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Abstract: This paper proposes a new minimum description length proce-
dure to detect multiple changepoints in time series data when some times
are a priori thought more likely to be changepoints. This scenario arises
with temperature time series homogenization pursuits, our focus here. Our
Bayesian procedure constructs a natural prior distribution for the situa-
tion, and is shown to estimate the changepoint locations consistently, with
an optimal convergence rate. Our methods substantially improve change-
point detection power when prior information is available. The methods
are also tailored to bivariate data, allowing changes to occur in one or both
component series.
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1. Introduction

Changepoints, also called structural breaks or breakpoints, are times in a se-
quential record where the data abruptly shift in some manner (mean, variance,
autocovariance, quantile, etc.). The primary goal of a retrospective multiple
changepoint analysis, the case considered here, is to estimate the number of
changepoints and their location times. Various approaches have been developed
for independent data; good recent references include Fryzlewicz (2014), Pein,
Sieling and Munk (2017), and the review paper Niu, Hao and Zhang (2016)
(and the references therein). When the data are correlated, such as the monthly
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temperature records studied here, this feature can greatly impede changepoint
detection; in fact, mean shifts can often be misattributed to positive correlation
(Lund et al., 2007).

One simple way to detect multiple changepoints is to combine an at most
one changepoint (AMOC) technique (say a CUSUM or likelihood ratio test)
with a binary segmentation procedure, e.g., Shao and Zhang (2010); Aue and
Horváth (2013); Fryzlewicz and Subba Rao (2014). Wild binary segmentation
techniques usually improve upon ordinary binary segmentation methods (Fry-
zlewicz, 2014). Since estimating the optimal multiple changepoint configuration
can be formulated as a model selection problem, penalized likelihood methods
such as BIC (Yao, 1988) and its modifications (Zhang and Siegmund, 2007,
2012), and minimum description lengths (MDL) are also popular. In this paper,
an MDL technique is developed that takes into account prior information on
the changepoint numbers and locations. This scenario is shown to arise in the
homogenization of temperature time series to account for gauge changes and
station location moves.

The MDL principle (Risanen, 1989) from information theory has been suc-
cessfully applied in statistical model selection problems (Hansen and Yu, 2001).
MDL penalties are the sum of penalties (i.e., description lengths, or code lengths)
of all unknown model parameters. In the multiple changepoint literature, the
seminal work of Davis, Lee and Rodriguez-Yam (2006) develops an MDL penalty
for piecewise autoregressive (AR) processes. Here, the penalty is constructed by
following certain automatic rules that assign different penalties to different pa-
rameter types: bounded integer parameters, unbounded integer parameters, and
real-valued parameters. Since MDL penalties are not just simple multiples of the
number of model parameters, they are believed superior to AIC and BIC penal-
ties (a belief supported by simulations), and are shown consistent for change-
point estimation under infill asymptotics (Davis, Lee and Rodriguez-Yam, 2006;
Davis and Yau, 2013). Following the automatic penalty rules, MDL methods
have been extended to various time series structures, including GARCH pro-
cesses (Davis, Lee and Rodriguez-Yam, 2008), periodic ARs (Lu, Lund and Lee,
2010), autoregressive moving-averages (Davis and Yau, 2013), and threshold
ARs (Yau, Tang and Lee, 2015).

The main goal of this paper is to incorporate partial information on change-
point numbers and times into the MDL penalty, an aspect not readily handled
by existing MDL methods. Indeed, this will require us to revisit information
theory. The motivating example involves the climate homogenization (Caussi-
nus and Mestre, 2004; Menne and Williams Jr, 2005) of monthly temperature
records. Here, the aim is to detect abrupt mean shifts, which are often induced
by artificial causes such as station relocations or gauge changes. Two types of a
priori changepoint knowledge arise. First, metadata station history logs, which
document the times of physical changes in the station, are sometimes avail-
able. Although metadata climate records are notoriously incomplete, and not
all documented metadata times induce actual mean shifts in the series, clima-
tologists believe that metadata times are more likely than non-metadata times
to be changepoints. Second, when multivariate records exist for the same sta-
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tion, changepoints may affect component records simultaneously. For example,
with monthly maximum and minimum temperature averages (called Tmax and
Tmin, respectively), moving a station to a drier location can both increase day-
time highs and reduce nighttime lows. While changepoints in either Tmax or
Tmin can occur by themselves, climatologists believe that it is more likely for
changepoints to occur in both component series at the same time (these are
called concurrent shifts).

While metadata is typically only used to verify climate changepoint conclu-
sions in hindsight, Sections 5 and 6 will show that use of metadata can improve
detection power and time of estimation accuracy. This benefit is not limited to
climatological pursuits; in other areas such as biology, economics, and engineer-
ing, domain expert knowledge is often available; e.g., knowledge from previous
experiments on possible copy number variation locations, or the impact of cer-
tain political policy or regime changes on financial series.

Of course, Bayesian methods account for a priori knowledge via the con-
struction of prior distributions. From a Bayesian model selection perspective,
the optimal model (i.e., multiple changepoint configuration) is the one with the
highest posterior probability (Clyde and George, 2004). This maximum a pos-
teriori (MAP) rule can be loosely viewed as a penalization method, where the
posterior density is a penalized likelihood and the prior density is the penalty.
Compared to frequentist approaches, one advantage of Bayesian posterior anal-
ysis is that it can also provide a measure of uncertainty for model parameters
and changepoint locations. Bayesian approaches have been proposed for ret-
rospective multiple changepoint detection — see Barry and Hartigan (1993);
Chib (1998); Fearnhead (2006); Girón, Moreno and Casella (2007); Zhang and
Siegmund (2007); Giordani and Kohn (2008); Fearnhead and Vasileiou (2009);
Hannart and Naveau (2012). However, theoretical studies of large sample per-
formance of Bayesian methods are in general lacking; while Du, Kao and Kou
(2016) study asymptotic consistency of changepoint locations, they only con-
sider independent data.

More importantly, existing Bayesian changepoint approaches are typically
derived under non-informative prior distributions; they rarely explicate how to
incorporate real subjective prior knowledge. BIC-based changepoint detection
methods cannot readily handle subjective prior information: from a Bayesian
model selection perspective, BIC is a large sample approximation of the marginal
likelihood. Thus, comparing models directly based on their BICs imposes an
implicit assumption that the prior probabilities of the models are the same,
which is not appropriate when one wants to incorporate metadata information.

The only exception to the above is Li and Lund (2015), which accounts for
metadata in a univariate precipitation time series. That work was written for a
climate audience and was largely void of statistical and technical detail. This pa-
per complements that work by dealing with the statistical and technical issues.
It has a different focus and content, aiming to develop a general MDL frame-
work that can handle prior information on changepoint times in a wide range of
changepoint problems. For example, multivariate series, which involve the more
challenging problem of borrowing information across component series, are pur-
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sued. In this sense, Li and Lund (2015) is a special case of the current paper.
This paper also includes a thorough investigation of the asymptotic consistency
of the proposed methods.

Changepoint detection for multivariate data has received significant attention
in recent years, e.g., Cho and Fryzlewicz (2015); Kirch, Muhsal and Ombao
(2015); Preuss, Puchstein and Dette (2015); Ma and Yau (2016). In Davis,
Lee and Rodriguez-Yam (2006), the automatic MDL is applied to multivariate
AR series, where changepoints affect all component series. However, for many
applications, a changepoint may not affect all component series. The automatic
MDL does not directly accommodate this case, probably because it is unclear
whether a change affecting all components should receive the same penalty as
one that affects a subset of components. On the other hand, Bayesian approaches
such as Zhang and Siegmund (2012) and Bardwell and Fearnhead (2017) can
handle this problem, but only for independent data over time and components.
Since these works are developed under non-informative prior distributions, they
are not ready applicable to handle multivariate temperature homogenization,
where concurrent changes in Tmax and Tmin should be encouraged.

In this paper, a new class of flexible MDL methods is proposed that incor-
porates domain experts’ a priori knowledge for multiple changepoint detection,
in both univariate and multivariate time series. Multiple changepoint configu-
rations are reformulated as vectors of zero/one indicators, thus permitting nat-
ural construction of subjective prior distributions, with straightforward hyper-
parameter elicitation. To account for correlation in time and across components,
AR processes for univariate data, and vector autoregressive (VAR) processes for
multivariate data are employed. Our MDL method is termed a Bayesian MDL
(BMDL) because it can be viewed as an empirical Bayes model selection ap-
proach. While our main focus is to improve and generalize conventional MDL
changepoint detection approaches, to the best of our knowledge, this paper
is the first Bayesian multiple changepoint work to establish asymptotic con-
sistency with correlated observations. Under infill asymptotics, the estimated
changepoint locations are shown to converge in probability to their true values;
moreover, estimators of the number of changepoints and model parameters such
as regime means and AR coefficients are also consistent.

We choose to work within the MDL framework rather than extending BIC-
based approaches due to the following considerations. First, the BIC approxi-
mation to the marginal likelihood is usually precise only up to an O(1) error.
Although it is asymptotically consistent for model selection, it often does not
work well when the sample size is small or moderate (Grünwald, 2007). Second
and perhaps more importantly, in the changepoint detection literature, MDL
penalties have been demonstrated to be more flexible and have better empir-
ical performance than BIC penalties (Davis, Lee and Rodriguez-Yam, 2006).
Therefore, MDL methods to are exclusively pursued here.

The rest of this paper is organized as follows. Section 2 briefly reviews MDL
principles. Section 3 develops a BMDL penalty to detect mean shifts in univari-
ate series. This work incorporates metadata, while allowing for a confounding
seasonal mean cycle and AR errors. Section 4 extends the BMDL to the mul-
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tivariate setting, where Tmax and Tmin series are modeled jointly. Section 5
presents simulation examples. Section 6 moves to an application to 114 years
of monthly temperatures from Tuscaloosa, Alabama. Section 7 studies the fre-
quentist large sample performance of the univariate BMDL. Comments close the
paper in Section 8. Technical results and proofs are delegated to an appendix.

2. A Brief Review of MDL

In information theory, a code length is the number of binary storage units re-
quired to transmit a random number or code. To reduce storage costs, one wants
to assign shorter (longer) code lengths to common (rare) outcomes. Competing
probability models can be compared by their code lengths; the true data gener-
ating distribution (i.e., the true model) should have the shortest expected code
length. The MDL principle (Risanen, 1989) states that given the observed data,
the model with the shortest code length is optimal.

For a discrete random variable X with probability mass function f(·), Shan-
non (1948) states that the encoding with code length

L(X) = − log2{f(X)} (1)

has the shortest expected code length. The existing MDL approach for multi-
ple changepoint detection (Davis, Lee and Rodriguez-Yam, 2006) is developed
under the automatic rules that the code length of a positive random integer
X bounded above by N is log2(N), and that of an unbounded positive random
integer X is log2(X). The former rule implies a uniform distribution over the set
{1, 2, . . . , N}, which leads to the code length L(X) = − log2(1/N) = log2(N),
while the latter implies an improper power law distribution with the probability
mass function f(X) ∝ 1/X.

For a continuous random variable, say X ∈ R
k with density function f(·),

after discretizing each dimension into equal cells of size δ (often viewed as
the machine precision), one can mimic the discrete case to obtain L(X) =
− log2{f(X)δk} = − log2 f(X) − k log2(δ). Because k and δ do not vary with
X, the term −k log2(δ) does not affect comparison between different outcomes
of X and is hence often omitted. Thus, the MDL for a continuous variable can
also be expressed as in (1). In the rest of this paper, the natural logarithm is
substituted for the base two logarithm — this does not affect model comparisons
since log2(x)/ log(x) is constant in x.

Now suppose that a dataset X = (X1, . . . , XN )′, believed to be generated
from a certain parametric model M with density f(X | θ,M), is to be trans-
mitted along with a possibly unknown parameter θ ∈ Θ. As reviewed in Hansen
and Yu (2001), two types of MDL approaches, the two-part MDL and the mix-
ture MDL, are commonly used.

2.1. Two-part MDLs

The two-part MDL, also called the two-stage MDL, considers the transmission
of X and θ in two steps. If both the sender and receiver know θ, the MDL
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of X is L(X | θ,M) = − log{f(X | θ,M)}. Here, notations such as L(· | ·)
are analogous to the usual conditional distribution notations that emphasize
dependence. Should θ also be unknown to the receiver, an additional cost of
L(θ | M) is incurred in transmitting it. Hence, the two-part MDL is

L(X, θ | M) = L(X | θ,M) + L(θ | M).

Suppose that L(X, θ | M) is minimized at θ̂, an estimator of θ based on the

data X. If θ is a k-dimensional continuous parameter and θ̂ is a
√
N -consistent

estimator, then one can set the machine precision to be δ = c/
√
N , where

c is a positive constant. Under a uniform encoder π(θ | M) ∝ 1, the code

length needed to transmit θ (including θ̂) is hence L(θ | M) = − log{π(θ |
M)}−k log(c/

√
N) = k log(N)/2−k log(c), which does not depend on θ. Hence,

the maximum likelihood estimator (MLE) minimizes L(X, θ | M), and the

two-part MDL coincides with the BIC (Schwarz, 1978). In fact, θ̂ need not be
the MLE; any

√
N -consistent estimator is justifiable. Again the constant term

k log(c) can be dropped and the remaining code length L(θ̂ | M) = k log(N)/2
is adopted by Davis, Lee and Rodriguez-Yam (2006) as the automatic MDL rule
for a k-dimensional continuous parameter.

If there exists a discrete set of candidate models, to account for model uncer-
tainty, the two-part MDL can be modified to include an additional code length
for the model M, i.e.,

L(X, θ̂,M) = L(X | θ̂,M) + L(θ̂ | M) + L(M), (2)

where θ̂ is model dependent, L(M) = − log{π(M)}, and π(M) is the prior
distribution over the model space. The model with the smallest MDL in (2) is
deemed optimal.

All existing automatic MDL methods for multiple changepoint detection are
based on two-part MDLs. However, for a finite sample size N , the two-part
MDL is problematic when the dimension of θ changes across models, as in the
multiple changepoint case. Consider a setting of two competing models M1

and M2, whose parameters θj are kj-dimensional continuous parameters, for

j = 1, 2, and k1 �= k2. Model M1 is favored if L(X, θ̂1,M1) − L(X, θ̂2,M2) is
negative; otherwise, model M2 is favored. Note that the code length difference
for the parameters L(θ̂1 | M1)−L(θ̂2 | M2) contains the term (k1−k2){log(N)−
2 log(c)}/2. This term, and hence also L(X, θ̂1,M1) − L(X, θ̂2,M2), could be
either positive or negative depending on N and the arbitrary constant c. One
cannot judge either model superior without knowledge of c. Of course, this issue
does not conflict with the asymptotic consistency of BIC or automatic MDLs:
as N increases, log(N) dominates the constant log(c). Mixture MDLs, reviewed
next, do not suffer from such a problem for a finite N .
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2.2. Mixture MDLs

By Hansen and Yu (2001), the mixture MDL is defined to be based on the
marginal likelihood f(X | M):

L(X | M)= − log{f(X | M)}, where f(X | M)=

∫
Θ

f(X | θ,M)π(θ | M)dθ

averages the likelihood f(X | θ,M) over θ under its prior density π(θ | M). If
this prior distribution depends on an unknown hyper-parameter ψ, then a two-
part MDL can be used to account for the additional cost needed to transmit ψ.
In this case, the overall mixture MDL, for any

√
N -consistent estimator of ψ, is

L(X, ψ̂ | M) = − log

{∫
Θ

f(X | θ,M)π(θ | ψ̂,M)dθ

}
+ L(ψ̂ | M).

The mixture MDL for the model M is thus L(X, ψ̂,M) = L(X, ψ̂ | M) +
L(M), which is related to empirical Bayes (EB) approaches (Carlin and Louis,
2000). If the prior probabilities of two models are the same, i.e., π(M1) =
π(M2), and the hyper-parameter ψ is transmitted under the uniform encoder
π(ψ | Mj) ∝ 1 for j = 1, 2, then the difference of the two mixture MDLs,

L(X, ψ̂1,M1) − L(X, ψ̂2,M2), equals the logarithm of their Bayes factor
BFM2:M1 (Kass and Raftery, 1995). Similarly, in EB settings, while the es-

timator ψ̂ is often chosen to maximize the marginal likelihood f(X | ψ,M),
other consistent estimators (moments for example) can be used.

3. Bayesian Minimum Description Lengths for a Univariate Time
Series

Consider a univariate time series X1:N = (X1, . . . , XN )′ with a seasonal mean
cycle with fundamental period T . For monthly data, T = 12. A model with
autoregressive errors describing this situation is

Xt = sv(t) + μr(t) + εt, εt =

p∑
j=1

φjεt−j + Zt. (3)

Here, v(t) = t − T �(t − 1)/T � ∈ {1, 2, . . . , T} is the season corresponding to
time t, where �x� is the largest integer less than or equal to x. The seasonal
means s = (s1, . . . , sT )

′ are unknown. The errors {εt}Nt=1 are a causal zero mean
AR process. Here, we assume that the AR order p is known; if unsure, picking
a slightly larger value for p is advised. The AR coefficients φ = (φ1, . . . , φp)

′

and the white noise variance Var(Zt) = σ2 are assumed unknown. For like-
lihood computations, following Davis, Lee and Rodriguez-Yam (2006), white
noises are assumed iid normal. This can be justified as a quasi-likelihood ap-
proach; furthermore, in climate applications, monthly averaged temperatures
are approximately normally distributed (Wilks, 2011).
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Suppose a multiple changepoint configuration (i.e., a model) contains m
changepoints at the times τ1 < · · · < τm ≤ N . These times partition the ob-
servations {1, . . . , N} into m+ 1 distinct regimes (segments), where the series’
overall mean (neglecting its seasonal component), μr(t), changes across regimes.
To avoid trite work with edge effects of the autoregression, we assume that no
changepoints occur during the first p observations. For notation, set τ0 = 1
and τm+1 = N + 1. The regime indicator r(t) in (3) satisfies r(t) = r when
τr−1 ≤ t < τr. To ensure identifiability, μ1 is set to zero; hence, E(Xt) = sv(t)
when t lies in the first regime. The other regime means μ = (μ2, . . . , μm+1)

′ are
unknown.

Following Li and Lund (2015), the multiple changepoint configuration (m; τ )
is reformulated as an (N − p)-dimensional vector of zero/one indicators: η =
(ηp+1, . . . , ηN )′. Here, ηt = 1 indicates that time t is a changepoint in this model;
ηt = 0 means that time t is not a changepoint. The total number of changepoints
in model η is thus m =

∑N
t=p+1 ηt.

Our idea is to apply the mixture MDL to the continuous parameter μ, whose
dimension varies across models, and use the two-part MDL for the parameters
s,σ2,φ, and the model η. In the rest of this section, subsection 3.1 introduces
our priors on η and μ, subsection 3.2 derives the BMDL formula (17), and
subsection 3.3 concludes with computational strategies. Asymptotic studies are
included in section 7.

3.1. Prior specifications

Our prior distribution for the changepoint model η assumes that, in the absence
of metadata, each time t has an equal probability ρ of being a changepoint,
independently of all other times, i.e.,

ηt
iid∼ Bernoulli(ρ), t = p+ 1, . . . , N. (4)

This independent Bernoulli prior has been used in previous Bayesian multiple
changepoint detection works (Chernoff and Zacks, 1964; Yao, 1984; Barry and
Hartigan, 1993). From a hidden Markov perspective, this prior is equivalent to
τr | τr−1 ∼ Geometric(ρ) for r = 1, . . . ,m (Fearnhead and Vasileiou, 2009), and
thus is a special case of the negative Binomial prior (Hannart and Naveau, 2012).
The uniform prior π(η) ∝ 1 adopted in Du, Kao and Kou (2016) is a special
case of the Bernoulli prior with ρ = 0.5. For applications where knowledge
beyond metadata is unavailable, an iid prior on {ηt} seems reasonable. In other
applications, π(η) is allowed to have different success probabilities in different
regimes (Chib, 1998); correlation across different changepoint times can also be
achieved using Ising priors (Li and Zhang, 2010).

To account for uncertainty in the success probability ρ, a hyper-prior is placed
on it. Barry and Hartigan (1993) let ρ have a uniform prior on the interval (0, ρ0),
where ρ0 < 1. For additional flexibility, we use the Beta distribution

ρ ∼ Beta(a, b), (5)
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where a, b > 0 are fixed hyper-parameters. The Beta-Binomial hierarchical priors
in (4) and (5) are widely used in Bayesian model selection (Scott and Berger,
2010), and have been adopted to detect changepoints (Giordani and Kohn, 2008;
Li and Lund, 2015). Due to conjugacy, the marginal prior density of η has the
following closed form, with β(·, ·) denoting the Beta function:

π(η) =

∫ 1

0

π(ρ)
N∏

t=p+1

π(ηt | ρ)dρ =
β(a+m, b+N − p−m)

β(a, b)
. (6)

Note that here, the Beta-Binomial density in (6) depends on η through m,
the total number of changepoints in the multiple changepoint model η. In com-
mon changepoint detection problems, changepoints are usually relatively sparse
(m 
 N). Suppose our prior belief on ρ reflects this sparsity assumption, say,
E(ρ) = a/(a + b) ≤ 1/2, i.e., a ≤ b. Then (6) decreases as m increases until m
reaches a relatively large value (at least (N − p)/2). Thus, the Beta-Binomial
prior can be viewed as a prior preference on smaller models, or equivalently, a
penalty on the number of changepoints.

For hyper-parameter choices, an objective Bayesian option (Girón, Moreno

and Casella, 2007) is a = b = 1. In this case, π(η) =
{(

N−p
m

)
(N − p+ 1)

}−1

,

which implies that marginally, the number of changepoints m has a uniform
prior on the set {0, 1, . . . , N − p}, and all models containing the same number
of changepoints have the same prior probabilities. The Beta-Binomial prior can
be tuned to accommodate subjective knowledge from domain experts. For tem-
perature homogenization, Mitchell (1953) estimates an average of six station
relocations and gauge changes per century in United States temperature series;
this long-term rate is 0.005 changepoints per month and can be produced with
a = 1 and b = 199; with these parameters, E(ρ) = a/(a+ b) = 0.005.

This prior is now modified to accommodate metadata. Suppose that during
the times {p + 1, . . . , N}, there are N (2) documented times (times listed in
the metadata) and N (1) = N − p − N (2) undocumented times. For notation,
all quantities superscripted with (1) refer to undocumented times; quantities
superscripted with (2) refer to documented times. Following Li and Lund (2015),
we posit that the undocumented times have a Beta-Binomial(a, b(1)) prior, and
independently, the documented times have a Beta-Binomial(a, b(2)) prior. To
make the metadata times more likely to induce true mean shifts, we impose
b(1) > b(2) so that

E
(
ρ(1)

)
=

a

a+ b(1)
<

a

a+ b(2)
= E

(
ρ(2)

)
.

For monthly data, default values are a = 1, b(1) = 239, and b(2) = 47, making
E(ρ(1)) = 0.0042, i.e., an average of one changepoint about every 20 years for
non-metadata times, and E(ρ(2)) = 0.0208, i.e., on average, one changepoint in
every 4 years for metadata times. In other words, a priori, a documented time
is roughly five times more likely to be a changepoint than an undocumented
time. For different problems, one may need to modify b(1) and b(2) to reflect
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specific domain knowledge. Our previous paper (Li and Lund, 2015) gives a
detailed sensitivity analysis on the choice of Beta-Binomial hyper-parameters.
It suggests that changepoint detection results are relatively stable under a range
of E(ρ(2))/E(ρ(1)) values. For applications that lack any subjective information,
the non-informative Beta-Binomial(1, 1) prior can serve as a default choice. In
this paper, this prior is referred to as “oBMDL”, with “o” standing for objective.
Empirical comparison will be provided in the univariate simulation examples in
Section 5.1.

Following (6) and writing Beta integrals via their Gamma function repre-
sentations, a changepoint configuration η with m(2) documented changepoints
and m(1) undocumented changepoints (m = m(1) +m(2)) has a marginal prior
density (up to a normalizing constant)

π(η) ∝
2∏

k=1

Γ
(
a+m(k)

)
Γ
(
b(k) +N (k) −m(k)

)
.

For a changepoint model with m > 0 changepoints, priors for the m-dimen-
sional regime means μ are posited to have independent normal prior distribu-
tions:

μ | σ2,η ∼ N(0, νσ2Im). (7)

Here, ν is a pre-specified non-negative parameter that is relatively large (making
the variances of the regime means large multiples of the white noise variances).
Similar to the sensitivity analysis in Du, Kao and Kou (2016), our experience
suggests that model selection results are stable under a wide range of ν values.
Our default takes ν = 5.

In fact, π(μ) can be any zero mean continuous distribution. For example,
if mean shifts are expected to be large, heavy-tailed distributions such as the
Student-t may be preferable. When μ cannot be tractably integrated out, in-
ferences can be based on Laplace approximations or posterior sampling with a
reversible-jump MCMCs (Green, 1995). Due to conjugacy under Gaussian like-
lihoods, the normal prior leads to closed form marginal likelihoods. Hence, for
computational ease in the rest of this paper, the normal regime mean priors in
(7) are used.

3.2. The BMDL expression

To derive the BMDL expression in (17), the data likelihood is first obtained.
This is then integrated over μ to obtain the mixture MDL; finally, two-part
MDLs are obtained for the rest of the parameters.

Given a changepoint model η, the sampling distribution (3) has the regression
representation

X1:N = A1:Ns+D1:Nμ+ ε1:N , (8)
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with A1:N ∈ R
N×T and D1:N ∈ R

N×m as seasonal and regime indicator matri-
ces, respectively:

[A1:N ]t,v = 1(time t is in season v), v = 1, . . . , T,

[D1:N ]t,r−1 = 1(time t is in regime r), r = 2, . . . ,m+ 1,

where 1(A) denotes the indicator of the event A. In (8), the subscript 1 : N , or
in general t1 : t2, signifies that only rows t1 through t2 are used in the quantities.
The normal white noises {Zt} in the AR process imply the distributional result
ε(p+1):N −

∑p
j=1 φjε(p+1−j):(N−j) ∼ N(0, σ2IN−p), where Ik denotes the k × k

identity matrix. Now define

X̃ = X(p+1):N −
p∑

j=1

φjX(p+1−j):(N−j), (9)

Ã=A(p+1):N −
p∑

j=1

φjA(p+1−j):(N−j), D̃=D(p+1):N −
p∑

j=1

φjD(p+1−j):(N−j),

(10)

and observe that
X̃− Ãs− D̃μ ∼ N(0, σ2IN−p). (11)

Note that all terms superscripted with ∼ depend on the unknown AR parameter
φ. To avoid AR edge effects, a likelihood conditional on the initial observations
X1:p is used. In the change of variable computations, the Jacobian |∂(X̃− Ãs−
D̃μ)/∂X(p+1):N | = 1 and the likelihood has the multivariate normal form

f
(
X(p+1):N | μ, s, σ2,φ,η

)
=
(
2πσ2

)−N−p
2 e−

1
2σ2 (X̃−Ãs−D̃μ)′(X̃−Ãs−D̃μ).

Innovation forms of the likelihood (Brockwell and Davis, 1991) can be used if
one wants a moving-average or long-memory component in {εt}.

We now obtain a BMDL for the changepoint model η. If m > 0, we first use
the mixture MDL on μ. The marginal likelihood, after integrating μ out, has
the closed form

f(X(p+1):N | s, σ2,φ,η) =

∫
Rm

f
(
X(p+1):N | μ, s, σ2,φ,η

)
π(μ | σ2,η)dμ

= (2πσ2)−
N−p

2 ν−
m
2

∣∣∣∣D̃′D̃+
Im
ν

∣∣∣∣− 1
2

e−
1

2σ2 (X̃−Ãs)′B̃(X̃−Ãs),

where the notation has

B̃ = IN−p − D̃

(
D̃′D̃+

Im
ν

)−1

D̃′. (12)

If the parameters s, σ2, and φ are known, the mixture MDL is simply
L(X(p+1):N | s, σ2,φ,η) = − log{f(X(p+1):N | s, σ2,φ,η)}.
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Under a given changepoint model η, the two-part MDL is used to quantify
the cost of transmitting the parameters s, σ2, and φ. The optimal s and σ2 that
minimize the mixture MDL have closed forms:

ŝ = argmin
s

L(X(p+1):N | s, σ2,φ,η) = (Ã′B̃Ã)−1(Ã′B̃X̃), (13)

σ̂2 = argmin
σ2

L(X(p+1):N | ŝ, σ2,φ,η)

=
1

N − p
X̃′
{
B̃− B̃Ã

(
Ã′B̃Ã

)−1

Ã′B̃

}
X̃. (14)

These estimators depend on φ; however, the φ that minimizes L(X(p+1):N |
ŝ, σ̂2,φ,η) is intractable. In general, likelihood estimators for autoregressive
models do not have closed forms. Hence, simple Yule-Walker moment estima-
tors, which are asymptotically most efficient and

√
N -consistent under the true

changepoint model, are used. There is actually little difference between moment
and likelihood estimators for autoregressions (Brockwell and Davis, 1991).

In the linear model (8), the ordinary least squares residuals are

εols1:N = (IN − P[A1:N |D1:N ])X1:N , (15)

where [A1:N |D1:N ] denotes the block matrix formed by A1:N and D1:N , and
P[A1:N |D1:N ] is the orthogonal projection matrix onto its column space. The

sample autocovariance of the residuals are γ̂(h) = N−1
∑N

t=h+1 ε
ols
t εolst−h, at lag

h = 0, 1, . . . , p. The Yule-Walker estimator of φ is φ̂ = Γ̂
−1

p γ̂p, where γ̂p =

(γ̂(1), . . . , γ̂(p))′ and Γ̂p is a p × p matrix whose (i, j)th entry is γ̂(|i − j|).
This matrix is invertible whenever the data are non-constant (Brockwell and

Davis, 1991). Next, the Yule-Walker estimator φ̂ is substituted for φ in X̃,

Ã, D̃, B̃, and σ̂2. The resulting quantities are denoted by X̂, Â, D̂, B̂, and
σ̂2, respectively. In particular, X̂ contains estimated one-step-ahead prediction
residuals (innovations).

By (2), the BMDL for transmitting the data X(p+1):N , the model η, and its
parameters is (up to a constant)

BMDL(η) = L(X(p+1):N | ŝ, σ̂2, φ̂,η) + L(ŝ, σ̂2, φ̂ | η) + L(η)

= − log
{
f(X(p+1):N | ŝ, σ̂2, φ̂,η)

}
− log {π(η)} . (16)

The second equality holds because under a uniform encoder π(s, σ2,φ) ∝ 1, the

two-part MDL L(ŝ, σ̂2, φ̂ | η) = (T+1+p) log(N−p)/2 is constant across models
and hence can be omitted. Therefore, for a model with m > 0 changepoints, its
BMDL is (up to a constant)

BMDL(η) =
N − p

2
log

(
σ̂2
)
+

m

2
log(ν) +

1

2
log

(∣∣∣∣D̂′D̂+
Im
ν

∣∣∣∣) (17)

−
2∑

k=1

log
{
Γ
(
a+m(k)

)
Γ
(
b(k) +N (k) −m(k)

)}
.
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For a model with no changepoints (m = 0), denoted by ηø, the above pro-
cedure needs modification. Since ηø does not involve μ, the mixture MDL step

can be skipped. As D has no columns, B̃ in (12) is reduced to IN−p, and hence
(14) still holds. With the convention that the determinant of a 0 × 0 matrix is

unity, log
(∣∣∣D̂′D̂+ Im/ν

∣∣∣) = 0. Therefore, (17) also holds for ηø. This resolves

the issue of evaluating log(m) at m = 0 with some existing MDL methods.

3.3. BMDL optimization

The optimal changepoint model η̂ is selected as the one with the smallest BMDL
score. However, exhaustively searching the changepoint configuration space is
formidable since the total number of admissible models, 2N−p, is extremely
large. To overcome this, genetic algorithms are used as optimization tools in
Davis, Lee and Rodriguez-Yam (2006) and Lu, Lund and Lee (2010). Genetic
algorithms efficiently explore the model space, only evaluating the penalized
likelihood at a relatively small number of promising models.

The following connection to empirical Bayes (EB) methods allow us to borrow
MCMC model search algorithms that are commonly used in Bayesian model
selection. The BMDL under model η represented in (16) is equivalent to the
negative logarithm of an EB estimator of the posterior probability of η:

pEB(η | X(p+1):N ) ∝ π(η)

∫
Rm

f
(
X(p+1):N | μ, ŝ, σ̂2, φ̂,η

)
π(μ | σ̂2,η)dμ.

As our BMDL formula (17) is tractable, Bayesian stochastic model search
algorithms can be used; see Garćıa-Donato and Mart́ınez-Beneito (2013) and the
references therein. Here, we modify the Metropolis-Hastings algorithm in George
and McCulloch (1997) by intertwining two types of proposals: a component-
wise flipping at a random location and a simple random swapping between
a changepoint and a non-changepoint. This algorithm is described in detail
in Li and Lund (2015) and can be implemented by the R package BayesMDL

(https://github.com/yingboli/BayesMDL).

4. Extensions to Multivariate Time Series

Mimicking the univariate setup, this section develops a BMDL for multivariate
time series. While the details are illustrated for bivariate series, similar exten-
sions apply to multivariate series of more than two components. The BMDL
penalty constructed here allows changepoints to occur in one or both compo-
nent series. Furthermore, it can accommodate domain experts’ knowledge that
encourage concurrent changes, i.e., changes affecting both series at the same
time.

In temperature homogenization, to model Tmax and Tmin series jointly, both
series are concatenated via X1:N = (X′

1:N,1,X
′
1:N,2)

′ ∈ R
2N , where X1:N,i =

(X1,i, . . . , XN,i)
′ is the record for Tmax (i = 1) or Tmin (i = 2). Again, each

https://github.com/yingboli/BayesMDL
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time in {p+1, . . . , N} is allowed to be a changepoint in either the Tmax or Tmin
series, or both. A multiple changepoint configuration is denoted by η = (η′

1,η
′
2)

′,
where ηi = (ηp+1,i, . . . , ηN,i)

′ ∈ {0, 1}N−p is defined as in the univariate case.

Given a bivariate changepoint model η, series i has mi =
∑N

t=p+1 ηt,i change-
points. As in the univariate case, the seasonal means are denoted by si =
(s1,i, . . . , sT,i)

′ ∈ R
T ; regime means are denoted by μi = (μ2,i, . . . , μmi+1,i)

′ ∈
R

mi . The seasonal and regime indicator matrices A1:N,i ∈ R
N×T and D1:N,i ∈

R
N×mi are constructed analogously to their univariate counterparts.
The regression representation (8) holds for the bivariate case, with s =

(s′1, s
′
2)

′, μ = (μ′
1,μ

′
2)

′, ε1:N = (ε′1:N,1, ε
′
1:N,2)

′ denoting the concatenated sea-
sonal means, regime means, and regression errors, respectively. The seasonal
indicator matrix has the block diagonal form A1:N = diag (A1:N,1,A1:N,2), and
similarly the regime indicator matrix D1:N = diag (D1:N,1,D1:N,2). Note that
the seasonal indicators for Tmax and Tmin coincide, i.e., A1:N,1 = A1:N,2, while
D1:N,1 and D1:N,2 differ unless all changepoints are concurrent.

As Tmax and Tmin temperature series tend to fluctuate about the seasonal
mean in tandem (positive correlation), the errors {εt = (εt,1, εt,2)

′} need to be
correlated across components. For this, a vector autoregressive model (VAR) of
order p is employed:

εt =

p∑
j=1

Φjεt−j + Zt, Cov(Zt) = Σ,

where Φ1, . . . ,Φp are 2 × 2 VAR coefficient matrices. The VAR model allows
for correlation in time and between components.

As (11) holds after replacing σ2IN−p withΣ⊗IN−p, the likelihood ofX(p+1):N ,
conditional on the initial observations X1:p, is (up to a multiplicative constant)

f(X(p+1):N | s,μ,Σ,Φ1:p,η) ∝ |Σ|−
N−p

2 e−
1
2 (X̃−Ãs−D̃μ)′(Σ−1⊗IN−p)(X̃−Ãs−D̃μ).

Here, ⊗ denotes a Kronecker product and the terms X̃, Ã, D̃ are modified by
replacing φj with Φj ⊗ IN−p in (9) and (10), for j = 1, . . . , p.

4.1. Prior specifications

For t = p + 1, . . . , N , the indicator ηt = (ηt,1, ηt,2)
′ takes values in one of the

four categories: (1, 1)′, mean shifts in both Tmax and Tmin; (1, 0)′, a mean
shift in Tmax but not in Tmin; (0, 1)′, a mean shift in Tmin but not in Tmax;
and (0, 0)′, no mean shifts. As a natural extension of the Beta-Binomial prior,
a Dirichlet-Multinomial prior is put on ηt:

ηt | ρ
iid∼ Multinomial(1;ρ), ρ ∼ Dirichlet(α),

where ρ = (ρ1, . . . , ρ4)
′ are the probabilities of the four categories satisfying∑4

�=1 ρ� = 1, and α = (α1, . . . , α4)
′ are the Dirichlet parameters with α� > 0
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for each � = 1, . . . , 4. Suppose that the changepoint configuration η has m�

times in category �. Due to Dirichlet-multinomial conjugacy, the marginal prior
of η has a closed form after integrating out ρ(1) and ρ(2):

π(η) ∝
2∏

k=1

4∏
�=1

Γ
(
α
(k)
� +m

(k)
�

)
.

Again, superscripts (1) and (2) refer to non-metadata and metadata related
terms, respectively.

The choice of the hyper-parameter α should reflect our belief that concur-
rent changepoints are more likely to occur than when the component series are
independent. The ratios between the prior expectations satisfy E(ρ1) : E(ρ2) :
E(ρ3) : E(ρ4) = α1 : α2 : α3 : α4. If changepoints in the Tmax and Tmin series
at time t are independent events, then ρ1 = P (ηt,1 = 1, ηt,2 = 1) = P (ηt,1 =
1)P (ηt,2 = 1) = (ρ1 + ρ2)(ρ1 + ρ3). To encourage concurrent shifts, α is hence
chosen such that

E(ρ1) =
α1∑4
�=1 α�

>
α1 + α2∑4

�=1 α�

α1 + α3∑4
�=1 α�

= E(ρ1 + ρ2)E(ρ1 + ρ3).

In addition, the prior probability of not obtaining a changepoint at a time is
set to its counterpart in the univariate case, i.e., α4/

∑4
�=1 α� = b/(a + b).

After consulting climatologists, default hyper-parameters are set to α(1) =
(3/7, 2/7, 2/7, 239)

′
and α(2) = (3/7, 2/7, 2/7, 47)

′
for monthly data.

To obtain the mixture MDL in a closed form, for a bivariate model with
m = m1 +m2 > 0 changepoints, the regime means μ again are taken to have
independent normal priors

μ | Σ,η ∼ N(0,Ω), Ω = ν diag

⎛⎜⎝σ2
1 , . . . , σ

2
1︸ ︷︷ ︸

m1

, σ2
2 , . . . , σ

2
2︸ ︷︷ ︸

m2

⎞⎟⎠ ,

where σ2
1 and σ2

2 are the diagonal entries of the white noise covariance Σ.

4.2. The bivariate BMDL

For a model η with m > 0, the marginal likelihood, after integrating μ out, has
a closed form:

f(X(p+1):N | s,Σ,Φ1:p,η)

∝ |Σ|−
N−p

2 |Ω|−
1
2

∣∣∣D̃′(Σ−1 ⊗ IN−p)D̃+Ω−1
∣∣∣− 1

2

e−
1
2 (X̃−Ãs)′B̃(X̃−Ãs),

where B̃ is modified to

B̃ = (Σ−1 ⊗ IN−p)

×
[
I2(N−p) − D̃

{
D̃′(Σ−1 ⊗ IN−p)D̃+Ω−1

}−1

D̃′(Σ−1 ⊗ IN−p)

]
.
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The maximum marginal likelihood estimator s̃ is unaltered from (13). However,
after plugging ŝ back into the likelihood, the maximum likelihood estimators of
Σ and Φ1, . . . ,Φp do not have closed forms. Again, Yule-Walker estimators are
used.

To find Yule-Walker estimators for the time series regression (8), generalized

least squares residuals of the mean fit, denoted by εgls1:N = ((εgls1:N,1)
′, (εgls1:N,2)

′)′ ∈
R

2N , are computed via

εgls1:N =

[
I2N −G

{
G′

(
Γ̂
ols
(0)−1 ⊗ IN

)
G
}−1

G′
(
Γ̂
ols
(0)−1 ⊗ IN

)]
X1:N ,

where

G =

[
A1:N,1 D1:N,1 0 0

0 0 A1:N,2 D1:N,2

]
.

Here, Γ̂
ols
(0) = N−1

∑N
t=1 ε

ols
t (εolst )′ is a 2 × 2 covariance matrix of the ordi-

nary (unweighted) least squares residuals εolst = (εolst,1, ε
ols
t,2)

′, where εolst,1 and εolst,2

are computed analogously to (15) with the design matrices [A1:N,1|D1:N,1] and
[A1:N,2|D1:N,2], respectively. The sample autocovariances at lag h = 0, 1, . . . , p

of the generalized least squares residuals εglst = (εglst,1, ε
gls
t,2)

′, t = 1, . . . , N are

computed as Γ̂(h) = N−1
∑N

t=h+1 ε
gls
t (εglst−h)

′. The Yule-Walker estimators thus
obey

(
Φ̂1, . . . , Φ̂p

)
=
(
Γ̂(1), . . . , Γ̂(p)

)⎡⎢⎢⎢⎣
Γ̂(0) Γ̂(1) · · · Γ̂(p− 1)

Γ̂(1)′ Γ̂(0) · · · Γ̂(p− 2)
...

...
. . .

...

Γ̂(p− 1)′ Γ̂(p− 2)′ · · · Γ̂(0)

⎤⎥⎥⎥⎦
−1

and Σ̂ = Γ̂(0)−
∑p

j=1 Φ̂jΓ̂(j)
′.

After plugging Σ̂ and Φ̂1, . . . , Φ̂p back into the marginal likelihood, the

terms X̃, Ã, D̃, B̃, and Ω, which depend on Σ and Φ1, · · · ,Φp, are denoted

by X̂, Â, D̂, B̂, Ω̂, respectively. Hence, the Bayesian MDL for η is (up to a con-
stant)

BMDL(η)

=
N − p

2
log

(∣∣∣Σ̂∣∣∣)+
1

2

2∑
i=1

mi log(νσ̂
2
i ) +

1

2
log

(∣∣∣D̂′(Σ̂
−1

⊗ IN−p)D̂+ Ω̂
−1
∣∣∣)

+
1

2
X̂′
{
B̂− B̂Â

(
Â′B̂Â

)−1

Â′B̂

}
X̂−

2∑
k=1

4∑
�=1

log
{
Γ
(
α
(k)
� +m

(k)
�

)}
.

Under the null model ηø, since B̂ = Σ̂
−1

⊗ IN−p, with the convention that the
determinant of a 0× 0 matrix is unity, the above BMDL still holds.
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5. Simulation Studies

This section studies changepoint detection performance under finite samples
via simulation. Our simulation parameters are selected to roughly resemble the
bivariate Tuscaloosa data, which will be studied in Section 6. Specifically, the
bivariate error series {εt} is chosen to follow a zero mean Gaussian VAR model
with p = 3. The VAR parameters are taken as

Φ1 =

(
0.2 0.02
0.02 0.2

)
,Φ2 =

(
0.1 0.01
0.01 0.1

)
,Φ3 =

(
0.05 0.005
0.005 0.05

)
,

and

Σ =

(
9 2
2 9

)
.

In each of 1000 independent runs, 50 year monthly Tmax and Tmin series
(N = 600) are simulated with m = 3 changepoints in each series. For the Tmax
series, mean shifts are placed at the times 150, 300, and 450. The regime means
have form μ1 = (0,Δ, 2Δ, 3Δ)′ where Δ > 0 will be varied. For the Tmin
series, mean shifts are placed at times 150, 300, and 375. The regime means
are μ2 = (0,−Δ,Δ, 0)′. Here, Tmax has monotonic “up, up, up” shifts of equal
shift magnitudes; Tmin shifts in a “down, up, down” fashion and the second
shift is twice as large as the other two shifts. The shifts at times 150 and 300
are concurrent in both series.

Seasonal means are set to s = (0, 3, 10, 18, 26, 33, 36, 36, 31, 20, 8, 2)′ in both
series. Seasonal mean parameters are not critical, but the Δ parameter control-
ling the mean shift size is. Our detection powers will be reported under different
signal to noise ratios, measured by κ = Δ/σ. Our study examines κ ∈ {1, 1.5, 2},
with σ = 3 agreeing with the diagonal elements of Σ. For metadata, a record
containing four documented changes at the times 75, 150, 250, and 550 is posited.
Among the documented times, only time 150 is a true changepoint.

A simulated series with κ = 1.5 is shown in Figure 1. Figure 7 in the Appendix
shows the same series after subtraction of sample monthly means.

5.1. Univariate simulations

First, the Tmax and Tmin series are analyzed separately, each fitted by univari-
ate BMDL methods with default parameters, once with the fictitious metadata
and once without metadata. We also compare various methods without meta-
data, including a BMDL under the objective Bayes parameters a = b = 1
(denoted by oBMDL), the automatic MDL (denoted by MDL), and the BIC.
The MDL obtained when the automatic code length rules in Davis, Lee and
Rodriguez-Yam (2006) are applied to our multiple mean shift problem:

MDL(η) =
N − p

2
log

(
σ̂2
ν=∞

)
+

1

2

m+1∑
r=2

log(Nr)+log(m+1)+(m+1) log(N−p).

(18)
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Fig 1. A simulated dataset with the signal to noise ratio κ = 1.5, which has three changepoints
in Tmax (top panel) and three changepoints in Tmin (bottom panel). Vertical dashed lines
demarcate the true changepoint times.

The first term in (18) approximates the negative logarithm of the maximum
likelihood, where the Yule-Walker estimator of σ2 is used, which equals (14)

with ν = ∞ after φ is replaced by φ̂. This estimator is denoted by σ̂2
ν=∞

here. The other terms in (18) are the two-part MDLs for the regime means
μ2, . . . , μm+1, the number of changepoints m (the original penalty of log(m) is
undefined for the null model with m = 0; the ad-hoc fix to this simply uses
m + 1 in the logarithm), and the regime lengths N1, . . . , Nm+1, respectively.
The two-part MDLs of the global parameters s, σ2, and φ are constants and
hence omitted. An MDL for the AR order p is not needed as p is tacitly assumed
known. BIC, up to a constant, is

BIC(η) =
N − p

2
log

(
σ̂2
ν=∞

)
+m log(N − p).

In each fit, an MCMC chain of 100,000 iterations is generated. The optimal
multiple changepoint model is taken as the one that minimizes the objective
function.

For Tmax series, Table 1 reports empirical detection percentages, including
true positive rates at the exact times of changepoints and average false positive
rates at non-changepoint times, along with estimated number of changepoints
m̂ and its standard error. When metadata is ignored, since the three shifts are
of equal size Δ, their detection rates are similar. False detection rates are very
low; even when κ = 1, on average, a non-changepoint is flagged 0.43% of the
time or less.
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Table 1

Univariate results for Tmax, aggregated from 1000 simulated datasets. The detection rates
for the documented change when metadata is used are in bold. TP refers to true positive,

and FP false positive.

κ
Meta-

Method
TP detection (%) Average FP

m̂ (se)
data t = 150 t = 300 t = 450 detection (%)
yes BMDL 58.8 16.8 14.5 0.29 2.65 (0.56)
no BMDL 15.4 16.3 16.4 0.36 2.61 (0.61)

1.0 no oBMDL 14.4 16.9 16.1 0.37 2.68 (0.59)
no MDL 14.9 17.2 16.2 0.36 2.64 (0.62)
no BIC 17.0 17.4 18.3 0.43 3.07 (0.54)
yes BMDL 75.7 41.7 37.9 0.25 3.02 (0.13)
no BMDL 36.3 40.8 37.1 0.31 3.02 (0.13)

1.5 no oBMDL 36.5 41.3 37.2 0.31 3.03 (0.17)
no MDL 37.6 41.3 37.0 0.31 3.02 (0.15)
no BIC 37.0 40.2 36.3 0.33 3.12 (0.38)
yes BMDL 84.1 59.3 57.6 0.17 3.02 (0.14)
no BMDL 54.2 59.7 57.2 0.22 3.02 (0.15)

2.0 no oBMDL 54.4 59.4 57.3 0.22 3.03 (0.18)
no MDL 54.7 59.4 58.0 0.22 3.02 (0.16)
no BIC 53.4 59.1 56.9 0.24 3.11 (0.36)

Among different methods without metadata, detection rates of true change-
points are similar, while BIC flags slightly more false positives than MDL-based
methods (BMDL, oBMDL, and MDL). When κ = 1, the number of changepoints
m = 3 is underestimated by the MDL-based methods and better estimated by
BIC penalties; when κ = 1.5 and 2, m is better estimated by the MDL-based
methods, and overestimated by BIC. Overall, BIC tends to favor models with
more changepoints than the MDL-based methods. As suggested by Theorem 3
below, the BMDL performs similarly to the automatic MDL.

Interestingly, without metadata, the BMDL under the default parameters
a = 1 and b = 239 and the objective choices a = b = 1 perform similarly.
Figure 8 in the Appendix reveals that as functions of m, the code lengths
L(η) = − log{π(η)} under BMDL and oBMDL have similar shapes, with a
nearly constant difference over the region where m is small. In this case, if
knowledge of changepoint frequency is not available, a BMDL can still be used
with objective parameters.

Metadata use substantially increases detection power for the BMDL. In Fig-
ure 2, the true documented change at time 150 is detected 75.7% of the time
when metadata is used, more than twice as high (36.3%) when metadata is es-
chewed. Moreover, times near the changepoint at time 150 are less likely to be
erroneously flagged as changepoints. Our prior belief that metadata times are
more likely to be changepoints is especially important when the mean shift is
small: when κ = 1, using metadata increases the detection rate of the time 150
changepoint from 15.4% to 58.8%. For false positives, Figure 2 shows that using
metadata does not increase false detection rates at the documented times 75,
250, and 550 (where no shifts occur). This suggests that the prior distribution
does not “overwhelm” the data. Table 1 shows that average false positive rates
even drop after using metadata.
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Fig 2. Detection times and percentages of changepoints in Tmax series using univariate
BMDL. The top panel ignores the four metadata times; the bottom panel uses the metadata
(metadata times are marked as crosses on the axis). Numerical percentages on the graphic
are for detection at “their exact times”. The results are aggregated from 1000 independent
simulated datasets with κ = 1.5.

Table 2

Univariate results for Tmin, aggregated from 1000 simulated datasets. Detection rates for
the documented change when metadata is used are in bold. TP refers to true positive, and

FP false positive.

κ
Meta-

Method
TP detection (%) Average FP

m̂ (se)
data t = 150 t = 300 t = 375 detection (%)
yes BMDL 62.0 53.5 14.3 0.23 2.69 (0.77)
no BMDL 18.0 52.4 14.1 0.30 2.63 (0.86)

1.0 no oBMDL 18.7 54.9 14.6 0.31 2.76 (0.71)
no MDL 17.4 50.5 13.6 0.28 2.50 (0.99)
no BIC 19.5 55.0 15.8 0.36 3.07 (0.52)
yes BMDL 77.3 84.4 38.2 0.17 3.01 (0.15)
no BMDL 37.4 84.7 39.5 0.24 3.02 (0.17)

1.5 no oBMDL 37.5 84.3 38.9 0.24 3.03 (0.20)
no MDL 37.2 84.3 38.6 0.24 3.01 (0.15)
no BIC 36.5 83.3 38.0 0.26 3.13 (0.44)
yes BMDL 85.2 95.4 56.1 0.11 3.01 (0.13)
no BMDL 58.2 95.4 56.4 0.15 3.02 (0.13)

2.0 no oBMDL 58.2 95.2 56.5 0.16 3.03 (0.18)
no MDL 58.0 95.5 56.9 0.15 3.01 (0.12)
no BIC 57.7 95.5 55.7 0.17 3.12 (0.43)

For Tmin series, the non-monotonic shift aspect (down, up, down) that trou-
bles some at most one change (AMOC) binary segmentation approaches (Li
and Lund, 2012) is well handled by all multiple changepoint detection methods
examined. Table 2 shows that when metadata is ignored, the larger shift at time
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300 is more easily detected than the two smaller shifts at times 150 and 375.
When metadata is used, the detection rate of the time 150 shift becomes com-
parable to the detection rate of time 300 shift, which is twice as large in size,
but is not a metadata time. False positive rates are uniformly low, and m is
well-estimated by MDL-based methods when κ is not too small. Again, without
metadata, the MDL-based methods are similar, while BIC tends to favor models
with larger m.

5.2. Bivariate simulations

Since the BMDL is flexible enough to handle non-concurrent shifts for bivariate
series, we now apply it to Tmax and Tmin series jointly. Each bivariate series is
fitted by an MCMC chain of 50,000 iterations, once without metadata, and once
with metadata. Metadata impacts are similar to the univariate case, increasing
detection of true mean shifts at metadata times and also slightly decreasing
average false positive rates (see Tables 3 and 4). Figure 3 shows bivariate de-
tection rates with metadata when κ = 1.5. For the non-concurrent shift times
at 375 and 450, detection rates for the component series are very different; in
most runs, concurrent shifts are not erroneously signaled.

While concurrent shifts are not always the case, they are believed to be
more likely in our parameter elicitation settings. Compared to the univariate
BMDL, the bivariate method enhances detection power of concurrent change-
points. When κ = 1.5, at time 150, where Tmax (Tmin) shifts Δ (−Δ), the

Table 3

Bivariate results for Tmax by BMDL, aggregated from 1000 simulated datasets. TP refers
to true positive, and FP false positive.

κ
Meta- TP detection (%) FP detection (%)

m̂ (se)
data t = 150 t = 300 t = 450 t = 375 average

1.0
yes 60.7 54.5 11.5 6.8 0.31 3.12 (0.45)
no 36.5 55.2 11.4 8.3 0.36 3.19 (0.48)

1.5
yes 81.1 82.2 34.2 7.3 0.20 3.18 (0.43)
no 66.7 82.9 33.9 10.8 0.24 3.29 (0.47)

2.0
yes 92.1 93.5 55.9 3.7 0.11 3.07 (0.28)
no 84.7 94.8 55.6 6.2 0.13 3.13 (0.35)

Table 4

Bivariate results for Tmin by BMDL, aggregated from 1000 simulated datasets. TP refers to
true positive, and FP false positive.

κ
Meta- TP detection (%) FP detection (%)

m̂ (se)
data t = 150 t = 300 t = 375 t = 450 average

1.0
yes 60.1 54.9 9.5 8.7 0.31 3.10 (0.57)
no 36.2 55.3 10.2 9.6 0.36 3.17 (0.55)

1.5
yes 81.2 83.0 33.0 15.2 0.24 3.38 (0.54)
no 66.4 83.4 34.2 21.3 0.30 3.61 (0.54)

2.0
yes 92.0 94.8 57.8 16.2 0.14 3.28 (0.46)
no 84.8 95.1 54.9 32.1 0.21 3.59 (0.53)
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Fig 3. Detection percentages of Tmax (top panel) and Tmin (bottom panel) using bivariate
BMDL methods with metadata (metadata times are marked as crosses on the axis). Numerical
percentages on the graphic are for detection at “their exact times”. The results are aggregated
from 1000 independent simulated datasets with κ = 1.5.

bivariate BMDL increases the univariate detection rates from both series from
about 77% to above 81%. At time 300, where Tmax (Tmin) shifts by Δ (2Δ),
the detection rate increases from 41.1% to 82.2% for Tmax, while it remains
roughly the same for Tmin. Tables 3 and 4 show that detection power gains un-
der the bivariate approach are greater for small signals κ = 1, without metadata.
An interesting phenomenon is observed: bivariate BMDL improves univariate
methods more when the concurrent shifts move the series in opposite direc-
tions than in the same direction (detection rates at time 300 do not increase
for Tmin). Because Tmax and Tmin are positively correlated series, concurrent
shifts in the same direction may be misattributed to positively correlated errors;
this cannot happen for shifts in opposite directions.

Overall, while bivariate detection does not induce more false positives, it
tends to flag more false positives at locations where the mean in the other
series shifts. Figure 3 shows that at time 375, a changepoint time in Tmin but
not in Tmax, a false detection rate of 7.3% for Tmax is obtained. At time
450, a changepoint in Tmax but not Tmin, a false detection rate of 15.2%
is obtained for Tmin. These false positive rates slightly degrade inferences at
nearby changepoints; for example, at time 450 for Tmax and time 375 for Tmin,
detection rates are 34.2% and 33.0%, respectively, slightly lower than the 37.9%
and 38.2% reported in the univariate case. Finally, Tables 3 and 4 show that the
bivariate approach tends to overestimate m, which differs from the univariate
case.
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Fig 4. Tuscaloosa monthly Tmax (top panel) and Tmin (bottom panel) series. Metadata times
are marked with crosses on the axis. Vertical dashed lines show estimated changepoint times
from bivariate BMDL with metadata.

6. The Tuscaloosa Data

Monthly Tmax and Tmin series from Tuscaloosa, Alabama (the target station)
over the 114 year period January, 1901 – December, 2014 are plotted in Figure
4. Lu, Lund and Lee (2010) study annually averaged values of this series from
1901-2000. The Tuscaloosa metadata lists station relocations in November 1921,
March 1939, June 1956, and May 1987; November 1956 and May 1987 are listed
as instrument change times.

In this section, the Tmax and Tmin series will be analyzed from both uni-
variate and bivariate perspectives via the penalization methods of Section 5.
All parameters are set to default values; the AR order p = 2 is judged as ap-
propriate: by Figure 9 in the Appendix, almost all sample autocorrelations of
residuals fitted with p = 2 lie inside pointwise 95% confidence bands.

To ensure convergence in the MCMC search algorithm, for each fit, 50 Markov
chains are generated from different starting points, each containing 1,000,000
(univariate) or 100,000 (bivariate) iterations. Among all changepoint models
visited by the 50 Markov chains, the one with the smallest BMDL is reported
as the optimal model.

6.1. Univariate fits

The top half of Table 5 displays estimated changepoints for the univariate fits.
When metadata is ignored, all methods (BMDL, oBMDL, MDL, and BIC) es-
timate the same optimal changepoint configuration: Tmax has two estimated
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Table 5

Estimated changepoints for the Tuscaloosa data.

Metadata Series Estimated changepoints
Univariate

yes
Tmax 1956 Nov, 1987 May
Tmin 1921 Nov, 1956 Jun, 1987 May

no
Tmax 1957 Mar, 1990 Jan
Tmin 1918 Feb, 1957 Jul, 1990 Jan

Bivariate

yes
Tmax 1921 Nov, 1956 Jun, 1987 May
Tmin 1921 Nov, 1956 Jun, 1987 May

no
Tmax 1918 Feb, 1957 Jul, 1988 Jul
Tmin 1918 Feb, 1957 Jul, 1988 Jul

changepoints and Tmin has three; of these, only January 1990 is a concur-
rent change. Another changepoint is approximately concurrent: March 1957 for
Tmax and July 1957 for Tmin. The 1918 changepoint flagged for Tmin is close
to the station relocation in November 1921; the station relocation in June 1956
and the equipment change in November 1956 are near the two estimated change-
points in 1957. The metadata time in May 1987 is about three years from the
concurrent changepoints flagged in January 1990. Of course, when metadata is
ignored, estimated changepoint times may not coincide (exactly) with metadata
times.

Repeating the above analysis with metadata, two changepoints are found in
Tmax and three in Tmin. All estimated changepoint times now coincide with
metadata times. Only the May 1987 changepoint is concurrent. Between Tmax
and Tmin, the two estimated changepoints in 1956 (i.e., the two metadata times
in 1956) are just a few months apart. As parameter estimates are similar with
or without metadata, only estimates for the optimal changepoint model with
metadata are reported. For Tmax, estimated regime means are (one standard
error is in parentheses) μ̂2 = −1.50 (0.24) and μ̂3 = 0.66 (0.25) (recall that

μ1 = 0); estimated AR(2) coefficients are φ̂1 = 0.21, φ̂2 = 0.05, and σ̂2 = 11.59.
For Tmin, the estimated parameters are μ̂2 = 1.76 (0.21), μ̂3 = −1.06 (0.22),

μ̂4 = 2.35 (0.24), φ̂1 = 0.18, φ̂2 = 0.05, and σ̂2 = 10.81. The concurrent May
1987 changepoint shifts both series to warmer regimes.

6.2. Bivariate fits

Both Tmax and Tmin series are now analyzed in tandem with our methods.
Three changepoints are detected in both series, with or without metadata, and
all are concurrent (see the bottom half of Table 5). Figure 4 illustrates the op-
timal bivariate BMDL changepoint configuration. When metadata is used, all
estimated changepoint times migrate to metadata times. Comparing to the uni-
variate results, the bivariate approach yields the same changepoint configuration
for Tmin; for Tmax, a new changepoint in November 1921 is flagged and the
November 1956 changepoint moves to June 1956, thus becoming a concurrent
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change. For this changepoint configuration, the estimated VAR parameters are

Φ̂1 =

(
0.21 −0.01
−0.02 0.20

)
, Φ̂2 =

(
0.06 −0.02
−0.04 0.08

)
, Σ̂ =

(
11.56 8.13
8.13 10.81

)
.

In temperature homogenization problems, the goal is often to detect (and
then adjust for) “artificial” changes. Naturally occurring climate shifts should
be left in the record if possible. Because of this, analyses often consider target
minus reference series, where a reference series is a record from a nearby station
that shares similar weather with the target station. A changepoint detection
analysis using bivariate BMDL is performed on target minus reference data,
and is included in the Appendix Section B.2.

7. Asymptotic Properties of the Univariate BMDL

Infill asymptotics, which assume regime lengths tend to infinity with the sample
size N , have been widely adopted to study consistency of multiple changepoint
detection procedures (Davis, Lee and Rodriguez-Yam, 2006; Davis and Yau,
2013; Du, Kao and Kou, 2016). Under infill asymptotics, a relative changepoint
configuration with m changepoints is denoted by λ = (λ1, . . . , λm)′, where 0 <
λ1 < · · · < λm < 1. Here, time is scaled to [0, 1] by mapping time t to t/N . For
the edges, set λ0 = 0 and λm+1 = 1. For a given N , the rth changepoint location
τr can be recovered from λ via τr = �λrN�. The length of the rth regime, Nr =
�λrN� − �λr−1N�, satisfies limN→∞ Nr/N = λr − λr−1, for r = 1, . . . ,m + 1.
For any λ, no changepoints occur in time {1, . . . , p} when N is large.

Suppose that the true relative changepoint configuration is λ0 = (λ0
1, . . . ,

λ0
m0)′, where true parameter values are superscripted with zero. Our goal is to

identify λ0 over many candidate models. In fact, for a (fixed) large integer M ,
all relative changepoint configurations in

Λ = {λ : 0 ≤ m ≤ M, min
r=1,2,...,m+1

λr − λr−1 ≥ d}

are considered, where d is a small positive constant, smaller than λ0
r − λ0

r−1 for

all r = 1, . . . ,m0+1. We assume that m0 ≤ M such that λ0 ∈ Λ and M ≤ 1/d.
Under the same assumptions, the automatic MDL for piece-wise AR processes

(Davis, Lee and Rodriguez-Yam, 2006) has been shown to consistently estimate
relative changepoint locations and model parameters (Davis and Yau, 2013).
The following two theorems show that the BMDL (17) also achieve the same
large sample consistency.

Theorem 1 (Consistency of changepoint configuration). Given the observed
time series of length N , denote the estimated relative changepoint model as

λ̂N = argmin
λ∈Λ

BMDL(λ), (19)

with m̂N = |λ̂N | changepoints. Then as N → ∞,

m̂N
P−→ m0 and λ̂N

P−→ λ0. (20)
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Furthermore, the convergence rate for each r = 1, . . . ,m0 is∣∣∣λ̂r − λ0
r

∣∣∣ = OP

(
1

N

)
. (21)

Theorem 2 (Consistency of parameter estimation). Suppose that under the
true model λ0, the true model parameters are μ0, s0, (σ2)0, and φ0. Under the

estimated relative changepoint model λ̂N in (19), the BMDL estimator for φ,

denoted by φ̂N , is given by the Yule-Walker estimator described in Section 3.2;
the BMDL estimator for s and σ2, denoted by ŝN and σ̂2

N , are given by (13)

and (14) after replacing all terms containing φ by φ̂N , respectively; the BMDL
estimator for μ is taken as its conditional posterior mean

μ̂N = E
(
μ | ŝN , σ̂2

N , λ̂N , λ̂N ,X1:N

)
=

(
D̂′D̂+

Im
ν

)−1

D̂′
(
X̂− ÂŝN

)
.

(22)
Then as N → ∞, all estimators converge to their true values in probability, i.e.,

μ̂N
P−→ μ0, ŝN

P−→ s0, σ̂2
N

P−→ (σ2)0, φ̂N
P−→ φ0. (23)

Proofs of Theorem 1 and 2 are given in the Appendix Section A.4 and A.5,
respectively. The convergence rate OP (1/N) in (21) is viewed as the optimal rate
in the multiple changepoint detection literature (Niu, Hao and Zhang, 2016).
From a Bayesian model selection perspective, a model selection criterion is con-
sistent if the ratio of posterior probabilities between the true model λ0 and any
other model λ ∈ Λ tends to infinity (Clyde and George, 2004). This is equiva-
lent to the BMDL difference BMDL (λ) − BMDL

(
λ0
)
−→ ∞, which is shown

to hold in Proposition 3 and 4 in the Appendix.

To better understand our BMDL penalty, we compare it to the MDL (18).
Under a given relative changepoint model λ, (18) increases linearly with N . The
following theorem states that the difference between the BMDL in (17) and the
automatic MDL in (18) is asymptotically bounded.

Theorem 3. For any relative changepoint model λ ∈ Λ, as N → ∞, up to an
additive constant,

BMDL(λ)−MDL(λ) = OP (1).

A proof of Theorem 3 is obtained by comparing the large sample performance
of the corresponding terms in (17) and (18) via order estimates derived in the
Appendix. In the BMDL expression (17), all but the last term arise from the
mixture MDL. The term (N − p) log

(
σ̂2
)
/2 measures the model’s goodness-of-

fit. By Lemma 3 in the Appendix, σ̂2 = σ̂2
ν=∞+OP (1/N); hence, the difference

between the first terms in (17) and (18) obeys

N − p

2
log

(
σ̂2
)
− N − p

2
log

(
σ̂2
ν=∞

)
= OP (1).
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In (17), the second term is OP (1), while the third term, by Lemma 4 in the
Appendix, satisfies

1

2
log

(∣∣∣∣D̂′D̂+
Im
ν

∣∣∣∣) =
1

2

m+1∑
r=2

log(Nr) +OP (1) ,

which interestingly suggests that the mixture MDL in (17) contains a built in
penalty on μ that performs similarly to the two-part MDL penalty on μ in
(18). The last term in (17) is the penalty on the changepoint configuration λ.
With or without metadata, Lemma 5 in the Appendix suggests that this term is
asymptotically m log(N) +OP (1), which only differs from the last term in (18)
by OP (1) plus a constant.

An implication of Theorem 3 is that the model selection consistency results
in Theorem 1 also hold for the automatic MDL (18), which gives alternate
confirmation of the asymptotic results in Davis, Lee and Rodriguez-Yam (2006)
and Davis and Yau (2013). In addition, without metadata, the BMDL (17) and
the automatic MDL (18) perform similarly for large samples. Section 5 confirms
this result via simulation examples, also demonstrating that when metadata
is available and incorporated, the BMDL significantly increases changepoint
detection power and precision under finite samples.

8. Discussion

This paper developed a flexible MDL-based multiple changepoint detection ap-
proach to accommodate a priori information on changepoint times via prior
distributional specifications. Motivated by climate homogenization problems,
our Bayesian MDL (BMDL) method incorporates subjective knowledge such as
metadata in mean shift detection for univariate autoregressive processes with
seasonal means, and then extended these ideas to bivariate VAR settings while
encouraging concurrent changes in the component series. Both theoretical and
simulation studies show that without metadata, our BMDL performs similarly
to the state-of-art automatic MDL method; with metadata, the BMDL’s detec-
tion power significantly improves under finite samples. Our BMDL has several
practical advantages, including simple parameter elicitation, asymptotic consis-
tency, and efficient MCMC computation.

The approach can be extended to accommodate more flexible time series
structures, including periodic autoregressions (Hewaarachchi et al., 2017),
moving-averages, and multivariate data with more than two series. The methods
could also be tailored to categorical data. For count data, the likelihood could be
Poisson-based. With a conjugate Gamma prior on means, the resulting marginal
likelihoods will again have closed forms. There is no technical difficulty in allow-
ing a background linear trend, or even piecewise linear trends. This said, linear
trends can be mistaken for multiple mean shifts should trends be present and
ignored in the analysis (Li and Lund, 2015). In addition, with straightforward
modification, the BMDL can handle changes in variances or autocovariances.
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Non-MCMC stochastic search methods could also be used. Genetic algo-
rithms, popular in multiple changepoint MDL analyses, are also capable of
minimizing the BMDL. Pre-screening methods such as Chan, Yau and Zhang
(2014); Yau and Zhao (2016) can speed up model search algorithms. In sim-
ple settings when no global parameters exist (i.e., independent observations, no
seasonal cycle, error variance known), dynamic programming based techniques
such as the PELT (Killick, Fearnhead and Eckley, 2012) can further accelerate
computational speed.
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Appendix

Appendix includes more theoretical results and theorem proofs in Section A,
and additional simulation and data examples in Section B.

A. Theoretical Results and Proofs

In this Appendix, the asymptotic limits of the Yule-Walker estimator φ̂ and
white noise variance σ̂2 under a given changepoint model λ are investigated in
Sections A.1 and A.2, respectively. In Section A.3, the BMDL difference between
the true model λ0 and other models is studied, showing that λ0 achieves the
smallest BMDL in the limit. Last, the proofs of Theorem 1 and Theorem 2 are
given in Sections A.4 and A.5, respectively.

A.1. Asymptotic behavior of the Yule-Walker estimator of the
autoregression coefficients φ̂

For a sample size N , the observations obey the true changepoint model λ0 in
(8):

X = As+D0μ0 + ε.

Here, ε is a zero-mean causal AR(p) series. When there is no ambiguity, we
simplify the notations μ0, s0, (σ2)0,φ0 to μ, s, σ2,φ, respectively, and omit sub-
scripts such as 1 : N on the data vector and other quantities.
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For any relative changepoint model λ, suppose that η is the corresponding
changepoint configuration under the sample size N . From (15), the ordinary
least squares residual vector is

εols = (IN−P[A|D])X = (IN−P[A|D])(As+D0μ+ε) = (IN−P[A|D])(D
0μ+ε).

(24)
Here, [A|D] is the block matrix formed by A and D and PA is the orthogonal
projection onto the columns of the matrix A. The regime indicator matrix D
depends on λ and may not equal D0.

Lemma 1. For each relative changepoint configuration λ ∈ Λ and t ∈ {1, . . . ,
N}, when N is large, each entry of εols can be expressed as

εolst = δt+Wt, where δt = μr0(t)−μ̄r(t) and Wt = εt−ε̄r(t)−ε̄v(t)+ε̄. (25)

Here, the functions r0(t) and r(t) are the regimes that time t is in under the
models λ0 and λ, respectively. In regime � of the changepoint configuration λ,
μ̄� = N−1

�

∑
t∈R�

μt is the average of the true mean parameters, N� is the num-
ber of time points in this regime, and R� is the set of all time points in this
regime. Likewise, ε̄� is the average of errors in regime �, ε̄v is the average of
errors during season v, and ε̄ is the average of all errors.

Proof. Because of (24), our main objective is to study the projection residual
IN−P[A|D] under large N . Since the two column spaces spanned by (IN−PD)A
and D are perpendicular, Theorem B.45 in Christensen (2002, pp. 411) gives
P[(IN−PD)A|D] = P(IN−PD)A + PD. Projection properties give

IN − P[A|D] = IN − P[(IN−PD)A|D] = IN − P(IN−PD)A − PD. (26)

The term P(IN−PD)A can be expanded as

P(IN−PD)A = (IN − PD)A {A′(IN − PD)A}−1
A′(IN − PD). (27)

For any n ∈ N, let 0n be the n-dimensional vector containing all zero entries,
1n be the n-dimensional vector whose entries are all unity, and Jn be the n×n
matrix whose entries are all unity, i.e., Jn = 1n1

′
n.

For v ∈ {1, . . . , T}, suppose there are k(v, �) time points in regime � that are
also in season v. Since N� increases linearly with N , so does k(v, �). Moreover,
when N is large, inside each regime, the seasonal counts k(v, �) are equal except
for edge effects, i.e., k(v, �)/N� ≈ 1/T for all seasons v. To avoid trite work, we
will ignore these edge effects in the ensuing calculations. Proceeding under this
simplification, the vth column in A, denoted by Av, under the projection PD,
becomes

PDAv =

(
0′
N1

,
k(v, 2)

N2
1′
N2

, . . . ,
k(v,m+ 1)

Nm+1
1′
Nm+1

)′
=

(
0′
N1

,
1

T
1′
N−N1

)′
.

(28)
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We can now obtain an expression for A′(IN − PD)A. To do this, note that
for u,w ∈ {1, 2, . . . , T},

[A′(IN − PD)A]u,w = A′
uAw − (PDAu)

′(PDAw)

=

{
N
T 2 (T − (1− λ1)), if u = w,

− N
T 2 (1− λ1), if u �= w,

and it follows that A′(IN −PD)A = NT−2{T IT − (1− λ1)JT }. The inverse of
this matrix can be verified as

{A′(IN − PD)A}−1
=

1

N

(
T IT +

1− λ1

λ1
JT

)
.

Plugging this inverse into (27) and denoting QD = IN − PD produce

P(IN−PD)A =
1

N
(QDA)

(
T IT +

1− λ1

λ1
JT

)
(QDA)′ (29)

=
T

N
(QDA)(QDA)′ +

1− λ1

Nλ1
(QDA1T )(QDA1T )

′.

For simplicity, we assume that regime � starts with season one, ends with season
T , and contains n� full cycles. Using n = N/T =

∑m+1
r=1 nr and (28) gives

QDA =

(
1n1 ⊗ IT

1n−n1 ⊗
(
IT − 1

T JT

)) , QDA1T =

(
1N1

0N−N1

)
.

Hence, quadratic forms of these matrices are

(QDA)(QDA)′ =

(
Jn1 ⊗ IT Jn1×(n−n1) ⊗

(
IT − 1

T JT

)
J(n−n1)×n1

⊗
(
IT − 1

T JT

)
Jn−n1 ⊗

(
IT − 1

T JT

) )
,

and

(QDA1T )(QDA1T )
′ =

(
JN1 0
0 0

)
.

Plugging these into (29) produces

P(IN−PD)A =
1

N1

(
JN1 0
0 0

)
+

T

N
Jn ⊗ IT − 1

N
JN .

Since PD is block-diagonal of form

PD = diag

(
0N1×N1 ,

JN2

N2
, . . . ,

JNm+1

Nm+1

)
,

we have

IN − P[A|D] = IN − diag

(
JN1

N1
,
JN2

N2
, . . . ,

JNm+1

Nm+1

)
− T

N
Jn ⊗ IT +

1

N
JN .
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Therefore, for t ∈ {1, 2, . . . , N}, the tth entries of the vectors in (24) are

Wt = [(IN − P[A|D])ε]t = εt − ε̄r(t) − ε̄v(t) + ε̄,

and

δt = [(IN − P[A|D])D
0μ]t = μr0(t) − μ̄r(t) (30)

For any changepoint configuration λ ∈ Λ, as N → ∞, N−1
∑N

t=h+1 δtδt−h

converges to a constant that does not depend on the lag h ∈ {0, 1, . . . , p}. This
is because for any lag h, δt = δt−h for all t ∈ {1, . . . , N}, except for at most
(m + m0)h ≤ (m + m0)p times near the changepoints in λ and λ0. Hence, as

N → ∞, N−1
∑N

t=h+1 δtδt−h converges to its limit at rate O (1/N). We denote
this limit as

δ2
def
= lim

N→∞

1

N

N∑
t=1

δ2t = lim
N→∞

1

N

N∑
t=1

(
μr0(t) − μ̄r(t)

)2
, (31)

which is non-negative and depends on λ, but not on N . It is not hard to see that
δt = 0 for all t ∈ {1, . . . , N} if and only if λ contains all relative changepoints in
λ0 (denoted by λ ⊃ λ0). Therefore, δ2 = 0 only for models λ such that λ ⊃ λ0,
including λ0 itself.

Lemma 2. Under any relative changepoint configuration λ ∈ Λ (which may or
may not be the true changepoint configuration), for h ∈ {0, 1, . . . , p}, as N → ∞,
the lag h sample autocovariance

γ̂(h) =
1

N

N∑
t=h+1

εolst εolst−h

obeys

γ̂(h) = γ(h) + δ2 +OP

(
1√
N

)
, (32)

where γ(h) is the true lag h autocovariance for the AR(p) series ε.

Proof. Since the AR(p) errors are assumed causal, we may write

εt =
∞∑
j=0

ψjZt−j

for some weights {ψj}∞j=0, where
∑∞

j=0 |ψj | < ∞. Since Wt = εt− ε̄r(t)− ε̄v(t)+ ε̄,
one can write Wt as a linear combination of all Zts up to and before time N :

Wt =

∞∑
j=−∞

ψ
(t)
j Zt−j ,
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where

ψ
(t)
j = ψj −

∑
k:r(k)=r(t) ψk−t+j

Nr(t)
−
∑

l:v(l)=v(t) ψl−t+j

N/T
+

∑N
u=1 ψu−t+j

N
. (33)

Since ψj = 0 when j < 0, ψ
(t)
j = 0 if j < t−N .

The asymptotic limit of the sample autocovariances can now be derived:

γ̂(h) =
1

N

N∑
t=h+1

εolst εolst−h =
1

N

N∑
t=h+1

(Wt + δt)(Wt−h + δt−h)

=
1

N

N∑
t=h+1

(WtWt−h + δt−hWt + δtWt−h + δtδt−h). (34)

Arguing as in Proposition 7.3.5 of Brockwell and Davis (1991, pp. 232) gives

1

N

N∑
t=h+1

WtWt−h =
1

N

N∑
t=h+1

∞∑
j=−∞

ψ
(t)
j ψ

(t−h)
j−h Z2

t−j +OP

(
1√
N

)
.

In (33), since
∑∞

j=0 |ψj | < ∞, and Nr(t) = O(N) for all t ∈ {1, . . . , N}, it is not
difficult to show that there exists a positive finite constant c such that,

sup
t,j

∣∣∣ψ(t)
j − ψj

∣∣∣ ≤ c

N
.

Therefore, for each t and h,
{
ψ
(t)
j ψ

(t−h)
j−h

}∞

j=−∞
is absolutely convergent, and

∣∣∣∣∣∣
∞∑

j=−∞
ψ
(t)
j ψ

(t−h)
j−h −

∞∑
j=−∞

ψjψj−h

∣∣∣∣∣∣ = O

(
1

N

)
.

Since {Zt} is iid with variance σ2, the weak law of large numbers (WLLN) for
linear processes (Brockwell and Davis, 1991, pp. 208, Proposition 6.3.10) gives

1

N

N∑
t=h+1

WtWt−h =
1

N

N∑
t=h+1

∞∑
j=−∞

ψ
(t)
j ψ

(t−h)
j−h σ2 +OP

(
1√
N

)

=
1

N

N∑
t=h+1

∞∑
j=−∞

ψjψj−hσ
2 +OP

(
1√
N

)
.

Now using that γ(h) = σ2
∑∞

j=−∞ ψjψj−h gives

1

N

N∑
t=h+1

WtWt−h =
N − h

N
γ(h) +OP

(
1√
N

)
= γ(h) +OP

(
1√
N

)
.
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This identifies the limit of the first term in the bottom line of (34). By (33), it

is not hard to show that for each t,
{
ψ
(t)
j

}∞

j=−∞
is absolutely convergent. For

the second and third terms in (34), apply the WLLN again to see that these
terms converge to zero in probability at rate OP (1/

√
N). Hence, as N → ∞,

γ̂(h) = γ(h) +
1

N

N∑
t=h+1

δtδt−h +OP

(
1√
N

)
= γ(h) + δ2 +OP

(
1√
N

)
.

Since the Yule-Walker estimator φ̂ is formulated based on γ̂(h)’s, the follow-
ing asymptotic result follows from Lemma 2.

Proposition 1. Under any relative changepoint configuration λ ∈ Λ, the Yule-

Walker estimator φ̂ = Γ̂
−1

p γ̂p obeys

φ̂ =
(
Γp + δ2Jp

)−1 (
γp + δ21p

)
+OP

(
1√
N

)
, (35)

where γp = (γ(1), . . . , γ(p))′ and Γp is a p×p matrix with (i, j)th entry γ(|i−j|).

A.2. Asymptotic behavior of estimators of σ2

In the BMDL and (automatic) MDL formulas, estimators for σ2 are

σ̂2 =
1

N − p
X̂′
{
B̂− B̂Â

(
Â′B̂Â

)−1

Â′B̂

}
X̂, (36)

σ̂2
ν=∞ =

1

N − p
X̂′
(
IN − P[Â|D̂]

)
X̂, (37)

respectively. The following lemma shows that under any model λ, these two
estimators are asymptotically the same as the Yule-Walker estimator of σ2, i.e.,

σ̂2
YW = γ̂(0)− γ̂′

pΓ̂
−1

p γ̂p. (38)

Lemma 3. Under any changepoint configuration λ ∈ Λ, as N → ∞,

σ̂2 = σ̂2
ν=∞ +OP

(
1

N

)
, (39)

σ̂2
ν=∞ = σ̂2

YW +OP

(
1

N

)
. (40)

Proof. Under the null model λø (m = 0), the column space of D is the null

space and both σ̂2 and σ̂2
ν=∞ are (N − p)−1X̂′ (IN − PÂ

)
X̂. Since σ̂2

YW =
1
N X̂′ (IN − PÂ

)
X̂, the conclusion holds. The rest of the proof is for any model

λ that contains m ≥ 1 relative changepoints.
We first establish (39). Since φ̂ has the limit in (35), it is not hard to show

that as N tends to infinity, D̂′D̂/N and D̂′X̂/N converge in probability to a



Multiple changepoint detection with partial information 2495

m × m positive definite matrix and an m-dimensional vector, respectively. In
the prior of μ, the parameter ν is a constant; hence,

1

N
X̂′B̂X̂ =

X̂′X̂

N
− X̂′D̂

N

(
D̂′D̂

N
+

Im
Nν

)−1
D̂′X̂

N

=
X̂′X̂

N
− X̂′D̂

N

(
D̂′D̂

N

)−1
D̂′X̂

N
+OP

(
1

N

)
=

1

N
X̂′ (IN−p − PD̂

)
X̂+OP

(
1

N

)
.

Similar arguments give

1

N
X̂′B̂Â =

1

N
X̂′ (IN−p − PD̂

)
Â+OP

(
1

N

)
,

1

N
Â′B̂Â =

1

N
Â′ (IN−p − PD̂

)
Â+OP

(
1

N

)
.

Hence, the left hand side of (39) has the limit

σ̂2 =
1

N − p
X̂′
{
B̂− B̂Â

(
Â′B̂Â

)−1

Â′B̂

}
X̂

=
1

N − p
X̂′
{
IN − PD̂ − P(IN−PD̂)Â

}
X̂+OP

(
1

N

)
=

1

N − p
X̂′
(
IN−p − P[Â|D̂]

)
X̂+OP

(
1

N

)
=σ̂2

ν=∞ +OP

(
1

N

)
,

where the second to last equality follows from (26).
We now show that for any λ withm ≥ 1, (40) holds. For notational simplicity,

for any j ∈ {0, 1, . . . , p}, matrices formed from the rows of A and D are denoted
by

Aj
def
= A(p+1−j):(N−j), Dj

def
= D(p+1−j):(N−j).

Since both Â and Aj are (N − p) × T matrices and each column in Â can be
written as a linear combination of the columns in Aj , the corresponding column

spaces agree: C(Â) = C(Aj). Therefore, PÂ = PAj for all j. Now define

Δj = Dj −
D̂

1− φ̂1 − φ̂2 − · · · − φ̂p

. (41)

The denominator in (41) cannot be zero since 1−
∑p

k=1 φ̂k �= 0 for Yule-Walker
estimates when N is large (Brockwell and Davis, 1991).
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Since there are at most 2m(p+ h) non-zero entries in Δj , and none of these
entries depend on N , Δ′

jΔj = OP (1). In addition, for any N -dimensional vec-
tors α whose entries do not depend on N , α′Δj = OP (1). Using (41), we have

D̂′ (IN − PÂ

)
D̂

N
(
1−

∑p
k=1 φ̂k

)2 =
1

N
(Dj −Δj)

′ (IN − PÂ

)
(Dj −Δj)

=
D′

j

(
IN − PÂ

)
Dj

N
+OP

(
1

N

)
,

α′ (IN − PÂ

)
D̂

N
(
1−

∑p
k=1 φ̂k

) =
1

N
α′ (IN − PÂ

)
(Dj −Δj)

=
α′ (IN − PÂ

)
Dj

N
+OP

(
1

N

)
.

Therefore, for any α,β ∈ R
N whose entries do not depend on N ,

1

N
α′P(IN−PÂ)D̂

β

=
α′ (IN − PÂ

)
D̂

N
(
1−

∑p
k=1 φ̂k

)
⎧⎪⎨⎪⎩ D̂′ (IN − PÂ

)
D̂

N
(
1−

∑p
k=1 φ̂k

)2
⎫⎪⎬⎪⎭

−1

D̂′ (IN − PÂ

)
β

N
(
1−

∑p
k=1 φ̂k

)
=

1

N
α′
{(

IN − PÂ

)
Dj

(
D′

j

(
IN − PÂ

)
Dj

)−1
D′

j

(
IN − PÂ

)}
β +OP

(
1

N

)
=

1

N
α′P(IN−PÂ)Dj

β +OP

(
1

N

)
.

Hence, from (26),

1

N
α′P[Â|D̂]β =

1

N
α′P[Aj |Dj ]β +OP

(
1

N

)
. (42)

Since X̂ = X(p+1):N −
∑p

j=1 φ̂jX(p+1−j):(N−j), for any j, k ∈ {0, 1, . . . , p},
(42) shows that

1

N
X′

(p+1−j):(N−j)

(
IN − P[Â|D̂]

)
X(p+1−k):(N−k)

=
1

N

{(
IN − P[Aj |Dj ]

)
X(p+1−j):(N−j)

}′ {(
IN − P[Ak|Dk]

)
X(p+1−k):(N−k)

}
+OP

(
1

N

)
=

1

N

(
εols(p+1−j):(N−j)

)′
εols(p+1−k):(N−k) +OP

(
1

N

)
.
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Therefore, the left hand side of (40) is

1

N
X̂′
(
IN − P[Â|D̂]

)
X̂

=
1

N

⎧⎨⎩εols(p+1):N −
p∑

j=1

φ̂jε
ols
(p+1−j):(N−j)

⎫⎬⎭
′{

εols(p+1):N −
p∑

k=1

φ̂kε
ols
(p+1−k):(N−k)

}

+OP

(
1

N

)
= γ̂(0)− 2

p∑
j=1

φ̂j γ̂(j) +

p∑
j=1

p∑
k=1

φ̂j φ̂kγ̂(|j − k|) +OP

(
1

N

)

= γ̂(0)− 2γ̂′
pφ̂+ φ̂

′
Γ̂pφ̂+OP

(
1

N

)
= γ̂(0)− γ̂′

pΓ̂
−1

p γ̂p +OP

(
1

N

)
,

which is the right hand side of (40).

Under any model λ, Lemma 2 shows that the Yule-Walker estimator σ̂2
YW

converges to

f(δ2)
def
= γ(0) + δ2 −

(
γp + δ21p

)′ (
Γp + δ2Jp

)−1 (
γp + δ21p

)
, (43)

at rate OP (1/
√
N). We define the limit in (43) as f(δ2), emphasizing dependence

on δ2. By Lemma 3, the asymptotic behavior of the BMDL estimator σ̂2 can be
summarized in the following proposition.

Proposition 2. Under any relative changepoint configuration λ∈Λ, the BMDL
estimator of the white noise variance in σ̂2 (36) obeys

σ̂2 = f(δ2) +OP

(
1√
N

)
, (44)

where f(δ2) is defined in (43). Furthermore, f(δ2) strictly increases in δ2.

Proof. We show that f(δ2) strictly increases in δ2. According to (2.22) in Harville
(2008, pp. 428), for any matrices R ∈ R

r×r,S ∈ R
r×l,T ∈ R

l×l,U ∈ R
l×r with

R,U non-singular, (R + STU)−1 = R−1 − R−1S(T−1 + UR−1S)−1UR−1.
Hence, for δ2 > 0,

(
Γp + δ2Jp

)−1
=
(
Γp + 1pδ

21′
p

)−1
= Γ−1

p −Γ−1
p 1p

(
1

δ2
+ 1′

pΓ
−1
p 1p

)−1

1′
pΓ

−1
p .

(45)
For notational simplicity, denote the following scalars by

a
def
= 1′

pΓ
−1
p 1p, b

def
= 1′

pΓ
−1
p γp =

p∑
k=1

φk. (46)
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Then f(δ2) can be expanded as

f(δ2) = γ(0) + δ2 − γ′
pΓ

−1
p γp − 2bδ2 − a(δ2)2 +

b2

1
δ2 + a

+
2abδ2

1
δ2 + a

+
a2(δ2)2

1
δ2 + a

.

Differentiation of f(δ2) with respect to δ2 gives

f ′(δ2) = 1− 2b− 2aδ2 +
b2 1

(δ2)2(
1
δ2 + a

)2 +
2ab

(
2
δ2 + a

)(
1
δ2 + a

)2 +
a2
(
3 + 2aδ2

)(
1
δ2 + a

)2
=

(b− 1)2

(1 + aδ2)2
> 0.

The strict inequality follows from causality of the AR(p) errors, which implies
that b =

∑p
k=1 φk > 1. Therefore, f(δ2) is strictly increasing in δ2 and f(0) =

σ2.

A.3. Asymptotic behavior of the BMDL in (17)

Recall that under the relative changepoint model λ, its BMDL in (17) is

BMDL(λ) =
N − p

2
log

(
σ̂2
)
+

m

2
log(ν) +

1

2
log

(∣∣∣∣D̂′D̂+
Im
ν

∣∣∣∣)
−

2∑
k=1

log
{
Γ
(
a+m(k)

)
Γ
(
b(k) +N (k) −m(k)

)}
.

The next two lemmas quantify the asymptotic behavior of the third and forth
terms in the above BMDL formula, respectively.

Lemma 4. Under any changepoint model λ ∈ Λ with m > 0,

1

2
log

(∣∣∣∣D̂′D̂+
Im
ν

∣∣∣∣) =
1

2

m+1∑
r=2

log(Nr)−m log

(
1−

p∑
k=1

φ̂k

)
+OP

(
1

N

)
. (47)

Proof. By (41) and the corresponding results in the proof of Lemma 3, as N →
∞,

D̂′D̂

N
+

Im
Nν

=
D̂′D̂

N
+O

(
1

N

)
=

D′D

N
(
1−

∑p
k=1 φ̂k

)2 +OP

(
1

N

)
.

The determinant of the m×m matrix (of finite dimension) is then

log

(∣∣∣∣D̂′D̂+
Im
ν

∣∣∣∣) = m log(N) + log

(∣∣∣∣∣D̂′D̂

N
+

Im
Nν

∣∣∣∣∣
)
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= m log(N) + log

⎛⎜⎝ |D′D|

Nm
(
1−

∑p
k=1 φ̂k

)2m
⎞⎟⎠+OP

(
1

N

)

= log (|D′D|)− 2m log

(
1−

p∑
k=1

φ̂k

)
+OP

(
1

N

)

= log

(
m+1∏
r=2

Nr

)
− 2m log

(
1−

p∑
k=1

φ̂k

)
+OP

(
1

N

)
,

and (47) follows immediately.

Since Nr = O(N) for all r ∈ {2, . . . ,m + 1}, Lemma 4 implies that for any
changepoint model λ,

1

2
log

(∣∣∣∣D̂′D̂+
Im
ν

∣∣∣∣) =
m

2
log(N) +OP (1) . (48)

Lemma 5. Suppose that both the number of documented and undocumented
times increases linearly with N , i.e., N (k) = O(N), for k = 1, 2. Then under
any two changepoint models λ1,λ2 ∈ Λ, whose total number of changepoints
are m1,m2, respectively, the pairwise difference of the last term in the BMDL
formula (17) is

−
2∑

k=1

[
log

{
Γ
(
a+m

(k)
1

)
Γ
(
b(k) +N (k) −m

(k)
1

)}
− log

{
Γ
(
a+m

(k)
2

)
Γ
(
b(k) +N (k) −m

(k)
2

)}]
= (m1 −m2) log(N) +OP (1). (49)

Proof. The left hand side of (49) can be simplified to

2∑
k=1

log

⎧⎨⎩Γ
(
a+m

(k)
2

)
Γ
(
b(k) +N (k) −m

(k)
2

)
Γ
(
a+m

(k)
1

)
Γ
(
b(k) +N (k) −m

(k)
1

)
⎫⎬⎭ . (50)

Stirling’s formula quantifies the asymptotic limit of the following Gamma func-
tion ratio:

Γ
(
b(k) +N (k) −m

(k)
2

)
Γ
(
b(k) +N (k) −m

(k)
1

) ≈ em
(k)
2 −m

(k)
1

(
b(k) +N (k) −m

(k)
2 − 1

)b(k)+N(k)−m
(k)
2 −1/2

(
b(k) +N (k) −m

(k)
1 − 1

)b(k)+N(k)−m
(k)
1 −1/2

≈
(
N

e

)m
(k)
1 −m

(k)
2

.

Therefore, (50) equals (m1 −m2) logN +OP (1).
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The asymptotic behavior of the BMDL is now established in the following
two propositions. They consider the pairwise difference of BMDLs between the
true model λ0 and another changepoint model λ. Proposition 3 considers the
case where the model λ does not contain all relative changepoints in λ0, i.e.,
λ �⊃ λ0, whereas Proposition 4 considers the case where λ ⊃ λ0, i.e., λ contains
all relative changepoints in λ0, and also may have some redundant changepoints.

Proposition 3. For any relative changepoint configuration λ ∈ Λ, if λ �⊃ λ0,
then as N → ∞,

BMDL (λ) > BMDL
(
λ0
)
, BMDL (λ)− BMDL

(
λ0
)
= OP (N).

Proof. In this proof, when necessary, subscripts λ and λ0 are used to distinguish
the same terms under different models. By (48) and (49), the difference between
BMDLs in the (non-true) model λ and the true model λ0 is asymptotically

BMDL (λ)− BMDL
(
λ0
)

=
N − p

2
log

(
σ̂2
λ

σ̂2
λ0

)
+

3(m−m0)

2
log(N) +OP (1) (51)

=
N − p

2
log

⎧⎨⎩f(δ2λ) +OP

(
1√
N

)
f(0) +OP

(
1√
N

)
⎫⎬⎭+

3(m−m0)

2
log(N) +OP (1) . (52)

Here, the last equality is justified via Proposition 2. For the model λ �⊃ λ0, its
corresponding δ2λ > 0. By Proposition 2, f(δ2) strictly increases in δ2, which
shows that the leftmost logarithm term in (52) has a strictly positive limit.
Therefore, when N is large, the first term in (52) is positive, of order OP (N),
and dominates the other terms in (52).

Proposition 4. For any relative changepoint configuration λ ∈ Λ, if λ ⊃ λ0,
then as N → ∞,

BMDL (λ) > BMDL
(
λ0
)
, BMDL (λ)− BMDL

(
λ0
)
= OP (logN).

Proof. In the case where λ ⊃ λ0, (51) still holds. Moreover, since λ also contains
redundant changepoints, m > m0. Hence, for large N , the second term in (51)
is positive and of order OP (logN). To prove Proposition 4, we need to show
that the first term in (51) is bounded in probability. A sufficient condition for
this simply shows that

σ̂2
λ = σ̂2

λ0 +OP

(
1

N

)
. (53)

To establish (53), we first focus on the model λ. For notational simplicity, the
subscript λ is omitted when there is no ambiguity. Under any model λ ⊃ λ0, its
corresponding δt in (25) is zero for all t ∈ {1, . . . , N}; hence, by Lemma 1, the
lag-h sample autocovariance γ̂(h) in (34) for all h ∈ {0, 1, . . . , p} can be written
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as

γ̂(h) =
1

N

N∑
t=h+1

WtWt−h

=
1

N

N∑
t=h+1

(
εt − ε̄r(t) − ε̄v(t) + ε̄

) (
εt−h − ε̄r(t−h) − ε̄v(t−h) + ε̄

)
=

1

N

N∑
t=h+1

{
εtεt−h − εt

(
ε̄r(t−h) + ε̄v(t−h) − ε̄

)
− εt−h

(
ε̄r(t) + ε̄v(t) − ε̄

)
(54)

+
(
ε̄r(t−h) + ε̄v(t−h) − ε̄

) (
ε̄r(t) + ε̄v(t) − ε̄

)}
.

Recall that ε̄r(·), ε̄v(·), ε̄ are averages of zero-mean AR(p) errors. These aver-
ages are taken over error blocks whose size is proportional to N . By the central
limit theorem for linear processes, these averages all converge to zero in prob-
ability with order OP (1/

√
N). Since the fourth term in (54) is a sum of their

two-way interactions and quadratic forms, it is also OP (1/N). The second term
in (54) can be expanded as

1

N

N∑
t=h+1

εt
(
ε̄r(t−h) + ε̄v(t−h) − ε̄

)

=
1

N

⎧⎨⎩
m+1∑
r=1

Nr∑
t=1

εr,tε̄r +

T∑
v=1

N/T∑
t=1

εv,tε̄v +

N∑
t=1

εtε̄+OP (1)

⎫⎬⎭
=

1

N

{
m+1∑
r=1

Nr ε̄
2
r +

T∑
v=1

(
N

T

)
ε̄2v +Nε̄2

}
+OP

(
1

N

)
= OP

(
1

N

)
,

where εr,t denotes the error during time t in the rth regime, εv,t denotes the
error during time t in the vth month, and ε̄r and ε̄v are the error averages for the
rth regime and vth month, respectively. Similarly, we can show that the third
term in (54) is also OP (1/N). Therefore, under any model λ ⊃ λ0, including
λ0 itself, (54) becomes

γ̂(h) =
1

N

N∑
t=h+1

εtεt−h +OP

(
1

N

)
,

which shows that γ̂(h) under the two models λ and λ0 only changes byOP (1/N).
By (38), σ̂2

YW under the two models λ and λ0 also can only differ by OP (1/N).
By Lemma 3, the BMDL estimator σ̂2 = σ̂2

YW + OP (1/N), which establishes
(53). Thus, σ̂2 under the two models λ and λ0 only differ by OP (1/N).
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A.4. A proof of Theorem 1

To prove Theorem 1, we first establish the asymptotic consistency of λ̂N in the
case where m0 is known. Here, Λm denotes a subset of Λ formed by models that
have m relative changepoints.

Proposition 5. If m0 is known, then as N → ∞,

λ̂N = arg min
λ∈Λm0

BMDL(λ)

satisfies λ̂N
P−→ λ0.

Proof. We will show that for each subsequence Nk with Nk → ∞ as k →
∞, there is a further subsequence Nk�

with Nk�
→ ∞ as � → ∞ such that

λ̂Nk�

w−→ λ0 as � → ∞, where
w−→ denotes weak convergence, i.e., convergence

in distribution. By the results in Section 25 of Billingsley (1995), this implies

that λ̂N
w−→ λ0. However, since λ0 is a constant configuration, one can upgrade

the mode of convergence to infer that λ̂N
P−→ λ0 (see again Section 25 of

Billingsley (1995)).
Hence, let Nk be an infinite sequence with Nk → ∞ as k → ∞. By Helly’s

selection theorem (Theorem 25.9 in Billingsley (1995)) and the compactness
of Λm0 , there exists a further infinite subsequence Nk�

and a possibly random

configuration λ∗ such that λ̂Nk�

w−→ λ∗. Here, a random configuration λ∗ means
a random variable a = (a1, . . . , am0)′ such that 0 ≤ a1 < a2 < . . . < am0 ≤ 1.
To finish the argument, it is sufficient to show that λ∗ = λ0.

To show that λ∗ = λ0, we use proof by contradiction and suppose that
λ∗ �= λ0 in that P (λ∗ �= λ0) > 0. For notational simplicity, we simply replace
Nk�

by N below. Let Fλ̂N
(·) and Fλ∗(·) denote the cumulative distribution

functions of λ̂N and λ∗, respectively, and define

δ2
λ̂N

=

∫
a∈Λm0

δ2(a)dFλ̂N
(a), δ2λ∗ =

∫
a∈Λm0

δ2(a)dFλ∗(a),

where the function δ2(·) is defined by (31).
It is easy to verify that δ2(a) is a continuous function in a: For a fixed

configuration a and the truth a0 = (a01, . . . , a
0
m0), we can rewrite their regime

means as

μr0(t) =

⎧⎪⎪⎨⎪⎪⎩
Δ0

1, 1 ≤ t ≤ �a01N�,
...

...

Δ0
m0+1, �a0m0N�+ 1 ≤ t ≤ N,

and

μ̄r(t) =

⎧⎪⎪⎨⎪⎪⎩
Δ1, 1 ≤ t ≤ �a1N�,
...

...

Δm0+1, �am0N�+ 1 ≤ t ≤ N.



Multiple changepoint detection with partial information 2503

We then make a vector b of dimension at most 2m0 by ordering all components
in both a and a0. Thus,

δ2(a) = lim
N→∞

1

N

N∑
t=1

(
μr0(t) − μ̄r(t)

)2
=

2m0+1∑
i=1

(bi+1 − bi)
2wi, (55)

where bi is a component in a or a0, and wi has form ±(Δ0
k −Δj), ±(Δ0

k −Δ0
j ),

or ±(Δk −Δj), for some k, j ∈ {1, 2, . . . ,m0}.
Therefore, (55) is continuous in a. We also tacitly assume that all regime

mean parameters Δk are bounded. By Part (ii) of Theorem 25.8 in Billingsley

(1995), if XN
w−→ X and a function g(·) is continuous and bounded, then

E[g(XN )] −→ E[g(X)] as N → ∞. Therefore, it follows that

δ2
λ̂N

−→ δ2λ∗ . (56)

Our work can be reduced to showing that BMDL(λ̂N )−BMDL(λ0) is bigger

than a positive constant for all large N ; for if this holds, then the fact that λ̂N

minimizes the BMDL would be contradicted. Hence, it suffices to show that

lim sup
N→∞

2

N

[
BMDL(λ̂N )− BMDL(λ0)

]
> 0.

To do this, since m0 is known, m̂ = m0 and (52) now give

2

N

[
BMDL(λ̂N )− BMDL(λ0)

]
=

2

N

[
BMDL(λ̂N )− BMDL(λ∗)

]
+

2

N

[
BMDL(λ∗)− BMDL(λ0)

]
=

N − p

N

⎡⎣log
⎛⎝f(δ2

λ̂N
) +OP

(
1√
N

)
f(δ2λ∗) +OP

(
1√
N

)
⎞⎠+ log

⎛⎝f(δ2λ∗) +OP

(
1√
N

)
f(δ2

λ0) +OP

(
1√
N

)
⎞⎠⎤⎦ . (57)

Obviously, the term N−1(N − p) in (57) converges to unity as N → ∞. The
leftmost term in brackets in the bottom equation in (57) converges to zero. This
follows from (56), the continuity of f and the natural log function, and the fact
that log(1) = 0. When λ∗ �= λ0, since the number of changepoints in these two
models are the same, λ∗ �⊃ λ0. Therefore, by (31), we have δ2

λ0 = 0 and δ2λ∗ > 0.
The limit of the rightmost bracketed term in (57) must be positive. Positivity
follows from f(δ2λ∗) > f(δ2

λ0) = σ2, which can be verified by an argument akin
to that proving Proposition 2, the nondecreasing and continuous nature of f ,
that f(0) = σ2 > 0, and that P (λ∗ �= λ0) > 0. The details are omitted; this
said, one can get a flavor for the argument in the proof of the next result, which
quantifies how much δ2λ varies when elements of it are changed. This finishes
our work.

Next, under the assumption that m0 is unknown, we first establish the fol-
lowing convergence rate lemma on estimated changepoint locations λ̂j .
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Lemma 6. Suppose that m0 is unknown. Then for each λ0
r, r ∈ {1, . . . ,m0},

there exists a λ̂j in λ̂N such that∣∣∣λ̂j − λ0
r

∣∣∣ = OP (N
−1). (58)

Proof. By the spacing assumptions made on the changepoint configuration,
there can be at most a finite number of changepoints. Using this and repeat-
ing the argument in the proof of Proposition 5, one can argue that the esti-
mated changepoint model λ̂N in (19) converges to a limit λ∗ that contains all
changepoints in λ0; that is, P (λ∗ ⊃ λ0) = 1. This means that for each λ0

r,

r = 1, . . . ,m0, there exists a λ̂j(r),N in λ̂N such that λ̂j(r),N
P−→ λ0

r; that is,

|λ̂j(r),N − λ0
r| = oP (1). For notation simplicity, we rewrite λ̂j(r),N as λ̂j when

there is no ambiguity.
The above shows that for all r ∈ {1, . . .m0}, |λ̂j−λ0

r| = OP (N
αr−1) for some

finite αr; in fact, we know that αr ≤ 1. Now let

ωr = inf{αr : |λ̂j − λ0
r| = OP (N

αr−1)}. (59)

To prove the Lemma, we need to show that ωr ≤ 0 for all r, or that ω ≤ 0 where

ω
def
= max

1≤r≤m0
ωr. (60)

This will be done by contradiction. Hence, suppose that ω > 0, then there exist
an r such that

ωr = ω > 0, and |λ̂j − λ0
r| = OP (N

ω−1). (61)

This will now be used to draw a contradiction.
For a sufficiently large N , a new model λ̃N is created from λ̂N by replacing

the changepoint λ̂j in λ̂N with λ0
r:

λ̃N =
(
λ̂1, . . . , λ̂j−1, λ

0
r, λ̂j+1, . . . , λ̂m̂

)′
.

A contradiction occurs if BMDL(λ̃N ) < BMDL(λ̂N ) for all large N since λ̂N

minimizes the BMDL.
We first investigate the difference in γ̂(h) in (34) under the models λ̂N and

λ̃N , for each h ∈ {0, 1, . . . , p}. Following the argument in Proposition 4,

1

N

N∑
t=h+1

WtWt−h =
1

N

N∑
t=h+1

εtεt−h +OP

(
1

N

)
(62)

only depends on the observed data up to an OP (1/N) error. Hence, its difference

under the models λ̂N and λ̃N is OP (1/N).
For the other terms in (34), we need only focus on the summation over t

satisfying �λ̂j−1N� ≤ t ≤ �λ̂j+1N� − 1, depicted in Figure 5. This is because
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Fig 5. Changepoints locations around time λ0
r for the proof of Lemma 6.

(Wt, δt) for all t elsewhere are identical in the models λ̂N and λ̃N . For notational
simplicity, lengths of time intervals on the rescaled timeline are denoted by

lr = λ0
r − λ0

r−1, lr+1 = λ0
r+1 − λ0

r.

We first consider the case where λ̂j−1 is to the left of λ0
r−1 and λ̂j+1 is to the

right of λ0
r+1. Without loss of generality, we assume that λ̂j is to the left of λ0

r.
The length between these estimated changepoints and their limits are denoted
by

Δlr−1 = λ0
r−1 − λ̂j−1, Δlr = λ0

r − λ̂j , Δlr+1 = λ̂j+1 − λ0
r+1, (63)

all of which converge to zero at rates no slower than OP (N
ω−1).

Under the model λ̂N , δt in (25) can be written as

δλ̂N ,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

μr−1 − μr−1Δlr−1+μr(lr−Δlr)
Δlr−1+lr−Δlr

, if �λ̂j−1N� ≤ t ≤ �λ0
r−1N� − 1,

μr − μr−1Δlr−1+μr(lr−Δlr)
Δlr−1+lr−Δlr

, if �λ0
r−1N� ≤ t ≤ �λ̂jN� − 1,

μr − μrΔlr+μr+1lr+1+μr+2Δlr+1

Δlr+lr+1+Δlr+1
, if �λ̂jN� ≤ t ≤ �λ0

rN� − 1,

μr+1 − μrΔlr+μr+1lr+1+μr+2Δlr+1

Δlr+lr+1+Δlr+1
, if �λ0

rN� ≤ t ≤ �λ0
r+1N� − 1,

μr+2 − μrΔlr+μr+1lr+1+μr+2Δlr+1

Δlr+lr+1+Δlr+1
, if �λ0

r+1N� ≤ t ≤ �λ̂j+1N� − 1;

(64)
whereas, under the model λ̃N ,

δλ̃N ,t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
μr−1 − μr−1Δlr−1+μrlr

Δlr−1+lr
, if �λ̂j−1N� ≤ t ≤ �λ0

r−1N� − 1,

μr − μr−1Δlr−1+μrlr
Δlr−1+lr

, if �λ0
r−1N� ≤ t ≤ �λ0

rN� − 1,

μr+1 − μr+1lr+1+μr+2Δlr+1

lr+1+Δlr+1
, if �λ0

rN� ≤ t ≤ �λ0
r+1N� − 1,

μr+2 − μr+1lr+1+μr+2Δlr+1

lr+1+Δlr+1
, if �λ0

r+1N� ≤ t ≤ �λ̂j+1N� − 1.

(65)

When N is large, δt = δt−h for all but a finite number of times t; hence, for the
second term (a similar argument applies to the third term) in (34),

1

N


λ̂j+1N�−1∑
t=
λ̂j−1N�

δt−hWt (66)
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=
1

N


λ̂jN�−1∑
t=
λ̂j−1N�

δtWt +
1

N


λ0
rN�−1∑

t=
λ̂jN�

δtWt +
1

N


λ̂j+1N�−1∑
t=
λ0

rN�
δtWt +OP

(
1

N

)
.

By (64) and (65), under the two models λ̂N and λ̃N , the difference of δt is
piecewise constant:

δλ̂N ,t − δλ̃N ,t (67)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(μr−μr−1)Δlr−1Δlr
(Δlr−1+lr)(Δlr−1+lr−Δlr)

= OP

(
N2ω−2

)
,

if �λ̂j−1N� ≤ t ≤ �λ̂jN� − 1,
(μr−μr+1)lrlr+1+OP (Δl)

(Δlr−1+lr)(Δlr+lr+1+Δlr+1)
= OP (1) ,

if �λ̂jN� ≤ t ≤ �λ0
rN� − 1,

(μr+1−μr)Δlrlr+1+(μr+2−μr)ΔlrΔlr+1

(lr+1+Δlr+1)(Δlr+lr+1+Δlr+1)
= OP

(
Nω−1

)
,

if �λ0
rN� ≤ t ≤ �λ̂j+1N� − 1.

To study the sum of Wt in (25) over the above intervals, apply the central
limit theorem for linear processes to see that ε̄r(t), ε̄v(t), ε̄ all converge to zero at

the rate OP (1/
√
N) for any t. Hence, for a t ∈ [a, b] whose length b− a depends

on N and is OP (N
ξ) with ξ ∈ (0, 1], the sums of εt and Wt over this interval

satisfy

b∑
t=a

εt = (b− a)

(∑b
t=a εt
b− a

)
= OP (N

ξ)OP

(
1√
N ξ

)
= OP (N

ξ
2 )

and

b∑
t=a

Wt =

b∑
t=a

(
εt − ε̄r(t) − ε̄v(t) + ε̄

)
=

b∑
t=a

εt + (b− a)OP

(
1√
N

)
= OP (N

ξ
2 ) +OP (N

ξ− 1
2 )

= OP (N
ξ
2 ),

(68)

where the last equality follows from ξ ≤ 1. For the three interval sums in (67), the
corresponding convergence rates ξ of their lengths are 1, ω, and 1, respectively.
Hence, in (66), when decomposed as three sums in these intervals, differences

under the models λ̂N and λ̃N are thus

1

N


λ̂j+1N�−1∑
t=
λ̂j−1N�

(
δλ̂N ,t − δλ̃N ,t

)
Wt

=
1

N

{
OP

(
N2ω−2

)
OP

(
N

1
2

)
+OP (1) OP

(
N

ω
2

)
+OP

(
Nω−1

)
OP

(
N

1
2

)}
+OP

(
N−1

)
= OP

(
N

ω
2 −1

)
, (69)
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where the last equality follows from ω ≤ 1. Therefore, the second and third term
differences in (34) under the two models λ̂N and λ̃N is OP

(
N

ω
2 −1

)
.

For the last term in (34), we similarly have

1

N


λ̂j+1N�−1∑
t=
λ̂j−1N�

δt−hδt =
1

N


λ̂j+1N�−1∑
t=
λ̂j−1N�

δ2t +OP

(
1

N

)
.

Under the model λ̂N ,

1

N


λ̂j+1N�−1∑
t=
λ̂j−1N�

δ2
λ̂N ,t

=

(
μr−1 −

μr−1Δlr−1 + μr(lr −Δlr)

Δlr−1 + lr −Δlr

)2

Δlr−1

+

(
μr −

μr−1Δlr−1 + μr(lr −Δlr)

Δlr−1 + lr −Δlr

)2

(lr −Δlr)

+

(
μr −

μrΔlr + μr+1lr+1 + μr+2Δlr+1

Δlr + lr+1 +Δlr+1

)2

Δlr

+

(
μr+1 −

μrΔlr + μr+1lr+1 + μr+2Δlr+1

Δlr + lr+1 +Δlr+1

)2

lr+1

+

(
μr+2 −

μrΔlr + μr+1lr+1 + μr+2Δlr+1

Δlr + lr+1 +Δlr+1

)2

Δlr+1

=
(μr − μr−1)

2
(lr −Δlr)Δlr−1

Δlr−1 + lr −Δlr

+
(μr+1 −μr)

2Δlrlr+1 +(μr+2 −μr)
2ΔlrΔlr+1 +(μr+2 −μr+1)

2Δlr+1lr+1

Δlr + lr+1 +Δlr+1
.

On the other hand, under the model λ̃N ,

1

N


λ̂j+1N�−1∑
t=
λ̂j−1N�

δ2
λ̃N ,t

=

(
μr−1 −

μr−1Δlr−1 + μrlr
Δlr−1 + lr

)2

Δlr−1 +

(
μr −

μr−1Δlr−1 + μrlr
Δlr−1 + lr

)2

lr

+

(
μr+1 −

μr+1lr+1 + μr+2Δlr+1

lr+1 +Δlr+1

)2

lr+1

+

(
μr+2 −

μr+1lr+1 + μr+2Δlr+1

lr+1 +Δlr+1

)2

Δlr+1

=
(μr − μr−1)

2
lrΔlr−1

Δlr−1 + lr
+

(μr+2 − μr+1)
2
lr+1Δlr+1

Δlr+1 + lr+1
.
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The difference of the last term in (34) under the two models, up to an OP (1/N)
error, is thus

1

N


λ̂j+1N�−1∑
t=
λ̂j−1N�

(
δ2
λ̂N ,t

− δ2
λ̃N ,t

)

= − (μr − μr−1)
2Δl2r−1Δlr

(Δlr−1 + lr −Δlr)(Δlr−1 + lr)
− (μr+2 − μr+1)

2Δlrlr+1Δlr+1

(Δlr + lr+1 +Δlr+1)(Δlr+1 + lr+1)

+
(μr+1 − μr)

2Δlrlr+1

Δlr + lr+1 +Δlr+1
+

(μr+2 − μr)
2ΔlrΔlr+1

Δlr + lr+1 +Δlr+1

= (μr+1 − μr)
2Δlr + oP (Δlr) = OP

(
Nω−1

)
. (70)

Therefore, the difference of γ̂(h) (34) under the models λ̂N and λ̃N is

γ̂(h)λ̂N
− γ̂(h)λ̃N

= OP (N
−1) +OP (N

ω
2 −1) +OP (N

ω−1) = OP (N
ω−1). (71)

Here, the convergence rates of the three terms in the summation are given by the
results shown in (62), (69), and (70), respectively. Since ω > 0, the third term
in (71) dominates the overall convergence rate. Note that by (70), this term has
the same limit as (μr+1−μr)

2Δlr. Therefore, the limit of (71) remains the same
across different value of h ∈ {0, 1, . . . , p}.

By (59), (61), and (63), Δlr is positive, and converges to zero in probability on
the order of OP (N

ω−1), but not at any faster polynomial rate. Since μr+1 �= μr,
by (71), for large N , γ̂(h)λ̂N

− γ̂(h)λ̃N
is also positive, converging to zero in

probability on the order of OP (N
ω−1), but not any faster.

Following similar reasoning, if λ̂j is to the right of λ0
r, the result in (71) still

holds. This conclusion does not change if λ̂j−1 is to the right of λ0
r−1 (or λ̂j+1 is

to the left of λ0
r+1): we can simply take Δlr−1 = 0 (or Δlr+1 = 0) and all above

derivations hold unaltered.
Next, we will show that for sufficiently large N , the model λ̃N has a smaller

BMDL than model λ̂N . Proposition 2 shows that f(δ2) in (43) is strictly increas-
ing in δ2. A similar argument applies here after replacing δ2 by the limit of (71),
which is (μr+1 − μr)

2Δlr. This implies that the difference of the Yule-Walker

estimators σ̂2
YW in (38) under the models λ̂N and λ̃N obeys

σ̂2
λ̂N ,Y W

− σ̂2
λ̃N ,Y W

= OP (N
ω−1).

Furthermore, this difference is positive and converges to zero in probability on
the order of OP (N

ω−1), but not at any faster polynomial rate. By Lemma 3,
the BMDL estimator σ̂2 = σ̂2

YW + OP (1/N), thus, the difference of the BMDL
estimator σ̂2 under the two models satisfies

σ̂2
λ̂N

− σ̂2
λ̃N

= OP (N
ω−1) +OP (1/N) = OP (N

ω−1), (72)

the last equality stemming from ω > 0. This shows that (72) is dominated by
σ̂2
λ̂N ,Y W

− σ̂2
λ̃N ,Y W

, and thus is positive and converges to zero in probability on
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the order of OP (N
ω−1) (but not at any faster polynomial rate). Since ω > 0,(

σ̂2
λ̂N

− σ̂2
λ̃N

)
/N

ω
2 −1 diverges in probability, i.e., for a strictly positive constant

C, when N is large enough,

σ̂2
λ̂N

− σ̂2
λ̃N

N
ω
2 −1

≥ C.

Recall that the model λ̃N contains the same number of changepoints as the
model λ̂N ; therefore,

BMDL(λ̂N )− BMDL(λ̃N ) =
N − p

2
log

(
σ̂2
λ̂N

σ̂2
λ̃N

)
+OP (1)

=
N

2
log

(
σ̂2
λ̂N

σ̂2
λ̃N

)
+OP (1)

=
N

2
log

(
1 +

σ̂2
λ̂N

− σ̂2
λ̃N

σ̂2
λ̃N

)
+OP (1)

≥ N

2
log

(
1 +

C

σ̂2
λ̃N

N1−ω
2

)
+OP (1)

=
N

ω
2

2
log

(
1 +

C

σ̂2
λ̃N

N1−ω
2

)N1−ω
2

+OP (1)

=
N

ω
2

2

C

σ̂2
λ̃N

+OP (1) ,

where the last equality follows from limN→∞(1 + x
N )N → ex and ω ≤ 1. Hence,

BMDL(λ̂N )−BMDL(λ̃N ) diverges to infinity at rate OP (N
ω
2 ) or faster, should

ω > 0. Here, a contradiction arises since λ̂N minimizes the BMDL.

In Theorem 1, the convergence rate in (21) comes from Lemma 6. Now the
proof of (20) is given.

A proof of (20) in Theorem 1. In the proof of Lemma 6, λ∗ ⊃ λ0. To verify
(20), we need only show that λ∗ = λ0; in other words, there are no changepoints
in λ∗ that are not in λ0.

Proof by contradiction will again be used. Suppose that for a large N , the
BMDL estimator λ̂N contains more than m0 changepoints. More specifically,
suppose that during the (r+1)th regime in the true model λ0, there are redun-

dant changepoints estimated in λ̂N , i.e., for some integer d > 1,

λ̂j
P−→ λ0

r, λ̂j+d
P−→ λ0

r+1,
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Fig 6. Changepoint locations around the (r + 1)th regime in the true changepoint model for
the proof of (20) in Theorem 1.

where λ̂j can be to the left or right of λ0
r, and λ̂j+d can be to the left or right of

λ0
r+1. Since the estimated changepoints λ̂j+1, . . . , λ̂j+d−1 are redundant, a new

relative multiple changepoint model

λ̃N =
(
λ̂1, . . . , λ̂j , λ̂j+d, . . . , λ̂m̂

)′
is created by removing the redundant changepoints λ̂j+1, . . . , λ̂j+d−1 from λ̂N .

A contradiction would arise if BMDL(λ̂N ) > BMDL(λ̃N ) for large N since λ̂N

minimizes the BMDL.
Similar to the proof of Lemma 6, the difference of γ̂(h) (34) under the two

models λ̂N and λ̃N will be investigated for each h ∈ {0, 1, . . . , p}. By (62), the

first term in (34) is the same under λ̂N and λ̃N , up to a OP (1/N) difference.
For the other terms in (34), we need only focus on the summation over t in

the interval �λ̂jN� ≤ t ≤ �λ̂j+dN�−1, illustrated in Figure 6, since (Wt, δt) are

the same for all other t in λ̂N and λ̃N . For simplicity, lengths of time intervals
on the rescaled timeline are denoted by

lr+1 = λ0
r+1 − λ0

r, a1 = λ̂j+1 − λ0
r, ad = λ0

r − λ̂j+d−1.

If λ̂j is to the left of λ0
r and λ̂j+d is to the right of λ0

r+1 (see Figure 6), then the
vanishing length between them and their limits are denoted by

Δlr = λ0
r − λ̂j , Δlr+1 = λ̂j+d − λ0

r+1,

both of which converge to zero at rates no slower than OP (N
ω−1), where ω is

defined in (60).

Under the model λ̂N , δt in (25) can be written as

δλ̂N ,t =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μr − μrΔlr+μr+1a1

Δlr+a1
, if �λ̂jN� ≤ t ≤ �λ0

rN� − 1,

μr+1 − μrΔlr+μr+1a1

Δlr+a1
, if �λ0

rN� ≤ t ≤ �λ̂j+1N� − 1,

0, if �λ̂j+1N� ≤ t ≤ �λ̂j+d−1N� − 1,

μr+1 − μr+2Δlr+1+μr+1ad

Δlr+1+ad
, if �λ̂j+d−1N� ≤ t ≤ �λ0

r+1N� − 1,

μr+2 − μr+2Δlr+1+μr+1ad

Δlr+1+ad
, if �λ0

r+1N� ≤ t ≤ �λ̂j+dN� − 1.

(73)
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On the other hand, under the model λ̃N ,

δλ̃N ,t =

⎧⎪⎨⎪⎩
μr − μrΔlr+μr+1lr+1+μr+2Δlr+1

Δlr+lr+1+Δlr+1
, if �λ̂jN� ≤ t ≤ �λ0

rN� − 1,

μr+1 − μrΔlr+μr+1lr+1+μr+2Δlr+1

Δlr+lr+1+Δlr+1
, if �λ0

rN� ≤ t ≤ �λ0
r+1N� − 1,

μr+2 − μrΔlr+μr+1lr+1+μr+2Δlr+1

Δlr+lr+1+Δlr+1
, if �λ0

r+1N� ≤ t ≤ �λ̂j+dN� − 1.

(74)
When N is large, δt = δt−h for all but a finite number of times t; hence, for

the second term (and similarly, the third term) in (34),

1

N


λ̂j+dN�−1∑
t=
λ̂jN�

δt−hWt (75)

=
1

N


λ̂j+1N�−1∑
t=
λ̂jN�

δtWt +
1

N


λ̂j+d−1N�−1∑
t=
λ̂j+1N�

δtWt +
1

N


λ̂j+dN�−1∑
t=
λ̂j+d−1N�

δtWt +OP

(
1

N

)
.

By (73) and (74), under the models λ̂N and λ̃N , the difference of δt is piecewise
constant, i.e.,

δλ̂N ,t − δλ̃N ,t (76)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(μr+1−μr)Δlr(lr+1−a1)+(μr+2−μr+1)Δlr+1a1+OP (Δl2)
(Δlr+a1)(Δlr+lr+1+Δlr+1)

= OP

(
Nω−1

)
,

if �λ̂jN� ≤ t ≤ �λ̂j+1N� − 1,
(μr+1−μr)Δlr+(μr+2−μr+1)Δlr+1

Δlr+lr+1+Δlr+1
= OP

(
Nω−1

)
,

if �λ̂j+1N� ≤ t ≤ �λ̂j+d−1N� − 1,
(μr+1−μr+2)Δlr+1(lr+1−ad)+(μr−μr+1)Δlrad+OP (Δl2)

(Δlr+1+ad)(Δlr+lr+1+Δlr+1)
= OP

(
Nω−1

)
,

if �λ̂j+d−1N� ≤ t ≤ �λ̂j+dN� − 1.

For the three time intervals in (76), their lengths are Δlr + a1 = OP (N
ξ1),

lr+1 − a1 − ad = OP (1), and ad +Δlr+1 = OP (N
ξd), respectively, with ξ1, ξd ∈

[ω, 1]. For (75), when decomposed as three sums in these intervals, by (68), its

difference under the models λ̂N and λ̃N is

1

N


λ̂j+dN�−1∑
t=
λ̂jN�

(
δλ̂N ,t − δλ̃N ,t

)
Wt

=
1

N
OP

(
Nω−1

){
OP

(
N

ξ1
2

)
+OP

(
N

1
2

)
+OP

(
N

ξd
2

)}
+OP

(
N−1

)
= OP

(
Nω− 3

2

)
+OP

(
N−1

)
.

By Lemma 6, ω ≤ 0; hence, for the second term (and similarly for the third
term) in (34), its difference under the two models converges to zero at rate
OP (1/N).
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For the fourth term in (34), since

1

N


λ̂j+dN�−1∑
t=
λ̂jN�

δt−hδt =
1

N


λ̂j+dN�−1∑
t=
λ̂jN�

δ2t +OP

(
1

N

)
,

under the model λ̂N , it can be written as

1

N


λ̂j+dN�−1∑
t=
λ̂jN�

δ2
λ̂N ,t

=

(
μr −

μrΔlr + μr+1a1
Δlr + a1

)2

Δlr +

(
μr+1 −

μrΔlr + μr+1a1
Δlr + a1

)2

a1

+

(
μr+1 −

μr+2Δlr+1 + μr+1ad
Δlr+2 + ad

)2

ad

+

(
μr+2 −

μr+2Δlr+1 + μr+1ad
Δlr+2 + ad

)2

Δlr+1

=
(μr+1 − μr)

2a1Δlr
a1 +Δlr

+
(μr+2 − μr+1)

2adΔlr+1

ad +Δlr+1
, (77)

whereas under the model λ̃N ,

1

N


λ̂j+dN�−1∑
t=
λ̂jN�

δ2
λ̃N ,t

=

(
μr −

μrΔlr + μr+1lr+1 + μr+2Δlr+1

Δlr + lr+1 +Δlr+1

)2

Δlr

+

(
μr+1 −

μrΔlr + μr+1lr+1 + μr+2Δlr+1

Δlr + lr+1 +Δlr+1

)2

lr+1

+

(
μr+2 −

μrΔlr + μr+1lr+1 + μr+2Δlr+1

Δlr + lr+1 +Δlr+1

)2

Δlr+1

=
(μr+1 − μr)

2lr+1Δlr + (μr+2 − μr)
2ΔlrΔlr+1 + (μr+2 − μr+1)

2lr+1Δlr+1

Δlr + lr+1 +Δlr+1
.

(78)

Since Δlr = OP

(
Nω−1

)
and Δlr+1 = OP

(
Nω−1

)
, where ω ≤ 0, both (77) and

(78) converge to zero at rate OP (N
ω−1). Hence, the difference of the fourth

term in (34) converges to zero at rate OP (1/N).

The difference in γ̂(h) in (34) under the two models λ̂N and λ̃N thus satisfies

γ̂λ̂N
(h) = γ̂λ̃N

(h) +OP

(
1

N

)
,
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which holds for all h ∈ {0, 1, . . . , p}. By Lemma 3, a similar result holds for the

BMDL estimators of σ2 under the two models λ̂N and λ̃N :

σ̂2
λ̂N

= σ̂2
λ̃N

+OP

(
1

N

)
. (79)

Note that if λ̂j is to the right of λ0
r (or λ̂j+d is to the left of λ0

r+1), then we
simply let Δlr = 0 (or Δlr+1 = 0), so that all above derivations, including (73)
and (74), and more importantly, (79) hold as stated.

The difference between BMDL(λ̂N ) and BMDL(λ̃N ) will now be studied.

Recall that λ̂N has d − 1 more changepoints than λ̃N . By (48) and (49), the
BMDL difference is

BMDL(λ̂N )− BMDL(λ̃N ) =
N − p

2
log

(
σ̂2
λ̂N

σ̂2
λ̃N

)
+

3(d− 1)

2
log(N) +OP (1)

= OP (1) +
3(d− 1)

2
log(N) +OP (1)

= OP (logN),

and is positive. Here, the second equality follows from (79). This contradicts

that λ̂N minimizes the BMDL.

A.5. Proof of Theorem 2

A proof of Theorem 2. By Theorem 1, as N tends to infinity, λ̂N
P−→ λ0, and

hence δ2
λ̂N

P−→ 0. Therefore, by Proposition 1, the BMDL estimator

φ̂N =
(
Γp + δ2

λ̂N
Jp

)−1 (
γp + δ2

λ̂N
1p

)
+OP

(
1√
N

)
P−→ Γ−1

p γp = φ0.

By (43), when δ = 0, f(0) = γ(0) − γ′
pΓ

−1
p γp =

(
σ2
)0
, i.e., the true value of

σ2. Since f(δ2) is continuous in δ2, Proposition 2 shows that as N → ∞, the
BMDL estimator

σ̂2
N

P−→ f(0) =
(
σ2
)0

.

For sufficiently large N , since λ̂N is close to the true model λ0, the regime
indicator matrix D under λ̂N is close to its counterpart D0 under the true
model. Therefore, (8) implies that

X̂ = Âs+ D̂μ+ ẑ, (80)

where ẑ = (ẑp+1, . . . , ẑN )′, and ẑt = εt−
∑p

j=1 φ̂jεt−j . Since ẑ is a series of white
noises (Brockwell and Davis, 1991, pp. 240), (80) can be viewed as a linear model
with unknown coefficients (s,μ).
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Following the proof of Lemma 3, the BMDL estimators for s and μ have the
following limits:

ŝN = (Â′B̂Â)−1(Â′B̂X̂)

=
{
Â′ (IN−p − PD̂

)
Â
}−1 {

Â′ (IN−p − PD̂

)
X̂
}
+OP

(
1

N

)
,

μ̂N =

(
D̂′D̂+

Im
ν

)−1

D̂′
(
X̂− ÂŝN

)
=
(
D̂′D̂

)−1

D̂′
(
X̂− ÂŝN

)
+OP

(
1

N

)
.

After rewriting (80) as

X̂ =
{(

IN−p − PD̂

)
Â
}
s+

{
D̂μ+ PD̂Âs

}
+ ẑ

=
{(

IN−p − PD̂

)
Â
}
s+ D̂

{
μ+

(
D̂′D̂

)−1

D̂′Âs

}
+ ẑ,

it is not hard to see that ŝN and μ̂N are the least square estimators of this linear

model. Since least square estimators are asymptotically consistent, ŝN
P−→ s0

and μ̂N
P−→ μ0.

B. Additional Simulations and Real Examples

B.1. Simulation Examples

Additional figures related to our simulation examples in Section 5 are included
here.

B.2. Tuscaloosa Data Analysis: Target Minus Reference

A reference series is a record from a station near the target station that is
subtracted from the target series. The idea is that two nearby stations should
experience similar weather; hence, any trends or seasonal cycles should be less-
ened (if not altogether removed) in the target minus reference subtraction.
Changepoints caused by artificial reasons, rather than by real climate changes,
are easier to detect (visually) in target minus reference comparisons. Following
Lu, Lund and Lee (2010), our reference series is obtained by averaging three
nearby stations: Aberdeen, MS; Greensboro, AL; and Selma, AL. By averag-
ing multiple reference series (this is called a composite reference), impacts of
mean shifts in any of the individual stations in the composite reference are
lessened.

Figure 10 shows the optimal changepoint configuration for the target minus
reference series and contains 12 concurrent changes: June 1914, January 1919,
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Fig 7. The Figure 1 series after subtracting sample monthly means. Vertical dashed lines
mark true changepoint times.

Fig 8. Model code lengths L(η) = − log Γ (a+m)− log Γ (b+N − p−m) between the BMDL
and the oBMDL.

July 1933, July 1937, August 1937, October 1938, December 1938, June 1946,
July 1946, November 1956, May 1987, and October 1996. Among them, the 1956
and 1987 changepoints are in the metadata; the two changepoints in 1938 are
close to the 1939 station relocation. The changepoints in 1919, 1933, and 1990
are also flagged by Lu, Lund and Lee (2010). One of the shifts, November 1956,
moves the Tmax series warmer and the Tmin series colder.

The October and December 1938 changepoints are likely due to typos in the
data record. Specifically, the October and November 1938 Tmin values in the
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Fig 9. Sample model residual autocorrelations for Tmax (top panel) and Tmin (bottom panel),
fitted using the univariate BMDL with metadata and p = 2.

Fig 10. Target minus reference Tmax (top panel) and Tmin (bottom panel) series. Metadata
times for Tuscaloosa are marked with crosses on the axis. Vertical dashed lines show estimated
changepoint times from our methods.
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target minus reference series appear to be abnormally high. While the data have
been quality checked, some errors persist. This conjecture is made because the
three reference stations lie in various directions from Tuscaloosa; climatologi-
cally, series to the north and west of Tuscaloosa should be cooler and those to
the south and east should be warmer. In this case, Tuscaloosa was significantly
warmer than all three references. Similar statements apply to the two “out-
lier” changepoints in 1937, and the two changepoints in 1946, where the Tmin
records for Tuscaloosa are lower than those for all three reference stations. It is
interesting that our method picked up outliers.

It is natural to flag more changepoints in the target minus reference series
than the target series alone. An ideal reference series should have the same trend
and seasonal cycles as the target series and be free of artificial mean shifts. This
said, we do not assume that the target minus reference comparison completely
removes the monthly mean cycle; indeed, Liu et al. (2016) shows that this is
seldom the case. Reference series selection is a problem currently studied by
climatologists. As our reference series averages three neighbor stations, mean
shifts in any of the reference records may induce shifts in the target minus
reference series. For example, the estimated changepoint in 1914 is close to the
1915 metadata time listed in the Aberdeen reference. This said, averaging three
neighbors should help mitigate the effects of changepoints in any individual
reference series.
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