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Abstract: We introduce a novel regression framework which simultane-
ously models the quantile and the Expected Shortfall (ES) of a response
variable given a set of covariates. This regression is based on strictly con-
sistent loss functions for the pair consisting of the quantile and the ES,
which allow for M- and Z-estimation of the joint regression parameters.
We show consistency and asymptotic normality for both estimators under
weak regularity conditions. The underlying loss functions depend on two
specification functions, whose choices affect the properties of the resulting
estimators. We find that the Z-estimator is numerically unstable and thus,
we rely on M-estimation of the model parameters. Extensive simulations
verify the asymptotic properties and analyze the small sample behavior of
the M-estimator for different specification functions. This joint regression
framework allows for various applications including estimating, forecasting
and backtesting ES, which is particularly relevant in light of the recent in-
troduction of the ES into the Basel Accords. We illustrate this through two
exemplary empirical applications in forecasting and forecast combination
of the ES.
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1. Introduction

We introduce a novel semiparametric regression framework for the Expected
Shortfall (ES) by jointly modeling both, regression equations for the condi-
tional quantile and the conditional ES. The ES at level α ∈ (0, 1) is defined
as the expected value of a random variable, given that its realizations exceed
the α-quantile of the underlying distribution. We propose both, an M- and a
Z-estimator for the joint regression parameters of both models and show that
these estimators are consistent and asymptotically normal. Modeling simulta-
neous regression equations for the quantile and the ES is necessary as M- and
Z-estimation of regression parameters of a stand-alone regression framework for
the ES is infeasible. The underlying reason is that there does not exist an ap-
propriate loss function that the ES minimizes in expectation and which could
be used as the objective function for M-estimation of the regression parameters
(Gneiting, 2011). However, Fissler and Ziegel (2016) show that there exists such
a loss function if one considers the pair consisting of the quantile and the ES
at the same probability level. This result gives rise to the idea of jointly mod-
eling semiparametric models for both, the quantile and the ES and for jointly
estimating the regression parameters through M-estimation. The situation for
the Z-estimator and the availability of underlying identification functions (mo-
ment conditions) is equivalent to the loss functions used for the M-estimator and
consequently only allows for joint Z-estimation of both regression equations.

Such a regression framework for the ES is essential for a variety of academic
disciplines which consider measuring, forecasting and the evaluation of extreme
risks. The most prominent example for this is financial risk management, where
the Basel Accords recently proposed to use ES as the standard risk measure
(Basel Committee, 2016). The previously used risk measure is the Value-at-Risk
(VaR), which is defined as the α-quantile of the return distribution and which
has several drawbacks as it is not coherent and fails to capture tail risks beyond
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itself (Artzner et al., 1999). These deficiencies are overcome by the ES as it has
the desired ability to capture information from the whole left tail of the return
distribution, which is particularly important for measuring extreme financial
risks. Modeling a regression equation for the ES opens up the possibility to
extend the existing applications of quantile regression on VaR in the financial
literature to ES, such as in Chernozhukov and Umantsev (2001), Engle and
Manganelli (2004), Koenker and Xiao (2006), Gaglianone et al. (2011), Halbleib
and Pohlmeier (2012), Komunjer (2013), Giacomini and Komunjer (2005), Xiao
et al. (2015) and Žikeš and Baruńık (2016). Such estimation, forecasting, and
backtesting methods for the ES are particularly sought-after in light of the
recent shift from VaR to ES in the Basel Accords. Bayer and Dimitriadis (2019)
use this regression framework in order to construct an ES version of a Mincer-
Zarnowitz backtest, where given ES forecasts are used as covariates and are
consequently tested on their correct specification. Taylor (2019), Patton et al.
(2019) and Chao et al. (2018) use this regression and estimation method in order
to introduce different dynamic models for the ES with autoregressive features.

A further possible field of application for this regression framework arises in
microeconometrics where researchers are interested in non-central features of
the conditional distribution such as e.g. in income economics and the analysis
of social inequalities. In these fields, a traditional method for the comparison of
different regions of the conditional distribution is quantile regression (see e.g.
Koenker, 2005, Section 1.5.). However, the interpretation of the ES as the mean
of the worst α percent is more intuitive as the rather technical interpretation of
quantiles, which motivates the use of an ES regression technique in these fields.

M-estimation (Z-estimation) of regression frameworks for different function-
als can usually be applied based on different choices of loss (identification) func-
tions. E.g. mean regression parameters can be estimated by employing any loss
function from the Bregman class of loss functions and quantile regression pa-
rameters can be estimated by employing any member of the class of general-
ized piecewise linear loss functions (Gneiting, 2011; Gourieroux et al., 1984;
Komunjer and Vuong, 2010). Equivalently, the possible loss and identification
functions we employ for the M- and Z-estimator in this paper are not unique as
they depend on two specification functions which can be chosen freely subject
to some conditions.

Even though consistency and asymptotic normality hold for all applicable
choices of these specification functions, the choices affect the asymptotic covari-
ance of the estimators, the necessary moment conditions, the numerical stability
of the optimization algorithm and the required computation times. We discuss
the choice of these functions in a theoretical context with respect to asymptotic
efficiency and necessary regularity conditions, and with respect to the numer-
ical properties of the optimization algorithm. We find that so-called positively
homogeneous loss functions (see e.g. Nolde and Ziegel, 2017) perform very well.
Positive homogeneity of loss functions means that linear rescaling of the input
variables does not alter the ranking of the losses, which is a crucial criteria keep-
ing in mind that financial losses can be measured in different currencies which
constitutes such a linear transformation.
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The estimation of the asymptotic covariance matrix of the regression param-
eters imposes some difficulties. The first occurs in the estimation of the density
quantile function, analogous to quantile regression (cf. Koenker, 2005) and thus,
we utilize estimation procedures stemming from this literature. The second issue
is the estimation of the variance of the negative quantile residuals conditional on
the covariates, a nuisance quantity which is new to the literature. We introduce
several estimators for this quantity which are able to cope with limited sample
sizes and which can model the dependency of the negative quantile residuals
on the covariates. Furthermore, we estimate the covariance matrix using the
bootstrap. For ease of application, we provide an R package (Bayer and Dimi-
triadis, 2019) which contains the implementation of the M-estimator and where
the user can choose the specification functions and the estimation method for
the covariance matrix of the parameter estimates.

We conduct a Monte-Carlo simulation study where we consider four data gen-
erating processes with different properties. We numerically verify consistency
and asymptotic normality of the M-estimator for a range of different choices of
the specification functions. Furthermore, we find that the Z-estimator is numer-
ically unstable due to the redescending nature of the utilized identification func-
tions and consequently, we rely on M-estimation of the regression parameters.
Moreover, we find that the performance of the M-estimator strongly depends on
the specification functions, where choices resulting in positively homogeneous
loss functions (Nolde and Ziegel, 2017; Efron, 1991) lead to a superior perfor-
mance in terms of asymptotic efficiency, computation times, and mean squared
error of the estimator.

We illustrate the usage of this joint regression framework for the VaR and the
ES through two empirical applications. First, we jointly forecast the VaR and
the ES based on lagged Realized Volatility (RV) estimates in a linear fashion,
where the forecasting weights are estimated by our joint regression framework.
For the evaluation of the forecasts, we apply strictly consistent loss functions for
the VaR and ES (Fissler and Ziegel, 2016) together with the Model Confidence
Set (Hansen et al., 2011) and Murphy Diagrams (Ziegel et al., 2019). We find
that the forecasts stemming from our regression method outperform classical
forecasting methods such as the Historical Simulation (HS), the GARCH and a
HAR model based on RV estimates (Corsi, 2009). Second, we perform a joint
forecast combination exercise where we apply our regression technique to esti-
mate the combination weights. For this, we consider the RiskMetrics (RM) and
HS forecasting methods and generate combined forecasts of these two models.
We find that the combined forecasts outperform the stand-alone methods by
means of the same evaluation criteria as in the first application.

Nadarajah et al. (2014) provide an overview of existing estimation methods
for the ES. However, the reviewed approaches are only applicable for univari-
ate data and not suitable for estimating the conditional ES through a regression
technique. Nevertheless, there are some approaches for the ES which incorporate
explanatory variables through indirect estimation procedures. Taylor (2008b)
proposes an implicit approach for forecasting ES using exponentially weighted
quantile regression and Taylor (2008a) introduces a procedure based on expec-
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tile regression and a relationship between the ES and expectiles. Taylor (2019)
suggests a joint modeling technique for the quantile and the ES based on max-
imum likelihood estimation of the asymmetric Laplace distribution. However,
asymptotic statistical theory for these estimation approaches of the conditional
ES is not available. Barendse (2017) proposes a two-step estimation approach
for a regression framework for the interquantile expectation.

In a simultaneous and independent work, Patton et al. (2019) introduce a
similar M-estimator for such joint regression models for the quantile and the
ES in the autoregressive context and also show its asymptotic behavior. This
approach differs from our paper in the following ways. The class of M-estimators
we propose is more general as we apply the full class of strictly consistent loss
functions for the quantile and the ES, whereas Patton et al. (2019) only consider
one special case. We also treat the class of corresponding Z-estimators and
show their asymptotic properties. Furthermore, we consider several different
estimators for the resulting asymptotic covariance matrix. In contrast, the work
of Patton et al. (2019) is more general regarding the underlying assumptions on
the data generating process, which allows for autoregressive modeling, which is
the main focus of their work. In contrast, our approach focuses on modeling of
the conditional quantile and the ES based on exogenous covariates.

The rest of the paper is organized as follows. In Section 2, we introduce the
joint regression framework, the underlying regularity conditions together with
the asymptotic properties of our estimators and discuss the choice of the specifi-
cation functions. Section 3 provides details on the numerical implementation of
the estimators and on the estimation of the asymptotic covariance matrix. Sec-
tion 4 presents an extensive simulation study. Section 5 presents two exemplary
empirical applications and Section 6 provides concluding remarks. The proofs
are deferred to Appendix B.

2. Methodology

2.1. The joint regression framework

Following Lambert et al. (2008), Gneiting (2011) and Fissler and Ziegel (2016),
we introduce the concept of (multivariate) p-elicitability. We consider random
variables Z : Ω → R

d, defined on some complete probability space
(
Ω,F , P

)
, a

class of distributions P on R
d, equipped with the Borel σ-field and a functional

Γ : P → D with its domain of action D ⊆ R
p, p ∈ N. We call an integrable

loss function ρ : Rd × D → R strictly consistent for the functional Γ relative
to the class of distributions P , if Γ is the unique minimizer of E

[
ρ(Z, ·)

]
for all

distributions F ∈ P , where F is the distribution of Z. Furthermore, we call a
p-dimensional functional Γ p-elicitable relative to the class P , if there exists a
loss function ρ which is strictly consistent for Γ relative to P . If the dimension
p is clear from the context, we simply call the functional elicitable instead of
p-elicitable.

Given the generalized α-quantile Qα(Z) = F−1(α) = inf
{
z ∈ R : F (z) ≥ α

}
for some α ∈ (0, 1), the ES of the random variable Z at level α is defined as
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ESα(Z) = 1
α

∫ α

0
Qu(Z) du. If the distribution function of Z is continuous at

its α-quantile, this definition can be simplified to the conditional tail expecta-
tion ESα(Z) = E

[
Z
∣∣Z ≤ Qα(Z)

]
. Gneiting (2011) shows that the ES is not

1-elicitable with respect to any class P of probability distributions on intervals
I ⊆ R, which contains measures with finite support or finite mixtures of abso-
lutely continuous distributions with compact support (see also Weber, 2006).
This result has several consequences for the risk measure ES. First, consistent
and meaningful ranking of competing forecasts for the functional ES is infeasible.
Second, and more consequential for this work, estimating the parameters of a
stand-alone regression model for the functional ES in the sense that ESα(Y |X) =
X ′θe0 by means of M-estimation, i.e. by minimizing some strictly consistent loss
function, is infeasible. Even though the ES is not 1-elicitable, Fissler and Ziegel
(2016) show that the pair consisting of the ES and the quantile at common
probability level α is 2-elicitable relative to the class of distributions with finite
first moments and unique α-quantiles and they characterize the full class of
strictly consistent loss functions for this pair subject to some regularity condi-
tions. Since the definition of the ES already depends on the respective quantile,
the fact that the ES is only elicitable jointly with the quantile is not surprising.

We utilize this joint elicitability result for the introduction of a new joint
regression framework for the quantile and the ES where the aforementioned
class of strictly consistent loss functions serves as the basis for the M-estimation
of the joint regression parameters. For this, let Y : Ω → R and X : Ω → R

k

be random variables defined on the some complete probability space
(
Ω,F , P

)
as above. Furthermore, we split X = (Xq, Xe), where Xq ∈ R

k1 and Xe ∈ R
k2

such that k1 + k2 = k. This construction allows for using different explanatory
variables for the models for the quantile and the ES. Henceforth, the transpose
ofX will be denoted byX ′, the cumulative distribution function of Y givenX by
FY |X and the conditional density function by fY |X . For an l-times differentiable

real-valued function G : R → R, we denote the l-th derivative by G(l)(·).
Assumption 2.1 (The joint regression model). The regression framework
which jointly models the conditional quantile and ES of Y given the covariates
Xq and Xe for some fixed level α ∈ (0, 1) is given by

Y = X ′
qθ

q
0 + uq and Y = X ′

eθ
e
0 + ue, (1)

where Qα(u
q|X) = 0 and ESα(u

e|X) = 0. The model is parametrized by θ0 =
(θq′0 , θ

e′
0 )

′ ∈ Θ ⊂ R
k, where the parameter space Θ is compact, convex and has

nonempty interior, int(Θ) 	= ∅.
This assumption implies that the model is correctly specified in the sense that

there exists a true parameter vector θ0 ∈ Θ for which the joint model equals
the true quantile and ES of the conditional distribution of Y given X. This
model is semiparametric in the sense that we specify parametric models for the
conditional quantile and the conditional ES of FY |X without fully specifying
this conditional distribution through parametric restrictions.

The model construction given in (1) allows the quantile and the ES models
to depend on different covariate vectors Xq and Xe respectively. However, the
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conditions Qα(u
q|X) = 0 and ESα(u

e|X) = 0 in Assumption 2.1 ensure that
the joint model is correctly specified in the sense that Qα(Y |X) = X ′

qθ
q
0 and

ESα(Y |X) = X ′
eθ

e
0. Thus, including some covariates into the ES model, but

not in the quantile model (or vice versa), is only valid if the true conditional
quantile does not depend of the ES covariates. We present one example where
the quantile and the ES depend on different covariates and the model is still
correctly specified in the simulation study in Section 4. Furthermore, the em-
pirical application of joint forecasting combination in Section 5.2 also depends
on different covariates while preserving Assumption 2.1. The simple case where
both models depend on the same vector of explanatory variables is naturally
contained in this model assumption by the choice X = (X̃, X̃) for some vector
of covariates X̃.

We propose both, an M-estimation and a Z-estimation procedure for the
compound regression parameter vector θ0. For the M-estimation, we utilize the
class of strictly consistent joint loss functions1 for the quantile and ES as given
in Fissler and Ziegel (2016) such that it can be used in a regression framework,

ρ(Y,X, θ) =
(
1{Y≤X′

qθ
q} − α

)
G1(X

′
qθ

q)− 1{Y≤X′
qθ

q}G1(Y )

+G2(X
′
eθ

e)

(
X ′

eθ
e −X ′

qθ
q +

(X ′
qθ

q − Y )1{Y≤X′
qθ

q}

α

)
− G2(X

′
eθ

e) + a(Y ),

(2)

where the function G1 is twice continuously differentiable, G2 is three times

continuously differentiable, G(1)
2 = G2, G2 and G

(1)
2 are strictly positive, G1 is

increasing and a and G1 are integrable functions. Fissler and Ziegel (2016) also
show that given some regularity conditions, there exist no strictly consistent
loss functions outside the class of functions given in (2) which implies that
this is the most general class of objective functions for the M-estimator of this
regression framework. We discuss the choice of the specification functions G1 and
G2 in a theoretical context in Section 2.3 and by their numerical performance in
Section 4.2. The function a only depends on Y and thus, it does not influence the
estimated regression parameters and is usually set to zero. The corresponding
(ρ-type) M-estimator is formally defined as a sequence θ̂ρ,n such that

θ̂ρ,n = argminθ∈Θ

1

n

n∑
i=1

ρ(Yi, Xi, θ). (3)

Instead of minimizing some objective function ρ(Y,X, θ) such as in (2) and
(3), we can also define the corresponding Z-estimator (or ψ-type M-estimator),
which sets a vector of identification functions (moment conditions) to zero. In
the case of our joint quantile and ES regression, these identification functions

1One can interpret the structure of this loss function as follows (Fissler et al., 2016): The
first summand in (2) is a strictly consistent loss function for the quantile (Gneiting, 2011) and
hence only depends on the quantile, whereas the second summand cannot be split into a part
depending only on the quantile and one depending only on the ES. This illustrates the fact
that the ES itself is not 1-elicitable, but 2-elicitable together with the respective quantile.
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are given by

ψ(Y,X, θ) =

⎛⎝ Xq

(
G

(1)
1 (X ′

qθ
q) +G2(X

′
eθ

e)/α
)(
1{Y≤X′

qθ
q} − α

)
XeG

(1)
2 (X ′

eθ
e)
(
X ′

eθ
e −X ′

qθ
q + 1

α (X
′
qθ

q − Y )1{Y≤X′
qθ

q}

)⎞⎠ ,

(4)

where the functions G1 and G2 are given as above. More generally, it suffices
that these identification functions converge to zero almost surely and thus, we
formally define the Z-estimator as a sequence θ̂ψ,n, such that

1

n

n∑
i=1

ψ(Yi, Xi, θ̂ψ,n) → 0 a.s. (5)

Heuristically, identification functions for a regression framework are usually
obtained as the derivatives (with respect to θ) of some corresponding loss func-
tion. Furthermore, when the loss function ρ(Y,X, θ) is continuously differen-
tiable in θ, it is obvious that the M- and Z-estimation approaches are equiv-
alent, also in terms of their asymptotic distribution. In these cases, standard
textbook asymptotic theory can be applied. However, for this joint quantile and
ES regression, the loss functions ρ(Y,X, θ) given in (2) are not differentiable
for the points where Y = X ′

qθ
q, and the identification functions are even dis-

continuous at these points. As this set of points forms a nullset with respect to
the absolutely continuous distribution of Y given X, the identification functions
ψ(Y,X, θ) are still almost surely the derivative of ρ(Y,X, θ). Consequently, for
the proofs of the asymptotic theory presented in the subsequent section, we
rely on asymptotic theory of M- and Z-estimation which allows for the case of
non-differentiable objective functions as given in Huber (1967).

2.2. Asymptotic properties

In this section, we present the asymptotic properties of the M- and Z-estimator of
the regression parameters. Consistency and asymptotic normality hold under the
following set of weak regularity conditions, which are natural for this regression
framework.

Assumption 2.2 (Regularity Conditions).

(A-1) The data (Yi, Xi) for i = 1, . . . , n is an iid series of random variables,
distributed such as (Y,X) given above. Furthermore, the conditional dis-
tribution FY |X has finite second moments and is absolutely continuous
with probability density function fY |X , which is strictly positive, contin-
uous and bounded in a neighbourhood of the true conditional quantile,
X ′

qθ
q
0.

(A-2) The matrices E
[
XqX

′
q

]
and E

[
XeX

′
e

]
are positive definite.

(A-3) The functions ρ(Y,X, θ) and ψ(Y,X, θ) are given as in (2) and (4), where
the function G1 is twice continuously differentiable, G2 is three times
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continuously differentiable, G(1)
2 = G2, G2 and G

(1)
2 are strictly positive,

G1 is increasing and a and G1 are integrable.

Remark 2.3 (Finite Moment Conditions). We further have to assume that
certain moments of X are finite. We specify the Finite Moment Conditions
(M-1)–(M-4) in Appendix A. Note that these general moment conditions sim-
plify substantially for sensible choices of the specification functions G1 and G2

as further outlined in Section 2.3.

Assumption (A-1) is a combination of typical regularity conditions of mean
and quantile regression. Absolute continuity of FY |X with a strictly positive,
bounded and continuous density function in a neighborhood of the true condi-
tional quantile is also imposed for the asymptotic theory of quantile regression.
Existence of the conditional moments of Y given X is subject to the conditions
of mean regression and is included in our regularity conditions since the ES is
a truncated mean. The positive definiteness (full rank condition) in (A-2) is
common for any regression design with stochastic regressors in order to exclude
perfect multicollinearity of the regressors. The conditions for the specification
functions G1 and G2 in (A-3) mainly originate from the conditions for the joint
elicitability of the quantile and ES in Fissler and Ziegel (2016). Differentiabil-
ity of these functions is required in this setup for obtaining the identification
functions and for the differentiations in the computation of the asymptotic co-
variance in Theorem 2.6 and Theorem 2.7. The existence of certain moments of
the explanatory variables as in conditions (M-1)–(M-4) in Appendix A is also
standard in any regression design relying on stochastic regressors. Even though
compactness of the parameter space Θ in Assumption 2.1 generally simplifies
the proofs, in this setup it is crucial for consistency of the Z-estimator as the
identification functions ψ2 are redescending to zero for many reasonable choices
of the G2 function such as e.g. the choices resulting in positively homogeneous
loss functions. For details on this, we refer to Section 3.1.

The following Theorem shows consistency of the Z-estimator based on the
full class of identification functions given in (4).

Theorem 2.4. Assume that Assumption 2.1, Assumption 2.2 and the Moment
Conditions (M-1) in Appendix A hold true. Then, for the Z-estimator defined

in (5), it holds that θ̂ψ,n
P−→ θ0.

The proof of the Theorem is given in Appendix B. Equivalently, the subse-
quent Theorem shows consistency of the corresponding M-estimators.

Theorem 2.5. Assume that Assumption 2.1, Assumption 2.2 and the Moment
Conditions (M-2) in Appendix A hold true. Then, for the M-estimator defined

in (3), it holds that θ̂ρ,n
P−→ θ0.

The proof of the Theorem is given in Appendix B. For the validity of this
Theorem, it remains to assume that θ̂ρ,n nearly minimizes the loss function ρ in

the sense that 1
n

∑n
i=1 ρ(Yi, Xi, θ̂ρ,n) ≤ 1

n

∑n
i=1 ρ(Yi, Xi, θ0)+ oP (1) rather than

the strict definition of the M-estimator in (3).
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We now turn to asymptotic normality of the Z-estimator as shown in the
following Theorem.

Theorem 2.6. Assume that Assumption 2.1, Assumption 2.2 and the Moment
Conditions (M-3) in Appendix A hold true. Then, for every sequence θ̂ψ,n ∈ Θ

satisfying 1√
n

∑n
i=1 ψ(Yi, Xi, θ̂ψ,n)

P−→ 0, it holds that

√
n
(
θ̂ψ,n − θ0

) d−→ N
(
0,Λ−1CΛ−1

)
, (6)

with

Λ =

(
Λ11 0
0 Λ22

)
and C =

(
C11 C12

C21 C22

)
, (7)

where

Λ11 =
1

α
E

[
(XqX

′
q)fY |X(X ′

qθ
q
0)
(
αG

(1)
1 (X ′

qθ
q
0) +G2(X

′
eθ

e
0)
)]

, (8)

Λ22 = E
[
(XeX

′
e)G

(1)
2 (X ′

eθ
e
0)
]
, (9)

C11 =
1− α

α
E

[
(XqX

′
q)
(
αG

(1)
1 (X ′

qθ
q
0) +G2(X

′
eθ

e
0)
)2]

, (10)

C12 = C ′
21 =

1− α

α
E
[
(XqX

′
e)
(
X ′

qθ
q
0 −X ′

eθ
e
0

)
×(

αG
(1)
1 (X ′

qθ
q
0) +G2(X

′
eθ

e
0)
)
G

(1)
2 (X ′

eθ
e
0)
]
,

(11)

C22 = E

[
(XeX

′
e)
(
G

(1)
2 (X ′

eθ
e
0)
)2×(

1

α
Var

(
Y −X ′

qθ
q
0

∣∣Y ≤ X ′
qθ

q
0, X

)
+

1− α

α

(
X ′

qθ
q
0 −X ′

eθ
e
0

)2)]
.

(12)

The proof of the Theorem is given in Appendix B. For asymptotic normality
of the Z-estimator, we have to strengthen condition (5) to 1√

n

∑n
i=1 ψ(Yi, Xi,

θ̂ψ,n)
P−→ 0. The next Theorem shows asymptotic normality of the M-estimator

and we can see that both estimators are subject to the same asymptotic covari-
ance matrix.

Theorem 2.7. Assume that Assumption 2.1, Assumption 2.2 and the Moment
Conditions (M-4) in Appendix A hold true. Then, for the M-estimator defined
in (3), it holds that

√
n
(
θ̂ρ,n − θ0

) d−→ N
(
0,Λ−1CΛ−1

)
, (13)

where the matrices Λ and C are given as in Theorem 2.6.

The proof of the Theorem is given in Appendix B. Similar to the consistency
statement of Theorem 2.5, it is possible to relax the minimization condition (3)
to some near minimization. However, for this theorem it is required that the
sequence θ̂ρ,n is such that 1

n

∑n
i=1 ρ(Yi, Xi, θ̂ρ,n) ≤ infθ∈Θ

1
n

∑n
i=1 ρ(Yi, Xi, θ) +

oP (n
−1), which is a stronger condition as required for Theorem 2.5.
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Remark 2.8 (Quantile Regression). Notice that the asymptotic covari-

ance matrix of the quantile-specific parameter estimates θ̂q is given by α(1 −
α)D−1

1 D0D
−1
1 , where

D1 = E

[
(XqX

′
q)fY |X(X ′

qθ
q
0)
(
αG

(1)
1 (X ′

qθ
q
0) +G2(X

′
eθ

e
0)
)]

and (14)

D0 = E

[
(XqX

′
q)
(
αG

(1)
1 (X ′

qθ
q
0) +G2(X

′
eθ

e
0)
)2]

. (15)

This simplifies to the covariance matrix of quantile regression parameter esti-
mates by setting G1(z) = z and G2(z) = 0, which means ignoring the ES-specific
part of our loss function and identification functions. This demonstrates that
the quantile regression method is nested in our regression procedure, also in
terms of its asymptotic distribution.

Remark 2.9 (Asymptotic Covariance of the ES and the Oracle Esti-
mator). The ES-specific part of the asymptotic covariance is mainly governed
by the term C22, which depends on the quantity

1

α
Var

(
Y −X ′

qθ
q
0

∣∣Y ≤ X ′
qθ

q
0, X

)
+

1− α

α

(
X ′

qθ
q
0 −X ′

eθ
e
0

)2
=

1

α2
Var

(
(Y −X ′

qθ
q
0)1{Y≤X′

qθ
q
0}

∣∣∣X) . (16)

It is reasonable that the asymptotic covariance of ES regression parameters de-
pends on the truncated variance of Y given X as the asymptomatic covariance
of mean regression parameters is driven by the conditional (non-truncated) vari-

ance of Y given X. The second term 1−α
α

(
X ′

qθ
q
0−X ′

eθ
e
0

)2
in (16) is included since

the ES represents a truncated mean where the truncation point itself is a statis-
tical functional (the quantile). In comparison, we consider an oracle M-estimator
for the ES-specific regression parameters θe, given by the loss function

ρOracle(Y,X, θe) = (Y −X ′
eθ

e)21{Y≤X′
qθ

q
0}, (17)

where we assume that the true quantile regression parameters θq0 are known.
The resulting asymptotic covariance is given by

AVar
(
θ̂eOracle

)
=
1

α
E
[
XeX

′
e

]−1
E
[
(XeX

′
e)Var

(
Y −X ′

eθ
e
0|Y ≤ X ′

qθ
q
0, X

)]
× E

[
XeX

′
e

]−1
,

(18)

which shows that the additional term
(
X ′

qθ
q
0 − X ′

eθ
e
0

)2
is not included for this

estimator with fixed truncation point X ′
qθ

q
0.

Remark 2.10 (Joint Estimation of the Sample Quantile and ES). We
can use this regression framework to jointly estimate the quantile and ES of
an identically distributed sample Y1, . . . , Yn by regressing on a constant only.
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The asymptotic covariance matrix given in Theorem 2.6 and Theorem 2.7 then
simplifies to Σ with components

Σ11 =
α(1− α)

f2
Y (θ

q
0)

, (19)

Σ12 = Σ21 = (1− α)
θq0 − θe0
fY (θ

q
0)

, (20)

Σ22 =
1

α
Var(Y − θq0|Y ≤ θq0) +

1− α

α
(θq0 − θe0)

2, (21)

where θq0 and θe0 are the true quantile and ES of Y . The same result is obtained by
Zwingmann and Holzmann (2016), who further allow for a distribution function
for Y which is not differentiable at the quantile with strictly positive derivative.
Notice that in this simplified case without covariates, the asymptotic covari-
ance matrix is independent of the specification functions G1 and G2 used in the
loss and identification functions. Furthermore, (19) implies that quantile esti-
mates stemming from our joint estimation procedure have the same asymptotic
efficiency as quantile estimates stemming from minimizing the generalized piece-
wise linear loss (Gneiting, 2011) and as sample quantiles (cf. Koenker, 2005).
The same holds true for the efficiency of the sample ES estimators (based on
the sample quantile) of Brazauskas et al. (2008) and Chen (2008).

Remark 2.11 (Pseudo-R2 and the choice of a(Y )). By choosing a(Y ) =
αG1(Y ) + G2(Y ) in (2), we can guarantee non-negative losses ρ(Y,X, θ) ≥ 0.
This choice enables us to define a pseudo-R2 for our joint regression framework
in the sense of Koenker and Machado (1999),

RQE = 1− ρ(Y,X, θ̂)

ρ(Y,X, θ̃)
, (22)

where θ̂ denotes the parameter estimates of the full regression model and θ̃
denotes the parameter estimates of a regression model restricted to an intercept
term only. However, this choice of a(Y ) comes at the cost of more restrictive
moment conditions, since we need to impose that E

[
G1(Y ) + G2(Y )

]
< ∞.

2.3. Choice of the specification functions

The loss and identification functions given in (2) and (4) depend on two spec-
ification functions, G1 and G2 (with derivative G2), which have to fulfill the
regularity conditions (A-3) in Assumption 2.2. Fissler et al. (2016) already
mention the feasible choices G1(z) = 0, G1(z) = z, G2(z) = exp(z) and
G2(z) = exp(z)/

(
1 + exp(z)

)
in order to show that this class is non-empty. In

contrast to the loss functions of mean, quantile and expectile regression, there
is no natural choice for these specification functions for the quantile and ES yet
(Nolde and Ziegel, 2017). However, as the choice of these functions strongly in-
fluences the performance of our regression procedure in terms of its asymptotic
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efficiency, the necessary moment conditions of the regressors and the numerical
performance of the optimization algorithm, we discuss sensible selection criteria
in the following.

Efron (1991) and Nolde and Ziegel (2017) argue that for M-estimation of
regression parameters it is crucial that the utilized loss function is positively
homogeneous of some order b ∈ R in the sense that

ρ(cY,X, cθ) = cbρ(Y,X, θ) (23)

for all c > 0. This is an important property for loss functions since the ordering of
the losses should be independent of the unit of measurement, e.g. the currency
we measure the prices and risk forecasts with. Loss functions following this
property guarantee that we can change the scaling and still obtain the same
optima and consequently the same parameter estimates. For the pair consisting
of the quantile and the ES, Nolde and Ziegel (2017) characterize the full class of
positively homogeneous2 loss functions of order b for the case where we restrict
the domain of G2, i.e. the conditional ES to the negative real line3,

b < 0 : G1(z)= − c0 G2(z)= c1(−z)b + c0 (24)

b=0 : G1(z)= d01{z≤0} + d′01{z>0} G2(z)= − c1 log(−z)+ c0
(25)

b∈ (0, 1) : G1(z)=
(
d11{z≤0} + d′11{z>0}

)
|z|b − c0 G2(z)= − c1(−z)b + c0

(26)

for some constants c0, d0, d
′
0 ∈ R with d0 ≤ d′0, d1, d

′
1 ≥ 0 and c1 > 0. There

are no positively homogeneous loss functions for the cases b ≥ 1. This results
implies that the choice G1(z) = 0 is a good candidate for all three homogeneous
specifications and this is also a common choice in the existing literature (see
Fissler et al., 2016; Nolde and Ziegel, 2017; Ziegel et al., 2019). We use this, but
also the second prominent choice, G1(z) = z in the remainder of the paper.

A different natural guiding principle for selecting the specification functions
is induced by choosing G2 (and G1) such that the moment conditions (M-1)–
(M-4) in Appendix A are as least restrictive and as parsimonious as possi-
ble. For instance, choosing G2 such that G2 and its first and second deriva-
tives are bounded functions (and G1(z) = 0) results in the moment condition
E
[
||X||5 + ||X||4E

[
|Y |

∣∣X]+ ||X||3E
[
Y 2
∣∣X]+ |a(Y )|

]
< ∞. This motivates the

usage of bounded functions4 for G2 such as e.g. the second example of Fissler
et al. (2016), G2(z) = exp(z)/

(
1 + exp(z)

)
, which is the distribution function

2For b = 0, only the loss differences are positively homogeneous. However, the ordering of
the losses is still unaffected under this slightly weaker property.

3Since the conditional ES of financial assets for small probability levels is always negative,
this is no critical restriction. However, for the numerical parameter estimation, we have to
restrict the parameter space Θ such that X′

e,iθ
e < 0 for all θ ∈ Θ and for all Xe,i in the

underlying sample. For details on this, we refer to Section 3.1.
4Note that the positively homogeneous loss functions exhibit unbounded G2 functions.

However, as the function G2(z) does not grow faster than linear as z tends to infinity, the
resulting finite moment conditions are not too restrictive.
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of the standard logistic distribution. Further examples of bounded G2 functions
include the distribution functions of absolutely continuous distributions on the
real line. In the simulation study in Section 4.2, we compare the performance
of different specification functions in terms of the mean squared error and the
asymptotic efficiency of the estimator.

3. Numerical estimation of the model

In this section, we discuss the difficulties one encounters and the solutions we
propose for estimating the joint regression model. Section 3.1 illustrates the nu-
merical optimization procedure we employ for estimating the regression param-
eters and Section 3.2 discusses different estimation methods for the covariance
matrix of the estimator.

3.1. Optimization

Theorem 2.6 and Theorem 2.7 imply that both, M-estimation and Z-estimation
of the regression parameters θ have the same asymptotic efficiency and con-
sequently, we discuss these estimation approaches in terms of their numerical
performance in the following. The numerical implementation of the Z-estimator
relies on root-finding of the identification functions given in (4), which we imple-
ment as in GMM-estimation by minimizing the inner product

∑
i ψ(Yi, Xi, θ)

′ ·∑
i ψ(Yi, Xi, θ). However, the identification functions are redescending to zero

for many attractive choices of G2 in the sense that ψ2(Y,X, θ) → 0 for X ′
eθ

e →
−∞. Consequently, for θ such that θq = θq0 and X ′

eθ
e → −∞, we get the

same minimal value of the Z-estimation objective function
∑

i ψ(Yi, Xi, θ)
′ ·∑

i ψ(Yi, Xi, θ) as for the true regression parameters θ0. Thus, the Z-estimator
is numerically unstable and diverges in many setups.

Consequently, we rely on M-estimation of the regression parameters in the fol-
lowing. As the loss functions given in (2) are not differentiable and non-convex
for all applicable choices of the specification functions (Fissler, 2017), we ap-
ply a derivative-free global optimization technique. More specifically, we use
the Iterated Local Search (ILS) meta-heuristic of Lourenço et al. (2003), which
successively refines the parameter estimates by repeated optimizations with it-
eratively perturbed starting values. Our exact implementation consists of the
following steps. First, we obtain starting values for θq and θe from two quantile
regressions of Y on X for the probability levels α and α̃, where we choose α̃
such that the α̃-quantile and the α-ES coincide under normality. Second, us-
ing these starting values we minimize the loss function with the derivative-free
and robust Nelder-Mead Simplex algorithm (Nelder and Mead, 1965). Third, we
perturb the resulting parameter estimates by adding normally distributed noise
with zero mean and standard deviation equal to the estimated asymptotic stan-
dard errors of the initial quantile regression estimates. Fourth, we re-optimize
the model with the perturbed parameter estimates as new starting values. If
the loss is further decreased by this re-optimization, we update the estimates
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and otherwise, we retain the previous ones. Fifth, we iterate over the previous
two steps until the loss does not decrease in m = 10 consecutive iterations.
Our numerical experiments indicate that this repeated optimization procedure
yields estimates very close to the ones stemming from other global optimization
techniques such as e.g. simulated annealing, whereas the major advantage of
ILS is the considerably lower computation time.

For the choices of the specification functions which result in positively homo-
geneous loss functions, we have to restrict the domain of G2 to the negative real
line as already discussed in Section 2.3. Thus, we have to restrict Θ such that
X ′

e,iθ
e < 0 for all θ ∈ Θ and for all i = 1, . . . , n during the optimization process.

Even though in financial risk management the response variable Y is usually
given by financial returns where the true (conditional) ES is strictly negative,
there might still be some outliers Xe,i such that X ′

e,iθ
e
0 ≥ 0. In such a case,

imposing the restriction X ′
e,iθ

e < 0 for all i = 1, . . . , n during the optimiza-
tion process generates substantially biased estimates for θe. In order to avoid
this, we estimate the regression model for the transformed dependent variables
Y −max(Y ) for the positively homogeneous loss functions and add max(Y ) to
the estimated intercept parameters to undo the transformation5.

We provide an R package for the estimation of the regression parameters
(see Bayer and Dimitriadis, 2019). This package contains an implementation of
the M-estimator and allows for choosing the specification functions G1 and G2.
Furthermore, the covariance matrix of the parameter estimates can be estimated
either by using the asymptotic theory and the techniques we discuss in the
next section, or by using the nonparametric iid bootstrap (Efron, 1979). We
recommend applying the M-estimator with the ILS algorithm as this procedure
exhibits the best performance in our numerical experiments with respect to
accuracy, stability and computation times.

3.2. Asymptotic covariance estimation

While most parts of the asymptotic covariance matrix given in Theorem 2.6 and
Theorem 2.7 are straightforward to estimate, two nuisance quantities impose
some difficulties. The first is the density quantile function fY |X(X ′

qθ
q
0), which is

already well investigated in the quantile regression literature. In particular, we
consider the estimators proposed by Koenker (1994), henceforth denoted by iid
and by Hendricks and Koenker (1992), henceforth denoted by nid. The main
difference between these is that the first is based on the assumption that the
quantile residuals are independent of the covariates, whereas the second allows

5Note that this data transformation changes the average loss function as the applied loss
functions are in general not translation invariant. Thus, optimizing the translated loss function
can lead to different parameter estimates. However, we do not face the risk of obtaining
substantially biased estimates in cases where X′

e,iθ
e
0 ≥ 0 for some i ∈ {1, . . . n}. Our numerical

experiments indicate that the difference between estimating the model for Y and for Y −
max(Y ) is small when X′

e,iθ
e
0 < 0 for all i ∈ {1, . . . n}, but can be quite substantial if there is

an outlier for Xe,i such that X′
e,iθ

e
0 ≥ 0.
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for a linear dependence structure. Both approaches depend on a bandwidth
parameter which we choose according to Hall and Sheather (1988).

The second nuisance quantity is the variance of the quantile residuals, con-
ditional on the covariates and given that these residuals are negative,

Var
(
Y −X ′

qθ
q
0

∣∣Y ≤ X ′
qθ

q
0, X

)
= Var

(
uq
∣∣uq ≤ 0, X

)
. (27)

Estimation of this quantity is demanding for two reasons. First, for very small
probability levels which are typical in financial risk management such as e.g.
α = 2.5%, the truncation uq ≤ 0 cuts off all but very few (about α · n) obser-
vations. Second, modeling this truncated variance conditional on the covariates
X is challenging, especially considering the very small sample sizes. Under the
assumption of homoscedasticity, i.e. that the distribution of uq is independent
of the covariates X, we can simply estimate (27) by the sample variance of the
negative quantile residuals and we refer to this estimator as ind in the following.

We propose two further estimators which allow for a dependence of the quan-
tile residuals on the covariates. For this purpose, we assume a location-scale pro-
cess with linear6 specifications of the conditional mean and standard deviation
in order to explicitly model the conditional relationship of uq on Xq,

uq = X ′
qζ +X ′

qφ · ε, (28)

for some parameter vectors ζ, φ ∈ R
k1 and where ε ∼ G(0, 1) follows a zero

mean, unit variance distribution, such that uq|Xq ∼ G
(
X ′

qζ, (X
′
qφ)

2
)
with dis-

tribution function FG and density fG. As we need to estimate the truncated
variance of uq given uq ≤ 0, i.e. a truncated variant of (X ′

qφ)
2, one possibility

is to estimate (28) only for those observations where uq ≤ 0. However, this ap-
proach particularly suffers from the very few negative quantile residuals as we
need to estimate additional parameters compared to the ind approach.

We present a feasible alternative by estimating the parameters ζ and φ using
all available observations of uq and Xq by quasi generalized pseudo maximum
likelihood (Gourieroux and Monfort, 1995, Section 8.4.4) and we obtain the
truncated conditional variance by the scaling formula Var (uq|uq ≤ 0, Xq) =∫ 0

−∞ z2h(z) dz − (
∫ 0

−∞ zh(z) dz)2, where h(z) = fG(z)/FG(0) is the truncated
conditional density of uq given Xq and uq ≤ 0. We propose one parametric
estimator, henceforth denoted by scl-N, where we assume that the distribution
G is the normal distribution and apply a closed-form solution to the scaling
formula. We further propose a semiparametric estimator, henceforth denoted
by scl-sp, where we estimate the distribution G nonparametrically and then
apply the scaling formula for this estimated density by numerical integration.

We further propose to use the iid bootstrapping procedure (Efron, 1979). For
this, we generate B ∈ N bootstrap samples, i.e. for each b = 1, . . . , B, we take

6This approach can further be generalized by considering more general specifications for the
conditional mean and standard deviation. However, our numerical experiments indicate that
the estimation accuracy for the asymptotic covariance matrix does not increase by deviating
from these linear specifications.
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the original data (Yi, Xq,i, Xe,i) for all i = 1, . . . , n and resample n such triples
with replacement. Taking this resampled data set, we compute the bootstrapped
parameter estimate θ̂bρ,n for all b = 1, . . . , B. Then, the boostrapped covariance
is given by the sample covariance over all bootstrapped parameter estimates
θ̂bρ,n for b = 1, . . . , B.

4. Simulation study

In this section, we investigate the finite sample behavior of the M-estimator and
verify the asymptotic properties derived in Section 2.2 through simulations. Fur-
thermore, we compare the performance of different choices for the specification
functions and evaluate the precision of the different covariance matrix estimators
described in Section 3.2.

4.1. Data generating process

In order to assess the numerical properties of estimating the joint regression, we
simulate data from a linear location-scale data generating process (DGP),

Y = Z ′γ + (Z ′η) · v, (29)

where v ∼ F (0, 1) follows some distribution with zero mean and unit variance,

Z =
(
1, Z2, . . . , Zs

)′
and γ, η ∈ R

s for some s ∈ N. For this process, the true
conditional quantile and ES are linear functions in Z, given by

Qα (Y |Z) = Z ′(γ + zαη) and ESα (Y |Z) = Z ′(γ + ξαη), (30)

where zα and ξα are the α-quantile and α-ES of the distribution F (0, 1), which
implies that θq0 = γ + zαη and θe0 = γ + ξαη. Furthermore, the conditional
distributions of the quantile- and ES-residuals are given by

uq|Z ∼ F
(
−zα(Z

′η), (Z ′η)2
)

and ue|Z ∼ F
(
−ξα(Z

′η), (Z ′η)2
)
. (31)

For the simulation study, we want to assess the performance of our regression
procedure in various setups. Thus, we choose four different specifications for Z,
γ, η and F in the following such that we get data generating processes (DGP)
with different properties,

DGP-(1): Z =(1, Z2), Z2 ∼χ2
1 and Y |Z ∼N

(
−Z2, 1

)
DGP-(2): Z =(1, Z2), Z2 ∼χ2

1 and Y |Z ∼N
(
−Z2, (1+ 0.5Z2)

2
)

DGP-(3): Z =(1, Z2, Z3) Z2, Z3 ∼U [0, 1] with corr(Z2, Z3)= 0.5 and

Y |Z ∼ t5

(
Z2 −Z3, (1+Z2 +Z3)

2
)
.

DGP-(4): Z =(1, Z2, Z3) Z2, Z3 ∼U [0, 1] with corr(Z2, Z3)= 0.5 and

Y |Z ∼N
(
−zαZ2 − ξαZ3, (1+Z2 +Z3)

2
)
.
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While DGP-(1) is homoscedastic, i.e. the model residuals are independent of
Z, DGP-(2) is heteroscedastic, i.e. the conditional variance of the error terms
depends on the covariates. Furthermore, with DGP-(3) we include a regression
setup with multiple, correlated regressors and a leptocurtic conditional distribu-
tion. For these first three DGPs, we estimate the regression model by choosing
the same vector of explanatory variables for both, the quantile and ES equation,
X =

(
Xq, Xe) = (Z,Z).

The last regression setup, DGP-(4) is specified such that the true conditional
quantile and conditional ES depend on different vectors of explanatory variables.
For this, we specify the parameters γ and η such that θq0 = γ+zαη =

(
zα, 0, zα−

ξα
)
and θe0 = γ + ξαη =

(
ξα, ξα − zα, 0

)
. We estimate this DGP by setting

Xq = (1, Z3) and Xe = (1, Z2), as the true regression parameters of the second
explanatory variable of the quantile model is zero, and equivalently the third
parameter of the ES model.

We simulate all four processes 10,000 times with varying sample sizes of
n = 250, 500, 1000, 2000 and 5000 observations. For each replication and for each
of the sample sizes we regress the simulated Y ’s on the covariates X = (Xq, Xe)
using our joint regression method for the probability level α = 2.5%. We choose
this probability level in accordance with the choice of the Basel Committee which
stipulate α = 2.5% for the reported ES forecasts. Choosing more conservative
probability levels towards the median of the distribution further stabilizes the
simulation results, as by choosing α = 2.5%, we already consider a very extreme
level which results in a lot of estimation uncertainty.

4.2. Comparing the specification functions

We start the discussion of the simulation results by investigating the numerical
performance of the M-estimator based on different choices of the specification
functions G1 and G2 used in the loss function in (2). We use two choices for the
first specification function,

G1(z) = 0 and G1(z) = z. (32)

The first choice, G1(z) = 0, follows the reasoning of Section 2.3 and Nolde and
Ziegel (2017); Ziegel et al. (2019). It is interesting to notice that in classical
quantile regression, the choice G1(z) = 0 is not possible, however, as the second
line of the loss function (2) also contains a quantile-specific piecewise linear loss
function, this choice is actually feasible here. The second choice, G1(z) = z,
corresponds to the function used in classical quantile regression.

For the second specification function G2, we use three natural examples re-
sulting in positively homogeneous loss functions of order b = −1, b = 0 and
b = 0.5 respectively7, a bounded G2 function and the (unbounded) exponential

7Our numerical simulations show that the numerical results are unaffected by different
choices of the associated constants in (24)–(26).
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function:

G2(z) = −1/z, G2(z) = − log(−z), G2(z) = −
√
−z,

G2(z) = log
(
1 + exp(z)

)
, and G2(z) = exp(z).

(33)

Figure 1 presents the sum (over the k regression parameters) of the mean
squared errors (MSE) of the regression parameters for the four DGPs described
above, different sample sizes and for the five choices of the specification func-
tions given in (33). As implied by the asymptotic theory, we obtain consistent
parameter estimates for all five choices of the specification functions as the
MSEs converge to zero for all four DGPs. However, they differ substantially
with respect to their small sample properties. The three positively homoge-
neous specifications result in the most accurate estimates, whereas the choices
G2(z) = −

√
−z and G2(z) = − log(−z) tend to perform slightly better than the

choice G2(z) = −1/z. Furthermore, the bounded choice G2(z) = log
(
1+exp(z)

)
still performs better than the unbounded exponential function. The results of
the average estimation time in Figure 3 also favor the homogeneous loss func-
tions.

These results can mainly be explained by the different true asymptotic co-
variances. Table 1 reports the Frobenius norms of the lower triangular parts of
the true asymptotic covariance matrices and of the respective (lower triangular)
quantile-specific and the ES-specific sub-matrices for the four DGPs and for the
five choices of the specification functions given in (33). For comparison, we also
report the Frobenius norm of the lower triangular part of the asymptotic covari-
ance of the quantile regression estimator. We approximate the true asymptotic
covariance matrix through Monte-Carlo integration with a sample size of 108

using the formulas in Theorem 2.6 and by using the true density and conditional
truncated variance. On average, the specification functions G2(z) = − log(−z)
and G2(z) = −

√
−z exhibit the smallest asymptotic covariances, closely followed

by the third choice for a positively homogeneous loss function, G2(z) = −1/z.
The non-homogeneous choices lead to considerably larger asymptotic variances
for all considered DGPs and sub-matrices, which confirms the results of Fig-
ure 1. Furthermore, by comparing the quantile-specific parameters of the joint
estimation approach (from the positively homogeneous loss functions) to quan-
tile regression estimates, we roughly obtain the same asymptotic efficiency.

In order to analyze the effect the individual parameters have on the average
MSE, Figure 2 presents the MSEs of the individual regression parameters for
different choices of the specification functions, for DGP-(3) and a fixed sample
size of n = 2000. We present the results in a stacked bar plot, where the quantile
parameters are shown in blueish colors whereas the ES parameters have reddish
colors. This plot reveals several insights. First, the ES-specific parameters ex-
hibit a larger MSE compared to their quantile counterparts. This observation
is again driven by the larger true asymptotic variances of the ES-specific pa-
rameters as outlined in Table 1. This fact is explained as by definition, for any
α < 0.5 the ES is considerably further in the tail of the return distribution and
thus, its estimation is subject to more noise. Second, for the first three choices
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Fig 1. This figure shows the average mean squared errors of the parameter estimates for all
four DGPs. The results are shown for the five choices of the specification functions given in
(33) and a range of sample sizes.

of G2, resulting in homogeneous loss functions, the results are largely unaffected
by the two choices of G1. However, for the last two choices of G2, G1(z) = z
results in a considerably smaller MSE. This fact can again be explained by the
form of the loss function given in (2). For the choice G1(z) = 0, the quantile
parameters are only identified by the hidden piecewise linear loss function in
the second line of (2), which is scaled by the function G2(X

′
eθ

e). This works fine
for the benign homogeneous choices of G2, but not for the last two choices. In
contrast, the first line of (2) does not vanish for the choice G1(z) = z and thus,
it is able to identify the quantile parameters properly, resulting in a drastically
smaller MSE for the quantile parameters.
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Table 1

This table reports the Frobenius norms of the lower triangular parts of the true asymptotic
covariance matrices and the respective quantile-specific and the ES-specific sub-matrices for
the four DGPs and for the two times five choices of the specification functions given in
(33). For comparison, we report the same quantity for the asymptotic covariance of the

quantile regression estimator.

DGP-(1) DGP-(2)

G1(z) = z Q ES Full Q ES Full

G2(z) = − log(−z) 12.0 18.4 24.8 34.3 59.4 77.0

G2(z) = −
√
−z 11.9 17.9 24.2 35.0 66.6 83.8

G2(z) = −1/z 11.9 19.9 25.8 36.7 50.8 71.1

G2(z) = log(1 + exp(z)) 13.2 37.3 42.4 32.6 138.8 145.8

G2(z) = exp(z) 13.4 39.2 44.2 32.7 146.4 153.3

Quantile Regression 11.8 – – 37.1 – –

G1(z) = 0 Q ES Full Q ES Full

G2(z) = − log(−z) 12.1 18.4 24.9 32.8 59.4 75.6

G2(z) = −
√
−z 11.9 17.9 24.2 34.5 66.6 83.4

G2(z) = −1/z 12.9 19.9 26.7 31.0 50.8 66.6

G2(z) = log(1 + exp(z)) 26.6 37.3 52.4 125.4 138.8 212.1

G2(z) = exp(z) 27.3 39.2 54.5 129.3 146.4 221.5

Quantile Regression 11.8 – – 37.1 – –

DGP-(3) DGP-(4)

G1(z) = z Q ES Full Q ES Full

G2(z) = − log(−z) 1469.8 4769.6 5329.0 43.7 180.0 193.7

G2(z) = −
√
−z 1469.5 4783.7 5341.8 43.8 180.8 194.5

G2(z) = −1/z 1471.0 4742.0 5304.1 43.8 178.3 192.2

G2(z) = log(1 + exp(z)) 1430.0 5861.9 6300.4 41.9 181.0 193.6

G2(z) = exp(z) 1431.3 5978.0 6411.6 40.4 162.0 174.6

Quantile Regression 1471.0 – – 43.9 – –

G1(z) = 0 Q ES Full Q ES Full

G2(z) = − log(−z) 1466.4 4769.6 5326.6 43.6 180.0 193.6

G2(z) = −
√
−z 1468.7 4783.7 5341.3 43.7 180.8 194.5

G2(z) = −1/z 1462.0 4742.0 5298.0 43.3 178.3 191.9

G2(z) = log(1 + exp(z)) 2419.8 5861.9 6857.5 41.8 181.0 193.5

G2(z) = exp(z) 2454.1 5978.0 6987.1 40.3 162.0 174.5

Quantile Regression 1471.0 – – 43.9 – –

4.3. Comparing the variance-covariance estimators

In this section, we compare the empirical performance of the asymptotic covari-
ance estimators discussed in Section 3.2. For the comparison of their precision,
Figure 4 reports the average of the Frobenius norm of the lower triangular parts
of the differences between the estimated covariances and the empirical covari-
ance of the estimated parameters.8 We report results for the three considered
homogeneous loss functions and the four DGPs, where each of the plots presents

8This Frobenius norm corresponds to the MSEs averaged over the lower-triangular matrix
entries, which makes this norm appropriate for evaluating covariance matrices.
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Fig 2. This figure shows the mean squared errors of the individual parameter estimates for
DGP-(3) and for the sample size n = 2000. The quantile parameters are shown in blueish
colors whereas the ES parameters have reddish colors. The results are shown for the two times
five choices of the specification functions given in (33).

Fig 3. This figure shows the estimation times averaged over all MC replications and over the
four DGPs depending on the two times five choices of specification functions and for different
sample sizes.

the average norm differences for the four covariance estimators (iid/nid, nid/scl-
N, nid/scl-sp and the iid bootstrap) depending on the sample size. We also re-
port relative standard errors of the individual parameter estimates for all four
DGPs, the four covariance estimators and for a fixed sample size of n = 2000 in
Figure 5. This plots allows to consider the estimation accuracy of the individual
(diagonal) entries of the covariance matrices individually, whereas a value of one
indicates perfect estimation accuracy.

Combining the results from Figure 4 and Figure 5, we find that the iid/nid
estimator performs well for the first, homoscedastic DGP whereas for the other
two DGPs, it fails to capture the underlying more complicated dynamics of the
data. The nid/scl-N estimator outperforms the other estimation approaches
in the first, second and last DGPs, where the underlying conditional distri-
bution indeed follows a normal distribution whereas its performance drops for
the third DGP, which follows a Student-t distribution. The performance of the
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Fig 4. This figure compares the four covariance estimation approaches described in Section
3.2 for the four data generating processes, a range of sample sizes and the three positively
homogeneous choices of the loss function. We report the average of the Frobenius norm of
the lower triangular part of the differences between the estimated asymptotic covariances and
the empirical covariance of the M-estimator.

flexible nid/scl-sp estimator is the most stable throughout all four DGPs. Even-
tually, the bootstrap estimator accurately estimates the covariance for all four
DGPs and in comparison to the other estimators, it performs well even in small
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Fig 5. This figure shows the relative standard errors of the individual model parameters for
the four different DGPs and the four different covariance estimation methods. We fix the
sample size n = 2000 and the specification functions G1(z) = 0 and G2(z) = − log(−z).

samples. Figure 5 further allows to disentangle the results for the different re-
gression parameters where we cannot find that any of the parameters influence
the covariance estimation predominantly throughout the DPGs and covariance
estimation methods. Especially for the well-performing nid/scl-sp and bootstrap
estimators, the relative standard errors are close to unity for all model parame-
ters. The provided R package contains all four covariance estimators discussed
in this section.

5. Empirical applications

In this section, we illustrate the use of this regression model through two practi-
cal applications in jointly forecasting VaR and ES. Section 5.1 considers forecast-
ing VaR and ES based on Realized Volatility estimates, where the forecasting
weights are estimated through our regression procedure. Section 5.2 introduces
joint forecast combination for the VaR and ES, where we use this regression in
order to estimate the combination weights. The latter presents an application
relying on different explanatory variables for the quantile and the ES regression
equations.

5.1. Forecasting VaR and ES by means of Realized Volatility

In this empirical application, we use our joint regression framework for forecast-
ing VaR and ES of log returns of the S&P 500 stock market index. For this
purpose, we adopt the VaR forecasting framework of Žikeš and Baruńık (2016)
and jointly forecast the VaR and ES of daily financial returns rt by

Qα(rt|RVt−1) = θq1 + θq2RVt−1 and ESα(rt|RVt−1) = θe1 + θe2RVt−1, (34)
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where RVt = (
∑

i r
2
t,i)

1/2 denotes the Realized Volatility (RV) estimator (An-
dersen and Bollerslev, 1998) for day t, where rt,i denotes the i-th high-frequency
return of day t.

We extract close-to-close log returns and RV estimates based on 5 min returns
of the S&P 500 index from the Realized Library (Heber et al., 2009) from
January 4, 2000 until January 10, 2019 with a total of 4774 days. We estimate
the model parameters using a rolling window of 1000 days and evaluate the
forecasts on the remaining 3774 days.

We compare the predictive power of this model against three standard models
from the literature. The first is the Historical Simulation (HS) approach, which
forecasts the VaR and ES for day t as the sample quantile and ES of the daily
returns of the past 250 trading days. The second is an AR(1)-GARCH(1,1)-t
model (Bollerslev, 1986), and the third is the Heterogeneous Auto-Regressive
(HAR) model of Corsi (2009), based on the RV estimates given above. Forecasts
of the VaR and ES for the HAR model are obtained from the volatility forecasts
and by assuming a standard normal distribution. While the first two of these
approaches rely on daily data only, the third one incorporates the same high
frequency information as our approach.

Table 2

This table shows the joint losses for the VaR and ES forecasts stemming from the GARCH,
HS, and RV-HAR model. We display the losses for the five choices of the specification

function G2 given in (33).

G2(z) = − log(−z) −
√
−z −1/z log(1 + exp(z)) exp(z)

G1(z) = z

ESR 0.991∗∗ 1.685∗∗ −0.355∗∗ −0.025∗∗ −0.032∗∗

HS 1.197 1.857 −0.260 0.021 0.020

GARCH 1.022∗ 1.703∗ −0.324∗ −0.016∗ −0.020∗

HAR 1.172 1.777 −0.178 0.028 0.039

G1(z) = 0

ESR 0.922∗∗ 1.616∗∗ −0.424∗∗ −0.094∗∗ −0.101∗∗

HS 1.114 1.774 −0.343 −0.061 −0.063

GARCH 0.952∗ 1.633∗ −0.394∗ −0.086∗ −0.090∗

HAR 1.099 1.704 −0.251 −0.045 −0.034

We evaluate the forecasting power of the VaR and ES of these models by
using strictly consistent loss functions for this pair. These loss functions are
given in (2), where the respective linear quantile and ES models are replaced by
the issued VaR and ES forecasts (Fissler and Ziegel, 2016; Fissler et al., 2016).
Table 2 shows the average losses for the respective models and for the ten choices
of specification functions already used in the MC study. Two asterisks denote
the model with the smallest average loss, one asterisk denotes models contained
in the 10% Model Confidence Set (MCS) (Hansen et al., 2011). We find that
our regression based forecasting model outperforms all three competitors for all
considered strictly consistent loss functions as our regression model exhibits the
smallest average losses. We outperform the HS and HAR models significantly
as they are not contained in any MCS for all ten loss functions.

As the comparison results are always influenced by the more or less arbitrary
choice of utlizied (strictly consistent) loss function, Ziegel et al. (2019) introduce
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the concept of forecast domincance for the VaR and ES, which tests whether
one forecast dominates another one for an entire class of loss functions (also
see Ehm et al. (2016)). They introduce Murphy diagrams as a graphical tool in
order to test for forecast dominance by plotting elementary score differences
together with their pointwise confidence bands. In fact, one forecasting model
significantly dominates another one with respect to the considered class of loss
functions if and only if the elementary score differences plotted in the Murphy
diagrams are significantly negative (positive).

Fig 6. This figure shows elementary score differences (Murphy diagrams, Ziegel et al., 2019)
of the VaR/ES Regression and the respective comparison models. The shaded area depicts the
pointwise 90% confidence band.

Figure 6 displays the Murphy diagrams for the VaR and ES losses generated
by our ESR forecasting model against the three alternative models together
with the respective 90% pointwise confidence bands. This analysis strengthens
the results from Table 2 as we can see that the ESR model dominates the HS
and the HAR forecasting approaches for almost all threshold values, i.e. for al-
most all loss functions. Even though we also observe mostly negative elementary
score differences in the comparison to the GARCH model, these differences are
not significant uniformly over all threshold values and consequently, we can-
not dominate this model. It is particularly remarkable that we can significantly
dominate the HAR model as both, this model and our ESR model rely on the
same underlying data, namely the prior RV estimates. This illustrates that in
terms of the VaR and ES, estimating the forecasting weights through this joint
regression framework significantly improves the forecasting performance in com-
parison to applying an indirect approach through a location-scale model as in
the HAR model.

5.2. Joint VaR and ES forecast combination

In this section, we consider combination of VaR and ES forecasts by employing
our joint VaR and ES regression method. Combining forecasts stemming from
different models, estimation approaches, data or information sets has several
advantages over standalone forecasts, where e.g. Timmermann (2006) provides
three arguments in favor of forecast combination: first, there are diversification
gains stemming from the combination of forecasts computed from different as-
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sumptions, specifications or information sets. Second, combined forecasts tend
to be robust against structural breaks. Third, the influence of potential mis-
specification of the individual models is reduced due to averaging over a set of
forecasts stemming from several models.

Giacomini and Komunjer (2005) further argue that forecast combination is
particularly advantageous for risk measures (quantiles) with small probability
levels, as it is customary for the VaR and the ES. These extreme risk measure are
very sensitive to the few observations in the tails of the empirical distribution of
the sample, and thus, forecast combinations based on different information sets
can be seen as a way to make the forecast performance more robust to the ef-
fects of sample-specific factors. Halbleib and Pohlmeier (2012) and Bayer (2018)
provide further empirical evidence in favor of forecast combinations, especially
for financial risk measures and in turbulent financial times.

In the following, we consider two series of given forecasts
(
v̂t,1, êt,1

)
and(

v̂t,2, êt,2
)
for all t = 1, . . . , T which are Ft−1-measureable, i.e. they are issued

with the available information in Ft−1. We are generally agnostic about the un-
derlying methods used to generate these forecasts and which can be parametric,
semiparametric or nonparametric. We consider joint forecast combination of
the VaR and ES forecasts, given by specifying the regression with Yt = rt,
Xq,t =

(
1, v̂t,1, v̂t,2

)′
and Xe,t =

(
1, êt,1, êt,2

)′
for all t = 1, . . . , T . The combina-

tion weights are then given by the regression parameters θq =
(
θq1, θ

q
2, θ

q
3

)′
and

θe =
(
θe1, θ

e
2, θ

e
3

)′
.

This forecast combination constitutes a sensible real-world application of a
regression setup relying on different covariate vectors, as the covariatesXq,t, and
Xe,t are different in this setup. Under the assumption that at least one linear
forecast combination of the given VaR and ES forecasts is correctly specified, it
holds that Qα(u

q
t |Xt) = 0 and ESα(u

e
t |Xt) = 0 almost surely. This implies that

the model specification of Assumption 2.1 is reasonable in this setting.

We use daily close-to-close log returns from the S&P500, i.e. the same data as
in Section 5.1. We generate one day ahead forecasts stemming from the RiskMet-
rics (RM) and the HS model. The combination weights

(
θq′, θe′

)′
are estimated

using the daily returns and the issued forecasts of the first 1000 trading days,
resulting in the estimates θ̂q = (−0.23, 0.63, 0.25)

′
and θ̂e = (0.08, 0.62, 0.42)

′
.

The combined forecasts are generated using these estimated parameters for the
remaining 3774 trading days. We evaluate the standalone and the combined
forecasts using strictly consistent loss functions as in Section 5.1, together with
the MCS (Hansen et al., 2011) and Murphy diagrams (Ziegel et al., 2019).

Table 3 depicts the average loss for the ten different combinations of speci-
fication functions where two asterisks mark the smallest loss and one asterisk
denotes additional models contained in the MCS. We find that in nine of the
ten different choices of strictly consistent loss functions, the combined forecasts
exhibit the smallest loss compared to the stand-alone forecasts, implying a bet-
ter average forecasting performance. Furthermore, the stand-alone forecasts are
not contained in the MCS for roughly half of the cases, which implies that the
results are also significant for these instances.
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Table 3

This table shows the average losses for the stand-alone HS and RM and the combined
forecasts for the ten choices of specification functions given in (33). ∗∗ denotes the model

with the smallest loss and ∗ denotes models contained in the 90% MCS.

G2(z) = − log(−z) −
√
−z −1/z log(1 + exp(z)) exp(z)

G1(z) = z

RM 1.153∗ 1.779∗∗ −0.214 0.021∗ 0.028

HS 1.246 1.897 −0.237∗ 0.033 0.033

Comb 1.126∗∗ 1.779∗ −0.268∗∗ 0.011∗∗ 0.011∗∗

G1(z) = 0

RM 1.079∗ 1.705∗ −0.288 −0.053∗ −0.047

HS 1.161 1.811 −0.322∗ −0.052∗ −0.053∗

Comb 1.051∗∗ 1.704∗∗ −0.344∗∗ −0.064∗∗ −0.064∗∗

Fig 7. This figure shows elementary score differences (Murphy diagrams, Ziegel et al., 2019)
which compare the baseline forecast combination model with the two stand-alone RM and HS
forecasting models. The shaded area depicts the pointwise 90% confidence band.

We also present Murphy diagrams in Figure 7 in order to show the losses for
the full class of strictly consistent loss functions. We find that the combined fore-
casts dominate the HS approach. However, even though the RM approach can
be outperformed significantly for some of the loss functions, we cannot dominate
this forecast in the strong sense of Ziegel et al. (2019) through Murphy diagrams.

6. Conclusion

In this paper, we introduce a joint regression technique for the quantile (the VaR)
and the ES. This regression approach relies on the class of strictly consistent
joint loss functions introduced by Fissler and Ziegel (2016), which permits
the joint elicitation of the quantile and the ES. We introduce an M- and a
Z-estimator for the parameters of the joint regression model. Given a set of
standard regularity conditions, we show consistency and asymptotic normality
for both estimators, which we also verify numerically through extensive sim-
ulations. The underlying loss and identification functions and the asymptotic
covariance matrices of the estimators depend on the choice of two specification
functions, which we investigate in terms of the resulting moment conditions,
asymptotic efficiency, numerical performance and computation times. In our
numerical simulations, we find that choices resulting in positively homogeneous
loss functions dominate other choices with respect to the aforementioned cri-
teria. Furthermore, we propose several estimation methods for the asymptotic
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covariance matrix, which are able to cope with different properties of the un-
derlying data. We provide an R package (Bayer and Dimitriadis, 2019) which
provides the M-estimation procedure where one can choose the underlying spec-
ification functions and the estimation method for the asymptotic covariance
matrix.

Our new joint regression technique allows for a wide range of applications
for the risk measures VaR and ES. We illustrate two empirical applications of
this regression method by setting up a joint forecasting model for the VaR and
the ES based on past RV estimates and by considering joint forecast combina-
tion. In both applications, our regression-based methods can outperform their
competitors. The new regression technique is already used by Taylor (2019),
Patton et al. (2019) and Chao et al. (2018) for the estimation of autoregressive
models for the ES (jointly with the VaR). Bayer and Dimitriadis (2019) use this
regression to develop an ES backtest which is particularly relevant in light of the
recent introduction of ES into the Basel regulatory framework and the present
lack of accurate backtesting methods for the ES. Furthermore, this regression
approach can be used to model the ES (jointly with the VaR) by generaliz-
ing existing applications of quantile regression on VaR, such as e.g. in Koenker
and Xiao (2006), Engle and Manganelli (2004), Chernozhukov and Umantsev
(2001), Žikeš and Baruńık (2016), Halbleib and Pohlmeier (2012), Komunjer
(2013), Giacomini and Komunjer (2005) and Xiao et al. (2015).

Appendix A: Finite moment conditions

For convenience of the supremum notation, for all θ ∈ int(Θ) and for d > 0, we
define the open neighborhood Ud(θ) = {τ ∈ Θ : ||τ − θ|| < d} and its closure
Ūd(θ) = {τ ∈ Θ : ||τ − θ|| ≤ d}. In the following, if not stated otherwise,
the sup notation is understood as the supremum in the neighborhood supθ =
supθ∈Ūd0

(θ0) (or equivalently supτ = supτ∈Ūd0
(θ0)).

(M-1) For Theorem 2.4, we assume that the following moments are finite for
some d0 > 0:

• E[||X||2 supθ |G
(1)
1 (X ′

qθ
q)|]

• E[||X||2 supθ |G
(2)
1 (X ′

qθ
q)|]

• E[||X||2 supθ |G2(X
′
eθ

e)|]
• E[||X||3 supθ |G

(1)
2 (X ′

eθ
e)|]

• E[||X||3 supθ |G
(2)
2 (X ′

eθ
e)|]

• E[||X||2 supθ |G
(1)
2 (X ′

eθ
e)| E[|Y ||X]]

• E[||X||2 supθ |G
(2)
2 (X ′

eθ
e)| E[|Y ||X]]

(M-2) For Theorem 2.5, we assume that the following moments are finite:

• E[||X||2]
• E[supθ∈Θ |G1(X

′
qθ

q)|]
• E[|G1(Y )|]
• E[|a(Y )|]

• E[||X|| supθ∈Θ |G2(X
′
eθ

e)|]

• E[supθ∈Θ |G2(X
′
eθ

e)| E[|Y ||X]]

• E[supθ∈Θ |G2(X
′
eθ

e)|]



1852 T. Dimitriadis and S. Bayer

(M-3) For Theorem 2.6, we assume that the following moments are finite for
some constant d0 > 0 and for all θ ∈ Ūd0(θ0):

• E[||X||3(supτ G
(1)
1 (X ′

qτ
q))(supτ̃ G

(2)
1 (X ′

q τ̃
q))]

• E[||X||3(supτ G
(1)
1 (X ′

qτ
q))(supτ̃ G

(1)
2 (X ′

eτ̃
e))]

• E[||X||3(supτ G2(X
′
eτ

e))(supτ̃ G
(2)
1 (X ′

q τ̃
q))]

• E[||X||3(supτ G2(X
′
eτ

e))(supτ̃ G
(1)
2 (X ′

eτ̃
e))]

• E[||X||3 supτ (G
(1)
1 (X ′

qτ
q))2]

• E[||X||3 supτ (G2(X
′
eτ

e))2]

• E[||X||3 supτ G
(1)
1 (X ′

qτ
q)G2(X

′
eτ

e)]

• E[||X||5(supτ G
(1)
2 (X ′

eτ
e))(supτ̃ G

(2)
2 (X ′

eτ̃
e))]

• E[||X||5(supτ G
(1)
2 (X ′

eτ
e))2]

• E[||X||4(supτ G
(1)
2 (X ′

eτ
e))(supτ̃ G

(2)
2 (X ′

eτ̃
e))E[|Y ||X]]

• E[||X||3G(1)
2 (X ′

eθ
e)(supτ G

(1)
2 (X ′

eτ
e))E[|Y ||X]]

• E[||X||3G(1)
2 (X ′

eθ
e)(supτ G

(2)
2 (X ′

eτ
e))E[Y 2|X]]

• E[||X||3(supτ G
(1)
2 (X ′

eτ
e))(supτ̃ G

(2)
2 (X ′

eτ̃
e))E[Y 2|X]]

(M-4) For Theorem 2.7, we assume that the following moments are finite for
some constant d0 > 0:

• E[|G1(Y )|]
• E[|a(Y )|]
• E[||X|| supθ |G

(1)
1 (X ′

qθ
q)|]

• E[||X||2 supθ(G
(1)
1 (X ′

qθ
q))2]

• E[||X||2 supθ |G
(1)
1 (X ′

qθ
q)G2(X

′
eθ

e)|]
• E[||X|| supθ |G2(X

′
eθ

e)|]
• E[||X||2 supθ |G

(1)
2 (X ′

eθ
e)|]

• E[||X||2 supθ(G2(X
′
eθ

e))2]

• E[||X||4 supθ(G
(1)
2 (X ′

eθ
e))2]

• E[||X|| supθ |G
(1)
2 (X ′

eθ
e)| E[|Y ||X]]

• E[||X||3 supθ(G
(1)
2 (X ′

eθ
e))2 E[|Y ||X]]

• E[||X||2 supθ(G
(1)
2 (X ′

eθ
e))2 E[Y 2|X]]

Appendix B: Proofs

Henceforth, ||v|| denotes the maximum norm for a vector v ∈ R
k and for a matrix

A, ||A|| denotes the row-sum matrix norm which is induced by the maximum
norm for vectors. For convenience of the supremum notation, for all θ ∈ int(Θ)
and for some d > 0, we define the open neighborhood Ud(θ) = {τ ∈ Θ : ||τ−θ|| <
d} and its closure Ūd(θ) = {τ ∈ Θ : ||τ − θ|| ≤ d}.
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Proof of Theorem 2.4. We apply Theorem 2 from Huber (1967) and show that
the function ψ(Y,X, θ) as given in (4) satisfies the respective assumptions of
this theorem. Note that the parameter space Θ is assumed to be compact and
thus, we do not have to show condition (B-4) in the notation of Huber (1967).
As the product of continuous functions and the indicator function 1{Y≤X′

qθ
q},

the function ψ is measurable and regarded as a stochastic process in θ, ψ is sep-
arable in the sense of Doob as it is almost surely continuous in θ (Gikhman and
Skorokhod, 2004, p.164). This condition assures measurability of the suprema9

given below and in Lemma B.1.
In oder to show that ψ has a unique root at θ0, let us first define the sets

Uθ =
{
ω ∈ Ω

∣∣Xq(ω)
′θq 	= Xq(ω)

′θq0
}
, and

Wθ =
{
ω ∈ Ω

∣∣Xq(ω)
′θq = Xq(ω)

′θq0
}
,

(35)

for all θ ∈ Θ such that Ω = Wθ ∪ Uθ and Wθ ∩ Uθ = ∅. We first show that
P(Uθ) > 0 for all θ 	= θ0. In order to see this, we assume the converse, i.e. let
us assume that for a fixed θ 	= θ0, it holds that P(Wθ) = P

(
X ′

qθ
q = X ′

qθ
q
0

)
= 1,

which implies that

(θq − θq0)
′
E[XqX

′
q] (θ

q − θq0) = E
[(
X ′

qθ
q −X ′

qθ
q
0

)2]
= 0. (36)

However, since θq 	= θq0, this contradicts the assumption that the matrix E[XqX
′
q]

is positive definite and we can conclude that P(Uθ) > 0.
The quantity

λ1(θ) = E
[
ψ1(Y,X, θ)

]
= E

[
Xq

(
αG

(1)
1 (X ′

qθ
q) +G2(X

′
eθ

e)/α
)(
FY |X(X ′

qθ
q)− FY |X(X ′

qθ
q
0)
)]

exists under the moment conditions (M-1) in Appendix A and if θq = θq0, it
holds that λ1(θ) = 0. Now, we assume that θ ∈ Θ such that θq 	= θq0. By splitting
the expectation, we get that

λ1(θ)
′(θq − θq0) = E

[(
G

(1)
1 (X ′

qθ
q) +G2(X

′
eθ

e)/α
)(
X ′

qθ
q −X ′

qθ
q
0

)(
FY |X(X ′

qθ
q)

− FY |X(X ′
qθ

q
0)
)
1{ω∈Wθ}

]
+ E

[(
G

(1)
1 (X ′

qθ
q) +G2(X

′
eθ

e)/α
)(
X ′

qθ
q −X ′

qθ
q
0

)(
FY |X(X ′

qθ
q)

− FY |X(X ′
qθ

q
0)
)
1{ω∈Uθ}

]
.

The first summand is obviously zero since for all ω ∈ Wθ, FY |X(X ′
qθ

q) −
FY |X(X ′

qθ
q
0) = 0. Since the distribution of Y given X has strictly positive den-

sity in a neighborhood of X ′
qθ

q
0, we get that FY |X is strictly increasing in a

9Many other authors such as e.g. Newey and McFadden (1994); Andrews (1994); van der
Vaart (1998) rely on outer probability in order to avoid these measurability issues.
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neighborhood of X ′
qθ

q
0 and thus(

X ′
qθ

q −X ′
qθ

q
0

)(
FY |X(X ′

qθ
q)− FY |X(X ′

qθ
q
0)
)
> 0 (37)

for all ω ∈ Uθ. Furthermore, since αG
(1)
1 (X ′

qθ
q) + G2(X

′
eθ

e) > 0 for all θ ∈ Θ
and P(Uθ) > 0, we get that

λ1(θ)
′(θq − θq0) = E

[(
G

(1)
1 (X ′

qθ
q) +G2(X

′
eθ

e)/α
)(
X ′

qθ
q −X ′

qθ
q
0

)(
FY |X(X ′

qθ
q)

− FY |X(X ′
qθ

q
0)
)
1{ω∈Uθ}

]
is strictly positive and consequently λ1(θ) 	= 0. This implies that λ1(θ) = 0 if
and only if θq = θq0. Furthermore,

λ2(θ) = E

[
XeG

(1)
2 (X ′

eθ
e)
(
X ′

qθ
q
(
FY |X(X ′

qθ
q)− α

)
/α+X ′

eθ
e

− 1/αE
[
Y 1{Y≤X′

qθ
q}
∣∣X])]. (38)

Assuming that θq = θq0, which results from λ1(θ) = 0, we get that FY |X(X ′
qθ

q) =

FY |X(X ′
qθ

q
0) = α and 1/αE

[
Y 1{Y≤X′

qθ
q
0}
∣∣X] = X ′

eθ
e
0. Consequently, (38) sim-

plifies to E
[
(XeX

′
e)G

(1)
2 (X ′

eθ
e)
](
θe − θe0

)
and as E

[
(XeX

′
e)
]
has full rank by

assumption, applying Lemma B.2 yields that the matrix E
[
(XeX

′
e)G

(1)
2 (X ′

eθ
e)
]

is positive definite for all θ ∈ Θ. Consequently, λ2(θ) = 0 if and only if θe = θe0
and together with the arguments for λ1, we get that λ(θ) = 0 if and only if
θ = θ0. Eventually, assumption (B-2)’ from Theorem 2 of Huber (1967) follows
directly from Lemma B.1, which concludes this proof.

Proof of Theorem 2.5. For this proof, we apply Theorem 5.7 from van der Vaart
(1998) and show that the respective assumptions of this theorem hold. As in
the proof of Theorem 2.6, we can conclude measurability of the suprema since
the process ρ is continuous and consequently separable in the sense of Doob.
Thus, we do not have to rely on outer probability measures such as in van der
Vaart (1998). We start by showing uniform convergence in probability of the
empirical mean of the objective function by the help of Lemma 2.4 of Newey
and McFadden (1994). Since we have iid data, a compact parameter space Θ
and ρ(Y,X, θ) is continuous for all θ ∈ Θ, it remains to show that there exists a
dominating function d(Y,X) ≥ |ρ(Y,X, θ)

∣∣ for all θ ∈ Θ with E
[
d(Y,X)

]
< ∞.

We define

d(Y,X)= sup
θ∈Θ

∣∣G1(X
′
qθ

q)+ 1/αG2(X
′
eθ

e)(X ′
qθ

q −Y )
∣∣+ ∣∣G1(Y )

∣∣
+ sup

θ∈Θ

∣∣G2(X
′
eθ

e)
(
X ′

eθ
e −X ′

qθ
q
)∣∣+ sup

θ∈Θ

∣∣G2(X
′
eθ

e)
∣∣+ ∣∣αG1(Y )+ a(Y )

∣∣
(39)

and it holds that d(Y,X) ≥
∣∣ρ(Y,X, θ)

∣∣ for all θ ∈ Θ and consequently, we can
conclude uniform convergence in probability.
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We now show that E
[
ρ(Y,X, θ)

]
has a unique and global minimum at θ = θ0.

For this, we assume that θ ∈ Θ such that θ 	= θ0 and we define the sets

Uθ =
{
ω ∈ Ω

∣∣Xq(ω)
′θq 	= Xq(ω)

′θq0 or Xe(ω)
′θe 	= Xe(ω)

′θe0
}

and (40)

Wθ =
{
ω ∈ Ω

∣∣Xq(ω)
′θq = Xq(ω)

′θq0 and Xe(ω)
′θe = Xe(ω)

′θe0
}
, (41)

such that Ω = Uθ∪Wθ and Uθ∩Wθ = ∅. We first show that P(Uθ) > 0 for all θ 	=
θ0. In order to see this, we assume the converse, i.e. we assume that P(Wθ) = 1,

which implies that (θq − θq0)
′
E[XqX

′
q] (θ

q − θq0) = E
[(
X ′

qθ
q −X ′

qθ
q
0

)2]
= 0, since

P
(
X ′

qθ
q = Xqθ

q
0

)
= 1 and equivalently (θe−θe0)

′
E[XeX

′
e](θ

e−θe0) = 0. However,
since θ 	= θ0 and consequently either θq 	= θq0 or θe 	= θe0, this contradicts the
assumption that the matrices E[XqX

′
q] and E[XeX

′
e] are positive definite and it

follows that P(Uθ) > 0.
From the joint elicitability property of the quantile and ES of Fissler and

Ziegel (2016), Corollary 5.5 we get that for all x ∈ R
k, x = (xq, xe) such that

x′
qθ

q 	= x′
qθ

q
0 or x′

eθ
e 	= x′

eθ
e
0, it holds that

E
[
ρ(Y,X, θ0)

∣∣X = x
]
< E

[
ρ(Y,X, θ)

∣∣X = x
]
, (42)

since the distribution of Y given X has a finite first moment and a unique
α-quantile. Thus, for all ω ∈ Uθ,

E
[
ρ(Y,X, θ0)

∣∣X](ω) < E
[
ρ(Y,X, θ)

∣∣X](ω). (43)

We now define the random variable

h(X, θ, θ0)(ω) = E
[
ρ(Y,X, θ0)

∣∣X](ω)− E
[
ρ(Y,X, θ)

∣∣X](ω), (44)

and (43) implies that h
(
X, θ, θ0

)
(ω) < 0 for all ω ∈ Uθ. Since P(Uθ) > 0, this im-

plies that E
[
h(X, θ, θ0)1{ω∈Uθ}

]
< 0. Furthermore, for all ω ∈ Wθ, it obviously

holds that h(X, θ, θ0)(ω) = 0 and consequently E
[
h(X, θ, θ0)1{ω∈Wθ}

]
= 0.

Thus, we get that

E
[
h(X, θ, θ0)

]
= E

[
h(X, θ, θ0)1{ω∈Uθ}

]
+ E

[
h(X, θ, θ0)1{ω∈Wθ}

]
< 0 (45)

for all θ ∈ Θ such that θ 	= θ0, which shows that E
[
ρ(Y,X, θ)

]
has a unique

minimum at θ = θ0. As we define θ̂ρ,n = argminθ∈Θ
1
n

∑n
i=1 ρ(Yi, Xi, θ) in (3), it

obviously holds that 1
n

∑n
i=1 ρ(Yi, Xi, θ̂ρ,n) ≤ 1

n

∑n
i=1 ρ(Yi, Xi, θ0)+oP (1) which

concludes this proof.

Proof of Theorem 2.6. We apply Theorem 3 of Huber (1967) for the ψ-function
as given in (4) and show the respective assumptions of this theorem. Consis-
tency of the Z-estimator is shown in Theorem 2.4. For the measureability and
separability of the ψ function, we refer to the proof of Theorem 2.4. It is al-
ready shown in the proof of Theorem 2.4 that there exists a θ0 ∈ Θ such that
λ(θ0) = 0. For the technical conditions (N-3), we apply Lemma B.3, Lemma B.1
and Lemma B.4. It remains to show that E

[
||ψ(Y,X, θ0)||2

]
< ∞, which follows
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from the subsequent computation of C and the Moment Conditions (M-3) in
Appendix A. The asymptotic covariance matrix is given by Λ−1CΛ−1, where
C = E

[
ψ(Y,X, θ0)ψ(Y,X, θ0)

′] and
Λ =

∂λ(θ)

∂θ′

∣∣∣∣
θ=θ0

=

(
Λ11 Λ12

Λ21 Λ22

)
=

⎛⎝ ∂λ1(θ)
∂θq′

∣∣∣
θ0

∂λ1(θ)
∂θe′

∣∣∣
θ0

∂λ2(θ)
∂θq′

∣∣∣
θ0

∂λ2(θ)
∂θe′

∣∣∣
θ0

⎞⎠ . (46)

Straightforward calculations yield the matrix C as given in (10)–(12). For the
computation of Λ, we first notice that the function

E
[
ψ(Y,X, θ)

∣∣X]
=

⎛⎝ Xq

(
G

(1)
1 (X ′

qθ
q) +G2(X

′
eθ

e)/α
)(
FY |X(X ′

qθ
q)− α

)
XeG

(1)
2 (X ′

eθ
e)
(
X ′

eθ
e −X ′

qθ
q + 1

αE
[
(X ′

qθ
q − Y )1{Y≤X′

qθ
q}
∣∣X])

⎞⎠ (47)

is continuously differentiable for all θ in some neighborhood Ud(θ0) around θ0,
since the distribution FY |X has a density which is strictly positive, continuous

and bounded in this area. Let us choose a value θ̃ ∈ Ud(θ0) such that X ′
q θ̃

q ≤
X ′

qθ
q. Then,

∂

∂θq
E
[
Y 1{Y≤X′

qθ
q}
∣∣X]= ∂

∂θq
E
[
Y 1{Y≤X′

q θ̃
q}
∣∣X]+ ∂

∂θq
E
[
Y 1{X′

q θ̃
q<Y≤X′

qθ
q}
∣∣X]

=
∂

∂θq

∫ X′
qθ

q

X′
q θ̃

q

yfY |X(y)dy=Xq(X
′
qθ

q)fY |X(X ′
qθ

q).

(48)

We consequently get that for all θ ∈ Ud(θ0),

∂

∂θq′
E
[
ψ1(Y,X, θ)

∣∣X] = (XqX
′
q)
[(
G

(1)
1 (X ′

qθ
q) +G2(X

′
eθ

e)/α
)
fY |X(X ′

qθ
q)

+G
(2)
1 (X ′

qθ
q)
(
FY |X(X ′

qθ
q)− α

)]
,

∂

∂θe′
E
[
ψ1(Y,X, θ)

∣∣X] = ∂

∂θq
E
[
ψ2(Y,X, θ)

∣∣X]′
= (XqX

′
e)G

(1)
2 (X ′

eθ
e)
FY |X(X ′

qθ
q)− α

α
,

∂

∂θe
E
[
ψ2(Y,X, θ)

∣∣X] = (XeX
′
e)G

(1)
2 (X ′

eθ
e)

+ 1/α (XeX
′
e)G

(2)
2 (X ′

eθ
e)
[
X ′

qθ
q
(
FY |X(X ′

qθ
q)− α

)
+ α(X ′

eθ
e)− E

[
Y 1{Y≤X′

qθ
q}
∣∣X]]

In order to conclude that ∂
∂θE

[
E
[
ψ(Y,X, θ)

∣∣X]] = E
[

∂
∂θE

[
ψ(Y,X, θ)

∣∣X]], we
apply a measure-theoretical version of the Leibniz integration rule, which re-
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quires that the derivative of the integrand exists and is absolutely bounded by
some integrable function d(Y,X), independent of θ. For the first term, this can
easily be obtained by defining

d(Y,X) = sup
θ∈Ud(θ0)

∣∣∣∣∣∣1/α (XqX
′
q)
[(
αG

(1)
1 (X ′

qθ
q) +G2(X

′
eθ

e)
)
fY |X(X ′

qθ
q)

+ G
(2)
1 (X ′

qθ
q)
(
FY |X(X ′

qθ
q)− α

)]∣∣∣∣∣∣ ,
which has finite expectation by the Moment Conditions (M-3). The other two
terms follow the same reasoning. Inserting θ = θ0 eventually shows (8) and
(9).

Proof of Theorem 2.7. For this proof, we apply Theorem 5.23 from van der
Vaart (1998) and show that the respective assumptions of this theorem hold.
Theorem 2.5 shows consistency of the M-estimator. The map (Y,X) �→ ρ(Y,X, θ)
is obviously measurable as the sum of measurable functions. Furthermore, the
map θ �→ ρ(Y,X, θ) is almost surely differentiable since the only point of non-
differentiability occurs where Y = X ′

qθ
q, which is a nullset with respect to

the joint distribution of Y and X and for all θ ∈ Θ such that Y 	= X ′
qθ

q,
its derivative is given by ψ(Y,X, θ). Local Lipschitz continuity with square-
integrable Lipschitz-constant follows from Lemma B.5. We have already seen in
the proof of Theorem 2.5 that the function E

[
ρ(Y,X, θ)

]
is uniquely minimized

at the point θ0 and is twice continuously differentiable and consequently admits
a second-order Taylor expansion at θ0. The condition 1

n

∑n
i=1 ρ(Yi, Xi, θ̂ρ,n) ≤

infθ∈Θ
1
n

∑n
i=1 ρ(Yi, Xi, θ)+oP (n

−1) is obviously fulfilled as the definition of the

M-estimator in (3) implies that 1
n

∑n
i=1 ρ(Yi, Xi, θ̂ρ,n) = infθ∈Θ

1
n

∑n
i=1 ρ(Yi,

Xi, θ) as Θ is compact. Thus, we have shown the necessary assumptions of
Theorem 5.23 from van der Vaart (1998).

For the computation of the covariance matrix, we notice that the distribu-
tion of Y given X has a density fY |X in a neighborhood of X ′

qθ
q
0, which is

strictly positive, continuous and bounded. Therefore, by the same arguments
as in (48), we get that ∂

∂θq E
[
G1(Y )1{Y≤X′

qθ
q}
∣∣X] = XqG1(X

′
qθ

q)fY |X(X ′
qθ

q).

Thus, straight-forward calculations yield that for all θ ∈ Ud(θ0), it holds that
∂
∂θE

[
ρ(Y,X, θ)

∣∣X] = E
[
ψ(Y,X, θ)

∣∣X] and by applying the Leibniz integration
rule such as in the proof of Theorem 2.6, we finally get that

∂

∂θ
E
[
ρ(Y,X, θ)

]
= E

[
ψ(Y,X, θ)

]
. (49)

Consequently, the asymptotic covariance matrix equals the one given in Theorem
2.6.

Lemma B.1. Let

u(Y,X, θ, d) = sup
τ∈Ūd(θ)

∣∣∣∣ψ(Y,X, τ)− ψ(Y,X, θ)
∣∣∣∣ (50)
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and assume that Assumption 2.1, Assumption 2.2 and the Moment Conditions
(M-1) in Appendix A hold. Then, there are strictly positive real numbers b and
d0, such that

E
[
u(Y,X, θ, d)

]
≤ b · d for ||θ − θ0||+ d ≤ d0, (51)

and for all d ≥ 0.

Proof of Lemma B.1. For measurability of the suprema, we refer to the proof of
Theorem 2.4. Let in the following d > 0 and θ ∈ Θ such that ||θ− θ0||+ d ≤ d0.
We first notice that for some fixed Xq ∈ R

k and for all τ ∈ Ūd(θ), it holds that∣∣∣1{Y≤X′
qθ

q} − 1{Y≤X′
qτ

q}

∣∣∣ ≤ 1{X′
qθ

q
−≤Y≤X′

qθ
q
+} (52)

for all Y ∈ R and for some θq−, θ
q
+ ∈ Ūd(θ). Since Ūd(θ) is compact, we get that

sup
τ∈Ūd(θ)

∣∣∣1{Y≤X′
qθ

q} − 1{Y≤X′
qτ

q}

∣∣∣ ≤ 1{X′
qθ

q
−≤Y≤X′

qθ
q
+} (53)

for all Y ∈ R and for some values θq−, θ
q
+ ∈ Ūd(θ). Note that the values θq− and

θq+ depend on Xq and θ, however they are independent of Y . Consequently, it
holds that

E

[
sup

τ∈Ūd(θ)

∣∣∣1{Y≤X′
qθ

q} − 1{Y≤X′
qτ

q}

∣∣∣∣∣∣∣∣X
]
≤ E

[
1{X′

qθ
q
−≤Y≤X′

qθ
q
+}

∣∣∣X]
= FY |X

(
X ′

qθ
q
+

)
− FY |X

(
X ′

qθ
q
−
)
= fY |X(X ′

q θ̃
q)
(
X ′

qθ
q
+ −X ′

qθ
q
−
)

≤ 2||X|| · sup
τ∈Ūd(θ)

fY |X(X ′
qτ

q) · d,

(54)

where we apply the mean value theorem for some θ̃q on the line between θq− and

θq+, i.e. θ̃
q ∈ Ūd(θ).

For the first component of ψ, we get that

E

[
sup

τ∈Ūd(θ)

∣∣∣∣ψ1(Y,X, θ)− ψ1(Y,X, τ)
∣∣∣∣]

≤ E

[
sup

τ∈Ūd(θ)

∣∣∣∣∣∣∣∣Xq

(
G

(1)
1 (X ′

qθ
q)−G

(1)
1 (X ′

qτ
q) +

G2(X
′
eθ

e)−G2(X
′
eτ

e)

α

)∣∣∣∣∣∣∣∣
]

+ E

[
sup

τ∈Ūd(θ)

∣∣∣∣∣∣∣∣Xq

(
G

(1)
1 (X ′

qτ
q) +

G2(X
′
eτ

e)

α

)∣∣∣∣∣∣∣∣
· E

[
sup

τ∈Ūd(θ)

∣∣∣1{Y≤X′
qθ

q} − 1{Y≤X′
qτ

q}

∣∣∣∣∣∣∣∣X
]]

.

(55)
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The first term in (55) is O(d) since G
(1)
1 (X ′

qθ
q) and G2(X

′
eθ

e) are continuously
differentiable functions w.r.t θ and thus, by the mean value theorem we get that

sup
τ∈Ūd(θ)

∣∣G(1)
1 (X ′

qθ
q)−G

(1)
1 (X ′

qτ
q)
∣∣≤ sup

τ̃∈Ūd(θ)

∣∣∣∣XqG
(2)
1 (X ′

q τ̃
q)
∣∣∣∣ · sup

τ∈Ūd(θ)

∣∣∣∣θq − τ q
∣∣∣∣

≤ sup
τ̃∈Ūd(θ)

∣∣∣∣XqG
(2)
1 (X ′

q τ̃
q)
∣∣∣∣ · d,

(56)

and the respective moments are finite by assumption. The same arguments hold
for the function G2. For the second term in (55), we apply (54) and thus get
that

E

[
sup

τ∈Ūd(θ)

∣∣∣∣∣∣∣∣Xq

(
G

(1)
1 (X ′

qτ
q) +

G2(X
′
eτ

e)

α

)∣∣∣∣∣∣∣∣
×E

[
sup

τ∈Ūd(θ)

∣∣∣1{Y≤X′
qθ

q} − 1{Y≤X′
qτ

q}

∣∣∣∣∣∣∣∣X
]]

≤ E

[
sup

τ∈Ūd(θ)

∣∣∣∣∣∣∣∣Xq

(
G

(1)
1 (X ′

qτ
q) +

G2(X
′
eτ

e)

α

)∣∣∣∣∣∣∣∣ ||Xq|| · sup
τ∈Ūd(θ)

fY |X(X ′
qτ

q)

]
· d.

(57)

Since the density fY |X is bounded in a neighborhood of X ′
qθ

q
0 and the respective

moments are finite by assumption, we get that this term is also O(d).
For the second component of ψ, we get that

E

[
sup

τ∈Ūd(θ)

∣∣∣∣ψ2(Y,X, θ)− ψ2(Y,X, τ)
∣∣∣∣]

≤ E

[
sup

τ∈Ūd(θ)

∣∣∣∣Xe(X
′
eθ

e −X ′
qθ

q)G
(1)
2 (X ′

eθ
e)−Xe(X

′
eτ

e −X ′
qτ

q)G
(1)
2 (X ′

eτ
e)
∣∣∣∣]

+ E

[∣∣∣∣∣
∣∣∣∣∣XeG

(1)
2 (X ′

eθ
e)X ′

qθ
q

α

∣∣∣∣∣
∣∣∣∣∣ · E

[
sup

τ∈Ūd(θ)

∣∣∣1{Y ≤X′
qθ

q} − 1{Y ≤X′
qτ

q}

∣∣∣∣∣∣∣∣X
]]

+ E

[
E

[
sup

τ∈Ūd(θ)

∣∣∣∣∣
∣∣∣∣∣1{Y ≤X′

qτ
q}

(
XeG

(1)
2 (X ′

eθ
e)X ′

qθ
q

α
− XeG

(1)
2 (X ′

eτ
e)X ′

qτ
q

α

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣X

]]

+ E

[∣∣∣∣∣
∣∣∣∣∣XeG

(1)
2 (X ′

eθ
e)

α

∣∣∣∣∣
∣∣∣∣∣ · E

[
sup

τ∈Ūd(θ)

∣∣∣Y (
1{Y ≤X′

qθ
q} − 1{Y ≤X′

qτ
q}

)∣∣∣∣∣∣∣∣X
]]

+ E

[
E

[
sup

τ∈Ūd(θ)

∣∣∣∣∣∣∣∣Y 1{Y ≤X′
qτ

q}

α

(
XeG

(1)
2 (X ′

eθ
e)−XeG

(1)
2 (X ′

eτ
e)
)∣∣∣∣∣∣∣∣
∣∣∣∣∣X

]]
= (i) + (ii) + (iii) + (iv) + (v).

The first, third and fifth term are linearly bounded by (56) since the functions

(X ′
eθ

e − X ′
qθ

q)G
(1)
2 (X ′

eθ
e) and (X ′

qθ
q)G

(1)
2 (X ′

eθ
e) and G

(1)
2 (X ′

eθ
e) are continu-

ously differentiable. For the second term, we use the arguments from (54). For



1860 T. Dimitriadis and S. Bayer

the fourth term, we use similar arguments as in (54), and get that there exist
some θq−, θ

q
+ ∈ Ūd(θ) and a value θ̃q on the line between θq− and θq+, such that

E

[∣∣∣∣∣
∣∣∣∣∣XeG

(1)
2 (X ′

eθ
e)

α

∣∣∣∣∣
∣∣∣∣∣E
[

sup
τ∈Ūd(θ)

∣∣∣Y (
1{Y≤X′

qθ
q} − 1{Y≤X′

qτ
q}

)∣∣∣∣∣∣∣∣X
]]

≤ E

[∣∣∣∣∣
∣∣∣∣∣XeG

(1)
2 (X ′

eθ
e)

α

∣∣∣∣∣
∣∣∣∣∣E [|Y | 1{X′

qθ
q
−≤Y≤X′

qθ
q
+}

∣∣∣X]]

= E

[∣∣∣∣∣
∣∣∣∣∣XeG

(1)
2 (X ′

eθ
e)

α

∣∣∣∣∣
∣∣∣∣∣
∫ X′

qθ
q
+

X′
qθ

q
−

|y|fY |X(y)dy

]

≤ E

[∣∣∣∣∣
∣∣∣∣∣XeG

(1)
2 (X ′

eθ
e)

α

∣∣∣∣∣
∣∣∣∣∣ |X ′

q θ̃
q|fY |X(X ′

q θ̃
q)
(
X ′

qθ
q
+ −X ′

qθ
q
−
)]

≤ 2

α
E

[
G

(1)
2 (X ′

eθ
e)
∣∣∣∣X∣∣∣∣2 sup

τ∈Ūd(θ)

|X ′
qτ

q|fY |X(X ′
qτ

q)

]
· d = O(d),

(58)

since fY |X is bounded in a neighborhood of X ′
qθ0 and the respective moments

exist by assumption. This concludes the proof of the lemma.

Lemma B.2. Let the random variable X ∈ R
k with distribution P be such

that its second moments exist and the matrix E[XX ′] is positive definite. Fur-
thermore, let Θ̃ ⊂ R

k be a compact subspace with nonempty interior and let
g : Rk × Θ̃ → R be a strictly positive function. Then, the matrix

E
[
(XX ′)g(X, θ)

]
(59)

is also positive definite.

Proof of Lemma B.2. Since E[XX ′] is positive definite, we know that for all
z ∈ R

k with z 	= 0, it holds that 0 < z′E[XX ′]z = E[z′(XX ′)z] = E[(X ′z)2]
and consequently P

(
X ′z 	= 0

)
> 0. Since

√
g(X, θ) is a strictly positive scalar

for all θ ∈ Θ̃, it also holds that P
(
(X ′z)

√
g(X, θ) 	= 0

)
> 0 and thus, for all

z 	= 0,

z′E
[
(XX ′)g(X, θ)]z = E

[(
X ′z

√
g(X, θ)

)2]
> 0. (60)

This positivity statement holds since
(
X ′z

√
g(X, θ)

)2
is a non-negative ran-

dom variable and P
(
(X ′z)

√
g(X, θ) 	= 0

)
> 0. This shows that the matrix

E
[
(XX ′)g(X, θ)

]
is positive definite.

Lemma B.3. Assume that Assumption 2.1, Assumption 2.2 and the Moment
Conditions (M-3) in Appendix A hold. Then, for

λ(θ) = E
[
ψ(Y,X, θ)

]
, (61)

there are strictly positive numbers a, d0, such that

||λ(θ)|| ≥ a · ||θ − θ0|| for ||θ − θ0|| ≤ d0. (62)
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Proof of Lemma B.3. Let d0 > 0 and let ||θ − θ0|| ≤ d0. Then, applying the
mean value theorem, we get that

λ1(θ) =
1

α
E

[
(XqX

′
q)
(
αG

(1)
1 (X ′

qθ
q) +G2(X

′
eθ

e)
)
fY |X(X ′

q θ̃
q)
]
(θq − θq0) (63)

for some θ̃q on the line between θq and θq0. Similarly, for the second component
we get that

λ2(θ) = E

[
Xe

G
(1)
2 (X ′

eθ
e)fY |X(X ′

q θ̃
q)

α

[
X ′

q(θ
q − θq0)

][
X ′

q(θ̃
q − θq)

]]
+ E

[
(XeX

′
e)G

(1)
2 (X ′

eθ
e)
]
(θe − θe0),

(64)

where θ̃q lies on the line between θq and θq0.
We first assume that ||θ− θ0|| = ||θq − θq0||, i.e. ||θq − θq0|| ≥ ||θe − θe0||. Since

the matrix

A(θ) := E

[
(XqX

′
q)

(
αG

(1)
1 (X ′

qθ
q) +G2(X

′
eθ

e)
)

α
fY |X(X ′

q θ̃
q)

]
(65)

exists and has full rank for all θ ∈ Θ by Lemma B.2 and is obviously symmetric,
A has strictly positive real Eigenvalues γ1(θ), . . . , γk(θ) with minimum γ(1)(θ)
and we thus get that10

||λ(θ)|| ≥ ||λ1(θ)|| = ||A(θ)(θq − θq0)|| ≥ γ(1)(θ) · ||θq − θq0|| (66)

≥
(

inf
||θ−θ0||≤d0

γ(1)(θ)

)
· ||θq − θq0|| = c1 ||θ − θ0||. (67)

Since ||θ− θ0|| ≤ d0 is a compact set and the function θ �→ inf ||θ−θ0||≤d0
γ(1)(θ),

where γ(1)(θ) is the smallest Eigenvalue of the matrix A(θ), is continuous11,
we get that the infimum coincides with the minimum and thus, the constant
c1 := inf ||θ−θ0||≤d0

γ(1)(θ) is strictly positive and does not depend on θ.
Now, we assume that ||θ − θ0|| = ||θe − θe0|| ≤ d0, i.e. ||θe − θe0|| ≥ ||θq − θq0||.

For the first term of λ2(θ), given in (64), we define the vector

b(θ) := E

[
Xe

G
(1)
2 (X ′

eθ
e)fY |X(X ′

q θ̃
q)

α

[
X ′

q(θ
q − θq0)

][
X ′

q θ̃
q −X ′θq

]]
, (68)

10For a symmetric matrix A with full rank, we can find an orthogonal basis of Eigenvectors
{v1, . . . , vk} with corresponding nonzero Eigenvalues {γ1(θ), . . . , γk(θ)} such that x =

∑
bjvj

with bj ∈ R. Then, ||Ax|| = ||A
∑

bjvj || = ||
∑

bjAvj || = ||
∑

bjγjvj || ≥ min |γj |·||
∑

bjvj || =
min |γj | · ||x||.

11This follows since the entries of the matrix A(θ) are continuous in θ as the expectation of
a continuous function which is dominated by an integrable function is again continuous by the
dominated convergence theorem. Furthermore, the Eigenvalues of a matrix are the solution of
the characteristic polynomial, which has continuous coefficients since our matrix entries are
continuous in θ. Eventually, since the roots of any polynomial with continuous coefficients are
again continuous, we can conclude that the Eigenvalues of A(θ) are continuous in θ.
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and for its l-th component, we get that

|bl(θ)| =

∣∣∣∣∣∣
∑
i,j

(θqi − θq0i)(θ̃
q
j − θqj )E

[
Xq,iXq,jXe,l

G
(1)
2 (X ′

eθ
e)fY |X(X ′

q θ̃
q)

α

]∣∣∣∣∣∣
≤
∑
i,j

E

[∣∣∣∣∣Xq,iXq,jXe,l

G
(1)
2 (X ′

eθ
e)fY |X(X ′

q θ̃
q)

α

∣∣∣∣∣
]
· |θqi − θq0i| · |θ̃

q
j − θqj |

≤ c2
∑
i,j

|θqi − θq0i| · |θ̃
q
j − θqj |

≤ c2k
2||θ − θ0||2,

(69)

for all l = 1, . . . , k, which implies that

||b(θ)|| ≤ c3||θ − θ0||2, (70)

for some c3 > 0. For D(θ) := E
[
(XeX

′
e)G

(1)
2 (X ′

eθ
e)
]
, it holds that ||D(θ)(θe −

θe0)|| ≥ c4||θe − θe0|| = c4||θ − θ0|| for c4 > 0 by the same arguments as in (66).
From (69), we can choose d0 small enough such that

2||b(θ)|| ≤ 2c3||θ − θ0||2 ≤ c4||θ − θ0|| ≤ ||D(θ)(θe − θe0)||. (71)

Furthermore, by the submultiplicativity of the matrix norm, we also get that
||D(θ)(θe − θe0)|| ≤ ||D(θ)|| · ||θe − θe0|| = c5||θe − θe0|| and by the inverse triangle
inequality, we get that

||λ(θ)|| ≥ ||λ2(θ)|| =
∣∣∣∣D(θ)(θe − θe0) + b(θ)

∣∣∣∣ ≥ ∣∣∣||D(θ)(θe − θe0)|| − ||b(θ)||
∣∣∣.
(72)

From (71), we can choose d0 small enough such that ||D(θe − θe0)|| > 2||b|| and
thus ∣∣∣||D(θe − θe0)|| − ||b||

∣∣∣ = ||D(θe − θe0)|| − ||b|| ≥ 1

2
||D(θe − θe0)|| (73)

≥ c4
2
||θe − θe0|| =

c4
2
||θ − θ0||. (74)

Lemma B.4. Let

u(Y,X, θ, d) = sup
τ∈Ūd(θ)

∣∣∣∣ψ(Y,X, τ)− ψ(Y,X, θ)
∣∣∣∣. (75)

and assume that Assumption 2.1, Assumption 2.2 and the Moment Conditions
(M-3) in Appendix A hold. Then, there are strictly positive numbers c and d0,
such that

E
[
u(Y,X, θ, d)2

]
≤ c · d for ||θ − θ0||+ d ≤ d0, (76)

and for all d ≥ 0.
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Proof of Lemma B.4. Let in the following d > 0 and θ ∈ Θ such that ||θ−θ0||+
d ≤ d0. It holds that(

sup
τ∈Ūd(θ)

∣∣∣∣ψ(Y,X, τ)− ψ(Y,X, θ)
∣∣∣∣)2

= sup
τ∈Ūd(θ)

∣∣∣∣ψ(Y,X, τ)− ψ(Y,X, θ)
∣∣∣∣2
(77)

and consequently, we show that

E

[
sup

τ∈Ūd(θ)

∣∣∣∣ψj(Y,X, τ)− ψj(Y,X, θ)
∣∣∣∣2] = O(d) (78)

for both components j = 1, 2 and for some d > 0 small enough.
For the first squared component, we get that

E

[
sup

τ∈Ūd(θ)

∣∣∣∣ψ1(Y,X, τ)− ψ1(Y,X, θ)
∣∣∣∣2]

≤max

(∣∣∣∣1− α

α

∣∣∣∣2 , 1
)

× E

[
sup

τ∈Ūd(θ)

∣∣∣∣∣∣Xq

(
αG

(1)
1 (X ′

qθ
q) +G2(X

′
eθ

e)− αG
(1)
1 (X ′

qτ
q)−G2(X

′
eτ

e)
)∣∣∣∣∣∣2]

+
2

α2
E

[
||X||2 sup

τ∈Ūd(θ)

∣∣∣∣∣∣αG(1)
1 (X ′

qτ
q) +G2(X

′
eτ

e)
∣∣∣∣∣∣2 sup

τ∈Ūd(θ)

fY |X(X ′
qτ

q)

]
· d

+
2

α2
max

(
1− α, α

)
× E

[
sup

τ∈Ūd(θ)

∣∣∣∣Xq

(
αG

(1)
1 (X ′

qθ
q) +G2(X

′
eθ

e)− αG
(1)
1 (X ′

qτ
q)−G2(X

′
eτ

e)
)∣∣∣∣

×
∣∣∣∣∣∣Xq

(
αG

(1)
1 (X ′

qτ
q) +G2(X

′
eτ

e)
)∣∣∣∣∣∣],

where we apply (54) for the second summand. The remaining two summands

can be bounded linearly by the arguments given in (56) since G
(1)
1 and G2 are

continuously differentiable functions and the respective moments are finite.
For the second component of ψ, we get that∣∣∣∣ψ2(Y,X, τ)− ψ2(Y,X, θ)

∣∣∣∣
≤
∣∣∣∣Xe(X

′
eθ

e −X ′
qθ

q)G
(1)
2 (X ′

eθ
e)−Xe(X

′
eτ

e −X ′
qτ

q)G
(1)
2 (X ′

eτ
e)
∣∣∣∣

+

∣∣∣∣∣
∣∣∣∣∣XeG

(1)
2 (X ′

eθ
e)X ′

qθ
q

α

(
1{Y≤X′

qθ
q} − 1{Y≤X′

qτ
q}

)∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣
∣∣∣∣∣1{Y≤X′

qτ
q}

(
XeG

(1)
2 (X ′

eθ
e)X ′

qθ
q

α
−

XeG
(1)
2 (X ′

eτ
e)X ′

qτ
q

α

)∣∣∣∣∣
∣∣∣∣∣ (79)
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+

∣∣∣∣∣
∣∣∣∣∣XeG

(1)
2 (X ′

eθ
e)

α
Y
(
1{Y≤X′

qθ
q} − 1{Y≤X′

qτ
q}

)∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣∣∣∣Y 1{Y≤X′
qτ

q}

α

(
XeG

(1)
2 (X ′

eθ
e)−XeG

(1)
2 (X ′

eτ
e)
)∣∣∣∣∣∣∣∣

= (i) + (ii) + (iii) + (iv) + (v).

Thus, in order to evaluate E
[
supτ∈Ūd(θ)

∣∣∣∣ψ2(Y,X, τ)− ψ2(Y,X, θ)
∣∣∣∣2], we have

to consider all the cross products out of the five summands in (79). Since the
techniques applied are very similar, we only show details for two of the cross
products.

E

[
sup

τ∈Ūd(θ)

(ii) · (v)
]

= E

[
sup

τ∈Ūd(θ)

∣∣∣∣∣
∣∣∣∣∣XeG

(1)
2 (X ′

eθ
e)X ′

qθ
q

α

(
1{Y≤X′

qθ
q} − 1{Y≤X′

qτ
q}

)∣∣∣∣∣
∣∣∣∣∣

×
∣∣∣∣∣∣∣∣Y 1{Y≤X′

qτ
q}

α

(
XeG

(1)
2 (X ′

eθ
e)−XeG

(1)
2 (X ′

eτ
e)
)∣∣∣∣∣∣∣∣]

≤ 1

α2
E

[∣∣∣∣∣∣XeG
(1)
2 (X ′

eθ
e)X ′

qθ
q
∣∣∣∣∣∣ · E[|Y |

∣∣X] · ||X||

× sup
τ∈Ūd(θ)

∣∣∣∣G(1)
2 (X ′

eθ
e)−G

(1)
2 (X ′

eτ
e)
∣∣∣∣]

≤ 1

α2
E

[∣∣∣∣∣∣XeG
(1)
2 (X ′

eθ
e)X ′

qθ
q
∣∣∣∣∣∣ · E[|Y |

∣∣X] · ||X|| · sup
τ∈Ūd(θ)

∣∣∣∣XeG
(2)
2 (X ′

eτ
e)
∣∣∣∣] · d

= O(d),

by (56) since G
(1)
2 is continuously differentiable.

The following crossproducts can be bounded analogously by bounding the
indicator functions and by applying the mean value theorem as in (56): (i)2,
(iii)2, (v)2, (i) · (iii), (i) · (iv), (i) · (v), (ii) · (iv), (ii) · (v), (iii) · (iv), (iii) · (v) and
(iv) · (v).

A second type of technique, similar to the arguments in (58) arises in the
cases (ii)2, (iv)2 and (ii) · (iv). We get that there exists θq−, θ

q
+ ∈ Ūd(θ) and a

value θ̃q on the line between θq− and θq+, such that

E

[
sup

τ∈Ūd(θ)

(iv)2

]
≤ E

⎡⎣∣∣∣∣∣
∣∣∣∣∣XeG

(1)
2 (X ′

eθ
e)

α

∣∣∣∣∣
∣∣∣∣∣
2

×E

[
sup

τ∈Ūd(θ)

∣∣∣Y (
1{Y≤X′

qθ
q} − 1{Y≤X′

qτ
q}

)∣∣∣2∣∣∣∣∣X
]]
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≤ E

⎡⎣∣∣∣∣∣
∣∣∣∣∣XeG

(1)
2 (X ′

eθ
e)

α

∣∣∣∣∣
∣∣∣∣∣
2

E

[
Y 2 1{X′

qθ
q
−≤Y≤X′

qθ
q
+}

∣∣∣X]
⎤⎦

= E

⎡⎣∣∣∣∣∣
∣∣∣∣∣XeG

(1)
2 (X ′

eθ
e)

α

∣∣∣∣∣
∣∣∣∣∣
2 ∫ X′

qθ
q
+

X′
qθ

q
−

y2fY |X(y)dy

⎤⎦
≤ E

⎡⎣∣∣∣∣∣
∣∣∣∣∣XeG

(1)
2 (X ′

eθ
e)

α

∣∣∣∣∣
∣∣∣∣∣
2

(X ′
q θ̃

q)2fY |X(X ′
q θ̃

q)
(
X ′

qθ
q
+ −X ′

qθ
q
−
)⎤⎦

≤ 2

α
E

[∣∣∣∣X∣∣∣∣3(G(1)
2 (X ′

eθ
e)
)2 · sup

τ∈Ūd(θ)

(X ′
qτ

q)2fY |X(X ′
qτ

q)

]
· d

= O(d),

where we apply a multivariate version of the mean value theorem and notice
that fY |X is bounded.

Lemma B.5. Assume that Assumption 2.1, Assumption 2.2 and the Moment
Conditions (M-4) in Appendix A hold. Then, the function ρ(Y,X, θ), given in
(2) is locally Lipschitz continuous in θ in the sense that for all θ1, θ2 ∈ Ud(θ0)
in some neighborhood of θ0, it holds that∣∣ρ(Y,X, θ1)− ρ(Y,X, θ2)

∣∣ ≤ K(Y,X) ·
∣∣∣∣θ1 − θ2

∣∣∣∣, (80)

where E
[
K(Y,X)2

]
< ∞.

Proof. We start the proof by splitting the ρ function into two parts,

ρ(Y,X, θ) = ρ1(Y,X, θ) + ρ2(Y,X, θ), (81)

where

ρ1(Y,X, θ) = 1{Y≤X′
qθ

q}

(
G1(X

′
qθ

q)−G1(Y ) +
1

α
G2(X

′
eθ

e)(X ′
qθ

q − Y )
)
, (82)

ρ2(Y,X, θ) = G2(X
′
eθ

e)
(
X ′

eθ
e −X ′

qθ
q
)
− G2(X

′
eθ

e)− αG1(X
′
qθ

q) + a(Y ). (83)

Local Lipschitz continuity of ρ2 follows since it is a continuously differentiable
function and thus locally Lipschitz. We consequently get that for some d > 0
and for all θ1, θ2 ∈ Ud(θ0), it holds that∣∣ρ2(Y,X, θ1)− ρ2(Y,X, θ2)

∣∣
≤
∣∣∣∣θ1 − θ2

∣∣∣∣ · sup
θ∈Ud(θ0)

∣∣∣∣∣
∣∣∣∣∣
(
−XqG2(X

′
eθ

e)− αXqG
(1)
1 (X ′

qθ
q)

XeG
(1)
2 (X ′

eθ
e)
(
X ′

eθ
e −X ′

qθ
q
) )∣∣∣∣∣

∣∣∣∣∣ , (84)

with Lipschitz-constant

K(Y,X) = sup
θ∈Ud(θ0)

∣∣∣∣∣
∣∣∣∣∣
(
−XqG2(X

′
eθ

e)− αXqG
(1)
1 (X ′

qθ
q)

XeG
(1)
2 (X ′

eθ
e)
(
X ′

eθ
e −X ′

qθ
q
) )∣∣∣∣∣

∣∣∣∣∣ , (85)
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which is square-integrable by the moment conditions (M-4).
For the function ρ1, we consider three cases. First, let θ1, θ2 ∈ Θ such that

X ′
qθ

q
1 ≤ X ′

qθ
q
2 < Y . Then it holds that,

ρ1(Y,X, θ1) = ρ1(Y,X, θ2) = 0, (86)

since 1{Y≤X′
qθ

q
1} = 1{Y≤X′

qθ
q
2} = 0, which is obviously a Lipschitz continuous

function.
Second, let θ1, θ2 ∈ Θ such that Y ≤ X ′

qθ
q
1 ≤ X ′

qθ
q
2. Then, for θ = θ1, θ2,

ρ1(Y,X, θ) = G1(X
′
qθ

q)−G1(Y ) +
1

α
G2(X

′
eθ

e)(X ′
qθ

q − Y ), (87)

which is a continuously differentiable function and thus∣∣ρ1(Y,X, θ1)− ρ1(Y,X, θ2)
∣∣

≤
∣∣∣∣θ1 − θ2

∣∣∣∣ · sup
θ∈Ud(θ0)

∣∣∣∣∣
∣∣∣∣∣
(
XqG

(1)
1 (X ′

qθ
q) + 1

αXqG2(X
′
eθ

e)
1
αXeG

(1)
2 (X ′

eθ
e)(X ′

qθ
q − Y )

)∣∣∣∣∣
∣∣∣∣∣ . (88)

Finally, let θ1, θ2 ∈ Θ such that X ′
qθ

q
1 < Y ≤ X ′

qθ
q
2. Then, since G1 is

increasing, we get that∣∣ρ1(Y,X, θ1)− ρ1(Y,X, θ2)
∣∣

=

∣∣∣∣G1(X
′
qθ

q
2)−G1(Y ) +

1

α
G2(X

′
eθ

e
2)(X

′
qθ

q
2 − Y )

∣∣∣∣
≤
∣∣G1(X

′
qθ

q
2)−G1(X

′
qθ

q
1)
∣∣+ ∣∣∣∣ 1αG2(X

′
eθ

e
2)(X

′
qθ

q
2 −X ′

qθ
q
1)

∣∣∣∣
≤
∣∣∣∣θq1 − θq2

∣∣∣∣ · sup
θ∈Ud(θ0)

(∣∣∣∣XqG
(1)
1 (X ′θq)

∣∣∣∣+ 1

α

∣∣∣∣XqG2(X
′θe)

∣∣∣∣) .

Thus, the function ρ(Y,X, θ) is locally Lipschitz continuous in θ with square-
integrable Lipschitz constants, E

[
K(Y,X)2

]
< ∞ by the Moment Conditions

(M-4) in Appendix A.

Proposition B.6. Let Y be a real-valued random variable with distribution
function F , finite first and second moments and a unique α-quantile qα =
F−1(α). Then,

1

α2

∫ qα

−∞

∫ qα

−∞
F (x ∧ y)−F (x)F (y)dxdy=

1

α
Var(Y |Y ≤ qα)+

1−α

α

(
qα − ξα

)2
,

(89)

where ξα = E
[
Y
∣∣Y ≤ qα

]
denotes the α-ES of Y .

Proof. We first notice that for a distribution F with finite second moment und
unique α-quantile, it holds that

E
[
Y
∣∣Y ≤ qα

]
= − 1

α

∫ qα

−∞
F (x)dx+ qα and (90)
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E
[
Y 2
∣∣Y ≤ qα

]
= − 2

α

∫ qα

−∞
xF (x)dx+ q2α, (91)

which can be obtained by using the identity

Y 1{Y≤qα} = 1{Y≤qα}

(∫ ∞

0

1{Y >t} dt−
∫ 0

−∞
1{Y≤t} dt

)
(92)

and by taking expectations on both sides. By applying (90), we get that∫ qα

−∞

∫ qα

−∞
F (x)F (y)dxdy =

(∫ qα

−∞
F (x)dx

)2

=
(
αqα − αE

[
Y
∣∣Y ≤ qα

])2
= α2

(
qα − ξα

)2
.

(93)

Furthermore, notice that∫ qα

−∞

∫ qα

−∞
F (x ∧ y)dxdy =

∫ qα

−∞

∫ y

−∞
F (x)dxdy +

∫ qα

−∞

∫ qα

y

F (y)dxdy, (94)

and by rearranging the order of integration for the first term in (94), we get
that∫ qα

−∞

∫ y

−∞
F (x) dxdy =

∫∫
{(x,y): y≤qα, x≤y}

F (x) dxdy =

∫∫
{(x,y): x≤qα, y≥x}

F (x) dydx

=

∫ qα

−∞

∫ qα

x

F (x) dydx =

∫ qα

−∞
F (x)(qα − x) dx.

(95)

Thus, by first using (94) and (95) and by plugging in (90) and (93), we obtain∫ qα

−∞

∫ qα

−∞
F (x ∧ y)dxdy = 2

∫ qα

−∞

∫ qα

y

F (y) dxdy

= 2

∫ qα

−∞
F (y)(qα − y) dy

= 2qα

∫ qα

−∞
F (y) dy − 2

∫ qα

−∞
yF (y) dy

= 2qα
(
αqα − αξα

)
+ αE

[
Y 2
∣∣Y ≤ qα

]
− αq2α

= αE
[
Y 2
∣∣Y ≤ qα

]
+ αq2α − 2αqαξα.

(96)

Eventually, using (93) and (96), straight-forward calculations yield that

1

α2

∫ qα

−∞

∫ qα

−∞
F (x ∧ y)−F (x)F (y)dxdy=

1

α
Var(Y |Y ≤ qα)+

1−α

α

(
qα − ξα

)2
,

(97)

which concludes the proof.
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Appendix C: Separability of almost surely continuous functions

Definition C.1 (Separability of a Stochastic Process). A stochastic pro-
cess ψ(x, θ) : Ω×Θ → Y is called separable in the sense of Doob, if there exists
in Ω an everywhere dense countable set I, and in Ω a nullset N such that for
any arbitrary open set G ⊂ Θ and every closed set F ⊂ Y , the two sets

{x|ψ(x, θ) ∈ F, ∀θ ∈ G} and (98)

{x|ψ(x, θ) ∈ F, ∀θ ∈ G ∩ I} (99)

differ from each other at most by a subset of N .

Proposition C.2 (Gikhman and Skorokhod (2004)). Let Θ and Y be
metric spaces, Θ be a separable space. The sets (98) and (99) coincide for all
x ∈ Ω for which the stochastic process ψ(x, θ) is continuous in θ.

Proof. It is clear that {x|ψ(x, θ) ∈ F, ∀θ ∈ G} ⊆ {x|ψ(x, θ) ∈ F, ∀θ ∈ G ∩ I}.
We thus only show the reverse.

Let G ⊂ Θ be an arbitrary open set and F ⊂ Y an arbitrary closed set. Let
furthermore x ∈ Ω such that ψ(x, θ) ∈ F for all θ ∈ G ∩ I. We have to show
that ψ(x, θ̃) ∈ F for all θ̃ ∈ G but θ̃ /∈ I.

Thus, let θ̃ ∈ G \ I. Since I is a dense set in Θ, there exists a sequence
(θn)n∈N ∈ Θ∩I, such that θn → θ̃ and since G is an open set in Θ and θ̃ ∈ G, we
can conclude that for m ∈ N large enough, θn ∈ G for all n ≥ m. Furthermore,
by continuity at θ, it holds that ψ(x, θn) → ψ(x, θ̃) and since θn ∈ G ∩ I for all
n large enough, ψ(x, θn) ∈ F by assumption. Eventually, since F is a closed set,
ψ(x, θ̃) ∈ F which proves the proposition.

Corollary C.3 (Separability of continuous functions). Let Θ and Y be
metric spaces, Θ be a separable space, and let the stochastic process ψ(x, θ) be
almost surely continuous. Then, ψ is separable.

Proof. Since ψ(x, θ) is continuous for all x ∈ Ω \ N for some N ⊂ Ω with
P(N) = 0. We get from Proposition C.2 that the sets (98) and (99) coincide for
all x ∈ Ω \N , i.e. they differ only by a subset of N .
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