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Abstract: We consider the problem of variable selection in high-dimen-
sional statistical models where the goal is to report a set of variables, out of
many predictors X1, . . . , Xp, that are relevant to a response of interest. For
linear high-dimensional model, where the number of parameters exceeds the
number of samples (p > n), we propose a procedure for variables selection
and prove that it controls the directional false discovery rate (FDR) below
a pre-assigned significance level q ∈ [0, 1]. We further analyze the statis-
tical power of our framework and show that for designs with subgaussian
rows and a common precision matrix Ω ∈ R

p×p, if the minimum nonzero
parameter θmin satisfies

√
nθmin − σ

√
2(max

i∈[p]
Ωii) log

(
2p

qs0

)
→ ∞ ,

then this procedure achieves asymptotic power one.
Our framework is built upon the debiasing approach and assumes the

standard condition s0 = o(
√
n/(log p)2), where s0 indicates the number

of true positives among the p features. Notably, this framework achieves
exact directional FDR control without any assumption on the amplitude of
unknown regression parameters, and does not require any knowledge of the
distribution of covariates or the noise level. We test our method in synthetic
and real data experiments to assess its performance and to corroborate our
theoretical results.
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1. Introduction

Living in the era of data deluge, modern datasets are often very fine-grained,
including information on a large number of potential explanatory variables. For a
given response of interest, we know a priori that a large portion of these variables
are irrelevant and would like to select a set of predictors that influence the
response. For example, in genome-wide association studies (GWAS), we collect
single nucleotide polymorphism (SNP) information across a large number of loci
and then aim at finding loci that are related to the trait, while being resilient
to false associations.
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The focus of this paper is on high-dimensional regression models where the
number of parameters exceeds the sample size. Since such models are over-
parameterized, they are prone to overfitting. In addition, high-dimensionality
brings noise accumulation and spurious correlations between response and un-
related features, which may lead to wrong statistical inference and false predic-
tions. Model selection is therefore a crucial task in analyzing high-dimensional
models. For a successful model selection, we need to assure that most of the
selected predictors are indeed relevant. This not only leads to noise reduction
and enhances predictions but also offers reproducibility.

To be concrete in using the term “reproducibility”, we characterize it for
statistical inference problem by using the false discovery rate (FDR) criterion,
which is the expected fraction of discoveries that are false positives. The notion
of FDR has been proposed by the groundbreaking work [BH95] and nowadays
is the criterion of choice for statistical inference in large scale hypothesis testing
problem. In their work, Benjamini and Hochberg developed a procedure to con-
trol FDR under a pre-assigned significance level. It has been shown theoretically
that BH procedure controls FDR in some special cases such as independence or
positive dependence of tests [BH95, BY01]. Since initially proposed, there have
been various modifications of BH [BY01, SRC+15, FHG12, Wu08, XCML11]
and its applications in different domains [RYB03, GLN02].

Importantly, BH procedure (and its modifications) assumes that p-values are
given as input for all the hypothesis tests. The p-values are often calculated using
classical formula obtained by using large-sample theory which are theoretically
justified only for the classical setting of fixed dimension p and diverging sample
size n [VdV00]. For example, [LS+14] considers the setting wherem i.i.d random
samples of (X1, . . . , Xp) are given and p-values are estimated from the Student’s
t-test statistic. The authors propose a bootstrap calibration method to use with
the BH procedure and show that, under weak dependence among observations,
it can control the false discovery rate when the total number of observations
n = mp is bigger than p(log p)c. However, for high-dimensional models obtaining
valid p-values is highly nontrivial. This is in part due to the fact that fitting
high-dimensional model often requires the use of nonlinear and non-explicit
estimation procedures and characterizing the distribution of such estimators
is extremely challenging. In the past couple years, there has been a surge of
interest in constructing frequentist p-values and confidence intervals for high-
dimensional models. A common approach is the fundamental idea of debiasing
which was proposed in a series of work [JM14b, ZZ14, JM14a, VdGBRD14,
JM13b, BCH14]. In this approach, starting from a regularized estimator one
first constructs a debiased estimator and then makes inference based on the
asymptotic normality of low-dimensional functionals of the debiased estimator.
This approach also provides asymptotically valid p-values for the null hypotheses
of the form H0 : θ0,i = 0, where θ0,i is a fixed single model parameter. However,
these p-values are correlated and the BH procedure is not guaranteed to control
FDR in this case. The modification of BH for general dependency, that scales
the significance level by 1/(log p) factor [BY01], also turns out to be overly
conservative and leads to a low power. In [BCC+18], the authors review the
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methods for constructing p-values in the high dimensional setting, their behavior
and limitations, and describe a general set of assumptions under which these
p-values can be used for inference tasks, such as finding confidence intervals and
controlling FDR. In particular, [BCC+18] extends the result of [LS+14] to the
so-called “Many Approximation Means (MAM)” framework and provide a set of
conditions on the dependence among p-values such that the Benjamini-Hochberg
procedure has the FDR control property.

In this paper, we build upon the debiasing approach and propose a procedure
for model selection under the high-dimensional regime, which is guaranteed to
have FDR under a pre-assigned level α ∈ [0, 1]. We call our procedure FCD (for
“FDR Control via Debiasing”) and prove that it controls even a stronger crite-
rion, namely directional FDR. We further analyze its statistical power (without
imposing any assumption on the amplitude of the regression parameters or the
noise level).

Controlling FDR in regression model has been a long standing problem. It
was just a couple years ago that [BC15] proposed the ingenious idea of knockoff
filter. In a nutshell, this approach constructs a set of “knockoff” variables that
are irrelevant to response (conditional on the original covariates) but whose
structure mirrors that of the original covariates. The knockoff variables then
behave as the controls for original covariates. This way, they bypass the need
of constructing p-values and directly select a model with the desired FDR. The
focus of [BC15] was on linear regression model with n > 2p. Later, [CFJL18]
extended the idea of knockoff filter to high-dimensional nonlinear models with
random designs, but assumes that the joint distribution of covariates is known.
Very recently, [FDLL17, BCS18] studied robustness of model-X knockoff to er-
rors in estimating the joint distribution of covariates. A salient feature of the
knockoff approach is that for n ≥ 2p, it controls FDR in finite sample setting
without requiring any assumption on the covariates. However, the extension
model-X knockoffs [CFJL18] requires the knowledge of the joint distribution of
covariates. Moreover, the knockoff approach does not provide valid p-values for
the hypotheses regarding the model parameters. By contrast, the FCD method
that we present in this paper controls FDR as long as s0 = o(

√
n/(log p)2),

without requiring the joint distribution of covariates. Furthermore, it comes
with the valid p-values for individual model parameters. However, the FDR
control is proved for the asymptotic regime where n → ∞.1

1.1. Problem formulation

Suppose we have recorded n i.i.d observational units (y1, x1), . . . , (yn, xn), with
yi ∈ R representing response variables and xi ∈ R

p indicating the vector of
explanatory variables on each sample, also referred to as features. We assume
the classical linear regression model where the observations obey the following

1A finite sample analysis of our method is possible but requires a more involved analysis
and is out of the scope of the present work.
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relation:

yi = 〈θ0, xi〉+ wi , (1)

Here, θ0 ∈ R
p is the unknown vector of coefficients. The symbol 〈·, ·〉 denotes

the standard inner product. Let y = (y1, . . . , yn)
T and let X ∈ R

n×p denote the
feature matrix that have xT

1 , . . . , x
T
n as rows. Then, writing the linear regression

model in matrix form, we obtain

y = Xθ0 + w , (2)

We assume that conditional on the design X, the noise variables wi are
independent with

E(wi|X) = 0 , E(w2
i |X) = σ2 , E

(
|wi|2+a

∣∣X) ≤ Cσ2+a , (3)

for some constants C > 0, a > 2.
We let S ⊆ {1, . . . , p} denote the set of truly relevant feature variables among

the many that have been recorded. This set corresponds to the support of θ0,
i.e.,

S ≡ supp(θ0) = {1 ≤ i ≤ p : θ0,i �= 0} . (4)

We let s0 = |S| be the size of support or in other words the number of true
positives.

In this paper, we propose a framework to select a set Ŝ of the feature vari-
ables, while controlling the directional false discovery rate (FDR) for the selected
variables. This criterion is intimately rated to type S errors (S stands for sign).
Type S error (a.k.a type III error) occurs when we say, with confidence, that a
comparison goes one way while it goes the other way [GT00]. For example, we
claim that θ1 > θ2, with confidence, while in fact θ1 < θ2. In other words, we
mistakenly make a claim on the sign (direction) of θ1−θ2. Gelman et. al. [GT00]
argue that type S error is a more relevant notion in many applications. Tukey
also conveys a similar message in [Tuk91] by arguing that the effects of A and
B, for any A and B, are always different (in some decimal precision) and hence
instead of questioning whether there is any difference in two effects, the valid
question should be about the direction in which effect of A differs from that of
B.

Motivated by this, we formally define directional FDR, denoted by FDRdir.
For a selected set Ŝ of the features along with estimates ŝignj ∈ {−1,+1} of the
sign of θ0,j , we define

FDRdir = E[FDPdir] , FDPdir =
|{j ∈ Ŝ : ŝignj �= sign(θ0,j)}|

max(|Ŝ|, 1)
, (5)

where we adopt the convention sign(0) = 0. In words, FDRdir is the expected
fraction of false discoveries among the selected ones, where a false discovery is
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measured with respect to type S and type I errors. For example, if ŝignj = +1,
while θ0,j = 0 (type I error) or θ0,j < 0 (type S error), it is considered as a false
discovery.

Recall that the classical FDR is defined as

FDR = E

[
|{j ∈ Ŝ : θ0,j �= 0}|

max(|Ŝ|, 1)

]
, (6)

that defines the false discoveries only with respect to type I error. Therefore, a
comparison of definitions (5) and (6) reveals that

FDRdir ≥ FDR , (7)

for any selected set Ŝ. As a result, proving that a framework controls FDRdir

automatically implies that it also controls FDR.
Likewise, we define the statistical power of a selected set Ŝ as

Power = E

[ |{j ∈ Ŝ : ŝignj = sign(θ0,j)}|
max(|S|, 1)

]
, (8)

i.e., for a true discovery not only the corresponding variable should be in fact
non-zero but we should also declare its sign correctly.

The directional FDR has been also studied by [BC16] and it is shown that
the knockoff filter also controls this metric as well as the FDR.

1.2. Our contributions and outline of the paper

Here, we provide a vignette of our contributions:

Controlling directional FDR In Section 2, we propose a method for select-
ing relevant variables using the debiasing approach. We use the acronym
FCD to call this method (standing for “FDR Control via Debiasing”). In
Section 3, we show that for design matrices with subgaussian rows, under
the standard condition s0 = o(

√
n/(log p)2), the FCD framework achieves

exact directional FDR control. (See Theorem 3.1 for a formal statement).
Characterizing the statistical power In Section 3.2, we characterize the

statistical power of the FCD method. In particular, for designs with sub-
gaussian rows and a common precision matrix Ω ∈ R

p×p, we show that if
the minimum nonzero coefficient, θmin satisfies

√
nθmin − σ

√
2(max

i∈[p]
Ωii) log

(
2p

qs0

)
→ ∞ ,

then FCD achieves asymptotic power one.
Recently, [FDLL17] has studied the power of model-X knockoff filter, pro-

vided that θmin

√
n

log p → ∞ and assuming a lower bound on the size of the



1218 A. Javanmard and H. Javadi

model selected by the knockoff procedure. Namely, if |Ŝ| ≥ cs0, for some
constant c ∈ (2(qs0)

−1, 1). Under such assumptions, it is shown that the
model-X knockoff approach achieves asymptotic power one. Other than
being restrictive, these assumptions are hard to verify and a sufficient
given condition is that the size of {j : |θ0j | 

√
s0(log p)/n} is at least

cs0, for some constant c ∈ (2(qs0)
−1, 1). This condition on the amplitude

of nonzero coefficients is much stronger that the one we need for FCD to
achieve power one.

Numerical validation We validate our approach on both synthetic and real
data in Sections 5 and 6 and compare its performance with the model-X
knockoff. As the simulations suggest, FCD method compares favorably to
the model free knockoff in a wide range of setups. We also compare the
statistical power of FCD with the theoretical characterization and show
that they are in good agreement.

Techniques. In our analysis of FDR, we use ideas from the debiasing ap-
proach [JM14b, ZZ14, JM14a, VdGBRD14, JM13b] together with some results
from [Liu13] regarding the order statistic of sum of Gaussian random variables
(See Lemma 6.1, 6.2 therein.) It is worth mentioning that [Liu13] developed such
results to use in the analysis of a method they proposed for Gaussian graphical
model and its FDR. This context is very different from the problem studied
in this paper and as expected the test statistics are also very different. In our
FCD approach, we construct the test statistics by debiasing the Lasso solution.
These test statistics have a Gaussian part and a bias term. In applying the re-
sults from [Liu13], we need to do a careful analysis of the bias term, and also
the errors in noise level estimation. In addition, by a careful analysis of the test
statistic and the data dependent threshold used in our procedure, we are able
to analyze the statistical power of our approach.

1.3. Further related work

There exists a copious theoretical literature developed on high-dimensional re-
gression and the Lasso. Most existing studies have focused on prediction error
[GR04], model selection properties [MB06, ZY06, Wai09, CP09], estimation con-
sistency [CT05, BRT09]. For exact support recovery, it was known early on that,
even in the classical setting of fixed p and diverging n, support of Lasso will be
different from S (support of true signal) unless the columns of X, with index in
S, are roughly orthogonal to the ones with index outside S [KF00]. This assump-
tion is formalized under the so-called ‘irrepresentability condition’. In a seminal
work, Zhao and Yu [ZY06] show that this condition also allows exact support
recovery in the high-dimensional setting (p  n). Independently, [MB06] stud-
ied model selection problem for random Gaussian designs, with applications
to learning Gaussian graphical models. These papers consider the setting of
s0 = O(nc), for some c < 1. Further, under a normalization of design such that
its columns have norm at most

√
n, they require the minimum nonzero ampli-

tude of the signal θmin = mini∈S θ0,i to satisfy θmin > c
√
s0/n. Later, [Wai09]
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improved these results for the case of random Gaussian designs and showed
that for a broad range of covariance matrices, the Lasso can recover the support
of a signal for which θmin > cσ

√
(log p)/n. The model selection problem was

also studied under the weaker, generalized irrepresentability condition, for the
Gauss-Lasso estimator [JM13a].

As an alternative to irrepresentability condition, [Lou08] proves the exact

model selection under an incoherence assumption of maxi �=j Σ̂ij = O(1/s0). This
assumption is however stronger than irrepresentability condition [vdGB09].

As discussed in the introduction, related to the model selection is the prob-
lem of hypothesis testing for high-dimensional regression. In [ZZ11, Büh12],
authors consider null hypotheses of form H0,i : θ0,i = 0 and propose methods

that achieve a given power 1 − β, if |θ0,i| > cβσ
√

s0(log p)/n. Later, [JM14b]
proposed a method for random Gaussian designs, with known covariance, under
the setting s/p → ε and n/p → δ, for constants ε, δ ∈ (0, 1). The proposed
method achieves a given power 1− β, conditional on that |θ0,i| > cβσ/

√
n. The

debiasing approach [ZZ14, JM14a, VdGBRD14] also has been proposed to test
H0,i in the high-dimensional setting, with s0 = o(

√
n/(log p)). In [JM14a], it

is shown that the debiasing based framework for testing H0,i achieves a given

power 1 − β, if θmin > cβσ
√

(log p)/n. Applicability of the debiasing approach
is extended to the setting of s0 = o(n/(log p)2), for random Gaussian designs,
using a ‘leave-one-out’ technique [JM18].

1.4. Notations

Here, we provide a summary of notations used throughout this paper. We use
[p] = {1, . . . , p} to refer to the first p integers. For a vector v, we denote its
coordinates by vi and let vS be the restriction of v to indices in set S. Further,
the term support of a vector indicates the nonzero coordinates of that vector,
i.e., supp(v) = {i ∈ [p] : vi �= 0}. We use I to denote the identity matrix and
for clarity we might also make its dimension explicit as in Id×d. For a matrix A,
we denote its maximum and minimum singular values by σmax(A) and σmin(A),
respectively. For a random vector x, we denote its subgaussian norm by ‖x‖ψ2

defined as:

‖X‖ψ2 ≡ sup
q≥1

q−1/2(E|X|q)1/q ,

and for a random vector X ∈ R
m, its subgaussian norm is defined as ‖X‖ψ2 =

supu∈Sm−1 ‖〈X,u〉‖ψ2 . We use φ(z) = e−z2/2/
√
2π to refer to the Gaussian

density and Φ(z) =
∫ z

−∞ φ(t)dt to denote the Gaussian cumulative distribution.
For two functions f(n) and g(n), with g(n) ≥ 0, we write f(n) = o(g(n)) if g(n)
grows much faster than f(n), i.e., f/g → 0. We also write f(n) = O(g(n)), if
there exists a positive constant C such that for all sufficiently large values of n,
|f(n)| ≤ C|g(n)|.
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2. FCD procedure: false discovery control via debiasing

In order to describe FCD framework, we first give an overview of debiasing
approach. To this end, we focus on the Lasso estimator [Tib96], given by

θ̂(y,X;λ) ≡ arg min
θ∈Rp

{
1

2n
‖y −Xθ‖22 + λ‖θ‖1

}
(9)

In case the optimization has more than one optimizer we select one of them
arbitrarily. We will often drop the arguments y,X, as they are clear from the
context. There is a vast literature on the properties of the Lasso estimator in the
high-dimensional regime (n < p), mainly through the lens of point estimation
and prediction. A major quantity that plays a key role in the estimation error is
the co-called Compatibility constant of the design matrix X. Let Σ̂ ≡ XTX/n be

the sample covariance matrix. In the high-dimensional setting, where n < p, Σ̂
is always singular, and this makes the estimation of θ0 challenging since for the
parameter family {θ = θ0+v}, with v in the null-space of Σ̂, we have Xθ = Xθ0
and hence we get the same response vector. A common assumption to cope with
this problem is requiring Σ̂ to be nonsingular for a restricted set of directions.

Definition 2.1. For a symmetric matrix Σ̂ ∈ R
p×p and a set S ⊆ [p], the

corresponding compatibility constant is defined as

φ2(Σ̂, S) ≡ min
θ∈Rp

{ |S|〈θ, Σ̂θ〉
‖θS‖21

: θ ∈ R
p, ‖θSc‖1 ≤ 3‖θS‖1

}
.

The matrix Σ̂ ∈ R
p× is said to satisfy the compatibility condition if φ(Σ̂, S) ≥ φ0.

Despite the great properties of Lasso in terms of point estimation and pre-
diction, it is biased due to the �1 penalty term. Indeed, bias is unavoidable in
high-dimensional setting (n < p) as one needs to produce a point estimate,
in p dimension, from the observed data in lower dimension, n. Furthermore,
characterizing the exact distribution of regularized estimator is in general not
tractable. To deal with these challenges, the debiasing approach aims at first
removing the bias of Lasso and producing an estimator that is amenable to
distributional characterization.

2.1. Debiasing lasso

A debiased estimator θ̂d takes the general simple form of

θ̂d = θ̂ +
1

n
MXT(y −Xθ̂) . (10)

Here, M is a ‘decorrelating’ matrix. There are various proposals for constructing
M ; see e.g. [ZZ14, JM14a, VdGBRD14]. In this paper we use the construction
introduced by [JM14a]. Here, we assume that the noise w is Gaussian and then
discuss the non-Gaussian case in Section 2.2.
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To set the stage to describe construction of M , note that by plugging in for
y = Xθ0 + w, we have

√
n(θ̂d − θ0) =

√
n(M Σ̂− I)(θ0 − θ̂) +

1√
n
MXTw , (11)

where Σ̂ ≡ (XTX)/n is the empirical covariance of the feature vectors. The first

term is the bias and is controlled by |M Σ̂− I|∞, with | · | denoting the entrywise
�∞ norm. The second term is the unbiased Gaussian noise whose covariance
works out at M Σ̂MT. The decorrelating matrix M is constructed via a convex
optimization that aims at reducing bias and variance of the coordinates of θ̂d

at the same time.
Construct M = (m1,m2, . . . ,mp)

T ∈ R
p×p by letting mi ∈ R

p be a solution
to the following convex program

minimize mTΣ̂m,

subject to ‖Σ̂m− ei‖∞ ≤ μ ,
(12)

with ei ∈ R
p being the i’th standard unit vector. If any of the above problems

is not feasible, we let M = Ip×p. Note that M is constructed solely based on X.
The choice of running parameter μ will be discussed in the sequel.

The following proposition proved in [JM14a] shows that the error of the debi-

ased estimator θ̂d can be decomposed as the sum of two ‘bias’ and ‘noise’ terms.
In addition, a high probability bound is established on the bias term ‖Δ‖∞,
which leverages on the properties of the optimization (12) and the estimation
error of the Lasso estimator. Note that the compatibility condition for the de-
sign matrix X is required for Lasso to achieve optimal estimation rate in high
dimension [BvdG11, vdGB09]. In [JM14a], there is also a version of the following
proposition stated for deterministic results, with the compatibility constant φ0

explicit in the bound (see Theorem 2.3 therein.) The next proposition concerns
the setting of random designs, which per se implies the compatibility condition.
Indeed, by employing a reduction principle established by [RZ11], if the popu-
lation covariance Σ has minimum singular value cmin > 0 and provided a large
enough sample size, namely n ≥ Cs0 log(p/s0), the sample covariance Σ̂ satisfies
the compatibility condition with constant φ0 =

√
cmin/2, with high probability.

Proposition 2.2. Consider the linear model (2), with gaussian noise, w ∼
N(0, σ2In×n), and let θ̂d be the debiased estimator given by Eq. (10), with μ =
a
√
(log p)/n. Then, we have the following decomposition:

√
n(θ̂d − θ0) = Z +Δ, Z|X ∼ N(0, σ2M Σ̂MT), Δ =

√
n(M Σ̂− I)(θ0 − θ̂).

(13)

Consider random design matrices with i.i.d rows and let Σ = E(x1x
T
1 ) be the

population level covariance. Suppose that σmin(Σ) ≥ cmin > 0 and σmax(Σ) <
cmax, for some constants cmin, cmax and maxi∈[p] Σii ≤ 1. Further, assume

that XΣ−1/2 has independent subgaussian rows with ‖Σ−1/2x1‖ψ2 ≤ κ. Then,
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choosing λ = cσ
√
(log p)/n, there exists constant C = C(a, κ), such that for

n ≥ Cs0 log(p/s0), we have

P

{
‖Δ‖∞ ≥

(
16ac0σ

cmin

)
s0 log p√

n

}
≤ 4e−c1n + 4p−c2 , (14)

where c1 and c2 are constants depending on κ, a, c0, cmin, cmax.

The next lemma controls the variance of the noise coordinates Zi in terms of
the diagonal entries of the precision matrix.

Lemma 2.3 ([JM14a]). Let Ω ≡ Σ−1 be the precision matrix. Under the as-
sumption of Proposition 2.2, the following holds true for any fixed sequence of
integers i = i(n):

P

(
mT

i Σ̂mi − Ωi,i ≥ ε
)
≤ 2e−(n/6)(ε/eκ′)2 + 2p−c , (15)

for κ′ ≡ 2κ2c−1
min and a constant c = c(a) > 0.

2.2. Extension to non-Gaussian noise

In the decomposition (2.2), we have Z = MXTW/
√
n and given that W ∼

N(0,Σ), we have Z|X ∼ N(0, σ2M Σ̂MT). In [JM14a], it is shown that by a
slight modification of optimization (12), Z admits the same conditional dis-
tribution even for non-Gaussian noise. For the reader’s convenience and to be
self-contained we briefly explain it here.

Note that for any fixed i ∈ [p], we have

Zi =
1√
n

n∑
j=1

ξj , with ξj ≡
mT

i xjwj

σ(mT
i Σ̂mi)1/2

.

Conditional on X, the terms ξj are zero mean and independent. Moreover,∑n
j=1 E(ξ

2
j |X) = n. Therefore, if the Lindeberg’s condition holds, that is to say

for every ε > 0, almost surely

lim
n→∞

1

n

n∑
j=1

E(ξ2j I(|ξj | > ε
√
n)|X) = 0 ,

then
∑n

j=1 ξj/
√
n|X d−→N(0, 1). The construction of M can slightly be modified

to ensure the Lindeberg’s condition, namely optimization problem (12) should
be modified as follows:

minimize mTΣ̂m,

subject to ‖Σ̂m− ei‖∞ ≤ μ ,

‖Xm‖∞ ≤ nβ for arbitrary fixed 0 < β < 1/2− a−1 ,

(16)

where we recall the parameter a from Eq. (3). The following lemma, which is
from [JM14a], shows that by this modification, the marginals of Zj are asymp-
totically normal.
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Lemma 2.4 ([JM14a], Theorem 4.1). Under conditions (3) on the noise term,

and using optimization (12) to construct M , we have that Zi|X d−→ N(0, 1).

The above result can be easily generalized to fixed-dimensional marginals of
Z, by using the fact that a vector has a multivariate normal distribution if every
linear combination of its coordinates is normally distributed.

With this overview of debiasing approach we are ready to explain the FCD
procedure.

2.3. FCD procedure

2.3.1. Construction of test statistics

In order to construct the test statistics, we first need to propose a consistent
estimate of noise variance, σ2. There are already several proposals for this in
the literature. See e.g., [FL01, FL08, SBvdG10, Zha10, SZ12, BC13, FGH12,
RTF16]. To be concrete, we use the scaled Lasso [SZ12] given by

{θ̂, σ̂} ≡ arg min
θ∈Rp,σ>0

{
1

2σn
‖y −Xθ‖22 +

σ

2
+ λ̄‖θ‖1

}
(17)

We state the following lemma that shows σ̂ is a consistent estimate of σ. We
refer to [JM14a, Lemma 3.3] or [SZ12, Theorem 1] for its proof.

Lemma 2.5. Consider a sequence of design matrices X ∈ R
n×p, with di-

mensions n → ∞, p = p(n) → ∞. For each n, let Σ ∈ R
p×p such that

σmin(Σ) ≥ cmin > 0 and σmax(Σ) < cmax < ∞, for some constants cmin, cmax

and maxi∈[p] Σii ≤ 1. Further, assume that XΣ−1/2 has independent subgaus-

sian rows, with zero mean and subgaussian norm ‖Σ−1/2x1‖ψ2 ≤ κ. Let σ̂ be the

scaled Lasso estimate of the noise level, defined by (17), with λ̄ = 2
√
(2 log p)/n.

Then, assuming s0 = o(n/(log p)), the estimator σ̂ satisfies the following rela-
tion:

lim
n→∞

sup
θ0∈Rp,‖θ0‖0≤s0

P

(∣∣∣ σ̂
σ
− 1
∣∣∣ ≥ ε

)
= 0 .

Here, P is w.r.t the randomness of the noise w and the design X.

Define Λ = M Σ̂MT. For i ∈ [p], we define test statistic Ti as follows:

Ti ≡
√
nθ̂di

σ̂
√
Λii

. (18)

For a given threshold level t ≥ 0, we reject H0,i if |Ti| ≥ t and we return
sign of Ti as the estimate of sign of θ0,i. We also let R(t) =

∑p
i=1 I(|Ti| ≥ t) be

the total set of rejections at threshold t. Next, we discuss how to choose a data
dependent threshold t to ensure that directional FDR and FDP are controlled
at a pre-assigned level q ∈ [0, 1].
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2.3.2. A data dependent threshold for the test statistics

• Step 1: For the pre-assigned level q ∈ [0, 1], let tp = (2 log p−2 log log p)1/2

and calculate

t0 = inf

{
0 ≤ t ≤ tp :

2p(1− Φ(t))

R(t) ∨ 1
≤ q

}
. (19)

If (19) does not exist then set t0 =
√
2 log p.

• Step 2: For i ∈ [p], reject H0,i if |Ti| ≥ t0.

• Step 3: We return ŝigni = sign(Ti) as the estimate of sign(θ0,i).

3. Main results

3.1. Control of directional false discovery rate

Suppose that the design matrix X has i.i.d rows with Σ = E(x1x
T
1 ) being the

population covariance. Let Ω ≡ Σ−1 be the precision matrix and recall the def-
inition Λ ≡ M Σ̂MT, where M is the decorrelating matrix used in construction
of the debiased estimator.

We also define the normalized matrices Ω0 and Λ0 as

Ω0
ij =

Ωij√
ΩiiΩjj

, Λ0
ij =

Λij√
ΛiiΛjj

. (20)

For a given constant γ > 0, define

Γ(γ, c0) ≡
{
(i, j) : 1 ≤ i, j ≤ p, |Ω0

ij | ≥ c0(log p)
−2−γ

}
, (21)

for some constant c > 0. The following theorem states a guarantee on the
directional false discovery rate of the FCD procedure introduced in the previous
section.

Theorem 3.1. Consider random design matrices with i.i.d rows and let Σ =
E(x1x

T
1 ) be the population level covariance. Suppose that σmin(Σ) ≥ cmin >

0 and σmax(Σ) < cmax, for some constants cmin, cmax and maxi∈[p] Σii ≤
1. In addition, assume that XΣ−1/2 has independent subgaussian rows with
‖Σ−1/2x1‖ψ2 = κ. Also assume that:

(i) s0 = o(
√
n/(log p)2).

(ii) There exist positive constants c0, γ, such that |Γ(γ, c0)| = o(p1+ρ), for
some constant ρ ∈ [0, 1).

(iii) We have |{(i, j) : |Ω0
ij | > (1− ρ)/(1 + ρ)}| = O(p).

Then, for FCD procedure we get

lim sup
(n,p)→∞

FDRdir ≤ q. (22)
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Further, for any ε > 0,

lim
(n,p)→∞

P

(
FDPdir ≤ q + ε

)
= 1 . (23)

Remark 3.2. While directional FDR is the expected directional false discovery
proportion (FDPdir), it is idealized for a variable selection procedure to control
FDPdir in any given realization. In general, controlling FDRdir does not control
the variations of FDPdir. As noted by [Owe05], the variance of FDP can be large
if the test statistics are correlated, which is the case here. Let us emphasize that
by Eq. (23), our FCD controls FDPdir, with high probability.

Examples. Here, we provide several examples of the precision matrices that
satisfy conditions (ii)-(iii) of Theorem 3.1 to demonstrate its applicability.

Example 1: Our first example is the circulant covariance matrices, where Σij =
η|i−j|, for some constant η ∈ (0, 1). It is simple to see that the inverse of
such matrices has at most three nonzero coordinates per row. Therefore,
the conditions will be satisfied by choosing ρ = 1, and c > 0, γ < ∞,
arbitrary.

Example 2: Suppose that Σ is block diagonal with size of blocks to bounded
(as p → ∞). Then, the precision matrix will also have a block diagonal
structure with blocks of bounded size. It is easy to check conditions, with
choosing ρ = 1 and c > 0, γ < ∞, arbitrary.

Example 3: Consider the equi-correlated features, where Σ = (1− r)I + r11T,
for some constant r ∈ (0, 1), where 1 ∈ R

p denotes the all-one vector.
Then, we have Ω = (a− b)I + b11T, with

a =
(p− 2)r + 1

(p− 2)r − (p− 1)r2 + 1
, b =

−r

(p− 2)r − (p− 1)r2 + 1
. (24)

Note that |b| = O(1/p). Therefore, the conditions hold for arbitrary con-
stants c > 0, 0 < ρ < 1.

Finally, consider two matrices Ω(1) and Ω(2), with same diagonal entries

Ω
(1)
ii = Ω

(2)
ii , for i ∈ [p], such that Ω(1) dominates Ω(2) on off-diagonal en-

tries, i.e., Ω
(1)
ij ≥ Ω

(2)
ij , for i �= j ∈ [p]. Then it is easy to see that if Ω(1) satisfies

Conditions (i)-(ii), so does Ω(2).

3.2. Power analysis

Recall that S0 ≡ supp(θ0) is the set of indices of the truly significant features.

Let Ŝ denote the set of significant parameters returned by our FCD procedure,
namely

Ŝ = {1 ≤ j ≤ p : |Tj | ≥ t0} . (25)
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The power of a selected model Ŝ is defined as

Power(Ŝ) = E

[ |{j ∈ Ŝ : ŝignj = sign(θ0,j)}|
max(|S|, 1)

]
. (26)

We are now ready to characterize the statistical power of the FCD procedure
for the linear model (2).

Theorem 3.3. Consider a sequence of random design matrices X ∈ R
n×p,

with dimension n → ∞, p = p(n) → ∞ and Σ = E(x1x
T
1 ) ∈ R

p×p. Suppose that
σmin(Σ) ≥ cmin > 0 and σmax(Σ) < cmax, for some constants cmin, cmax and
maxi∈[p] Σii ≤ 1. Further, assume that XΣ−1/2 has independent subgaussian

rows with ‖Σ−1/2x1‖ψ2 = κ. Suppose that s0 = o(
√
n/(log p)2) and for i ∈ S =

supp(θ0), we have |θ0,i| > (σ/
√
n)
√

2Ωii log(p/s0). Then, the following holds
true:

lim inf
n→∞

Power(Ŝ)

1− β(θ0, n)
≥ 1 (27)

1− β(θ0, n) =
1

s0

∑
i∈S

F

(
qs0
p

,

√
n|θ0,i|

σ
√
Ωii

)
, (28)

where, for α ∈ [0, 1] and u ∈ R+, the function F (α, u) is defined as follows:

F (α, u) ≡ 1− Φ(Φ−1(1− α/2)− u) . (29)

We refer to Section 7.2 for the proof of Theorem 3.3.

Corollary 3.4. It is easy to see that for any fixed α ∈ [0, 1], function u �→
F (α, u) is monotone increasing. Therefore, as a result of Theorem 3.3, we have

lim inf
n→∞

Power(Ŝ)

F

(
qs0
p

,

√
nθmin

σ
√
Ωii

) ≥ 1 . (30)

Corollary 3.5. Under the assumptions of Theorem 3.3, if

√
nθmin − σ

√
2max

i∈[p]
(Ωii) log(2p/(qs0)) → ∞,

then Power(Ŝ) → 1, as n → ∞.

Proof of Corollary 3.5 is given in Appendix A.4.

4. Improved results for Gaussian designs

In [JM18], the authors improved upon Proposition 2.2 for Gaussian designs by
providing a sharper bound for ‖Δ‖∞ using a ‘leave-one-out’ technique. Specifi-
cally, for Gaussian designs with known population covariance, it is shown that
‖Δ‖∞ = op(

√
s0
n log p). The same bound holds when the population covariance

is unknown but can be estimated sufficiently well. e.g., if the inverse covariance
is sufficiently sparse. In this section, we aim at employing this result to relax
the sparsity assumption (Condition (i)) in Theorem 3.1.



False discovery rate control via debiased lasso 1227

4.1. Known covariance

Consider linear model (2) where the design X has independent Gaussian rows,
with zero mean and covariance Σ. Also, denote by Ω ≡ Σ−1 be the inverse pop-
ulation covariance, a.k.a precision matrix. Here, we assume that Σ is known and
consider the test statistic Ti, given by (18) where θ̂d is the debiased estimator
with M = Ω.

For an integer 1 ≤ k ≤ p, define τ(Ω, k) as follows:2

τ(Σ, k) ≡ max
A⊆[p],|A|≤k

‖(ΣA,A)
−1‖∞ ,

where ‖ · ‖∞ denotes the �∞ operator norm (maximum �1 norm of the rows).
As proved in [JM18], we have the following bound in place:

τ(Σ, k) ≤ min
{
‖Ω‖∞,

√
kσmax(Ω)

}
.

The next theorem is analogues to Theorem 3.1 for Gaussian designs, under a
weaker assumption on the sparsity level s0.

Theorem 4.1. (Known covariance). Consider a sequence of Gaussian random
design matrices X ∈ R

n×p, with dimension n → ∞, p = p(n) → ∞. Suppose
that X has i.i.d rows with zero mean and Σ = E(x1x

T
1 ) be the population covari-

ance. Suppose that σmin(Σ) ≥ cmin > 0 and σmax(Σ) < cmax, for some constants
cmin, cmax and maxi∈[p] Σii ≤ 1. Further, assume that:

(i) s0 = o(n/(log p)4).
(ii) Let C0 = (32cmax/cmin) + 1. We have τ(Σ, C0s0) ≤ τ0, for some constant

τ0 > 0.
(iii) There exist positive constants c0, γ, such that |Γ(γ, c0)| = o(p1+ρ), for

some constant ρ ∈ [0, 1).
(iv) We have |{(i, j) : |Ω0

ij | > (1− ρ)/(1 + ρ)}| = O(p).

Then, for FCD procedure we get

lim sup
(n,p)→∞

FDRdir ≤ q. (31)

Further, for any ε > 0,

lim
(n,p)→∞

P

(
FDPdir ≤ q + ε

)
= 1 . (32)

The proof of Theorem 4.1 proceeds along the same lines as proof of Theo-
rem 3.1 and uses the result of [JM18, Theorem 3.8]. We refer to section 7.3 for
its proof.

2In [JM18], the authors use the notation ρ(Ω, k) to refer to the same quantity. We avoid
that notation as we have used the symbol ρ in Condition (iii) in Theorem 4.1.
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4.2. Unknown covariance

For the case of unknown covariance, we follow the construction of the decor-
relating matrix M proposed in [VdGBRD14]. This construction is based on
node-wise Lasso on matrix X. Formally, for i ∈ [p], let x̃i be the i-th column of
X and represent it via sparse regression against all other columns:

γ̂i(λ̃) = argmin
γ∈Rp

{ 1

2n
‖x̃i −X∼iγ‖22 + λ̃‖γ‖1

}
,

where X∼i is the submatrix obtained by removing the i-th column. Let

Ĉ =

⎡⎢⎢⎢⎣
1 −γ̂1,2 · · · −γ̂1,p

−γ̂2,1 1 · · · −γ̂2,p
...

...
. . .

...
−γ̂p,1 −γ̂p,2 · · · 1

⎤⎥⎥⎥⎦ .

Also define

T̂ 2 = diag(τ̂21 , . . . , τ̂
2
p ) , τ̂2i =

1

n
(x̃i −X∼iγ̂i)

Tx̃i . (33)

The decorating matrix M is then defined as

M ≡ T̂−2Ĉ . (34)

We consider the FDC procedure, where the test statistic Ti is given by (18) and

θ̂d is the debiased estimator with the decorrelating matrix M (34).
Define the sparsity level sΩ for the precision matrix Ω as:

sΩ ≡ max
i∈[p]

∣∣{j �= i, Ωi,j �= 0}
∣∣ .

In words, sΩ is the maximum sparsity of the rows of Ω.
For the case of Gaussian designs with unknown covariance, we prove that the

directional FDR of the FCD procedure is controlled under a weaker assumption
on the sparsity of the parameters s0, provided sΩ is small enough.

Theorem 4.2. (Unknown covariance). Consider a sequence of Gaussian ran-
dom design matrices X ∈ R

n×p, with dimension n → ∞, p = p(n) → ∞ and X
has i.i.d rows with zero mean and covariance Σ. Assume that σmin(Σ) ≥ cmin > 0
and σmax(Σ) < cmax, for some constants cmin, cmax and maxi∈[p] Σii ≤ 1. Fur-
ther, suppose that

(i) s0 = o(n/(log p)4) and min(s0, sΩ) = o(
√
n/(log p)2).

and Conditions (ii), (iii), (iv) in Theorem 4.1 hold for Σ. Then, for FCD pro-
cedure we get

lim sup
(n,p)→∞

FDRdir ≤ q. (35)
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Further, for any ε > 0,

lim
(n,p)→∞

P

(
FDPdir ≤ q + ε

)
= 1 . (36)

The proof of Theorem 4.2 proceeds along the same lines as proof of Theo-
rem 3.1 and uses the result of [JM18, Theorem 3.13]. We refer to section 7.4 for
its proof.

5. Numerical experiments

We consider linear model (2) where the design matrix X is generated by drawing
its rows independently from N(0,Σ). The covariance Σ ∈ R

p×p has a circulant
structure with Σij = η|i−j|, for some constant η ∈ (0, 1). We then normalize the
columns of X to have unit norm. We generate the vector of coefficients θ0 ∈ R

p

by choosing a subset of indices S ⊆ [p] at random, of size s0 and setting θ0,i
from {±A} uniformly at random and θ0,i = 0, for i /∈ S0. The noise term W is
drawn from N(0, In×n).

We perform three sets of simulations to compare the performance of FCD
procedure with model free knockoff and to examine the effects of sparsity level,
signal magnitude, and feature correlation. We also compare the empirical power
of FCD with the analytical lower bound provided in Corollary 3.4. In all simu-
lations, we set the target level FDR to q = 0.1.

For FCD procedure, we use the implementation of the debiased method pro-
vided by http://web.stanford.edu/montanar/sslasso/, to construct the de-
biased estimator. For model free knockoff, we use the implantation provided by
http://web.stanford.edu/group/candes/knockoffs/.

Effect of Signal Amplitude: We choose n = 2000, p = 3000, k = 100,
η = 0.1 and vary the signal amplitude in the set A ∈ {0.5, 1, 1.5, . . . , 5.5, 6}. For
the FCD procedure and the model free knockoff, we compute the directional
FDR and power by averaging across 100 realizations of noise and the generation
of coefficient vector θ0. The results are plotted in Figure 1. As we observe,
both methods control FDRdir under the target level q = 0.1. As expected, the
power of both procedures increases as the signal amplitude increases, with FCD
procedure having larger power than the knockoff method over the entire range
of signal amplitudes. The FCD procedure turn out to be more powerful than
knockoff procedure.

We also plot the analytical lower bound on the power of FCD procedure,
given in Corollary 3.4. As we see the lower bound is quite close to the actual
empirical power of FCD procedure in the setup tested.

Effect of feature correlation: We test the effect of feature correlations on
the performance of FCD procedure, comparing it with the model free knockoff.
We set n = 700, p = 1000, k = 50, A = 4.5. Recall that the rows of the design

http://web.stanford.edu/ montanar/sslasso/
http://web.stanford.edu/group/candes/knockoffs/
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Fig 1. Testing FCD and model free knockoff methods with varying the coefficients amplitude
A. Here, n = 2000, p = 3000, k = 100, η = 0.1. The target level is q = 10%. FDRdir and
power are computed by averaging over 100 realizations of noise and coefficient vectors.

Fig 2. Testing FCD and model free knockoff methods with varying the feature correlation
parameter η. Here, n = 700, p = 1000, k = 50, A = 4.5. The target level is q = 10%. FDRdir

and power are computed by averaging over 100 realizations of noise and design matrices.

matrix X are generated from a N(0,Σ) distribution, with Σij = η|i−j|, and then
the columns of X are normalized to have unit norm. We vary the parameter η
in the set {0.1, 0.15, 0.2, . . . , 0.75, 0.8}. For each value of η, we compute FDRdir

and power for both methods, by averaging over 100 realizations of noise and
design matrix X. The results are displayed in Figure 2.

As observed, both methods control FDRdir over the range of correlations
tested. From the power plot, we see that the power of both methods decays as
the features correlations increase. This is expected because when the features
are highly correlated it is harder to distinguish between them and report the
truly significant ones. Indeed, for large values of η, both methods select a few
variables. This way, FDRdir is still controlled but the power is low. The proposed
FCD procedure has higher power than model free knockoff for η ≤ 0.65.

Effect of Sparsity: Here, we set n = 2000, p = 3000, A = 4.5, η = 0.1 and
vary the sparsity level of the coefficients in the set k ∈ {10, 15, 20, . . . , 130}. For
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Fig 3. Testing FCD and model free knockoff methods with varying the sparsity level k. Here,
n = 2000, p = 3000, A = 4.5, η = 0.1. The target level is q = 10%. FDRdir and power are
computed by averaging over 100 realizations of noise and coefficient vectors.

both methods, the power and FDR are computed by averaging over 100 trials of
noise and the generation of coefficient vector θ0. Both methods control FDRdir

over the entire range, with FCD achieving lower FDRdir for small values of k. In
terms of power, both methods have close power, and the FCD has higher power
for small k.

6. Real data experiments

In this section we evaluate the proposed method to find the mutations in the
Human Immunodeficiency Virus Type 1 associated with drug resistance3. This
dataset is presented and analyzed in [RTW+06] and is obtained by analyzing
HIV-1 subtype B sequences from persons with histories of antiretroviral treat-
ment. The dataset contains the mutations in the protease and reverse tran-
scriptase (RT) positions of the HIV-1 subtype B sequences which correspond
to resistance to Protease Inhibitors (PI), to nucleoside reverse transcriptase in-
hibitors (NRTIs) and to non-nucleoside RT inhibitors (NNRTIs).

In order to deal with missing measurements and preprocessing the dataset
we mostly follow the steps taken in [BC15]. The design matrix X ∈ {0, 1}n×p

is formed by letting Xij = 1 if the i’th sample contains the j’th mutation and
Xij = 0 otherwise. Further, for a specific drug, the i’th entry of the response
vector yi denotes the logarithm of the increase in the resistance to that drug in
the i’th patient. We let q = 0.2 and we apply the FCD procedure described in
subsection 2.3 to detect the mutations in the HIV-1 associated with resistance
to each drug. In order to evaluate the performance of our method, we compare
it with the knockoff filter procedure [BC15] with the test statistics based on
lasso. The size of the dataset (n, p) for each drug is noted under the bar plot
corresponding to that drug. For all cases, except the data for resistance to TDF,
we have n > 2p.

3The dataset is available online at https://hivdb.stanford.edu/pages/published_

analysis/genophenoPNAS2006.

https://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006
https://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006
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We have used two different methods for generating the knockoff variables;
in knockoff1, the knockoff variables are generated by solving a semi-definite
program (SDP) and in knockoff2, equi-correlated knockoff variables are created
without solving an SDP at a lower computational cost4. Since this is a real
data experiment, there is no ground truth. However, we use the methodology in
[BC15] to assess our results. In order to do this, we evaluate the reproducibility
of the outcomes of these procedures by comparing them with treatment-selected
mutation (TSM) panels provided in [RFZ+05]. These panels contain mutations
that are observed more frequently in virus samples from patients that have been
treated by each drug in compare with the patients who have never been treated
with that drug. Since these panels are created independently from the dataset
that we use, they can provide a good measure for validating the reproducibility
of the results obtained by each procedure.

A summary of the results can be seen in Figures 4, 5, 6. It can be seen that
the FCD method achieves the target FDR level of q = 0.2 and the obtained
power in half of the cases (8 out of 16 drugs) is larger than the power achieved
by the knockoff filter. Overall, the achieved power is comparable with the power
of the knockoff filter method.

7. Proof of main theorems

7.1. Proof of Theorem 3.1

Define G(t) = 2(1−Φ(t)), with Φ(t) denoting the standard Gaussian cumulative
distribution. We start by two lemmas about the properties of G(t).

Lemma 7.1. For all t ≥ 0, we have

2

t+ 1/t
φ(t) < G(t) <

2

t
φ(t) , (37)

where φ(t) = e−t2/2/
√
2π is the standard Gaussian density.

Lemma 7.1 is the standard trial bound on the Gaussian distribution and its
proof is omitted.

Lemma 7.2. For all t > 0, ε < min(1, 1/t) and δ < min(1, 1/t2), the following
holds true:

G((1− δ)t− ε)

G(t)
≤ 1 + 8(ε+ εt+ δ + δt2) . (38)

Proof of Lemma 7.2 is given in Appendix A.1.
Using Proposition (2.2), we have

Ti =

√
nθ0,i

σ̂
√
Λii

+
σ

σ̂
Z̃i +

Δi

σ̂
√
Λii

(39)

4More information regarding the procedure are available at https://web.stanford.edu/

groupcandes/knockoffs/software/knockoff/index.html.

https://web.stanford.edu/group candes/knockoffs/software/knockoff/index.html
https://web.stanford.edu/group candes/knockoffs/software/knockoff/index.html
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Fig 4. Summary of the results of applying the knockoff filter and FCD for detecting the
mutation positions in HIV-1 associated with resistance to type-PI drugs using the dataset
in [RTW+06]. In these experiments we have used q = 0.2. In the plots, blue bars show the
number of detected positions by different methods that appear in the TSM panels. On top
of each bar the proportion of detected mutations that appear in the TSM panel (an estimate
for FDP) and the proportion of mutations in the TSM panel that are detected by different
methods (an estimate for power) are stated.

Fig 5. Same as Figure 4 for type-NRTI drugs.
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Fig 6. Same as Figure 4 for type-NNRTI drugs.

where Z̃i ∼ N(0,Λ0). By invoking [JM14a, Lemma 3.1], Λii are bounded from
below by an arbitrary fixed constant 0 < c < 1, for large enough n. In addition,
since

∣∣Λ0 − Ω0
∣∣
∞ = op(1), for (i, j) ∈ Γ(γ, c0)

c we have

|Λ0
ij | < C(log p)−2−γ , (40)

for some constant C > 0. Further, by Condition (iii) in the theorem statement,
we have ∣∣∣{(i, j) : |Ω0

ij | >
1− ρ

1 + ρ

}∣∣∣ = O(p) . (41)

Define S≥0 ≡ {i ∈ [p] : θ0,i ≥ 0} and S≤0 ≡ {i ∈ [p] : θ0,i ≤ 0}.
We first consider the case that t0, given by (19), does not exist. In this case,

t0 =
√
2 log p and for any ε > 0 we have

P

(∑
i

I

(
ŝigni �= sign(θ0,i)

)
≥ 1

)
≤ P

( ∑
i∈S≤0

I

(
Ti ≥

√
2 log p

)
≥ 1

)
(42)

+ P

( ∑
i∈S≥0

I

(
Ti ≤ −

√
2 log p

)
≥ 1

)
. (43)

We can bound the first term on the right hand side above as

P

( ∑
i∈S≤0

I

(
Ti ≥

√
2 log p

)
≥ 1

)

≤ P

( ∑
i∈S≤0

I

(
σ

σ̂
Z̃i +

Δi

σ̂
√
Λii

≥
√

2 log p

)
≥ 1

)
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≤ P

( ∑
i∈S≤0

I

(
Z̃i ≥

σ̂

σ

√
2 log p− ‖Δ‖∞

σ
√
c

)
≥ 1

)

≤ pmax
i∈[p]

P

(
Z̃i ≥ (1− ε)

√
2 log p− ε

)
+ P

{
‖Δ‖∞ ≥ σε

√
c
}
+ P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε

}
≤ p

2
G
(
(1− ε)

√
2 log p− ε

)
+ P

{
‖Δ‖∞ ≥ σε

√
c
}
+ P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε

}
.

which goes to zero as n, p → ∞, due to Proposition 2.2 along with Condition (i),
that s0 = o(

√
n/(log p)2), and using Lemma 2.5. Similarly, and by symmetry,

the second term goes to zero as n, p → ∞ and the claim follows.
We next focus on the event that t0, given by (19) exists. By definition of t0

in this case, we have

pG(t0)

R(t0) ∨ 1
= q .

(Indeed, it is clear that the left-hand side is at most q. Equality holds since t0
is the minimum t, with such property.)

Define Q(t) ≡ G(t)/2 for all t ∈ R. Let

Ap ≡ sup
0≤t≤tp

∣∣∣∣∣
∑

i∈S≥0
{I (Ti ≤ −t)−Q(t)}+

∑
i∈S≤0

{I (Ti ≥ t)−Q(t)}
pG(t)

∣∣∣∣∣ (44)

Then,

FDPdir(t0) =

∑
i∈S≥0

I(Ti ≤ −t0) +
∑

i∈S≤0
I(Ti ≥ t0)

R(t0) ∨ 1

≤ pG(t0)Ap + s0Q(t0) + 2(p− s0)Q(t0)

R(t0)
(45)

≤ pG(t0)(1 +Ap)

R(t0)
≤ q(1 +Ap). (46)

Hence, we need to prove that Ap → 0, in probability. Note that

Ap ≤ sup
0≤t≤tp

{∣∣∣∣∣
∑

i∈S≤0
{I (Ti ≥ t)−Q(t)}

pG(t)

∣∣∣∣∣ (47)

+

∣∣∣∣∣
∑

i∈S≥0
{I (Ti ≤ −t)−Q(t)}

pG(t)

∣∣∣∣∣
}

≤ sup
0≤t≤tp

∣∣∣∣∣
∑

i∈S≤0
{I (Ti ≥ t)−Q(t)}

pG(t)

∣∣∣∣∣ (48)
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+ sup
0≤t≤tp

∣∣∣∣∣
∑

i∈S≥0
{I (Ti ≤ −t)−Q(t)}

pG(t)

∣∣∣∣∣ . (49)

Note that by symmetry it is sufficient to prove that the first term in (47) goes
to zero in probability. Consider a discretization 0 ≤ τ1 < τ2 < . . . < τb = tp such
that τj − τj−1 = vp, for 1 ≤ j ≤ b− 1 and τb − τb−1 ≤ vp, where vp = 1/

√
log p.

Hence, b ∼ tp/vp. For any t ∈ [τj−1, τj ], we have∑
i∈S≤0

I(Ti ≥ τj)

pQ(τj)
· Q(τj)

Q(τj−1)
≤
∑

i∈S≤0
I(Ti ≥ t)

pQ(t)

≤
∑

i∈S≤0
I(Ti ≥ τj−1)

pQ(τj−1)
· Q(τj−1)

Q(τj)

Hence, it suffices to show that

max
0≤j≤b

∣∣∣∣
∑

i∈S≤0
{I(Ti ≥ τj)−Q(τj)}

pQ(τj)

∣∣∣∣→ 0 (50)

in probability.
In the following lemma, we provide sufficient conditions to obtain Eq. (50).

Lemma 7.3. Suppose that for any δ > 0, the followings hold:

sup
0≤t≤tp

P

{∣∣∣∣
∑

i∈S≤0
I(Ti ≥ t)

pQ(t)
− 1

∣∣∣∣ ≥ δ

}
= o(1) (51)

and ∫ tp

0

P

{∣∣∣∣
∑

i∈S≤0
I(Ti ≥ t)

pQ(t)
− 1

∣∣∣∣ ≥ δ

}
dt = o(vp) (52)

where tp = (2 log p− 2 log log p)1/2 and vp = (log p)−1/2, then (50) hold true.

We refer to Appendix A.2 for the proof of Lemma 7.3.
By virtue of Lemma 7.3 we only need to prove Eqs. (51) and (52). We start

by analyzing the following expression

E

{∣∣∣∣
∑

i∈S≤0
{I(Ti ≥ t)− P(Ti ≥ t)}

pQ(t)

∣∣∣∣2} (53)

≤
∑

i,j∈S≤0
{P(Ti ≥ t, Tj ≥ t)− P(Ti ≥ t)P(Tj ≥ t)}

p20Q(t)2

≤ 1

p20

∑
i,j∈S≤0

P(Ti ≥ t, Tj ≥ t)

Q(t)2
− 1

≤ 1

p20

∑
i,j∈[p]

P(T̃i ≥ t, T̃j ≥ t)

Q(t)2
− 1, (54)
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with p0 = |S≤0| and

T̃i ≡
σ

σ̂
Z̃i +

Δi

σ̂
√
Λii

. (55)

The last inequality of (53) holds because θ0,i ≤ 0 for i ∈ S≤0 and therefore

Ti ≤ T̃i (Recall definition of Ti, given by Eq. (39).) Further, because Sc =
{i ∈ [p] : θ0,i = 0} ⊆ S≤0, we have p0 ≥ p − s0. Since s0 = o(

√
n/(log p)2) by

Condition (i), we have p0 = Ω(p).

We partition the set {(i, j) : i, j ∈ [p]} into two disjoint sets, namely Γ(γ, c0)
(highly correlated test statistics) and Γ(γ, c0)

c (weakly correlated test statistics).
(Recall the definition of set Γ(γ, c0) given by (21).) We analyze the contribution
of each set separately.

7.1.1. Highly correlated test statistics (Γ(γ, c0))

We first consider the set Γ(γ, c0). Note that (Z̃i, Z̃j) ∼ N

(
0,

[
1 Λ0

ij

Λ0
ij 1

])
. Using

(39), we have

P

(
T̃i ≥ t, T̃j ≥ t

)
≤ P

(
Z̃i >

σ̂

σ
t− Δi

σ
√
Λii

, Z̃j >
σ̂

σ
t− Δj

σ
√

Λjj

)
≤ P

(
Z̃i > (1− ε1)t− ε2, Z̃j > (1− ε1)t− ε2

)
+ P

{
‖Δ‖∞ ≥ σε2

√
c
}
+ P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

}
(56)

≤ C ((1− ε1)t− ε2 + 1)
−2

exp

{
− ((1− ε1)t− ε2)

2

1 + Λ0
ij

}

+ P
{
‖Δ‖∞ ≥ σε2

√
c
}
+ P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

}
, (57)

where the last inequality follows from [Liu13, Lemma 6.2].

Let Ψ(ρ) ≡
{
(i, j) : i, j ∈ [p], |Λ0

ij | > (1− ρ)/(1 + ρ)
}
. Note that by (41) and

since
∣∣Λ0 − Ω0

∣∣
∞ = op(1), we have |Ψ(ρ)| = O(p). We can write

1

p20

∑
(i,j)∈Γ(γ,c0)

P(T̃i ≥ t, T̃j ≥ t)

Q(t)2
≤ 1

p20

[ ∑
(i,j)∈Ψ(ρ)

P(T̃i ≥ t, T̃j ≥ t)

Q(t)2

+
∑

(i,j)∈Γ(γ,c0)\Ψ(ρ)

P(T̃i ≥ t, T̃j ≥ t)

Q(t)2

]
.

(58)
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We treat the terms on the right hand side separately. For the first term, since
Λ0
ij ≤ 1, by using (57), we have

1

p20

∑
(i,j)∈Ψ(ρ)

P(T̃i ≥ t, T̃j ≥ t)

Q(t)2

≤ |Ψ(ρ)|
p20Q(t)2

{
C ((1− ε1)t− ε2)

−2
exp

(
− ((1− ε1)t− ε2)

2
/2
)

+ P
{
‖Δ‖∞ ≥ σε2

√
c
}
+ P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

}}

≤ Cp−1

{(
G((1− ε1)t− ε2)

G(t)

)2

exp(((1− ε1)t− ε2)
2/2)

+
1

Q(t)2

(
P
{
‖Δ‖∞ ≥ σε2

√
c
}
+ P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})}
,

where in the second inequality we used the fact that |Ψ(ρ)| = O(p) and that
p0 = Ω(p). Take ε2 = s0(log p)/

√
n. By using Lemmas 2.2, 2.5, and 7.2, we get

1

p20

∑
(i,j)∈Ψ(ρ)

P(T̃i ≥ t, T̃j ≥ t)

Q(t)2
≤ Cp−1

(
1 + ε21 + ε22 + ε22t

2 + ε21t
4
)
et

2/2

+ C
p−1

Q(t)2

(
P
{
‖Δ‖∞ ≥ σε2

√
c
}

(59)

+ P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})
≤ Cp−1

{
(1 + ε21 + ε22)e

t2/2 (60)

+ et
2/2ε22t

2 + et
2/2ε21t

4

+
1

Q(t)2

(
e−c1n + p−c2 + P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})}
,

(61)

for some constant C > 0.

To bound the second term on the right-hand side of Eq. (58), note that for
(i, j) ∈ Γ(γ, c0) \Ψ(ρ), we have Λ0

ij ≤ (1− ρ)/(1 + ρ). Thus, using (57)

1

p20

∑
(i,j)∈Γ(γ,c0)\Ψ(ρ)

P(T̃i ≥ t, T̃j ≥ t)

Q(t)2

≤ |Γ(γ, c0)|
p20Q(t)2

{
C ((1− ε1)t− ε2)

−2
exp

(
−(1 + ρ) ((1− ε1)t− ε2)

2
/2
)
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+ P
{
‖Δ‖∞ ≥ σε2

√
c
}
+ P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

}}

≤ c′pρ−1

{(
G((1− ε1)t− ε2)

G(t)

)2

exp
(
(1− ρ) ((1− ε1)t− ε2)

2
/2
)

+
1

Q(t)2

(
P
{
‖Δ‖∞ ≥ σε2

√
c
}
+ P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})}
,

for any arbitrary constant c′ > 0.
Hence, using Lemmas 2.2, 2.5, and 7.2, we get

1

p20

∑
(i,j)∈Γ(γ,c0)\Ψ(ρ)

P(T̃i ≥ t, T̃j ≥ t)

Q(t)2
(62)

≤ c′pρ−1
(
1 + ε21 + ε22 + ε22t

2 + ε21t
4
)
e(1−ρ)t2/2

+ c′
pρ−1

Q(t)2

(
P
{
‖Δ‖∞ ≥ σε2

√
c
}
+ P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})
≤ c′pρ−1

{
(1 + ε21 + ε22)e

(1−ρ)t2/2 + e(1−ρ)t2/2ε22t
2 + e(1−ρ)t2/2ε21t

4

+
1

Q(t)2

(
e−c1n + p−c2 + P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})}
(63)

uniformly for 0 ≤ t ≤ tp. and for any arbitrary constant c′ > 0.

7.1.2. Weakly correlated test statistics (Γ(γ, c0)
c)

We next consider Γ(γ, c0)
c ∩ S≤0. Using [Liu13, Lemma 6.1] (for d = 2 in its

statement) and Eq. (56), we have

sup
0≤t≤tp

∣∣∣∣P(T̃i ≥ t, T̃j ≥ t)

Q(t)2
− 1

∣∣∣∣
≤ sup

0≤t≤tp

∣∣∣∣ 1

Q(t)2
P

(
Z̃i >

σ̂

σ
t− Δi

σ
√
Λii

, Z̃j >
σ̂

σ
t− Δj

σ
√

Λjj

)
− 1

∣∣∣∣
≤ sup

0≤t≤tp

∣∣∣∣ 1

Q(t)2
P

(
Z̃i > (1− ε1)t− ε2, Z̃j > (1− ε1)t− ε2)

)
− 1

∣∣∣∣
+

1

Q(tp)2

(
P
{
‖Δ‖∞ ≥ σε2

√
c
}
+ P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})
≤ sup

0≤t≤tp

(
Q((1− ε1)t− ε2)

Q(t)

)2

(64)

sup
0≤t≤tp

∣∣∣∣∣∣
P

(
Z̃i > (1− ε1)t− ε2, Z̃j > (1− ε1)t− ε2)

)
Q((1− ε1)t− ε2)2

− 1

∣∣∣∣∣∣
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+ sup
0≤t≤tp

∣∣∣∣∣
(
Q((1− ε1)t− ε2)

Q(t)

)2

− 1

∣∣∣∣∣ (65)

+
1

Q(tp)2

(
P
{
‖Δ‖∞ ≥ σε2

√
c
}
+ P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})
≤ (1 + ε21 + ε22 + ε21t

4
p + ε22t

2
p)C(log p)−1−γ1 + C

(
ε21 + ε22 + ε21t

4
p + ε22t

2
p

)
+

1

Q(tp)2

(
e−c1n + p−c2 + P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})
, (66)

for some constant C > 0, where γ1 = min(γ, 1/2). In the last inequality above,
we applied Lemma 7.1 (Note that Q(t) ≡ G(t)/2 by definition). Therefore, by
employing bound (66) for all (i, j) ∈ Γ(γ, c0)

c, we get

1

p20

∑
(i,j)∈Γ(γ,c0)c

P(T̃i ≥ t, T̃j ≥ t)

Q(t)2
− 1

≤ C
(
ε21 + ε22 + ε21t

4
p + ε22t

2
p

) (
1 + (log p)−1−γ1

)
+ C(log p)−1−γ1

+
1

Q(tp)2

(
e−c1n + p−c2 + P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})
+

|Γ(γ, c0)c|
p20

− 1 , (67)

uniformly for 0 ≤ t ≤ tp, and for some positive constants C, c1, c2. Note that
this inequality is obtained by applying .

Combining (53), (58) with bounds (61), (63) and (67), we obtain that

E

{∣∣∣∣
∑

i∈S≤0
{I(Ti ≥ t)− P(Ti ≥ t)}

pQ(t)

∣∣∣∣2}
≤ C

(
ε21 + ε22 + ε21t

4
p + ε22t

2
p

) (
1 + (log p)−1−γ1 + p−1et

2/2 + pρ−1e(1−ρ)t2/2
)

+
1

Q(tp)2

(
e−c1n + p−c2 + P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})
+ c′pρ−1e(1−ρ)t2/2 + Cp−1et

2/2 + C(log p)−1−γ1 +
p2

p20
− 1 , (68)

uniformly for 0 ≤ t ≤ tp, some positive constants C, c1, c2 and for any constant
c′ > 0.

We are now ready to prove the conditions of Lemma 7.3, namely Eqs. (51)
and (52). Fix arbitrary constant δ > 0. By Chebyshev’s inequality, we write

P

{∣∣∣∣
∑

i∈S≤0
I(Ti ≥ t)

pQ(t)
− 1

∣∣∣∣ ≥ δ

}
≤ 1

δ2
E

{∣∣∣∣
∑

i∈S≤0
{I(Ti ≥ t)− P(Ti ≥ t)}

pQ(t)

∣∣∣∣2}
≤ 1

δ2

[
C
(
ε21 + ε22 + ε21t

4
p + ε22t

2
p

) (
1 + (log p)−1−γ1 + p−1et

2/2 + pρ−1e(1−ρ)t2/2
)
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+
1

Q(tp)2

(
e−c1n + p−c2 + P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})
+ c′pρ−1e(1−ρ)t2/2 + Cp−1et

2/2 + C(log p)−1−γ1 +
p2

p20
− 1

]
, (69)

where the second step follows from (68), uniformly for 0 ≤ t ≤ tp and for some
constant C > 0 and an arbitrarily small constant c′ > 0. Hence, by substituting
for tp = (2 log p− 2 log log p)1/2, we obtain

sup
0≤t≤tp

P

{∣∣∣∣
∑

i∈S≤0
I(Ti ≥ t)

pQ(t)
− 1

∣∣∣∣ ≥ δ

}
≤ 1

δ2

[
4C
(
ε21 + ε22 + ε21(log p)

2 + ε22 log p
)

×
(
1 + (log p)−1−γ1 + (log p)

−1
+ (log p)

−1+ρ
)

+ p2
(
e−c1n + p−c2 + P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})
+ C (log p)

−1
+ c′ (log p)−(1−ρ)

+ C(log p)−1−γ1 +
p2

p20
− 1

]
. (70)

Recall that ε2 = s0(log p)/
√
n. We take ε1 =

√
s0(log p)/n. By [JM14a, Lemma

3.3], we have that for this choice of ε1, P {|σ̂/σ − 1| ≥ ε1} → 0 and hence Eq.(51)
holds.

Likewise, (52) holds because continuing from (69) and by applying reverse
Fatou Lemma, we can write∫ tp

0

P

{∣∣∣∣
∑

i∈S≤0
I(Ti ≥ t)

pG(t)
− 1

∣∣∣∣ ≥ δ

}
dt ≤∫ tp

0

[
C
(
ε21 + ε22 + ε21t

4
p + ε22t

2
p

) (
1 + (log p)−1−γ1 + p−1et

2/2 + pρ−1e(1−ρ)t2/2
)

+ t2pe
t2p

(
e−c1n + p−c2 + P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})
(71)

+ c′pρ−1e(1−ρ)t2/2 + Cp−1et
2/2 + C(log p)−1−γ1

]
dt

≤ C
(
ε21tp + ε22tp + ε21t

5
p + ε22t

3
p

) (
1 + (log p)−1−γ1 + p−1et

2/2 + pρ−1e(1−ρ)t2/2
)

+ t3pe
t2p

(
e−c1n + p−c2 + P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})
(72)

+ c′pρ−1tpe
(1−ρ)t2p/2 + Cp−1tpe

t2p/2 + Ctp(log p)
−1−γ1

≤ 2C
(
ε21(log p)

5/2 + ε22(log p)
3/2
)(

1 + (log p)−1−γ1 + (log p)
−1

+ (log p)
−1+ρ

)
+ p2(log p)−1/2

(
e−c1n + p−c2 + P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})
(73)

+ c(log p)−(1/2−ρ) + C(log p)−1/2 + C(log p)−1/2−γ1
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= o((log p)−1/2) = o(vp) . (74)

In the last step we used the probabilistic bound on |σ̂/σ− 1|, given in [SZ12,
Theorem 2.1], with ε1 =

√
s0(log p)/n, and assumption s0 = o

(√
n/(log p)2

)
.

This shows that Eq. (52) holds and hence completes the proof.

7.2. Proof of Theorem 3.3

The threshold t0 retuned by the FCD procedure is data-dependent. To analyze
the power, we first upper bound t0 by a data-independent threshold t∗.

Lemma 7.4. Under the assumptions of Theorem 3.3, we have

t0 ≤ t∗ , t∗ = Φ−1

(
1− qs0

2p
(1− o(1))

)
.

Proof of Lemma 7.4 is given in Appendix A.3.
Since t0 ≤ t∗ by Lemma 7.4, if we replace t0 by t∗, we obtain a lower bound

on the power. For fixed arbitrarily small constants c0, δ, ε, define

G = G(δ, c0, ε) =
{
max |Λii − Ωii| ≤ c0, |σ̂/σ − 1| ≤ δ, ‖Δ‖∞ ≤ ε

}
.

Define S+ ≡ {i ∈ [p] : θ0,i > 0} and S− ≡ {i ∈ [p] : θ0,i < 0}. Therefore,
S = S+ ∪ S−. We have

Power = E

[ |{j ∈ Ŝ : ŝignj = sign(θ0,j)}|
max(|S|, 1)

]
=

1

s0

∑
i∈S+

P(Ti ≥ t∗) +
1

s0

∑
i∈S+

0

P(Ti ≤ −t∗)

=
1

s0

∑
i∈S+

P

( √
nθ̂di

σ̂
√
Λii

≥ t∗
)
+

1

s0

∑
i∈S−

P

( √
nθ̂di

σ̂
√
Λii

≤ −t∗
)

=
1

s0

∑
i∈S+

P

(
σ

σ̂
Z̃i +

√
nθ0,i +Δi

σ̂
√
Λii

≥ t∗

)
(75)

+
1

s0

∑
i∈S−

P

(
σ

σ̂
Z̃i +

√
nθ0,i +Δi

σ̂
√
Λii

≤ −t∗

)
(76)

Define ηi ≡ (
√
nθ0,i +Δi)/(σ

√
Λii). On event G, we have

ηi ≥ η−i ≡
√
nθ0,i − ε

σ
√
Ωii + c0

, ηi ≤ η+i ≡
√
nθ0,i + ε

σ
√
Ωii − c0

.

Using Equation (76), we have

Power ≥ 1

s0

∑
i∈S+

P

([
Zi + ηi ≥

σ̂

σ
t∗
]
· I(G)

)
(77)
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+
1

s0

∑
i∈S−

P

([
Zi + ηi ≤

−σ̂

σ
t∗
]
· I(G)

)
− P(Gc)

≥ 1

s0

∑
i∈S+

P

([
Zi + η−i ≥ (1 + δ)t∗

]
· I(G)

)
(78)

+
1

s0

∑
i∈S−

P

([
Zi + η+i ≤ −(1 + δ)t∗

]
· I(G)

)
− P(Gc)

=
1

s0

∑
i∈S+

P
(
Zi + η−i ≥ (1 + δ)t∗

)
P(G) (79)

+
1

s0

∑
i∈S−

P
(
Zi + η+i ≤ −(1 + δ)t∗

)
P(G)− P(Gc) .

Recall that s0 = o(
√
n/(log p)2) as per Condition (i), and by using Propo-

sition 2.2 and lemma 2.5, event G holds with high probability and indeed it is
easy to see that for θmin > (σ/

√
n)
√

2 log(p/s0), we have

lim sup
n→∞

P(Gc)

1− β(θ0, n)
= 0 .

Therefore,

lim inf
n→∞

Power

1− β(θ0, n)
≥

lim inf
n→∞

1

s0(1− β(θ0, n))

[ ∑
i∈S+

P
(
Zi + η−i ≥ (1 + δ)t∗

)
(80)

+
∑
i∈S−

P
(
Zi + η+i ≤ −(1 + δ)t∗

) ]
. (81)

Since the above bound holds for all ε, δ, c0 > 0, we get

lim inf
n→∞

Power

1− β(θ0, n)

≥ lim inf
n→∞

1

s0(1− β(θ0, n))

[ ∑
i∈S+

P

(
Zi +

√
nθ0,i

σ
√
Ωii

≥ t∗

)
(82)

+
∑
i∈S−

P

(
Zi +

√
nθ0,i

σ
√
Ωii

≤ −t∗

)]

= lim inf
n→∞

1

s0(1− β(θ0, n))

{∑
i∈S

(
1− Φ

(
t∗ −

√
n|θ0,i|

σ
√
Ωii

))}
= lim inf

n→∞
1

(1− β(θ0, n))

{ 1

s0

∑
i∈S

F

(
qs0
p

,

√
n|θ0,i|

σ
√
Ωii

)}
= 1 . (83)

The last step holds by using the definition of function F (·, ·), given by Equa-
tion (29), and the fact that Zi|X ∼ N(0, 1).
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7.3. Proof of Theorem 4.1

The proof follows the proof of Theorem 3.1. Note that for the results of theorem
to hold, it suffices that the conditions of Lemma 7.3 to be satisfied. The result
in [JM18, Theorem 3.8], implies that under the conditions of Theorem 4.1, for
some constants C, c, and n ≥ max(25 log p, cs0 log(p/s0)), we have

P

(
‖Δ‖∞ ≥ Cτσ

√
s0
n

log p

)
≤ 2pe−Cminn/(16s0) + pe−n/1000 + 8p−1. (84)

Using this, under the assumptions of Theorem 4.1, letting ε2 = (log p)τ0
√

s0/n,
and following the same steps as in the proof of Theorem 3.1, we will reach the
following equation which is similar to Eq. (70)

sup
0≤t≤tp

P

{∣∣∣∣
∑

i∈S≤0
I(Ti ≥ t)

pQ(t)
− 1

∣∣∣∣ ≥ δ

}
≤ 1

δ2

[
4C
(
ε21 + ε22 + ε21(log p)

2 + ε22 log p
)

×
(
1 + (log p)−1−γ1 + (log p)

−1
+ (log p)

−1+ρ
)

+ p2
(
2pe−Cminn/(16s0) + pe−n/1000 + 8p−1 + P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})
+ C (log p)

−1
+ c′ (log p)−1+ρ

+ C(log p)−1−γ1 +
p2

p20
− 1

]
. (85)

By taking ε1 =
√

s0(log p)/n in Eq. (70) and replacing ε2 = (log p)τ0
√

s0/n,
we deduce that Eq. (51) holds. Similarly, using Eq. (84), we reach∫ tp

0

P

{∣∣∣∣
∑

i∈S≤0
I(Ti ≥ t)

pG(t)
− 1

∣∣∣∣ ≥ δ

}
dt

≤ 2C
(
ε21(log p)

5/2 + ε22(log p)
3/2
)(

1 + (log p)−1−γ1 + (log p)
−1

+ (log p)
−(1−ρ)

)
+ p2(log p)−1/2

(
2pe−Cminn/(16s0) + pe−n/1000 + 8p−1 + P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})
+ c(log p)−(1/2−ρ) + C(log p)−1/2 + C(log p)−1/2−γ1 . (86)

which is similar to Eq. (71). Again, by taking ε1 =
√

s0(log p)/n and ε2 =

(log p)τ0
√

s0/n we deduce that Eq. (52) holds too. Hence, the desired results
hold under the conditions of the Theorem.

7.4. Proof of Theorem 4.2

The proof is similar to the proof of Theorem 4.1. Here, using the result in [JM18,
Theorem 3.13], under the conditions of Theorem 4.2, for some constants C, c,
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and n ≥ s0 log p, we have

P

(
‖Δ‖∞ ≥ Cτσ

√
s0
n

log p+ Cσmin(s0, sΩ)
log p√

n

)
≤ 2pe−Cminn/(16s0) (87)

+ pe−cn + 8p−1. (88)

Here, by taking ε2 = (log p)τ0
√

s0/n + min(s0, sΩ) log p/
√
n, we will reach the

following equation which is similar to Eqs. (70), (85)

sup
0≤t≤tp

P

{∣∣∣∣
∑

i∈S≤0
I(Ti ≥ t)

pQ(t)
− 1

∣∣∣∣ ≥ δ

}
≤ 1

δ2

[
4C
(
ε21 + ε22 + ε21(log p)

2 + ε22 log p
)

×
(
1 + (log p)−1−γ1 + (log p)

−1
+ (log p)

−1+ρ
)

+ p2
(
2pe−Cminn/(16s0) + pe−cn + 8p−1 + P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})
+ C (log p)

−1
+ c′ (log p)−(1−ρ)

+ C(log p)−1−γ1 +
p2

p20
− 1

]
.

By taking ε1 =
√
s0(log p)/n in Eq. (70) and replacing ε2 = (log p)τ0

√
s0/n +

min(s0, sΩ) log p/
√
n, we deduce that Eq. (51) holds. Similarly, using Eq. (87),

we reach∫ tp

0

P

{∣∣∣∣
∑

i∈S≤0
I(Ti ≥ t)

pG(t)
− 1

∣∣∣∣ ≥ δ

}
dt

≤ 2C
(
ε21(log p)

5/2 + ε22(log p)
3/2
)(

1 + (log p)−1−γ1 + (log p)
−1

+ (log p)
−(1−ρ)

)
+ p2(log p)−1/2

(
2pe−Cminn/(16s0) + pe−cn + 8p−1 + P

{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≥ ε1

})
+ c(log p)−(1/2−ρ) + C(log p)−1/2 + C(log p)−1/2−γ1 .

which is similar to Eqs. (71), (86). Again, by taking ε1 =
√
s0(log p)/n, ε2 =

(log p)τ0
√
s0/n+min(s0, sΩ) log p/

√
n we deduce that Eq. (52) holds too. Hence,

the desired results hold under the conditions of the Theorem.

Appendix A: Proof of technical lemmas

A.1. Proof of Lemma 7.2

For t ≥ 0, we write

G ((1− δ)t− ε)

G(t)
= 1 +

∫ t

(1−δ)t−ε
φ(x)dx

G(t)
≤ 1 +

(ε+ δt)φ((1− δ)t− ε)

G(t)
, (89)
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where we used that φ(t) is a decreasing function. We next separate the cases of
t ∈ (0, 1) and t ≥ 1.

For 0 < t < 1, we use the following bound

φ(t) ≤ (
√

4 + t2 − t)φ(t) ≤ G(t) , (90)

where the last step is due to Birnbaum [B+42].
Moreover, for all t ≥ 0,

φ((1− δ)t− ε)

φ(t)
= exp

{
t(δt+ ε)− 1

2
((1− δ)t+ ε)2

}
≤ exp

{
t(δt+ ε)

}
≤ e2 , (91)

because by our assumption δ2t ≤ 1 and εt ≤ 1.
By employing Eqs. (90) and (91) into Eq. (89), we obtain

G ((1− δ)t− ε)

G(t)
≤ 1 + e2(ε+ δt) ≤ 1 + e2(ε+ δ) . (92)

For t ≥ 1, using Lemma 7.1, we have that G(t) ≥ φ(t)/t and hence by using
Eq. (91) into Eq. (89), we get

G ((1− δ)t− ε)

G(t)
≤ 1 + e2t(ε+ δt) . (93)

The result follows by combining the bound (92) and (93).

A.2. Proof of Lemma 7.3

We write

P

[
max
0≤j≤b

∣∣∣∣
∑

i∈S≤0
{I(Ti ≥ τj)−Q(τj)}

pQ(τj)

∣∣∣∣ ≥ δ

]
≤

b∑
j=1

P

[∣∣∣∣
∑

i∈S≤0
{I(Ti ≥ τj)−Q(τj)}

pQ(τj)

∣∣∣∣ ≥ δ

]

≤ 1

vp

∫ tp

0

P

{∣∣∣∣
∑

i∈S≤0
I(Ti ≥ t)

pQ(t)
− 1

∣∣∣∣ ≥ δ

}
dt

+

b∑
j=b−1

P

[∣∣∣∣
∑

i∈S≤0
{I(Ti ≥ τj)−Q(τj)}

pQ(τj)

∣∣∣∣ ≥ δ

]
Therefore, it suffices to show that∫ tp

0

P

{∣∣∣∣
∑

i∈S≤0
I(Ti ≥ t)

pQ(t)
− 1

∣∣∣∣ ≥ δ

}
dt = o(vp) ,

and

sup
0≤t≤tp

P

{∣∣∣∣
∑

i∈S≤0
I(Ti ≥ t)

pQ(t)
− 1

∣∣∣∣ ≥ δ

}
dt = o(1) ,

which are the conditions of the lemma.
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A.3. Proof of Lemma 7.4

We first show that t∗ <
√
2 log(p/s0). Assuming otherwise, we have G(t∗) <

G(
√

2 log(p/s0)) because G(t) is decreasing. By definition of t∗, and Lemma 7.1
this results in

qs0
p

(1− o(1)) = G(t∗) < G(
√

2 log(p/s0)) ≤
√

2

π

e− log(p/s0)√
2 log(p/s0)

(94)

=
s0

p
√

π log(p/s0)
, (95)

which is a contradiction.
Now, given that t∗ <

√
2 log(p/s0) <

√
2 log p, if the claim is not true, by

definition of t0, we should have

2p(1− Φ(t∗))

R(t∗) ∨ 1
> q . (96)

We next show that R(t∗) ≥ s0(1− o(1)).
Define

G = G(δ, c0, ε) =
{
max |Λii − Ωii| ≤ c0, |σ̂/σ − 1| ≤ δ, ‖Δ‖∞ ≤ ε

}
Define Ŝ(t∗) = {i ∈ [p] : |Ti| > t∗}. Using Proposition (2.2), for fixed i ∈ S,

we have

P(i /∈ Ŝ(t∗)) = P(|Ti| ≤ t∗)

= P

(∣∣∣√nθ0,i

σ̂
√
Λii

+
σ

σ̂
Zi +

Δi

σ̂
√
Λii

∣∣∣ ≤ t∗

)
, (97)

with Zi ∼ N(0, 1). Define ηi ≡ (
√
nθ0,i +Δi)/(σ

√
Λii). On event G, we have

|ηi| ≥ ηi,∗ ≡
√
n|θ0,i| − ε

σ
√
Ωii + c0

Continuing from Equation (97), we have

P(i /∈ Ŝ(t∗)) = P

(
|Zi + ηi| ≤

σ̂

σ
t∗

)
≤ P

([
|Zi + ηi,∗| ≤

σ̂

σ
t∗

]
· I(G)

)
+ P(Gc)

≤ P

([
ηi,∗ −

σ̂

σ
t∗ ≤ |Zi|

]
· I(G)

)
+ P(Gc) .

Given that θ0,i > (σ/
√
n)
√

2Ωii log(p/s0) and t∗ <
√
2 log(p/s0), we can choose

δ, c0, ε and ε0 small enough such that on event G = G(δ, c0, ε),

ηi,∗ −
σ̂

σ
t∗ ≥ t∗ ,
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and therefore

P(i /∈ Ŝ(t∗)) ≤ P

([
ηi,∗ −

σ̂

σ
t∗ ≤ |Zi|

]
· I(G)

)
+ P(Gc)

≤ P ((t∗ ≤ |Zi|) · I(G)) + P(Gc)

≤ G(t∗) + P(Gc)

≤
(
qs0
p

)
+ P(Gc) (98)

Since P(Gc) → 0 and s0 = o(
√
n/(log p)2), we can choose a deterministic se-

quence Ln → ∞, arbitrarily slow, as n → ∞, such that LnP(Gc) → 0 and
Ln(s0/p) → 0. Letting An ≡ (qs0/p) + P(Gc), we have LnAn → 0.

By applying Markov inequality, we obtain

P(|S ∩ Ŝ(t∗)
c| ≥ s0LnAn) ≤

1

s0LnAn
E(|S0 ∩ Ŝ(t∗)

c|)

≤ s0An

s0LnAn
=

1

Ln
, (99)

where the last inequality follows from (98). Therefore, with high probability,

|S0 ∩ Ŝ(t∗)
c| ≤ s0LnAn, which implies that

R(t∗) = |Ŝ(t∗)| ≥ |S| − |S ∩ Ŝ(t∗)
c| ≥ s0(1− LnAn) , (100)

as claimed.
Now using Equation (100) in Equation (96), we arrive at

1− Φ(t∗) >
qs0
2p

(1− LnAn) .

Therefore, for t∗, given by

t∗ = Φ−1

(
1− qs0

2p
(1− 2LnAn)

)
,

we reach a contradiction which proves our claim t0 ≤ t∗ is correct. The proof is
complete by noting that LnAn = o(1) by choice of sequence Ln.

A.4. Proof of Corollary 3.5

Define

αn =
qs0
p

, un ≡
√
nθmin

σ
√
Ωii

.

Using Corollary 3.4, it suffices to show that F (αn, un) = 1−Φ(Φ−1(1−αn/2)−
un) → 1. Equivalently, we show that Φ−1(1− αn/2)− un → −∞.
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By Lemma 7.1, we have

G(
√

2 log(2/αn)) <
2φ(
√
2 log(2/αn))√

2 log(2/αn)
< 2φ(

√
2 log(2/αn)) = αn . (101)

Since G is a decreasing function, by applying G−1 on both sides, we get

Φ−1(1− α/2) = G−1(αn) ≤
√
2 log(2/αn)

Using the above bound, we have

un − Φ−1(1− αn/2) > un −
√

2 log(2/αn) (102)

By the assumption on θmin, we have that the left-hand side of (102) goes to ∞,
which completes the proof.
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