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Abstract: We study uniqueness in the generalized lasso problem, where
the penalty is the �1 norm of a matrix D times the coefficient vector. We
derive a broad result on uniqueness that places weak assumptions on the
predictor matrix X and penalty matrix D; the implication is that, if D is
fixed and its null space is not too large (the dimension of its null space is at
most the number of samples), and X and response vector y jointly follow an
absolutely continuous distribution, then the generalized lasso problem has a
unique solution almost surely, regardless of the number of predictors relative
to the number of samples. This effectively generalizes previous uniqueness
results for the lasso problem [32] (which corresponds to the special case
D = I). Further, we extend our study to the case in which the loss is given
by the negative log-likelihood from a generalized linear model. In addition
to uniqueness results, we derive results on the local stability of generalized
lasso solutions that might be of interest in their own right.
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1. Introduction

We consider the generalized lasso problem

minimize
β∈Rp

1

2
‖y −Xβ‖22 + λ‖Dβ‖1, (1.1)

where y ∈ R
n is a response vector, X ∈ R

n×p is a predictor matrix, D ∈ R
m×p

is a penalty matrix, and λ ≥ 0 is a tuning parameter. As explained in Tibshirani
and Taylor [33], the generalized lasso problem (1.1) encompasses several well-
studied problems as special cases, corresponding to different choices of D, e.g.,
the lasso [29], the fused lasso [24, 31], trend filtering [28, 14], the graph fused
lasso [11], graph trend filtering [36], Kronecker trend filtering [26], among others.
(For all problems except the lasso problem, the literature is mainly focused on
the so-called “signal approximator” case, where X = I, and the responses have
a certain underlying structure; but the “regression” case, where X is arbitrary,
naturally arises whenever the predictor variables—rather than the responses—
have an analogous structure.)

There has been an abundance of theoretical and computational work on the
generalized lasso and its special cases. In the current paper, we examine sufficient
conditions under which the solution in (1.1) will be unique. While this is simple
enough to state, it is a problem of fundamental importance. The generalized
lasso has been used as a modeling tool in numerous application areas, such as
copy number variation analysis [30], sMRI image classification [37], evolutionary
shift detection on phylogenetic trees [13], motion-capture tracking [17], and lon-
gitudinal prediction of disease progression [1]. In such applications, the structure
of the solution β̂ in hand (found by using one of many optimization methods ap-
plicable to (1.1), a convex quadratic program) usually carries meaning—this is
because D has been carefully chosen so that sparsity in Dβ̂ translates into some
interesting and domain-appropriate structure for β̂. Of course, nonuniqueness



The Generalized Lasso Problem and Uniqueness 2309

of the solution in (1.1) would cause complications in interpreting this structure.
(The practitioner would be left wondering: are there other solutions providing
complementary, or even contradictory structures?) Further, beyond interpreta-
tion, nonuniqueness of the generalized lasso solution would clearly cause com-
plications if we are seeking to use this solution to make predictions (via xT β̂,
for a new predictor vector x ∈ R

p), as different solutions would lead to different
predictions (potentially very different ones).

When p ≤ n and rank(X) = p, there is always a unique solution in (1.1)
due to strict convexity of the squared loss term. Our focus will thus be in
deriving sufficient conditions for uniqueness in the high-dimensional case, where
rank(X) < p. It also worth noting that when null(X) ∩ null(D) �= {0} problem
(1.1) cannot have a unique solution. (If η �= 0 lies in this intersection, and β̂
is a solution in (1.1), then so will be β̂ + η.) Therefore, at the very least, any
sufficient condition for uniqueness in (1.1) must include (or imply) the null space
condition null(X) ∩ null(D) = {0}.

In the lasso problem, defined by taking D = I in (1.1), several authors have
studied conditions for uniqueness, notably Tibshirani [32], who showed that
when the entries of X are drawn from an arbitrary continuous distribution, the
lasso solution is unique almost surely. One of the main results in this paper yields
this lasso result as a special case; see Theorem 1, and Remark 5 following the
theorem. Moreover, our study of uniqueness leads us to develop intermediate
properties of generalized lasso solutions that may be of interest in their own
right—in particular, when we broaden our focus to a version of (1.1) in which
the squared loss is replaced by a general loss function, we derive local stability
properties of solutions that have potential applications beyond this paper.

In the remainder of this introduction, we describe the implications of our
uniqueness results for various special cases of the generalized lasso, discuss re-
lated work, and then cover notation and an outline of the rest of the paper.

1.1. Uniqueness in special cases

The following is an application of Theorem 1 to various special cases for the
penalty matrix D. The takeaway is that, for continuously distributed predictors
and responses, uniqueness can be ensured almost surely in various interesting
cases of the generalized lasso, provided that n is not “too small”, meaning that
the sample size n is at least the nullity (dimension of the null space) of D. (Some
of the cases presented in the corollary can be folded into others, but we list them
anyway for clarity.)

Corollary 1. Fix any λ > 0. Assume the joint distribution of (X, y) is abso-
lutely continuous with respect to (np+ n)-dimensional Lebesgue measure. Then
problem (1.1) admits a unique solution almost surely, in any one of the following
cases:

(i) D = I ∈ R
p×p is the identity matrix;

(ii) D ∈ R
(p−1)×p is the first difference matrix, i.e., fused lasso penalty matrix

(see Section 2.1.1 in Tibshirani and Taylor [33]);
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(iii) D ∈ R
(p−k−1)×p is the (k + 1)st order difference matrix, i.e., kth order

trend filtering penalty matrix (see Section 2.1.2 in Tibshirani and Taylor
[33]), and n ≥ k + 1;

(iv) D ∈ R
m×p is the graph fused lasso penalty matrix, defined over a graph

with m edges, n nodes, and r connected components (see Section 2.1.1 in
Tibshirani and Taylor [33]), and n ≥ r;

(v) D ∈ R
m×p is the kth order graph trend filtering penalty matrix, defined

over a graph with m edges, n nodes, and r connected components (see
Wang et al. [36]), and n ≥ r;

(vi) D ∈ R
(N−k−1)Nd−1d×Nd

is the kth order Kronecker trend filtering penalty
matrix, defined over a d-dimensional grid graph with all equal side lengths
N = n1/d (see Sadhanala et al. [26]), and n ≥ (k + 1)d.

Two interesting special cases of the generalized lasso that fall outside the
scope of our results here are additive trend filtering [25] and varying-coefficient
models (which can be cast in a generalized lasso form, see Section 2.2 of Tib-
shirani and Taylor [33]). In either of these problems, the predictor matrix X
has random elements but obeys a particular structure, thus it is not reasonable
to assume that its entries overall follow a continuous distribution, so Theorem
1 cannot be immediately applied. Still, we believe that under weak conditions
either problem should have a unique solution. Sadhanala and Tibshirani [25]
give a uniqueness result for additive trend filtering by reducing this problem
to lasso form; but, keeping this problem in generalized lasso form and carefully
investigating an application of Lemma 6 (the deterministic result in this paper
leading to Theorem 1) may yield a result with simpler sufficient conditions. This
is left to future work.

Furthermore, by applying Theorem 2 to various special cases forD, analogous
results hold (for all cases in Corollary 1) when the squared loss is replaced by a
generalized linear model (GLM) lossG as in (4.2). In this setting, the assumption
that (X, y) is jointly absolutely continuous is replaced by the two assumptions
that X is absolutely continuous, and y /∈ N , where N is the set defined in (4.24).
The set N has Lebesgue measure zero for some common choices of loss G (see
Remark 12); but unless we somewhat artificially assume that the distribution of
y|X is continuous (this is artificial because in the two most fundamental GLMs
outside of the Gaussian model, namely the Bernoulli and Poisson models, the
entries of y|X are discrete), the fact that N is a Lebesgue measure zero set does
not directly imply that the condition y /∈ N holds almost surely. Still, it seems
that y /∈ N should be “likely”—and hence, uniqueness should be “likely”—in a
typical GLM setup, and making this precise is left to future work.

1.2. Related work

Several authors have examined uniqueness of solutions in statistical optimization
problems en route to proving risk or recovery properties of these solutions;
see Donoho [6], Dossal [7] for examples of this in the noiseless lasso problem
(and the analogous noiseless �0 penalized problem); see Nam et al. [19] for an
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example in the noiseless generalized lasso problem; see Fuchs [9], Candes and
Plan [4], Wainwright [35] for examples in the lasso problem; and lastly, see Lee
et al. [16] for an example in the generalized lasso problem. These results have a
different aim than ours, i.e., their main goal—a risk or recovery guarantee—is
more ambitious than certifying uniqueness alone, and thus the conditions they
require are more stringent. Our work in this paper is more along the lines of
direct uniqueness analysis in the lasso, as was carried out by Osborne et al.
[20], Rosset et al. [23], Tibshirani [32], Schneider and Ewald [27].

1.3. Notation and outline

In terms of notation, for a matrix A ∈ R
m×n, we write A+ for its Moore-Penrose

pseudoinverse and col(A), row(A), null(A), rank(A) for its column space, row
space, null space, and rank, respectively. We write AJ for the submatrix defined
by the rows of A indexed by a subset J ⊆ {1, . . . ,m}, and use A−J as shorthand
for A{1,...,m}\J . Similarly, for a vector x ∈ R

m, we write xJ for the subvector
defined by the components of x indexed by J , and use x−J as shorthand for
x{1,...,m}\J .

For a set S ⊆ R
n, we write span(S) for its linear span, and write aff(S) for its

affine span. For a subspace L ⊆ R
n, we write PL for the (Euclidean) projection

operator onto L, and write PL⊥ for the projection operator onto the orthogonal
complement L⊥. For a function f : Rm → R

n, we write dom(f) for its domain,
and ran(f) for its range.

Here is an outline for what follows. In Section 2, we review important pre-
liminary facts about the generalized lasso. In Section 3, we derive sufficient
conditions for uniqueness in (1.1), culminating in Theorem 1, our main result
on uniqueness in the squared loss case. In Section 4, we consider a generalization
of problem (1.1) where the squared loss is replaced by a smooth and strictly con-
vex function of Xβ; we derive analogs of the important preliminary facts used
in the squared loss case, notably, we generalize a result on the local stability
of generalized lasso solutions due to Tibshirani and Taylor [34]; and we give
sufficient conditions for uniqueness, culminating in Theorem 2, our main result
in the general loss case. In Section 5, we conclude with a brief discussion.

2. Preliminaries

2.1. Basic facts, KKT conditions, and the dual

First, we establish some basic properties of the generalized lasso problem (1.1)
relating to uniqueness.

Lemma 1. For any y,X,D, and λ ≥ 0, the following holds of the generalized
lasso problem (1.1).

(i) There is either a unique solution, or uncountably many solutions.
(ii) Every solution β̂ gives rise to the same fitted value Xβ̂.
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(iii) If λ > 0, then every solution β̂ gives rise to the same penalty value ‖Dβ̂‖1.
Proof. The criterion function in the generalized lasso problem (1.1) is convex
and proper, as well as closed (being continuous on R

p). As both g(β) = ‖y −
Xβ‖22 and h(β) = λ‖Dβ‖1 are nonnegative, any directions of recession of the
criterion f = g+h are necessarily directions of recession of both g and h. Hence,
we see that all directions of recession of the criterion f must lie in the common
null space null(X) ∩ null(D); but these are directions in which the criterion
is constant. Applying, e.g., Theorem 27.1 in Rockafellar [21] tells us that the
criterion attains its infimum, so there is at least one solution in problem (1.1).
Supposing there are two solutions β̂(1), β̂(2), since the solution set to a convex
optimization problem is itself a convex set, we get that tβ̂(1) + (1− t)β̂(2) is also
a solution, for any t ∈ [0, 1]. Thus if there is more than one solution, then there
are uncountably many solutions. This proves part (i).

As for part (ii), let β̂(1), β̂(2) be two solutions in (1.1), with β̂(1) �= β̂(2). Let f�

denote the optimal criterion value in (1.1). Proceeding by contradiction, suppose
that these two solutions do not yield the same fit, i.e., Xβ̂(1) �= Xβ̂(2). Then for
any t ∈ (0, 1), the criterion at tβ̂(1) + (1− t)β̂(2) is

f
(
tβ̂(1) + (1− t)β̂(2)

)
=

1

2

∥∥y − (
tXβ̂(1) + (1− t)Xβ̂(2)

)∥∥2
2
+ λ

∥∥D(
tβ̂(1) + (1− t)β̂(2)

)∥∥
1

< t
1

2
‖y −Xβ̂(1)‖22 + (1− t)

1

2
‖y −Xβ̂(2)‖22 + λt‖Dβ̂(1)‖1 + (1− t)λ‖Dβ̂(2)‖1

= tf(β̂(1)) + (1− t)f(β̂(2)) = f�,

where in the second line we used the strict convexity of the function G(z) =
‖y − z‖22, along with the convexity of h(z) = ‖z‖1. That tβ̂(1) + (1− t)β̂(2)

obtains a lower criterion than f� is a contradiction, and this proves part (ii).
Lastly, for part (iii), every solution in the generalized lasso problem (1.1)

yields the same fit by part (ii), leading to the same squared loss; and since every
solution also obtains the same (optimal) criterion value, we conclude that every
solution obtains the same penalty value, provided that λ > 0.

Next, we consider the Karush-Kuhn-Tucker (or KKT) conditions to charac-
terize optimality of a solution β̂ in problem (1.1). Since there are no constraints,
we simply take a subgradient of the criterion and set it equal to zero. Rearrang-
ing gives

XT (y −Xβ̂) = λDT γ̂, (2.1)

where γ̂ ∈ R
m is a subgradient of the �1 norm evaluated at Dβ̂,

γ̂i ∈
{
{sign((Dβ̂)i)} if (Dβ̂)i �= 0

[−1, 1] if (Dβ̂)i = 0
, for i = 1, . . . ,m. (2.2)

Since the optimal fit Xβ̂ is unique by Lemma 1, the left-hand side in (2.1) is
always unique. This immediately leads to the next result.
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Lemma 2. For any y,X,D, and λ > 0, every optimal subgradient γ̂ in problem
(1.1) gives rise to the same value of DT γ̂. Moreover, when D has full row rank,
the optimal subgradient γ̂ is itself unique.

Remark 1. When D is row rank deficient, the optimal subgradient γ̂ is not
necessarily unique, and thus neither is its associated boundary set (to be defined
in the next subsection). This complicates the study of uniqueness of the general-
ized lasso solution. In contrast, the optimal subgradient in the lasso problem is
always unique, and its boundary set—called equicorrelation set in this case—is
too, which makes the study of uniqueness of the lasso solution comparatively
simpler [32].

Lastly, we turn to the dual of problem (1.1). Standard arguments in convex
analysis, as given in Tibshirani and Taylor [33], show that the Lagrangian dual
of (1.1) can be written as1

minimize
u∈Rm, v∈Rn

‖y − v‖22 subject to XT v = DTu, ‖u‖∞ ≤ λ. (2.3)

Any pair (û, v̂) optimal in the dual (2.3), and solution-subgradient pair (β̂, γ̂)
optimal in the primal (1.1), i.e., satisfying (2.1), (2.2), must satisfy the primal-
dual relationships

Xβ̂ = y − v̂, and û = λγ̂. (2.4)

We see that v̂, being a function of the fit Xβ̂, is always unique; meanwhile, û,
being a function of the optimal subgradient γ̂, is not. Moreover, the optimality
of v̂ in problem (2.3) can be expressed as

v̂ = PC(y), where C = (XT )−1
(
DTBm

∞(λ)
)
. (2.5)

Here, (XT )−1(S) denotes the preimage of a set S under the linear mapXT ,DTS
denotes the image of S under the linear mapDT ,Bm

∞(λ) = {u ∈ Rm : ‖u‖∞ ≤ λ}
is the �∞ ball of radius λ in R

m, and PS(·) is the Euclidean projection operator
onto S. Note that C as defined in (2.5) is a convex polyhedron, as the image or
preimage of any convex polyhedron under a linear map is a convex polyhedron.
From (2.4) and (2.5), we may hence write the fit as

Xβ̂ = (I − PC)(y), (2.6)

the residual from projecting y onto the convex polyhedron C.
The conclusion in (2.6), it turns out, could have been reached via direction

manipulation of the KKT conditions (2.1), (2.2), as shown in Tibshirani and
Taylor [34]. In fact, much of what can be seen from the dual problem (2.3) can
also be derived using appropriate manipulations of the primal problem (1.1)
and its KKT conditions (2.1), (2.2). However, we feel that the dual perspective,
specifically the dual projection in (2.5), offers a simple picture that can be used
to intuitively explain several key results (which might otherwise seem technical
and complicated in nature). We will therefore return to it periodically.

1The form of the dual problem here may superficially appear different from that in Tib-
shirani and Taylor [33], but it is equivalent.
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2.2. Implicit form of solutions

Fix an arbitrary λ > 0, and let (β̂, γ̂) denote an optimal solution-subgradient
pair, i.e., satisfying (2.1), (2.2). Following Tibshirani and Taylor [33, 34], we
define the boundary set to contain the indices of components of γ̂ that achieve
the maximum possible absolute value,

B =
{
i ∈ {1, . . . ,m} : |γ̂i| = 1

}
,

and the boundary signs to be the signs of γ̂ over the boundary set,

s = sign(γ̂B).

Since γ̂ is not necessarily unique, as discussed in the previous subsection, neither
are its associated boundary set and signs B, s. Note that the boundary set
contains the active set

A = supp(Dβ̂) =
{
i ∈ {1, . . . ,m} : (Dβ̂)i �= 0

}
associated with β̂; that B ⊇ A follows directly from the property (2.2) (and
strict inclusion is certainly possible). Restated, this inclusion tells us that β̂
must lie in the null space of D−B, i.e.,

D−Bβ̂ = 0 ⇐⇒ β̂ ∈ null(D−B).

Though it seems very simple, the last display provides an avenue for express-
ing the generalized lasso fit and solutions in terms of B, s, which will be quite
useful for establishing sufficient conditions for uniqueness of the solution. Multi-
plying both sides of the stationarity condition (2.1) by Pnull(D−B), the projection
matrix onto null(D−B), we have

Pnull(D−B)X
T (y −Xβ̂) = λPnull(D−B)D

T
Bs.

Using β̂ = Pnull(D−B)β̂, and solving for the fit Xβ̂ (see 34 for details or the proof
of Lemma 17 for the arguments in a more general case) gives

Xβ̂ = XPnull(D−B)(XPnull(D−B))
+
(
y − λ(Pnull(D−B)X

T )+DT
Bs

)
. (2.7)

Recalling that Xβ̂ is unique from Lemma 1, we see that the right-hand side in
(2.7) must agree for all instantiations of the boundary set and signs B, s associ-
ated with an optimal subgradient in problem (1.1). Tibshirani and Taylor [34]
use this observation and other arguments to establish an important result that
we leverage later, on the invariance of the space Xnull(D−B) = col(XPnull(D−B))
over all boundary sets B of optimal subgradients, stated in Lemma 3 for com-
pleteness.

Remark 2. As an alternative to the derivation based on the KKT condi-
tions described above, the result (2.7) can be argued directly from the ge-
ometry surrounding the dual problem (2.3). See Figure 1 for an accompany-
ing illustration. Given that γ̂ has boundary set and signs B, s, and û = λγ̂
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Fig 1. Geometry of the generalized lasso dual problem (2.3). As in (2.5), the dual solution v̂
may be seen as the projection of y onto a set C, and as in (2.6), the primal fit Xβ̂ may be
seen as the residual from this projection. Here, C = (XT )−1(DTBm

∞(λ)), and as Bm
∞(λ) is

a polyhedron (and the image or inverse image of a polyhedron under a linear map is still a
polyhedron), C is a polyhedron as well. This can be used to derive the implicit form (2.7) for
Xβ̂, based on the face of C on which v̂ lies, as explained in Remark 2.

from (2.4), we see that û must lie on the face of Bm
∞(λ) whose affine span

is EB,s = {u ∈ R
m : uB,s = λs}; this face is colored in black on the right-hand

side of the figure. Since XT v̂ = DT û, this means that v̂ lies on the face of C
whose affine span is KB,s = (XT )−1DTEB,s; this face is colored in black on the
left-hand side of the figure, and its affine span KB,s is drawn as a dotted line.
Hence, we may refine our view of v̂ in (2.5), and in turn, Xβ̂ in (2.6): namely,
we may view v̂ as the projection of y onto the affine space KB,s (instead of C),
and the fit Xβ̂ as the residual from this affine projection. A straightforward cal-
culation shows that KB,s = λ(Pnull(D−B)X

T )+DT
Bs+ null(Pnull(D−B)X

T ), and
another straightforward calculation shows that the residual from projecting y
onto KB,s is (2.7).

From the expression in (2.7) for the fit Xβ̂, we also see that the solution β̂
corresponding to the optimal subgradient γ̂ and its boundary set and signs B, s
must take the form

β̂ = (XPnull(D−B))
+
(
y − λ(Pnull(D−B)X

T )+DT
Bs

)
+ b, (2.8)

for some b ∈ null(XPnull(D−B)). Combining this with b ∈ null(D−B) (following
from D−Bβ̂ = 0), we moreover have that b ∈ null(X) ∩ null(D−B). In fact, any



2316 A. Ali and R. J. Tibshirani

such point b ∈ null(X) ∩ null(D−B) yields a generalized lasso solution β̂ in (2.8)
provided that

si ·Di

[
(XPnull(D−B))

+
(
y − λ(Pnull(D−B)X

T )+DT
Bs

)
+ b

]
≥ 0, for i ∈ B,

which says that γ̂ appropriately matches the signs of the nonzero components
of Dβ̂, thus γ̂ remains a proper subgradient.

We can now begin to inspect conditions for uniqueness of the generalized lasso
solution. For a given boundary set B of an optimal subgradient γ̂, if we know that
null(X) ∩ null(D−B) = {0}, then there can only be one solution β̂ corresponding
to γ̂ (i.e., such that (β̂, γ̂) jointly satisfy (2.1), (2.2)), and it is given by the ex-
pression in (2.8) with b = 0. Further, if we know that null(X) ∩ null(D−B) = {0}
for all boundary sets B of optimal subgradients, and the space null(D−B) is in-
variant over all choices of boundary sets B of optimal subgradients, then the
right-hand side in (2.8) with b = 0 must agree for all proper instantiations of
B, s and it gives the unique generalized lasso solution. We elaborate on this in
the next section.

2.3. Invariance of the linear space Xnull(D−B)

Before diving into the technical details on conditions for uniqueness in the next
section, we recall a key result from Tibshirani and Taylor [34].

Lemma 3 (Lemma 10 in 34). Fix any X,D, and λ > 0. There is a set N ⊆ Rn

of Lebesgue measure zero (that depends on X,D, λ), such that for y /∈ N , all
boundary sets B associated with optimal subgradients in the generalized lasso
problem (1.1) give rise to the same subspace Xnull(D−B), i.e., there is a single
linear subspace L ⊆ R

n such that L = Xnull(D−B) for all boundary sets B of
optimal subgradients. Moreover, for y /∈ N , L = Xnull(D−A) for all active sets
A associated with generalized lasso solutions.

3. Sufficient conditions for uniqueness

3.1. A condition on certain linear independencies

We start by formalizing the discussion on uniqueness in the paragraphs proceed-
ing (2.8). As before, let λ > 0, and let B denote the boundary set associated
with an optimal subgradient in (1.1). Denote by U(B) ∈ R

p×k(B) a matrix with
linearly independent columns that span null(D−B). It is not hard to see that

null(X) ∩ null(D−B) = {0} ⇐⇒ rank
(
XU(B)

)
= k(B).

Let us assign now such a basis matrix U(B) ∈ R
p×k(B) to each boundary set

B corresponding to an optimal subgradient in (1.1). We claim that there is a
unique generalized lasso solution, as given in (2.8) with b = 0, provided that the
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following two conditions holds, for all boundary sets B associated with optimal
subgradients:

rank
(
XU(B)

)
= k(B) for all such boundary sets B, and (3.1)

null(D−B) is invariant across all such boundary sets B. (3.2)

To see this, note that if the space null(D−B) is invariant across all achieved
boundary sets B then so is the matrix Pnull(D−B). This, and the fact that
Pnull(D−B)D

T
Bs = Pnull(D−B)D

T γ̂ where DT γ̂ is unique from Lemma 2, ensures
that the right-hand side in (2.8) with b = 0 agrees no matter the choice of
boundary set and signs B, s.

Remark 3. For any subset B ⊆ {1, . . . ,m}, and matrices U(B), Ũ(B) ∈ R
p×k(B)

whose columns form a basis for null(D−B), it is easy to check that rank(XU(B))=
k(B) ⇐⇒ rank(XŨ(B)) = k(B). Therefore condition (3.1) is well-defined, i.e.,
it does not depend on the choice of basis matrix U(B) associated with null(D−B)
for each boundary set B.

We now show that, thanks to Lemma 3, condition (3.1) (almost everywhere)
implies (3.2), so the former is alone sufficient for uniqueness.

Lemma 4. Fix any X,D, and λ > 0. For y /∈ N , where N ⊆ R
n has Lebesgue

measure zero as in Lemma 3, condition (3.1) implies (3.2). Hence, for almost
every y, condition (3.1) is itself sufficient to imply uniqueness of the generalized
lasso solution.

Proof. Let y /∈ N , and let L be the linear subspace from Lemma 3, i.e.,
L = Xnull(D−B) for any boundary set B associated with an optimal subgradient
in the generalized lasso problem at y. Now fix a particular boundary set B associ-
ated with an optimal subgradient and define the linear map X : null(D−B) → L
by X (u) = Xu. By construction, this map is surjective. Moreover, assuming
(3.1), it is injective, as

XU(B)a = XU(B)b ⇐⇒ XU(B)(a− b) = 0,

and the right-hand side cannot be true unless a = b. Therefore, X is bijective
and has a linear inverse, and we may write null(D−B) = X−1(L). As B was
arbitrary, this shows the invariance of null(D−B) over all proper choices of B,
whenever y /∈ N .

From Lemma 4, we see that an (almost everywhere) sufficient condition for
a unique solution in (1.1) is that the vectors XUi(B) ∈ R

n, i = 1, . . . , k(B)
are linearly independent, for all instantiations of boundary sets B of optimal
subgradients. This may seem a little circular, to give a condition for uniqueness
that itself is expressed in terms of the subgradients of solutions. But we will
not stop at (3.1), and will derive more explicit conditions on y,X,D, and λ > 0
that imply (3.1) and therefore uniqueness of the solution in (1.1).
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3.2. A refined condition on linear independencies

The next lemma shows that when condition (3.1) fails, there is a specific type
of linear dependence among the columns of XU(B), for a boundary set B. The
proof is not difficult, but involves careful manipulations of the KKT conditions
(2.1), and we defer it until the appendix.

Lemma 5. Fix any X,D, and λ > 0. Let y /∈ N , the set of zero Lebesgue
measure as in Lemma 3. Assume that null(X) ∩ null(D) = {0}, and that the
generalized lasso solution is not unique. Then there is a pair of boundary set and
signs B, s corresponding to an optimal subgradient in problem (1.1), such that
for any matrix U(B) ∈ R

p×k(B) whose columns form a basis for null(D−B), the
following property holds of Z = XU(B) and s̃ = U(B)TDT

Bs: there exist indices
i1, . . . , ik ∈ {1, . . . , k(B)} with k ≤ n+ 1 and s̃i1 �= 0, such that

Zi2 ∈ span({Zi3 , . . . , Zik}), (3.3)

when s̃i2 = · · · = s̃ik = 0, and

Zi1/s̃i1 ∈ aff({Zij/s̃ij : s̃ij �= 0, j ≥ 2}) + span({Zij : s̃ij = 0}), (3.4)

when at least one of s̃i2 , . . . , s̃ik is nonzero.

The spaces on the right-hand sides of both (3.3), (3.4) are of dimension at
most n − 1. To see this, note that dim(span({Zi3 , . . . , Zik})) ≤ k − 2 ≤ n− 1,
and also

dim
(
aff({Zij/s̃ij : s̃ij �= 0, j ≥ 2})

)
+ dim

(
span({Zij : s̃ij = 0})

)
≤ |J | − 2 + |J c| = k − 2 ≤ n− 1,

where J = {j ∈ {1, . . . , k} : s̃ij �= 0}. Hence, because these spaces are at most
(n − 1)-dimensional, neither condition (3.3) nor (3.4) should be “likely” under
a continuous distribution for the predictor variables X. This is made precise in
the next subsection.

Before this, we define a deterministic condition on X that ensures special
linear dependencies between the (transformed) columns, as in (3.3), (3.4), never
hold.

Definition 1. Fix D ∈ R
m×p. We say that X ∈ R

n×p is in D-general position
(or D-GP) if the following property holds. For each subset B ⊆ {1, . . . ,m}
and sign vector s ∈ {−1, 1}|B|, there is a matrix U(B) ∈ R

p×k(B) whose columns
form a basis for null(D−B), such that for Z = XU(B), s̃ = U(B)TDT

Bs, and all
i1, . . . , ik ∈ {1, . . . , k(B)} with s̃i1 �= 0 and k ≤ n+ 1, it holds that

(i) Zi2 /∈ span({Zi3 , . . . , Zik}), when s̃i2 = · · · = s̃ik = 0;
(ii) Zi1/s̃i1 /∈ aff({Zij/s̃ij : s̃ij �= 0, j ≥ 2}) + span({Zij : s̃ij = 0}), when at

least one of s̃i2 , . . . , s̃ik is nonzero.



The Generalized Lasso Problem and Uniqueness 2319

Remark 4. Though the definition may appear somewhat complicated, a matrix
X being in D-GP is actually quite a weak condition, and can hold regardless
of the (relative) sizes of n, p. We will show in the next subsection that it holds
almost surely under an arbitrary continuous probability distribution for the
entries of X. Further, when X = I, the above definition essentially reduces2 to
the usual notion of general position (refer to, e.g., 32 for this definition).

When X is in D-GP, we have (by definition) that (3.3), (3.4) cannot hold
for any B ⊆ {1, . . . ,m} and s ∈ {−1, 1}|B| (not just boundary sets and signs);
therefore, by the contrapositive of Lemma 5, if we additionally have y /∈ N and
null(X)∩null(D) = {0}, then the generalized lasso solution must be unique. To
emphasize this, we state it as a lemma.

Lemma 6. Fix any X,D, and λ > 0. If y /∈ N , the set of zero Lebesgue measure
as in Lemma 3, null(X)∩null(D) = {0}, and X is in D-GP, then the generalized
lasso solution is unique.

3.3. Absolutely continuous predictor variables

We give an important result that shows theD-GP condition is met almost surely
for continuously distributed predictors. There are no restrictions on the relative
sizes of n, p. The proof of the next result uses elementary probability arguments
and is deferred until the appendix.

Lemma 7. Fix D ∈ R
m×p, and assume that the entries of X ∈ R

n×p are drawn
from a distribution that is absolutely continuous with respect to (np)-dimensional
Lebesgue measure. Then X is in D-GP almost surely.

We now present a result showing that the base condition null(X)∩null(D) =
{0} is met almost surely for continuously distributed predictors, provided that
p ≤ n, or p > n and the null space of D is not too large. Its proof is elementary
and found in the appendix.

Lemma 8. Fix D ∈ R
m×p, and assume that the entries of X ∈ R

n×p are
drawn from a distribution that is absolutely continuous with respect to (np)-
dimensional Lebesgue measure. If either p ≤ n, or p > n and nullity(D) ≤ n,
then null(X) ∩ null(D) = {0} almost surely.

Putting together Lemmas 6, 7, 8 gives our main result on the uniqueness of
the generalized lasso solution.

Theorem 1. Fix any D and λ > 0. Assume the joint distribution of (X, y) is
absolutely continuous with respect to (np+n)-dimensional Lebesgue measure. If
p ≤ n, or else p > n and nullity(D) ≤ n, then the solution in the generalized
lasso problem (1.1) is unique almost surely.

2We say “essentially” here, because our definition of D-GP with D = I allows for a choice
of basis matrix U(B) for each subset B, whereas the standard notion of generally position
would mandate (in the notation of our definition) that U(B) be given by the columns of I
indexed by B.
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Remark 5. If D has full row rank, then by Lemma 2 the optimal subgradient
γ̂ is unique and so the boundary set B is also unique. In this case, condition
(3.2) is vacuous and condition (3.1) is sufficient for uniqueness of the generalized
lasso solution for every y (i.e., we do not need to rely on Lemma 4, which in
turn uses Lemma 3, to prove that (3.1) is sufficient for almost every y). Hence,
in this case, the condition in Theorem 1 that y|X has an absolutely continuous
distribution is not needed, and (with the other conditions in place) uniqueness
holds for every y, almost surely over X. Under this (slight) sharpening, Theorem
1 with D = I reduces to the result in Lemma 4 of Tibshirani [32].

Remark 6. Generally speaking, the condition that nullity(D) ≤ n in Theorem 1
(assumed in the case p > n) is not strong. In many applications of the generalized
lasso, the dimension of the null space of D is small and fixed (i.e., it does not
grow with n). For example, recall Corollary 1, where the lower bound n in each
of the cases reflects the dimension of the null space.

3.4. Standardized predictor variables

A common preprocessing step, in many applications of penalized modeling such
as the generalized lasso, is to standardize the predictors X ∈ R

n×p, meaning,
center each column to have mean 0, and then scale each column to have norm
1. Here we show that our main uniqueness results carry over, mutatis mutandis,
to the case of standardized predictor variables. All proofs in this subsection are
deferred until the appendix.

We begin by studying the case of centering alone. Let M = I−11T /n ∈ R
n×n

be the centering map, and consider the centered generalized lasso problem

minimize
β∈Rp

1

2
‖y −MXβ‖22 + λ‖Dβ‖1. (3.5)

We have the following uniqueness result for centered predictors.

Corollary 2. Fix any D and λ > 0. Assume the distribution of (X, y) is ab-
solutely continuous with respect to (np + n)-dimensional Lebesgue measure. If
p ≤ n−1, or p > n−1 and nullity(D) ≤ n−1, then the solution in the centered
generalized lasso problem (3.5) is unique almost surely.

Remark 7. The exact same result as stated in Corollary 2 holds for the gen-
eralized lasso problem with intercept

minimize
β0∈R, β∈Rp

1

2
‖y − β01 −Xβ‖22 + λ‖Dβ‖1. (3.6)

This is because, by minimizing over β0 in problem (3.6), we find that this prob-
lem is equivalent to minimization of

1

2
‖My −MXβ‖22 + λ‖Dβ‖1

over β, which is just a generalized lasso problem with response V T
−1y and pre-

dictors V T
−1X, where the notation here is as in the proof of Corollary 2.
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Next we consider scaling alone. Let WX = diag(‖X1‖2, . . . , ‖Xp‖2) ∈ R
p×p,

and consider the scaled generalized lasso problem

minimize
β∈Rp

1

2
‖y −XW−1

X β‖22 + λ‖Dβ‖1. (3.7)

We give a helper lemma, on the distribution of a continuous random vector,
post scaling.

Lemma 9. Let Z ∈ R
n be a random vector whose distribution is absolutely

continuous with respect to n-dimensional Lebesgue measure. Then, the distri-
bution of Z/‖Z‖2 is absolutely continuous with respect to (n − 1)-dimensional
Hausdorff measure restricted to the (n − 1)-dimensional unit sphere, S

n−1 =
{x ∈ R

n : ‖x‖2 = 1}.
We give a second helper lemma, on the (n−1)-dimensional Hausdorff measure

of an affine space intersected with the unit sphere Sn−1 (which is important for
checking that the scaled predictor matrix is in D-GP, because here we must
check that none of its columns lie in a finite union of affine spaces).

Lemma 10. Let A ⊆ R
n be an arbitrary affine space, with dim(A) ≤ n − 1.

Then S
n−1 ∩A has (n− 1)-dimensional Hausdorff measure zero.

We present a third helper lemma, which establishes that for absolutely con-
tinuous X, the scaled predictor matrix XW−1

X is in D-GP and satisfies the
appropriate null space condition, almost surely.

Lemma 11. Fix D ∈ Rm×p, and assume that X ∈ Rn×p has entries drawn
from a distribution that is absolutely continuous with respect to (np)-dimensional
Lebesgue measure. Then XW−1

X is in D-GP almost surely. Moreover, if p ≤ n,
or p > n and nullity(D) ≤ n, then null(XW−1

X ) ∩ null(D) = {0} almost surely.

Combining Lemmas 6, 11 gives the following uniqueness result for scaled
predictors.

Corollary 3. Fix any D and λ > 0. Assume the distribution of (X, y) is ab-
solutely continuous with respect to (np + n)-dimensional Lebesgue measure. If
p ≤ n, or else p > n and nullity(D) ≤ n, then the solution in the scaled gener-
alized lasso problem (3.7) is unique almost surely.

Finally, we consider the standardized generalized lasso problem,

minimize
β∈Rp

1

2
‖y −MXW−1

MXβ‖22 + λ‖Dβ‖1, (3.8)

where, note, the predictor matrixMXW−1
MX has standardized columns, i.e., each

column has been centered to have mean 0, then scaled to have norm 1. We have
the following uniqueness result.

Corollary 4. Fix any D and λ > 0. Assume the distribution of (X, y) is ab-
solutely continuous with respect to (np + n)-dimensional Lebesgue measure. If
p ≤ n − 1, or p > n − 1 and nullity(D) ≤ n − 1, then the solution in the
standardized generalized lasso problem (3.8) is unique almost surely.
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4. Smooth, strictly convex loss functions

4.1. Generalized lasso with a general loss

We now extend some of the preceding results beyond the case of squared error
loss, as considered previously. In particular, we consider the problem

minimize
β∈Rp

G(Xβ; y) + λ‖Dβ‖1, (4.1)

where we assume, for each y ∈ R
n, that the function G( · ; y) is essentially

smooth and essentially strictly convex on R
n. These two conditions together

mean that G( · ; y) is a closed proper convex function, differentiable and strictly
convex on the interior of its domain (assumed to be nonempty), with the norm
of its gradient approaching ∞ along any sequence approaching the boundary of
its domain. A function that is essentially smooth and essentially strictly convex
is also called, according to some authors, of Legendre type; see Chapter 26 of
Rockafellar [21]. An important special case of a Legendre function is one that
is differentiable and strictly convex, with full domain (all of Rn).

For much of what follows, we will focus on loss functions of the form

G(z; y) = −yT z + ψ(z), (4.2)

for an essentially smooth and essentially strictly convex function ψ on R
n (not

depending on y). This is a weak restriction on G and encompasses, e.g., the
cases in which G is the negative log-likelihood function from a generalized linear
model (GLM) for the entries of y|X with a canonical link function, where ψ is the
cumulant generating function. In the case of, say, Bernoulli or Poisson models,
this is

G(z; y) = −yT z +

n∑
i=1

log(1 + ezi), or G(z; y) = −yT z +

n∑
i=1

ezi ,

respectively. For brevity, we will often write the loss function as G(Xβ), hiding
the dependence on the response vector y.

4.2. Basic facts, KKT conditions, and the dual

The next lemma follows from arguments identical to those for Lemma 1.

Lemma 12. For any y,X,D, λ ≥ 0, and for G essentially smooth and essen-
tially strictly convex, the following holds of problem (4.1).

(i) There is either zero, one, or uncountably many solutions.
(ii) Every solution β̂ gives rise to the same fitted value Xβ̂.
(iii) If λ > 0, then every solution β̂ gives rise to the same penalty value ‖Dβ̂‖1.
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Note the difference between Lemmas 12 and 1, part (i): for an arbitrary
(essentially smooth and essentially strictly convex) G, the criterion in (4.1)
need not attain its infimum, whereas the criterion in (1.1) always does. This
happens because the criterion in (4.1) can have directions of strict recession
(i.e., directions of recession in which the criterion is not constant), whereas the
citerion in (1.1) cannot. Thus in general, problem (4.1) need not have a solution;
this is true even in the most fundamental cases of interest beyond squared loss,
e.g., the case of a Bernoulli negative log-likelihood G. Later in Lemma 14, we
give a sufficient condition for the existence of solutions in (4.1).

The KKT conditions for problem (4.1) are

−XT∇G(Xβ̂) = λDT γ̂, (4.3)

where γ̂ ∈ R
m is (as before) a subgradient of the �1 norm evaluated at Dβ̂,

γ̂i ∈
{
{sign((Dβ̂)i)} if (Dβ̂)i �= 0

[−1, 1] if (Dβ̂)i = 0
, for i = 1, . . . ,m. (4.4)

As in the squared loss case, uniqueness of Xβ̂ by Lemma 12, along with (4.3),
imply the next result.

Lemma 13. For any y,X,D, λ > 0, and G essentially smooth and essentially
strictly convex, every optimal subgradient γ̂ in problem (4.1) gives rise to the
same value of DT γ̂. Furthermore, when D has full row rank, the optimal sub-
gradient γ̂ is unique, assuming that problem (4.1) has a solution in the first
place.

Denote by G∗ the conjugate function of G. When G is essentially smooth
and essentially strictly convex, the following facts hold (e.g., see Theorem 26.5
of Rockafellar [21]):

• its conjugate G∗ is also essentially smooth and essentially strictly convex;
and

• the map ∇G : int(dom(G)) → int(dom(G∗)) is a homeomorphism with
inverse (∇G)−1 = ∇G∗.

The conjugate function is intrinsically tied to duality, directions of recession,
and the existence of solutions. Standard arguments in convex analysis, deferred
to the appendix, give the next result.

Lemma 14. Fix any y,X,D, and λ ≥ 0. Assume G is essentially smooth and
essentially strictly convex. The Lagrangian dual of problem (4.1) can be written
as

minimize
u∈Rm, v∈Ru

G∗(−v) subject to XT v = DTu, ‖u‖∞ ≤ λ, (4.5)

where G∗ is the conjugate of G. Any dual optimal pair (û, v̂) in (4.5), and
primal optimal solution-subgradient pair (β̂, γ̂) in (4.1), i.e., satisfying (4.3),
(4.4), assuming they all exist, must satisfy the primal-dual relationships

∇G(Xβ̂) = −v̂, and û = λγ̂. (4.6)
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Lastly, existence of primal and dual solutions is guaranteed under the conditions

0 ∈ int(dom(G)), (4.7)

(−C) ∩ int(ran(∇G)) �= ∅, (4.8)

where C = (XT )−1(DTBm
∞(λ)). In particular, under (4.7) and C �= ∅, a solution

exists in the dual problem (4.5), and under (4.7), (4.8), a solution exists in the
primal problem (4.1).

Assuming that primal and dual solutions exist, we see from (4.6) in the above
lemma that v̂ must be unique (by uniqueness of Xβ̂, from Lemma 12), but û
need not be (as γ̂ is not necessarily unique). Moreover, under condition (4.7), we
know that G is differentiable at 0, and ∇G∗(∇G(0)) = 0, hence we may rewrite
(4.5) as

minimize
u∈Rm, v∈Rn

DG∗
(
− v,∇G(0)

)
subject to XT v = DTu, ‖u‖∞ ≤ λ, (4.9)

where Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉 denotes the Bregman divergence
between points x, z, with respect to a function f . Optimality of v̂ in (4.9) may
be expressed as

v̂ = −PG∗

−C

(
∇G(0)

)
, where C = (XT )−1

(
DTBm

∞(λ)
)
. (4.10)

Here, recall (XT )−1(S) is the preimage of a set S under the linear mapXT ,DTS
is the image of S under the linear map DT , Bm

∞(λ) = {u ∈ R
m : ‖u‖∞ ≤ λ} is

the �∞ ball of radius λ in R
m. Now, P f

S (·) is the projection onto S with respect
to the Bregman divergence of a function f , i.e., P f

S (z) = argminx∈S Df (x, z).
From (4.10) and (4.6), we see that

Xβ̂ = ∇G∗
(
PG∗

−C

(
∇G(0)

))
. (4.11)

We note the analogy between (4.10), (4.11) and (2.5), (2.6) in the squared loss
case; for G(z) = 1

2‖y − z‖22, we have ∇G(0) = −y, G∗(z) = 1
2‖y + z‖22 − 1

2‖y‖22,
∇G∗(z) = y + z, −PG∗

−C(∇G(0)) = PC(y), and so (4.10), (4.11) match (2.5),
(2.6), respectively. But when G is non-quadratic, we see that the dual solution
v̂ and primal fit Xβ̂ are given in terms of a non-Euclidean projection opera-
tor, defined with respect to the Bregman divergence of G∗. See Figure 2 for
an illustration. This complicates the study of the primal and dual problems, in
comparison to the squared loss case; still, as we will show in the coming sub-
sections, several key properties of primal and dual solutions carry over to the
current general loss setting.

4.3. Existence in (regularized) GLMs

Henceforth, we focus on the case in which G takes the form (4.2). The station-
arity condition (4.3) is

XT
(
y −∇ψ(Xβ̂)

)
= λDT γ̂, (4.12)
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Fig 2. Geometry of the dual problem (4.9), for a general loss function G. As in (4.10), the
dual solution v̂ may be seen as the Bregman projection of −∇G(0) onto a set C with respect to
the map x �→ G∗(−x) (where G∗ is the conjugate of G). Shown in the figure are the contours
of this map, around −∇G(0); the point v̂ lies at the intersection of the lowest-level contour
and C. Here, as in the squared loss case, C = (XT )−1(DTBm

∞(λ)), which is a polyhedron.
This realization can be used to derive the implicit form (4.21) for Xβ̂, based on (4.11) and
the face of C on which v̂ lies, as explained in Remark 10.

and using the identitiesG∗(x) = ψ∗(x+ y), PG∗

S (x) = Pψ∗

S+y(x+ y)− y, the dual
and primal projections, (4.10) and (4.11), become

v̂ = y − Pψ∗

y−C

(
∇ψ(0)

)
, and Xβ̂ = ∇ψ∗

(
Pψ∗

y−C

(
∇ψ(0)

))
. (4.13)

To check, for the squared loss, we have ψ(z) = 1
2‖z‖22,∇ψ(0) = 0, ψ∗(z) = 1

2‖z‖22,
∇ψ∗(z) = z, Pψ∗

y−C(∇ψ(0)) = y − PC(y), so (4.13) matches (2.5), (2.6). Finally,
the conditions (4.7), (4.8) that guarantee the existence of primal and dual solu-
tions become

0 ∈ int(dom(ψ)), (4.14)

y ∈ int(ran(∇ψ)) + C, (4.15)

where recall C = (XT )−1(DTBm
∞(λ)).

We take somewhat of a detour from our main goal (establishing uniqueness
in (4.1)), and study the existence conditions (4.14), (4.15). To gather insight,
we examine them in detail for some cases of interest. We begin by looking at
unregularized (λ = 0) logistic and Poisson regression. The proof of the next
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result is straightforward in all but the logistic regression case, and is given in
the appendix.

Lemma 15. Fix any y,X. Assume that G is of the form (4.2), where ψ is
essentially smooth and essentially strictly convex, satisfying 0 ∈ int(dom(ψ)).
Consider problem (4.1), with λ = 0. Then the sufficient condition (4.15) for the
existence of a solution is equivalent to

y ∈ int(ran(∇ψ)) + null(XT ). (4.16)

For logistic regression, where ψ(z) =
∑n

i=1 log(1 + ezi) and y ∈ {0, 1}n, if we
write Yi = 2yi−1 ∈ {−1, 1}, i = 1, . . . , n, and we denote by xi ∈ R

p, i = 1, . . . , n
the rows of X, then condition (4.16) is equivalent to

there does not exist b �= 0 such that Yix
T
i b ≥ 0, i = 1, . . . , n. (4.17)

For Poisson regression, where ψ(z) =
∑n

i=1 e
zi and y ∈ N

n (and N = {0, 1, 2, . . .}
denotes the set of natural numbers), condition (4.16) is equivalent to

there exists δ ∈ null(XT ) such that yi + δi > 0, i = 1, . . . , n. (4.18)

Remark 8. For the cases of logistic and Poisson regression, the lemma shows
that the sufficient condition (4.15) for the existence of a solution (note (4.14)
is automatically satisfied, as dom(ψ) = R

n in these cases) reduces to (4.17)
and (4.18), respectively. Interestingly, in both cases, this recreates a well-known
necessary and sufficient condition for the existence of the maximum likelihood
estimate (MLE); see Albert and Anderson [2] for the logistic regression condi-
tion (4.17), and Haberman [10] for the Poisson regression condition (4.18). The
former condition (4.17) is particularly intuitive, and says that the logistic MLE
exists if and only if there is no hyperplane that “quasicompletely” separates the
points xi, i = 1, . . . , n into the positive and negative classes (using the termi-
nology of Albert and Anderson [2]). For a modern take on this condition, see
Candes and Sur [5].

Now we inspect the regularized case (λ > 0). The proof of the next result is
straightforward and can be found in the appendix.

Lemma 16. Fix any y,X,D, and λ > 0. Assume that G is of the form
(4.2), where we are either in the logistic case, ψ(z) =

∑n
i=1 log(1 + ezi) and

y ∈ {0, 1}n, or in the Poisson case, ψ(z) =
∑n

i=1 e
zi and y ∈ Nn In either case,

a sufficient (but not necessary) condition for (4.15) to hold, and hence for a
solution to exist in problem (4.1), is

null(D) ⊆ null(X). (4.19)

Remark 9. We note that, in particular, condition (4.19) always holds when
D = I, which implies that lasso penalized logistic regression and lasso penalized
Poisson regression always have solutions.
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4.4. Implicit form of solutions

Fix an arbitrary λ > 0, and let (β̂, γ̂) denote an optimal solution-subgradient
pair, i.e., satisfying (4.3), (4.4). As before, we define the boundary set and
boundary signs in terms of γ̂,

B =
{
i ∈ {1, . . . ,m} : |γ̂i| = 1

}
, and s = sign(γ̂B).

and the active set and active signs in terms of β̂,

A = supp(Dβ̂) =
{
i ∈ {1, . . . ,m} : (Dβ̂)i �= 0

}
, and r = sign(γ̂A).

By (4.3), we have that A ⊆ B. In general, A, r,B, s are not unique, as neither β̂
nor γ̂ are.

The next lemma gives an implicit form for the fit and solutions in (4.1), with
G as in (4.2), akin to the results (2.7), (2.8) in the squared loss case. Its proof
stems directly from the KKT conditions (4.12); it is somewhat technical and
deferred until the appendix.

Lemma 17. Fix any y,X,D, and λ > 0. Assume that G is of the form (4.2),
where ψ is essentially smooth and essentially strictly convex, and satisfies (4.14),
(4.15). Let β̂ be a solution in problem (4.1), and let γ̂ be a corresponding op-
timal subgradient, with boundary set and boundary signs B, s. Define the affine
subspace

KB,s = λ(Pnull(D−B)X
T )+DT

Bs+ null(Pnull(D−B)X
T ). (4.20)

Then the unique fit can be expressed as

Xβ̂ = ∇ψ∗
(
Pψ∗

y−KB,s

(
∇ψ(0)

))
, (4.21)

and the solution can be expressed as

β̂ = (XPnull(D−B))
+∇ψ∗

(
Pψ∗

y−KB,s

(
∇ψ(0)

))
+ b, (4.22)

for some b ∈ null(X) ∩ null(D−B). Similarly, letting A, r denote the active set
and active signs of β̂, the same expressions hold as in the last two displays
with B, s replaced by A, r (i.e., with the affine subspace of interest now being
KA,r = λ(Pnull(D−A)X

T )+DT
Ar + null(Pnull(D−A)X

T )).

Remark 10. The proof of Lemma 17 derives the representation (4.21) using
technical manipulation of the KKT conditions. But the same result can be
derived using the geometry surrounding the dual problem (4.9). See Figure 2 for
an accompanying illustration, and Remark 2 for a similar geometric argument
in the squared loss case. As γ̂ has boundary set and signs B, s, and û = λγ̂
from (4.6), we see that û must lie on the face of Bm

∞(λ) whose affine span is
EB,s = {u ∈ R

m : uB,s = λs}; and as XT v̂ = DT û, we see that v̂ lies on the face
of C whose affine span is KB,s = (XT )−1DTEB,s, which, it can be checked, can
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be rewritten explicitly as the affine subspace in (4.20). Hence, the projection of
∇G(0) onto −C lies on a face whose affine span is −KB,s, and we can write

−v̂ = PG∗

−KB,s

(
∇G(0)

)
,

i.e., we can simply replace the set −C in (4.10) with −KB,s. When G is of the
form (4.2), repeating the same arguments as before therefore shows that the
dual and primal projections in (4.13) hold with −C replaced by −KB,s, which
yields the primal projection result in (4.21) in the lemma.

Though the form of solutions in (4.22) appears more complicated in form
than the form (2.8) in the squared loss case, we see that one important prop-
erty has carried over to the general loss setting, namely, the property that
b ∈ null(X) ∩ null(D−B). As before, let us assign to each boundary set B as-
sociated with an optimal subgradient in (4.1) a basis matrix U(B) ∈ R

p×k(B),
whose linearly independent columns that span null(D−B). Then by the same
logic as explained at the beginning of Section 3.1, we see that, under the con-
ditions of Lemma 17, there is a unique solution in (4.1), given by (4.22) with
b = 0, provided that conditions (3.1), (3.2) hold.

The arguments in the squared loss case, proceeding the observation of (3.1),
(3.2) as a sufficient condition, relied on the invariance of the linear subspace
Xnull(D−B) over all boundary sets B of optimal subgradients in the generalized
lasso problem (1.1). This key result was established, recall, in Lemma 10 of
Tibshirani and Taylor [34], transcribed in our Lemma 3 for convenience. For
the general loss setting, no such invariance result exists (as far as we know).
Thus, with uniqueness in mind as the end goal, we take somewhat of a detour
and study local properties of generalized lasso solutions, and invariance of the
relevant linear subspaces, over the next two subsections.

4.5. Local stability

We establish a result on the local stability of the boundary set and boundary
signs B, s associated with an optimal solution-subgradient pair (β̂, γ̂), i.e., satis-
fying (4.3), (4.4). This is a generalization of Lemma 9 in Tibshirani and Taylor
[34], which gives the analogous result for the case of squared loss. We must first
introduce some notation. For arbitrary subsets A ⊆ B ⊆ {1, . . . ,m}, denote

MA,B = P[DB\A(null(X)∩null(D−B))]⊥DB\A(XPnull(D−B))
+. (4.23)

(By convention, when A = B, we set MA,B = 0.) Define

N =
⋃

A,B,s:
MA,B �=0

(
KB,s +∇ψ

(
col(XPnull(D−B)) ∩ null(MA,B)

))
. (4.24)

The union above is taken over all subsets A ⊆ B ⊆ {1, . . . ,m} and vec-
tors s ∈ {−1, 1}|B|, such that MA,B �= 0; and KB,s,MA,B, are as defined in
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(4.20), (4.23), respectively. We use somewhat of an abuse in notation in writ-
ing ∇ψ(col(XPnull(D−B)) ∩ null(MA,B)); for an arbitrary triplet (A,B, s), of
course, col(XPnull(D−B)) ∩ null(MA,B) need not be contained in int(dom(ψ)),
and so really, each such term in the above union should be interpreted as
∇ψ(col(XPnull(D−B)) ∩ null(MA,B) ∩ int(dom(ψ))).

Next we present the local stability result. Its proof is lengthy and deferred
until the appendix.

Lemma 18. Fix any X,D, and λ > 0. Fix y /∈ N , where the set N is defined in
(4.24). Assume that G is of the form (4.2), where ψ is essentially smooth and
essentially strictly convex, satisfying (4.14), (4.15). That is, our assumptions
on the response are succinctly: y ∈ N c ∩ (int(ran(∇ψ)) + C). Denote an opti-
mal solution-subgradient pair in problem (4.1) by (β̂(y), γ̂(y)), our notation here
emphasizing the dependence on y, and similarly, denote the associated bound-
ary set, boundary signs, active set, and active signs by B(y), s(y),A(y), r(y),
respectively. There is a neighborhood U of y such that, for any y′ ∈ U , problem
(4.1) has a solution, and in particular, it has an optimal solution-subgradient
pair (β̂(y′), γ̂(y′)) with the same boundary set B(y′) = B(y), boundary signs
s(y′) = s(y), active set A(y′) = A(y), and active signs r(y′) = r(y).

Remark 11. The set N defined in (4.24) is bigger than it needs to be; to be
precise, the same result as in Lemma 18 actually holds with N replaced by the
smaller set

N ∗ =
⋃

A,B,s:
MA,B �=0

{
z ∈ R

n : ∇ψ∗
(
Pψ∗

z−KB,s

(
∇ψ(0)

))
∈ null(MA,B)

}
. (4.25)

which can be seen from the proof of Lemma 18, as can be N ∗ ⊆ N . However,
the definition of N in (4.24) is more explicit than that of N ∗ in (4.25), so we
stick with the former set for simplicity.

Remark 12. For each triplet A,B, s in the definition (4.24) over which the
union is defined, the setsKB,s and col(XPnull(D−B)) ∩ null(MA,B) are each affine
spaces, and the sum of their dimensions is at most n − 1 (since the linear
space in KB,s is the orthocomplement of col(XPnull(D−B))). When ∇ψ is locally
Lipschitz—which holds, e.g., when ψ is the cumulant generating function for the
Bernoulli and Poisson models—it can be shown thatKB,s+∇ψ(col(XPnull(D−B))∩
null(MA,B)) has Lebesgue measure zero (the key here is that the Hausdorff di-
mension of a set cannot increase under a locally Lipschitz map, thus KB,s +
∇ψ(col(XPnull(D−B)) ∩ null(MA,B)) must have Hausdorff dimension at most
n − 1, hence Lebesgue measure zero). As this is true for each triplet A,B, s,
the set N (being a finite union of measure zero sets) must also have Lebesgue
measure zero.

4.6. Invariance of the linear space Xnull(D−B)

We leverage the local stability result from the last subsection to establish an
invariance of the linear subspace Xnull(D−B) over all choices of boundary sets
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B corresponding to an optimal subgradient in (4.1). This is a generalization of
Lemma 10 in problem Tibshirani and Taylor [34], which was transcribed in our
Lemma 3. The proof is again deferred until the appendix.

Lemma 19. Assume the conditions of Lemma 18. Then all boundary sets B
associated with optimal subgradients in problem (4.1) give rise to the same sub-
space Xnull(D−B), i.e., there is a single linear subspace L ⊆ R

n such that
L = Xnull(D−B) for all boundary sets B of optimal subgradients. Furthermore,
L = Xnull(D−A) for all active sets A associated with solutions in (4.1).

As already mentioned, Lemmas 18 and 19 extend Lemmas 9 and 10, respec-
tively, of Tibshirani and Taylor [34] to the case of a general loss function G,
taking the generalized linear model form in (4.2). This represents a significant
advance in our understanding of the local nature of generalized lasso solutions
outside of the squared loss case. For example, even for the special case D = I,
that logistic lasso solutions have locally constant active sets, and that col(XA) is
invariant to all choices of active set A, provided y is not in an “exceptional set”
N , seem to be interesting and important findings. These results could be help-
ful, e.g., in characterizing the divergence, with respect to y, of the generalized
lasso fit in (4.21), an idea that we leave to future work.

4.7. Sufficient conditions for uniqueness

We are now able to build on the invariance result in Lemma 19, just as we did
in the squared loss case, to derive our main result on uniqueness in the current
general loss setting.

Theorem 2. Fix any X,D, and λ > 0. Assume that G is of the form (4.2),
where ψ is essentially smooth and essentially strictly convex, and satisfies (4.14).
Assume:

(a) null(X) ∩ null(D) = {0}, and X is in D-GP; or
(b) the entries of X are drawn from a distribution that is absolutely continuous

on R
np, and p ≤ n; or

(c) the entries of X are drawn from a distribution that is absolutely continuous
on R

np, p > n, and nullity(D) ≤ n.

In case (a), the following statement holds deterministically, and in cases (b) or
(c), it holds with almost surely with respect to the distribution of X: for any
y ∈ N c ∩ (int(ran(∇ψ)) + C), where N is defined in (4.24), problem (4.1) has
a unique solution.

Proof. Under the conditions of the theorem, Lemma 17 shows that any solu-
tion in (4.1) must take the form (4.22). As in the arguments in Section 3.1, in
the squared loss case, we see that (3.1), (3.2) are together sufficient for imply-
ing uniqueness of the solution in (4.1). Moreover, Lemma 19 implies the linear
subspace L = Xnull(D−B) is invariant under all choices of boundary sets B cor-
responding to optimal subgradients in (4.1); as in the proof of Lemma 4 in
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the squared loss case, such invariance implies that (3.1) is by itself a sufficient
condition. Finally, if (3.1) does not hold, then X cannot be in D-GP, which
follows by the applying the arguments Lemma 5 in the squared loss case to the
KKT conditions (4.12). This completes the proof under condition (a). Recall,
conditions (b) or (c) simply imply (a) by Lemmas 7 and 8.

As explained in Remark 12, the set N in (4.24) has Lebesgue measure zero for
G as in (4.2), when ∇ψ is locally Lipschitz, which is true, e.g., for the cumulant
generating function ψ in the Bernoulli and Poisson models. But in these cases,
it would of course be natural to assume that the entries of y|X are drawn from a
Bernoulli or Poisson distribution; and as these are discrete distributions, the fact
that N has Lebesgue measure zero does not imply the event y ∈ N has zero
probability. While it does not seem straightforward to bound the probability
that y ∈ N in these cases, it still seems intuitive that the event y ∈ N should
be “unlikely”. A careful analysis is left to future work.

5. Discussion

In this paper, we derived sufficient conditions for the generalized lasso problem
(1.1) to have a unique solution, which allow for p > n (in fact, allow for p
to be arbitrarily larger than n): as long as the predictors and response jointly
follow a continuous distribution, and the null space of the penalty matrix has
dimension at most n, our main result in Theorem 1 shows that the solution is
unique. We have also extended our study to the problem (4.1), where the loss
is of generalized linear model form (4.2), and established an analogous (and
more general) uniqueness result in Theorem 2. Along the way, we have also
shown some new results on the local stability of boundary sets and active sets,
in Lemma 18, and on the invariance of key linear subspaces, in Lemma 19, in
the generalized linear model case, which may be of interest in their own right.

An interesting direction for future work is to carefully bound the probability
that y ∈ N , whereN is as in (4.24), in some typical generalized linear models like
the Bernoulli and Poisson cases. This would give us a more concrete probabilistic
statement about uniqueness in such cases, following from Theorem 2. Another
interesting direction is to inspect the application of Theorems 1 and 2 to additive
trend filtering and varying-coefficient models. Lastly, the local stability result
in Lemma 18 seems to suggest that a nice expression for the divergence of the
fit (4.21), as a function of y, may be possible (furthermore, Lemma 19 suggests
that this expression should be invariant to the choice of boundary set). This may
prove useful for various purposes, e.g., for constructing unbiased risk estimates
in penalized generalized linear models.
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Appendix A: Proofs

A.1. Proof of Lemma 5

As the generalized lasso solution is not unique, we know that condition (3.1)
cannot hold, and there exist B, s associated with an optimal subgradient in
problem (1.1) for which rank(XU(B)) < k(B), for any U(B) ∈ Rp×k(B) whose
linearly independent columns span null(D−B). Thus, fix an arbitrary choice of
basis matrix U(B). Then by construction we have that Zi = XUi(B) ∈ R

n,
i = 1, . . . , k(B) are linearly dependent.

Note that multiplying both sides of the KKT conditions (2.1) by U(B)T gives

U(B)TXT (y −Xβ̂) = s̃, (A.1)

by definition of s̃. We will first show that the assumptions in the lemma, s̃ �= 0.
To see this, if s̃ = 0, then at any solution β̂ as in (2.8) associated with B, s,

‖Dβ̂‖1 = ‖DBβ̂‖1 = sTDBβ̂ = 0,

since β̂ ∈ col(U(B)). Uniqueness of the penalty value as in Lemma 1 now im-
plies that ‖Dβ̂‖1 = 0 at all generalized lasso solutions (not only those stem-
ming from B, s). Nonuniqueness of the solution is therefore only possible if
null(X) ∩ null(D) �= {0}, contradicting the setup in the lemma.

We may now choose i1 ∈ {1, . . . , k(B)} such that s̃i1 �= 0, and i2, . . . , ik ∈
{1, . . . , k(B)} such that k ≤ n+ 1 and

k∑
j=1

cjZij = 0. (A.2)

for some c �= 0. Taking an inner product on both sides with the residual y −Xβ̂,
and invoking the modified KKT conditions (A.1), gives

k∑
j=1

cj s̃ij = 0. (A.3)

There are two cases to consider. If s̃ij = 0 for all j = 2, . . . , k, then we must
have c1 = 0, so from (A.2),

k∑
j=2

cjZij = 0. (A.4)

If instead s̃ij �= 0 for some j = 2, . . . , k, then define J = {j ∈ {1, . . . , k} : s̃ij �= 0}
(which we know in the present case has cardinality |J | ≥ 2). Rewrite (A.3) as

c1s̃i1 = −
∑

j∈J\{1}
cj s̃ij ,
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and hence rewrite (A.2) as

∑
j∈J

cj s̃ij
Zij

s̃ij
+

∑
j /∈J

cjZij = 0,

or
Zi1

s̃i1
=

−1

c1s̃i1

∑
j∈J\{1}

cj s̃ij
Zij

s̃ij
+

−1

c1s̃i1

∑
j /∈J

cjZij .

or letting aij = −cj s̃ij/(c1s̃i1) for j ∈ J ,

Zi1

s̃i1
=

∑
j∈J\{1}

aij
Zij

s̃ij
+

−1

c1s̃i1

∑
j /∈J

cjZij , where
∑

j∈J\{1}
aij = 1. (A.5)

Reflecting on the two conclusions (A.4), (A.5) from the two cases considered,
we can reexpress these as (3.3), (3.4), respectively, completing the proof.

A.2. Proof of Lemma 7

Fix an arbitrary B ⊆ {1, . . . ,m} and s ∈ {−1, 1}|B|. Define U(B) ∈ R
p×k(B)

whose columns form a basis for null(D−B) by running Gauss-Jordan elimination
on D−B. We may assume without a loss of generality that this is of the form

U(B) =
[
I
F

]
,

where I ∈ R
k(B)×k(B) is the identity matrix and F ∈ R

(p−k(B))×k(B) is a generic
dense matrix. (If need be, then we can always permute the columns of X, i.e.,
relabel the predictor variables, in order to obtain such a form.) This allows us
to express the columns of Z = XU(B) as

Zi =

p∑
�=1

X�U�i(B) = Xi +

p−k(B)∑
�=1

X�+k(B)F�i, for i = 1, . . . , k(B).

Importantly, for each i = 1, . . . , k(B), we see that only Zi depends on Xi (i.e.,
no other Zj , j �= i depends on Xi). Select any i1, . . . , ik ∈ {1, . . . , k(B)} with
s̃i1 �= 0 and k ≤ n+ 1. Suppose first that s̃i2 = · · · = s̃ik = 0. Then

Zi2 ∈ span({Zi3 , . . . , Zik})

⇐⇒ Xi2 ∈ −
p−k(B)∑
�=1

X�+k(B)F�i + span({Zi3 , . . . , Zik}).

Conditioning on Xj , j �= i2, the right-hand side above is just some fixed affine
space of dimension at most n− 1, and so

P

(
Xi2 ∈ −

p−k(B)∑
�=1

X�+k(B)F�i + span({Zi3 , . . . , Zik})
∣∣∣∣Xj , j �= i2

)
= 0,



2334 A. Ali and R. J. Tibshirani

owing to the fact that Xi2 |Xj , j �= i2 has a continuous distribution over R
n.

Integrating out over Xj , j �= i2 then gives

P

(
Xi2 ∈ −

p−k(B)∑
�=1

X�+k(B)F�i + span({Zi3 , . . . , Zik})
)

= 0,

which proves a violation of case (i) in the definition of D-GP happens with
probability zero. Similar arguments show that a violation of case (ii) in the
definition of D-GP happens with probability zero. Taking a union bound over all
possible B, s, i1, . . . , ik, and k shows that any violation of the defining properties
of the D-GP condition happens with probability zero, completing the proof.

A.3. Proof of Lemma 8

Checking that null(X)∩null(D) = {0} is equivalent to checking that the matrix

M =

[
X
D

]

has linearly independent columns. In the case p ≤ n, the columns of X will
be linearly independent almost surely (the argument for this is similar to the
arguments in the proof of Lemma 7), so the columns of M will be linearly
independent almost surely.

Thus assume p > n. Let q = nullity(D), so r = rank(D) = p − q. Pick r
columns of D that are linearly independent; then the corresponding columns of
M are linearly independent. It now suffices to check linear independence of the
remaining p − r columns of M . But any n columns of X will be linearly inde-
pendent almost surely (again, the argument for this is similar to the arguments
from the proof of Lemma 7), so the result is given provided p − r ≤ n, i.e.,
q ≤ n.

A.4. Proof of Corollary 2

Let V = [V1 V−1 ] ∈ R
n×n be an orthogonal matrix, where V1 = 1/

√
n ∈ R

n×1

and V−1 ∈ R
n×(n−1) has columns that span col(M). Note that the centered

generalized lasso criterion in (3.5) can be written as

1

2
‖y −MXβ‖22 + λ‖Dβ‖1 =

1

2
‖V T

1 y‖22 + ‖V T
−1y − V T

−1Xβ‖22 + λ‖Dβ‖1,

hence problem (3.5) is equivalent to a regular (uncentered) generalized lasso
problem with response V T

−1y ∈ R
n−1 and predictor matrix V T

−1X ∈ R
(n−1)×p.

By straightforward arguments (using integration and change of variables), (X, y)
having a density on R

np+n implies (V T
−1X,V T

−1y) has a density on R
(n−1)p+(n−1).

Thus, we can apply Theorem 1 to the generalized lasso problem with response
V T
−1y and predictor matrix V T

−1X to give the desired result.
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A.5. Proof of Lemma 9

Let σn−1 denote the (n − 1)-dimensional spherical measure, which is just a
normalized version of the (n − 1)-dimensional Hausdorff measure Hn−1 on the
unit sphere Sn−1, i.e., defined by

σn−1(S) =
Hn−1(S)

Hn−1(Sn−1)
, for S ⊆ S

n−1. (A.6)

Thus, it is sufficient to prove that the distribution of Z/‖Z‖2 is absolutely con-
tinuous with respect to σn−1. For this, it is helpful to recall that an alternative
definition of the (n− 1)-dimensional spherical measure, for an arbitrary α > 0,
is

σn−1(S) =
Ln(coneα(S))

L(Bn
α)

, for S ⊆ S
n−1. (A.7)

where Ln denotes n-dimensional Lebesgue measure, Bn
α = {x ∈ R

n : ‖x‖2 ≤ α}
is the n-dimensional ball of radius α, and coneα(S) = {tx : x ∈ S, t ∈ [0, α]}.
That (A.7) and (A.6) coincide is due to the fact that any two measures that
are uniformly distributed over a separable metric space must be equal up to a
positive constant (see Theorem 3.4 in Mattila [18]), and as both (A.7) and (A.6)
are probability measures on S

n−1, this positive constant must be 1.
Now let S ⊆ S

n−1 be a set of null spherical measure, σn−1(S) = 0. From the
representation for spherical measure in (A.7), we see that Ln(coneα(S)) = 0 for
any α > 0. Denoting cone(S) = {tx : x ∈ S, t ≥ 0}, we have

Ln(cone(S)) = Ln

( ∞⋃
k=1

conek(S)

)
≤

∞∑
k=1

Ln(conek(S)) = 0.

This means that P(Z ∈ cone(S)) = 0, as the distribution of Z is absolutely
continuous with respect to Ln, and moreover P(Z/‖Z‖2 ∈ S) = 0, since Z ∈
cone(S) ⇐⇒ Z ∈ Z/‖Z‖2 ∈ S. This completes the proof.

A.6. Proof of Lemma 10

Denote the n-dimensional unit ball by B
n = {x ∈ R

n : ‖x‖2 ≤ 1}. Note that
the relative boundary of Bn ∩A is precisely

relbd(Bn ∩A) = S
n−1 ∩A.

The boundary of a convex set has Lebesgue measure zero (see Theorem 1 in
Lang [15]), and so we claim S

n−1∩A has (n−1)-dimensional Hausdorff measure
zero. To see this, note first that we can assume without a loss of generality that
dim(A) = n − 1, else the claim follows immediately. We can now interpret
B
n ∩ A as a set in the ambient space A, which is diffeomorphic—via a change

of basis—to R
n−1. To be more precise, if V ∈ R

n×(n−1) is a matrix whose
columns are orthonormal and span the linear part of A, and a ∈ A is arbitrary,
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then V T (Bn ∩ A − a) ⊆ R
n−1 is a convex set, and by the fact cited above

its boundary must have (n − 1)-dimensional Lebesgue measure zero. It can be
directly checked that

bd(V T (Bn ∩A− a)) = V T (relbd(Bn ∩A)− a) = V T (Sn−1 ∩A− a).

As the (n−1)-dimensional Lebesgue measure and (n−1)-dimensional Hausdorff
measure coincide on R

n−1, we see that V T (Sn−1∩A−a) has (n−1)-dimensional
Hausdorff measure zero. Lifting this set back to R

n, via the transformation

V V T (Sn−1 ∩A− a) + a = S
n−1 ∩A,

we see that Sn−1 ∩A too must have Hausdorff measure zero, the desired result,
because the map x �→ V x+a is Lipschitz (then apply, e.g., Theorem 1 in Section
2.4.1 of Evans and Gariepy [8]).

A.7. Proof of Lemma 11

Let us abbreviate X̃ = XW−1
X for the scaled predictor matrix, whose columns

are X̃i = Xi/‖Xi‖2, i = 1, . . . , p. By similar arguments to those given in the
proof of Lemma 7, to show X̃ is in D-GP almost surely, it suffices to show that
for each i = 1, . . . , p,

P
(
X̃i ∈ A

∣∣ X̃j , j �= i
)
= 0,

where A ⊆ R
n is an affine space depending on X̃j , j �= i. This follows by applying

our previous two lemmas: the distribution of X̃i is absolutely continuous with
respect (n−1)-dimensional Hausdorff measure on S

n−1, by Lemma 9, and S
n−1∩

A has (n− 1)-dimensional Hausdorff measure zero, by Lemma 10.
To establish that the null space condition null(X̃) ∩ null(D) = {0} holds al-

most surely, note that the proof of Lemma 8 really only depends on the fact that
any collection of k columns of X, for k ≤ n, are linearly independent almost
surely. It can be directly checked that the scaled columns of X̃ share this same
property, and thus we can repeat the same arguments as in Lemma 8 to give
the result.

A.8. Proof of Corollary 4

Let V = [V1 V−1 ] ∈ R
n×n be as in the proof of Corollary 2, and rewrite the

criterion in (3.8) as

1

2
‖y−MXW−1

MXβ‖22+λ‖Dβ‖1 =
1

2
‖V T

1 y‖22+‖V T
−1y−V T

−1XW−1
MXβ‖22+λ‖Dβ‖1.

Now for each i = 1, . . . , p, note that ‖V T
−1Xi‖22 = XT

i V−1V
T
−1Xi = ‖MXi‖22,

which means that

V T
−1XWMX = V T

−1XW−1
V T
−1X

,
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precisely the scaled version of V T
−1X. From the second to last display, we see that

the standardized generalized lasso problem (3.8) is the same as a scaled general-
ized lasso problem with response V T

−1y and scaled predictor matrix V T
−1XW−1

V T
−1X

.
Under the conditions placed on y,X, as explained in the proof of Corollary 2, the
distribution of (V T

−1X,V T
−1y) is absolutely continuous. Therefore we can apply

Corollary 3 to give the result.

A.9. Proof of Lemma 14

Write h(β) = λ‖Dβ‖1. We may rewrite problem (4.1) as thus

minimize
β∈Rp, z∈Rn

G(z) + h(β) subject to z = Xβ. (A.8)

The Lagrangian of the above problem is

L(β, z, v) = G(z) + h(β) + vT (z −Xβ), (A.9)

and minimizing the Lagrangian over β, z gives the dual problem

maximize
v∈Rn

−G∗(−v)− h∗(XT v), (A.10)

where G∗ is the conjugate of G, and h∗ is the conjugate of h. Noting that
h(β) = maxη∈DTBm

∞(λ) η
Tβ, we have

h∗(α) = IDTBm
∞(λ)(α) =

{
0 α ∈ DTBm

∞(λ)

∞ otherwise
,

and hence the dual problem (A.10) is equivalent to the claimed one (4.5).
As G is essentially smooth and essentially strictly convex, the interior of its

domain is nonempty. Since the domain of h is all of Rp, this is enough to ensure
that strong duality holds between (A.8) and (A.10) (see, e.g., Theorem 28.2 of
Rockafellar [21]). Moreover, if a solution β̂, ẑ is attained in (A.8), and a solution
v̂ is attained in (A.10), then by minimizing the Lagrangian L(β, z, v̂) in (A.9)
over z and β, we have the relationships

∇G(ẑ) = −v̂, and XT v̂ ∈ ∂h(β̂), (A.11)

respectively, where ∂h(·) is the subdifferential operator of h. The first relation-
ship in (A.11) can be rewritten as∇G(Xβ̂) = −v̂, matching the first relationship
in (4.6). The second relationship in (A.11) can be rewritten as DT û ∈ ∂h(β̂),
where û ∈ Bm

∞(λ) is such that XT v̂ = DT û, and thus we can see that û/λ is sim-
ply a relabeling of the subgradient γ̂ of the �1 norm evaluated at Dβ̂, matching
the second relationship in (4.6).

Finally, we address the constraint qualification conditions (4.7), (4.8). When
(4.7) holds, we know that G∗ has no directions of recession, and so if C �= ∅,
then the dual problem (4.5) has a solution (see, e.g., Theorems 27.1 and 27.3
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in Rockafellar [21]), equivalently, problem (A.10) has a solution. Suppose (4.8)
also holds, or equivalently,

(−C) ∩ int(dom(G∗)) �= ∅,

which follows as int(dom(G∗)) = int(ran(∇G)), due to the fact that the map
∇G : int(dom(G)) → int(dom(G∗)) is a homeomorphism. Then we have know
further that −v̂ ∈ int(dom(G∗)) by essential smoothness and essential strict
convexity of G∗ (in particular, by the property that ‖∇G∗‖2 diverges along any
sequence converging to a boundary point of dom(G∗); see, e.g., Theorem 3.12
in Bauschke and Borwein [3]), so ẑ = ∇G∗(−v̂) is well-defined; by construc-
tion it satisfies the first relationship in (A.11), and minimizes the Lagrangian
L(β, z, v̂) over z. The second relationship in (A.11), recall, can be rewritten as
DT û ∈ ∂h(β̂); that the Lagrangian L(β, z, v̂) attains its infimum over β follows
from the fact that the map β �→ h(β)− ûTDβ has no strict directions of reces-
sion (directions of recession in which this map is not constant). We have shown
that the Lagrangian L(β, z, v̂) attains its infimum over β, z. By strong duality,
this is enough to ensure that problem (A.8) has a solution, equivalently, that
problem (4.1) has a solution, completing the proof.

A.10. Proof of Lemma 15

When λ = 0, note that C = null(XT ), so (4.15) becomes (4.16). For Poisson
regression, the condition (4.18) is an immediate rewriting of (4.16), because
int(ran(∇ψ)) = Rn

++, where R++ = (0,∞) denotes the positive real numbers.
For logistic regression, the argument leading to (4.17) is a little more tricky, and
is given below.

Observe that in the logistic case, int(ran(∇ψ)) = (0, 1)n, hence condition
(4.16) holds if and only if there exists a ∈ (0, 1)n such that XT (y − a) = 0, i.e.,
there exists a′ ∈ (0, 1)n such that XTDY a

′ = 0, where DY = diag(Y1, . . . , Yn).
The latter statement is equivalent to

null(XTDY ) ∩ R
n
++ �= ∅. (A.12)

We claim that this is actually in turn equivalent to

col(DY X) ∩ R
n
+ = {0}. (A.13)

where R+ = [0,∞) denotes the nonnegative real numbers, which would complete
the proof, as the claimed condition (A.13) is a direct rewriting of (4.17).

Intuitively, to see the equivalence of (A.12) and (A.13), it helps to draw a
picture: the two subspaces col(DY X) and null(XTDY ) are orthocomplements,
and if the former only intersects the nonnegative orthant at 0, then the latter
must pass through the negative orthant. This intuition is formalized by Stiemke’s
lemma. This is a theorem of alternatives, and a close relative of Farkas’ lemma
(see, e.g., Theorem 2 in Chapter 1 of Kemp and Kimura [12]); we state it below
for reference.
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Lemma 20. Given A ∈ R
n×p, exactly one of the following systems has a solu-

tion:

• Ax = 0, x < 0 for some x ∈ R
p;

• AT y ≥ 0 for some y ∈ R
n, y �= 0.

Applying this lemma to A = XTDY gives the equivalence of (A.12) and
(A.13), as desired.

A.11. Proof of Lemma 16

We prove the result for the logistic case; the result for the Poisson case follows
similarly. Recall that in the logistic case, int(ran(∇ψ)) = (0, 1)n. Given y ∈
{0, 1}n, and arbitrarily small ε > 0, note that we can always write y = z + δ,
where z ∈ (0, 1)n and δ ∈ Bm

∞(ε). Thus (4.15) holds as long as

C = (XT )−1
(
DTBm

∞(λ)
)
=

{
u ∈ R

n : XTu = DT v, v ∈ Bm
∞(λ)

}
contains a �∞ ball of arbitrarily small radius centered at the origin. As λ > 0,
this holds provided row(X) ⊆ row(D), i.e., null(D) ⊆ null(X), as claimed.

A.12. Proof of Lemma 17

We first establish (4.21), (4.22). Multiplying both sides of stationarity condition
(4.12) by Pnull(D−B) yields

Pnull(D−B)X
T
(
y −∇ψ(Xβ̂)

)
= λPnull(D−B)D

T
Bs.

Let us abbreviate M = Pnull(D−B)X
T . After rearranging, the above becomes

M∇ψ(Xβ̂) = M(y − λM+Pnull(D−B)D
T
Bs).

where we have used Pnull(D−B)D
T
Bs = MM+Pnull(D−B)D

T
Bs, which holds because

Pnull(D−B)D
T
Bs ∈ col(M), from the second to last display. Moreover, we can sim-

plify the above, using M+Pnull(D−B) = M+, to yield

M∇ψ(Xβ̂) = M(y − λM+DT
Bs),

and multiplying both sides by M+,

Prow(M)∇ψ(Xβ̂) = Prow(M)(y − λM+DT
Bs). (A.14)

Lastly, since D−Bβ̂ = 0, we have Xβ̂ = XPnull(D−B)β̂ = MT β̂ ∈ row(M), so

Pnull(M)Xβ̂ = 0. (A.15)

We will now show that (A.14), (A.15) together imply ∇ψ(Xβ̂) can be ex-
pressed in terms of a certain Bregman projection onto an affine subspace, with
respect to ψ∗. To this end, consider

x̂ = P f
S (a) = argmin

x∈S

(
f(x)− f(a)− 〈∇f(a), x− a〉

)
,
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for a function f , point a, and set S. The first-order optimality conditions are〈
∇f(x̂)−∇f(a), z − x̂

〉
≥ 0 for all z ∈ S, and x̂ ∈ S.

When S is an affine subspace, i.e., S = c+ L for a point c and linear subspace
L, this reduces to〈

∇f(x̂)−∇f(a), v
〉
= 0 for all v ∈ L, and x̂ ∈ c+ L.

i.e.,
PL∇f(x̂) = PL∇f(a), and PL⊥ x̂ = PL⊥c. (A.16)

In other words, x̂ = P f
S (a), for S = c+ L, if and only if (A.16) holds.

Set x̂ = ∇ψ(Xβ̂), f = ψ∗, a = ∇ψ(0), c = y − λM+DT
−Bs, and L = null(M).

We see that (A.14) is equivalent to PL⊥ x̂ = PL⊥c. Meanwhile, using (∇ψ)−1 =
∇ψ∗ as guaranteed by essential smoothness and essential strict convexity of ψ,
we see that (A.15) is equivalent to Pnull(M)∇ψ∗(∇ψ(Xβ̂)) = 0, in turn equiva-
lent to PL∇f(x̂) = PL∇f(a). From the first-order optimality conditions (A.16),
this shows that ∇ψ(Xβ̂) = P f

c+L(a) = Pψ∗

y−KB,s
(∇ψ(0)). Using (∇ψ)−1 = ∇ψ∗,

once again, establishes (4.21).
As for (4.22), this follows by simply writing (4.21) as

MT β̂ = ∇ψ∗
(
Pψ∗

y−KB,s

(
∇ψ(0)

))
,

where we have again used Xβ̂ = XPnull(D−B)β̂ = MT β̂. Solving the above linear
system for β̂ gives (4.22), where b ∈ null(MT ) = null(XPnull(D−B)). This con-
straint together with b ∈ null(D−B) implies b ∈ null(X) ∩ null(D−B), as claimed.

Finally, the results with A, r in place of B, s follow similarly. We begin by
multiplying both sides of (4.12) by Pnull(D−A), and then proceed with the same
chain of arguments as above.

A.13. Proof of Lemma 18

The proof follows a similar general strategy to that of Lemma 9 in Tibshirani
and Taylor [34]. We will abbreviate B = B(y), s = s(y), A = A(y), and r = r(y).
Consider the representation for β̂(y) in (4.22) of Lemma 17. As the active set is
A, we know that

DB\A(XPnull(D−B))
+∇ψ∗

(
Pψ∗

y−KB,s

(
∇ψ(0)

))
+DB\Ab = 0,

i.e.,

DB\A(XPnull(D−B))
+∇ψ∗

(
Pψ∗

y−KB,s

(
∇ψ(0)

))
=

−DB\Ab ∈ DB\A
(
null(X) ∩ null(D−B)

)
,

and so

P[DB\A(null(X)∩null(D−B))]⊥DB\A(XPnull(D−B))
+∇ψ∗

(
Pψ∗

y−KB,s

(
∇ψ(0)

))
= 0.



The Generalized Lasso Problem and Uniqueness 2341

Recalling MA,B as defined in (4.23), and abbreviating x̂ = Pψ∗

y−KB,s
(∇ψ(0)), we

may write this simply as

∇ψ∗(x̂) ∈ null(MA,B).

Since ∇ψ∗(x̂) = Xβ̂(y), we have ∇ψ∗(x̂) ∈ col(XPnull(D−B)), so combining this
with above display, and using (∇ψ∗)−1 = ∇ψ, gives

x̂ ∈ ∇ψ
(
col(XPnull(D−B)) ∩ null(MA,B)

)
.

And since x̂ ∈ y −KB,s, with KB,s an affine space, as defined in (4.20), we have
y ∈ x̂+KB,s, which combined with the last display implies

y ∈ KB,s +∇ψ
(
col(XPnull(D−B)) ∩ null(MA,B)

)
.

But as y /∈ N , where the set N is defined in (4.24), we arrive at

MA,B = P[DB\A(null(X)∩null(D−B))]⊥DB\A(XPnull(D−B))
+ = 0,

which means

col
(
DB\A(XPnull(D−B))

+
)
⊆ DB\A

(
null(X) ∩ null(D−B)

)
. (A.17)

This is an important realization that we will return to shortly.
As for the optimal subgradient γ̂(y) corresponding to β̂(y), note that we can

write

γ̂B(y) = λs,

γ̂−B(y) =
1

λ
(DT

−B)
+
[
XT

(
y − Pψ∗

y−KB,s

(
∇ψ(0)

))
− λDT

Bs
]
+ c, (A.18)

for some c ∈ null(DT
−B). The first expression holds by definition of B, s, and the

second is a result of solving for γ̂−B(y) in the stationarity condition (4.12), after
plugging in for the form of the fit in (4.21).

Now, at a new response y′, consider defining

β̂(y′) = (XPnull(D−B))
+∇ψ∗

(
Pψ∗

y′−KB,s

(
∇ψ(0)

))
+ b′,

γ̂B(y
′) = λs,

γ̂−B(y
′) =

1

λ
(DT

−B)
+
[
XT

(
y′ − Pψ∗

y′−KB,s

(
∇ψ(0)

))
− λDT

Bs
]
+ c,

for some b′ ∈ null(X) ∩ null(D−B) to be specified later, and for the same value
of c ∈ null(DT

−B) as in (A.18). By the same arguments as given at the end of
the proof of Lemma 14, where we discussed the constraint qualification condi-
tions (4.7), (4.8), the Bregman projection Pψ∗

y′−KB,s
(∇ψ(0)) in the above expres-

sions is well-defined, for any y′, under (4.14). However, this Bregman projection
need not lie in int(dom(ψ∗))—and therefore ∇ψ∗(Pψ∗

y′−KB,s
(∇ψ(0))) need not

be well-defined—unless we have the additional condition y′ ∈ int(ran(∇ψ))+C.
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Fortunately, under (4.15), the latter condition on y′ is implied as long as y′

is sufficiently close to y, i.e., there exists a neighborhood U0 of y such that
y′ ∈ int(ran(∇ψ)) + C, provided y′ ∈ U0. By Lemma 14, we see that a solution
in (4.1) exists at such a point y′. In what remains, we will show that this solution
and its optimal subgradient obey the form in the above display.

Note that, by construction, the pair (β̂(y′), γ̂(y′)) defined above satisfy the
stationarity condition (4.12) at y′, and γ̂(y′) has boundary set and boundary
signs B, s. It remains to show that (β̂(y′), γ̂(y′)) satisfy the subgradient condition
(4.4), and that β̂(y′) has active set and active signs A, r; equivalently, it remains
to verify the following three properties, for y′ sufficiently close to y, and for an
appropriate choice of b′:

(i) ‖γ̂−B(y
′)‖∞ < 1;

(ii) supp(Dβ̂(y′)) = A;

(iii) sign(DAβ̂(y
′)) = r.

Because γ̂(y) is a subgradient corresponding to β̂(y), and has boundary set
and boundary signs B, s, we know that γ̂−B(y) in (A.18) has �∞ norm strictly
less than 1. Thus, by continuity of

x �→
∥∥∥∥ 1λ (DT

−B)
+
[
XT

(
x− Pψ∗

x−KB,s

(
∇ψ(0)

))
− λDT

Bs
]
+ c

∥∥∥∥
∞

at y, which is implied by continuity of x �→ Pψ∗

x−KB,s
(∇ψ(0)) at y, by Lemma

21, we know that there exists some neighborhood U1 of y such that property (i)
holds, provided y′ ∈ U1.

By the important fact established in (A.17), we see that there exists b′ ∈
null(X) ∩ null(D−B) such that

DB\Ab
′ = −DB\A(XPnull(D−B))

+∇ψ∗
(
Pψ∗

y′−KB,s

(
∇ψ(0)

))
,

which implies that DB\Aβ̂(y
′) = 0. To verify properties (ii) and (iii), we must

show this choice of b′ is such that DAβ̂(y
′) is nonzero in every coordinate and

has signs matching r. Define a map

T (x) = (XPnull(D−B))
+∇ψ∗

(
Pψ∗

x−KB,s

(
∇ψ(0)

))
,

which is continuous at y, again by continuity of x �→ Pψ∗

x−KB,s
(∇ψ(0)) at y, by

Lemma 21. Observe that

DAβ̂(y
′) = DAT (y

′) +DAb
′ = DAT (y

′) +DAb+DA(b− b′).

As DAβ̂(y) = DAT (y) +DAb is nonzero in every coordinate and has signs equal
to r, by definition of A, r, and T is continuous at y, there exists a neighborhood
U2 of y such that DAT (y

′) +DAb is nonzero in each coordinate with signs
matching r, provided y′ ∈ U2. Furthermore, as

‖DA(b− b′)‖∞ ≤ ‖DT ‖2,∞‖b− b′‖2,
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where ‖DT ‖2,∞ denotes the maximum �2 norm of rows of D, we see that
DAT (y

′) +DAb
′ will be nonzero in each coordinate with the correct signs,

provided b′ can be chosen arbitrarily close to b, subject to the restrictions
b′ ∈ null(X) ∩ null(D−B) and DB\Ab

′ = −DB\AT (y
′).

Such a b′ does indeed exist, by the bounded inverse theorem. Let L =
null(X) ∩ null(D−B), and N = null(DB\A) ∩L. Consider the linear map DB\A,
viewed as a function from L/N (the quotient of L by N) to DB\A(L): this is a
bijection, and therefore it has a bounded inverse. This means that there exists
some R > 0 such that

‖b− b′‖2 ≤ R
∥∥DB\AT (y

′)−DB\AT (y)
∥∥
2
,

for a choice of b′ ∈ null(X) ∩ null(D−B) with DB\Ab
′ = −DB\AT (y

′). By conti-
nuity of T at y, once again, there exists a neighborhood U3 of y such that the
right-hand side above is sufficiently small, i.e., such that ‖b− b′‖2 is sufficiently
small, provided y′ ∈ U3.

Finally, letting U = U0 ∩ U1 ∩ U2 ∩ U3, we see that we have established
properties (i), (ii), and (iii), and hence the desired result, provided y′ ∈ U .

A.14. Continuity result for Bregman projections

Lemma 21. Let f, f∗ be a conjugate pair of Legendre (essentially smooth and
essentially strictly convex) functions on R

n, with 0 ∈ int(dom(f∗)). Let S ⊆ R
n

be a nonempty closed convex set. Then the Bregman projection map

x �→ P f
x−S

(
∇f∗(0)

)
is continuous on all of Rn. Moreover, P f

x−S(∇f∗(0)) ∈ int(dom(f)) for any x ∈
int(dom(f)) + S.

Proof. As 0 ∈ int(dom(f∗)), we know that f has no directions of recession (e.g.,
by Theorems 27.1 and 27.3 in Rockafellar [21]), thus the Bregman projection
P f
x−S(∇f∗(0)) is well-defined for any x ∈ R

n. Further, for x−S ∈ int(dom(f)),
we know that P f

x−S(∇f∗(0)) ∈ int(dom(f)), by essential smoothness of f (by
the property that ‖∇f‖2 approaches ∞ along any sequence that converges to
boundary point of dom(f); e.g., see Theorem 3.12 in Bauschke and Borwein [3]).

It remains to verify continuity of the mapping x �→ P f
x−S(∇f∗(0)). Denote

P f
x−S(∇f∗(0)) = v̂, where v̂ is the unique solution of

minimize
v∈x−S

f(v),

or equivalently, P f
x−S(∇f∗(0)) = ŵ + x, where ŵ is the unique solution of

minimize
w∈−S

f(w + x).

It suffices to show continuity of the unique solution in the above problem, as
a function of x. This can be established using results from variational analysis,
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provided some conditions are met on the bi-criterion function f0(w, x) = f(w+
x). In particular, Corollary 7.43 in Rockafellar and Wets [22] implies that the
unique minimizer in the above problem is continuous in x, provided f0 is a
closed proper convex function that is level-bounded in w locally uniformly in
x. By assumption, f is a closed proper convex function (it is Legendre), and
thus so is f0. The level-boundedness condition can be checked as follows. Fix
any α ∈ R and x ∈ R

n. The α-level set {w : f(w + x) ≤ α} is bounded since
x �→ f(x+w) has no directions of recession (to see that this implies boundedness
of all level sets, e.g., combine Theorem 27.1 and Corollary 8.7.1 of Rockafellar
[21]). Meanwhile, for any x′ ∈ R

n,

{w : f(w + x′) ≤ α} = {w : f(w + x) ≤ α}+ x′ − x.

Hence, the α-level set of f0(·, x′) is uniformly bounded for all x′ in a neighbor-
hood of x, as desired. This completes the proof.

A.15. Proof of Lemma 19

The proof is similar to that of Lemma 10 in Tibshirani and Taylor [34]. Let
B, s be the boundary set and signs of an arbitrary optimal subgradient in γ̂(y)
in (4.1), and let A, r be the active set and active signs of an arbitrary solution
in β̂(y) in (4.1). (Note that γ̂(y) need not correspond to β̂(y); it may be a
subgradient corresponding to another solution in (4.1).)

By (two applications of) Lemma 18, there exist neighborhoods U1, U2 of y
such that, over U1, optimal subgradients exist with boundary set and boundary
signs B, s, and over U2, solutions exist with active set and active signs A, r. For
any y′ ∈ U = U1 ∩U2, by Lemma 17 and the uniqueness of the fit from Lemma
12, we have

Xβ̂(y) = ∇ψ∗
(
Pψ∗

y−KB,s

(
∇ψ(0)

))
= ∇ψ∗

(
Pψ∗

y−KA,r

(
∇ψ(0)

))
,

and as ∇ψ∗ is a homeomorphism,

Pψ∗

y′−KB,s

(
∇ψ(0)

)
= Pψ∗

y′−KA,r

(
∇ψ(0)

)
. (A.19)

We claim that this implies null(Pnull(D−B)X
T ) = null(Pnull(D−A)X

T ).
To see this, take any direction z ∈ null(Pnull(D−B)X

T ), and let ε > 0 be
sufficiently small so that y′ = y + εz ∈ U . From (A.19), we have

Pψ∗

y′−KA,r

(
∇ψ(0)

)
= Pψ∗

y′−KB,s

(
∇ψ(0)

)
= Pψ∗

y−KB,s

(
∇ψ(0)

)
= Pψ∗

y−KA,r

(
∇ψ(0)

)
,

where the second equality used y′ −KB,s = y −KB,s, and the third used the
fact that (A.19) indeed holds at y. Now consider the left-most and right-most
expressions above. For these two projections to match, we must have z ∈
null(Pnull(D−A)X

T ); otherwise, the affine subspaces y′ −KA,r and y −KA,r

would be parallel, in which case clearly the projections cannot coincide. Hence,
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we have shown that null(Pnull(D−B)X
T ) ⊆ null(Pnull(D−A)X

T ). The reverse in-
clusion follows similarly, establishing the desired claim.

Lastly, as B,A were arbitrary, the linear subspace L = null(Pnull(D−B)X
T ) =

null(Pnull(D−A)X
T ) must be unchanged for any choice of boundary set B and

active set A at y, completing the proof.
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