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1. Introduction

In this paper we present a modeling approach that can be applied to both dy-
namic interactions in networks as well as dynamic link deletion and addition in
networks. The case of dynamic interactions considers a network as a collection
of actors who can cause instantaneous interactions, where both directed and
undirected interactions are considered. In our model, both the time at which
an interaction happens and the pair of actors involved in this interaction are
random. We call this model a dynamic network interaction model. The Enron
e-mail data set provides a typical example for a data set that can be modeled
in such a way. Here an interaction consists in one person sending an e-mail to
another person. While such interactions can be thought of as edges between
two nodes, and while the nodes themselves persist over time, each such edge is
assumed to only exists for an infinitesimal time. In contrast to that, the connec-
tions between actors in a dynamic network persist over a longer time period. In
the latter case, connections comprise four quantities: sender and receiver (a pair
of actors), and beginning and end of the lifetime of each connection. Examples
for such dynamic networks are social networks with links indicating an ongo-
ing friendship between two actors. The notions of dynamic network interactions
and of dynamic networks are different but they are closely related. A dynamic
network defines two network interaction models, one given by the starting time
and one given by the ending time of a connection. Furthermore, an interaction
network model of e-mails can be used to define a dynamic network by aggrega-
tion, where the network shows a connection between two actors as long as they
have exchanged e-mails over a certain time period in the past.

Since dynamic networks can be understood as two dynamic interaction net-
works, we mainly consider dynamic network interaction models here. Our model
expresses the distribution of the next event conditional on the past as depending
on two quantities: The covariates and the parameter function. The random co-
variates summarize the relevant history of past interactions. Naturally they are
functions of time. Their influence on the distribution is regulated by an unob-
served, deterministic parameter function. Thus, the model allows for the effect
of the covariates to be changing over time. It is this effect, i.e. the parameter
functions, that is our primary estimation target.

Our approach to parameter function estimation is based on a localized likeli-
hood criterion built on counting process models from survival analysis adapted
to our network model. The behavior of the resulting estimators is then studied.

1.1. Literature review and related work

Random networks/graphs play an important role in various scientific branches
for a long time, in particular in the social sciences (c.f. the textbook [37]). The
importance of the analysis of random networks within the more statistical and
machine learning literature is more recent, but corresponding literature is signif-
icant by now (e.g. see [8, 18]). This increase in significance is mainly due to the
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development of modern technologies that produce complex data sets that are en-
coding relational structures. Examples for real network data can be found at the
Koblenz Network Collection KONECT, the European network data collection
SocioPatterns, the MIT based collection Reality Commons, the data sets made
available by the Max Planck Institute for Softwaresysteme (MPI-SWS), or the
Stanford Large Network Dataset Collection (SNAP). In this paper, we will use
the Capital Bikeshare Performance Data (see http://www.capitalbikeshare.
com/system-data), which is a data set collected on the Washington, DC bike-
share system.

Networks can display a multitude of different topological properties. In the
literature such topological properties are measured by various quantities, in-
cluding the flow through the network, the degree distribution, centrality, the
existence of hubs, sparsity etc. Time-varying or dynamic random networks ap-
pear quite naturally, and the dynamic aspect significantly adds to the complex-
ity of modeling and analyzing the networks. Early work on networks involv-
ing temporal structures can already be found in [16], who consider a discrete
time Markov process for friendships (links). Other relevant literature using dis-
crete time settings include work on dynamic exponential random graph mod-
els [30, 31, 9, 1, 10, 22, 23], dynamic infinite relational models [14], dynamic
block models [12, 38, 39, 40], dynamic nodal states models [20, 19], various dy-
namic latent features model [7], dynamic multi-group membership models [17],
dynamic latent space models [6, 32], and dynamic Gaussian graphical models
[42, 21]. Also time-continuous models have been discussed in the literature. They
include link-based continuous-time Markov processes [36, 25, 24], actor-based
continuous-time Markov processes [33, 34, 35], and also models based on count-
ing processes as in [29], who are considering the modeling of network interaction
data, and [4], who applies such a model to radio communication data. Link pre-
diction, a problem related to the analysis of dynamic networks, received quite
some attention in the computer science literature (e.g. see [26, 3]).

1.2. Our work

In this paper, we study estimation in a network model where the theoretical
developments assume the network size n (the number of actors) to grow to
infinity. Our setup is as follows. A network, or a graph, is given as a pair Gn =
(Vn, Ln), where Vn := {1, ..., n} denotes the set of n actors (also called agents
or nodes), and Ln ⊆ {(i, j) : i �= j, i, j ∈ Vn} denotes the set of all possible links
between them. For each pair of actors (i, j) ∈ Ln we denote by Nn,ij : [0, T ] → N

the number of interactions between these two:

Nn,ij(t) = #{interaction events between i and j up to and including time t}.

We assume that for (i, j) ∈ Ln, the processes Nn,ij are one-dimensional counting
processes with respect to an increasing, right continuous, complete filtration Ft,
t ∈ [0, T ], i.e. the filtration obeys the conditions habituelles, see [2], pp. 60. The
σ-field Ft contains all information available up to the time point t. For simplicity

http://www.capitalbikeshare.com/system-data
http://www.capitalbikeshare.com/system-data
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we formulate all results for complete, undirected networks only, i.e, we assume
from now on that Ln = {(i, j) : i < j, i, j ∈ Vn} and set Nn,ji := Nn,ij for all
pairs (i, j) ∈ Ln. All results can be formulated for the directed case as well (see
also the discussion in Section 2.3 after assumption (A2)).

In our model the intensities of the counting processes Nn,ij at time t are only
modeled for a random subset of edges {(i, j) ∈ Ln : Cn,ij(t) = 1}, where the
functions Cn,ij(t) ∈ {0, 1} are indicator functions assumed to be predictable
with respect to the filtration Ft. This subset of edges is the active part of the
network, and its specification depends on the application one has in mind. For
instance, whether an edge (i, j) is active might depend on whether i and j have
had a low or a high interaction intensity in the past. We will come back to this
point later.

For the set {(i, j) ∈ Ln : Cn,ij(t) = 1} the general model for the intensities
of the counting processes Nn,ij is

λn,ij(θ, t) := Φ(θ(t); (Xn,ij(s))(i,j)∈Ln
: s ≤ t),

where Xn,ij : [0, T ] → R
q are Ft-predictable covariates, Φ is a link function, and

the parameter function θ : [0, T ] → R
q is the target of our estimation method.

The covariatesXn,ij(t) may summarize global or local information on the history
of the network up to time t and they may also contain exogenous information
from outside of the network. This set-up is quite flexible and general. In order
to be more specific, and for modeling reasons explained in Section 2.1, we will,
in the following, only consider the case that Φ has the Cox-type form:

Φ(θ; (Cn,ij(s), Xn,ij(s))(i,j)∈Ln
: s ≤ t) = Cn,ij(t) exp(θ

T (t)Xn,ij(t)). (1)

Butts [4] uses the same modeling framework with a constant parameter in an em-
pirical analysis of radio communication data from responders to the World Trade
Center Disaster. Here we extend the approach of [4] to time varying parameter
functions and provide asymptotic theory. Another related model can be found
in [25]. Perry and Wolfe [29] studied a model similar to (1) but with constant
parameters. In their specification the intensity was equal to λ(t) exp(θTXn,ij(t))
where λ(t) is an unknown baseline hazard. They developed asymptotic theory
for maximum partial likelihood estimators of θ in an asymptotic framework
where the time horizon T converges to infinity. Our work was motivated by
their research but it differs in several respects. First of all we allow the parame-
ters to change over time, so that our estimates of the parameter functions can be
used for statistical inference on time changes in the effects of covariates. Also,

by choosing the first component of the covariate vector as X
(1)
n,ij(t) ≡ 1, our

model includes the time-varying baseline intensity eθ
(1)(t). Thus in contrast to

[29] we propose a fit of the full specification of the intensity function including
all parameters and the baseline intensity. Furthermore, our aim is to model large
networks whereas [29] considered relatively small networks over a long time pe-
riod T . In other words, in our asymptotics we let the number of actors, rather
than T, converge to infinity. We will argue below (at the end of Section 2.1 and



2768 A. Kreiß et al.

after Assumption (A6) in Section 2.3) that appropriate choices of the censoring
factor Cn,ij(t) allow for modeling large networks with node/actor degrees being
relatively small as compared to the size of the network.

Despite the strong interest in dynamic models for networks, rigorous statis-
tical analysis of corresponding estimators (asymptotic distribution theory) are
relatively sparse, in particular in the case of time-varying parameters, as con-
sidered here. The temporal models in the literature are usually Markovian in
nature. In contrast to that, our continuous-time model based on counting pro-
cesses allows for non-Markovian structures (i.e. dependence on the infinite past).
This increases flexibility in the modeling of the temporal dynamics. Our model
also allows for a change of the network size over time without the networks
degenerating in the limit. Moreover, we are presenting a rigorous analysis of
distributional asymptotic properties of the corresponding maximum likelihood
estimators. To the best of our knowledge, no such analysis can so far be found
in the literature, even for the simpler models indicated above.

In Section 2, we discuss our model (Section 2.1), define our likelihood-based
estimators (Section 2.2), and present our main result on the point-wise asymp-
totic normality of our estimators in Section 2.4. In Section 3, we demonstrate
the finite sample behavior and the flexibility of our approach by presenting an
analysis of the Capital Bike-share Data. The proof of our main result is deferred
to Section 4. The appendix contains additional simulations where we compare
network characteristics as degree distributions, cluster coefficients and diame-
ters of the observed network with networks distributed according to the fitted
model. Moreover, we discuss data adaptive bandwidth choices in the appendix.

2. Link-based dynamic models

2.1. Link-based dynamic models with constant parameters

We will first discuss the model described in Section 1.2 with general link function
Φ and constant parameter function θ ≡ θ0. The following form of the log-
likelihood for the parameter θ is shown in [2]:

�T (θ) =
∑

0<t≤T

∑
(i,j)∈Ln

ΔNn,ij(t) log λn,ij(θ, t)−
∫ T

0

∑
(i,j)∈Ln

λn,ij(θ, t)dt, (2)

where ΔNn,ij(t) := Nn,ij(t)−Nn,ij(t−) (and Nn,ij(t−) := limδ→0,δ>0 Nn,ij(t−
δ)) is the jump height (either 0 or 1) of Nn,ij at t. We obtain the maximum
likelihood estimator as

θ̂ := argmax
θ∈Θ

�T (θ),

where Θ denotes the range in which the true parameter is located. The choice of
Φ as in (1) allows for an easy interpretation of the parameters: The intensity has

the form Cn,ij(t)
∏q

k=1 e
θkX

(k)
n,ij(t), where X

(k)
n,ij(t) denotes the k-th component
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of Xn,ij(t). Hence, θk quantifies the impact of X
(k)
n,ij(t) on the intensity, given

that the remaining covariate vector stays the same.

The presence of the function Cn,ij(t) enhances the modeling flexibility sig-
nificantly. By choosing Cn,ij the researcher who applies the model is able to fit
the model only to a sub-network. This becomes necessary when it is natural
to assume that certain pairs of actors behave fundamentally different from oth-
ers. For instance, consider a social media network, and contrast pairs impacting
each others activities in the network by exchanging messages regularly, with
pairs consisting of actors from different social communities hardly interacting
with each other. It is intuitive that these two pairs cannot be modeled accu-
rately by the same model. In this situation, it would instead be advantageous
to restrict to those pairs who have recently interacted, say, and fit the model
only to interactions among them. On the other hand, the interaction intensity
of course is dynamic, and thus different pairs might be included over time. This
is achieved by the presence of the selector variables Cn,ij(t). Also note that
Cn,ij(t) = 0 for t ∈ [a, b] does not necessarily mean that there will be no inter-
actions between i and j in [a, b], it rather means that interactions which happen
between i and j in [a, b] are not fitted by our model.

Two things should be noted about these selectors: Firstly, choosing (Cn,ij)i,j
too conservatively is not a problem in the sense that we still estimate the ‘correct’
parameters. For instance, suppose that Cn,ij(t) and θ are the correct quantities
to be used in the model (1). Assume now that C∗

n,ij is a predictable selector
that is more conservative than Cn,ij , i.e., Cn,ij(t) = 0 implies C∗

n,ij(t) = 0.

Then, the observations are given by t �→ N∗
n,ij(t) :=

∫ t

0
C∗

n,ij(s)dNn,ij(s) for
t ∈ [0, T ]. Clearly, N∗

n,ij is a counting process comprising those jumps of Nn,ij

at which C∗
n,ij equals 1. By assumption, C∗

nij(t)Cn,ij(t) = C∗
n,ij(t) and hence the

compensator of N∗
n,ij is given by C∗

n,ij(t) exp(θ
T (t)Xn,ij(t)). Thus, the processes

N∗
n,ij can also be used to estimate θ. On the other hand, using fewer data of

course leads to a loss of information, and this might effect the efficiency of the
parameter estimator (cf. Theorem 2.1). We do not attempt here to determine
the best Cn,ij in a data driven way. Instead, in real data applications, and
motivated by this discussion, we attempt to choose Cn,ij in a way that is not
too liberal. This is illustrated in Section 3, where we set Cn,ij(t) equal to zero,
if there was no event between i and j for a certain period Δt = (t − δ, t), for
some δ > 0, so that our model is only fitted to ‘active’ pairs. For pairs with low
activity one may look for a different model. Thus a proper choice of Cn,ij(t)
allows to split up the analysis into different regimes.

Secondly, consider the social media example again. Suppose that the probabil-
ity that Cn,ij(t) = 1 is the same for all pairs (i, j). We will assume that, with pos-
itive probability, links can form at any time 0 < t < T , i.e., P(Cn,ij(t) = 1) > 0.
However, it is intuitive that even when more and more people connect to the
platform, one particular actor will not acquire an unbounded number of friends.
Instead it seems reasonable to assume that its number of friends is bounded. In
such a case, the fraction of pairs (i, j) for which Cn,ij(t) = 1 should be of order
1
n . Hence, it is natural to assume that P(Cn,ij(t) = 1) → 0 as n → ∞. This way
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sparsity in the observations can be captured in the model. For the asymptotic
result (Theorem 2.1) to hold, the network cannot be too sparse (essentially an
increase in the number of actors must lead to an increase in the number of active
pairs). This will be made precise in the assumptions given in Section 2.3.

2.2. Estimation in time-varying coefficient models

In time series applications, it turns out that powerful fits can be achieved by
letting the time series parameters depend on time, and this is what we consider
here as well. We will use the above model with θ in (1) depending on t, or in
other words, θ = θ(t) is now a parameter function.

An estimator of this parameter function at a given point t0 can be obtained
by maximizing the following local likelihood function in μ which is obtained by
localizing the likelihood (2) for a constant parameter at time t0 by means of a
kernel K

�T (μ, t0) =
∑

0<t≤T

1

h
K

(
t− t0
h

) ∑
(i,j)∈Ln

ΔNn,ij(t) log λn,ij(μ, t) (3)

−
∫ T

0

∑
(i,j)∈Ln

1

h
K

(
t− t0
h

)
λn,ij(μ, t)dt,

where K is a kernel function (positive and integrating to one), and h = hn is
the bandwidth. The corresponding local MLE is defined as

θ̂(t0) = argmax
θ∈Θ

�T (θ, t0), (4)

with Θ being the allowed range of the parameter function θ. Recall that we use
the following Cox-type form of the intensity:

λn,ij(θ, t) = Cn,ij(t) exp
{
θ(t)TXn,ij(t)

}
. (5)

With this choice, the local log-likelihood can be written as (up to a term not
depending on θ):

�T (θ, t0) =
∑

(i,j)∈Ln

∫ T

0

1

h
K

(
t− t0
h

)
θTXn,ij(t)dNn,ij(t)

−
∑

(i,j)∈Ln

∫ T

0

1

h
K

(
t− t0
h

)
Cn,ij(t) exp(θ

TXn,ij(t))dt. (6)

The maximum likelihood estimator θ̂n(t0) studied in this paper is defined as
the maximizer of (6) over θ ∈ Θ, where Θ ⊆ R

q is an appropriate parameter
space. Denote by Ln(t0) the set of active edges, i.e., the set of all pairs (i, j),
such that, Cn,ij(t0) = 1. We denote by |Ln(t0)| the size of the set Ln(t0).
Our main theoretical result, given below, says that for a given t0 ∈ (0, T ), the

maximum likelihood estimator θ̂n(t0) exists, is asymptotically consistent, and is
asymptotically normal.

To formulate our main result, the following technical assumptions are needed.
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2.3. Assumptions

Our assumptions do not specify the dynamics of the covariates Xn,ij(t) and of
the censoring variable Cn,ij(t). Instead, we assume that the stochastic behavior
of these variables stabilizes for n → ∞. Assumption (A1) is specific to our setting
and it states our general understanding of the dynamics, while assumptions
(A2), (A3) and (A5) are standard. Assumption (A4) can be found similarly in
[29]. It guarantees that the covariates are well behaved. Finally, (A6) and (A7)
specifically describe the dependence relations in our context. They quantify the
idea that while the network grows the actors get further and further apart
and hence influence each other less and less. In what follows, we state our
assumptions and briefly discuss their meaning and the intuition behind them.

We denote derivatives by ∂. In particular, ∂t and ∂t2 refer to the first and
second derivative with respect to t respectively. For derivatives with respect to
a vector θ, ∂θ refers to the gradient, and ∂θ2 refers to the Hessian matrix.

(A1) Exchangeability

Assume that for every n and any s, t ∈ [t0 − h, t0 + h],

1. the joint distribution of (Cn,ij(t), Xn,ij(t)) is identical for all pairs (i, j),
2. the conditional distribution of the q-dimensional covariate Xn,ij(t) given

that Cn,ij(s) = 1, has a density fs,t(y) with respect to a measure μ on R
q.

This conditional distribution does not depend on (i, j) and n. We use the
shorthand notation fs for fs,s.

The most restrictive part of (A1) is that the conditional distribution of
Xn,ij(t), given Cn,ij(s) = 1, does not depend on i, j. Observe that this holds
if the array of (Cn,ij , Xn,ij)i,j is jointly exchangeable in (i, j) for any fixed n.
The additional assumption that the conditional distribution of Xn,ij(t), given
Cn,ij(s) = 1, does not change with n is not very restrictive, because it is natu-
ral to assume that the distribution depends only on the local structure of the
network (Recall the discussion in Section 2.1 in which we assumed that a fixed
vertex i has only a bounded number of close interaction partners j while the
network grows). We make this additional assumption mainly to avoid stating
lengthy technical assumptions allowing to interchange the order of differentia-
tion and integration at several places in the proof.

We add some standard assumptions on the kernel.

(A2) Kernel and Bandwidth

Suppose that the kernel K and the bandwidth h fulfil the following conditions.

1. K is positive and supported on [−1, 1].

2.
∫ 1

−1
K(u)du = 1,

∫ 1

−1
K(u)udu = 0 and max−1≤u≤1 K(u) < ∞.

3. As n → ∞, h = o(1), ln := n(n−1)
2 P(Cn,12(t0) = 1) → ∞ with lnh → ∞,

and lnh
5 = O(1).
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Note that, ln is the effective sample size at time t0, because
n(n−1)

2 is the
number of possible links between vertices, of which, in the average, we observe
the fraction P(Cn,12(t0) = 1). (For directed networks, one simply has to replace
n(n−1)

2 by n(n− 1) in the definition of ln.) With this in mind, the assumptions
on the bandwidth are standard.

The next assumption states smoothness conditions on the parameter curve
θ0.

(A3) Smoothness of Parameter
Let Θ be the convex parameter space and θ0 : [0, T ] → Θ the parameter function.

1. θ0 is twice continuously differentiable in a neighborhood of t0.
2. The value θ0(t0) lies in the interior of Θ.

We continue with some tail conditions on fs(y) and its derivatives. They are
fulfilled if, e.g., the covariates are bounded.

(A4) Moment Conditions
For μ-almost all y (where μ is as in (A1)), s �→ fs(y) is twice continuously
differentiable. Let Uh := [t0 − h, t0 + h]. There are bounded, open and convex
neighborhoods U of t0 and V ⊆ Θ of θ0(t0) such that for all pairs (i, j) and (k, l)
and τ := supθ∈V ‖θ‖,∫

sup
s∈U

{(
1 + ‖y‖+ ‖y‖2 + ‖y‖3

)
|fs(y)|+

(
1 + ‖y‖+ ‖y‖2

)
|∂sfs(y)|

+(1 + ‖y‖)
∣∣∂s2fs(y)∣∣+ ‖y‖2 · fs,t0(y)

}
· exp(τ · ‖y‖)dμ(y) < ∞, (7)

sup
s,t∈Uh

E

(
‖Xn,ij(s)‖2 · ‖Xn,kl(t)‖2

· eτ(‖Xn,ij(s)‖+‖Xn,kl(t)‖)
∣∣∣Cn,ij(t0) = 1, Cn,kl(t0) = 1

)
= O(1). (8)

For k ∈ {2, 3}:

sup
s∈Uh

E

(
‖Xn,12(s)‖keτ‖Xn,12(s)‖

∣∣∣∣Cn,12(s) = 1, Cn,12(t0) = 0

)
= O(1), (9)

E

(
sup
s∈Uh

[
‖Xn,12(s)‖+ ‖Xn,12(s)‖2 + ‖Xn,12(s)‖3 + ‖Xn,12(s)‖4

]
· eτ‖Xn,12(s)‖

∣∣∣∣Cn,12(s) = 1

)
< +∞. (10)

(A5) Identifiability
θTXn,12(t0) = 0 a.s. (w.r.t. ft0) implies that θ = 0.

The following assumption addresses the asymptotic behavior of the distri-
butions of the processes Cn,ij(t). In particular, for t in a neighborhood of t0,
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we postulate asymptotic stability of the marginal distributions of these pro-
cesses, and also a certain kind of asymptotic independence of Cn,ij and Cn,kl

for |{i, j} ∩ {k, l}| = 0.

(A6) Asymptotic Uncorrelatedness I
For w(u) = K(u) and w(u) = K2(u)/

∫
K2(v)dv it holds that∫ 1

−1

w(u)
P(Cn,12(t0 + uh) = 1)

P(Cn,12(t0) = 1)
du → 1 as n → ∞. (11)

For

An,ij,kl

:=

∫ 1

−1

∫ 1

−1

w(u)w(v)
P(Cn,ij(t0 + uh) = 1, Cn,kl(t0 + vh) = 1)

P(Cn,12(t0) = 1)2
dudv,

we assume that

An,ij,kl =

⎧⎨⎩
o(n2) for |{i, j} ∩ {k, l}| = 2,
o(n) for |{i, j} ∩ {k, l}| = 1,

1 + o(1) for |{i, j} ∩ {k, l}| = 0.
(12)

Furthermore, it holds that, as n → ∞∫ T

0

1

h
K

(
s− t0
h

)
P(Cn,12(t0) = 0, Cn,12(s) = 1)

P(Cn,12(t0) = 1)
ds = O(h), (13)

and, for edges with |{i, j} ∩ {k, l}| ≤ 1,

P(Cn,ij(t0) = 1, Cn,kl(t0) = 1)

P(Cn,12(t0) = 1)2
= O(1). (14)

First note that due to the localization of our likelihood function, time depen-
dence is present only locally around the target time t0. Further, condition (11)
appears reasonable in our asymptotic framework where the size of the network
increases: Consider, for instance a dynamic social media network, and assume,
for example, that we consider data from a certain geographic region. One might
assume that at night the number of active pairs, i.e. the pairs with Cn,ij = 1,
is lower than during the day, and that there is a gradual decrease between 8pm
and 11pm, say. This time window does not get narrower when n increases and
hence a slow change of the distribution over time seems to be a reasonable as-
sumption. Assumption (13) holds, for instance, in the following model: Assume
that in the previous example communications between pairs end at δ0 :=8pm
plus a certain random time δn,ij , i.e., Cn,ij(t) = 1(t ≤ δ0 + δn,ij). In this case,
the ratio of probabilities in (13) becomes

P(Cn,12(t0) = 0, Cn,12(s) = 1)

P(Cn,12(t0) = 1)
=

P(δn,ij ∈ [s− δ0, t0 − δ0))

P(δn,ij ≥ t0 − δ0)
.



2774 A. Kreiß et al.

Since we are using a localizing kernel, the length of the interval [s− δ0, t0 − δ0)
is of the order h, and if δn,ij has a density, then (13) holds.

If we assume that relabeling the vertices does not change the joint distri-
bution of the whole process (i.e. if we assume exchangeability), then, the joint
distribution of two pairs (i, j) and (k, l) depends only on |{i, j}∩{k, l}|. It is thus
natural to distinguish the three regimes |{i, j} ∩ {k, l}| ∈ {0, 1, 2}. This pattern
will appear again in Assumption (A7). Let us for the moment consider Cn,ij

that are constant over time. Then, in (12), the case |{i, j} ∩ {k, l}| = 2 holds,

because
P(Cn,ij=1,Cn,kl=1)

P(Cn,ij=1)2 = P(Cn,12 = 1)−1 = o(n2) by Assumption (A2).

We discuss the remaining cases for the uniform configuration model. In this
model all vertices have (approximately) the same pre-defined degree κ, and we
assume the Cn,ij to be created as follows: Equip each vertex i = 1, ..., n with κ
edge stubs, and create edges by randomly pairing the stubs. After that, discard
multiple edges and self-loops. If two vertices i and j are connected after this
process, set Cn,ij = 1. We use the same heuristics as e.g. in [28], Chapter 13.2,
to compute the probability of edges. Fix i and j, then, for any fixed edge stub
of i, there are κn− 1 stubs left to pair with, κ of which belonging to vertex j.

Hence, the probability of connecting to j is given by κ2

κn−1 as there are κ edge
stubs from i as well. Thus, for large n, we obtain the following probabilities:

P(Cn,12 = 1) ≈ κ

n

P(Cn,12 = 1, Cn,23 = 1) = P(Cn,12 = 1|Cn,23 = 1) · P(Cn,23 = 1) ≈ κ(κ− 1)

n2

P(Cn,12 = 1, Cn,34 = 1) = P(Cn,12 = 1|Cn,34 = 1) · P(Cn,34 = 1) ≈ κ2

n2
.

We see now that also for |{i, j} ∩ {k, l}| ≤ 1 assumptions (12) and (14) hold.
The next assumption involves θ0,n, defined as the maximizer of

θ �→
∫ T

0

1

h
K
(s− t0

h

)
g(θ, s)ds, (15)

where g is defined in (A7). We show later that θ0,n is uniquely defined, and
that θ0,n is close to θ0(t0) (see Lemma 4.2 and Proposition 4.2, respectively).

Denote by X
(a)
n,ij(s) the a-th entry of the vector Xn,ij(s) ∈ R

q. In the following
definitions, the expectations of matrices are to be understood element-wise. Let

τn,ij(θ, s) := Xn,ij(s)Xn,ij(s)
T exp(θTXn,ij(s)), (16)

g(θ, t) := E
[
θTXn,ij(t) exp(θ0(t)

TXn,ij(t)) (17)

− exp(θTXn,ij(t))|Cn,ij(t) = 1
]

=

∫
Rq

(
θT yeθ0(t)

T y − eθ
T y
)
ft(y)dμ(y), (18)

fn,1(θ, s, t|(i, j), (k, l)) := E(τn,ij(θ, s)τn,kl(θ, t)|Cn,ij(s) = 1, Cn,kl(t) = 1),

f2(θ, t) := E(τn,ij(θ, t)|Cn,ij(t) = 1) = −∂θ2g(θ, t),
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r
(a)
n,ij(s) := Cn,ij(s)X

(a)
n,ij(s)

(
eθ0(s)

TXn,ij(s) − eθ
T
0,nXn,ij(s)

)
−∂θg

(a)(θ0,n, s).

Note that, by Assumption (A1), f2 and g do not depend on (i, j) and n. Also
keep in mind that the covariates Xn,ij(s) being vectors implies that τn,ij , fn,1
and f2 are matrices.

(A7) Asymptotic Uncorrelatedness II
We assume that fn,1 depends on (i, j) and (k, l) only through |{i, j} ∩ {k, l}|.
Moreover, we assume that, for all sequences (θn)n∈N with θn → θ0(t0) as n → ∞,
and for all u, v ∈ [−1, 1], it holds that fn,1(θn, t0 + uh, t0 + vh, (i, j), (k, l))
converges to a matrix only depending on |{i, j} ∩ {k, l}|. We denote this limit
by f1(θ0(t0), |{i, j} ∩ {k, l}|), and assume that

f1(θ0(t0), 0) = f2(θ0(t0), t0)
2. (19)

For r
(a)
n,ij(s), we assume that, with ρ

(a)
n,ijkl(u, v) := r

(a)
n,ij(t0+uh)r

(a)
n,kl(t0+vh) and

for |{i, j} ∩ {k, l}| = 0,∫∫
[−1,1]2

K(u)K(v)E
(
ρ
(a)
n,ijkl(u, v)|Cn,ij(t0) = 1, Cn,kl(t0) = 1

)
dudv= o

((
lnh
)−1)

.

(20)

Assumption (A7) specifies in which sense the covariates are asymptotically un-
correlated. For motivating these assumptions build a graph G with vertices
1, ..., n and (i, j) being an edge if Cn,ij(t0) = 1. Denote by dG the distance
function between edges on G (that is, the number of edges on a shortest path,
i.e., adjacent edges have distance 0). In the same heuristic as given after As-
sumption (A6), this graph becomes very large (asymptotics over the number of
vertices) and sparse (n vertices and of order n edges), because every vertex is
incident to at most κ edges. In this scenario, the number of pairs of edges e1
and e2 for which dG(e1, e2) = d is of order (κ− 1)d ·n, and there are of order n2

many pairs of edges in total. Let now Ai,j be arbitrary, centered random vari-
ables indexed by the edges of G. We make the assumption that Ai,j is influenced
equally by all Ak,l with (k, l) being adjacent to (i, j). In mathematical terms, we
formulate this assumption as E(Ai,jAk,l|dG((i, j), (k, l)) = d) ≈ C · κ−d. Then,
we obtain for non-adjacent edges (i, j) and (k, l),

E(Ai,jAk,l) =

∞∑
d=1

P(dG((i, j), (k, l)) = d) · E(Ai,jAk,l|dG((i, j), (k, l)) = d)

≈
∞∑
d=1

n(κ− 1)d

n2
C · κ−d

=
C

n
(κ− 1),

which converges to zero after being multiplied with lnh ≈ nh (in this case). Be-
cause, in (19) and (20), we consider only expectations conditional on Cn,ij(t) =
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1, we can think of Ai,j being the random variables τn,ij (a centered version of

it) or r
(a)
n,ij and the expectations in the above heuristic are conditional expec-

tations conditionally the respective conditions in (19) and (20). This serves as
motivation for these two assumptions. Moreover, unconditionally, τn,ij and τn,kl
(and rn,ij and rn,kl) do not need to be uncorrelated.

2.4. The main asymptotic result

Theorem 2.1. Suppose that Assumptions (A1)–(A7) hold for a point t0 ∈
(0, T ). Then, with probability tending to one, the derivative of the local log-

likelihood function �T (θ, t0) has a root θ̂n(t0), satisfying, as n → ∞√
lnh

(
θ̂n(t0)− θ0(t0) +

1

2
h2Σ−1v − h2Bn

)
D→ N

(
0,

∫ 1

−1

K(u)2du Σ−1

)
(21)

with

v :=

∫ 1

−1

K(u)u2du · ∂θ∂t2g(θ0(t0), t0),

Σ := −∂θ2g(θ0(t0), t0),

γn,ij(s) := (1− Cn,ij(t0))Cn,ij(s),

Bn :=
1

ln

n∑
i,j=1
i<j

∫ T

0

1

h
K

(
s− t0
h

)
γn,ij(s)

h
τn,ij(θ0(s), s)θ

′
0(t0)

t0 − s

h
ds,

and τn,ij(θ, s) = Xn,ij(s)Xn,ij(s)
T exp(θTXn,ij(s)) was defined in (16). If, in

addition, |Ln(t0)|
ln

P→ 1, then ln can be replaced by |Ln(t0)|.

Recalling that (in the case of undirected networks) ln = n(n−1)
2 P(Cn,ij(t0) =

1) is the effective sample size, i.e., the expected number of pairs relevant for
estimation of θ0(t0), we see that Theorem 2.1 is a classical asymptotic normality
result up to the additional bias term Bn, which we will discuss next. It holds
that

E(|Bn|)

≤ 1

ln

n∑
i,j=1
i<j

∫ T

0

1

h
K

(
s− t0
h

)
E

(
γn,ij(s)

h
‖τn,ij(θ0(s), s)‖

)
‖θ′0(t0)‖

|t0 − s|
h

ds

≤
∫ T

0

1

h
K

(
s− t0
h

)
P(Cn,12(t0) = 0, Cn,12(s) = 1)

hP(Cn,12(t0) = 1)

|t0 − s|
h

ds · ‖θ′0(t0)‖

× sup
s∈Uh

E

[
‖τn,12(θ0(s), s)‖

∣∣∣Cn,12(s) = 1, Cn,12(t0) = 0
]
.

This is of order O(1) by (13) and (9), so that Bn = OP (1). In general, the
expectation does not converge to 0, which induces an additional bias term of
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order h2. Let us suppose that one can show Bn − E(Bn) = o(1) by using some
additional assumptions that are bounding the second moment of this term. We

have that E(Bn) = o(1) if
P(Cn,12(t0)=0,Cn,12(s)=1)

P(Cn,12(t0)=1) = o(h). This assumption can

only hold if membership in the active set changes only for a negligible portion
of edges. In particular, for the extreme case of Cn,ij being constant, we have
γn,ij ≡ 0 and Bn = 0. Hence, the bias term Bn is induced by a change in the
sparsity of the active set.

Remark 2.2. If one is just interested in consistency, the assumptions can be
weakened. In the proof of Theorem 2.1 we need to prove the convergence of a
certain quantity to a normal distribution. In order to establish consistency it
is sufficient that this quantity converges to zero when being multiplied with a
certain null-sequence. In order to show this weaker requirement we do not need
the assumptions which impose rates on certain quantities. More precisely we
do not need Assumptions (A6), (13) and (14) and (A7), (20). Moreover, the
Assumptions (A4), (8) and (9) may be dropped.

2.5. Direct network modeling

We consider the following general model for the link-based dynamics of a ran-
dom network, using a multivariate continuous-time counting process approach
allowing for arbitrary dependence structure between the links by applying the
model for dynamic interactions twice: Once for the formation of new links and
once for the deletion of existing links (this separation can also be found in [23]).
As before, let Vn = {1, ..., n}, be the set of vertices and Ln be the set of pos-
sible edges. Note that here we are considering undirected networks. (Directed
networks can be handled similarly.) For a given link (i, j), we let

Zn,ij(t) =

{
1 if link from i to j is present at time t

0 otherwise.

Then

Zn(t) =
(
Zn,ij(t)

)
(i,j)∈Ln

describes the random network, or, equivalently, the (upper half of the) adjacency
matrix at time t. To describe the dynamics of the links over time, we introduce
two processes, N+

n,ij(t) and N−
n,ij(t), counting how often until time t a link (i, j)

was added or deleted, respectively. Formally,

N+
n,ij(t) = #{s ≤ t : Zn,ij(s)− Zn,ij(s−) = 1},

N−
n,ij(t) = #{s ≤ t : Zn,ij(s)− Zn,ij(s−) = −1}.

With these definitions, we can write, for (i, j) ∈ Ln,

Zn,ij(t) = Zn,ij(0) +N+
n,ij(t)−N−

n,ij(t).



2778 A. Kreiß et al.

For v ∈ {+,−}, the intensities of the counting processes Nv
n,ij(t) are here defined

as

λv
n,ij(θ, t) = Φv

n,ij(θ
v; (Zn(s), X

v
n,ij(s)) : s < t) (22)

with

Φ+
n,ij(θ

+; (Zn(s), X
+
n,ij(s)) : s < t)

= γ+(θ+; (Zn(s), X
+
n,ij(s)) : s < t)

(
1− Zn,ij(t−)

)
, (23)

Φ−
n,ij(θ

−; (Zn(s), X
−
n,ij(s)) : s < t)

= γ−(θ−; (Zn(s), X
−
n,ij(s)) : s < t)Zij(t−) (24)

for some functions γ+ and γ− respectively, where θ+ and θ− are two different
parameters, determining the addition and the deletion processes, respectively.
The vectors Xv

n,ij(t) for v ∈ {+,−} denote covariates that are assumed to be
Ft-predictable. Note that this definition of the intensities makes sure that, as
it should be, a link can only be added if it was not present immediately before,
and similarly for the removal for a link.

These definitions of the intensities fit into the framework of Section 2.2 with
intensity function (5), when choosing λv

n,ij(θ
v, t) = Cv

n,ij(t) ·exp(θv(t)TXv
n,ij(t))

with Cv
n,ij(t) being predictable {0, 1}-valued processes that fulfill C+

n,ij(t) = 0

if Zn,ij(t−) = 1, and C−
n,ij(t) = 0 if Zn,ij(t−) = 0. Again, as in Section 2.2,

we allow that the parameter is a function of time. To sum it up: The processes
N+

n,ij are modeled with intensity λ+
n,ij(θ

+
0 , t) and the processesN−

n,ij are modeled

with intensity function λ−
n,ij(θ

−
0 , t). Our model allows the covariates Xv

n,ij and
the true parameter functions θv0 to be different for v =′ +′ and v =′ −′. For
estimating the parameters, we consider observations of the same type only, i.e.,
we will compute two maximum likelihood estimators: the estimator of θ+0 (t)
based on the processes N+

n,ij , and the estimator for θ−0 based on the processes

N−
n,ij . Both estimators can be treated as coming from an interaction based model

and hence the theory from Section 2.2 can be applied.

3. Application to Bike Data

Here we illustrate the finite sample performance of our estimation procedure
described above, by considering the Capital Bikeshare (CB) Performance Data,
publicly available at http://www.capitalbikeshare.com/system-data. The
available data describes the usage of the CB-system at Washington D.C. from
2010 to 2018. However, for computational reasons, and in order to keep the
presentation concise, we will present two analyses of sub data sets. In the first
analysis, we study the bike data from Jan 2012 to March 2016. In order to
reduce computational complexity we aggregate the data over days. In this first
analysis it is our main interest to predict the activity of an edge based on the
past. In the second analysis we focus on a short period, April and May 2018,
and we keep the time-continuous scale of bike events.

http://www.capitalbikeshare.com/system-data
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The available data set does not contain bike rentals over several days or
below 60 seconds, and service rides are excluded. While the last two seem not
restrictive, for bike rentals for more than a day, we note the pricing structure
of CB: No matter which pass you buy (single ride, day pass, 3-day pass, 30-day
pass or annual membership) the basic fee always includes only bike rides for less
than 30min. If you keep a bike for longer than 30min extra fees apply (if you
buy e.g. a day pass for $8 you have an unlimited number of bike rides up to
30min, but if you keep the bike for 10h, you will have to pay $142). We assume
therefore that such long rentals are not the companies primary business and
that they occur only very rarely. It is however possible to return a bike to a
bike station and immediately re-rent it. Such that, in practice, if you want to
make a way on the bike which takes you more than 30min, you can make an
intermediate stop to avoid cost. Lastly, we have no information about the status
of the stations themselves. In particular, we do not know if a station is empty
or full.

It should be noted that, while we believe that this example serves as a serious
and interesting illustration of our proposed method, it is not meant to be a full-
fledged analysis of bike sharing performance. We would rather like to make the
case for the potential of the model along with the estimation strategy presented
in this paper by arguing that intuitively convincing results for the bike sharing
data indicate that the model might also be beneficially used in more complex
situations (i.e., without a strong a priori intuition).

Generally, in both analyses we consider the bike stations to be vertices in
the network. Whenever somebody rents a bike at station i and returns it at
station j, we consider this an event from i to j and in this case we say that
(i, j) has been used. In May 2018 the CB network comprises 527 bike stations
which were used at least once in April or May 2018. This results in a total of
277,202 possible directed combinations. Of these 277,202 directed combinations,
only 39,722 connections have been used at least once in April 2018, and only
9,131 combinations have been used ten times or more. We conclude that the
network is very sparse and that it is very challenging for a model to capture the
entire biking behavior among all 527 bike stations. Thus, we restrict our analysis
to some subset of pairs of bike station which (we assume) can be reasonably
modeled by the same model. Consider an example: Bike stations in Alexandria
and Derwood are 50km apart, and, on the other hand, some bike stations in
downtown Washington are just separated by one block. Certainly, every now
and then, somebody might take such a bike ride, but we cannot expect that
our model will capture all these special cases. This restriction is realized by
appropriate choice of the indicator functions Cn,ij (see below for more details).
Note here that, on a general level, Cn,ij(t) = 1 means that the pair (i, j) is, at
time t, regarded as being part of the model in the sense that events from i to
j can be captured by our model. On the other hand Cn,ij(t) = 0 does simply
mean that the pair (i, j) does not belong to those edges of interest to us. While
there might still be bike rides from i to j, we do not attempt to model them by
using our model.
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Fig 1. Simple descriptive statistics of the bike data

3.1. Analysis 1: January 2012 till March 2016

In this part of the analysis we intend to model the biking activity on one week-
day (Friday) based on the past. By biking activity on an edge (i, j) we mean the
number of bike rides between bike stations i and j. Direction does not matter to
us in this part of the study. The decision to only model one weekday was made
mainly to reduce the computational burden. Comparing the results for different
weekdays might be instructive, in particular comparing a regular working day
and a day on the weekend. Note also that in the period of four and a quar-
ter years, which we consider, eight Fridays were actually public holidays (thus
being possibly more like a weekend than a weekday). They were Independence
Day (2013, 2014), the Friday after Thanksgiving (2012, 2013) and Fridays dur-
ing Christmas and New Year’s Holidays. Notice, however, that the parameter
function is allowed to change over time. Thus, we assume that the influence of
public holidays is not causing any problems.

Figure 1 shows some summary statistics of the data. In Figure 1a, we see
the number of available bike stations, which is strongly increasing. Figure 1b
shows the number of bike tours on Fridays. An obvious seasonal periodicity is
visible with low activity in winter. In order to reduce computational complexity
to a minimum (fitting the model takes several minutes on standard laptop), we
assume that the covariates change only at midnight and stay constant over the
day. Furthermore, we estimate the time-varying parameter function θ only for
one time point per day, namely 12pm noon. The next paragraph contains more
details.

Since we do not consider any asymptotics here, we omit the index n. Time t is
measured in hours of consecutive Fridays. So, if k is the current week, and r is the
time on Friday (in 24h), then t := (k−1)·24+r. Thus, with rt := (t mod 24), the
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quantity kt :=
t−rt
24 +1 gives the week the time point t falls into. The processes

Ni,j(t), counting the number of tours between i and j on Fridays, are modeled as
counting processes with intensities λi,j(θ(t), t) := α(t) exp(θTXi,j(kt)) ·Ci,j(kt).
The covariate vector Xi,j(kt) and the censoring indicator Ci,j(kt) will be defined
later. Note that they both only depend on kt, i.e. on the current week, and not on
the actual time on the Friday under consideration. The function α is 24 periodic

and integrates to one over a period, i.e., α(t) = α(t+24) and
∫ t+24

t
α(s)ds = 1.

The role of the (unobservable) function α is to argue that discretizing the biking
activity is not introducing a bias even when the biking activity varies over the
day. Suppose now, that our target is the estimation of the parameter vector θ(t0)
with t0 = (kt0 − 1)24 + r0 and r0 = 12, say. We choose a piecewise constant
kernel K with K((24k + x)/h) = K(24k/h), for all k ∈ N and 0 ≤ x < 24.
Substituting in these choices of the intensity and the kernel to the log-likelihood
(3), we see that our maximum likelihood estimator maximizes the function

θ �→
kT∑
k=0

Kκ(k − kt0)θ
TXi,j(k)

∫ (k+1)·24

k·24
dNi,j(t)

−
kT∑
k=0

Kκ(k − kt0) exp(θ
TXi,j(k))Ci,j(k),

where
∫ (k+1)·24
k·24 dNi,j(t) gives the number of tours between i and j on the Friday

in week k, and where Kκ(k) = K(k/κ) with κ = h/24. In our empirical analysis,
we chose Kκ(k) as triangle weights with support {−κ, ..., κ} and considered only
integer choices of the bandwidth κ. The bandwidth choice is discussed at the
end of this section. Note that due to this discretization we essentially obtain a
sequence of generalized linear Poisson models with time varying parameters. In
the second analysis, in Section 3.2, we use the full time-continuous potential of
the model for dynamic interaction networks.

We explain now the choice of our covariate vector Xi,j . Denote by Δi,j(k, d)
the number of tours between i and j on day d in week k, where d = 4 means
Monday and d = 7 refers to Thursday (for us the week starts on Fridays, i.e.
Friday is d = 1). For r ∈ (0, 1), we encode the activity between i and j in week

k as Ai,j,k = (1 − r)
∑7

d=4 r
7−dΔi,j(k, d) (mind the limits of the summation -

Fridays are not included). In our simulations, we chose r = 0.8 (this choice is
somewhat arbitrary, and a full study of the data would include investigating
the sensitivity of the parameter estimate on the choice of r as well as a data
driven choice. We do not attempt to do this here). We construct a network G(k),
for every week k, by connecting i and j, if and only if, there was at least one
tour on the Friday in that week. We denote by Ii,j,k the number of common
neighbors of i and j in the graph G(k). We let di,k be the degree of node i
in G(k), Ti,j,k the number of tours between i and j on the Friday in the k-th
week, and Ti,j,k,k−1 = (Ti,j,k + Ti,j,k−1)/2 the average number of tours on the
two Fridays in weeks k and k− 1. Finally we collect everything in the covariate
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vector:

Xi,j(k) :=

(
1, Ai,j,k−1, Ii,j,k−1,max(di,k−1, dj,k−1),

Ti,j,k−1,k−2, 1(Ti,j,k−1,k−2 = 0)

)T

.

The censoring indicator function Ci,j is defined to be equal to zero, if there
was no tour between stations i and j in the last four weeks. In other words,
we attempt to model only those connections which are used regularly in the
considered time frame. In summary, we estimate a total of six parameter curves,
corresponding to the effects of six covariates in our model:

• θ1(t) � baseline

• θ2(t) � activity between stations on previous week-days

• θ3(t) � common neighbors of stations

• θ4(t) � popularity of station, measured by degrees

• θ5(t) � activity between stations on two previous Fridays

• θ6(t) � inactivity between stations on two previous Fridays

Figure 2 gives some impression of the distribution of the covariates over
time. We only consider covariates 2-5 (that is the entries 2-5 of the covariate
vector Xi,j(k)). The first covariate is always equal to one, while the last one
is an indicator and thus either zero or one, and so we do not give plots for
them. Each panel in Figure 2 shows the 50%, 80%, 90% and 99% quantiles of
the respective covariate. We see that the quantiles mainly stay on a moderate
level with some larger values in between. This effect is more pronounced for the
activity based covariates 2 and 5.

The resulting estimated parameter curves are shown in Figures 3 and 4. All
calculations have been executed on the BwForCluster (cf. Acknowledgement).
Since we expect the parameter function to vary slowly, we used the last esti-
mated value as initial value for the estimation at the next point in time. In all
six parameter curves in Figures 3 and 4, the solid curves show the estimated
parameter curve and the dotted curves indicate approximative 95% point-wise
confidence sets, which we obtained by omitting the bias in Theorem 2.1 and
approximating Σ at time t0 by 1

|Ln(t0)|∂θ2�T (θ̂n(t0), t0), where |Ln(t0)| is the

number of active edges at time t0. In all plots we observe a clearly visible sea-
sonality. Looking at Figure 3b, we see that activity during the week (Monday
to Thursday) is more important during the winter months than in the summer.
A plausible interpretation for this might be that the opportunist cyclists might
be less active in winter because of the colder weather. So only those keep using
a bike, who ride the same tour every day regardless of the weather. This makes
the activity during the week a better predictor.

Figure 3c shows that the number of common neighbors always has a sig-
nificant positive effect on the hazard. This reflects the empirical finding that
observed networks cluster more than totally random networks (e.g. see [15]).
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Fig 2. Shown are the per day quantiles of four covariates. The curves correspond to the 50%,
80%, 90%, 99% quantiles (from bottom to top).
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Fig 3. Estimates of θ1(t), θ2(t) and θ3(t) (solid curves). The dotted curves indicate 99%
pointwise confidence regions (plus minus 2.58 times the asymptotic standard deviation).

The influence of the popularity of the involved bike stations is investigated in
Figure 4a (measured by the degree of the bike station). Interestingly, it always
has a significant negative impact. The size of the impact is higher in the summer
months, which again supports the hypothesis that in summer the behavior of the
network as a whole appears more random than in winter. But still, the negative
impact is a bit unforeseen. This finding can be interpreted as the observed
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Fig 4. Estimates of θ4(t), θ5(t) and θ6(t) (solid curves). The dotted curves indicate 99%
pointwise confidence regions (plus minus 2.58 times the asymptotic standard deviation).

network having no hubs. Another reason for this effect might be, that stations
can only host a fixed number of bikes: If a station i is empty, no new neighbors
can be formed. A similar saturation effect happens if a lot of bikes arrive at
station i. Moreover, it is plausible that effects caused by the degrees are already
included in 3b, as well as in Figure 4b. They show the effect of the bike rides on
the days immediately preceding the current Friday, and the effect of the average
number of bike tours on the last two Fridays, respectively. In Figure 4b, we
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observe a similar behavior as in Figure 3b (even more pronounced): In summer
the predictive power of the tours on the last two Fridays is significantly lower
than in winter, underpinning the theory that the destinations in summer tend to
be based on more spontaneous decisions. Finally, in Figure 4c, we observe that
no bike tours on the last two Fridays between a given pair of stations always
has a significant negative impact on the hazard. Again a very plausible finding.

We are currently working on testing whether the parameter functions depend
on time, i.e., on testing for constancy of the parameter functions. For a complete
data analysis it would then be interesting to add time as a covariate (or time
dependent covariates), and to see if the parameter functions show always a
significant time-dependency.

Modeling other network characteristics. In stochastic network anal-
ysis, a central strand of research is concerned with the question of whether char-
acteristics observed in real networks can be adequately mimicked by stochastic
network models. Important characteristics are degree distribution, clustering
coefficient and diameter (these and other characteristics can be found in [15]
Chapter 2.2, we define them also in the appendix). As in [41], Chapter 4, we
compare these three characteristics with a typical network produced by our
model. In order to see how much our fitted model is able to capture these
characteristics, we have simulated 38401 networks corresponding to three ran-
domly chosen days, by using the network model with the fitted parameters of
the corresponding day. We then compared the simulated three characteristics
on these three days to the ones observed in the networks (this way of assessing
the goodness of fit is also used in [13]). Here, we present the results for the
degree distribution on 7th December 2012. The other results are reported in the
appendix.

In our analysis, we consider fitting sub-networks defined by the popularity of
their edges: For given values 0 ≤ l1 < l2 ≤ ∞, the network is constructed by
placing an edge between a pair of nodes (i, j), if the number of tours between i
and j falls between l1 and l2. Different ranges of l1 and l2 are considered. The
idea is to consider the network of low frequented tours (for l1 = 1 and l2 = 3)
up to the network of highly frequented tours (for l1 = 10 and l2 = ∞).

Figure 5 shows the simulated degree distributions for six different choices of l1
and l2. The dotted lines indicate 10% and 90% quantiles of the simulated graphs,
and the solid line shows the true degree distribution. We see that, in all six cases,
the approximation is reasonable accurate, in particular if one takes into account
that we did not specifically aim at reproducing the degree distributions. The
plots show that the largest degree of the simulated networks and the observed
network lie not too far from each other, and the overall shape of the degree
distribution is captured well. It should also be noted that we used only six
covariates, whereas in other related empirical work much higher dimensional
models have been used, see e.g. the discussions in [29].

Brief remark on choice of bandwidth via one-side cross valida-

1We chose to simulate 3840 networks, because we had 32 cores available, and on each of
the cores we ran 120 predictions, which could be done in reasonable time.
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Fig 5. Simulated degree distributions of sub-networks with different tour frequencies (see
individual caption) for 7th December 2012. Dotted lines show 10% and 90% quantiles of
simulations and solid line shows true distributions.
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Fig 6. Mean Squared Prediction Error for different bandwidths.

tion. To choose the bandwidth, we calculate a local linear estimate with a
one-sided kernel K+,κ(k) = Kκ(k)1(k < 0). For all values of κ, the fitted value
of the conditional expectation of Xi,j(kt0), given the past, is compared with
the outcome of Xi,j(kt0). This is done for all non-censored edges. The results
for different bandwidths are shown in Figure 6. We see that the prediction er-
ror of the model decreases, until we reach the bandwidth κ = 23. In one-sided
cross-validation, one now makes use of the fact that the ratio of asymptotically
optimal bandwidths of two kernel estimators with different kernels, K and L is
equal to ρ = [

∫
K2(u)du(

∫
u2L(u)du)2(

∫
L2(u)du)−1(

∫
u2K(u)du)−2]1/5. For a

triangular kernel, and its one-sided version, we get ρ ≈ 1.82. The one-sided CV
bandwidths is given by dividing 23 by ρ which yields bandwidth roughly twelve
(here we also only consider integer bandwidths). More details on the one-sided
cross-validation approach are presented in the appendix.

3.2. Analysis 2: May 2018

In this analysis, we study the biking behavior in May 2018 in more detail.
In particular, we can (in contrast to before) assume that the number of bike
stations remains constant over the observation period. Our main interest in
this part lies in illustrating how the model can be used to understand how the
system would change if another bike station were built. Let us firstly look at
the distribution of bike rides over four weeks in April: this is shown in Figure 7.
We see a clear daily pattern: During weekdays the number of bike rides spikes
in the morning and in the afternoon while it shows deep valleys (going almost
down to zero) at night and not so deep valleys around midday. The weekends
show a clearly different pattern by not exhibiting the morning/afternoon spikes
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Fig 7. Number of bike rides from one station to another station (i.e., returns at the same
station are not included) in April 2018.

so visibly. The only weekdays which depart from these pattern are April 24 and
25. These were both rainy days (we use weather data from the weather station
at Washington D.C. Dulles Airport, as reported on Weather Underground).
However, we should say that there are other rainy days which do not show
such a visible effect. Interestingly, April 16th (Emancipation day that year, a
public holiday) is showing similar behavior as the other weekdays but with a
smaller number of bike rides (maybe one would have rather expected that public
holidays behave like weekends).

In this analysis we choose to restrict to those 9,131 connections which have
been used ten times or more in April. However, for this part, we keep the
directions of the bike rides. Thus, for any two bike stations, in our model, we
let Cn,ij be the indicator that the directed connection (i, j) has had ten or more
rides in April. The covariates which we use here are based on the distances
between two bike stations and their densities. The distance from station i to j is
given by the time it takes to go from station i to station j on a bike. These times
were computed by using Google maps on a weekday afternoon. Note that the
travel time from i to j can be different than that from j to i because of different
one-way structures of the streets and possible ascends. Sometimes people on
bikes do not quite follow traffic regulations but nevertheless we assume that
the travel time is a reasonable measure of distance. We will denote the distance
from station i to station j by di,j . The density of a bike station is measured in
terms of the number of neighboring stations. We denote by n(i) the average of:
1) the number of bike stations which can be reached from i in less than three
minutes and 2) the number of bike stations from which i can be reached in less
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than three minutes. Our intuition was that if a bike station is full or empty, then
people would have to go to another bike station instead. However, we assume
that people would not accept an arbitrarily long detour. Therefore, we chose
the limit of three minutes bike riding time (not walking time) for neighboring
stations. Of course, this threshold is somewhat arbitrary and a full analysis
should consider the sensitivity of the results with respect to this threshold. Note
lastly, that people can see the availability of bikes and empty docks in advance.
Thus, in our model we assume that the bias introduced by people arriving at a
full station and being forced to go to another station (no matter how far away)
is negligible.

Lastly, we mention that we did not include the precipitation as a covariate for
two reasons: Firstly, we wanted to have an hourly analysis but we only had daily
data for precipitation. Thus, we could not determine the times of actual rain
and, probably, prospective rain in the evening is not going to impact the biking
activity in the morning: In a CB member survey from 2016 a bit more than
half of the respondents said that one of their main reasons for joining CB is to
have access to one-way trips, thus we assume that the possibility of rain in the
evening would not stop people from using a bike in the morning. Secondly, and
possibly more severely, it is difficult to include covariates which are constant
across all connections. If such a covariate were zero it would mean that its
corresponding parameter has no influence at all on the intensities. While in
theory identification is possibly still valid, the practical computation will break
down.

Our aim is to use the model in order to quantify the possible impact of a new
bike station on the system. We let h ≈ 1.1 hours (this bandwidth was chosen
by the same procedure as outlined at the end of the precious subsection). With
such a short bandwidth we will not smooth out differences between morning
and afternoon. The covariate vector Xn,ij is given by

Xn,ij :=

⎛⎜⎜⎜⎜⎝
1

log(di,j ∨ 1)
log(di,j ∨ 1)2

log(n(i) ∨ 1)
log(n(j) ∨ 1)

⎞⎟⎟⎟⎟⎠ .

Note that, in order to avoid taking the logarithm of zero, all quantities have
been bounded from below by 1. In Figure 8 we show the estimated parameter
values for the second week of May. The solid lines show the estimates while the
dotted lines show approximative 99% point-wise asymptotic confidence regions
as provided in the theory above (they were approximated in the same way as
in the previous section by the Hessian of the likelihood at the estimate). We
assume that the bias is negligible. The results for the other weeks look similarly.
Therefore, we consider the results for the entire month only for the intercept and
the two covariates indicating the number of neighbors of starting and ending
station, cf. Figures 9-11.

We summarize some observations about these estimates:
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Fig 8. Estimates (solid lines) of the parameters. Dotted lines show 99% pointwise confidence
sets.
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Fig 9. Estimate (solid lines) of the intercept parameter. Dotted lines show 99% confidence
confidence sets.

1. The estimates of the intercept shows valleys over night and summits dur-
ing the day. On May 16th-18th and 22nd the intercept is lower than
usual. Most weekdays show a valley around midday between two peeks
in the morning and in the afternoon (very pronounced on Friday, 18th,
and Wednesday 23rd to Friday 25th). Monday, 28th, doesn’t show this
behavior. On weekends these peeks are sometimes visible, sometimes not.

2. On weekdays: Estimates of the parameter corresponding to the log-number
of bike stations in the neighborhood around the ending station show neg-
ative valleys towards the afternoon/evening and become positive during
night time.

3. On weekdays the log-number of neighboring stations around the start sta-
tion show the opposite behavior: Estimates show negative valleys towards
the morning. Sometimes they become positive during night time.
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Fig 10. Estimates (solid lines) of the parameter corresponding to log(n(j)). Dotted lines show
99% confidence confidence sets.

Before discussing the interpretation of these findings we mention findings
about the second and third covariate: The first three covariates model the in-
fluence of the log-time (log(di,j)) on the intensity of bike rides as a quadratic
function when the densities of start and end station remain fixed. The esti-
mates from Figure 8 suggest that the third covariate, that is the factor in front
of log(di,j)

2, is often negative. That means that the parabola is open to the
bottom and has hence a maximum. As the parameters change over time, the
location of this extremum is also moving. In Figure 12 the location of the ex-
tremum of this parabola is shown. We observe the following:

4. The locations of the extrema lie almost always well in the region between
1 and 5 min.

5. There is no clear pattern visible.
6. The location of the maximum is not changing much.
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Fig 11. Estimates (solid lines) of the parameter corresponding to log(n(i)). Dotted lines show
99% confidence confidence sets.

A possible interpretation of these findings is as follows: Point one is a very
plausible observation as people use bikes less during night. The exceptions men-
tioned in point one are rainy days (cf. Figure 13). It is interesting to note that
other rainy days (like May 6th) are not so much visible in the estimates. We
should note that we only have average precipitation information available per
day. So it might be possible that the rain came during night when there was
not much biking anyway. The peeks in the morning and in the afternoon cor-
respond to the increased activity in the morning and in the afternoon which
we observed earlier. Note that May 28th was Memorial Day in 2018. Thus it is
not surprising that this day does not show these peeks which might correspond
to people commuting to work. The second and third observations mean that in
the evening a larger number of bike stations close to the destination yields a
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Fig 12. Location of extremums of intensity function when the distance between stations (y-
axis) is varying while the densities of start and end station remain fixed. Shown are day times
(x-axis) between 7am and 9pm.

lower intensity while in the morning a larger number of bike stations close to
the origin yields a lower intensity (however, this effect is not so pronounced).
We explain this observation by using commuters: Commuters start their way to
work in Washington D.C. possibly from central locations (like bike stations close
to Union Station or Metro Stations) and disperse from there through the city to
their respective work places. Thus, such stations might empty in the morning
and people have to walk to other bike stations. This would yield an effect as
observed: Stations with many near by stations in the morning share their traffic
with the remaining stations. In the evening the reverse effect is happening: Peo-
ple return from their non-central work places to central bike stations causing
these bike stations to fill up and hence forcing people to go to other empty bike
stations near by.
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Fig 13. Amount of precipitation at the weather station Washington D.C. Dulles Airport
(Source: Weather Underground)

During night time we observed a positive effect of the number of neighbors of
the destination station. A possible explanation for this might be that the stations
were most likely built in a way such that the density of stations is large if the
demand for bikes in this neighborhood is large. Thus, the number of neighboring
bike stations serves as a proxy for popularity of a bike station. Keeping this in
mind, we interpret the positive parameter during night time as indicator for the
hypothesis that, at night, people prefer to go to central locations (like metro
stations) by bike. The absence of positivity of the number of neighbors of the
origin station indicates that the reverse is not always happening: People do not
leave from central locations (this is plausible as we would expect more people
to go home at night).

The findings four to six are mostly interesting because they indicate that an
actual parabola is fit indicating a strict convex behavior of the intensity. It is
important to note that by choosing the parameters two and three the model
fit could result in a strictly monotone fit of the parabola (when the extremum
of the parabola is located outside the interval [0min, 30min]). That this is not
the case indicates that there is a non-proportional change in the activity as the
distance between bike stations changes. Generally, the location of the maximum
in the short distance range indicates that people prefer to take shorter routes
rather than longer routes (cf. also the discussion of the CB pricing system).

If CB was to built a new bike station we would assume that they do it because
in that region they suspect high biking activity (e.g. because bike stations are
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constantly empty or full). In that sense we assume that the idea that a high
density of biking stations indicates a region interesting for biking is not violated.
However, adding a new station changes the covariates in the network and thus we
can use the parameter estimates from above in order to predict how the biking
activity at other bike stations might change. The introduction of a new station
changes for example the number of neighboring bike stations of its neighbors.
Thus we could predict how much traffic is diverted from the existing stations to
a new station. Moreover, we can also use it to predict the number of bike rides
to the station and from the station. This can help to find an accurate size for
the new bike station.

In this example we saw that a time varying parameter choice is useful in order
to be able to distinguish morning and afternoon as well as rainy and non-rainy
periods. Moreover, we illustrated how the covariates could be chosen in order
to assess the effect of adding a new bike station.

4. Proof of Theorem 2.1

In the proof, we do not distinguish explicitly directed and undirected net-
works: In the undirected case, we always assume i < j, moreover we will need
ln = O(n2

P(Cn,12(t0) = 1), which is true in both cases. By
∑

i<j we denote
summation over i, j where i, j = 1, ..., n and i < j. The processes Nn,ij are
counting processes with intensity given by λn,ij(θ0(t), t). We can decompose
these counting processes as (Doob-Meyer Decomposition, see e.g. [2] Chapter
II.4)

Nn,ij(t) = Mn,ij(t) +

∫ t

0

λn,ij(θ0(s), s)ds, (25)

where Mn,ij is a local, square integrable martingale. We use this decomposition
of the counting processes in order to decompose the likelihood and its deriva-
tives. Let Pn(θ) be defined as

Pn(θ) :=
1

lnh

∑
i<j

∫ T

0

K

(
s− t0
h

)
Cn,ij(s)

[
θTXn,ij(s) exp(θ0(s)

TXn,ij(s))

− exp(θTXn,ij(s))
]
ds. (26)

Note that we do not make the dependence of Pn(θ) on t0 explicit in the notation.
In order to reduce notation, we write for the derivative of a function ψ(θ) of one
variable θ (which might be a vector) simply ψ′ := ∂θψ and ψ′′ := ∂θ2ψ. Using
Pn(θ), we can write

1

ln
�(θ, t0) =

1

lnh

∑
i<j

∫ T

0

K

(
t− t0
h

)
θTXn,ij(t)dMn,ij(t) + Pn(θ), (27)

1

ln
· ∂θ�(θ, t0) =

1

lnh

∑
i<j

∫ T

0

K

(
t− t0
h

)
Xn,ij(t)dMn,ij(t) + P ′

n(θ), (28)
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1

ln
· ∂θ2�(θ, t0) = P ′′

n (θ). (29)

Recall that θ0,n is defined as the maximizer of θ �→
∫ T

0
1
hK
(
s−t0
h

)
g(θ, s)ds,

where g is defined in (A7). Note that the function g does not depend on n, see
Assumption (A1). Lemma 4.2 shows that θ0,n is uniquely defined. The value θ0,n
is the deterministic counterpart of the random quantity θ̃n(t0) that is defined

as the solution of P ′
n(θ̃n(t0)) = 0. The existence of the latter is considered in

Proposition 4.3.
In all lemmas and propositions of this section, we assume that Assumptions

(A1), (A2) and (A5) hold as they are permanently used (also implicitly in other
assumptions). The other assumptions will be mentioned in those places where
they are needed.

Lemma 4.1. We have

θT y exp(θ0(s)
T y)− exp(θT y)

≤ θ0(s)
T y exp(θ0(s)

T y)− exp(θ0(s)
T y).

Equality holds, if and only if, θ0(s)
T y = θT y. In particular, θ0(s) is the unique

maximizer of θ �→ g(θ, s).

Proof. Note that, for arbitrary y ∈ R,

d

dx
(xey − ex) = ey − ex

implies that the differentiable function x �→ xey − ex has the unique maximizer
x = y. This also implies the second statement of the lemma by (A5).

Fact 4.1. Assume (A4), (7) and (A3) hold. For j ∈ {0, 1, 2}, k ∈ {0, 1, 2, 3},
with j + k ≤ 3, the partial derivatives of order j of the function g(θ, s) with
respect to s, and of order k with respect to θ, exist, for (t, θ) ∈ U × V (cf.
Assumption (A4) for a definition of U and V ). The partial derivatives can be
calculated by interchanging the order of integration and differentiation in (18).
All these partial derivatives of g(θ, s) are absolutely bounded on U × V . For the
calculation of the first two derivatives of g with respect to θ, differentiation and
application of the expectation operator can be interchanged in (17). The matrix
Σ is invertible.

Proof. The statement of this fact follows immediately from (7) of Condition
(A4). Note that the functions θ0, θ

′
0 and θ′′0 are absolutely bounded in a neigh-

borhood of t0. This holds because these functions are continuous in a neighbor-
hood of t0, see (A3). Invertibility of Σ is a consequence of (A5).

Lemma 4.2. Assume Fact 4.1 holds and that Θ is convex. For n large enough,
θ0,n (the maximizer of (15)) is well defined and unique. It holds that θ0,n →
θ0(t0) as n → ∞. In particular, θ0,n ∈ V for n large enough.
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Proof of Lemma 4.2. The function θ �→ g(θ, t0) is strictly concave and hence
θ0(t0) is its unique maximizer (cf. Lemma 4.1). Thus

φn(θ) :=

∫ T

0

1

h
K

(
s− t0
h

)
g(θ, s)ds

is strictly concave too. Moreover, we know that ∂tg(θ, t) is absolutely bounded
on U × V . This implies that φn converges to g(θ, t0), uniformly on V . Hence,
φn has a local maximizer θ0,n in the open set V . By strict convexity, θ0,n is
the unique global maximum. The convergence θ0,n to θ0(t0) follows by uniform
convergence of φn to g.

Lemma 4.3. Assume Fact 4.1 holds. With Σn = −
∫ 1

−1
K(u)

∫ 1

0
∂θ2g(θ0(t0) +

α(θ0,n − θ0(t0)), t0 + uh)dαdu, we have

Σn → Σ as n → ∞.

Moreover, the sequence

vn = 2

∫ 1

−1

K(u)

∫ 1

0

(1− α)∂t2∂θg(θ0(t0), t0 + (1− α)uh)u2dαdu

is bounded, and it holds that vn → v, as n → ∞.

Proof. Using Lemmas 4.2 and Fact 4.1, we conclude that the integrand

∂θ2g(θ0(t0) + α(θ0,n − θ0(t0)), t0 + uh) → ∂θ2g(θ0(t0), t0)

(note that u ∈ [−1, 1] and α ∈ [0, 1]). The first statement of the lemma follows
by an application of Lebesgue’s Dominated Convergence Theorem, and the fact
that ∂θ2g is bounded as a continuous function on a compact set. The second
statement of the lemma follows similarly.

Proposition 4.2. Assume Fact 4.1 holds. We have, for t0 ∈ (0, T ),

θ0,n = θ0(t0) + h2Σ−1v + o(h2).

Proof of Proposition 4.2. Since θ0(s) maximizes θ �→ g(θ, s) (cf. Lemma 4.1),
we have ∂θg(θ0(s), s) = 0. Furthermore, by definition of θ0,n, we have∫ T

0

K

(
s− t0
h

)
∂θg(θ0,n, s)ds = 0.

Having observed that, we compute, for h small enough,

0 =
1

h

∫ T

0

K

(
s− t0
h

)
∂θg(θ0,n, s)ds

=

∫ 1

−1

K(u)∂θg(θ0,n, t0 + uh)du
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=

∫ 1

−1

K(u)

[
∂θg(θ0(t0), t0 + uh)

+

∫ 1

0

∂θ2g(θ0(t0) + α(θ0,n − θ0(t0)), t0 + uh)dα(θ0,n − θ0(t0))

]
du

=

∫ 1

−1

K(u)∂θg(θ0(t0), t0 + uh)du+Σn(θ0,n − θ0(t0)). (30)

Σn converges to the invertible matrix Σ by Lemma 4.3. The first integral is of
order h2. This follows by a Taylor expansion in the time parameter:∫ 1

−1

K(u)∂θg(θ0(t0), t0 + uh)du

=

∫ 1

−1

K(u)

[
∂θg(θ0(t0), t0) +

d

dt
gθ(θ0(t0), t0)uh+

∫ 1

0

(1− α)
d2

dt2
∂θg(θ0(t0), t0 + (1− α)uh)dαu2h2

]
du

=
1

2
h2vn.

By Lemma 4.3, vn is bounded. Thus, together with (30), we have established

θ0,n = θ0(t0)− (Σ−1
n − Σ−1 +Σ−1)

1

2
h2vn

= θ0(t0)−
1

2
h2Σ−1vn − 1

2
h2(Σ−1

n − Σ−1)vn.

The statement of the proposition now follows from vn → v.

Lemma 4.4. Assume Fact 4.1, (A4) (7), (10), (A6) (11), (12) and (A7), (19)
hold. We have

P ′
n(θ0,n)

P→ 0. (31)

For any k, l ∈ {1, ..., q}, it holds that

P ′′
n (θ0,n)

P→ −Σ. (32)

Moreover,

sup
k,l,r,θ

∣∣∣∂θk∂θlP ′ (r)
n (θ)

∣∣∣ = OP (1), (33)

where P
′ (r)
n denotes the r-th component of P ′

n, the supremum runs over k, l, r ∈
{1, ..., q}, and θ ∈ V .

Proof. We start by showing that P ′
n(θ0,n)= oP (1). This holds, if E(‖P ′

n(θ0,n)‖) =
o(1). Define ρn,ij(θ, s) := ‖Xn,ij(s)‖ ·

∣∣exp(θ0(s)TXn,ij(s))− exp(θTXn,ij(s))
∣∣.
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By positivity of ρn,ij(θ, s), we may apply Fubini’s Theorem, and thus we com-
pute

E(‖P ′
n(θ0,n)‖)

≤ 1

ln

∑
i<j

∫ 1

−1

K(u)E (Cn,ij(t0 + uh)ρn,ij(θ0,n, t0 + uh)) du

=
1

ln

∑
i<j

∫ 1

−1

K(u)P(Cn,ij(t0 + uh) = 1)

× E (ρn,ij(θ0,n, t0 + uh)|Cn,ij(t0 + uh) = 1) du.

The expectation in the integral expression can be bounded by applying a Taylor
expansion:

E (ρn,ij(θ0,n, su)|Cn,ij(su) = 1)

≤ E

(∫ 1

0

exp
(
[θ0(su)− α · (θ0(su)− θ0,n)]

T
Xn,ij(su)

)
dα

× ‖Xn,ij(su)‖2
∣∣∣∣∣Cn,ij(su) = 1

)
· ‖θ0(su)− θ0,n‖,

where su = t0 + uh. Now, by (10) in Assumption (A4), the expectation in the
last upper bound is bounded by a constant C, uniformly in u ∈ [−1, 1]. Using
supu∈[−1,1] ‖θ0(t0 + uh)− θn,0‖ = o(1), we obtain

E(‖P ′
n(θ0,n)‖)

≤ 1

ln

∑
i<j

∫ 1

−1

K(u)P(Cn,ij(t0 + uh) = 1)du · C · sup
v∈[−1,1]

‖θ0(t0 + vh)− θ0,n‖

= C · P(Cn,ij(t0) = 1)−1 ·
∫ 1

0

K(u)P(Cn,ij(t0 + uh) = 1)du · o(1)

= o(1),

where the last equality is a consequence of (11). This shows (31).
We now show (32). With ∂θ2g(θ0,n, s) = −E(τn,ij(θ0,n, s)|Cn,ij(s) = 1),

Fact 4.1 gives

E(P ′′
n (θ0,n)) = − 1

lnh

∑
i<j

∫ T

0

K

(
s− t0
h

)
× P(Cn,ij(s) = 1)E(τn,ij(θ0,n, s)|Cn,ij(s) = 1)ds.

For (32), it suffices to show:

P ′′
n (θ0,n)− E(P ′′

n (θ0,n)) = oP (1), (34)

E(P ′′
n (θ0,n)) + Σ = o(1). (35)
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For the proof of (35), we note that with an(u) =
P(Cn,12(t0+uh)=1)

P(Cn,12(t0)=1) ,

E(P ′′
n (θ0,n)) + Σ

=

∫ 1

−1

K(u) [an(u)∂θ2g(θ0,n, t0 + uh)− ∂θ2g(θ0(t0), t0)] du

=

∫ 1

1

K(u)an(u) [∂θ2g(θ0,n, t0 + uh)− ∂θ2(θ0(t0), t0)] du

+∂θ2g(θ0(t0), t0)

∫ 1

−1

K(u)(an(u)− 1)du

= o(1).

Here we use (11), and θ0,n − θ0(t0) = o(1) (see Proposition 4.2).
For the proof of (34), we write Kh,t0(s) := K

(
s−t0
h

)
and

P ′′
n (θ0,n)− E(P ′′

n (θ0,n))

=
1

lnh

∑
i<j

∫ T

0

Kh,t0(s) [−Cn,ij(s)τn,ij(θ0,n, s) + P(Cn,ij(s) = 1)∂θ2g(θ0,n, s)] ds.

We will apply Markov’s inequality to show that this term converges to zero.
When squaring the above sum, we can split the resulting double sum into three
parts, depending on whether |{i, j} ∩ {k, l}| = 0, 1 or 2. Thus we have to show
that the following three sequences converge to zero:

E

(
1

l2nh
2

∑
(i,j)

κ̄n,ij(θ0,n)
2

)
= o(1), (36)

E

(
1

l2nh
2

∑
(i,j),(k,l)

sharing one vertex

κ̄n,ij(θ0,n)κ̄n,kl(θ0,n)

)
= o(1), (37)

E

(
1

l2nh
2

∑
(i,j),(k,l)

sharing no vertex

κ̄n,ij(θ0,n)κ̄n,kl(θ0,n)

)
= o(1), (38)

where κn,ij(θ0,n, s) := −Cn,ij(s)τn,ij(θ0,n, s) + P(Cn,ij(s) = 1)∂θ2g(θ0,n, s), and

κ̄n,ij(θ0,n) :=
∫ T

0
K
(
s−t0
h

)
κn,ij(θ0,n, s)ds. Now note that

E
(
κ̄n,ij(θ0,n)κ̄n,kl(θ0,n)

)
=

∫ 1

−1

∫ 1

−1

K(u)K(v)E
(
κn,ij(θ0,n, t0 + uh)κn,kl(θ0,n, t0 + vh)

)
dudv,

and that the sum in (36) has O(n2) terms, (37) comprises O(n3) terms, and
finally (38) has O(n4) terms (these orders are true for both: directed and undi-
rected networks). Thus, it is sufficient to show that∫ 1

−1

∫ 1

−1

K(u)K(v)
E
(
κn,ij(θ0,n, t0 + uh)κn,kl(θ0,n, t0 + vh)

)
P(Cn,12(t0) = 1)2

dudv
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=

⎧⎨⎩
o(n2) for |{i, j} ∩ {k, l}| = 2
o(n) for |{i, j} ∩ {k, l}| = 1
o(1) for |{i, j} ∩ {k, l}| = 0.

(39)

For the proof of (39), we note that

E
(
κn,ij(θ0,n, t0 + uh)κn,kl(θ0,n, t0 + vh)

)
= Tn,1(u, v)− Tn,2(u, v),

where

Tn,1(u, v) = P(Cn,ij(t0 + uh) = 1, Cn,kl(t0 + vh) = 1)

×fn,1(θ0,n, t0 + uh, t0 + vh|(i, j), (k, l)),
Tn,2(u, v) = P(Cn,ij(t0 + uh) = 1)P(Cn,kl(t0 + vh) = 1)

×f2(θ0,n, t0 + uh)f2(θ0,n, t0 + vh).

We get

P(Cn,12(t0) = 1)−2

∫ 1

−1

∫ 1

−1

K(u)K(v)Tn,2(u, v)dudv

=

[∫ 1

−1

K(u)an(u)f2(θ0,n, t0 + uh)du

]2
→ f2(θ0(t0), t0)

2, (40)

where, again, (11) and continuity of f2(θ, t) = −∂θ2g(θ, t) has been used. Fur-
thermore, we have that

P(Cn,12(t0) = 1)−2

∫ 1

−1

∫ 1

−1

K(u)K(v)Tn,1(u, v)dudv

=

∫ 1

−1

∫ 1

−1

K(u)K(v)
P(Cn,ij(t0 + uh) = 1, Cn,kl(t0 + vh) = 1)

P(Cn,12(t0) = 1)2

× (fn,1(θ0,n, t0 + uh, t0 + vh|(i, j), (k, l))− f1(θ0(t0), |{i, j} ∩ {k, l}|)) dudv

+

∫ 1

−1

∫ 1

−1

K(u)K(v)
P(Cn,ij(t0 + uh) = 1, Cn,kl(t0 + vh) = 1)

P(Cn,12(t0) = 1)2

× f1(θ0(t0), |{i, j} ∩ {k, l}|)dudv⎧⎨⎩
= o(n2) for |{i, j} ∩ {k, l}| = 2
= o(n) for |{i, j} ∩ {k, l}| = 1
→ f1(θ0(t0), 0) = f2(θ0(t0), t0)

2 for |{i, j} ∩ {k, l}| = 0
(41)

by Assumptions (12) and (19). From (40) and (41), we obtain (39). This shows
(32).

For the proof of (33), we calculate a bound for the expectation of the absolute
value of the third derivative of Pn. With s = t0 + uh, it holds (recall that
τ := supθ∈V ‖θ‖)

E

(
sup
k,l,r,θ

∣∣∣∂θk∂θlP ′ (r)
n (θ)

∣∣∣)
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≤ 1

P(Cn,12(t0) = 1)

∫ 1

−1

K(u)P(Cn,12(s) = 1)

×E

(
‖Xn,12(s)‖3eτ Xn,12(s)‖

∣∣∣Cn,12(s) = 1
)
du,

where (7) has been used to get that the order of differentiation and integration
can be interchanged and where Fubini could be used because all involved terms
are non-negative. The upper bound for the expectation in the integral expression
is bounded by Assumptions (7) and (11). This shows (33).

Lemma 4.5. Assume that Fact 4.1, (A3), (A4) (8), (9), (A6) (13), (14), (A7)
(20) hold. It holds that

1

lnh

∑
i<j

∫ T

0

K

(
s− t0
h

)
Cn,ij(t0)

×
[
Cn,ij(s)Xn,ij(s)

(
eθ0(s)

TXn,ij(s) − eθ
T
0,nXn,ij(s)

)
− ∂θg(θ0,n, s)

]
ds

= oP

(
1√
lnh

)
. (42)

With Bn from Theorem 2.1, we have

1

lnh

∑
i<j

∫ T

0

K

(
s− t0
h

)
(1− Cn,ij(t0)

×Cn,ij(s)Xn,ij(s)
(
eθ0(s)

TXn,ij(s) − eθ
T
0,nXn,ij(s)

)
ds)

= h2 ·Bn + oP (h
2). (43)

Proof. In this proof, we use the shorthand notation Kh,t0(s) =
1
hK
(
z−t0
h

)
. We

begin with proving (43). Denote for vectors a, b ∈ R
q by [a, b] the connecting line

between a and b. Note firstly that by a Taylor series application for a random
(depending on Xn,ij(s)) intermediate value θ∗(s) ∈ [θ0(s), θ0,n]

eθ0(s)
TXn,ij(s) − eθ

T
0,nXn,ij(s)

= Xn,ij(s)
T eθ

∗(s)TXn,ij(s) · (θ0(s)− θ0,n). (44)

Hence, we obtain

1

ln

∑
i<j

∫ T

0

Kh,t0(s)(1− Cn,ij(t0))Cn,ij(s)

×Xn,ij(s)
(
eθ0(s)

TXn,ij(s) − eθ
T
0,nXnij(s)

)
ds

=
1

ln

∑
i<j

∫ T

0

Kh,t0(s)(1− Cn,ij(t0))Cn,ij(s)Xn,ij(s)Xn,ij(s)
T

× eθ
∗(s)TXn,ij(s) · (θ0(s)− θ0(t0) + θ0(t0)− θ0,n)ds (45)

We decompose (45) into two terms by splitting θ0(s)− θ0(t0) + θ0(t0)− θ0,n =
(θ0(s) − θ0(t0)) + (θ0(t0) − θ0,n). For the second part we obtain, by using that
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‖θ∗(s)‖ is bounded by τ (because θ0,n, θ0(t0) ∈ V by Lemma 4.2 and θ0 is
continuous), use also Fubini in the second line and rewrite as a conditional
expectation in the last line

E

(∥∥∥∥∥ 1

ln

∑
i<j

∫ T

0

Kh,t0(s)(1− Cn,ij(t0))Cn,ij(s)Xn,ij(s)Xn,ij(s)
T

× eθ
∗(s)TXn,ij(s) · (θ0(t0)− θ0,n)ds

∥∥∥∥∥
)

≤
∫ T

0

Kh,t0(s)E

(
(1− Cn,12(t0))Cn,12(s)

P(Cn,12(t0) = 1)
‖Xn,12(s)‖2 eτ‖Xn,12(s)‖

)
ds (46)

× ‖θ0(t0)− θ0,n‖

=

∫ T

0

Kh,t0(s)
P(Cn,12(t0) = 0, Cn,12(s) = 1)

P(Cn,12(t0) = 1)

× E

(
‖Xn,12(s)‖2eτ‖Xn,12(s)‖

∣∣∣Cn,12(s) = 1, Cn,12(t0) = 0
)
ds (47)

× ‖θ0(t0)− θ0,n‖,
= O(h3) (48)

where the last equality holds, because by assumption (13) the first factor is O(h),
the second factor is uniformly bounded by (9) and ‖θ0,n − θ0(t0)‖ = O(h2) by
Proposition 4.2. We now discuss the second term of the split of (45). Recall
therefore the definitions of γn,ij(s) and τn,ij(θ, s) from Theorem 2.1 and (16),
respectively. Applying the above and using that θ0(s) − θ0(t0) = θ′0(t

∗)(s − t0)
for an appropriate point t∗ ∈ [t0, s], we obtain

(45) = h2
( 1

ln

∑
i<j

∫ T

0

Kh,t0(s)
γn,ij(s)

h
Xn,ij(s)Xn,ij(s)

T

× eθ
∗(s)TXn,ij(s)

θ′0(t
∗)(t0 − s)

h
ds
)
+ oP (h

2)

= h2
( 1

ln

∑
i<j

∫ T

0

Kh,t0(s)
γn,ij(s)

h
τn,ij(θ0(s), s)

θ′0(t0)(t0 − s)

h
ds

+
1

ln

∑
i<j

∫ T

0

Kh,t0(s)
γn,ij(s)

h
τn,ij(θ0(s), s)

(θ′0(t
∗)− θ′0(t0))(t0 − s)

h
ds

(49)

+
1

ln

∑
i<j

∫ T

0

Kh,t0(s)
γn,ij(s)

h
Xn,ij(s)Xn,ij(s)

T

×
(
eθ

∗(s)TXn,ij(s) − eθ0(s)
TXn,ij(s)

) θ′0(t
∗)(t0 − s)

h
ds
)

(50)

+ oP (h
2).



2806 A. Kreiß et al.

Hence, we need to prove that (49) and (50) are oP (1) (these lines individually
without the leading h2 from the first line) and we are done with the proof. K is
supported on [−1, 1] and hence s ∈ Uh := [t0 − h, t0 + h]. Moreover, continuity

of θ′0 yields sups∈Uh

(θ0(t
∗)−θ′

0(t0)(t0−s)
h → 0. Hence, we can show (49) = oP (1)

by similar arguments which lead to (48). For (50) we apply apply Taylor again
to get for another intermediate point θ∗∗(s) ∈ [θ0(s), θ

∗(s)]

eθ
∗(s)TXn,ij(s) − eθ0(s)

TXn,ij(s) = Xn,ij(s)
T eθ

∗∗(s)TXn,ij(s)(θ∗(s)− θ0(s)).

Now arguments are again similar to the ones leading to (48), we just have
to use the power three part in (9) and the fact that sups∈Uh

‖θ∗(s) − θ0(s)‖ ≤
sups∈Uh

‖θ0(s)−θ0,n‖ which converges to zero by continuity of θ and Proposition
4.2. This concludes the proof of (43).

To prove (42), we have to show that

1√
lnh

∑
i<j

∫ T

0

K

(
s− t0
h

)
Cn,ij(t0)rn,ij(s)ds = oP (1), (51)

where rn,ij(s) was defined before Assumption (A7). We do this by showing that
every component of the left hand side of (51) is oP (1), i.e., we replace rn,ij(s)

by r
(a)
n,ij for a ∈ {1, ..., q}. By an application of Markov’s inequality, this holds if

h

ln

∑
(i,j),(k,l)

∫ 1

−1

∫ 1

−1

K(u)K(v)P(Cn,ij(t0) = 1, Cn,kl(t0) = 1)

× E(r
(a)
n,ij(t0 + uh)r

(a)
n,kl(t0 + vh)|Cn,ij(t0) = 1, Cn,kl(t0) = 1)dudv = o(1).

We show this similarly as in the proof of Lemma 4.4 by splitting the sum in three
sums corresponding to |{i, j}∩{k, l}| = 2, 1, or 0. The corresponding sums have
O(n2), O(n3) and O(n4) terms, respectively. Before going through these three

cases, we note that equations (44) and (8) imply that supu,v∈[−1,1] E(r
(a)
n,ij(t0 +

uh)r
(a)
n,kl(t0 + vh)|Cn,ij(t0) = 1, Cn,kl(t0) = 1) = O(h2) for all a ∈ {1, ..., q} and

for all (i, j) and (k, l). Now we get for the sum over edges with |{i, j}∩{k, l}| = 2
the bound

h
P(Cn,12(t0) = 1)

P(Cn,12(t0) = 1)

∫ 1

−1

∫ 1

−1

K(u)K(v)O(h2)dudv = o(1).

For the sum over edges with |{i, j} ∩ {k, l}| = 1, we get the following bound
from (14)

nhP(Cn,12(t0) = 1)
P(Cn,12(t0) = 1, Cn,23(t0) = 1)

P(Cn,12(t0) = 1)2
O(h2) = O(1) · ln

n
O(h3).

Observing that lnh
3

n =
l3/5n (h5)3/5l2/5n

n =O(
l2/5n

n )=O(n−1/5P (Cn,12(t0)= 1)2/5)=
o(1), the bound is of order o(1).
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By using (14) and (20), we get the following bound for the sum over edges
with |{i, j} ∩ {k, l}| = 0:

lnh
P(Cn,12(t0) = 1, Cn,34(t0) = 1)

P(Cn,12(t0) = 1)2∫∫
[−1,1]2

K(u)K(v)E
(
r
(a)
n,12(t0 + uh)r

(a)
n,34(t0 + vh)|Cn,12(t0)= 1, Cn,34(t0)= 1

)
dudv

= o(1).

This concludes the proof of (42).

Proposition 4.3. Assume that the assumptions of the Lemmas 4.4 and 4.5
hold. With probability tending to one, the equation P ′

n(θ) = 0 (cf. equation

(26)) has a solution θ̃n(t0), which has the property

θ̃n(t0) = θ0,n + h2 ·Bn + oP

(
1√
lnh

)
+ oP (h

2).

To prove this proposition, we will make use of the following theorem, see [5]:

Theorem 4.4. (Newton-Kantorovich Theorem) Let R(x) = 0 be a system of
equations where R : D0 ⊆ R

q → R is a function defined on D0. Let R be
differentiable and denote by R′ its first derivative. Assume that there is an x0

such that all expressions in the following statements exist and such that the
following statements are true

1. ||R′(x0)
−1|| ≤ B,

2. ||R′(x0)
−1R(x0)|| ≤ η,

3. ||R′(x)−R′(y)|| ≤ K||x− y|| for all x, y ∈ D0,
4. r := BKη ≤ 1

2 and Ω∗ := {x : ||x− x0|| < 2η} ⊆ D0.

Then there is x∗ ∈ Ω∗ with R(x∗) = 0 and

||x∗ − x0|| ≤ 2η and ||x∗ − (x0 −R′(x0)
−1R(x0))|| ≤ 2rη.

Proof of Proposition 4.3. We show that P ′
n(θ) has a root by using Theorem

4.4 with D0 = V and x0 = θ0,n. Lemma 4.4 gives that P ′
n(θ0,n)

P→ 0 and

P ′′
n (θ0,n)

P→ −Σ. Since Σ is invertible we also have that the sequence of random
variables Bn := ||P ′′

n (θ0,n)
−1|| is well-defined (for large n) and that it is of

order OP (1). Thus we also have ηn := ||P ′′
n (θ0,n)

−1P ′
n(θ0,n)|| = oP (1). For the

Lipschitz continuity of P ′′
n we bound the partial derivatives of P ′′

n by Lemma
4.4. Hence we conclude that every realization of P ′′

n is Lipschitz continuous with
(random) Lipschitz constant Kn = OP (1). Combining everything, we get that
rn := BnKnηn = oP (1). Thus with probability tending to one we have rn ≤
1
2 , and hence the Newton-Kantorovich Theorem tells us that with probability

tending to one the equation P ′
n(θ) = 0 has a solution θ̃n(t0) ∈ D0 = V with the

property that
‖θ̃n(t0)− θ0,n‖ ≤ 2ηn = oP (1).
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To prove the asserted rate, we have to investigate ηn further. We note first
that since P ′′

n (θ0,n)
−1 is stochastically bounded, the rate of ηn is determined by

the rate with which P ′
n(θ0,n) converges to zero. To find this rate we observe that

every summand of P ′
n(θ0,n) has expectation zero conditionally on Cn,ij(s) = 1:∫ T

0

K
(s− t0

h

)
E
[
Cn,ij(s)Xn,ij(s)

(
eθ0(s)

TXn,ij(s) − eθ
T
0,nXn,ij(s)

)∣∣Cn,ij(s) = 1
]
ds

=

∫ T

0

K
(s− t0

h

)
∂θg(θ0,n, s)ds = 0

by the assumption that θ0,n maximizes θ �→
∫ T

0
K
(
s−t0
h

)
g(θ, s)ds. So, in

P ′
n(θ0,n), we can subtract Cn,ij(t0)

∫ T

0
K
(
s−t0
h

)
∂θg(θ0,n, s)ds from every sum-

mand without changing anything, i.e.,

P ′
n(θ0,n)

=
1

lnh

∑
i<j

∫ T

0

K

(
s− t0
h

)[
Cn,ij(s)Xn,ij(s)

(
eθ0(s)

TXn,ij(s) − eθ
T
0,nXn,ij(s)

)
− Cn,ij(t0)∂θg(θ0,n, s)

]
ds

=
1

lnh

∑
i<j

∫ T

0

K

(
s− t0
h

)
Cn,ij(t0)

[
Cn,ij(s)Xn,ij(s)

(
eθ0(s)

TXn,ij(s)

−eθ
T
0,nXn,ij(s)

)
− ∂θg(θ0,n, s)

]
ds

+
1

lnh

∑
i<j

∫ T

0

K

(
s− t0
h

)
(1− Cn,ij(t0))Cn,ij(s)Xn,ij(s)

×
(
eθ0(s)

TXn,ij(s) − eθ
T
0,nXn,ij(s)

)
ds.

By Lemma 4.5, this term is equal to h2 · Bn + oP

(
1√
lnh

)
+ oP (h

2), which

concludes the proof of Proposition 4.3.

Lemma 4.6. Assume that the assumptions of Lemmas 4.4 and 4.5 hold. For
k, l ∈ {1, ..., q}, we have that

1

lnh

∑
i<j

∫ T

0

K

(
s− t0
h

)2

X
(l)
n,ij(s)X

(k)
n,ij(s)Cn,ij(s) exp(θ0(s)

TXn,ij(s))ds

P→
∫ 1

−1

K(u)2du Σk,l (52)

and

1

lnh

∑
i<j

∫ T

0

K

(
s− t0
h

)2

‖Xn,ij(s)‖21
(

1√
lnh

∥∥∥∥K (s− t0
h

)
Xn,ij(s)

∥∥∥∥ > ε

)
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× Cn,ij(s) exp(θ0(s)
TXn,ij(s))ds

P→ 0. (53)

Moreover, it holds that

1

ln
∂2
θ�(θ̃n(t0), t0) = P ′′

n (θ̃n(t0))
P→ −Σ. (54)

Proof. The proof of (52) follows by using similar arguments as in the proof of
Lemma 4.4, with θ0,n replaced by θ0(s), and with K replaced by K2.

For the proof of claim (53), we calculate the expectation of the left hand side
of (53). Because the integrand is positive, we can apply Fubini, and we get that
the expectation is equal to∫ T

0

E

[
1

(
1√
lnh

∥∥∥∥K (s− t0
h

)
Xn,12(s)

∥∥∥∥ > ε

)
‖Xn,12(s)‖2

× exp
(
θ0(s)

TXn,12(s)
)∣∣∣Cn,12(s) = 1

]
1

h
K

(
s− t0
h

)2
P(Cn,12(s) = 1)

P(Cn,12(t0) = 1)
ds

≤ 1

ε
· 1√

lnh

∫ 1

−1

K3(u)
P(Cn,12(t0 + uh) = 1)

P(Cn,12(t0) = 1)

E

(
‖Xn,12(t0 + uh)‖3eτ‖Xn,12(t0+uh)‖

∣∣∣Cn,12(t0 + uh) = 1
)
du

= O

(
1√
lnh

)
= o(1).

Here we use (11), max−1≤u≤1 K(u) < ∞ and (10). This shows (53).
To see (54), we show that

P ′′
n (θ0,n)− P ′′

n (θ̃n(t0)) = oP (1). (55)

This then implies (54) because of (32).
By using exactly the same arguments as in the proof of Lemma 4.5, we obtain

eθ
T
0,nXn,ij(s) − eθ̃n(t0)

T
nXn,ij(s) ≤ ‖Xn,ij(s)‖eτ‖Xn,ij(s)‖ · ‖θ0,n − θ̃n(t0)‖.

This gives

P ′′
n (θ0,n)− P ′′

n (θ̃n(t0))

=
1

lnh

∑
i<j

∫ T

0

K

(
s− t0
h

)
Cn,ij(s)Xn,ij(s)Xn,ij(s)

T

×
(
eθ̃n(t0)

TXn,ij(s) − eθ
T
0,nXn,ij(s)

)
ds

≤ 1

lnh

∑
i<j

∫ T

0

K

(
s− t0
h

)
Cn,ij(s)‖Xn,ij(s)‖3eτ‖Xn,ij(s)‖ds × ‖θ0,n − θ̃n(t0)‖.
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The expectation of the first factor is bounded because of assumptions (11)
and (10). Furthermore, the second term is of order oP (1) by Proposition 4.3.
Thus, the product is of order oP (1). This shows (55) and concludes the proof of
(54).

Proposition 4.5. Assume the assumptions of Proposition 4.3 and Lemma 4.6
hold. With probability tending to one, ∂θ�T (θ, t0) = 0 has a solution θ̂n(t0), and

√
lnh · (θ̂n(t0)− θ̃n(t0))

d→ N
(
0,

∫ 1

−1

K2(u)du Σ−1
)
.

Proof of Proposition 4.5. The proof is based on modifications of arguments used
in the asymptotic analysis of parametric counting process models, see e.g. the
proof of Theorem VI.1.1 on p. 422 in [2]. Define

U l(θ) := h∂θl�T (θ, t0), l = 1, . . . , q,

and let U l
t(θ) be defined as U l(θ), but with t being the upper limit of the integral

in (6), (i.e., U l(θ) = U l
T (θ)). Furthermore, we write U(θ) = (U1(θ), ..., Uq(θ)),

and the vector Ut(θ) is defined analogously. In the first step of the proof, we
will show that

1√
lnh

UT (θ̃n(t0))
d→ N

(
0,

∫ 1

−1

K2(u)du Σ
)
. (56)

For the local, square integrable martingale Mn,ij defined in (25), it holds that
Mn,ij and Mn,i′j′ are orthogonal, meaning that < Mn,ij ,Mn,i′j′ >t= 0 if
(i, j) �= (i′, j′), i.e. the predictable covariation process is equal to zero. For
the predictable variation process of Mn,ij , we have

< Mn,ij >t=

∫ t

0

Cn,ij(s) exp(θ0(s)
TXn,ij(s))ds. (57)

By definition of θ̃n(t0), see the statement of Proposition 4.3, we have that (write
Kh,t0(s) := K

(
s−t0
h

)
)

U l
t(θ̃n(t0))

=
∑
i<j

∫ t

0

Kh,t0(s)X
(l)
n,ij(s)dNn,ij(s) (58)

−
∫ t

0

Kh,t0(s)Cn,ij(s)X
(l)
n,ij(s) exp(θ̃n(t0)

TXn,ij(s))ds

=
∑
i<j

∫ t

0

Kh,t0(s)X
(l)
n,ij(s)dMn,ij(s)

+

∫ t

0

Kh,t0(s)Cn,ij(s)X
(l)
n,ij(s)

(
exp(θ0(s)

TXn,ij(s))− exp(θ̃n(t0)
TXn,ij(s))

)
ds
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=
∑
i<j

∫ t

0

Kh,t0(s)X
(l)
n,ij(s)dMn,ij(s).

So θ̃n(t0) was chosen such that the non-martingale part of ∂θ�(θ̃n(t0), t0) van-
ishes. Now, we want to apply Rebolledo’s Martingale Convergence Theorem,
see e.g. Theorem II.5.1 in [2]. This theorem implies (56), provided a Lindeberg
condition (53) holds, and〈 1√

lnh
Uk
t (θ̃n(t0)),

1√
lnh

U l
t(θ̃n(t0))

〉
T

P→
∫ 1

−1

K2(u)du Σkl(t0). (59)

To verify (59), first note that (57) and (52) imply finiteness of

1

lnh

∑
i<j

∫ t

0

Kh,t0(s)
2
(
X

(l)
n,ij(s)

)2
d〈Mn,ij〉s,

with probability tending to one. Note that Lemma 4.6 is formulated with t = T ,
but the integral is finite also for t < T simply because the integrand is non-
negative. From now on we assume the above integral is finite. The process

1√
lnh

∑
i<j

∫ t

0

Kh,t0(s)X
(l)
n,ij(s)dMn,ij(s)

is a local square integrable martingale, see e.g. Theorem II.3.1 on p.71 in [2].
Since the martingales Mn,ij are orthogonal, and by using Lemma 4.6, the pre-
dictable covariation satisfies〈 1√

lnh
Uk
t (θ̃n(t0)),

1√
lnh

U l
t(θ̃n(t0))

〉
T

=
1

lnh

∑
i<j

∫ T

0

Kh,t0(s)
2X

(k)
n,ij(s)X

(l)
n,ij(s)Cn,ij(s) exp(θ0(s)

TXn,ij(s))ds

P→
∫ 1

−1

K2(u)du Σkl(t0).

This shows (59), and concludes the proof of (56).
We now show that

||
√
lnh · (θ̃n(t0)− θ̂n(t0))−

√
lnhZn|| P→ 0, (60)

where

Zn = P ′′
n (θ̃n(t0))

−1 1

lnh
U(θ̃n(t0)).

We want to apply the Newton-Kantorovich Theorem 4.4 with R(θ) := Rn(θ) :=
1

lnh
U(θ), D0 = V and x0 := θ̃n(t0). To this end, define

Bn := ‖R′
n(θ̃n(t0))

−1‖ =

∥∥∥∥P ′′
n

(
θ̃n(t0)

)−1
∥∥∥∥ .
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From Lemma 4.6, we know that P ′′
n (θ̃n(t0)) converges and is invertible for n

large enough, and thus Bn = OP (1). Now let

ηn := ‖R′
n(θ̃n(t0))

−1Rn(θ̃n(t0))‖ = ‖Zn‖ .

Results (54) and (56) imply that ηn = oP (1). Next, notice that P ′′
n has a Lips-

chitz constant Kn that is bounded by the maximum of the third derivative of
Pn. According to (33), this maximum is bounded, and we obtain Kn = OP (1).
Hence, rn = BnKnηn = oP (1). Now, Theorem 4.4 implies that, with probability

converging to one, there is θ̂n(t0) such that U(θ̂n(t0)) = 0 and

||θ̂n(t0)− θ̃n(t0)|| ≤ 2ηn
P→ 0.

To obtain the asymptotic distribution of θ̂n(t0), we note that, by (56) and
(54), √

lnh · Zn
d→ N(0,

∫ 1

−1

K2(u)du Σ−1). (61)

Thus it holds that
√
lnh ·Zn = OP (1), and as a consequence we get

√
lnh · ηn =

OP (1). Using the second statement of the Newton-Kantorovich Theorem 4.4,
we obtain

||
√
lnh · (θ̃n(t0)− θ̂n(t0))−

√
lnhZn|| ≤

√
lnh · 2rnηn = oP (1).

Thus
√
lnh · (θ̃n(t0) − θ̂n(t0)) and

√
lnh · Zn have the same limit distribution.

Because of (61) this implies the statement of the proposition.

Proof of Theorem 2.1 Combining Propositions 4.3 and 4.5, and applying
Slutzky’s Lemma, we obtain by the assumptions on the bandwidth h in (A2)

√
lnh
(
θ̂n(t0)− θ0,n(t0)− h2 ·Bn

)
→ N

(
0,

∫ 1

−1

K2(u)duΣ−1AΣ−1

)
.

With Proposition 4.2 this gives (21).

Appendix A

A.1. Simulations of degree distributions, cluster coefficients and
diameters

Here we report additional simulations of degree distributions, cluster coefficients
and diameters. In Section 3, we have presented results for the degree distribution
of networks based on the Washington DC bikeshare activity on 7th December
2012. In this section, we will consider the days 18th April 2014 and 10th July
2015, and also compare diameters and clustering coefficients of the simulated
and observed networks. As above, using the corresponding estimated parame-
ter value for each of these days, we compute 3840 predictions and compared



Link-based dynamic network models 2813

them with the observed values. The diameter of a network is the longest among
the shortest path between two vertices in the network. Typically, in observed
networks the diameter is much smaller than the number of vertices (cf. [15]).
The clustering coefficient is the number of complete triangles (triples of vertices
which are completely connected) divided by the number of incomplete triangles
(triples of vertices with at least two edges). Note that every complete trian-
gle is also incomplete, hence the clustering coefficient is between zero and one.
The clustering coefficient can be understood as the empirical probability that
vertices are connected given that there is a third vertex to which both are con-
nected. It has been reported (cf. [15]), that in observed networks this number is
usually significantly higher than in an Erdös-Rényi network, where the presence
of edges are i.i.d. random variables.

Our question here is, Does a network which was simulated by our model look
like the observed network? or in other words Could one believe that the observed
network is a realization of our model?. To answer this, we consider the three
network characteristics mentioned above, and empirically and visually compare
the simulated results to the observed data. The heuristic justification underlying
this approach is, that, if considered jointly, these three characteristics are able
to discriminate between a range of different types of networks (see also [15, 41])

We start by presenting results for diameter and clustering coefficient on 7th
of December 2012. As described in Section 3, where the degree distribution was
discussed, we divide the edges between bike stations in six regimes by consid-
ering tour frequencies between the stations on the day. Figure 14 shows the
histograms of the simulated diameter in the different regimes. We see that, in
14e (as before in Figure 5e), the simulation and the reality appear to coincide
nicely. In other words, for a moderate number of tours our model seems to fit
well. It is interesting to note that our model performs differently in the different
regimes suggesting that edges with different activity have to be modeled differ-
ently. Finally, in Figure 15, we see the histograms of the simulated clustering
coefficients. The true value in the corresponding regime is shown in the titles of
the plots. Overall, the performance appears reasonable. In particular, in Figure
15d the histogram is nicely centered around the true value. Interestingly, the
performance in the fifth regime (l1 = 5 and l2 = 12), shown in Figure 15e, is
not as good as the others. One explanation for this might be that here different
covariates are needed.

In Figure 22a we see one simulated graph compared to the true graph. The
color of the edges determine how many tours happened relative the the other
edges: The lowest 25% of the edges are colored green, the next 25% yellow, then
orange and the highest 25% of edges are colored red. Due to the integral value
of the activity it is not the case that exactly 25% of the edges are green and so
on. The size of the vertices is relative to their degree. We see that the model
is able to find the important (i.e. high degree) vertices. For the edges we see
that some red edges are at wrong places. But generally the vertices with high
profile edges are recognized. The remaining graphs in Figure 22 show the same
comparison for the two other dates under consideration. And we see that the
results are similar.
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Fig 14. Histograms of diameters of the graphs which arise by taking different edges into
account (see individual caption) from simulations for 7th December 2012. In the title of the
plot the observed value is shown.
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Fig 15. Histograms of clustering coefficients of the graphs which arise by taking different
edges into account (see individual caption) from simulations for 7th December 2012. In the
title of the plot the observed value is shown.
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Figures 16 till 21 show the results of the corresponding simulations for the
other two dates. Overall the results are similar. It should be pointed out that
even though the model is not able to reproduce every feature perfectly accurate,
the simulated networks are still very close to the true observation. This becomes
more obvious if we remind ourselves that only six parameters were used.

A.2. Bandwidth choice

Under our assumptions that the covariates stay constant over the day, it makes
sense to consider only integral bandwidth lengths (for us one day has length
one). In order to choose the bandwidth, we apply a one-sided cross validation
(cf. [11, 27]) approach which was shortly motivated in Section 3 and which we
now describe in detail.

Let K and L be kernels fulfilling the assumptions in the paper and denote
by θ̂K(t0) and θ̂L(t0) the maximum likelihood estimators using K and L re-
spectively. Then, by Theorem 2.1, we get that asymptotically the bias and the
variance of the estimators can be written as

bias(θ̂K) = h2

∫ 1

−1

K(u)u2du · C1

var(θ̂L) =
1

lnh

∫ 1

−1

K(u)2du · C2

where the constants C1 and C2 depend on the true parameter curve θ0 and the
time t0 but not on the kernel. Hence, the corresponding expressions for θ̂L(t0)
can be found, just by replacing every K with an L. The decomposition of the
asymptotic mean squared error in squared bias plus variance yields the follow-
ing asymptotically optimal bandwidths hK and hL, minimizing the asymptotic
mean squared error:

hK :=

(
1

ln
·
∫ 1

−1
K(u)2du[∫ 1

−1
K(u)u2du

]2 · C1

4C2

) 1
5

.

Again, the corresponding expression for hL can be found by replacing every K
by L. So the following formula, known from kernel estimation, holds also true
in our setting

hK =

( ∫ 1

−1
K(u)2du[∫ 1

−1
K(u)u2du

]2 ·

[∫ 1

−1
L(u)u2du

]2
∫ 1

−1
L(u)2du

) 1
5

hL. (62)

This means that knowledge of the bandwidth minimizing the mean squared
error for kernel L, implies knowledge of the bandwidth minimizing the mean
squared error using kernel K. Ultimately, we use a triangular kernel K(u) =
(1 + u)1[−1,0)(u) + (1 − u)1[0,1](u). In order to find the bandwidth hK for this
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Fig 16. Degree distributions of the graphs which arise by taking different edges into account
(see individual caption) from simulations for 18th April 2014. Dotted lines show 10% and
90% quantiles of simulations and solid line shows true distributions.
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Fig 17. Histograms of diameters of the graphs which arise by taking different edges into
account (see individual caption) from simulations for 18th April 2014. In the title of the plot
the observed value is shown.
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Fig 18. Histograms of clustering coefficients of the graphs which arise by taking different
edges into account (see individual caption) from simulations for 18th April 2014. In the title
of the plot the observed value is shown.
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Fig 19. Degree distributions of the graphs, which arise by taking different tour frequencies
into account (see individual caption) from simulations for 10th July 2015. Dotted lines show
10% and 90% quantiles of simulations and solid line shows true distributions.
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Fig 20. Histograms of diameters of the graphs which arise by taking different edges into
account (see individual caption) from simulations for 10th July 2015. In the title of the plot
the observed value is shown.
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Fig 21. Histograms of clustering coefficients of the graphs which arise by taking different
edges into account (see individual caption) from simulations for 10th July 2015. In the title
of the plot the observed value is shown.
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Fig 22. Compares one simulated graph with the true observation.
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kernel, we want to apply cross-validation. As proposed in [11] one-sided cross
validation is an attractive method for the case of time series data. One-sided
here means that we apply cross validation to a kernel L which is only supported
on the past [−1, 0]. In order to avoid a bias, we use the one-sided kernel together
with local linear approximation. This following heuristic derivations motivates
this choice.

Firstly, in our regular maximum likelihood setting, we maximize, over μ ∈ Θ,
the expression∑

0<t≤T

1

h
K

(
t− t0
h

)∑
i<j

ΔNn,ij(t)μ
TXn,ij(t)

−
∫ T

0

∑
i<j

1

h
K

(
t− t0
h

)
Cn,ij(t)e

μTXn,ij(t)dt

≈
∑

0<t≤T

1

h
K

(
t− t0
h

)∑
i<j

ΔNn,ij(t)μ
TXn,ij(t)

−
∫ T

0

∑
i<j

1

h
K

(
t− t0
h

)
Cn,ij(t)e

θ0(t0)
TXn,ij(t)

×
(
1 + (μ− θ0(t0))

TXn,ij(t) +
1

2

[
(μ− θ0(t0))

TXn,ij(t)
]2)

dt.

Deriving this expression with respect to μ, setting the derivative equal to zero,
and rearranging terms, yields (to save space we use here a fraction, although
the denominator is a matrix)

θ̂K(t0)− θ0(t0)

≈
∑

i<j
1
hK
(
t−t0
h

)
ΔNn,ij(t)Xn,ij(t)∑

i<j

∫ T

0
1
hK
(
t−t0
h

)
Xn,ij(t)Xn,ij(t)T eθ0(t0)

TXn,ij(t)dt

−
∫ T

0
1
hK
(
t−t0
h

)
Cn,ij(t)Xn,ije

θ0(t0)
TXn,ij(t)dt∑

i<j

∫ T

0
1
hK
(
t−t0
h

)
Xn,ij(t)Xn,ij(t)T eθ0(t0)

TXn,ij(t)dt
.

Using the notation y1 := E(Xn,ij(t0)e
θ0(t0)

TXn,ij(t0)|Cn,ij(t0) = 1)·P(Cn,ij(t0) =

1) and y2 := E(Xn,ij(t0)Xn,ij(t0)
T eθ0(t0)

TXn,ij(t0)|Cn,ij(t0) = 1) · P(Cn,ij(t0) =
1), we obtain the approximation

θ̂K(t0)− θ0(t0) ≈
∑

i<j

∑
0<t≤T

1
hK
(
t−t0
h

)
ΔNn,ij(t)Xn,ij(t)− y1

y2
. (63)

Now define the local linear estimator θ̂LC,K(t0), with respect to a kernel K, as
the value of μ0 maximizing the following expression over (μ0, μ1) ∈ Θ2 :∑

0<t≤T

1

h
K

(
t− t0
h

)∑
i<j

ΔNn,ij(t)[μ0 + μ1(t− t0)]
TXn,ij(t)
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−
∫ T

0

∑
i<j

1

h
K

(
t− t0
h

)
e[μ0+μ1(t−t0)]

TXn,ij(t)dt.

Using the same approximations as in the usual kernel estimation setting, and
deriving the resulting approximate likelihood, we obtain

θ̂LC,K − θ0(t0)

≈
∑

i<j

∑
0<t≤T

1
hK
(
t−t0
h

) M2− t−t0
h M1

M2−M2
1

ΔNn,ij(t)Xn,ij(t)− y1

y2
,

where Mk :=
∫ 1

−1
ukK(u)du. The previous computations were just a heuristic.

But nevertheless, the similarity between the previous display and (63) suggests

that the local linear estimator θ̂LC,K using the kernel K is actually just a regular

kernel estimator θ̂L with kernel function

L(u) = K(u)
M2 − uM1

M2 −M2
1

. (64)

This aligns with results about kernel estimation, as, for example, stated in [27].
It can be easily computed that this new kernel is of order one, i.e.,

∫
uL(u)du =

0, even though the original kernel was not. Hence, knowledge of the optimal
bandwidth for the local linear estimator using the kernel K implies knowledge
of the optimal bandwidth for any other order one kernel by means of (62).

Taking the same route as in [11], the selector for the bandwidth ĥK for the
triangular kernel K is the following: Let K∗(u) := 2K(u)1[−1,0](u) denote the
one sided version of K.

1. Find a bandwidth ĥL for the local linear estimator θ̂LC,K∗ based on the
kernel K∗ via cross validation (since we use a one-sided kernel, this step is
also called one-sided cross-validation. We will make it more precise later).

2. Compute ĥ by using (62) with L defined as in (64) but with K replaced
by K∗.

For the one-sided cross-validation in step 1, we minimize, in our bike share
data analysis, the following function in h

1

kT

kT∑
k=0

1

|L(k)|
∑

(i,j)∈L(k)

∣∣∣eθ̂(−k)

LC,K∗ (k)
TXi,j(k) −Xi,j(k)

∣∣∣2
eθ̂

(−k)

LC,K∗ (k)TXi,j(k)
, (65)

where kT was the number of weeks (recall that we assume the covariates to
remain constant over a day, and that we only consider Fridays), i.e., k refers
to the k-th Friday in the dataset. L(k) refers to the set of pairs (i, j) between
which there was a bike tour on Friday k, Xi,j(k) is the true number of bike

tours observed between i and j on Friday k. Finally, θ̂
(−k)
LC,K∗(k) is the local linear

estimator with respect to the kernel K∗ based on all but the k-th Friday. Since
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K∗ is left-sided, this really means the estimator is based on Fridays 0, ..., k− 1,
and hence the term one-sided cross-validation. The intensities are the theoretical
values of the expectation of the number of bike tours if the model is correct.
So we compute the squared difference with the true number of bike rides and
divide by the estimated intensity, where we only take the non-censored edges
into account.

In Section 3, we had displayed results for different bandwidths h of (65) in
Figure 6. The prediction error of the fit decreases, until the bandwidth is equal to
23. Afterwards the prediction error stays roughly the same and starts to increase
when the bandwidth reaches a full year (52 weeks). This may be explained by a
periodicity with a period of approximately one year. If one uses 23 as minimal
value we get as asymptotic optimal bandwidth 12 which is approximately 23
divided by ρ. Here, following Step 2 of the above described procedure, we use
that ρ is approximately equal to 1.82 for triangular kernels.
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