants
can be chosen as

K1 := 2
(πmf (1− ρ2)

20K0

) 3+8d
1+4d

,

K2 := max
{(πmf (1− ρ2)

20K0

) 3+4d
1+2d

+ 1,

16
(
C0

)3
max

{20(1 + (1− ρ2)/(2D2
sup))

πmf (1− ρ2)
, 1
}[

6(2πM ′
f + C) + 1

]}

and

K3 := max
{
12C1, 12

(
C0

)3
M ′

f

20

πmf (1− ρ2)

(
1 +

1− ρ2

2D2
sup

)}
.

The second bound, q(δ) ≥ πD2
infmf/2, implies that if

m > 2
( π(M ′

f )
2

20K0mf (1 + δ)

(maxN
T

)2) 3+8d
1+4d

and

minN > max
{( π(M ′

f )
2

20K0mf (1 + δ)

(maxN
T

)2) 3+4d
1+2d

+ 1,

16
(
C0

)3
max

{ 20(1 + δ)

πD2
infmf/2

, 1
}[

6(2πM ′
f + C) + 1

]}

then Assumption 6 holds, and if

T ≥ max
{
12C1, 12m

(
C0

)3
M ′

f

20(1 + δ)

πD2
infmf/2

}
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then Assumption 7 holds. Hence, we have proven Lemma 3.3 where the constants
can be chosen as

K4 := 2
( π(M ′

f )
2

20K0mf

) 3+8d
1+4d

,

K5 := max
{( π(M ′

f )
2

20K0mf

) 3+4d
1+2d

+ 1,

16
(
C0

)3
max

{20(1 + 1
8D

2
inf))

πD2
infmf/2

, 1
}[

6(2πM ′
f + C) + 1

]}

and

K6 := 12max
{
C1,
(
C0

)3
M ′

f

20(1 + 1
8D

2
inf)

πD2
infmf/2

}
.

This finishes the proof of Lemmas 3.2 and 3.3.

Appendix B: Lemmas regarding a

B.1. Outlook

In this section we state and discuss results relating quantities that are encoun-
tered in connection with the localised Yule-Walker estimator. In Section B.2 we
state and discuss three lemmas. In Lemma B.1 we make precise that a

(p)
0 (t/T )

approximates the time-varying 1-step linear prediction coefficients which, for
p ∈ N

∗ and t = 1, . . . , T , are defined as

ã
(p)
T (t) := arg min

a=(a1,...,ap)′∈Rp
E

[(
Xt,T −

p∑
j=1

ajXt−j,T

)2]
=
(
Γ̃
(p)
T (t)

)−1
γ̃
(p)
T (t),

where

γ̃
(p)
T (t) := (Cov (Xt,T , Xt−1,T ) , . . . ,Cov (Xt,T , Xt−p,T ))

′,

Γ̃
(p)
T (t) := (Cov (Xt−i,T , Xt−j,T ) ; i, j = 1, . . . , d).

(54)

In Lemma B.2 we make precise that ā
(p)
N,T (t), defined in (35), is related to

a
(p)
Δ (u), defined in (19), in the sense that a

(p)
0 (t/T ) and a

(p)
N/T (t/T ) approximate

ā
(p)
N,T (t). In Lemma B.3 a bound for the norm of a

(p)
Δ (u) is provided, which is

independent of p, Δ and u.
Proofs of the results in Section B.2 are provided in Section G.2 [32]. The

proofs rely on results about expectations of localised autocovariance estimates
from Section D and an approximation result for inverses of matrices
(Lemma E.2). For the readers convenience, we include Figure 11 in which the
dependence of the various results is illustrated graphically.
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Fig 11. Map of the lemmas in Section B.

B.2. Statement of the lemmas

The following two lemmas discuss approximation properties of ā
(p)
N,T (t) and

ã
(p)
T (t):

Lemma B.1. Let (Xt,T )t∈Z,T∈N∗ satisfy Assumptions 1, 3, 4, and EXt,T = 0.
Define C0 and C1 as in (36). Then, if T ≥ 2p2C1, we have

‖ã(p)T (t)− a
(p)
0 (t/T )‖ ≤ 1

T

(
5C0C1 p

2
)
.

[53] prove a similar bound (Lemma 3):

‖ã(p)T (t)− a
(p)
0 (t/T )‖ ≤ D1

T
, D1 :=

Cp1/2(p2p + 1)

πmf
,

for T ≥ T0 := Cp3/2

πmf
. Note that (for larger p) their constant D1 can be substan-

tially larger than the constant in Lemma B.1, which is largely due to a different

representations of ã
(p)
T (t)− a

(p)
0 (t/T ) in their proof.

It is worth mentioning that in case of a stationary process, where C1 = 0,

Lemma B.1 implies that ã
(p)
T (t) and a

(p)
0 (t/T ) coincide.

Lemma B.2. Let (Xt,T )t∈Z,T∈N∗ satisfy Assumptions 1, 3, 4, and EXt,T = 0.
Define C0 and C1 as in (36). Then, if

(i) T ≥ 8pNC1 and N ≥ 4p2
Mf

mf
, then ‖ā(p)N,T (t)−a

(p)
0 (t/T )‖ ≤

(
9C0C1

)
pN
T +(

3C2
0

)
p2

N .

(ii) T ≥ 4p2C1 and N ≥ 4p2
Mf

mf
, then ‖ā(p)N,T (t)− a

(p)
N/T (t/T )‖ ≤

(
5C0C1

)
p2

T +(
3C2

0

)
p2

N .
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Note that, if p2 = o(T ), as T → ∞, then we have, by Lemma B.1, that ã
(p)
T (t)

and a
(p)
0 (t/T ) are asymptotically equivalent in the sense that the Euclidean norm

of the difference vanishes asymptotically. For Np = o(T ) and p = o(N1/2) we

have, by Lemma B.2(i), that ā
(p)
N,T (t) and a

(p)
0 (t/T ) are asymptotically equiva-

lent, too. Therefore, since 0 ≤ p2 ≤ Np, we have: if Np = o(T ) and p = o(N1/2),

then ā
(p)
N,T (t) and ã

(p)
T (t) are asymptotically equivalent. Note further, that in the

case of a tvAR(p) model, the quantity ã
(p)
T (t) coincides with the vector of coef-

ficients (a1(t/T ), . . . , ap(t/T )), as is evident from the Yule-Walker equations.
It is worth mentioning that in case of a stationary process, where C1 = 0,

the bounds in Lemmas B.1 and B.2 are independent of T .

We will also need the following result that bounds the norm of a
(p)
Δ (u):

Lemma B.3. Let (Xt,T )t∈Z,T∈N∗ satisfy Assumptions 1, 3, 4, and EXt,T = 0.
Then, for u ∈ R, p ∈ N

∗ and Δ ≥ 0, we have

‖a(p)Δ (u)‖ ≤ (2π)1/2Mf/mf =: C0.

By Lemma 2 in [53] we have ‖a(p)0 (u)‖ ≤ 2p. Their proof adapts arguments

from Lemma 4.2 in [20] where ‖â(p)0 (u)‖ ≤ 2p almost surely is proven. We choose
to work with the bound from Lemma B.3, because it has the advantage that it
does not depend on p. Further, note that neither of the bounds is sharp, as by

Cauchy-Schwarz inequality we clearly have ‖a(1)0 (u)‖ ≤ 1.
In Lemmas C.1(i) and (ii) we show similar bounds for the approximation of

v̄
(p,h)
N,T (t) with v

(p,h)
0 (t/T ) or v

(p,h)
N/T (t/T ).

Appendix C: Lemmas regarding v, g and MSPE

C.1. Outlook

In this section we state and discuss results relating quantities that are encoun-
tered in connection with the h-step ahead forecasting coefficients and the em-
pirical mean squared prediction errors. In particular, this are the quantities

v
(p,h)
Δ (u), g

(p,h)
Δ (u) and MSPE

(p,h)
Δ1,Δ2

(u). In Section C.2 we state and discuss four

lemmas. In Lemma C.1 we make precise that v̄
(p,h)
N,T (t) can be approximated by

v
(p,h)
0 (t/T ) or v

(p,h)
N/T (t/T ), where v̄

(p,h)
Δ (u) was defined in (39). In Lemma C.2 we

state bounds for norms of v
(p,h)
Δ (u) and its derivatives with with respect to u

or Δ. In Lemma C.3, we state bounds for norms of ā
(p,h)
N,T (t). In Lemma C.4(i)–

(iii) we state bounds for g
(p,h)
Δ (u) and its derivates with respect to u or Δ. In

Lemma C.4(iv)–(vi) we state bounds for the derivatives of MSPE
(p,h)
Δ1,Δ2

(u) with
respect to u, Δ1 or Δ2.

Proofs of the results in Section C.2 are provided in Section G.3 [32]. The
proofs rely on some analogous bounds for the quantities related to the Yule-
Walker estimator (Section B), on results on expectations of localised autocovari-
ance estimates (Section D) and an approximation result for powers of matrices
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Fig 12. Map of the lemmas in Section C.

(Lemma E.3). For the readers convenience, we include Figure 12 in which the
dependence of the various results is illustrated graphically.

C.2. Statement of the lemmas

The following lemma is constructed analogously to Lemma B.2, but for the
h-step ahead coefficients.

Lemma C.1. Let (Xt,T )t∈Z,T∈N∗ satisfy Assumptions 1, 3, 4, and EXt,T = 0.

Define C0 and C1 as in (36). Then, we have, for v̄
(p,h)
N,T (t) defined in (39),

(i) if T ≥ 18C1pN and N ≥ 6p2C0, with v
(p,h)
0 (t/T ) defined in (20), that

‖v̄(p,h)N,T (t)− v
(p,h)
0 (t/T )‖ ≤ h

(
2C0

)h(
5C1

pN

T
+ 2

p2

N
C0

)
.

(ii) if T ≥ 10C1p
2 and N ≥ 6p2C0, with v

(p,h)
N/T (t/T ) defined in (20), that

‖v̄(p,h)N,T (t)− v
(p,h)
N/T (t/T )‖ ≤ h

(
2C0

)h(
3C1

p2

T
+ 2

p2

N
C0

)
.

Further, for the norms of u �→ v
(p,h)
Δ (u) and Δ �→ v

(p,h)
Δ (u) and the derivatives,

we have the following bounds:

Lemma C.2. Let (Xt,T )t∈Z,T∈N∗ satisfy Assumptions 1, 3, 4, and EXt,T = 0.

C0 as in (36) and mf , Mf , M ′
f from the assumptions. Then, with v

(p,h)
Δ (u)

defined in (20), we have

(i) ‖v(p,h)Δ (u)‖ ≤
(
C0

)h
,

(ii) v
(p,h)
Δ (·) is continuously differentiable, with∥∥∥ ∂

∂u
v
(p,h)
Δ (u)

∥∥∥ ≤ h
(
C0

)h
M ′

f (m
−1
f +M−1

f ),
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(iii) Δ �→ v
(p,h)
Δ (u), Δ > 0, is continuously differentiable, with

∥∥∥ ∂

∂Δ
v
(p,h)
Δ (u)

∥∥∥ ≤ 2h
(
C0

)h
M ′

f (m
−1
f +M−1

f )/Δ.

Lemma C.2 also holds for h = 1. Part (i) thus extends Lemma B.3.

Finally, we use Lemmas B.1, B.2 and B.3 to bound the norm of ā
(p)
N,T (t) and

v̄
(p)
N,T (t, h).

Lemma C.3. Let (Xt,T )t∈Z,T∈N∗ satisfy Assumptions 1, 3, 4, and EXt,T = 0.
Define C0 and C1 as in (36). Then,

(i) for T ≥ 10C1p
2 and N ≥ 6C0p

2 we have, for ā
(p,h)
N,T (t) defined in (35),

‖ā(p)N,T (t)‖ ≤ 2C0, and ‖v̄(p,h)N,T (t)‖∞ ≤
(
2C0 + 1

)h
.

Further, (ii) for T ≥ 6h2hC1p
2 and N ≥ 4h2hC0p

2 we have, for v̄
(p,h)
N,T (t)

defined in (39),

‖v̄(p,h)N,T (t)‖ ≤ 2
(
C0

)h
.

Note that Lemma C.3(i) implies that we have ‖v̄(p,h)N,T (t)‖ ≤ p1/2
(
2C0 + 1

)h
.

The bound in Lemma C.3(ii) does not depend on p, but require larger T and
N .

An important observation is that, as a function of u, MSPE
(p,h)
N/T,n/T (u) is

differentiable with bounded derivative

Lemma C.4. Let (Xt,T )t∈Z,T∈N∗ satisfy Assumptions 1, 3, 4, and EXt,T = 0.
Define C0 as in (36) and the other constants from the assumptions. Then, the

function g
(p,h)
Δ , defined in (22), is continuously differentiable and the derivatives

are bounded. More precisely, we have
(i) ∣∣g(p,h)Δ (u)

∣∣ ≤ 4Mf

(
C0

)2h
,

(ii) ∣∣∣ ∂
∂u

g
(p,h)
Δ (u)

∣∣∣ ≤ 4
(
2h+ 1

)(
C0

)2h+1
M ′

f ,

(iii) ∣∣∣ ∂

∂Δ
g
(p,h)
Δ (u)

∣∣∣ ≤ 8
(
2h+ 1

)(
C0

)2h+1
M ′

f/Δ.

In particular, this implies, or MSPE
(p,h)
Δ1,Δ2

(u) defined in (21), that
(iv) ∣∣∣ ∂

∂u
MSPE

(p,h)
Δ1,Δ2

(u)
∣∣∣ ≤ 4

(
2h+ 1

)(
C0

)2h+1
M ′

f .

(v) ∣∣∣ ∂

∂Δ1
MSPE

(p,h)
Δ1,Δ2

(u)
∣∣∣ ≤ 8

(
2h+ 1

)(
C0

)2h+1
M ′

f/Δ1.
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(vi) ∣∣∣ ∂

∂Δ2
MSPE

(p,h)
Δ1,Δ2

(u)
∣∣∣ ≤ 8Mf

(
C0

)2h
/Δ2.

Appendix D: Properties of empirical localised autocovariances

D.1. Outlook

In this section we establish properties of the empirical localised autocovariances
under local stationarity. In Section D.2 we state three lemmas about the estima-
tors’ moments and in Section D.3 we state two lemmas about the concentration
of the estimators. More precisely, in Lemma D.1 we approximate the expec-
tation of the empirical autocovariance and state bounds for the approximation
error. In Corollary D.2 we employ the approximation results from Lemma D.1 to
approximate matrices of such expectations and bound the approximation error
(in spectral norm). In Lemma D.3 we establish lower and upper bounds for the

eigenvalues of Γ
(p)
Δ (u) and EΓ̂

(p)
N,T (t). In Lemma D.4 we establish a concentration

result for the localised empirical autocovariance. Lemma D.4 follows as a special
case from Lemma D.5 where a concentration result for generalised sums under
local stationarity is established.

Proofs of the results are proved in Section G.4 [32]. The proofs rely on techni-
cal results to bound the matrix norm of perturbed inverse matrices and approx-
imation of sums by integrals (cf. Section E) as well as on general concentration
results from [55] which we cite in Section H [32]. For the readers convenience, we
include Figure 13 in which the dependence of the various results is illustrated
graphically.

D.2. Approximations for moments

Lemma D.1. Let (Xt,T )t∈Z,T∈N∗ satisfy Assumptions 1 and 4, and EXt,T = 0.
Then, with γ̂k;N,T (t) defined in (3), f(u, λ) and C from Assumption 1, and M ′

f

from Assumption 4, we have: (i)

∣∣∣Eγ̂k;N,T (t)−
N − |k|

N

∫ π

−π

[∫ 1

0

f
( t−N + |k|

T
+

N − |k|
T

u, λ
)
du

]
ei|k|λdλ

∣∣∣
≤

2πM ′
f + C

T

and (ii)

∣∣∣Eγ̂k;N,T (t)−
N − |k|

N

∫ π

−π

[∫ 1

0

f
( t−N

T
+

N

T
u, λ
)
du

]
ei|k|λdλ

∣∣∣
≤

2π(|k|+ 1)M ′
f + C

T
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Fig 13. Map of the lemmas in Section D.

and (iii)

∣∣∣Eγ̂k;N,T (t)−
N − |k|

N
γk(t/T )

∣∣∣ ≤ 2πM ′
f (N − |k|+ 1) + C

T
.

Corollary D.2. Under the conditions of Lemma D.1, with Γ̃
(p)
T (t) and γ̃

(p)
T (t)

defined in (54), Γ
(p)
Δ (u) and γ

(p)
Δ (u) defined in (18), Γ̂

(p)
N,T (t) and γ̂

(p)
N,T (t) defined

in (2), and Fp,n and fp,n defined for any n = 1, 2, . . . and p = 1, . . . , n as

Fp,N :=
(
1− |j − k|/N

)
j,k=1,...,p

, and fp,N :=
(
1− 1/N, . . . , 1− p/N

)′
,

we have: (i)

‖Γ̃(p)
T (t)− Γ

(p)
0 (t/T )‖ ≤ p2

T
(2πM ′

f + C) ‖γ̃(p)
T (t)− γ

(p)
0 (t/T )‖ ≤ p1/2

T
C

and (ii)

‖EΓ̂(p)
N,T (t)− Fp,N ◦ Γ(p)

0 (t/T )‖ ≤ p

T
(2πM ′

f (N + 1) + C)

‖Eγ̂(p)
N,T (t)− fp,N ◦ γ(p)

0 (t/T )‖ ≤ p1/2

T
(2πM ′

fN + C)

and (iii)

‖EΓ̂(p)
N,T (t)− Fp,N ◦ Γ(p)

N/T (t/T )‖ ≤ p2

T
(2πM ′

f + C)
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‖Eγ̂(p)
N,T (t)− fp,N ◦ γ(p)

N/T (t/T )‖ ≤ 2
p3/2

T

(
2πM ′

f + C
)

Lemma D.3. Let (Xt,T )t∈Z,T∈N∗ satisfy Assumptions 1, 3, and 4, and EXt,T =
0. Then, we have:

(i-a) the matrices Γ(p)(u) and Γ
(p)
Δ (u) are positive definite, hence invertible,

for u ∈ R and Δ ≥ 0, with their eigenvalues between mf and Mf . In other
words, the norms of the matrices and their inverses are uniformly bounded:

mf ≤ 1/‖Γ(p)
Δ (u)−1‖ ≤ ‖Γ(p)

Δ (u)‖ ≤ Mf .

(i-b) the norms of the respective vectors are uniformly bounded:

‖γ(p)
Δ (u)‖ ≤ (2π)1/2Mf .

(ii-a) The largest eigenvalue of EΓ̂
(p)
N,T (t) satisfies the following bound:

‖EΓ̂(p)
N,T (t)‖ ≤ Mf +

p2

T
(2πM ′

f + C).

(ii-b) if T > m−1
f p2(2πM ′

f+C), then the matrix EΓ̂
(p)
N,T (t) is positive definite,

and the smallest eigenvalue satisfies the following bound:

mf − p2

T
(2πM ′

f + C) ≤ 1

‖
(
EΓ̂

(p)
N,T (t)

)−1‖

(ii-c) in particular, if T ≥ 2m−1
f p2(2πM ′

f + C) we thus have

1

2
mf ≤ 1

‖
(
EΓ̂

(p)
N,T (t)

)−1‖
≤ ‖EΓ̂(p)

N,T (t)‖ ≤ 3

2
Mf .

D.3. Exponential inequalities for empirical covariances

We now state an exponential inequalities for the empirical covariances:

Lemma D.4. Let (Xt,T )t∈Z,T∈N∗ satisfy Assumptions 1, 2, 3, and 5 and
EXt,T = 0. Then, for T ≥ C/(πmf ), n ∈ N

∗, h ∈ N and ε > 0, we have

P

(∣∣∣γ̂h;N,T (t)− Eγ̂h;N,T (t)
∣∣∣ ≥ ε

)

≤ exp

(
− ε2

2
(

C1,1h∗
N−|h| + ε(3+4d)/(2+2d)

(
C2,1h∗
N−|h|

)1/(2+2d))
)

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
exp
(
−
ε2

4

N − |h|
C1,1h∗

)
ε≤
( h∗

N − |h|
)(1+2d)/(3+4d)(C2+2d

1,1

C2,1

)1/(3+4d)

exp
(
−
1

4

(
ε
N − |h|
C2,1h∗

)1/(2+2d))
ε≥
( h∗

N − |h|
)(1+2d)/(3+4d)(C2+2d

1,1

C2,1

)1/(3+4d)

,

where h∗ := |h| + I{h = 0}, γ̂h;N,T (t) is defined in (3), and the constants C1,1

and C2,1 are defined in (42).
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Note that the right hand side does not depend on t.

Lemma D.5. Let (Xt,T )t∈Z,T∈N∗ satisfy Assumptions 1, 2, 3, and 5 and
EXt,T = 0. Let at, t = b, . . . , b + n − 1 be a bounded sequence of numbers;
i.e., |at| ≤ A. Then, for α ∈ N

∗, T ≥ C/(πmf ), n ∈ N
∗, b ∈ Z, h ∈ N and

ε > 0, we have

P

(∣∣∣n−1
b+n−1∑
t=b

at(X
α
t,TX

α
t+h,T − E(Xα

t,TX
α
t+h,T ))

∣∣∣ > ε
)

≤ exp

(
− ε2

2
(

C1,αA2h∗
n + ε(3+4αd)/(2+2αd)

(
C2,αAh∗

n

)1/(2+2αd))
)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(
−

(ε/A)2

4

n

C1,αh∗

)

ε ≤ A
(C2+2αd

1,α

C2,α

)1/(3+4αd)(h∗

n

)(1+2αd)/(3+4αd)

exp
(
−

1

4

( ε

A

n

C2,αh∗

)1/(2+2αd))

ε ≥ A
(C2+2αd

1,α

C2,α

)1/(3+4αd)(h∗

n

)(1+2αd)/(3+4αd)

,

where h∗ := |h|+ I{h = 0} and the constants C1,α and C2,α are defined in (42)
in the proof [depending only on α, d, C, Mf , ρ, and K].

Note the important fact that the bounds in the inequality do not depend
on b.

Appendix E: Technical results

In the previous sections we used the following general results, which are not
restricted to locally stationary processes. In some of these technical lemmas we
denote by ‖·‖M or ‖·‖v an arbitrary matrix or vector norm, respectively. Special
properties we require include submultiplicativity of a matrix norm, and com-
patibility of a matrix norm with a vector norm. A matrix norm which satisfies
‖AB‖M ≤ ‖A‖M‖B‖M for all square matrices (m = n), is said to be submulti-
plicative. A matrix norm ‖ · ‖M and vector norm ‖ · ‖v are said to be compatible
if ‖Ax‖v ≤ ‖A‖M‖x‖v for all square matrices A and vectors x (of sizes that
allow for the matrix product).

Lemma E.1. Let A ∈ R
p×p be an invertible matrix and Δ ∈ R

p×p be a matrix
with ‖A−1‖M · ‖Δ‖M < 1 for a submultiplicative matrix norm ‖ · ‖M . Then, the
matrix A+Δ is invertible and we have

‖(A+Δ)−1‖M ≤ ‖A−1‖M
1− ‖A−1‖M · ‖Δ‖M
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An important corollary to the above lemma is the following:

Lemma E.2. Let A ∈ R
p×p be an invertible matrix and Δ ∈ R

p×p be a matrix
with ‖A−1‖M · ‖Δ‖M ≤ c < 1 for a submultiplicative matrix norm ‖ · ‖M . Then,
the matrix A+Δ is invertible and we have

‖(A+Δ)−1 −A−1‖M ≤ ‖Δ‖M
‖A−1‖2M
1− c

.

Lemma E.3. Let A and A0 be two square matrices and ‖ · ‖M be a submulti-
plicative matrix norm. Then, for any h ∈ N,

‖Ah −Ah
0‖M ≤ h‖A−A0‖M

(
‖A−A0‖M + ‖A0‖M

)h−1
.

Lemma E.4. Let u and v be two real-valued random variables. Further, let u0

and v0 be two real numbers. Then, for all ε > 0

P(|uv − u0v0| > ε)

≤ P

(
|u− u0| >

1

2

ε

(|v0|2 + ε)1/2

)
+ P

(
|v − v0| >

1

2

ε

(|u0|2 + ε)1/2

)
.

For the proof in the main part we need the following lemma:

Lemma E.5. Let Xt and ât, t = 1, . . . , n, be two sequences of random variables,
and αt, t = 1, . . . , n be a sequence of numbers. Assume that there exists a
constant m2

2 > 0 such that maxt=1,...,n EX
2
t ≤ m2

2 < ∞. Then, for any ε > 0,
we have

P

(∣∣∣ n∑
t=1

(
âtXt − αtE(Xt)

)∣∣∣ > nε
)

≤ P

(
sup

t=1,...,n
|ât − αt| >

ε

2
(
(2m2

2)
2 + ε2

)1/4
)

+ P

(∣∣∣ n∑
t=1

(X2
t − EX2

t )
∣∣∣ > nε/2

)
+ P

(∣∣∣ n∑
t=1

αt(Xt − EXt)
∣∣∣ > nε/2

)
.

We will further use the following lemmas:

Lemma E.6. Let M ∈ R
p×p be a random p × p matrix with existing expecta-

tion M0 := EM , which is assumed to be invertible. Further, let v be a R
p-valued

random vector v with existing expectation Ev := v0. Then, for every submulti-
plicative matrix norm ‖ · ‖M that is compatible with the (vector) norm ‖ · ‖v, we
have: for every ε > 0

P

(∥∥∥M−1v −M−1
0 v0

∥∥∥
v
> ε
)

≤ P

(
‖M −M0‖M >

1

2‖M−1
0 ‖M

)
+ P

(
‖v − v0‖v >

ε

4

1

‖M−1
0 ‖M

)

+ P

(
‖M −M0‖M >

ε

4

1

(‖M−1
0 ‖M )2 ‖v0‖v

)
I{‖v0‖v �= 0}.
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Lemma E.7. Let x = (x1, . . . , xp) be a random vector and x0 = (x0,1, . . . , x0,p)
be a deterministic vector. Define two p× p matrices

A :=

⎛
⎜⎜⎜⎜⎜⎝

x1 x2 · · · xp−1 xp

1 0 · · · 0 0
0 1 · · · 0 0
...

. . . · · · 0 0
0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠ and A0 :=

⎛
⎜⎜⎜⎜⎜⎝

x0,1 x0,2 · · · x0,p−1 x0,p

1 0 · · · 0 0
0 1 · · · 0 0
...

. . . · · · 0 0
0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠

For any h = 1, 2, . . . define v := (1, 0, . . . , 0)Ah and v0 := (1, 0, . . . , 0)Ah
0 . Then,

for every ε > 0,

P(‖v − v0‖ > ε) ≤ P

(
‖x− x0‖ > 21−h ε

ε+ h(max{‖x0‖, 1})h−1

)
.

The following lemma ensures that b-sub-Gaussian processes satisfy Assump-
tion 5.

Lemma E.8. Let (Xt,T )t∈Z,T∈N∗ satisfy Assumptions 1 and 3. Assume that
T ≥ C

πmf
and that the standardized variables Xt,T /σt,T are b-sub-Gaussian (b >

0); i.e.,

E

(
exp
(
ξXt,T /σt,T

))
≤ exp

(b2|ξ|2
2

)
, ξ ∈ R.

Then, the process (Xt,T )t∈Z,T∈N∗ satisfies Assumption 5 with c := 6πbMf and
d := 1/2.

Lemma E.9. Let f : [0, 1] → R be continuous and differentiable on (0, 1).
Then, for every A,B = 0, . . . , T , T ∈ N∗, A < B, we have

∣∣∣ 1

B −A

B∑
�=A+1

f(�/T )−
∫ 1

0

f
(A
T

+
B −A

T
u
)
du
∣∣∣ ≤ 1

T
sup

A/T<u<B/T

|f ′(u)|.
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