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Abstract: Shape constrained estimation in discrete settings has received
increasing attention in statistics. Among the most important shape con-
strained models is multiple monotonicity, including k-monotonicity, for a
given integer k ∈ [1,∞), and complete monotonicity. Multiple monotonicity
provides a nice generalization of monotonicity and convexity and has been
successfully used in applications related to estimation of species richness.
Although fully nonparametric, it is of great interest to determine some
of the well-known parametric distributions which belong to this model.
Among the most important examples are the family of Poisson distribu-
tions and mixtures thereof. In Giguelay (2017) k-monotonicity of Poisson
distributions was connected to the roots of a certain polynomial, but a
typographical error occurred while writing its expression. In this note, we
correct that typographical error and give a detailed proof that a Poisson
distribution with rate λ ∈ [0,∞) is k-monotone if and only if λ ≤ λk,
where λk is the smallest zero of the k-th degree Laguerre polynomial
Lk(x) =

∑k
j=0(−1)j

(k
j

)
xj/j!, x ≥ 0. This result yields the sufficient con-

dition that a mixture of Poisson distributions is k-monotone if the support
of the mixing distribution is included in [0, λk]. Furthermore, we show that
the only complete monotone Poisson distribution is the Dirac distribution
at 0.
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1. Background and motivation

Let p be a given function defined on N. The r-th differential operator Δ(r) is
defined as follows: Δ(0)p(i) = p(i) and Δ(r)p(i) = ΔΔ(r−1)p(i) for all i ∈ N,
with Δ the usual difference operator. Thus, Δ(r) is recursively defined with Δ(0)

being the identity. For example, Δ(1)p(i) = p(i+ 1)− p(i) gives the slopes of p,
whereas Δ(2)p(i) = p(i + 2) + p(i) − 2p(i + 1) measures its curvature at i ∈ N.
Furthermore, it can be easily shown that

(−1)rΔ(r)p(i) =

r∑
j=0

(−1)j
(
r

j

)
p(i+ j)

for all r, i ∈ N. For a given integer k ≥ 1 p is said to be k-monotone if
(−1)kΔ(k)p(i) ≥ 0 for all i ∈ N. Therefore, k-monotonicity generalizes mono-
tonicity (k = 1) and convexity (k = 2).

Research work on k-monotone sequences can be traced back to the paper of
Knopp (1925). From the definition of k-monotonicity, it is clear that this prop-
erty is preserved under an arbitrary linear combination with positive coefficients.
In Lefèvre and Loisel (2013) it is shown that p is a k-monotone probability mass
function (pmf) if and only if there exists a sequence of probabilities (πk

j )j∈N such
that p can be written as

p(i) =
∑
j≥0

πk
jQ

k
j (i) (1.1)

where Qk
j is the finitely supported k-monotone spline given by

Qk
j (i) =

(
j−i+k−1

k−1

)
(
j+k
k

) I0≤i≤j , (1.2)

see the proof of their Proposition 2.3. Above, the notation I is used for the indi-
cator function. Thus, k-monotonicity defines a mixture model, and estimation
of an unknown pmf p in this class is then equivalent to estimation of the mix-
ing sequence (πk

j )j∈N. Other interesting results including alternative stochastic
representations can be found in Lefèvre and Loisel (2013). Given n independent
random variables X1, . . . , Xn assumed to be i.i.d. from an unknown k-monotone
pmf p, Giguelay (2017) considered unconstrained and constrained least squares
estimation. The resulting least square estimators (LSE) are found to have a
convergence rate of order

√
n. Although no limit distribution was derived, this

gives a nice generalization for the rate of convergence of the Gnenander esti-
mator of Jankowski and Wellner (2009) and the convex least squares estimator
of Durot et al. (2013). See also Balabdaoui et al. (2017). According to the nu-
merical results obtained by Giguelay (2017), it is more advantageous to fit the
k-monotone LSEs than the empirical estimator even for moderate sample sizes
n, provided that the model is well-specified. Note that k-monotone pmfs with
large values of k exhibit a deeper hollow than those with smaller values. For an
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Fig 1. Plots of the splines Qk
10 for k ∈ {2, 6, 10, 40}.

illustration of this fact see Figure 1 where plots of the k-monotone spline Qk
10

are shown for different values of k. The same feature can be observed in the
plots of the probability mass functions of the k-monotone Poisson distributions
for k ∈ {2, 4, 6, 8, 10}; see Figure 3.

Extending the work of Durot et al. (2015), Giguelay and Huet (2018) showed
that k-monotone estimation can be applied to estimating species richness; i.e.,
the total (unknown) number of species of a given population. If p is the pmf of
abundances, then assuming that p is k-monotone comes with the interpretation
that πk

j in the mixture model (1.1) is the probability that a species belongs to
the j-th sub-population whose abundance is distributed according to the pmf
Qk

j . Since Qk
0 = δ0, the Dirac at 0, we necessarily have πk

0 = 0 since πk
0 is then

the probability that a species belongs to the sub-population whose individuals
cannot be observed!

Chee and Wang (2016) also considered an estimation approach based on k-
monotonicity. Their method differs however in that they considered mixtures of
the k-monotone splines sθ(i) = (θ− i)k−1

+ /
∑

j≤θ j
k−1, i ∈ N, θ ∈ [1,∞) instead

of Qk
j , j ∈ N. Also, the authors considered maximum likelihood instead of least

squares estimation. In applications related to species richness, the authors found
that their method gives better results than those obtained with mixtures of
Poisson distributions, a model that has become popular for estimation of species
richness since the work of Norris and Pollock (1998). Interestingly, it can be
shown that if a mixture of Poisson distributions has a mixing distribution with
a restricted support then this mixture is k-monotone; see Corollary 2.7 below.
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We would like to mention that for a density f with respect to Lebesgue mea-
sure which is defined on [0,∞), k-monotonicity can be also defined in terms of
higher derivatives: (−1)k−2f (k−2) has to be non-negative and convex on [0,∞).
Characterization of k-monotonicity through scale mixtures of Beta(1, k) goes
back to Williamson (1956). See also Fejér (1936), Feller (1939), Lefèvre and
Loisel (2013), Balabdaoui and Wellner (2007) and Balabdaoui and Wellner
(2010) where estimation via maximum likelihood and least squares methods
was considered.

The other multiple monotonicity model is that of complete monotonicity. As
k → ∞ the classes of k-monotone pmfs converge, in the sense of intersection, to
the class of completely monotone of pmfs, formally, p defined on N is completely
monotone if it is k-monotone for all k ≥ 1. It has been established in Steutel
(1969) that p is a completely monotone pmf on N if and only if it is a mixture
of geometric distributions. In the recent work of Balabdaoui and de Fournas-
Labrosse (2019) nonparametric least squares estimation in this class was con-
sidered. There, it was shown that the complete monotone LSE converges at the
rate

√
n, to a limit distribution which is characterized as the unique solution of

fully described limiting quadratic criterion.

When considering a nonparametric class of distributions such as the multiple
monotone class, it is of much interest to identify some of the well-known para-
metric models which are elements thereof. This can be very helpful when looking
for concrete examples in simulation settings. This also gives reference distribu-
tions representing the associated model. In the log-concave model, it is known
that Binomial, Poisson, Skellam (convolution of two Poisson distributions) and
geometric distributions are all log-concave on their respective supports, with-
out any restriction on their parameters. As k gets larger the constraint of k-
monotonicity becomes much more difficult to check. As opposed to log-concavity
of a pmf p where only the sign of Δ(2) log p(i) for i in the support of p needs to be
determined, it follows from Property 2 of Giguelay (2017) that k-monotonicity of
p actually implies that the k conditions (−1)rΔ(r)p(i) ≥ 0, r = 1, . . . , k should
be satisfied for all i ∈ N. Obviously, the splines Qk

j , j ∈ N which form the basis
of the class of k-monotone pmfs are themselves k-monotone. However, they are
not as meaningful as Poisson distributions and their mixtures. In Giguelay and
Huet (2018), the problem of testing k-monotonicity was considered with the goal
of estimating the parameter k based on a random sample from a given multi-
ple monotone pmf. To evaluate the power of these nested testing procedures a
simulation study was designed using the Poisson distribution as the truth. This
necessitates knowing the range of the rate λ of the Poisson distribution such
that the latter is k-monotone but not (k+1)-monotone. Indeed, if we write Mk

the class of k-monotone pmfs, then the procedures in Giguelay and Huet (2018)
are designed for testing

Hk
0 : p ∈ Mk+1 versus Hk

1 : p ∈ Mk \Mk+1.

It can be easily shown that a Poisson pmf is 1-monotone; i.e., monotone non-
increasing, if and only if its rate parameter belongs to [0, 1]. With some addi-
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tional effort, one can show that if the rate belongs to [0, 2−
√
2], then the corre-

sponding Poisson distribution is 2-monotone; i.e., convex (and non-increasing).
Our first goal in this paper is to give a precise characterization of k-monotonicity
of such an important discrete distribution, thereby correcting the typographical
error occurring in the condition given in Property 8 of Giguelay (2017). For the
interested reader, we draw attention to the fact that values of the roots given
by Giguelay (2017) in page 14 are correct, but they are actually not the roots of
the polynomial considered in Property 8. Rather, they are the roots of certain
Laguerre polynomials. The second main goal of this paper is to make the link
between the roots of these polynomials and the range of the rate parameter of
a k-monotone Poisson distribution.

The paper is organized as follows. In the next section we recall the k-monoto-
nicity condition for the Poisson model and then make the connection between
this property and the (α, k)-Laguerre polynomials where α ∈ N and k ∈ N\{0}.
Our main result given in Proposition 2.6 shows that a necessary and sufficient
condition for k-monotonicity of a Poisson distribution with rate λ is that λ ≤ λk

with λk the smallest zero of the (0, k)-Laguerre polynomial. A byproduct of
this characterization is a sufficient condition of k-monotonicity of a mixture of
Poisson distributions. Using monotonicity of λk in k, we show that the result
further implies that the sole complete monotone Poisson distribution is the Dirac
at 0. In Section 3 we gather some concluding remarks and remaining questions.
A short appendix is added for an intermediate result and a proof.

2. Characterization of k-monotonicity of Poisson distribution

Let λ ∈ [0,∞) and P(λ) denote the Poisson distribution with rate λ. For λ = 0,
P(λ) coincides with δ0, the Dirac distribution at 0. Let pλ denote the probability
mass function of P(λ); i.e., for i ∈ N

pλ(i) =
λie−λ

i!
.

Thus, saying that pλ is k-monotone is equivalent to the statement that
(−1)kΔ(k)pλ(i) ≥ 0 for all i ∈ N, with Δ(k) is the k-th differential operator
already defined above. In other words, the parameter λ needs to satisfy

k∑
j=0

(−1)j
(
k

j

)
λi+j

(i+ j)!
≥ 0 (2.3)

for all i ∈ N.

2.1. Link to Laguerre polynomials

We now make the connection between k-monotonicity of P(λ) and certain La-
guerre polynomials. Before doing so we would like to first recall their definition.



Multiple monotonicity of Poisson 1749

Given a real number α ∈ (−1,∞) and an integer k ≥ 1, consider the ordinary
differential equation

xy′′(x) + (α+ 1− x)y′(x) + ky(x) = 0,

also referred to as the Laguerre’s equation. Its polynomial solution is the well-

known generalized (α, k)-Laguerre polynomial, L
(α)
k , given by

L
(α)
k (x) =

k∑
j=0

(−1)j
(
k + α

k − j

)
xj

j!

where (
k + α

k − j

)
=

(k + α)(k + α− 1) . . . (α+ j + 1)

(k − j)!

is the generalized binomial coefficient. It is known that L
(α)
k admits k simple

zeros, which all belong to the oscillatory region (0, 4k+2α+2), see for example

Gatteschi (2002). Several properties of the zeros of L
(α)
k have been extensively

studied in the literature. This includes lower and upper bounds, asymptotic
behavior when k → ∞ and α is fixed, monotonicity in certain functions of α
and Stieltjes interlacing, to mention only a few. Investigation of these properties
and related theorems can be found for example in Gatteschi (2002), Krasikov
(2003), Natalini and Palumbo (2003), Dimitrov and Rafaeli (2009) and Driver
et al. (2011). For our purpose, we will mainly need three results which we will

present next. In the sequel, λ
(α)
k,1 < . . . < λ

(α)
k,k denote the k simple zeros of L

(α)
k ,

rearranged in increasing order. The following theorem is due to Natalini and
Palumbo (2003).

Theorem 2.1. Natalini and Palumbo (2003)
For any integer k ≥ 1 and r ∈ {1, . . . , k}, the function

α �→
λ
(α)
k,r√

α+ 2k + 1

is increasing as α increases in (−1,∞).

As already noted by Natalini and Palumbo (2003) Theorem 2.1 implies that

λ
(α)
k,r increases in α. This property will be used in the proof of Proposition 2.6

below. For illustration, we have plotted in Figure 2 the (α, 3)- Laguerre poly-

nomials, L
(α)
3 , for α ∈ {0, 2, 4, 6}. It can be seen from the plots that each of the

three roots of L
(α)
3 increases in α.

The second crucial result on a remarkable interlacing property of zeros of
shifted Laguerre polynomials is due to Driver and Jordaan (2007). The complete
version of their result can be found in their Theorem 2.3. For more results
on interlacing properties of zeros of generalized Laguerre and other orthogonal
polynomials we refer to Driver (2009), Driver and Jordaan (2011), Driver (2012)
and the references therein.
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Fig 2. Plots of the (α, 3)-Laguerre polynomials for α ∈ {0, 2, 4, 6}.

Theorem 2.2. Driver and Jordaan (2007)

Fix α > −1 and k ≥ 1 an integer. If λ
(α)
k,r , r = 1, . . . , k are the k zeros of the

Laguerre polynomial L
(α)
k then

0 < λ
(α)
k,1 < λ

(α+1)
k,1 < λ

(α)
k,2 < λ

(α+1)
k,2 < . . . < λ

(α)
k,k−1 < λ

(α+1)
k,k−1 < λ

(α)
k,k < λ

(α+1)
k,k .

We illustrate this important result in Table 1 and 2 where it can be seen from

the pattern exhibited by the boxes and circles how the zeros of L
(i)
4 and L

(i)
5 do

interlace for i ∈ {0, 1, 2, 3, 4, 5, 6}.
The third result we need focuses on the special case α = 0, and the smallest

root of L
(0)
k .

Proposition 2.3. The sequence (λ
(0)
k,1)k≥1 is decreasing.

This property is well known and is a special case of a more general decreas-

ing monotonicity property of the zeros of Laguerre polynomials L
(α)
k when k

increases and α is held fixed. See for example the statement in Driver and
Jordaan (2007) on pages 615-616 in the Introduction, where n can be taken

here to be k and the polynomial pn to be L
(0
k , with the corresponding weight

w(x) = e−x. Showing this property is not difficult as it only uses induction and
some well-known recursive relationships satisfied by Laguerre polynomials. For
completeness we give a proof of Proposition 2.3 in the appendix. Now we shall
make the link between k-monotonicity of P(λ) and the generalized Laguerre
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Table 1

Table illustrating the interlacing property of the zeros of the Laguerre polynomials L
(i)
k for

k = 4 and i ∈ {0, 1, 2, 3, 4, 5, 6}. The zeros in bold are the smallest and largest in this table.

Along the boxes and circles, it can be seen that λ
(i)
4,r > λ

(i+1)
4,r−1 for all r = 2, 3, 4 and

i = 0, 1, 2, 3, 4, 5, 6. Also, the boxes and circles interlace.

r 1 2 3 4

i = 0 0.322 1.745 4.536 9.395

i = 1 0.743 2.571 5.731 10.953

i = 2 1.226 3.412 6.902 12.458

i = 3 1.755 4.265 8.057 13.920

i = 4 2.319 5.128 9.200 15.351

i = 5 2.910 6.000 10.334 16.755

i = 6 3.525 6.878 11.459 18.136

polynomials more explicit. Recall that P(λ) is k-monotone if and only if the
inequality in (2.3) is satisfied for all i ∈ N. Since(

k

j

)
1

(i+ j)!
=

k!

(k − j)!j!(i+ j)!

=
k!

(k + i)!

(k + i)!

(k − j)!(i+ j)!

1

j!
=

k!

(k + i)!

(
k + i

k − j

)
1

j!

we have the following proposition.

Proposition 2.4. For a given integer k ≥ 1, P(λ) is k-monotone if and only
if λ satisfies the inequalities

L
(i)
k (λ) ≥ 0

for all i ∈ N.

2.2. Characterization of k-monotonicity of Poisson distributions

The proof of Proposition 2.4 is immediate as the result follows directly from

the definition of L
(α)
k . Since L

(α)
k (0) > 0 and all the zeros λ

(α)
k,r , r = 1, . . . , k are
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Table 2

Table illustrating the interlacing property of the zeros of the Laguerre polynomials L
(i)
k for

k = 5 and i ∈ {0, 1, 2, 3, 4, 5, 6}. The zeros in bold are the smallest and largest in this table.

Along the boxes and circles, it can be seen that λ
(i)
5,r > λ

(i+1)
5,r−1 for all r = 2, 3, 4, 5 and

i = 0, 1, 2, 3, 4, 5, 6. Also, the boxes and circles interlace.

r 1 2 3 4 5

i = 0 0.263 1.413 3.596 7.085 12.640

i = 1 0.617 2.112 4.610 8.399 14.260

i = 2 1.031 2.837 5.620 9.682 15.828

i = 3 1.490 3.581 6.626 10.944 17.356

i = 4 1.985 4.341 7.631 12.188 18.852

i = 5 2.510 5.115 8.635 13.417 20.320

i = 6 3.059 5.901 9.638 14.634 21.765

simple, L
(α)
k,r has to be non-negative on [0, λ

(α)
k,1 ], non-positive on [λ

(α)
k,1 , λ

(α)
k,2 ], and

so on as the polynomial switches sign to the right of every zero. This yields the
following corollary.

Corollary 2.5. For a given integer k ≥ 1, P(λ) is k-monotone if and only if
λ ∈ R+ with

R+ =

⎧⎨
⎩

⋂
i∈N

{
[0, λ

(i)
k,1] ∪ . . . ∪ [λ

(i)
k,k,∞)

}
, if k is even,⋂

i∈N

{
[0, λ

(i)
k,1] ∪ . . . ∪ [λ

(i)
k,k−1, λ

(i)
k,k]

}
, if k is odd.

To guarantee a consistent notation in the corollary above we have used the

convention λ
(i)
k,k−1 = 0 if k = 1. In the sequel we will write λk instead of λ

(0)
k,1.

The following proposition characterizes k-monotonicity of P(λ), which is one of
our main goals in this work.

Proposition 2.6. For a given integer k ≥ 1, P(λ) is k-monotone if and only
if λ ∈ [0, λk]. Furthermore, k = max{� ≥ 1 : P(λ) is �-monotone} if and only if
λ ∈ (λk+1, λk].

In Table 3 we give the values of λk for k ∈ {2, . . . , 10}. For k > 3, the value
is preceded by “≈” to indicate that it is only an approximation. The latter was
found using the R-function “uniroot”. Figure 3 shows the plots of the probability
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Fig 3. Plots of the probability mass functions of P(λk) for k ∈ {2, 4, 6, 8, 10}.

Table 3

The values of the first root λk for k ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}.

k 2 3 4 5 6 7 8 9 10

λk 2−
√
2 ≈ 0.415 ≈ 0.322 ≈ 0.264 ≈ 0.222 0.193 0.170 0.152 0.137

mass functions of P(λk) for k ∈ {2, 4, 6, 8, 10}. It follows from Proposition 2.6
that P(λk) is k- but not (k + 1)-monotone. The shapes of the pmfs of P(λk)
exhibit deeper hollows as k grows. Note also that their value at 0, e−λk , should
increasingly converge to 1 the value taken by the Dirac at 0, the completely
monotone limit of P(λk), as k → ∞.

Proof of Proposition 2.6. Let k be an even positive integer. To have a more
readable proof, let us write

I
(i)
k,0 =: [0, λ

(i)
k,1], I

(i)
k,r =: [λ

(i)
k,2r, λ

(i)
k,2r+1], for r = 1, . . . ,

k

2
− 1

and I
(i)
k,k/2 =: [λ

(i)
k,k,∞).

Then, using the fact that intersection is distributive over union, the region R+

can also be re-written as

R+ =
⋃

r(i)∈{0,...,k/2}
i∈N

{⋂
i∈N

I
(i)
k,r(i)

}
.
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Since {0, . . . , k/2} is finite, there must exist an r ∈ {0, . . . , k/2} such that the
set Sr =: {i ∈ N : r(i) = r} is infinite. Theorem 2.1 implies that the sequences

(λ
(i)
k,1)i∈N, . . . , (λ

(i)
k,k)i∈N are all increasing, which means that

lim
i→∞

λ
(i)
k,1 = lim

i→∞
λ
(i)
k,2 = . . . = lim

i→∞
λ
(i)
k,k = ∞.

Thus, it follows that

r �= 0 ⇒
⋂
i∈Sr

I
(i)
k,r(i) =

⋂
i∈Sr

I
(i)
k,r = ∅.

This allows us to conclude that
⋂

i∈N
I
(i)
k,r(i) = ∅ whenever Sr is infinite for some

r > 0. We consider now the case where S1, . . . , Sk/2 are all finite, which implies
that S0 =: {i ∈ N : r(i) = 0} must be infinite. We will now show that

S0 �= N ⇒
{ ⋂

i∈S0

I
(i)
k,0

} ⋂ { ⋂
j∈Sr

1≤r≤k/2

I
(j)
k,r

}
= ∅. (2.4)

If S0 �= N, then there exists necessarily integers i ≥ 1, 0 ≤ j < i and r ∈
{1, . . . , k/2} such that both I

(i)
k,0 and I

(j)
k,r are sets belonging to the intersection

on the right side of (2.4). Now, from both Theorem 2.1 and Theorem 2.2 it
follows that

λ
(j)
k,2r > λ

(j+1)
k,2r−1 > λ

(j+2)
k,2r−2 > . . . > λ

(i)
k,1. (2.5)

Since I
(i)
k,0∩I

(j)
k,r = [0, λ

(i)
k,1]∩ [λ

(j)
k,2r, λ

(j)
k,2r+1] if r ≤ k/2−1 and [0, λ

(i)
k,1]∩ [λ

(j)
k,k,∞)

if r = k/2, the inequalities in (2.5) imply that I
(i)
k,0∩I

(j)
k,r = ∅. Hence, the intersec-

tion on the right side of the display in (2.4) has to be empty. We conclude that
the only element remaining in the union defining R+ is the one corresponding
to the case S0 = N, that is,

R+ =
⋂
i∈N

I
(i)
k,0 = [0, λ

(0)
k,1] = [0, λk].

The same reasoning applies to the case when k is odd.
To show the second part of the proposition, we know that P(λ) is k-monotone

but not (k + 1)-monotone if and only if λ ≤ λk and λ > λk+1. Also, by Propo-
sition 2.3, we know that λk+1 < λk. Thus, the latter statement is equivalent to
λ ∈ (λk+1, λk], which completes the proof.

Proposition 2.6 implies the two following results.

Corollary 2.7. Let F be some distribution function supported on [0,∞). Then,
the pmf of the mixture of Poisson distributions with mixing distribution F given
by

p(i) =

∫ ∞

0

e−λλ
i

i!
dF (λ), i ∈ N

is k-monotone if the support of F is included in [0, λk].
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The proof of this corollary is immediate, and hence is omitted. Note that the
condition is only sufficient. More discussion about this result can be found in
Section 3.

Corollary 2.8. A Poisson distribution P(λ) is completely monotone if and only
if it is equal to the Dirac distribution at 0; i.e., λ = 0.

Proof. It follows from Theorem A.1 (see Appendix) that

j20,1
2(2k + 1)

≤ λk ≤ 3

2k + 1
. (2.6)

with j0,1 ≈ 2.40 is the first zero of the Bessel function of the first kind, J0.
Now, Proposition 2.6 and the inequality in (2.6) imply that P(λ) is completely
monotone if λ ≤ 3/(2k + 1) for all k ∈ N, that is, if λ = 0. This finishes the
proof.

3. Some conclusions

In this article we give a necessary and sufficient on λ for P(λ) to be k-monotone
for a given integer k ≥ 1 and a formal proof thereof. It turned out that k-
monotonicity of this distribution holds if and only if λ is smaller or equal than

λk, the first root of the Laguerre polynomial L
(0)
k . The values reported for k ∈

{2, 3, 4, 5} in p.14 of Giguelay (2017) and k ∈ {2, 3, . . . , 10} in Table 1 on p. 99
of Giguelay and Huet (2018) match exactly with the values of λk given in our
Table 3. However, the theoretical statement of Property 8 has a typographical
error because it involves the first root of a polynomial that is different from

L
(0)
k . The main result of Proposition 2.6 shows also that λ ∈ (λk+1, λk] is the

characterizing condition for P(λ) to be exactly k-monotone; i.e., k- but not
(k + 1)-monotone. This condition gives a full theoretical justification for the
choice of λ in the simulation study in Giguelay and Huet (2018). We would like
to note that the result of Proposition 2.6 is in a perfect agreement with the
intuition: as k grows the value of the k-monotone pmf at 0 should increase, and
hence the rate λ should decrease with k. It is also worthy to note that P(λ) is
not k-monotone for any k ≥ 1 if λ ∈ (1,∞). For that range, the Poisson model
is log-concave with mode location different from 0. Thus, the adaptive shape of
the Poisson distributions and related models can be used differently depending
on the statistical application.

Chee and Wang (2016) and Giguelay and Huet (2018) both considered k-
monotone pmfs to model the distribution of species abundances with the aim
of estimating species richness of a given population. Their approaches to k-
monotone estimation are different since Chee and Wang (2016) considered max-
imum likelihood whereas the method implemented by Giguelay (2017) was based
on least squares estimation. Also, Chee and Wang (2016) considered the cone
generated by the splines sθ(i) = (θ− i)k−1

+ /
∑

j≤θ j
k−1 for i ∈ N, θ ∈ [1,∞), in-

stead of the family of splines (Qk
j )j≥0 given in (1.2), which is known to generate
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the whole k-monotone class of pmfs. If it is easy to show that sθ is k-monotone
for any θ ∈ [1,∞), it is less clear whether these splines also generate all k-
monotone pmfs.

Chee and Wang (2016) showed that their k-monotone maximum likelihood
estimation improves upon the one based on mixture of Poisson distributions un-
der a variety of scenarios; see their Table 3. According to Corollary 2.7 mixtures
of Poisson distributions are actually part of the k-monotone model provided
that the range of the rate is confined to the interval [0, λk]. This condition is
only sufficient. In fact, in the simplest situation of a mixture of two Poisson dis-
tributions with probability mass function πμi

1e
−μ1/i! + (1−π)μi

2e
−μ2/i!, i ∈ N,

we can check that this pmf is monotone non-increasing (1-monotone) if π = 1/2,
μ1 = 0.5 and μ2 = 2. In this example, the support of the mixing distribution is
{0.5, 2} and hence it is not included in [0, λ1] = [0, 1]. Finding a characterization
for k-monotonicity of mixtures of Poisson distributions, as done here for Poisson
distributions, is far from being obvious and hence the question remains open.
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Appendix A: Appendix

Proof of Proposition 2.3. In the following we use again the notation λk for λ
(0)
k,1

and also write Lk for L
(0)
k . We will use induction to show that λk+1 < λk for

all k ≥ 1. We have L1(λ) = 1 − λ and L2(λ) = 1 − 2λ + λ2/2 with λ1 = 1 >
λ2 = 2 −

√
2. Suppose now that λk−1 > λk for all k ≥ 3. Recall the following

recursive well-known identity

Lk+1(λ) =
(2k + 1− λ)Lk(λ)− kLk−1(λ)

k + 1

for all λ ∈ [0,∞). Thus, by definition of λk we have that

Lk+1(λk) = − k

k + 1
Lk−1(λk) < 0

where the negative sign is a consequence of the fact that it is assumed that
λk−1 > λk, which means that Lk−1 ≥ 0 on [0, λk]. As Lk+1 ≥ 0 on [0, λk+1]
the inequality Lk+1(λk) < 0 implies that we necessarily have λk > λk+1. This
completes the proof.

The following theorem is due to Gatteschi (2002).
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Theorem A.1. For any positive integer k and α ∈ (−1,∞) it holds true that

(jα,1)
2

2(2k + α+ 1)
≤ λ

(α)
k,1 ≤ (α+ 1)(α+ 3)

2k + α+ 1

where jα,1 is the first zero of the Bessel function of the first kind Jα.
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