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measures of compound Poisson-driven

Ornstein-Uhlenbeck processes under

macroscopic discrete observations

Daisuke Kurisu∗

Department of Industrial Engineering and Economics,
School of Engineering, Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

e-mail: kurisu.d.aa@m.titech.ac.jp

Abstract: This study examines a nonparametric inference on a stationary
Lévy-driven Ornstein-Uhlenbeck (OU) process X = (Xt)t≥0 with a com-
pound Poisson subordinator. We propose a new spectral estimator for the
Lévy measure of the Lévy-driven OU process X under macroscopic observa-
tions. We also derive, for the estimator, multivariate central limit theorems
over a finite number of design points, and high-dimensional central limit
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1. Introduction

Given a positive number λ and an increasing Lévy process J = (Jt)t≥0 without
drift component, an Ornstein-Uhlenbeck (OU) process X = (Xt)t≥0 driven by
J is defined by a solution to the following stochastic differential equation (SDE)

dXt = −λXtdt+ dJλt, t ≥ 0. (1.1)

We refer to [70] and [8] as standard references on Lévy processes. In this study,
we consider a nonparametric inference on the Lévy measure ν of the back-driving
Lévy process J in (1.1) from discrete observations of X. The Lévy measure ν is
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defined as a Borel measure on [0,∞) such that∫ ∞

0

(1 ∧ x2)ν(dx) < ∞.

We assume that X is stationary. If
∫
(2,∞)

log xν(dx) < ∞, then the unique sta-

tionary solution of (1.1) exists (see Theorem 17.5 and Corollary 17.9 in [70]), and
the stationary distribution π of X is self-decomposable with the characteristic
function

ϕ(t) =

∫
R

eitxπ(dx) = exp

(∫ ∞

0

(eitx − 1)
k(x)

x
dx

)
, (1.2)

where k(x) = ν((x,∞))1[0,∞).
This study focuses on the case wherein the Lévy process J in (1.1) is a

compound Poisson process. In other words, J is of the form

Jt =

Nt∑
j=1

Uj , t ≥ 0,

where N = (Nt)t≥0 is a Poisson process with intensity α > 0 and {Uj}j≥1 is a
sequence of independent and identically distributed (i.i.d.) positive-valued ran-
dom variables with common distribution F . In this case, Jt has a characteristic
function of the form

ϕJt(u) = E[eiuJt ] = exp

(
tα

∫ ∞

0

(eiux − 1)F (dx)

)
and the Lévy measure is given by ν(dx) = αF (dx). We also work with the macro-
scopic observation set up, that is, we have discrete observations XΔ, X2Δ, . . . ,
XnΔ at frequency 1/Δ > 0 with Δ = Δn → ∞ and Δn/n → 0 as n → ∞. This
is a technical condition to make the dependence among observations {XjΔ}nj=1

asymptotically negligible.
This study aims to develop a nonparametric inference on the Lévy measure

of a Lévy-driven OU process. Therefore, we first propose a spectral (or Fourier-
based) estimator for the k-function and derive a multivariate central limit theo-
rem for the estimator over finite design points. As an extension of the result, we
also derive high-dimensional central limit theorems for the estimator in the case
wherein design points over a compact interval included in (0,∞) increases as the
sample size n goes to infinity. Second, built on those limit theorems, we develop
methods for implementing confidence bands for the k-function. Similar methods
to construct “asymptotic” uniform confidence bands are also proposed in [44].
Since confidence bands provide a simple graphical description of the accuracy
of a nonparametric curve estimator, quantifying uncertainties of the estimator
simultaneously over design points, they are practically important in statistical
analysis. Third, we propose a practical method for bandwidth selection inspired
by the idea developed by [9] on bandwidth selection in density deconvolution.
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To the best of our knowledge, this is the first paper to establish limit theorems
for nonparametric estimators for the Lévy measure of compound Poisson-driven
OU processes.

Lévy-driven OU processes are widely used in modeling phenomena where
random events occur at random discrete times. For example, refer to [1], [54],
and [67] for applications of these processes to insurance, dam theory, and rain-
fall models. Several authors investigate the parametric inference on Lévy-driven
OU processes driven by subordinators. We refer to [45], [61], and [56] under the
high-frequency set up (i.e., Δ = Δn → 0 and nΔn → ∞ as n → ∞) and [10] un-
der the low-frequency set up (i.e., Δ > 0 is fixed and n → ∞). There are several
studies on parametric and nonparametric estimations and inferences on Lévy
processes. We refer to recent contributions by [77], [52, 53], and [11] on paramet-
ric inference on Lévy processes. We also find an overview of recent developments
on the parametric inference on Lévy processes in [62]. Some authors have studied
statistical inference on Lévy process under macroscopic observations. [29] inves-
tigates statistical inference on a compound Poisson process under three kinds of
time scales—high-frequency, low-frequency, and macroscopic. [31] studies statis-
tical inference on compound Poisson processes under macroscopic observations.
[32] is another recent study on nonparametric estimation on compound Pois-
son processes under macroscopic observations. [22] discusses the robustness of
spectral estimation of Lévy measures of compound Poisson processes to Δn,
and it includes the consistency of the estimator under the macroscopic set up.
Concerning recent contributions to nonparametric inference on Lévy measures
(or densities) under the high-frequency set up, we refer to [36, 38, 39], [76],
[55], [66], and [50]. Recent studies on nonparametric estimation of Lévy densi-
ties under the high-frequency scale are [71], [33], [23, 24, 25], [37], [40, 41], [64],
[49], [3, 4], [30], [48], [5], and [6]. Concerning literature on the low-frequency
set up, we refer to [65] for inference on Lévy measures, and [68], [14], and [21]
for nonparametric inference on compound Poisson processes. Further, [15] and
[75] investigate nonparametric estimation of a class of Lévy processes under the
low-frequency set up. [7] studies nonparametric estimation of Lévy measures of
the moving average Lévy processes under low-frequency observations. [13], [12],
and [43] study nonparametic inference on Lévy measures of Itô semimartingales
with Lévy jumps under high-frequency observations. [47] and [46] investigate
nonparametric estimation of the Lévy-driven OU processes. [47] derive consis-
tency of their estimator for a class of Lévy-driven OU processes, which include
compound Poisson-driven OU processes. [46] establish consistency of their es-
timator of the Lévy density of (1.1) with compound Poisson subordinator in
uniform norm at a polynomial rate. However, they do not derive limit distribu-
tions of their estimators.

The analysis of the present study is related to deconvolution problems for
mixing sequence. [57, 58, 59] investigate the probability density deconvolution
problems for α-mixing sequences and derive convergence rates and asymptotic
distributions of deconvolution estimators. Since the Lévy-driven OU process
(1.1) is β-mixing under some conditions (see [60] for details), our analysis can
be interpreted as a deconvolution problem for a β-mixing sequence. However,
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we need a non-trivial analysis since we are considering additional structures
emerging from the properties of the compound Poisson-driven OU process. To
be more precise, [59] assumes that, for a mixing sequence {X̃j}j≥0, the joint

densities p(x1, xj+1) of X̃1 and X̃j+1 are uniformly bounded for any j ≥ 1 and
x1, xj+1 ∈ R to show the asymptotic independence of their estimators at dif-
ferent design points. Although we also observe a β-mixing sequence {XjΔ} (see
Remark 3.1 for details on the β-mixing property of {XjΔ}), we cannot assume
such a condition directly in this study’s context. Indeed, since the transition
probability Pt(x, dy) of X has a point mass at y = e−λtx, Pt(x, ·) does not
have a transition density function ([78], Corollary 2). Therefore, to avoid such
a problem, we consider the macroscopic regimes in this study.

The estimation problem of Lévy measures is generally ill-posed in the sense of
inverse problems, and the ill-posedness is induced by a decay of the characteris-
tic function of a Lévy process. We refer to [64] as the seminal work in which such
an explanation is given for the first time. In our case, the ill-posedness is induced
by the decay of the characteristic function of the stationary distribution π of
the Lévy-driven OU (1.1). In this sense, the problem in this study is a (nonlin-
ear) inverse problem. [73] investigates conditions wherein a self-decomposable
distribution is nearly ordinary smooth, that is, the characteristic function of
the self-decomposable distribution decays polynomially at infinity up to a log-
arithmic factor. [74] applies those results to the nonparametric calibration of
self-decomposable Lévy option pricing models. Refining the result for a special
case in [73], we will show that the characteristic function of a self-decomposable
distribution is regularly varying at infinity with some index α > 0. This enables
us to derive asymptotic distributions of the spectral estimator proposed in this
study.

Our analysis is also related to [51] and [50]. [51] is a recent contribution to the
literature on the construction of uniform confidence bands in probability density
deconvolution problems for i.i.d. observations. The study formulates methods
for constructing uniform confidence bands built on applications of intermediate
Gaussian approximation theorems developed in [17, 18, 19, 20] and provides mul-
tiplier bootstrap methods for implementing uniform confidence bands. [50] also
develops confidence bands for Lévy densities based on intermediate Gaussian
and multiplier bootstrap approximation theorems. However, we adopt different
methods for the construction of confidence bands. We derive high-dimensional
central limit theorems based on intermediate Gaussian approximation for β-
mixing process. Additionally, we can show that the variance-covariance matrix
of the Gaussian random vector appearing in multivariate and high-dimensional
central limit theorems is the identity matrix. Therefore, we do not need boot-
strap methods to compute critical values of confidence bands.

The rest of the paper is organized as follows. In Section 2, we define a spectral
estimator for the k-function. We give a multivariate central limit theorem of the
spectral estimator in Section 3. In Section 4, we describe high-dimensional cen-
tral limit theorems for the estimator and procedures for implementing confidence
bands. In Section 5, we propose a practical method for bandwidth selection and
report simulation results to study the finite sample performance of the spec-
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tral estimator. Discussions on our results and proposed confidence bands are
presented in Section 6. All proofs are collated in Appendices A and B.

1.1. Notation

For any non-empty set T and any (complex-valued) function f on T , let ‖f‖T =
supt∈T |f(t)|, and, for T = R, let ‖f‖Lp = (

∫
R
|f(x)|pdx)1/p for p > 0. For

any positive sequence an, bn, we write an � bn if there is a constant C > 0
independent of n such that an ≤ Cbn for all n, an ∼ bn if an � bn and bn � an,
and an 
 bn if an/bn → 0 as n → ∞. For a, b ∈ R, let a ∨ b = max(a, b). For
a ∈ R and b > 0, we use the shorthand notation [a ± b] = [a − b, a + b]. The

transpose of a vector x is denoted by x�. We use the notation
d→ as convergence

in the distribution. For random variables X and Y , we write X
d
= Y if they have

the same distribution.N(μ,Σ) denotes a (multivariate) normal distribution with
a mean μ and a variance(-covariance matrix) Σ.

2. Estimation of the k-function

In this section, we introduce a spectral estimator for the Lévy measure (k-
function) of the Lévy-driven OU process (1.1). First, we consider a symmetrized
version of the k-function, that is,

k�(x) =

{
k(x) if x ≥ 0,

k(−x) if x < 0,

A simple calculation yields

1

ϕ(−t)
= exp

(∫ 0

−∞
(eitx − 1)

k(−x)

x
dx

)
.

Therefore, we have

ϕ�(t) :=
ϕ(t)

ϕ(−t)
= exp

(∫
R

(eitx − 1)
k�(x)

x
dx

)
,

ϕ′
�(t) =

ϕ′(t)ϕ(−t) + ϕ(t)ϕ′(−t)

ϕ2(−t)
=

1

ϕ(−t)
ϕ′(t)−

(
1

ϕ(−t)

)′
ϕ(t)

= i

(∫
R

eitxk�(x)dx

)
ϕ�(t).

This formally yields

k�(x) =
−i

2π

∫
R

e−itx
ϕ′
�(t)

ϕ�(t)
dt.

Let

ϕ̂(u) =
1

n

n∑
j=1

eiuXjΔ , ϕ̂′
θn(u) =

i

n

n∑
j=1

XjΔe
iuXjΔ1{|XjΔ| ≤ θn}.
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Here, θn is a sequence of constants such that θn → ∞ as n → ∞ (in the rest of
this study, we set θn ∼ n1/2(log n)−3). Let W : R → R be an integrable (kernel)
function such that

∫
R
W (x)dx = 1, and its Fourier transform ϕW is supported

in [−1, 1] (i.e., ϕW (u) = 0 for all |u| > 1). Then, the spectral estimator for k at
x > 0 is defined by

k̂�(x) =
−i

2π

∫
R

e−itx
ϕ̂′
�(t)

ϕ̂�(t)
ϕW (th)dt,

where h = hn is a sequence of positive constants (bandwidths) such that hn → 0
as n → ∞, and

ϕ̂�(t) =
ϕ̂(t)

ϕ̂(−t)
, ϕ̂′

�(t) =
1

ϕ̂(−t)
ϕ̂′
θn(t) +

ϕ̂′
θn
(−t)

ϕ̂2(−t)
ϕ̂(t).

In the following sections, we develop central limit theorems for k̂.

Remark 2.1. We need the truncation in ϕ̂′
θn

to show Lemma A.2 in Appendix A
by applying an exponential inequality for bounded mixing sequences. Addition-
ally, refer to Remark 3.2 and the proof of Proposition 9.4 in [2].

Remark 2.2. For a complex value a, let a be the complex conjugate of a. We
observe that k̂� is real-valued. In fact, since ϕ̂′

�(t) = −ϕ̂′
�(−t) and ϕ̂�(t) = ϕ̂�(−t),

by a change of variables, we have

k̂�(x) =
i

2π

∫
R

eitx
ϕ̂′
�(t)

ϕ̂�(t)
ϕW (th)dt =

−i

2π

∫
R

eitx
ϕ̂′
�(−t)

ϕ̂�(−t)
ϕW (−th)dt = k̂�(x).

Additionally, refer to Section 6 for detailed comments on the construction of the
estimator k̂� and an alternative estimator.

3. Multivariate central limit theorem

In this section, we present a multivariate central limit theorem for k̂�.

Assumption 3.1. We assume the following conditions.

(i)
∫∞
0

(1 ∨ |x|2+ε)k(x)dx < ∞ for some ε > 0.
(ii) k(0) = ν((0,∞)) = α and 2 < α < ∞.
(iii) Let r > 1/2, and let p be the integer such that p < r ≤ p+1. The function

k� is p-times differentiable, and k
(p)
� is (r− p)-Hölder continuous, that is,

sup
x,y∈R,x �=y

|k(p)� (x)− k
(p)
� (y)|

|x− y|r−p
< ∞.

(iv) |ϕk(u)| � (1 + |u|)−1 and |ϕ′
k(u)| ∨ |ϕ′′

k(u)| � (1 + |u|)−2, where ϕk(=
ϕ′/(iϕ)) is the Fourier transform of k.
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(v) Let W : R → R be an integrable function such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
R
W (x)dx = 1,

∫
R
|x|p+1|W (x)|dx < ∞,∫

R
x�W (x)dx = 0, 
 = 1, . . . , p,

ϕW (u) = 0, ∀|u| > 1,

ϕW is three-times continuously differentiable,

where ϕW is the Fourier transform of W .
(vi) Δ = Δn ≥ 5C0

4β1(2+2α−δ) logn, n/Δ → ∞, and(
(log n)5

n

)1/(2+2α−δ)


 h 

(

1

n log n

)1/(1+2r+2α−δ)

for some positive constant C0 and δ ∈ (0, 1/12) as n → ∞. Here, β1 is
a positive constant. It appears in the mixing coefficient of X = (Xt)t≥0

(Conditions (i) and (ii) imply that X is exponentially β-mixing with β-
mixing coefficient βX(t) = O(e−β1t) for some β1 > 0. Refer to the follow-
ing remark).

Remark 3.1. Conditions (i) and (ii) imply that the stationary distribution π
has a bounded continuous density (we also denote the density by π) such that
‖π‖R � 1 and

∫
R
|x|π(dx) < ∞ (see Lemma A.1). In this case, the stationary

Lévy-driven OU process defined by (1.1) is exponentially β-mixing (Theorem
4.3 in [60]), that is, the β-mixing coefficients for the stationary continuous-time
Markov process X

βX(t) =

∫
R

‖Pt(x, ·)− π(·)‖TV π(dx), t > 0

(this representation follows from Proposition 1 in [26]) satisfy βX(t) = O(e−β1t)
for some β1 > 0. Here, Pt(x, ·) is the transition probability of the Lévy-driven
OU (1.1), and ‖ · ‖TV is the total variation norm.

Condition (iii) is concerned with the smoothness of k�, and this condition
is used to obtain a suitable bound of the deterministic bias of the estimator
‖[k� ∗ (h−1W (·/h))]− k�‖R. See Section 6 for details.

Condition (iv) is satisfied if k is two-times continuously differentiable on
(0,∞) and

∫∞
0

{|k(x)|+ |xk′(x)|+ |x2k′′(x)|}dx < ∞. Indeed, by Condition (i),

we have |ϕ(p)(u)| � 1 for p = 0, 1, 2. Additionally, by integration-by-parts and
the Riemann-Lebesgue theorem, we also have that

|ϕk(u)| =
∣∣∣∣∫ ∞

0

eiuxk(x)dx

∣∣∣∣ = ∣∣∣∣k(0+)

iu
− 1

iu

∫ ∞

0

eiuxk′(x)dx

∣∣∣∣ � 1

|u| ,

|ϕ′
k(u)| =

∣∣∣∣ 1uϕk(u) +
1

iu2

∫ ∞

0

eiux(k′(x) + xk′′(x))dx

∣∣∣∣ � 1

u2
,

|ϕ′′
k(u)| ≤

2

u2
|ϕk(u)|+

1

u2

∣∣∣∣∫ ∞

0

eiux(4xk′(x) + x2k′′(x))dx

∣∣∣∣ � 1

u2

as |u| → ∞.
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Condition (v) is concerned with the kernel function W . We assume that
W is a (p + 1)-th order kernel. However, we allow for the possibility that∫
R
xp+1W (x)dx = 0. It must be noted that since the Fourier transform of W has

compact support, the support of the kernel function W is necessarily unbounded
(see Theorem 4.1 in [72]).

Condition (vi) is concerned with the sampling frequency, bandwidth, and the
sample size. The condition Δ � logn implies that we work with macroscopic
observation scheme; this is a technical condition for the inference on k. We
assume this condition to guarantee that the dependence among {XjΔ}nj=1 can be
ignored asymptotically. We note that, to estimate k uniformly on an interval I ⊂
(0,∞), we do not need the condition and we can work with the low-frequency
set up (i.e., Δ > 0 is fixed). From a practical viewpoint, our methods could
be applied to low-frequency data; additionally, it would work effectively if we
suitably rescale the time scale of the data and if the sample size n is sufficiently
large. In our simulation study, we consider the case when (n,Δ) = (500, 1), and
our method functions effectively in this case. We also need Condition (vi) to

derive the lower bound of h for the uniform consistency of k̂�(x) for x = x�,
j = 1, . . . , N with 0 < x1 < · · · < xN < ∞. We need the upper bound of h for
the undersmoothing condition. Refer to Remark 3.4 of this study for comments
on the condition on h.

To state a multivariate central limit theorem for k̂�, we introduce the notion
of regularly varying functions.

Definition 3.1 (Regularly varying function). A measurable function
U0 : [0,∞) → [0,∞) is regularly varying at ∞ with index ρ (written as
U0 ∈ RVρ) if for x > 0,

lim
t→∞

U0(tx)

U0(t)
= xρ.

We say that a function U is slowly varying if U0 ∈ RV0. We refer to [69] for
details of regularly varying functions. The following lemma plays an important
role in the proof of Theorem 3.1.

Lemma 3.1. Assume Condition (ii) in Assumption 3.1. There exists a function
L : (1,∞) → [0,∞), which slowly varies at ∞, and a constant B > 0 such that

lim
|t|→∞

|t|α|ϕ(t)|
L(|t|) = B.

Remark 3.2. In Assumption 3.1, Condition (ii) is concerned with the smooth-
ness of the stationary distribution π of the Lévy-driven OU process. Condition
(ii) implies that the stationary distribution π is nearly ordinary smooth, that is,
the characteristic function (1.2) decays polynomially fast as |u| → ∞ (Lemma
3.1), up to a slowly varying function. Since k(x) = ν((x,∞)), the finiteness of
k(0) is equivalent to the finiteness of the total mass of the Lévy measure of the
Lévy process J . This means that the Lévy process J has finite activity, that is,
it has only finitely many jumps in any bounded time interval. It is known that
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a Lévy process with a finite Lévy measure is a compound Poisson process. If
k(0) = ∞, then the Lévy process J has infinite activity, that is, it has infinitely
many jumps in any bounded time interval. In this case, the characteristic func-
tion (1.2) decays faster than polynomials. Particularly, it decays exponentially
fast as |u| → ∞ if the Blumenthal-Getoor index of J is positive, that is, if

ρBG = inf

{
p > 0 :

∫
|x|≤1

|x|pν(dx) < ∞
}

> 0.

For example, this case includes inverse Gaussian, tempered stable, and normal
inverse Gaussian processes. Condition (ii) rules out these examples since we
could not construct confidence bands based on Gaussian approximation under
our observation scheme (see the comments after Assumption 10 in [51]). [51]
develops some methods to construct uniform confidence bands for the density
deconvolution problem by using the intermediate Gaussian approximation. In
their study, when the density of a measurement error is super smooth (this case
corresponds to the case in our framework wherein the BG-index is positive),
they assume that the effect of the estimation of the characteristic function of
the measurement error based on m = mn auxiliary independent observations
is asymptotically negligible, that is, mn/n → ∞ as n → ∞. However, we can
use n observations to estimate ϕ (this function corresponds to the characteristic
function of a measurement error in deconvolution problems). Hence, in our situ-
ation, m = n. In this case, we can apply the results of the intermediate Gaussian
approximation in [16] to the case wherein the density of a measurement error
is ordinary smooth (or BG-index is 0). However, to the best of our knowledge,
such a result has not been achieved in the literature on deconvolution problems
when the density of a measurement error is super smooth (or BG-index is posi-
tive). Therefore, we assume nearly ordinary smoothness of π in our situation to
obtain practical asymptotic theorems for the inference on k.

Remark 3.3. Lemma 3.1 implies that |ϕ(u)| is a regularly varying function at
∞ with index α. A slowly varying function L(u) may go to ∞ as u → ∞ but it
does not grow faster than any power function, that is,

lim
u→∞

L(u)

uδ
= 0

for any δ > 0. In fact, if k(0) = α > 0, from Proposition 1 in [73], we have

(1 + |u|)−α � |ϕ(u)| � (1 + |u|)−α+δ.

for any δ > 0. Such a tail behavior of ϕ is related to Condition (vi) in Assumption
3.1. If the stationary distribution π is ordinary smooth, that is, ϕ satisfies the
relation

(1 + |u|)−α � |ϕ(u)| � (1 + |u|)−α

for some α > 0, then we can set δ = 0 in Condition (vi). However, we must
introduce δ > 0 to consider the effect of the slowly varying function L.
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Remark 3.4. As shown in (A.7) and the comments below, if we do not assume
the condition

h 

(

1

n log n

)1/(1+2r+2α−δ)

,

we have

max
1≤�≤N

|k̂�(x�)− k�(x�)| = OP ((nh
2α+1−δ)−1/2

√
logn) +O(hr) as n → ∞

where the second term of the right-hand side comes from the deterministic bias.
For central limit theorems to hold and for constructing the confidence bands,
we have to choose a bandwidth to ensure that the bias term is asymptotically
negligible relative to the first term or “variance” term. The right-hand side is
optimized if we take h ∼ (log n/n)1/(1+2r+2α−δ).

Under Assumption 3.1, we can show that k̂�(x) − k�(x) has the following
asymptotically linear representation:

k̂�(x)− k�(x) =
−i

2π

∫
R

e−itx

(
ϕ̂′
θn
(t)− ϕ′

θn
(t)

ϕ(t)

)
ϕW (th)dt

+ oP ((nh
2α+1−δ log n)−1/2), (3.1)

where ϕ′
θn
(t) = E[ϕ̂′

θn
(t)]. By a change of variables, we may rewrite the first

term in (3.1) as

Zn(x) =
1

nh

n∑
j=1

{
XjΔ1{|XjΔ| ≤ θn}Kn

(
x−XjΔ

h

)

−E

[
X11{|X1| ≤ θn}Kn

(
x−X1

h

)]}
, (3.2)

where Kn is a function defined by

Kn(x) =
1

2π

∫
R

e−itx ϕW (t)

ϕ(t/h)
dt.

It must be noted that Kn is well-defined and real-valued. To construct a
confidence interval for k(x), we estimate the variance of

√
nhZn(x), which is

σ2
n(x), by

σ̂2
n(x) =

1

n

n∑
j=1

{
XjΔ1{|XjΔ| ≤ θn}K̂n

(
x−XjΔ

h

)}2

−

⎧⎨⎩ 1

n

n∑
j=1

XjΔ1{|XjΔ| ≤ θn}K̂n

(
x−XjΔ

h

)⎫⎬⎭
2

, (3.3)

where

K̂n(x) =
1

2π

∫
R

e−itx ϕW (t)

ϕ̂(t/h)
dt.
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Remark 3.5. We use Conditions (ii), (iv), and (v) in Assumption 3.1 to show
that

hα(|Kn(x)|+ h|xKn(x)|) � min(1, 1/x2). (3.4)

Refer to the proof of Lemma A.5 in Appendix A for details. Combining this
bound on Kn and Condition (vi) in Assumption 3.1, we can show that the
asymptotic variance-covariance matrix appearing in Theorem 3.1 is diagonal.

Remark 3.6. Propositions A.1 and A.2 and Lemma A.6 (see Appendix A)
yield

σ2
n(x) = Var(

√
nhZn(x)) ∼ Var(Zn,1(x)) � h−2α+1−δ

uniformly in x ∈ I ⊂ (0,∞) where I is a compact set and Zn,j(x) =

XjΔ1{|XjΔ| ≤ θn}Kn

(
x−XjΔ

h

)
. Then, we can estimate σ2

n(x) by σ̂2
n(x) (see

Lemma 4.1 and the proof in Appendix A for details).

Now, we present the next multivariate central limit theorem.

Theorem 3.1. Assume Assumption 3.1. Then, for any 0 < x1 < . . . < xN <
∞, we have

√
nh

(
k̂�(x1)− k�(x1)

σ̂(x1)
, . . . ,

k̂�(xN )− k�(xN )

σ̂(xN )

)�
d→ N(0, IN ),

where IN is the N by N identity matrix and σ̂n(x) =
√

σ̂2
n(x).

4. High-dimensional central limit theorems

In Section 3, we present a multivariate (or finite-dimensional) central limit theo-

rem for k̂�. In this section, we present a high-dimensional central limit theorems
as a refinement of Theorem 3.1. Moreover, we propose some methods for con-
structing confidence bands for the k-function in Section 4.2 as an application of
those results.

4.1. High-dimensional central limit theorems for k̂�

For 1 ≤ j ≤ n and 1 ≤ 
 ≤ N , let

Zn,j(x�) = XjΔ1{|XjΔ| ≤ θn}Kn

(
x� −XjΔ

h

)
,

Wn(x�) =
1

σn(x�)
√
n

n∑
j=1

(Zn,j(x�)− E[Zn,1(x�)]) =

√
nh

σn(x�)
Zn(x�),



2532 D. Kurisu

and let I ⊂ (0,∞) be an interval with finite Lebesgue measure |I|, 0 < x1 <
· · · < xN < ∞, xj ∈ I, 
 = 1, . . . , N . We assume that

min
1≤k �=�≤N

|xk − x�| � h1−2δ, (4.1)

and this implies that N 
 h2δ−1. Therefore, N is allowed to go to infinity as
n → ∞.

Lemma 4.1. Under Assumption 3.1 and (4.1), we have

max
1≤�≤N

∣∣∣∣ σ̂2
n(x�)

σ2
n(x�)

− 1

∣∣∣∣ = oP ((log n)
−1).

Remark 4.1. Since∣∣∣∣ σ̂2
n(x)

σ2
n(x)

− 1

∣∣∣∣ = ∣∣∣∣ σ̂n(x)

σn(x)
− 1

∣∣∣∣ ∣∣∣∣ σ̂n(x)

σn(x)
+ 1

∣∣∣∣ ≥ ∣∣∣∣ σ̂n(x)

σn(x)
− 1

∣∣∣∣
for any 0 < x < ∞, Lemma 4.1 implies

max
1≤�≤N

∣∣∣∣ σ̂n(x�)

σn(x�)
− 1

∣∣∣∣ = oP ((log n)
−1).

Theorem 4.1. Under Assumption 3.1 and (4.1), we have

sup
t∈R

∣∣∣∣P (
max

1≤�≤N
|Wn(x�)| ≤ t

)
− P

(
max

1≤�≤N
|Y�| ≤ t

)∣∣∣∣ → 0, as n → ∞,

where Y = (Y1, . . . , YN )� is the standard normal random vector in R
N .

Remark 4.2. Theorem 4.1 can be shown in two steps. In the first step, we ap-
proximate the distribution of max1≤�≤N |Wn(x�)| by that of max1≤�≤N |Y̌n,�|.
Here, Y̌n = (Y̌n,1, . . . , Y̌n,N )� is a centered normal random vector with covari-
ance matrix E[Y̌nY̌

�
n ] = q−1E[WI1W

�
I1
] where q = qn is a sequence of integers

with qn → ∞ and qn = o(n) as n → ∞, and

WI1=

(
q∑

k=1

(
Zn,k(x1)− E[Zn,1(x1)]

σn(x1)

)
, . . . ,

q∑
k=1

(
Zn,k(xN )− E[Zn,1(xN )]

σn(xN )

))�

.

In the second step, we approximate the distribution of max1≤�≤N |Y̌n,�| by
that of max1≤�≤N |Y�|. For this, we compare the variance-covariance matrices
E[Y̌nY̌

�
n ] and E[Y Y �] = IN of two Gaussian random vectors Y̌n and Y to

establish

sup
t∈R

∣∣∣∣P (
max

1≤�≤N
|Y̌n(x�)| ≤ t

)
− P

(
max

1≤�≤N
|Y�| ≤ t

)∣∣∣∣ → 0, as n → ∞.

Refer to proofs of Theorem A.1 and Proposition A.4 in Appendix A.
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The well-known result in the extreme value theory shows that
max1≤�≤N |Y�| = OP (

√
logN), for independent standard normal random vari-

ables Y�, 
 = 1, . . . , N (see Example 1.1.7 in [27]). Then, Theorem 4.1 implies
that max1≤�≤N |Wn(x�)| = OP (

√
logn) since logN � log(h2δ−1) � logn under

Assumption 3.1. We can also show that

√
nh(k̂�(x�)− k�(x�))

σn(x�)
= Wn(x�) + oP ((log n)

−1/2) (4.2)

uniformly in x ∈ {x1, . . . , xN}. Therefore, together with Lemma 4.1 and (4.2),
we have

√
nh(k̂�(x)− k�(x))

σ̂n(x)

=
σn(x)

σ̂n(x)

√
nh(k̂�(x)− k�(x))

σn(x)

=
σn(x)

σ̂n(x)
{Wn(x) + oP ((logn)

−1/2)} (from (4.2))

= {1 + oP ((log n)
−1)}{Wn(x) + oP ((log n)

−1/2)} (from Lemma 4.1)

= Wn(x) + oP ((logn)
−1/2) (from max

1≤�≤N
|Wn(x�)| = OP (

√
logn))

uniformly in x ∈ {x1, . . . , xN}. This yields the following theorem.

Theorem 4.2. Under Assumption 3.1 and (4.1), we have

sup
t∈R

∣∣∣∣∣P
(

max
1≤�≤N

∣∣∣∣∣
√
nh(k̂�(x�)− k�(x�))

σ̂n(x�)

∣∣∣∣∣ ≤ t

)
− P

(
max

1≤�≤N
|Y�| ≤ t

)∣∣∣∣∣ → 0,

as n → ∞, where Y = (Y1, . . . , YN )� is the standard normal random vector in
R

N .

4.2. Confidence bands for the k-function

In this section, we discuss methods for constructing confidence bands for the
k-function over I = [a, b] ⊂ (0,∞). Let ξ1, . . . , ξN be i.i.d. standard normal
random variables, and, for τ ∈ (0, 1), let qτ satisfy

P

(
max

1≤j≤N
|ξj | > qτ

)
= τ.

Then,

Ĉ1−τ (x�) =

[
k̂�(x�)±

σ̂n(x�)√
nh

qτ

]
, 
 = 1, . . . , N

are joint asymptotic 100(1 − τ)% confidence intervals for k�(x1), . . . , k�(xN ).
Theorem 4.2 implies that we can construct confidence bands by linear interpo-
lation of simultaneous confidence intervals {Ĉ1−τ (x�)}N�=1. If the sample size n
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is sufficiently large, we can take a sufficiently large number of design points N .
Therefore, proposed confidence bands can be arbitrary close to uniform con-
fidence bands in such cases. We comment on the asymptotic validity of the
confidence bands in Section 6.

5. Simulations

5.1. Simulation framework

In this section, we present simulation results to see the finite-sample performance
of the central limit theorems and the proposed confidence bands in Sections 3
and 4. We consider the following data generating process.

dXt = −λXtdt+ dJλt (5.1)

where Jt =
∑Nt

j=1 Uj is a compound Poisson process with intensity α and
Gamma jump distribution with shape parameter 2 and rate parameter 1. Partic-
ularly, we consider three models, that is, (α, λ) = (2.1, 0.5), (3, 0.5), and (3, 0.75).

As a kernel function, we use a flat-top kernel, which is defined by its Fourier
transform

ϕW (u) =

⎧⎪⎪⎨⎪⎪⎩
1 if |u| ≤ c

exp
{

−b exp(−b/(|u|−c)2)
(|u|−1)2

}
if c < |u| < 1

0 if 1 ≤ |u|
(5.2)

where 0 < c < 1 and b > 0. It must be noted that ϕW is infinitely differentiable

with ϕ
(�)
W (0) = 0 for all 
 ≥ 1. This ensures that its inverse Fourier transform

W is of infinite order, that is,
∫
R
x�W (x)dx = 0 for all integers 
 ≥ 1 (cf. [63]).

In our simulation study, we set b = 1 and c = 0.05. We also set the sample size
n and the time span Δ as n = 500 and Δ = 1.

Now, we discuss bandwidth selection. We use a method that is similar to
that proposed in [50]. They adopt an idea of [9] on bandwidth selection in den-
sity deconvolution. From a theoretical perspective, for our confidence bands to
work, we have to choose bandwidths that are of a smaller order than the op-
timal rate for estimation under the loss function (or a “discretized version” of

L∞-distance) max1≤�≤N |k̂�(x�) − k�(x�)|. At the same time, choosing a very
small bandwidth results in an extremely wide confidence band. Therefore, we
should choose a bandwidth “slightly” smaller than the optimal one that mini-
mizes max1≤�≤N |k̂�(x�)− k�(x�)|. We employ the following rule for bandwidth

selection. Let k̂h be the spectral estimate with bandwidth h.

1. Set a pilot bandwidth hP > 0 and make a list of candidate bandwidths
hj = jhP /J for j = 1, . . . , J .

2. Choose the smallest bandwidth hj (j ≥ 2) such that the adjacent value

max1≤�≤N |k̂hj (x�)−k̂hj−1(x�)| is smaller than κ×min{max1≤�≤N |k̂hk
(x�)−

k̂hk−1
(x�)| : k = 2, . . . , J} for some κ > 1.



Inference on compound Poisson-driven OU process 2535

Fig 1. Discrete L∞-distance between the true k-function and estimates k̂� (left) and between
estimates of k� (right) for different bandwidth values when (α, λ) = (2.1, 0.5). We set (n,Δ) =
(500, 1), I = [1, 3], and x� = 1 + 0.2(�− 1), � = 1, . . . , 11.

Fig 2. Normalized empirical distributions of estimates at x = 1.5 (left), x = 2 (center), and
x = 2.5 (right) when (α, λ) = (2.1, 0.5). The red line is the density of the standard normal
distribution. We set (n,Δ) = (500, 1).

In our simulation study, we set hP = 1, J = 20, and κ = 1.5. This rule would
choose a bandwidth “slightly” smaller than one that is intuitively the optimal
bandwidth for the estimation of k (as long as the threshold value κ is reasonably
chosen).

Figure 1 shows five realizations of the discretized L∞-distance between the
true k-function and estimates k̂� for different bandwidth values (left) and be-
tween the estimates of k with adjacent bandwidth values (right) when (α, λ) =
(2.1, 0.5). We find that the discretized L∞-distance between the estimates of k
with adjacent bandwidth values behave similarly to that between the true k-
function and estimates k̂� for different bandwidth values. Hence, we can expect
that, by using the proposed method for bandwidth selection, we can choose a
“good” bandwidth for the construction of confidence bands.

Remark 5.1. In practice, it is also recommended to use visual information to
find out on how max1≤�≤N |k̂hj (x�) − k̂hj−1(x�)| behaves as j increases when
determining the bandwidth.

Figure 2 shows the normalized empirical distributions of k̂�(x) at x = 1.5
(left), x = 2 (center), and x = 2.5 (right) when (α, λ) = (2.1, 0.5). The number
of Monte Carlo iteration is 1,000 for each case. As seen from these figures, the
central limit theorem implied by Theorem 3.1 holds true.
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Table 1

Empirical coverage probabilities of the confidence bands on I1 = [1.5, 3.5] with
x� = 1.5 + 0.2(�− 1) and I2 = [2, 4] with x� = 2 + 0.2(�− 1), � = 1, . . . , 11, based on 250

Monte Carlo repetitions

Cov. Prob.
(1− τ)

Model
(α, λ) (2.1, 0.5) (3, 0.5) (3, 0.75)

0.85
I1 0.768 0.892 0.848
I2 0.808 0.904 0.888

0.95
I1 0.896 0.976 0.964
I2 0.908 0.972 0.980

0.99
I1 0.952 0.988 0.992
I2 0.956 0.984 0.996

Fig 3. Estimates of k with 85% (dark gray), 95% (gray), and 99% (light gray) confidence
bands. The solid line corresponds to the true k-function. We set (n,Δ) = (500, 1), I = [1, 3],
and x� = 1 + 0.2(�− 1), � = 1, . . . , 11.

Table 1 presents simulation results of the cases when (α, λ) = (2.1, 0.5),
(3, 0.5), and (3, 0.75). We find that more accurate results are achieved when
α = 3 than when α = 2.1. In general, the empirical coverage probabilities
could be more accurate as the intensity of the Poisson process increases (see the
comments on Figure 3). Overall, we can also find that the empirical coverage
probabilities are reasonably close to the nominal coverage probabilities.

Figure 3 shows the 85% (dark gray), 95% (gray), and 99% (light gray) con-
fidence bands for the k-function when (α, λ) = (2.1, 0.5). We find that the
proposed confidence bands capture the monotonicity of the k-function and the
width of confidence bands tend to increase as the design point becomes distant
from the origin. The latter point can be partially attributed to the property
of the Lévy measure ν since the k-function is given by k(x) = ν((x,∞)): For
any (Borel) set A ⊂ [0,∞), ν(A) coincides with the expected number of jumps
falling in A in the unit time, that is, ν(A) = E[

∑
0<t<1 1(Jt − Jt− ∈ A)], where

Jt− = lims↑t Js. Therefore, jumps of a larger size are less frequently observed
since ν([0,∞)) < ∞, in our simulation study. Further, the results also cor-
respond to a well-known fact in nonparametric density estimation. Since few
observations fall in the tail regions, the nonparametric estimation of a given
density function tends to be less accurate in the tail area than in regions where
the probability mass is concentrated.
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6. Discussions

In this section, we discuss (1) the regularity condition on the k-function (Con-
dition (iii) in Assumption 3.1) and its relationship with the construction of our
estimator, and (2) asymptotic properties of the proposed confidence bands.

6.1. Discussion on Condition (iii) in Assumption 3.1

We considered a symmetrized version of the k-function k� and presented asymp-

totic properties of its estimator k̂�. We also assumed a “global” regularity con-
dition of k� (Condition (iii) in Assumption 3.1) to obtain a suitable bound of

the deterministic bias of k̂�. It must be noted that k� is continuous at the origin,
and if k� has bounded rth derivative on R for some r ≥ 0, then the determin-

istic bias of k̂�, which is given by ‖[k� ∗ (h−1W (·/h))]− k�‖R, is O(hr) (Lemma
A.9 in Appendix A). However, if we restrict the class of kernel functions, which
satisfy Condition (v) in Assumption 3.1, then we can relax the “global” Hölder
continuity.

(i) When 1/2 < r ≤ 2, we can use the symmetric second-order kernel func-
tions. In this case, we can replace Condition (iii) in Assumption 3.1 with a
“local” Hölder continuity of k on Iε0 = {y ∈ R : |x − y| < ε0, ∀x ∈ I}, which
does not include the origin. In fact, by taking a symmetric second-order kernel
function W2, we have, for any x ∈ I,∣∣∣∣∫

R

{k�(x− yh)− k�(x)}W2(y)dy

∣∣∣∣
=

∣∣∣∣∣
∫
|y|≤ε0h−1

{k(x− yh)− k(x)}W2(y)dy

∣∣∣∣∣+
∣∣∣∣∣
∫
|y|>ε0h−1

{k(x− yh)− k(x)}W2(y)dy

∣∣∣∣∣
≤
∣∣∣∣∣
∫
|y|≤ε0h−1

[
{k(x− yh)− k(x)−

p∑
�=1

k(�)(x)


!
(−yh)�}

]
W2(y)dy

∣∣∣∣∣
+ 2‖k‖R

∫
|y|>ε0h−1

|W2(y)|dy

≤ H0h
r

∫
R

|y|r|W2(y)|dy +
2h2‖k‖R

ε20

∫
R

|y|2|W2(y)|dy � hr,

where H0 := supx,y∈Iε0 ,x �=y
|k(p)(x)−k(p)(y)|

|x−y|r−p < ∞,
∑0

�=1 = 0 and 0! = 1 by con-

vention. We note that k� = k on Iε0 . Hence, we can bound ‖[k�∗(h−1W2(·/h))]−
k�‖I = ‖[k ∗ (h−1W2(·/h))]− k‖I .

(ii) When r > 2, it would be difficult to weaken the global Hölder conti-
nuity assumption on k� since symmetric “finite order” kernel functions do not
satisfy higher-order properties. However, we can use the flat-top kernel func-
tion W∞, which is of “infinite order,” defined by its Fourier transform ϕW∞

to relax Condition (iii) in Assumption 3.1. Refer to (5.2) for the definition. In-
deed, ϕW∞ is infinitely differentiable and supported in [−1, 1]; this implies that
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|W∞(x)| = o(|x|−�) as |x| → ∞ for all 
 ≥ 1 (this follows from changes of
variables) and |x|r|W (x)| is integrable. Then, we have∣∣∣∣∫

R

{k�(x− yh)− k�(x)}W∞(y)dy

∣∣∣∣
≤
∣∣∣∣∣
∫
|y|≤ε0h−1

[
{k(x− yh)− k(x)−

p∑
�=1

k(�)(x)


!
(−yh)�}

]
W∞(y)dy

∣∣∣∣∣
+ 2‖k‖R

∫
|y|>ε0h−1

|W∞(y)|dy

≤ H0h
r

∫
R

|y|r|W∞(y)|dy + 2hr‖k‖R
ε20

∫
R

|y|r|W∞(y)|dy � hr.

It is also shown that ‖[k ∗ (h−1W∞(·/h))]− k‖I � hr for 1/2 < r ≤ 2.
Based on the discussion above, if we set the kernel function as the flat-top

kernel W∞, then we can replace the global Hölder continuity (Condition (iii) in
Assumption 3.1) with the following local Hölder continuity.

Condition (iii)’ Let r > 1/2, and let p be the integer such that p < r ≤ p+1.
The function k is p-times differentiable on Iε0 , which does not include the origin.
Additionally, k(p) is (r − p)-Hölder continuous, that is,

H0 := sup
x,y∈Iε0 ,x �=y

|k(p)(x)− k(p)(y)|
|x− y|r−p

< ∞.

Now, we set the kernel function W = W∞. In this case, we can use another
natural (and simple) estimator for k at x > 0, which is given by

k̂0(x) =
−i

2π

∫
R

e−itx
ϕ̂′
θn
(t)

ϕ̂(t)
ϕW∞(th)dt.

Additionally, Theorems 3.1 and 4.2 hold by replacing k̂� with k̂0. We summarize
the discussion so far as the following theorem.

Theorem 6.1. Suppose Conditions (i), (ii), (iv), (v), and (vi) in Assumption
3.1, and Condition (iii) hold true. Set the kernel function W = W∞.

(i) Then, for any 0 < x1 < . . . < xN < ∞, we have

√
nh

(
k̂0(x1)− k(x1)

σ̂(x1)
, . . . ,

k̂0(xN )− k(xN )

σ̂(xN )

)�
d→ N(0, IN ),

where IN is the N by N identity matrix and σ̂n(x) =
√
σ̂2
n(x).

(ii) Additionally, suppose that (4.1) holds. Then, we have

sup
t∈R

∣∣∣∣∣P
(

max
1≤�≤N

∣∣∣∣∣
√
nh(k̂0(x�)− k(x�))

σ̂n(x�)

∣∣∣∣∣ ≤ t

)
− P

(
max

1≤�≤N
|Y�| ≤ t

)∣∣∣∣∣ → 0,

as n → ∞, where Y = (Y1, . . . , YN )� is the standard normal random
vector in R

N .



Inference on compound Poisson-driven OU process 2539

We omit the proofs of Theorem 6.1 (i) and (ii) since the proofs are special-
izations of the proofs of Theorems 3.1 and 4.2.

6.2. Discussion on the confidence bands

Our method can be seen as an alternative method for constructing confidence
bands based on a functional central limit theorem (FCLT) if the FCLT for the
Lévy measure ν is available (but to the best of our knowledge, such a result has
not been achieved in the literature on nonparametric inference of Lévy-driven
SDEs). Moreover, the proofs clarify that if we strengthen the condition

h 

(

1

n log n

)1/(1+2r+2α−δ)

in Assumption 3.1 (vi) to hr
√

nh2α+1−δ(log n) = o(n−c) for some (sufficiently
small) constant c > 0, then there would exist a positive constant c′ such that
the approximation of the high-dimensional central limit theorem holds at the
rate n−c′ . This shows an advantage of our method to construct confidence bands
based on the intermediate Gaussian approximation when compared to a method
based on the Gumbel approximation. The coverage error of the latter is known
to be logarithmically slow because of the slow convergence of normal extrema;
refer to [42]. The proposed method is inspired by the idea developed in [44].
If we take x� ∈ I, 
 = 1, . . . , N to satisfy min1≤k �=�≤N |xk − x�| = O(h1/2) (in
this case, the condition (4.1) is satisfied), then |x� − x�−1| → 0 uniformly for

 = 2, . . . , N . Therefore, for x in I,

cL(x) ≤ k(x) ≤ cU (x)

where

cL(x) =

(
k̂�(x�)− k̂�(x�−1)− (σ̂n(x�)− σ̂n(x�))qτ/

√
nh

x� − x�−1

)
(x− x�−1)

+ k̂�(x�−1)−
σ̂n(x�−1)√

nh
qτ ,

cU (x) =

(
k̂�(x�)− k̂�(x�−1) + (σ̂n(x�)− σ̂n(x�))qτ/

√
nh

x� − x�−1

)
(x− x�−1)

+ k̂�(x�−1) +
σ̂n(x�−1)√

nh
qτ

(if x�−1 ≤ x ≤ x� (
 = 2, . . . , N)) can be interpreted as an “asymptotic” 100(1−
τ)% uniform confidence band for k on I. In fact, we can show that, as n → ∞,

P

(
max

1≤�≤N

∣∣∣∣∣
√
nh(k̂�(x�)− k�(x�))

σ̂n(x�)

∣∣∣∣∣ ≤ qτ

)
→ 1− τ.

The same comments apply even if we replace k̂� with k̂0. See Appendix B for
the asymptotic validity of the proposed confidence bands.
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Appendix A: Proofs

A.1. Proofs for Section 3

Proof of Lemma 3.1. Observe that

|ϕ(u)| = |ϕ(−u)| = exp

(∫ ∞

0

(cos(ux)− 1)
k(x)

x
dx

)
.

For x > 1, define

L(x) = exp

(∫ 1

1/x

(α− k(y))
dy

y

)
.

For any λ > 0,

L(λx)

L(x)
= exp

(∫ 1/x

1/λx

(α− k(y))
dy

y

)
= exp

(∫ 1

1/λ

(α− k(z/x))
dz

z

)
→ 1,

as x → ∞. Therefore, L is a slowly varying function at∞. Consider the following
decomposition of I(u) :=

∫∞
0

(cos(ux)− 1)k(x)x−1dx.

I(u) =

(∫ 1/u

0

+

∫ 1

1/u

+

∫ ∞

1

)
(cos(ux)− 1)

k(x)

x
dx

=: I1(u) + I2(u) + I3(u).

Now we evaluate three terms Ij(u), j = 1, 2, 3. First, by Riemann-Lebesgue
theorem,

I3(u) → −
∫ ∞

1

k(x)

x
dx, as u → ∞.

Moreover,

I1(u) =

∫ 1

0

(cos(y)− 1)
k(y/u)

y
dy → α

∫ 1

0

(cos(y)− 1)
dy

y
, as u → ∞.
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We also have that

I2(u) + α log u− logL(u) =

∫ 1

1/u

cos(ux)
k(x)

x
dx

=

∫ u

1

cos(y)
k(y/u)

y
dy =: Ĩ2(u).

Since
∫ u

1
cos(y)y−1dy is convergent as u → ∞ and k is monotone decreasing

function, we have that

lim sup
u→∞

|Ĩ2(u)| �
∣∣∣∣∫ ∞

1

cos(y)

y
dy

∣∣∣∣ < ∞.

So, we complete the proof.

For the proof of Theorem 3.1, we prepare some auxiliary results.

Lemma A.1. Assume Conditions (i), (ii) and (iv) in Assumption 3.1. Then
we have that the measure π and x3π(dx) has a bounded Lebesgue density on R.

Proof. By Theorem 28.4 in [70], π has a bounded continuous Lebesgue density
on R. Also from the relation

ϕ′′(u) = ϕ(u)ϕ2
k(u) + ϕ(u)ϕ′

k(u),

ϕ′′′(u) = ϕ(u)ϕ3
k(u) + 3ϕ(u)ϕk(u)ϕ

′
k(u) + ϕ(u)ϕ′′

k(u)

=
(
ϕ(u)ϕ2

k(u)
)
ϕk(u) + 3 (ϕ(u)ϕ′

k(u))ϕk(u) + ϕ(u)ϕ′′
k(u),

we see that

x2π = (k ∗ π) ∗ k + (xk) ∗ π,
x3π = ((x2π)− (xk) ∗ π) ∗ k + 3((xk) ∗ π) ∗ k + (x2k) ∗ π.

Therefore x2π has a Lebesgue density x2π(x) with

‖x2π‖R � ‖k‖R‖k‖L1 + ‖xk‖L1 � 1.

Here, ‖f‖Lp =
(∫

R
|f(x)|pdx

)1/p
. Moreover, x3π has a Lebesgue density x3π(x)

with

‖x3π‖R � (‖x2π‖R + ‖xk‖L1)‖k‖L1 + 3‖xk‖L1‖k‖L1 + ‖x2k‖L1 � 1.

Lemma A.2. Assume Conditions (i) and (vi) in Assumption 3.1. Then we
have

‖f1 − f2‖[−h−1,h−1] = OP (n
−1/2 logn)

for (f1, f2) = (ϕ̂, ϕ), (ϕ̂′
θn
, ϕ′

θn
) where ϕ′

θn
(u) := E[ϕ̂′

θn
(u)] and

‖ϕ′
θn − ϕ′‖[−h−1,h−1] = o(n−1/2 logn),

‖ϕ̂′
θn − ϕ̂′‖[−h−1,h−1] = oP (n

−1/2 logn).



2542 D. Kurisu

Proof. The first result follows from Proposition 9.4 in [3]. For the second result,
we have that

|ϕ′
θn(u)− ϕ′(u)| ≤ E [|X1|1{|X1| > θn}]

≤ E[|X1|(|X1|/θn)2] � θ−2
n 
 n−1/2 logn.

We can also evaluate ‖ϕ̂′
θn

− ϕ̂′‖[−h−1,h−1] in a similar way.

Lemma A.3. Assume Condition (ii) in Assumption 3.1. Then we have
inf |u|≤h−1 |ϕ(u)| � hα.

Proof. This result immediately follows from Remark 3.3.

If we take h sufficiently small, then Lemmas A.2 and A.3 imply that

inf
|u|≤h−1

|ϕ̂(u)| ≥ inf
|u|≤h−1

|ϕ(u)| − oP (h
α) � hα − oP (h

α),

so that with probability approaching one, inf |u|<h−1 |ϕ̂(u)| � hα.

Lemma A.4. Assume Conditions (i), (iv) and (v) in Assumption 3.1. Then
we have that∥∥∥∥( ϕ̂′

�

ϕ̂�
−

ϕ′
�

ϕ�

)
−

ϕ̂′
θn

− ϕ′
θn

ϕ

∥∥∥∥
[−h−1,h−1]

= OP (h
−2αn−1(log n)2 + h1−αn−1/2 logn).

Proof. (Step 1): First, we show that∥∥∥∥( ϕ̂′
�

ϕ̂�
−

ϕ′
�

ϕ�

)
−
(

1

ϕ�

)
(ϕ̂′

�−ϕ′
�)

∥∥∥∥
[−h−1,h−1]

= OP (h
−2αn−1(logn)2+h1−αn−1/2 logn).

Consider the following decomposition.

ϕ̂′
�(u)

ϕ̂�(u)
−

ϕ′
�(u)

ϕ�(u)
=

(
1

ϕ�(u)

)′
(ϕ̂�(u)− ϕ�(u)) +

(
1

ϕ�(u)

)
(ϕ̂′

� − ϕ′
�) +R�(u),

where

R�(u) =

(
1− ϕ̂�(u)

ϕ�(u)

)(
ϕ̂′
�(u)

ϕ̂�(u)
−

ϕ′
�(u)

ϕ�(u)

)
.

We have that∥∥∥∥∥
(

1

ϕ�

)′
(ϕ̂� − ϕ�)

∥∥∥∥∥
[−h−1,h−1]

�
∥∥∥∥∥
(

1

ϕ�

)′
∥∥∥∥∥
[−h−1,h−1]

‖ϕ̂� − ϕ�‖[−h−1,h−1]
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and

‖R�‖[−h−1,h−1]

�
∥∥∥∥ 1

ϕ�

∥∥∥∥
[−h−1,h−1]

‖ϕ̂� − ϕ�‖[−h−1,h−1]

×
(∥∥∥∥ 1

ϕ̂�

∥∥∥∥
[−h−1,h−1]

‖ϕ̂′
� − ϕ′

�‖[−h−1,h−1] +

∥∥∥∥ ϕ′
�

ϕ̂�ϕ�

∥∥∥∥
[−h−1,h−1]

‖ϕ̂′
� − ϕ′

�‖[−h−1,h−1]

)
.

In the rest of the proof, we write ‖ · ‖[−h−1,h−1] as ‖ · ‖ for simplicity. Observe
that ∥∥∥∥ 1

ϕ�

∥∥∥∥ � 1,

∥∥∥∥ 1

ϕ̂�

∥∥∥∥ = OP (1) and

∥∥∥∥∥
(

1

ϕ�

)′
∥∥∥∥∥ � h1−α. (A.1)

In fact, since we have that∥∥∥∥ 1

ϕ̂�

∥∥∥∥ �
∥∥∥∥ 1

ϕ̂(−·)

∥∥∥∥ ‖ϕ̂− ϕ‖+
∥∥∥∥ ϕ(·)
ϕ̂(−·) −

ϕ(·)
ϕ(−·)

∥∥∥∥+ ‖ϕ�‖

�
∥∥∥∥ 1ϕ̂

∥∥∥∥ ‖ϕ̂− ϕ‖+
∥∥∥∥ 1ϕ̂

∥∥∥∥ ‖ϕ̂− ϕ‖+ ‖ϕ�‖

� OP

(
h−αn−1/2 logn

)
+1 = OP (1),

we obtain the second inequality. By Lemma A.2, we also have that

‖ϕ̂� − ϕ�‖ �
∥∥∥∥ 1

ϕ̂(−·)

∥∥∥∥ ‖ϕ̂− ϕ‖+
∥∥∥∥ 1

ϕ̂(−·)

∥∥∥∥ ‖ϕ̂− ϕ‖ = OP

(
h−αn−1/2 logn

)
.

(A.2)

Now we evaluate ‖ϕ̂′
� − ϕ′

�‖.

‖ϕ̂′
� − ϕ′

�‖ ≤ ‖ϕ̂′
� − ϕ̃′

�‖+ ‖ϕ̃′
� − ϕ′

�‖,

where

ϕ̃′
�(t) =

ϕ̂′
θn
(t)ϕ(−t) + ϕ′(−t)ϕ̂(t)

ϕ2(−t)
.

We observe that

‖ϕ̂′
� − ϕ̃′

�‖ �
∥∥∥∥ ϕ̂′

θn

ϕ2(−·)

∥∥∥∥×
(
‖ϕ̂− ϕ‖+ ‖ϕ̂′

θn − ϕ′‖
)

�
(∥∥∥∥ ϕ̂′

θn
− ϕ′

ϕ2(−·)

∥∥∥∥+

∥∥∥∥ ϕ′

ϕ2(−·)

∥∥∥∥)×
(
‖ϕ̂− ϕ‖+ ‖ϕ̂′

θn − ϕ′‖
)

= OP

(
h−2αn−1(logn)2 + h1−αn−1/2 logn

)
.



2544 D. Kurisu

‖ϕ̃′
� − ϕ′

�‖ �
∥∥∥∥ 1

ϕ(−·)

∥∥∥∥× ‖ϕ̂′ − ϕ′‖+
∥∥∥∥ ϕ′(−·)
ϕ2(−·)

∥∥∥∥× ‖ϕ̂− ϕ‖

= OP

(
h−αn−1/2 logn

)
.

Then we have that

‖ϕ̂′
� − ϕ′

�‖ = OP

(
h−αn−1/2 logn

)
. (A.3)

Together with (A.1), (A.2), and (A.3), we have that∥∥∥∥( ϕ̂′
�

ϕ̂�
−

ϕ′
�

ϕ�

)
−
(

1

ϕ�

)
(ϕ̂′

� − ϕ′
�)

∥∥∥∥ = OP (h
−2αn−1(log n)2 + h1−αn−1/2 logn).

(Step 2): Next we show that∥∥∥∥( 1

ϕ�

)
(ϕ̂′

� − ϕ′
�)−

(
1

ϕ

)
(ϕ̂′

θn − ϕ′
θn)

∥∥∥∥ = OP (h
1−αn−1/2 logn).

Observe that(
1

ϕ�(u)

)
(ϕ̂′

�(u)− ϕ′
�(u))−

(
1

ϕ(u)

)
(ϕ̂′

θn(u)− ϕ′(u))

=
ϕ̂′
θn
(u)

ϕ(u)

(
ϕ(−u)

ϕ̂(−u)
− 1

)
+

ϕ(−u)

ϕ(u)

(
ϕ̂′
θn
(−u)ϕ̂(u)

ϕ̂2(−u)
− ϕ′(−u)ϕ(u)

ϕ2(−u)

)
.

Moreover, we have that∥∥∥∥ ϕ̂′
θn

ϕ

(
ϕ(−·)
ϕ̂(−·) − 1

)∥∥∥∥ �
∥∥∥∥ ϕ′

ϕ2

∥∥∥∥× ‖ϕ̂− ϕ‖ = OP

(
h1−αn−1/2 logn

)
, (A.4)

and∥∥∥∥ϕ(−·)
ϕ

(
ϕ̂′
θn
(−·)ϕ̂

ϕ̂2(−·) − ϕ′(−·)ϕ
ϕ2(−·)

)∥∥∥∥ �
∥∥∥∥ 1ϕ

∥∥∥∥×
∥∥ϕ̂′

θn − ϕ′∥∥+

∥∥∥∥ ϕ′

ϕ2

∥∥∥∥ ‖ϕ̂− ϕ‖

= OP

(
h1−αn−1/2 logn

)
. (A.5)

Together with (A.4) and (A.5), we have that∥∥∥∥( 1

ϕ�

)
(ϕ̂′

� − ϕ′
�)−

(
1

ϕ

)
(ϕ̂′

θn − ϕ′)

∥∥∥∥ = OP (h
1−αn−1/2 logn). (A.6)

Since ‖(ϕ′
θn

−ϕ′)/ϕ‖ � h−αθ−2
n 
 h1−αn−1/2 logn, we can replace ϕ′ with ϕ′

θn
in (A.6) and this completes the proof.

With almost the same arguments in the proof of Lemma A.4, we can show
that∥∥∥∥( ϕ̂′

θn

ϕ̂
− ϕ′

ϕ

)
−

ϕ̂′
θn

− ϕ′
θn

ϕ

∥∥∥∥
[−h−1,h−1]

= OP (h
−2αn−1(logn)2 + h1−αn−1/2 logn).
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Therefore, together with the result of Lemma A.4, we have that∥∥∥∥( ϕ̂′
�

ϕ̂�
−

ϕ′
�

ϕ�

)
−
(
ϕ̂′
θn

ϕ̂
− ϕ′

ϕ

)∥∥∥∥
[−h−1,h−1]

= OP (h
−2αn−1(log n)2 + h1−αn−1/2 logn).

Lemma A.5. We have that hα(|Kn(x)|+ h|xKn(x)|) � min(1, 1/x2).

Proof. We first show hα|Kn(x)| � min(1, 1/x2). We follow the proof of Lemma
3 in [57]. By integration by parts, we have that

Kn(x) =
1

2πx2

∫
R

e−itx

(
ϕW (t)

ϕ(t/h)

)′′
dt.

We also observe that(
ϕW (t)

ϕ(t/h)

)′′
=

ϕ′′
W (t)

ϕ(t/h)
− 2

h

ϕ′
W (t)ϕ′(t/h)

ϕ2(t/h)
+

ϕW (t)

h2

(
−ϕ′′(t/h)

ϕ2(t/h)
+ 2

(ϕ′(t/h))2

ϕ3(t/h)

)
=: I1,n(t) + I2,n(t) + I3,n(t).

Since ϕW is supported in [−1, 1] and two-times differentiable, we can show

hα

∫
R

|Ij,n(t)|dt � 1

for j = 1, 2, 3. Indeed,

hαL(h−1)

∫
[−1,− 1

2 )∪( 1
2 ,1]

|I1,n(t)|dt

=

∫
[−1,− 1

2 )∪( 1
2 ,1]

|t|α|ϕ′′
W (t)|

|t/h|αL−1(|t|/h)|ϕ(t/h)|
L(1/h)

L(|t|/h)dt �
∫
R

|t|α|ϕ′′
W (t)|dt � 1,

hαL(h−1)

∫
[−1,− 1

2 )∪( 1
2 ,1]

|I2,n(t)|dt

=

∫
[−1,− 1

2 )∪( 1
2 ,1]

|t/h||ϕk(t/h)|
|t/h|αL−1(|t|/h)|ϕ(t/h)|

L(1/h)

L(|t|/h) |t|
α−1|ϕ′

W (t)|dt

�
∫
R

|t|α−1|ϕ′
W (t)|dt � 1,

hαL(h−1)

∫
[−1,− 1

2 )∪( 1
2 ,1]

|I3,n(t)|dt

�
∫
[−1,− 1

2 )∪( 1
2 ,1]

(
|t/h|2|ϕ2

k(t/h)|
|t/h|αL−1(|t|/h)|ϕ(t/h)| +

|t/h|2|ϕ′
k(t/h)|

|t/h|αL−1(|t|/h)|ϕ(t/h)|

)
× L(1/h)

L(|t|/h) |t|
α−2|ϕW (t)|dt

�
∫
R

|t|α−2|ϕW (t)|dt � 1.
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Moreover, we have that

hα

∫
[− 1

2 ,
1
2 ]

|I1,n(t)|dt = hα

∫
[− 1

2 ,
1
2 ]

|ϕ′′
W (t)|

|ϕ(t/h)|dt �
∫
R

(h+ |t|)α|ϕ′′
W (t)|dt � 1,

hα

∫
[− 1

2 ,
1
2 ]

|I2,n(t)|dt = hα−1

∫
[− 1

2 ,
1
2 ]

|ϕk(t/h)|
|ϕ(t/h)| |ϕ

′
W (t)|dt

�
∫
R

hα(1 + |t/h|)α
h(1 + |t/h|) |ϕ′

W (t)|dt

�
∫
R

(h+ |t|)α−1|ϕ′
W (t)|dt � 1,

hα

∫
[− 1

2 ,
1
2 ]

|I3,n(t)|dt � hα−2

∫
[− 1

2 ,
1
2 ]

(
|ϕ2

k(t/h)|
|ϕ(t/h)| +

|ϕ′
k(t/h)|

|ϕ(t/h)|

)
|ϕW (t)|dt

�
∫
R

hα(1 + |t/h|)α
h2(1 + |t/h|)2 |ϕ

′
W (t)|dt

�
∫
R

(h+ |t|)α−2|ϕW (t)|dt � 1.

Since
∫
R
Ij,n(t)dt =

∫
[−1,1]

Ij,n(t)dt for j = 1, 2, 3, we obtain the desired result.

Next we show hα+1|xKn(x)| � min(1, 1/x2). Observe that

Kn(x) =
i

2πx3

∫
R

e−itx

(
ϕW (t)

ϕ(t/h)

)′′′
dt

and(
ϕW (t)

ϕ(t/h)

)′′′
=

ϕ′′′
W (t)

ϕ(t/h)
− 3

h

ϕ′′
W (t)ϕ′(t/h)

ϕ2(t/h)
+ 3

ϕ′
W (t)

h2

(
−ϕ′′(t/h)

ϕ2(t/h)
+ 2

(ϕ′(t/h))2

ϕ3(t/h)

)
+

ϕW (t)

h3

(
−ϕ′′′(t/h)

ϕ2(t/h)
+ 6

ϕ′(t/h)ϕ′′(t/h)

ϕ(t/h)3
− 6

(ϕ′(t/h))3

ϕ4(t/h)

)
=: Ĩ1,n(t) + Ĩ2,n(t) + Ĩ3,n(t) + Ĩ4,n(t).

We can show that hα+1
∫
R
|Ĩj,n(t)|dt � 1, j = 1, 2, 3 and

hα+1L(1/h)

∫
[−1,− 1

2 )∪( 1
2 ,1]

|Ĩ4,n(t)|dt

�
∫
[−1,− 1

2 )∪( 1
2 ,1]

(
h|t/h|3|ϕ3

k(t/h)|
|t/h|αL−1(|t|/h)|ϕ(t/h)| + h

|t/h||ϕk(t/h)||t/h|2|ϕ′
k(t/h)|

|t/h|αL−1(|t|/h)|ϕ(t/h)|

+
|t/h|2|ϕ′′

k(t/h)|
|t/h|αL−1(|t|/h)|ϕ(t/h)|

)
L(1/h)

L(|t|/h) |t|
α−3|ϕW (t)|dt

�
∫
R

|t|α−3|ϕW (t)|dt � 1,
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hα+1

∫
[− 1

2 ,
1
2 ]

|Ĩ4,n(t)|dt

� hα−2

∫
[− 1

2 ,
1
2 ]

(
|ϕ3

k(t/h)|
|ϕ(t/h)| +

|ϕk(t/h)||ϕ′
k(t/h)|

|ϕ(t/h)| +
|ϕ′′

k(t/h)|
|ϕ(t/h)|

)
|ϕW (t)|dt

�
∫
R

(h+ |t|)α−3|ϕW (t)|dt � 1

Therefore, we have the desired result.

Since

hαyKn

(
x− y

h

)
= −hα+1

(
x− y

h

)
Kn

(
x− y

h

)
+ hαxKn

(
x− y

h

)
,

Lemma A.5 implies that each term on the right hand side is bounded (as a
function of y) uniformly in n and x ∈ {x1, . . . , xN}.
Lemma A.6. Assume Conditions (i), (ii), (iv) and (v) in Assumption 3.1. For
any compact set I such that I ⊂ (0,∞), we have that∫

R

K2
n(x)dx � h−2α+δ.

Proof. Let L̃(x) = L(x)1{x > 1/2}+1{0 ≤ x ≤ 1/2}. By Plancherel’s theorem,
we have that ∫

R

K2
n(x)dx =

1

2π

∫
R

∣∣∣∣ ϕW (t)

ϕ(t/h)

∣∣∣∣2 dt.
Now observe that

h2αL̃2(1/h)

∫
R

∣∣∣∣ ϕW (t)

ϕ(t/h)

∣∣∣∣2 dt
= h2α

∫
[− 1

2 ,
1
2 ]

∣∣∣∣ ϕW (t)

ϕ(t/h)

∣∣∣∣2 dt
+

∫
[−1,− 1

2 )∪( 1
2 ,1]

|t|2α|ϕW (t)|2
|(t/h)αL−1(|t|/h)ϕ(t/h)|2

L2(1/h)

L2(|t|/h)dt.

Since |t|2α|ϕW (t)|2 is integrable and

lim
h→0

|t/h|α|ϕ(t/h)|
L(|t|/h) =: B, lim

h→0

L(1/h)

L(|t|/h) = 1

for any |t| > 0, by dominated convergence theorem we have the desired result.

Lemma A.7. Let Zn,j(x) = XjΔ1{|XjΔ| ≤ θn}Kn((x − XjΔ)/h). Then
max1≤�≤N |E[Zn,1(x�)]| � h.
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Proof. Let Z̃n,j(x) = XjΔKn((x−XjΔ)/h). By Fubini’s theorem, we have that

max
1≤�≤N

|E[Z̃n,1(x�)]| ≤ h max
1≤�≤N

∣∣∣∣∫
R

k(x� − hz)W (z)dz

∣∣∣∣
≤ h‖k‖R

∫
R

|W (y)|dy � h,

max
1≤�≤N

E[|Z̃n,1(x�)− Zn,1(x�)|] ≤ max
1≤�≤N

E[Z̃2
n,1(x�)]

1/2P (|X1| > θn)
1/2

� (h1−2α)1/2 × E[(|X1|/θn)3]1/2

= h1/2−αθ−3/2
n � h.

Therefore, we have that

max
1≤�≤N

|E[Zn,1(x�)]| ≤ max
1≤�≤N

|E[Z̃n,1(x�)]|+ max
1≤�≤N

E[|Z̃n,1(x�)−Zn,1(x�)|] � h.

Lemmas A.6 and A.7 yield the following result on the lower bound of the
variance of Zn,1(x).

Proposition A.1. For any δ ∈ (0, 1/12), min1≤�≤N Var(Zn,1(x�)) � h−2α+δ+1.

Proof. Let Z ′
n,j(x) = XjΔ1{|XjΔ| > θn}Kn((x−XjΔ)/h). Observe that

min
1≤�≤N

E[(Z ′
n,j)

2(x�)] � h−2αθ−1
n E[|X1|3] � h−2αθ−1

n 
 h−2α+δ+1.

Since min1≤�≤N E[Z̃2
n,1(x�)] � h−2α+δ+1 by Lemma A.6, we have that

min
1≤�≤N

E[Z2
n,1(x�)] = min

1≤�≤N
E[(Z̃n,1(x�)− Z ′

n,1(x�))
2] ∼ min

1≤�≤N
E[Z̃2

n,1(x�)]).

Lemma A.8. max1≤k,�≤N |Cov(Zn,1(xk), Zn,j+1(x�))| � e−jΔβ1/3h2/3−2α.

Proof. Since x3π has a bounded Lebesgue density on R by Lemma A.1 and
h2α|Kn|2 is integrable by Lemma A.5, we first observe that

max
1≤�≤N

E[|Zn,1|3(x�)] ≤ max
1≤�≤N

∫
R

|y|3
∣∣∣∣Kn

(
x� − y

h

)∣∣∣∣3 π(y)dy
≤ h‖y3π‖R‖K3

n‖L1 ≤ h‖y3π‖R‖Kn‖R‖K2
n‖L1 � h1−3α.

Therefore, by Proposition 2.5 in [35], we obtain

max
1≤k,�≤N

|Cov(Zn,1(xk), Zn,j+1(x�))|

� e−jΔβ1/3 max
1≤k≤N

E[|Zn,1(xk)|3]1/3 max
1≤�≤N

E[|Zn,j+1(x�)|3]1/3

� e−jΔβ1/3h2/3−2α.

Then we have the desired result.



Inference on compound Poisson-driven OU process 2549

Proposition A.2. Let S̃n(x) =
∑n

j=1 Zn,j(x). Then for any δ ∈ (0, 1/12), we
have that

max
1≤�≤N

(
1

n
Var(S̃n(x�))−Var(Zn,1(x�))

)
= o(h−2α+δ+1).

Proof. It is easy to show that

1

n
Var(S̃n(x)) = Var(Zn,1(x)) + 2

n−1∑
j=1

(1− j/n) Cov(Zn,1(x), Zn,j+1(x)).

By Lemma A.8, we have that

h2α−1−δ max
1≤�≤N

∣∣∣∣∣
∞∑
j=1

Cov(Zn,1(x�), Zn,j+1(x�))

∣∣∣∣∣
≤ h2α−1−δ max

1≤�≤N

∞∑
j=1

|Cov(Zn,1(x�), Zn,j+1(x�))|

� h2α−1−δ × h2/3−2α
∞∑
j=1

e−jΔβ1/3

� h−δ−1/3e−Δβ1/3 � e
5
12 log(1/h)−Δβ1/3.

Since log(1/h) < C0

2+2α−δ logn for sufficiently large n and 5C0

4β1(2+2α−δ) logn ≤ Δ,

we have that
5

12
log(1/h)−Δβ1/3 = −c0 logn

for some positive constant c0. Therefore, we have the desired result.

Proposition A.2 implies that the dependence between Zn,1(x) and Zn,j+1(x)
is negligible. This enables us to estimate

σ2
n(x) = n−1 Var(Sn(x)) = Var(

√
nhZn(x))

by the sample variance (3.3). Moreover Propositions A.1 and A.2, and Lemma
A.6 yield that min1≤�≤N σ2

n(x�) � h−2α+δ+1.
Observe that

k̂�(x)− k�(x) =
−i

2π

∫
R

e−iux
ϕ′
�(u)

ϕ�(u)
ϕW (uh)du− k�(x)

+
−i

2π

∫
R

e−iux

(
ϕ̂′
�(u)

ϕ̂�(u)
−

ϕ′
�(u)

ϕ�(u)

)
ϕW (uh)du

= [k� ∗ (h−1W (·/h))](x)− k�(x)

+
−i

2π

∫
R

e−iux

(
ϕ̂′
�(u)

ϕ̂�(u)
−

ϕ′
�(u)

ϕ�(u)

)
ϕW (uh)du

=: In + IIn. (A.7)
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For the first term, we have that ‖In‖R � hr (by Lemma A.9). For the second
term IIn, Lemma A.4 yields that

IIn =
−i

2π

∫
R

e−itx

(
ϕ̂′
θn
(t)− ϕ′

θn
(t)

ϕ(t)

)
ϕW (th)dt

+OP (h
−2α−1n−1(log n)2 + h−αn−1/2 logn)

=
−i

2π

∫
R

e−itx

(
ϕ̂′
θn
(t)− ϕ′

θn
(t)

ϕ(t)

)
ϕW (th)dt+ oP ((nh

2α+1−δ logn)−1/2)

uniformly in x ∈ {x1, . . . , xN}. Therefore, since min1≤�≤N σn(x�) �
√
h−2α+δ+1

(see the comment after Proposition A.2), we have that

√
nh(k̂�(x)− k�(x))

σn(x)
= Wn(x) + oP ((logn)

−1/2) (A.8)

uniformly in x ∈ {x1, . . . , xN}.
Lemma A.9. Assume Conditions (iii), (v), and (vi) in Assumption 3.1. Then
we have that

‖[k� ∗ (h−1W (·/h))]− k�‖R � hr = o((nh2α+1−δ logn)−1/2).

Proof. Observe that by a change of variables, [k� ∗ (h−1W (·/h))](x) − k�(x) =∫
R
{k�(x − yh) − k�(x)}W (y)dy. If p ≥ 1, then by Taylor’s theorem, for any

x, y ∈ R,

k�(x− yh)− k�(x) =

p−1∑
�=1

k
(�)
� (x)


!
(−yh)� +

k
(p)
� (x− θyh)

p!
(−yh)p

for some θ ∈ [0, 1], where
∑0

�=1 = 0 by convention. Since k
(p)
� is (r − p)-Hölder

continuous, we have that H := supx,y∈R,x �=y

|k(p)
� (x)−k

(p)
� (y)|

|x−y|r−p < ∞. Now, since∫
R
y�W (y)dy = 0 for 
 = 1, . . . , p, we have that for any x ∈ R,∣∣∣∣∫

R

{k�(x− yh)− k�(x)}W (y)dy

∣∣∣∣
=

∣∣∣∣∣
∫
R

[
{k�(x− yh)− k�(x)} −

p∑
�=1

k
(�)
� (x)


!
(−yh)�

]
W (y)dy

∣∣∣∣∣
≤ Hhr

p!

∫
R

|y|r|W (y)|dy,

where 0! = 1 by convention. This completes the proof.

Let Qn(x) = 1√
n

∑n
j=1 Zn,j(x) with Zn,j(x) = XjΔ1{|XjΔ| ≤ θn}Kn((x −

XjΔ)/h). We use the following result to show that the asymptotic variances
which appear in Theorem 3.1 is a diagonal matrix.
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Proposition A.3. For any δ ∈ (0, 1/12), we have that

max
1≤k �=�≤N

|Cov(Qn(xk), Qn(x�))| = o(h−2α+δ+1).

Proof. Since max1≤�≤N |E[Zn,1(x�)]| � h by Lemma A.7, we have that

Cov(Qn(x1), Qn(x2))

=
1

n

n∑
j,�=1

E[Zn,j(x1)Z�,n(x2)]− E[Zn,1(x1)]E[Zn,1(x1)]

= E[Zn,1(x1)Zn,1(x2)] + 2
n−1∑
j=1

(
1− j

n

)
E[Zn,1(x1)Zn,j+1(x2)] +O(h2).

With almost the same arguments in the proof of Proposition A.2 yields that

max
1≤k,�≤N

⎛⎝n−1∑
j=1

E[|Zn,1(xk)Zn,j+1(x�)|]

⎞⎠ = o(h−2α+δ+1).

Hence it is sufficient to show that

max
1≤k,�≤N

E[|Zn,1(xk)Zn,1(x�)|] = o(h−2α+δ+1).

Let 0 < x1 < x2 < ∞. Since hα|Kn(x)| � min(1, 1/x2) by Lemma A.5,

h2α−1−δE[|Zn,1(x1)Zn,1(x2)|]

= h2α−1−δ

∫
R

y2
∣∣∣∣Kn

(
x1 − y

h

)∣∣∣∣ ∣∣∣∣Kn

(
x2 − y

h

)∣∣∣∣π(y)dy
≤ h−δ‖x2π‖R

∫
R

|hαKn(z)|
∣∣∣∣hαKn

(
z +

x2 − x1

h

)∣∣∣∣ dz
� h−δ

∫
R

(1 ∧ z−2)

(
1 ∧ h2

(zh+ (x2 − x1))2

)
dz.

If |z| ≤ h−2δ and take h sufficiently small, then we have that∫
|z|≤h−2δ

(1 ∧ z−2)

(
1 ∧ h2

(zh+ (x2 − x1))2

)
dy

≤
∫
|z|≤h−2δ

(1 ∧ z−2)
h2

(x2 − x1)2
dz � h2

min1≤k �=�≤N |xk − x�|2

 h4δ.

Moreover,∫
|z|>h−2δ

(1 ∧ z−2)

(
1 ∧ h2

(zh+ (x2 − x1))2

)
dy ≤

∫
|z|>h−2δ

(1 ∧ z−2)dz � h2δ.

Therefore we have that

h2α−1−δ max
1≤k �=�≤N

E[|Zn,1(xk)Zn,1(x�)|] � h−δ(h4δ + h2δ) � hδ 
 1.
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Proof of Theorem 3.1. Now we prove Theorem 3.1. Let Sn(x) =∑n
j=1 Yn,j(x) with Yn,j(x) = (Zn,j(x)− E[Zn,1(x)]). First we will show that

Sn(x)

σn(x)
√
n

d→ N(0, 1)

for 0 < x < ∞. We consider the following decomposition of Sn(x).

Sn(x) =

kn∑
j=1

ξn,j(x) +

kn∑
j=1

ηn,j(x) + ζn(x),

where

ξn,j(x) =

jln+(j−1)sn∑
k=(j−1)(ln+sn)+1

Yn,k(x), ηn,j(x) =

j(ln+sn)∑
k=jln+(j−1)sn+1

Yn,k(x),

ζn(x) =

n∑
j=kn(ln+sn)

Yn,j(x).

We take ln = [
√
nh/(logn)], sn = [(

√
n/h logn)1/6]. Since (log n)4 
 nh7/5, we

have that

sn
ln

= O

((
1

nh7/5

)5/12

(logn)5/3

)
→ 0

and kn = [n/(ln + sn)] = O(
√

n/h log n). We show the desired result in several
steps.

(Step 1): In this step, we will show that

Sn(x)

σn(x)
√
n
=

1

σn(x)
√
n

kn∑
j=1

ξn,j(x) + oP (1).

Note that β-mixing coefficients satisfy n6β(n) → 0 as n → ∞, we have that
knβ(sn) → 0 as n → ∞. By the definition of ηn,1(x), we have that

1

snσ2
n(x)

Var(ηn,1(x))

≤ Var(Zn,1(x))

σ2
n(x)

+
1

σ2
n(x)

∣∣∣∣∣∣
sn∑
j=1

(
1− j

sn

)
Cov(Zn,1(x), Zn,j+1(x))

∣∣∣∣∣∣ � 1.

Since |ηn,j(x)|/(snh−(1+δ)/2σn(x)) is bounded (see the comment after the proof
of Lemma A.5), by Proposition 2.6 in [35],

|Cov(ηn,1(x), ηn,j+1(x))| � s2nh
−(1+δ)σ2

n(x)β(jlnΔ).
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Then we have that

1

snσ2
n(x)

kn∑
j=1

|Cov(ηn,1(x), ηn,j+1(x))|

� snh
−(1+δ)

kn∑
j=1

β(jlnΔ) ≤ snh
−(1+δ)

∞∑
j=1

β(jlnΔ) 
 1.

Therefore, we have that

1

nσ2
n(x)

Var

⎛⎝ kn∑
j=1

ηn,j(x)

⎞⎠
� kn Var(ηn,1)

nσ2
n(x)

+
2

nσ2
n(x)

kn−1∑
j=1

|Cov(ηn,1(x), ηn,j+1(x))|

� knsn
n

+
2

nσ2
n(x)

kn−1∑
j=1

|Cov(ηn,1(x), ηn,j+1(x))| → 0,

as n → ∞. Likewise, we have that

1

nσ2
n(x)

Var(ζn(x)) =
ln + sn

n

1

(ln + sn)σ2
n(x)

Var(ζn(x)) → 0, as n → ∞

since n− kn(ln + sn) � (ln + sn).

(Step 2): We set Tn(x) =
∑kn

j=1 ξn,j(x). In this step we show that

Tn(x)

σn(x)
√
n

d→ N(0, 1).

Define Mn =
∣∣∣E [

exp
(
itTn(x)/

√
nσ2

n(x)
)]

− exp
(
−t2/2

)∣∣∣, where i =
√
−1.

Then it is sufficient to show that for any ε > 0, limn→∞ Mn < ε. Note that

Mn ≤

∣∣∣∣∣∣E
[
exp(itTn(x)/

√
nσ2

n(x))
]
−

kn∏
j=1

E
[
exp(itξj,n(x)/

√
nσ2

n(x))
]∣∣∣∣∣∣

+

∣∣∣∣∣∣
kn∏
j=1

E
[
exp(itξj,n(x)/

√
nσ2

n(x))
]
− exp(−t2/2)

∣∣∣∣∣∣
=: An,1 +An,2.

By Lemma 2.4 in [34] and knβ(sn) → 0 as n → ∞, we have that An,1 �
knβ(sn) → 0 as n → ∞.

Finally we show limn→∞ An,2 = 0. This is equivalent to showing that

1√
n
T̃n(x)

d→ N(0, 1), (A.9)
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where T̃n(x) =
∑n

j=1 ξ̃n,j and {ξ̃n,j(x)} are independent random variables such

that ξ̃n,j(x)
d
= ξn,j(x)/σn(x). It is easy to show that {ξn,j(x)/σn(x)} is a se-

quence of bounded random variables. To show (A.9), it is sufficient to check the
following Lindeberg condition.

1

nh

kn∑
j=1

E[|ξ̃n,j(x)|21{|ξ̃n,j(x)| > ω
√
n}] → 0, as n → ∞

for any ω > 0. By Hölder’s inequality, Markov’s inequality and Proposition 2.7
in [35], we have that

E[|ξ̃n,j |21{|ξ̃n,j | ≥ ω
√
n}] ≤ E[|ξ̃n,j |4]1/2P (|ξ̃n,j | > ω

√
n)1/2

� (l4/2n )1/2
E[|ξ̃n,j |12]1/2

n3
� ln

(
ln√
nh

)3
1

(nh)3/2
.

Therefore, we have that

1

nh

kn∑
j=1

E[|ξ̃n,j |21{|ξ̃n,j | > ω
√
n}] � knln

n

(
ln√
nh

)3(
1

nh
5
3

)2/3

→ 0, as n → ∞

since nh5/3 → ∞.
(Step 3): In this step, we complete the proof. Considering (A.8), Condition

(vi) in Assumption 3.1 and Lemma A.9 yields that the bias term In is asymp-

totically negligible since hr
√
nh2α+1−δ logn → 0 as n → ∞. This implies that

√
nh(k̂�(x)− k�(x))

σn(x)
− Sn(x)

σn(x)
√
n
= oP ((logn)

−1/2)

and the asymptotic distribution of
√
n(k̂�(x) − k�(x)) is the same as that of

Sn(x). Moreover, Proposition A.3 implies that asymptotic covariance between
Sn(x1)/

√
n and Sn(x2)/

√
n for different design points 0 < x1 < x2 < ∞ is

asymptotically negligible. Therefore, we finally obtain the desired result.

A.2. Proofs for Section 4

We note that Lemmas and Propositions in Section A.1 also hold when 0 <
x1 < · · · < xN < ∞, x� ∈ I for 
 = 1, . . . , N , and min1≤k �=�≤N |xk − x�| �
h1−2δ. In particular, we need to take into account the effect of the separation
between points in the proof of Lemmas 4.1 and A.10, and Theorem A.1. In the
proof of Theorem A.1, we use the lower bound of min1≤�≤N σn(x�) to obtain an
intermediate Gaussian approximation result. We also need to take care of the
effect of the discretization of a compact set I to obtain the consistency of σ̂2

n(x)

on the discrete points in Lemma 4.1, that is, max1≤�≤N |σ̂2
n(x�)/σ

2
n(x�)−1| P→ 0.

Moreover, in the proof of Lemma A.10, we use the condition min1≤k �=�≤N |xk −
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x�| � h1−2δ to obtain a result that the variance-covariance matrix a random
vector (Wn(x1), . . . ,Wn(xN ))� can be approximated by the N × N identity
matrix and this yields a Gaussian comparison result (Proposition A.4).

Proof of Lemma 4.1. Since ‖Kn‖R � h−α and we can show ‖Kn − K̂n‖R =
OP

(
h−2αn−1/2 logn

)
, we have that

‖K̂n‖R ≤ ‖Kn‖R + ‖Kn − K̂n‖R � h−α +OP

(
h−2αn−1/2 logn

)
= OP

(
h−α

)
.

Therefore, we have that

‖K2
n − K̂2

n‖R ≤ ‖Kn + K̂n‖R‖Kn − K̂n‖R = OP

(
h−3αn−1/2 log n

)
.

Then we have that

max
1≤�≤N

∣∣∣∣∣∣ 1n
n∑

j=1

XjΔ1{|XjΔ| ≤ θn}
{
K̂n((x� −XjΔ)/h)−Kn((x� −XjΔ)/h)

}∣∣∣∣∣∣
≤

⎛⎝ 1

n

n∑
j=1

XjΔ1{|XjΔ| ≤ θn}

⎞⎠
︸ ︷︷ ︸

=OP (1)

‖K̂n −Kn‖R = OP (h
−2αn−1/2 logn),

and likewise,

max
1≤�≤N

∣∣∣∣∣∣ 1n
n∑

j=1

X2
jΔ1{|XjΔ| ≤ θn}

{
K̂2

n((x� −XjΔ)/h)−K2
n((x� −XjΔ)/h)

}∣∣∣∣∣∣
= OP (h

−3αn−1/2 logn).

Since (h−2αn−1/2 log n)2/(h−3αn−1/2 logn) = h−αn−1/2 logn 
 1, we have
that

σ̂2
n(x) =

1

n

n∑
j=1

Z2
n,j(x)−

⎛⎝ 1

n

n∑
j=1

Zn,j(x)

⎞⎠2

︸ ︷︷ ︸
=:σ̃2(x)

+OP (h
−3αn−1/2 logn)

uniformly x=x�, 
=1, . . . , N . Furthermore, since min1≤�≤N σ2
n(x�)�h−2α+δ+1

and
h−3αn−1/2 log n

h−2α+δ+1
= h−α−δ−1n−1/2 logn 
 (logn)−1,

it remains to prove that max1≤�≤N |σ̃2(x�)/σ
2(x�) − 1| = oP ((log n)

−1). Since
hαyKn((x − y)/h) is uniformly bounded in n and x� for 
 = 1, . . . , N (see the
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comment after the proof of Lemma A.5), we have that

max
1≤�≤N

E[|X1|1{|X1| > θn}Kn((x� −X1)/h)]

h−α+δ/2+1/2

� h−αP (|X1| > θn)

h−α+δ/2+1/2
� h−δ/2−1/2θ−2

n 
 (log n)−1/2,

max
1≤�≤N

E[X2
11{|X1| > θn}K2

n((x� −X1)/h)]

h−2α+δ+1

� h−2αE[|X1|1{|X1| > θn}]
h−2α+δ+1

� h−δ−1E[|X1|3/θ2n] � h−δ−1θ−2
n 
 (logn)−1.

Therefore, to complete the proof, it suffices to prove that

max
1≤�≤N

∣∣∣∣∣∣ 1n
n∑

j=1

(
Z2
n,j(x�)− E[Z2

n,j(x�)]

σ2
n(x�)

)∣∣∣∣∣∣ = oP ((log n)
−1), and (A.10)

max
1≤�≤N

∣∣∣∣∣∣ 1n
n∑

j=1

(
Zn,j(x�)− E[Zn,j(x�)]

σn(x�)

)∣∣∣∣∣∣ = oP ((log n)
−1/2). (A.11)

To prove (A.10), we use Theorem 2.18 in [35] with b = h−δ−1, q = [h−δ−2] ∧
[n/2] 
 n, and ε = ε0(logn)

−1 for any ε0 > 0 in their notations. Here, [a] is the
integer part of a ∈ R. In this case we have that

P

⎛⎝ max
1≤�≤N

∣∣∣∣∣∣ 1n
n∑

j=1

(
Z2
n,j(x�)− E[Z2

n,j(x�)]

σ2
n(x�)

)∣∣∣∣∣∣ > ε0(log n)
−1

⎞⎠
≤

N∑
�=1

P

⎛⎝∣∣∣∣∣∣ 1n
n∑

j=1

(
Z2
n,j(x�)− E[Z2

n,j(x�)]

σ2
n(x�)

)∣∣∣∣∣∣ > ε0(log n)
−1

⎞⎠
� h−1+2δ

⎛⎝exp

(
− h−1

8(logn)2

)
+

√
1 + h−δ−1(logn)

ε0
h−δ−2e−Δβ1nh

δ+2

⎞⎠→ 0

as n → ∞, and likewise, we can show (A.11). Therefore, we complete the proof.

Let q > r be positive integers such that

q + r ≤ n/2, q = qn → ∞, qn = o(n), r = rn → ∞, and rn = o(qn) as n → ∞,

and m = mn = [n/(q+r)]. Consider a partition {Ij}mj=1∪{Jj}m+1
j=1 of {1, . . . , n}

where Ij = {(j−1)(q+r)+1, . . . , jq+(j−1)r}, Jj = {jq+(j−1)r+1, . . . , j(q+r)}
and Jm+1 = {m(q + r), . . . , n}. First we show the following result on Gaussian
approximation.
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Theorem A.1. Under Assumption 3.1, we have that

sup
t∈R

∣∣∣∣P (
max

1≤�≤N
|Wn(x�)| ≤ t

)
− P

(
max

1≤�≤N
|Y̌�,n| ≤ t

)∣∣∣∣ → 0, as n → ∞,

where, Y̌n = (Y̌n,1, . . . , Y̌n,N )� is a centered normal random vector with covari-

ance matrix E[Y̌nY̌
�
n ] = (mq)−1

∑m
j=1 E

[
WIjW

�
Ij

]
= q−1E

[
WI1W

�
I1

]
where

WIj =

⎛⎝∑
k∈Ij

(
Zn,k(x1)−E[Zn,1(x1)]

σn(x1)

)
, . . . ,

∑
k∈Ij

(
Zn,k(xN )−E[Zn,1(xN )]

σn(xN )

)⎞⎠�

=: (WIj (x1), . . . ,WIj (xN ))�.

Proof. Since hαyKn((x − y)/h) is uniformly bounded in n and x = x�, 
 =
1, . . . , N as a function of y (see the comment after the proof of Lemma A.5) and

min1≤�≤N σn(x�) �
√
h−2α+δ+1, we have that

|(Zn,j(x�)− E[Zn,j(x�)])/σn(x�)| � h−(δ+1)/2

and h−1/2(logNn)5/2 
 n1/8. Therefore, if we take qn = O(nq′) and
rn = O(nr′) with 0 < r′ < q′ < 3/8, we have that qnh

−(δ+1)/2(logNn)5/2 �
n1/2−(1/8+q′), (rn/qn)(logN)2 � n−(q′−r′)/2 and mnβX(rn) � mne

−β1rn �
n−(q′−r′)/2. Moreover, define

σ2(q) := max
1≤�≤N

max
I

Var

(
1

σn(x�)
√
q

∑
k∈I

(Zn,k(x�)− E[Zn,1(x�)])

)
,

σ2(q) := min
1≤�≤N

min
I

Var

(
1

σn(x�)
√
q

∑
k∈I

(Zn,k(x�)− E[Zn,1(x�)])

)
,

where maxI and minI are taken over all I ⊂ {1, . . . , n} of the form I = {j +
1, . . . , j + q}. By the stationarity of {XjΔ}j≥0 and Proposition A.2, we have
that

σ2(q) = σ2 ∼ max
1≤�≤N

(Var(Zn,1(x�)/σn(x�)) ,

σ2(q) = σ2 ∼ min
1≤�≤N

(Var(Zn,1(x�)/σn(x�)) .

Then there exists constants 0 < c1, C1 < ∞ such that c1 ≤ σ2(q) ≤ σ2(r) ∨
σ2(q) ≤ C1. From the above arguments, the conditions of Theorem B.1 in [16]
are satisfied. So, we have the desired result.

Next we show that the distribution of max1≤�≤N |Y̌n,�| can be approximated
by that of max1≤�≤N |Y�| where Y = (Y1, . . . , YN )� is a normal random vector
in R

N . For this, we prepare two lemmas.
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Lemma A.10. Under Assumption 3.1, we have that

max
1≤k,�≤N

∣∣Cov(Wn(xk),Wn(x�))− 1{xk=x�}
∣∣ = O(hδ).

Proof. Since the covariance between Zn,j(x�) and Zn,k(x�) for j �= k is asymp-
totically negligible with respect to the variances of each term by the proof of
Proposition A.3, it is sufficient to prove

max
1≤k,�≤N

∣∣∣∣∣Cov(Zn,1(xk), Zn,1(x�))√
σ2
n(xk)σ2

n(x�)
− 1{xk=x�}

∣∣∣∣∣ = O
(
hδ
)
.

Since 1/min1≤�≤N σ2
n(x) � h2α−δ−1, from the same argument of the proof of

Proposition A.3, we have that

max
1≤k,�≤N

∣∣∣∣∣Cov(Zn,1(xk), Zn,1(x�))√
σ2
n(xk)σ2

n(x�)
− 1{xk=x�}

∣∣∣∣∣
= max

1≤k �=�≤N

∣∣∣∣∣Cov(Zn,1(xk), Zn,1(x�))√
σ2
n(xk)σ2

n(x�)

∣∣∣∣∣
� h2α−δ−1 max

1≤k �=�≤N
|Cov(Zn,1(xk), Zn,1(x�))|

� h2−δ

min1≤j �=k≤N (xk − x�)2
∨ hδ � hδ

since min1≤k �=�≤N (xk − x�)
2 � h2−4δ. Then we have the desired result.

Lemma A.11. Under Assumption 3.1, we have that

max
1≤k,�≤N

∣∣q−1 Cov(WI1(xk),WI1(x�))− 1{xk=x�}
∣∣ = O(hδ).

Proof. Form the same argument of the proof Propositions A.2 and A.3,

1

q

∑
k,�∈Ij ,k �=�

Cov(Zn,k(xm1), Zn,�(xm2))

σn(xm1)σn(xm2)

is asymptotically ignorable for 1 ≤ m1,m2 ≤ N . Therefore, the proof of Lemma
A.10 yields that

max
1≤k,�≤N

∣∣q−1 Cov(WI1(xk),WI1(x�))− 1{xk=x�}
∣∣

= O

(
max

1≤k,�≤N

∣∣∣∣∣Cov(Zn,1(xk), Zn,1(x�))√
σ2
n(xk)σ2

n(x�)
− 1{xk=x�}

∣∣∣∣∣
)

= O(hδ).

This completes the proof.

Lemma A.11 and Condition (vi) in Assumption 3.1 yield the following result
on Gaussian comparison:
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Proposition A.4. Under Assumption 3.1, we have that

sup
t∈R

∣∣∣∣P (
max

1≤�≤N
|Y̌n,�| ≤ t

)
− P

(
max

1≤�≤N
|Y�| ≤ t

)∣∣∣∣ → 0, as n → ∞,

where Y = (Y1, . . . , YN )� is a standard normal random vector in R
N .

Proof. Let Δ(Y̌n, Y ) := max1≤k,�≤N

∣∣Cov(Y̌n,k, Y̌n,�)− 1{xk=x�}
∣∣. By Lemma

A.11 and Theorem 2 in [19], we have that

sup
t∈R

∣∣∣∣P (
max

1≤�≤N
|Y̌n,�| ≤ t

)
− P

(
max

1≤�≤N
|Y�| ≤ t

)∣∣∣∣
� Δ(Y̌n, Y )1/3{1 ∨ log(N/Δ(Y̌n, Y ))}2/3 → 0

as n → ∞. Therefore, we obtain the desired result.

Proof of Theorem 4.1. Theorem 4.1 immediately follows from Theorem A.1
and Proposition A.4.

Proof of Theorem 4.2. The asymptotic linear representation (A.8) yields
that

Un := max
1≤�≤N

∣∣∣∣∣
√
nh(k̂�(x�)− k�(x�))

σn(x�)

∣∣∣∣∣ = max
1≤�≤N

|Wn(x�)|+ oP ((log n)
−1/2)

=: Vn + oP ((log n)
−1/2).

This also implies that there exists a sequence of constants εn ↓ 0 such that

P
(
|Un − Vn| > εn(logn)

−1/2
)
≤ εn

(which follows from the fact that convergence in probability is metrized by the
Ky Fan metric; see Theorem 9.2.2 in [28]). Then we have that

P (Un ≤ t) ≤ P
(
{Un ≤ t} ∩ {|Un − Vn| ≤ εn(log n)

−1/2}
)

+ P
(
{Un ≤ t} ∩ {|Un − Vn| > εn(log n)

−1/2}
)

≤ P
(
Vn ≤ t+ εn(log n)

−1/2
)
+ εn

for any t ∈ R. Theorem 4.1 yields that there exists a sequence of constants ε̃n ↓ 0
such that

P
(
Vn ≤ t+ εn(log n)

−1/2
)
≤ P

(
Gn ≤ t+ εn(logn)

−1/2
)
+ ε̃n

for any t ∈ R where Gn = max1≤�≤N |Y�|. From the anti-concentration inequal-
ity for the maxima of Gaussian random vector (Theorem 3 in [19]), the right
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hand side is bounded from above by P (Gn ≤ t) + 8εn(log n)
−1/2E[Gn] + ε̃n.

Since E[Gn] ≤ D logn for some positive constant D which does not depend on
n, we have that

P (Un ≤ t) ≤ P (Gn ≤ t) + 9Dεn + ε̃n = P (Gn ≤ t) + o(1) (A.12)

for any t ∈ R. We also have that

P
(
Vn ≤ t− εn(logn)

−1/2
)

≤ P
(
{Vn ≤ t− εn(logn)

−1/2} ∩ {|Un − Vn| ≤ εn(logn)
−1/2}

)
+ P

(
{Vn ≤ t− εn(logn)

−1/2} ∩ {|Un − Vn| > εn(logn)
−1/2}

)
≤ P (Un ≤ t) + εn

for any t ∈ R. Therefore, we can show that

P (Un ≤ t) ≥ P (Gn ≤ t)− 9Dεn − ε̃n = P (Gn ≤ t) + o(1) (A.13)

for any t ∈ R. Combining (A.12) with (A.13), we obtain the desired result.

Appendix B: On asymptotic validity of confidence bands

We use the notations used in the proof of Theorem 4.2 here. Let qUn
τ denotes the

(1− τ)-quantile of Un. Theorem 4.2 implies that there exists a sequence ε′n ↓ 0
such that

sup
t∈R

|P (Un ≤ t)− P (Gn ≤ t)| ≤ ε′n.

Then we have that

P
(
Un ≤ qτ−ε′n

)
≥ P

(
Gn ≤ qτ−ε′n

)
− ε′n = 1− τ,

where the last inequality holds Gn has continuous distribution from the anti-
concentration inequality (see Theorem 3 in [19]). This yields the inequality
qUn
τ ≤ qτ−ε′n . Therefore, we have that

P (Un ≤ qτ ) ≤ P
(
Un ≤ qτ−ε′n

)
≤ P

(
Gn ≤ qτ−ε′n

)
+ ε′n = 1− τ + 2ε′n.

Likewise, we have the inequality qτ+ε′n ≤ qUn
τ . This yields that

P (Un ≤ qτ ) ≥ 1− τ − 2ε′n.

Then we obtain P (Un ≤ qτ ) → 1− τ as n → ∞.
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[8] Bertoin, J. (1996). Lévy Processes. Cambridge University Press.
MR1406564
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