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Abstract: Due to the rapid development of various social networks, the
spatial autoregressive (SAR) model is becoming an important tool in social
network analysis. However, major bottlenecks remain in analyzing large-
scale networks (e.g., Facebook has over 700 million active users), including
computational scalability, estimation consistency, and proper network sam-
pling. To address these challenges, we propose a novel least squares esti-
mator (LSE) for analyzing large sparse networks based on the SAR model.
Computationally, the LSE is linear in the network size, making it scalable to
analysis of huge networks. In theory, the LSE is

√
n-consistent and asymp-

totically normal under certain regularity conditions. A new LSE-based net-
work sampling technique is further developed, which can automatically
adjust autocorrelation between sampled and unsampled units and hence
guarantee valid statistical inferences. Moreover, we generalize the LSE ap-
proach for the classical SAR model to more complex networks associated
with multiple sources of social interaction effect. Numerical results for sim-
ulated and real data are presented to illustrate performance of the LSE.
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1. Introduction

We consider a network with n nodes. An adjacency matrix A = (aij) ∈ R
n×n

could be defined to describe the network structure. Let Y = (Y1, · · · , Yn)
� ∈

Rn be the continuous responses collected from the n nodes. In social network
analysis, the spatial autoregressive (SAR) model has been popularly employed
for modeling the social interaction within a network (Bronnenberg and Mahajan,
2001; Lee et al., 2010; Anselin, 2013), which is,

Y = ρWY + E , (1.1)

whereW = (wij) ∈ R
n×n with wij = aij/

∑n
j=1 aij . And ρ is the autocorrelation

parameter representing the social interaction (Lee et al., 2010). The random
noises are collected in the vector E = (ε1, · · · , εn)� ∈ R

n, which is assumed to
have mean 0n = (0, · · · , 0) ∈ R

n and covariance matrix σ2In ∈ R
n×n, where

In is the identity matrix of dimension n. Due to the rapid development of
online social network websites (e.g. Facebook, Twitter, Sina Weibo, Wechat),
the usefulness of the SAR model has been increasingly recognized in recent years
(Sampson et al., 1999; Leenders, 2002; Fujimoto et al., 2011; Robins, 2013).

Remark 1. The estimation of social interaction coefficient ρ is important in
large networks. For example, in marketing research, a node i could be a user
on a social network platform, and Yi could be defined to represent a person’s
attitude about a brand. It could be influenced by his or her friends on the
social network platform. Studying the influence is important (Lee et al., 2010).
Statistically, this amounts to estimate the social interaction ρ. A positive and
significant social interaction indicates potential profit in marketing strategy on
the platform. This further suggests that estimation of ρ is important in large
networks. See Chen et al. (2013) for more detailed discussions.

We assume |ρ| < 1 throughout the article. According to the proof in Banerjee
et al. (2004), In − ρW is invertible in this case. Thus we have Y = (In −
ρW )−1E . This implies that E(Y ) = 0n, and cov(Y ) = Σ = σ2(In−ρW )−1(In−
ρW�)−1. If E is further assumed to follow a normal distribution, one can obtain
maximum likelihood estimator (MLE) of ρ and σ2 (Barry and Pace, 1999).
The estimator’s asymptotic distribution has been studied by Lee (2004) and
Hillier and Martellosio (2014). Some higher order asymptotic results have been
investigated recently by Robinson and Rossi (2014).

Despite many recent advances and successes in the SAR model applications,
existing estimation methods do experience bottlenecks when analyzing large
networks. The size of many popular social websites can be enormously large.
For example, the Sina Weibo (www. weibo. com ) network analyzed in this pa-
per has n = 557, 818 nodes. Thus the traditional methods are computationally

www.weibo.com
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infeasible with usual computational resource. The computational complexity of
evaluating the determinant |In−ρW | in the log-likelihood function is in general
O(n3) (Trefethen and Bau, 1997; Barry and Pace, 1999). Huang et al. (2018)
proposed the pseudo likelihood estimate for SAR with random effects. Because
this is a likelihood-type method, complex matrix computation (e.g. log determi-
nant) is needed. Thus the computational complexity is still O(n3). For a sparse
matrix, more efficient algorithms have been proposed (Barry and Pace, 1999;
Smirnov and Anselin, 2001; LeSage and Pace, 2007). However, these methods
usually rely on some stringent assumptions on In − ρW , which can hardly hold
for real social network data. For example, one commonly used assumption is
that all of the eigenvalues of the weight matrix W are real (Barry and Pace,
1999). This condition is not necessarily satisfied if W is asymmetric. Further-
more, the aforementioned methods need to evaluate the Jacobian term, which
is computationally expensive for large n.

Other major challenges include network sampling and statistical inference.
Most existing network analysis methods such as the MLE assume that the entire
network are observed. However, it is often not possible to observe the entire
network, and only sampled network data can be collected. Since the sampled
data may omit relationships between sampled and unsampled nodes, it may lead
to biased estimation and the resulting statistical inference could be misleading
(Frank, 1979; Costenbader and Valente, 2003; Handcock and Gile, 2010; Shalizi
and Rinaldo, 2013). Chen et al. (2013) pointed out that sampled network may
lead to seriously biased estimation for the SAR model when the MLE is applied.
Zhou et al. (2017) proposed the paired maximum likelihood estimator. However,
the method is based on Taylor’s expansion, which works well only when ρ is
sufficiently small. See euation (2.5) and the relative discussion in the paper for
more details. Thus better techniques for network sampling are needed to ensure
consistent estimation of social interaction effect.

Motivated by these challenges, we propose a novel, fast and scalable estima-
tion method for the SAR model. The new method is particularly designed for
large social networks with tens of thousands of (or millions of) nodes. One main
advantage of the new method is that, under appropriate sparsity assumptions, its
computational complexity is linear in network size. Our basic idea is described as
follows. For any node i, define Y(−i) = (Yj , 1 ≤ j ≤ n, j �= i). Under the normal

assumption, we can show that E{Yi|Y(−i)} = Y �
(−i)γ

∗
i (ρ), where the coefficient

vector γ∗
i (ρ) ∈ R

(n−1) depends on both i and ρ. Based on this, we propose to
construct a least squares type objective function Q(ρ) =

∑
i{Yi − Y �

(−i)γ
∗
i (ρ)}2

and obtain the least squares estimator (LSE) of ρ by minimizing Q(ρ). We
can show that under appropriate assumption, the computational complexity of
minimizing Q(ρ) is O(n), i.e., linear in the network size.

In practice, the effect of social interaction on individuals may come from
multiple sources (Leenders, 2002). First, the existence of an edge is the result
of a combination of different properties of the network (Krivitsky et al., 2009),
such as the homophily (nodes with similar characteristics are more likely to
relate) or degree heterogeneity (super stars receive edges more than others).
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Therefore different relationships between nodes, such as friends or fans, may
have disparate social interaction effects. Second, researchers often collect data
from multiple social network platforms, such as instant messaging, mobile phone
communication, and online social networks. Networks obtained from different
platforms may have separate impact on the response. This leads to multiple
weighting matrices. In this paper, we will also generalize the LSE approach
to estimate the SAR model with multiple weighting matrices, which allows to
capture different types of social interaction from multiple sources. The resulting
estimator is referred to as the mLSE.

The rest of the article is organized as follows. Section 2 introduces the pro-
posed LSE approach, establishes its theoretical properties, and presents the
generalization of the proposed approach. Asymptotic properties of the estima-
tors are established as well. Simulation studies and a real data example are given
in Section 3. Section 4 concludes the article with discussions. All the theoretical
proofs are relegated to Appendix.

2. Least squares estimation

2.1. Motivation

Consider a network with n nodes. Let Yi be the response for node i with 1 ≤
i ≤ n, and Y = (Y1, Y2, · · · , Yn)

� ∈ R
n. Let A = (aij) ∈ R

n×n be the network
adjacency matrix, where aij = 1 if node i follows node j and aij = 0 otherwise.
For completeness, we assume aii = 0 for i = 1, · · · , n. To assess the social
interaction effect of the network structure, we assume the model in (1.1).

In order to ensure (In−ρW ) to be invertible, the eigenvalues of ρW should be
all different from 1. Banerjee et al. (2004) showed that the largest eigenvalue of
W is 1. These two facts imply that |ρ| < 1 is a sufficient condition to guarantee
the invertibility of (In − ρW ) for a general W . In fact, this is also a necessary
condition. Otherwise, one can always find an appropriately defined matrix W
so that (In − ρW ) is not invertible; see Banerjee et al. (2004) for more detailed
discussions. Consequently, we assume that |ρ| < 1.

The autocorrelation parameter ρ measures the effect of social interaction. By
omitting some constants, the quasi log likelihood function can be written as,

�(ρ, σ) = ln |In−ρW |−(n/2) lnσ2−(1/2)σ−2Y �(In−ρW )�(In−ρW )Y. (2.1)

The MLE could be obtained by maximizing (2.1). However, this classical
MLE approach becomes computationally expensive when the network size n is
large, mainly due to high cost of computing |In−ρW | (Trefethen and Bau, 1997;
Barry and Pace, 1999; Smirnov and Anselin, 2001).

2.2. Least squares estimation

We propose to estimate the SAR model (1.1) based on the following intriguing
observation. Recall that Y(−i) = (Y1, · · · , Yi−1, Yi+1, · · · , Yn)

� ∈ R
(n−1) for each

i. Then, we have the following result, with the proof given in Appendix A.1.
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Proposition 1. Assuming that E is normally distributed, then

E
{
Yi|Y(−i)

}
= Y �

(−i)γ
∗
i (ρ) =

∑
k �=i

ρ(ωik + ωki)− ρ2
∑

j ωjiωjk

1 + ρ2
∑

j ω
2
ji

Yk.

By Proposition 1, the conditional expectation of Yi given Y(−i) is linear in
Y(−i) with the coefficient γ∗

i (ρ). Correspondingly, we propose to construct the
following least squares type objective function,

Q(ρ) =
∑
i

{
Yi − Y �

(−i)γ
∗
i (ρ)

}2

. (2.2)

Define Ωρ = (In − ρW )�(In − ρW ), and dρ = diag{(1 + ρ2||W.i||2)−1, 1 ≤ i ≤
n} ∈ R

n×n, where W.,i ∈ R
n×1 represents the ith column of W . As a result, we

have

Q(ρ) = ||dρΩρY ||2. (2.3)

The detailed verification of (2.3) is given in Appendix A.2. This leads to the
proposed LSE ρ̂ = argminρQ(ρ).

Next, we point out that minimizing Q(ρ) in (2.2) is computationally feasible
even when n is large. This is based on the fact that, even though γ∗

i (ρ) ∈ Rn−1 is
high-dimensional, it is extremely sparse. The kth entry of γ∗

i (ρ) = {γ∗
ik(ρ), k �=

i} is γ∗
ik(ρ) = {ρ(ωik + ωki) − ρ2

∑
j ωjiωjk}(1 + ρ2

∑
j ω

2
ji)

−1. A necessary
condition for γ∗

ik(ρ) �= 0 is either ωik + ωki > 0 or
∑

j ωjiωjk > 0, which is
equivalent to either aik + aki > 0 or

∑
j ajiajk > 0. For each node i, there are

two types of nodes (denoted by ks) satisfying the aforementioned conditions:
its“direct” friends (those ks satisfying aik+aki > 0), and its one particular type
of “indirect” friends (those ks satisfying

∑
j ajiajk > 0).

In an ideal situation, if the number of friends connected with each node is
finite, then one can verify that the computational complexity of ρ̂ is linear in n.
The following proposition presents a formal result.

Proposition 2. If we further make the following assumptions: (1) Assume the
objective function (2.3) is optimized by the Newton-Raphson algorithm, which
converges in a finite number of steps; (2) Assume that there exists a finite con-
stant dmax such that maxi di = maxi

∑
j aji ≤ dmax as n → ∞. Then, the

computational complexity demanded for optimizing (2.3) is O(n).

The proof of Proposition 2 is given in Appendix A.3. We make some expla-
nations about the assumptions in this proposition.

Remark 2. The assumption (2) in Proposition 2 is a constraint on network
sparsity. By this assumption, we know that the degree di of each node is bounded
by a finite constant. This means the density of the network is O(n−1), which
goes to 0 as n goes to infinity. This implies that the network structure is very
sparse. In the meanwhile, if dmax diverges to infinity at a low speed (e.g., log(n)),
then the computational complexity becomes O(n log(n)), which is slightly higher
than O(n).
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2.3. Asymptotic properties

The following conditions are needed to establish asymptotic results for the LSE.
Define λj(B) to be the jth eigenvalue of an arbitrary matrix B ∈ R

p×p such
that |λ1(B)| ≥ |λ2(B)| ≥ · · · ≥ |λp(B)|. Further define S = In − ρW , M1 =

σdρS
�, M2 = σ(ḋρS

�−dρW
�−dρS

�WS−1), and M = M�
1 M2. The following

conditions are needed.

(C1) (Network Connectivity) The set {1, · · · , n} is defined including all
nodes as the state space of a Markov chain. The transition probability
is given by the weighting matrix W . We assume the Markov chain to be
irreducible and aperiodic. Additionally, we define π = (πi)

� ∈ R
n to be the

stationary distribution vector of the Markov chain, which satisfies πi ≥ 0,∑
i πi = 1, and W�π = π. We further assume

∑n
i=1 π

2
i = O(n−1/2−δ),

where 0 < δ ≤ 1/2 is a positive constant.
(C2) (Network Uniformity) Define W1 = W +W�, which is a symmetric

matrix. Assume |λ1(W1)| = O(log n).
(C3) (Noise Term) Define ε̃ = σ−1E = (ε̃1, · · · , ε̃n)� ∈ Rn. Assume E(ε̃4i ) =

κ4, and E(ε̃i1 ε̃i2 ε̃i3) = 0 for 1 ≤ i1, i2, i3, i ≤ n, where κ4 is a finite
constant. Further assume cε = E(ε̃2i − 1)4 is a finite constant.

(C4) (Law of Large Numbers) Assume the limits of the following network
features exist: σ2

1 = limn→∞ σ2
1n, and σ2

2 = limn→∞ σ2
2n, where

σ2
1n = n−1

[
tr(MM�) + tr(M2) + (κ4 − 3)tr

{
diag2(M)

}]
,

σ2
2n = 2n−1tr(M�

2 M2).

First, in the first two conditions, we impose assumptions on the network struc-
ture. Condition (C1) assumes certain connectivity for the network structure.
Specifically, it could be verified that, if the network is fully connected after a
finite number of steps, then both irreducibility and aperiodicity could be satis-
fied. If the famous six degrees of separation (Newman et al., 2006) holds, then
the condition is satisfied. According to Meyn and Tweedie (2012), if condition
(C1) is satisfied, then it holds that limm→∞ Wm = 1nπ

�, where 1n is an n-
dimensional vector with all elements to be 1. In condition (C2), we assume
certain uniformity on the network structure. Classical SAR models (Lee, 2004;
Yang and Lee, 2017) require the row and column sums of W to be bounded.
While (C2) allows λ(W1) to diverge with the rate of O(log n). It is remarkable
that conditions (C1) and (C2) are not related to the assumption (2) in Propo-
sition 2. This means the asymptotic property of LSE in the following theorem
does not rely on sparsity of the network. Second, condition (C3) is a regularity
assumption on the noise terms. It could be verified that the normal distribu-
tion with mean 0 satisfies this condition. Third, condition (C4) is a law of large
number type condition. We consider two special cases to help understand the
condition. In this cases, the existence of limits could be theoretically verified.

Case 1. (Circle Network) In this network, we assume ai,i+1 = 1 for 1 ≤
i ≤ n − 1, and an1 = 1; otherwise, aij = 0 (1 ≤ i, j ≤ n). In this case, the
nodes are connected as a circle. We could show the detailed expression of σ2

1n
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and σ2
2n, which are σ2

1n = 2(1 + ρ)2
∑N−3

k=0 (−ρ)k(1 + ρ2)−3(
∑N−1

k=0 ρk)−1, and
σ2
2n = 4(1−ρ2)(1+ρ2)−3. Thus we have σ2

1 = limn→∞ σ2
1n = 2(1−ρ2)(1+ρ2)−3,

and σ2
2 = 4(1− ρ2)(1 + ρ2)−3. In this case, the limits of σ2

1n and σ2
2n exist.

Case 2. (Fully Connected Block) In this network, for a fixed positive integer
k, define Ak = (a∗kij ), where a∗kij = 1 (1 ≤ i, j ≤ k , and i �= j), and a∗kii = 0
(1 ≤ i ≤ k). Thus the network adjacency matrix could be generated as A =
Ic⊗Ak ∈ R

n×n for sample size n, where n is assumed to be n = ck for a positive
integer c. In this case, the network density is

∑
aij/{n(n− 1)} = (n− 1)−1. As

a result, it could be calculated that, σ2
1 = 8(k − 1)−3(1 + ρ2)−6

{
(k − 1)2ρ4 +

2(k − 1)(k − 2)ρ3 + (k3 − 6k2 + 8k − 2)ρ2 − 2(k − 1)(k − 2)ρ + (k − 1)2
}
, and

σ2
2 = 8(k − 1)−1(1 + ρ2)−4

{
(k − 1)ρ2 + 1

}
. Thus the limits exist. One could

verify that if k is diverging, then the limits still exist.

The above assumptions are to facilitate the asymptotic analysis based on the
central limit theorem. Next, we establish asymptotic properties of the LSE ρ̂
in the following theorem, which provides theoretical justifications for the new
estimator.

Theorem 1. Assume that the conditions (C1)– (C4) hold, then we have
√
n(ρ̂− ρ) →d N

(
0, σ−4

2 σ2
1

)
, as n → ∞.

The proof of Theorem 1 is left to Appendix C.1. By Theorem 1, we know
that the LSE ρ̂ is asymptotically normally distributed and

√
n-consistent. This

is the same convergence rate of the classical SAR models. The LSE’s asymptotic
variance is σ−4

2 σ2
1 . Thus consistent estimators for σ2

2 and σ2
1 are to be derived

to make valid inferences. See Appendix C.2 for discussion of computationally
feasible estimators for σ2

1 and σ2
2 .

By assuming E is normally distributed, MLE of ρ could be obtained. Then it
is of interest to theoretically compare the relative estimation efficiency between
MLE and LSE. It is worth noting that in real practice, the network effect is
typically small (Chen et al., 2013). We are then motivated to conduct Taylor’s
expansion of ρ to approximate the asymptotic covariance of MLE and LSE
by their leading terms. For simplicity, we assume that σ2 = 1. Define σ2

L =
σ−4
2 σ2

1 to be the asymptotic variance of LSE, and σ2
M to be that of MLE. Thus,

under appropriate assumptions for the MLE, the following theorem could be
established.

Theorem 2. Assume πA = limn→∞ n−1
{
tr(W 2)+ tr(W�W )

}
exists. Thus we

have, σ2
L = π−1

A + o(1) and σ2
M = π−1

A + o(1).

The proof of Theorem 2 is given in Appendix C.3. See the appendix for more
detailed discussions. By Theorem 2, the conclusion could be drawn that, similar
estimation efficiency can be obtained for MLE and LSE if ρ is small.

2.4. New LSE-based scheme for sampling networks

In this section, we develop a novel sampling scheme to cope with the LSE
approach, and further show that the sampled data can lead to a consistent
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estimation for the SAR model. For each node i, define a sampling indicator si,
which equals to 1 if node i is sampled as the response node and equals to 0
otherwise. Define Sy = {i : si = 1}, which is the collection of all the sampled
response nodes. In order to evaluate γ∗

i (ρ) correctly for each sampled node i,
we need to sample its “direct” and appropriately defined “indirect” friends.
Altogether, the related nodes are denoted by,

Sx = {k : aik + aki > 0 or
∑
j

ajiajk > 0, for some i ∈ Sy}.

Without involving all the nodes in networks, the new sampling scheme can be
implemented in the following three steps:

• Step 1: Obtain the response set Sy via some convenient sampling method.
• Step 2: Collect all the nodes js, which are directly connected with some

node i ∈ Sy in different directions (“direct” friends). Denote the two types
of nodes as Sm1 = {j : aji = 1 and i ∈ Sy} and Sm2 = {j : aij = 1 and i ∈
Sy}, respectively.

• Step 3: Obtain the “indirectly” connected nodes by searching for ks
which are connected with node j ∈ Sm1 , in the direction ajk = 1. De-
note Sm3 = {k : ajk = 1 and j ∈ Sm1}. Putting all together, we get
Sx = Sm1

⋃
Sm2

⋃
Sm3 .

Using Sx and Sy, one can construct the following least squares objective function

Qs(ρ) =
∑
i∈Sy

{
Yi − Y �

(−i)γ
∗
i (ρ)

}2

.

Define the resulting sampling-based LSE as ρ̂s = argminρQs(ρ), which is re-
ferred to as the Sample-LSE. Define S = diag(s1, · · · , sn) ∈ R

n×n, where
si = 1 if i ∈ Sy and 0 otherwise. Define ns to be the number of nodes col-

lected in Sy. Q̇s(ρ) and Q̈s(ρ) are similarly defined as Q̇(ρ) and Q̈(ρ) . Fur-

ther define M1s = σdρSS
�, M2s = σ(ḋρSS

� − dρSW
� − dρSS

�WS−1) and
Ms = M�

1sM2s. The following condition is needed to establish the asymptotic
property of Sample-LSE.

(C5) (Law of Large Numbers) Assume the limits of the following network
features exist: σ2

1s = limn→∞ σ2
1ns, and σ2

2s = limn→∞ σ2
2ns, where

σ2
1ns = n−1

s

[
tr(MsM

�
s ) + tr(M2

s ) + (κ4 − 3)tr
{
diag2(Ms)

}]
,

σ2
2ns = 2n−1

s tr(M�
2sM2s).

Then the following theorem could be established.

Theorem 3. Assume that the conditions (C1)– (C3) and (C5) hold, then we
have √

ns(ρ̂s − ρ) →d N
(
0, σ−4

2s σ
2
1s

)
, as ns → ∞.
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Proof of Theorem 3 is similar to that of Theorem 1 and is hence omitted. By
Theorem 3, the Sample-LSE ρ̂s is

√
ns-consistent and asymptotically normal.

The discussion of computationally feasible estimators for σ2
1s and σ2

2s is similar
to that in the previous section and thus omitted. It is worthy mentioning that
although S is an n×n diagonal matrix, it only has ns nonzero diagonal elements.
Therefore, only the sampled nodes in Sx and Sy are involved in the estimation.
Both the performances of simple random sampling and snowball sampling are
demonstrated in the simulation studies.

2.5. mLSE: generalization to multiple weighting matrices

Now we generalize the LSE approach to models with multiple weighting ma-
trices. It allows us to consider separate social interaction effects from multiple
sources. Multiple weighting matrices are sometimes used in spatial statistics; see
for example LeSage and Pace (2009). Consider the SAR model with L weighting
matrices. For simplicity, we assume L = 2 in this paper, but it is straightforward
to extend the proposed estimation procedure and theoretical results to the case
of L > 2. The model is defined as,

Y = ρ1W1Y + ρ2W2Y + E , (2.4)

where wl,ij = al,ij/dl,i, dl,i =
∑n

j=1 al,ij for l ∈ {1, 2}. E ∈ Rn has mean 0n and

covariance matrix σ2In ∈ R
n×n. In order to insure the invertibility of the matrix

In − ρ1W1 − ρ2W2, one could verify that a sufficient condition is |ρ1|+ |ρ2| < 1.
Thus we assume |ρ1|+ |ρ2| < 1 throughout the rest of this article. Then we have
Σ = var(Y ) = σ2(In − ρ1W1 − ρ2W2)

−1(In − ρ1W
�
1 − ρ2W

�
2 )−1. Each Wl, for

1 ≤ l ≤ L, represents the weight of the adjacency matrix Al. Correspondingly,
the autocorrelation parameters ρls represent influence effects of different types
of social interactions.

Remark 3. For model defined in (1.1) (Anselin, 2013), the parameter estima-
tion becomes more and more inaccurate as ρ ≈ 1. Similarly, for model defined
in (2.4), when |ρ1| + |ρ2| ≈ 1, model estimation becomes inaccurate. However,
in practice, the autocorrelation could be small (Chen et al., 2013). We have also
demonstrated this fact through the Weibo example in real data analysis.

To employ the LSE approach to (2.4), we define γ∗
i (θ), where θ = (ρ1, ρ2)

�.
Then, the conditional expectation of Yi given Y(−i) is linear in Y(−i) for i =
1, . . . , n. The result is given in the following proposition.

Proposition 3. Assume E is normally distributed, then

E
{
Yi|Y(−i)

}
= Y �

(−i)γ
∗
i (θ)

=
∑
k �=i

∑2
l=1

{
ρl(ωl,ik + ωl,ki)− ρl

∑
j ωl,ji(ρ1ω1,jk + ρ2ω2,jk)

}
1 +

∑
j(ρ1ω1,ji + ρ2ω2,ji)2

Yk.
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The coefficient vector γ∗
i (θ) is sparse if Wls are sparse. The proof is similar to

that of Proposition 1 and given in Appendix A.1. Next, we propose the objective
function,

Q(θ) =
∑
i

{
Yi − Y �

(−i)γ
∗
i (θ)

}2

= ||dθΩθY ||2, (2.5)

where Ωθ = (In−ρ1W1−ρ2W2)
�(In−ρ1W1−ρ2W2), dθ = diag{(1+ ||ρ1W1,.i+

ρ2W2,.i||2)−1, 1 ≤ i ≤ n} ∈ R
n×n, and Wl,.i is the ith column of Wl (l ∈ {1, 2}).

The second equality in (2.5) is verified in Appendix A.2. The LSE for model

(2.4) is denoted by θ̂ = minθ Q(θ). We refer to the LSE for multiple weighting
matrices as the mLSE.

Computationally, it is worth pointing out that, minimizing Q(θ) in (2.5)
is still feasible for a very large n. A necessary condition for the kth entry of
γ∗
i (θ) = {γ∗

ik(θ), k �= i} is nonzero, is either al,ik+al,ki > 0 or
∑

j al1,jial2,jk > 0
for l, l1, l2 ∈ {1, 2}. Typically, Als are extremely sparse, which implies that
the total number of nodes involved in γ∗

i (θ) is finite for any i. This would

dramatically reduce the computational cost of θ̂.
Before establishment of the property of θ, the following conditions are needed.

Define Sθ = In − ρ1W1 − ρ2W2, M1θ = σdθS
�
θ , M2θ,l = σ(ḋθlS

�
θ − dθW

�
l −

dθS
�
θ WlS

−1
θ ) and Mθ,l = M�

1θM2θ,l. Further define ρa = |ρ1| + |ρ2|, and Wa =
ρ−1
a |ρ1|W1 + ρ−1

a |ρ2|W2.

(C6) (Network Connectivity) Define {1, · · · , n} to be the set including
all nodes as the state space of a Markov chain. Weighting matrix Wa is
the transition probability matrix. The Markov chain is assumed to be
irreducible and aperiodic. Further define πa = (πa,i)

� ∈ R
n to be the

stationary distribution vector of the Markov chain, satisfying πa,i ≥ 0,∑
i πa,i = 1, and W�

a πa = πa. Assume
∑n

i=1 π
2
a,i = O(n−1/2−δa), where

0 < δa ≤ 1/2 is a positive constant.
(C7) (Network Uniformity) Define Wa1 = Wa+W�

a , which is a symmetric
matrix. Further assume |λ1(Wa1)| = O(log n).

(C8) (Law of Large Numbers) Assume the limits of the following network
features exist: for 1 ≤ l1 ≤ l2 ≤ 2, π1,l1l2 = limn→∞ n−1

[
tr(Mθ,l1M

�
θ,l2

) +

tr(Mθ,l1Mθ,l2) + (κ4 − 3)tr
{
diag(Mθ,l1)diag(Mθ,l2)

}]
and π2,l1l2 =

limn→∞ 2n−1tr(M2θ,l1M
�
2θ,l2

). Define Π1 = (π1,11, π1,12;π1,12, π1,22) ∈
R2×2, and Π2 = (π2,11, π2,12;π2,12, π2,22) ∈ R2×2 to be positive definite
matrices.

The conditions are similar to (C1), (C2), and (C4). Conditions (C6)-(C7) are
assumptions on the network structure. Condition (C8) is a law of large numbers

type condition. Then, we could establish the asymptotic property of θ̂.

Theorem 4. Assume that the conditions (C3), and (C6)–(C8) hold. We then

have
√
n(θ̂ − θ) →d N(02,Π

−1
2 Π1Π

−1
2 ) as n → ∞.

The proof of Theorem 4 is similar to that of Theorem 1 and thus omited. By
Theorem 4, we could see that the mLSE θ̂ is asymptotically normally distributed
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and
√
n-consistent. The computationally feasible estimators for Π1 and Π2 can

be obtained similarly with those for σ2
2 and σ2

1 . Similar to the previous result,
when the number of nodes directly connected with any arbitrary node is finite
in each Wl, only a finite number of nonzero coefficients will be involved in
{Yi − Y �

(−i)γ
∗
i (θ)}2.

3. Numerical studies

To evaluate finite sample performance of the proposed LSE methods, we carry
out a number of simulation studies. Specifically, we report the performance of
the LSE and compare it with the classical MLE, in terms of both estimation
efficiency and computational complexity. We also demonstrate the performance
of the Sample-LSE and the mLSE. Finally, the LSE methods are applied in the
network of the Sina Weibo.

3.1. Performance of the LSE

In the following, we evaluate the finite sample performance of the proposed
methodology for three typically encountered network models, and a special case
of stochastic block model. Given n, we first generate the adjacency matrix A =
(aij), and then set aii = 0 for each 1 ≤ i ≤ n. Note that A is not necessarily
symmetric. Subsequently, W can be computed by normalizing each row of A.

Example 1. (Dyad Independence Model) By Holland and Leinhardt (1981),
define a dyad as Dij = (aij , aji) for any 1 ≤ i < j ≤ n. Assume Dijs are
mutually independent of each other. To allow for sparsity of the network, we
define P{Dij = (1, 1)} = 0.5n−1 and P{Dij = (1, 0)} = P{Dij = (0, 1)} =
5n−1. Then we have P{Dij = (0, 0)} = 1− 5.5n−1, which is very close to 1 for
a large n.

Example 2. (Stochastic Block Model) Consider the network structure gener-
ated from the stochastic block model (Wang and Wong, 1987; Nowicki and Sni-
jders, 2001). Let K = 20 be the total number of blocks. First, we follow Nowicki
and Snijders (2001), and randomly assign each node a block label (k = 1, · · · ,K)
with equal probability 1/K. Next, let P (aij = 1) = 20n−1 if i and j are in the
same block; P (aij = 1) = 2n−1 otherwise. In this way, nodes within the same
block are more likely to be connected with each other, when compared with
nodes from different blocks.

Example 3. (Power-Law Distribution) According to Barabási and Albert
(1999), the majority of nodes have few edges but a small amount have huge
number of edges. Following Clauset et al. (2009), we simulate A as follows.
First, for node i, generate its in-degree di =

∑
j aji according to the discrete

power-law distribution with P (di = k) = ck−α, where c is a normalizing con-
stant and the parameter α is set to be 2. Next, for each i, randomly select di
nodes as its potential followers.

Example 4. (Densely Connected Communities) Although the social networks
are often sparse, they are expected to have densely connected communities. To
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Table 1

Summary of LSE simulation results for the 3 examples with 1000 replications.

ρ=0 ρ=0.2
n Density � SE SE∗ ERP Density � SE SE∗ ERP

Example 1

2000 0.0015 0.001 0.032 0.031 5.4% 0.0015 0.001 0.032 0.032 100.0%
5000 0.0006 0.001 0.020 0.020 4.7% 0.0006 0.001 0.020 0.020 100.0%
10000 0.0003 0.000 0.014 0.014 4.9% 0.0003 0.000 0.014 0.014 100.0%
20000 0.0002 -0.000 0.010 0.010 4.8% 0.0002 0.000 0.010 0.010 100.0%

Example 2

2000 0.0015 -0.001 0.033 0.032 4.9% 0.0015 0.001 0.032 0.033 100.0%
5000 0.0006 0.000 0.021 0.020 5.3% 0.0006 0.001 0.022 0.021 100.0%
10000 0.0003 0.000 0.014 0.014 4.1% 0.0003 0.000 0.014 0.015 100.0%
20000 0.0001 0.001 0.010 0.010 4.6% 0.0001 0.000 0.011 0.010 100.0%

Example 3

2000 0.0025 -0.001 0.045 0.047 4.1% 0.0025 0.000 0.046 0.046 98.5%
5000 0.0011 -0.001 0.031 0.032 5.4% 0.0011 0.001 0.031 0.031 100.0%
10000 0.0006 -0.000 0.023 0.023 5.1% 0.0006 0.000 0.023 0.023 100.0%
20000 0.0003 0.000 0.017 0.017 4.7% 0.0003 0.001 0.017 0.017 100.0%

Example 4

2000 0.0060 -0.002 0.055 0.055 4.6% 0.0060 0.004 0.047 0.047 98.6%
5000 0.0024 -0.002 0.035 0.035 5.1% 0.0024 0.002 0.031 0.030 100.0%
10000 0.0012 -0.000 0.024 0.024 4.3% 0.0012 0.001 0.021 0.021 100.0%
20000 0.0006 0.000 0.018 0.017 5.5% 0.0006 0.001 0.015 0.015 100.0%

further examine the robustness to the sparsity assumption for the LSE method,
we consider a fully connected block defined in Case 2 in Section 2.3 with k = 10.
This means di = 10 for 1 ≤ i ≤ n. To simulate A, for each node i, randomly
select di nodes as its potential followers.

In each experiment, ρ is set to be 0 or 0.2 and σ2 is fixed at 1. We consider
various network sizes (n=2000, 5,000, 10,000, 20,000). For a reliable evaluation,
each experiment is randomly replicated M = 1, 000 times. For the mth replica-
tion, write ρ̂(m) as the estimate of ρ. Then the bias is evaluated as � = ρ − ρ̄,

where ρ̄ = M−1
∑

m ρ̂(m). We estimate the standard error ŜE
(m)

by σ̂−2
2 σ̂∗

1

based on Theorem 1 and report the average SE = M−1
∑

m ŜE
(m)

. We com-
pare SE with the Monte Carlo standard deviation of ρ̂, which is calculated
by SE∗ = {M−1

∑
m(ρ̂(m) − ρ̄)2}1/2. For each coefficient estimate, we com-

pute its Z-type test statistic as Z(m) = ρ̂(m)/ŜE
(m)

. The null hypothesis of
H0 : ρ = 0 is rejected if |Z(m)| > zα/2. α = 0.05 is used throughout the
rest of this article. The empirical rejection probability (ERP) is computed as
M−1

∑
m I(|Z(m)| > zα/2). According to whether the true parameter ρ is 0 or

not, the ERP might correspond to either empirical size or power.

We summarize numerical results of the LSE in Table 1. It is observed that,
for all of the three examples, the ERP results of nonzero ρ (i.e. ρ = 0.2) are
always larger than 95% when n is not smaller than 2000. This suggests that the
proposed Z-test is consistent in power. On the other hand, the ERP results of
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Table 2

Comparison of the MLE and the LSE (in terms of estimation efficiency and computation
time) with 500 replications.

Method n Density � SE SE∗ ERP Time
MLE-NR 245 0.0225 0.0072 0.0978 0.0957 54.8% 0.018

490 0.0112 -0.0007 0.0690 0.0675 83.2% 0.120
2450 0.0022 0.0012 0.0299 0.0303 100.0% 6.222
4900 0.0011 0.0009 0.0209 0.0214 100.0% 45.767

MLE-BP 245 0.0225 0.0128 0.0957 0.1340 25.2% 0.026
490 0.0112 0.0054 0.0673 0.0946 57.4% 0.032
2450 0.0022 0.0070 0.0291 0.0424 100.0% 0.312
4900 0.0011 0.0063 0.0203 0.0300 100.0% 1.213

LSE 245 0.0225 0.0049 0.1006 0.0993 54.4% 0.003
490 0.0112 -0.0024 0.0712 0.0695 82.8% 0.005
2450 0.0022 0.0010 0.0306 0.0308 100.0% 0.033
4900 0.0011 0.0006 0.0215 0.0218 100.0% 0.053

zero ρ (i.e., ρ = 0) are always close to the nominal level 5%, suggesting that the
proposed Z-test can control Type I error very well. This is not surprising since
the difference between SE and SE∗ is very small, showing that the true standard
error can be well approximated by the estimators derived in Section 2.3, in
accordance with Theorem 1.

3.2. Comparison of the LSE vs. the MLE

We compare the LSE and the MLE in terms of estimation efficiency and com-
putational efficiency. In this study, we fix ρ = 0.2 and σ2 = 1. In order to imple-
ment the MLE, two algorithms are considered. The first one is the traditional
Newton-Raphson algorithm, which is expected to be accurate but slow. For fast
computation, we consider the toolbox in http: // www. spatial-statistics.

com/ software_ index. htm . The function far is used and the log-determinant
algorithm of Barry and Pace (1999) is implemented. This algorithm provides an
approximated solution to the MLE of (1.1); it is expected to be faster than the
Newton-Raphson algorithm.

Following Lee and Liu (2010), we generate W as follows. Let WA be the
weighting matrix for the study of crimes across 49 districts in Columbus, Ohio
(Anselin, 2013). This is a contiguity matrix constructed based on the latitude
and longitude coordinates of the districts. Fix the sample size to be n = 49m,
where m = 5, 10, 50, or 100. Therefore, the network size varies from 245 to
4,900. Accordingly, the spatial weighting matrix W is generated as Im

⊗
WA,

where
⊗

denotes the Kronecker product operator. The response variable Y
is generated according to (1.1). We compare three different estimators of ρ,
including the MLE computed by the Newton-Raphson algorithm (denoted as
the MLE-NR), the MLE computed by the log-determinant algorithm of Barry
and Pace (1999) with the Matlab function far (denoted as the MLE-BP), and
the new LSE. For each parameter setup, the experiment is randomly replicated
for M = 500 times. To compare different methods’ computational efficiency,
their average CPU times (Time) for each experiment are also reported. The
detailed results are summarized in Table 2.

http://www.spatial-statistics.com/software_index.htm
http://www.spatial-statistics.com/software_index.htm
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Fig 1. Average Computation Time. m in horizontal axis controls the sample size as n =
49m. The vertical axis represents the average computation time based on 100 simulation
replications. The network size varies from n =4,900 to 24,500. The solid line for the LSE
and the dash line for the MLE-BP.

Based on Table 2, we make the following interesting observations. First, the
biases of all the estimation approaches are close to 0. Second, all the three
estimators are fairly comparable in terms of SE. However, the SE∗ (i.e., the
SE estimate) results of the MLE-BP are seriously biased. This makes the cor-
responding statistical inference problematic. Lastly, in terms of computational
efficiency, the MLE-NR is the worst; the MLE-BP is substantially better in
terms of the average computation time (i.e., Time); and the LSE is the best.
This is particularly true for a large sample size (i.e., n = 4, 900). See Figure 1
for further numerical evidence. Based on the above, the LSE method is the only
method (among the three in Table 2) which can deliver highly accurate estima-
tion results and statistically sound inference, yet with a minimal computational
cost.

3.3. Performance of the sample-LSE

Here we demonstrate finite sample performance of the Sample-LSE method. The
data are simulated in the same manner as in Section 3.1 based on Examples 1–
3. We fix the whole network size to be n = 20, 000 and the autocorrelation
parameter ρ ∈ {0, 0.2}. Various sizes of the network sample are considered: ns =
2,000, 5,000, and 10,000. The experiments are replicated in a similar manner as
before with M =1,000.

Two different sampling mechanisms are considered: (a) Simple Random Sam-
pling (SNS); (b) Snowball Sampling (SNOW). In the SNOW, the following steps
are conducted: (1) We start with ss = 10 selected nodes and define the set to
be Sy0 with |Sy0 | = ss = 10; (2) In the kth (1 ≤ k ≤ K) step , all of the
nk connected friends of nodes in Syk−1

are selected and added to the sample,



Least squares estimation of spatial autoregressive models 1149

Table 3

Summary of Sample-LSE simulation results of SRS for the 3 examples with 1000
replications.

ρ=0 ρ=0.2
n � SE SE∗ ERP � SE SE∗ ERP

Example 1

2000 0.000 0.024 0.023 5.6% 0.001 0.025 0.024 100.0%
5000 0.000 0.016 0.016 5.6% 0.001 0.017 0.016 100.0%
10000 0.000 0.012 0.012 4.7% 0.000 0.012 0.012 100.0%

Example 2

2000 0.001 0.025 0.024 5.2% 0.001 0.026 0.025 100.0%
5000 0.000 0.016 0.016 4.0% 0.000 0.017 0.017 100.0%
10000 0.000 0.013 0.013 5.5% 0.000 0.013 0.013 100.0%

Example 3

2000 -0.000 0.023 0.023 5.1% 0.000 0.046 0.046 98.5%
5000 0.000 0.016 0.016 6.4% 0.001 0.031 0.031 100.0%
10000 0.001 0.012 0.012 5.4% 0.000 0.023 0.023 100.0%

Table 4

Summary of Sample-LSE simulation results of SNOW for the 3 examples with 1000
replications.

ρ=0 ρ=0.2
n � SE SE∗ ERP � SE SE∗ ERP

Example 1

2000 0.001 0.027 0.025 6.6% 0.001 0.028 0.026 100.0%
5000 0.000 0.017 0.016 5.0% 0.000 0.017 0.017 100.0%
10000 0.000 0.013 0.012 5.8% 0.000 0.013 0.012 100.0%

Example 2

2000 0.001 0.025 0.026 4.8% 0.001 0.027 0.027 100.0%
5000 0.001 0.017 0.017 4.4% 0.001 0.018 0.017 100.0%
10000 0.001 0.012 0.013 4.2% 0.001 0.013 0.013 100.0%

Example 3

2000 0.001 0.041 0.043 6.0% 0.000 0.044 0.044 99.0%
5000 0.000 0.026 0.027 5.0% 0.000 0.029 0.029 100.0%
10000 0.000 0.020 0.020 4.4% 0.000 0.021 0.022 100.0%

which makes Syk
. (3) If in the kth step, there is no more connected node that

could be selected, then a random node i ∈ S \ Syk−1
is added to the sample set,

which leads to Syk
. (4) Repeat (2) and (3) until at least ns nodes are selected

in the Kth step, which means |SyK | ≥ ns. (5) Randomly select n∗
K nodes from

the sampled nK nodes in the Kth step, which makes |SyK−1
|+ n∗

K = ns. Thus
|Sy| = |SyK | = ns.

The detailed results are presented in Tables 3 and 4. We observe that: (1) the
Sample-LSE is consistent with ignorable bias and decreasing SE as n → ∞; (2)
the SE estimator developed for the Sample-LSE in Section 2.4 works quite well,
because the difference between SE and SE∗ values reported in Tables 3 and 4
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Table 5

Comparison of the MLE and the Sample-LSE (in terms of estimation efficiency and
computation time) with 500 replications.

Method ns � SE SE∗ ERP Time
MLE-NR 1000 0.1519 0.0354 0.0364 25.4% 0.075

2000 0.1414 0.0233 0.0222 74.0% 1.296
5000 0.0997 0.0160 0.0155 100.0% 47.871

MLE-BP 1000 0.1541 0.0341 0.0507 7.4% 0.027
2000 0.1458 0.0220 0.0306 41.2% 0.067
5000 0.1083 0.0153 0.0212 100.0% 0.755

Sample-LSE 1000 0.0016 0.0376 0.0382 100.0% 0.135
2000 -0.0012 0.0264 0.0279 100.0% 0.153
5000 0.0005 0.0191 0.0192 100.0% 0.183

is very small; and (3) as a consequence, the corresponding Z-test can control
Type I error quite well (since the ERP values associated with ρ = 0 are fairly
close to their nominal level 5%) and is consistent in power (since the ERP values
associated with ρ = 0.2 are all close to 100%).

3.4. Comparison of the sample-LSE vs. the MLE

In this subsection, we compare three methods, based on the sampled data:
the MLE-NR, the MLE-BP, and the Sample-LSE. Data are simulated in the
same manner as in Section 3.2. For the purpose of illustration, we fix n =
9, 800, ρ = 0.2, and ns ∈ {1000, 2000, 5000}. In order to implement the two
MLE methods, which are the MLE-NR and the MLE-BP, we treat the sampled
network structure as if they were the whole network. This leads to another row-
normalized W matrix based on the sampled data only (Chen et al., 2013). Then
the isolated nodes are eliminated from the data accordingly. We replicate the
experiment M =500 times and report the summary in Table 5.

One immediate observation is that, both the MLE-NR and the MLE-BP
methods are inconsistent with the sampled data, because their estimation biases
are clearly above 0. Such a finding is not surprising and is essentially consistent
with that of Chen et al. (2013). In contrast, the Sample-LSE remains to be
consistent and statistically valid.

3.5. Performance of the mLSE

In this subsection, we demonstrate finite sample performance of the mLSE. To
allow for different features of adjacency matrices, we generate W1 and W2 in
the same manner as in Examples 3 and Example 2, separately. The parameters
are set as ρ1 ∈ {0, 0.1} and ρ2 = 0.2. Various network sizes are considered: n =
2,000, 5,000, 10,000 and 20,000. The experiments are replicated in the same way
as before with M =1,000.

Numerical results of the mLSE are summarized in Table 6. For all the three
examples, the ERP results of nonzero ρls (l ∈ {1, 2}) are always larger than
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Table 6

Summary of mLSE simulation results with 1000 replications.

n �ρ1 SEρ1 SE∗
ρ1

ERPρ1 �ρ2 SEρ2 SE∗
ρ2

ERPρ2

ρ1=0 ρ2=0.2
2000 0.001 0.031 0.032 5.5% 0.006 0.034 0.032 100.0%
5000 0.000 0.020 0.020 6.0% 0.005 0.022 0.020 100.0%
10000 -0.000 0.014 0.014 4.8% 0.005 0.016 0.014 100.0%
20000 0.000 0.010 0.010 5.1% 0.005 0.011 0.010 100.0%

ρ1=0.1 ρ2=0.2
2000 0.003 0.031 0.030 91.2% 0.008 0.035 0.032 100.0%
5000 0.001 0.020 0.019 99.7% 0.006 0.023 0.020 100.0%
10000 0.001 0.014 0.013 100.0% 0.006 0.017 0.014 100.0%
20000 0.001 0.010 0.009 100.0% 0.006 0.012 0.010 100.0%

95%. This means the proposed Z-test is consistent in power. By contrast, the
ERP results of zero ρ1 are always close to the nominal level 5%, which indicates
that the proposed Z-test controls Type I error very well. This is because the
difference between SE and SE∗ is very small, suggesting that the true standard
error can be well approximated by the estimators derived in Section 2.5, in
accordance with Theorem 4.

3.6. Sina Weibo network analysis

We apply the LSE methods to a real social network collected from Sina Weibo
(www. weibo. com ), the largest Twitter-type social media in China. The goal of
this study is to understand how the Sina Weibo users interact with each other
in terms of their posting activity. To collect the data, we start with the Sina
Weibo accounts of four major online travel agencies in China. We randomly
select 5,000 nodes from each travel agency’s followers and collect the followers’
friends. To better mimic a sparse network, only active users is with out-degree
(di =

∑
j aij) no more than 20 are kept. The final network has n = 557, 818

nodes. Their follower-followee relationships are recorded by the adjacency matrix
A. In total, the network includes

∑
aij =1,496,399 edges and

∑
i<j aijaji =

535, 408 mutually connected pairs. The density of the network is 4.8×10−6,
which is extremely sparse.

For each node, the response is defined to be total amount of its posted mes-
sages in log-scale. The responses are standardized to be mean 0 and variance
1. For such a large network size, both the MLE-NR and the MLE-BP are com-
putationally too expensive to be implemented. However, the LSE can be easily
computed using a personal computer within 58 seconds. It gives the estimate
ρ̂ = 0.125 with ŜE = 1.4 × 10−3, implying that the social interaction is sta-
tistically significant at 5% level. This suggests that on average, a Weibo user’s
posting activity does positively correlate with his/her connected friends.

To further demonstrate usefulness of the Sample-LSE method, we conduct an
interesting simulation study as follows. Specifically, we treat the above sampled
nodes and edges as if they were the whole social network. We then treat the
“whole network” LSE estimator ρ̂ = 0.125 as if it were the true parameter. This

www.weibo.com
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Table 7

Real example: estimation results for the Sina Weibo network.

n � SE SE∗ ERP
2,000 0.000 0.019 0.018 99.9%
5,000 0.001 0.011 0.012 100.0%

10,000 0.000 0.008 0.008 100.0%
20,000 0.000 0.006 0.006 100.0%

allows us to conduct the simulation experiments in a similar manner as we have
stated in Sections 3.3 and 3.4. The results are presented in Table 7. By Table
7, ns = 2, 000 is large enough to detect a positive and statistically significant ρ.
The corresponding ERP (i.e., power) is as large as 99.9%. However, ns = 2, 000
only accounts for about ns/n = 0.36% of the entire network size. Consequently,
the saving in both sampling and computational costs is significant.

Last, we demonstrate the usefulness of the proposed mLSE method. Accord-
ing to Holland and Leinhardt (1981), and Huang et al. (2016), for different nodes
i and j (i �= j), mutual relationship (aij = aji = 1) and asymmetric relation-
ship (aij + aij = 1) are different types of relationship, i.e., friends and fans. To
test which type of relationship has a stronger impact on one’s posting activ-
ity in Weibo network, we construct A1 and A2 based on the above mentioned
n = 557, 818 nodes. Define A1 = (aij) ∈ R

n×n to record all the relationships
with aij = aji = 1, and A2 = (aij) ∈ R

n×n to record those with aij + aij = 1.
Thus W1 and W2 could be obtained. Correspondingly, ρ1 measures the social
interaction impact from mutually connected friends, and ρ2 measures that from
asymmetrically connected friends. Thus we obtain the mLSE for ρ1 is 0.115 with
ŜEρ1 = 1.3×10−3, and that for ρ2 is 0.061 with ŜEρ2 = 1.2×10−3. Both the co-
efficients are statistically significant at 5% level. This suggests that on average,
(1) a Weibo user’s posting activity positively correlates with his/her mutually
connected or asymmetrically connected friends; (2) mutual relationship has a
stronger impact on one’s posting activity than asymmetric relationship.

4. Conclusion

To conclude this article, we discuss four interesting topics for future study.
First, the proposed LSE method requires the adjacency matrices to be sparse.
It would be intriguing to study the problem without the network sparsity as-
sumption. Second, the proposed approach is developed for the SAR model with
no covariates. A natural question would be how to extend the approach by
taking covariate information into consideration. Third, we have assumed that
the adjacency A is pre-determined and the response Y is generated base on the
weighting matrix W . However in practice, network structure could be influenced
by individual features, implying a possible two-way relationship (Robins et al.,
2001). How to model this bilateral relationship is another interesting topic for
future study. Lastly, we have only empirically verified the performance of simple
random sampling and snow ball sampling. We find both methods work fairly
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well and comparable. However, what would be the effect of a general sampling
method is not clear. Further study along this direction is needed.

Appendix A

A.1. Proof of Proposition 1 and Proposition 3

For both model (1.1) and model (2.4), without the loss of generality, define Σi.

and Σ.i to be the ith row and column of Σ separately. Further define Σi(−i) ∈
R

1×(n−1) to be the ith row of Σ with out the i-th element. Thus Σ(−i)i ∈
R

(n−1)×1 can be defined in the similar manner. Σ(−i)(−i) ∈ R
(n−1)×(n−1) is

defined to be Σ without its ith row and ith column. Further let Σ = (σij).
According to the distribution of Y , we know that the joint distribution

of
{
Yi, Y

�
(−i)

}�
is N

(
0,Σi

)
with Σi =

{
σii,Σi(−i); Σ(−i)i,Σ(−i)(−i)

}
. There-

fore, by the normality assumption of E in both of the models, we know that

the conditional distribution of Yi given Y(−i) is N
(
Σi(−i)Σ

−1
(−i)(−i)Y(−i), σii −

Σi(−i)Σ
−1
(−i)(−i)Σ(−i)i

)
. In accordance with Σi, we define Ωi and thus we have,

Ωi = Σ−1
i =

(
Ωi,11,Ωi,12; Ωi,21,Ωi,22

)
, Σ−1

(−i)(−i) = Ωi,12 − Ωi,21Ω
−1
i,11Ωi,12, and

Σi(−i) = −Ω−1
i,11Ωi,12(Ωi,22 − Ωi,21Ω

−1
i,11Ωi,12)

−1. As a result, E
{
Yi|Y(−i)

}
=

Σi(−i)Σ
−1
(−i)(−i)Y(−i) = −Ω−1

i,11Ωi,12Y(−i).

To prove Proposition 1, recall that W.i ∈ R
n×1 and Wi. ∈ R

n×1 are the i-
th column and row of W , respectively. For convenience, further define Wi(−i) ∈
R

1×(n−1) to be the i-th row of W without the i-th element, W(−i)i ∈ R
(n−1)×1 to

be the i-th column of W without the i-th element, and W(−i)(−i) ∈ R
(n−1)×(n−1)

to be the weighting matrix W but without the i-th column and ith row. Thus

we have, Ωi = σ−2
[
In − ρ{wii,Wi(−i);W(−i)i,W(−i)(−i)}

]�[
In − ρ{wii,Wi(−i);

W(−i)i,W(−i)(−i)}
]
. Simple calculations imply that,

σ2Ωi,11 = (1− ρwii)
2 + ρ2W�

(−i)iW(−i)i = 1 + ρ2W�
.i W.i,

σ2Ωi,12 = −(1− ρwii)ρWi(−i) − ρW�
(−i)i{In − ρW(−i)(−i)}

= −ρ{Wi(−i) +W�
(−i)i}+ ρ2W�

(−i)iW(−i)(−i).

Note that wii = 0. Define γ∗
i (ρ) = −Ω�

i,12(Ω
−1
i,11)

� ∈ R
n−1. By combing the

results above, we obtain that

E
{
Yi|Y(−i)

}
= Y �

(−i)γ
∗
i (ρ) =

∑
k �=i

ρ(wik + wki)− ρ2
∑

j wjiwjk

1 + ρ2
∑

j w
2
ji

Yk,

which completes the entire calculations of Proposition 1.
To prove Proposition 3,Wl,i.,Wl,.i,Wl,(−i)i,Wl,i(−i) andWl,(−i)(−i) is defined

for l ∈ {1, 2} and 1 ≤ i ≤ n similarly. We could define Ωi to be Ωi = σ−2
[
In −
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l ρl{wl,ii,Wl,i(−i);Wl,(−i)i,Wl,(−i)(−i)}

]�[
In −

∑
l ρl{wl,ii,Wl,i(−i);Wl,(−i)i,

Wl,(−i)(−i)}
]
for model (2.4). This leads to,

σ2Ωi,11 = 1 + (ρ1W1,.i + ρ2W2,.i)
�(ρ1W1,.i + ρ2W2,.i),

σ2Ωi,12 = −ρ1W1,i(−i) − ρ2W2,i(−i)

− (ρ1W
�
1,(−i)i + ρ2W

�
2,(−i)i)

{
In−1 − ρ1W1,(−i)(−i) − ρ2W2,(−i)(−i)

}
= −ρ1

{
W1,i(−i) +W�

1,(−i)i

}
− ρ2

{
W2,i(−i) +W�

2,(−i)i

}

+
{
ρ1W

�
1,(−i)i + ρ2W

�
2,(−i)i

}{
ρ1W1,(−i)(−i) + ρ2W2,(−i)(−i)

}
.

If we further define γ∗(θ) = −Ω�
i,12(Ω

−1
i,11)

� ∈ R
n−1, thus the conclusion in

Proposition 3 could be obtained.

A.2. Notations and the verification of (2.3) and (2.5)

Before the proof of the theorems, we firstly verify (2.3), (2.5) and define some
useful notations for the first and second order derivatives of the objective func-
tions .

Verification of (2.3). First, we consider model (1.1). Let W 0
ii ∈ R

n×n to
have the same elements as W except that the i-th column and the i-th row
equal to 0 for notation convenience for 1 ≤ i ≤ n. Recalling that W.i ∈ R

n is
defined to be the i-th column of W , Wi. ∈ R

n is defined to be the ith row of
W , respectively. Then by Proposition 1, we could verify that, for 1 ≤ i ≤ n,

E
{
Yi|Y(−i)

}
= (1 + ρ2W�

.i W.i)
−1

{
ρWi. + ρW�

.i − ρ2W�
.i W

0
ii

}
Y

= (1 + ρ2||W.i||2)−1
[{

ρWi. + ρW�
.i − ρ2W�

.i W
}
Y

+ρ2W�
.i W.iYi + Yi − Yi

]
= (1 + ρ2||W.i||2)−1

[{
ρWi. + ρW�

.i − ρ2W�
.i W

}
Y − Yi

]
+ Yi.

Therefore, the objective function can be also written in the form of (2.3).
Next, we derive the expressions for Q̇(ρ) and Q̈(ρ). It could also be shown

that ḋ(ρ), d̈(ρ) can be expressed as follows,

ḋρ = −2ρd2ρdiag(W
�W ), (A.1)

d̈ρ = −2d2ρdiag(W
�W ) + 8ρ2d3ρdiag

2(W�W ) (A.2)

Define F = dρΩρY . Thus Q(ρ) = F�F . Define Ḟ and F̈ to be the first and
second order derivatives of F with respect to ρ, respectively. Then, it could
be obtained that, Q̇(ρ) = 2F�Ḟ = 2ε̃M�

1 M2ε̃, where ε̃ = σ−1E . and Q̈(ρ) =
2Ḟ�Ḟ + 2F�F̈ = 2ε̃�M�

2 M2ε̃+ 2F�F̈ .
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Verification of (2.5). Second, we consider model (2.4). By Proposition 3,
W ∗

ρ,.i = ρ1W1,.i + ρ2W2,.i (1 ≤ i ≤ n) is defined for notation convenience.

Similarly defineW1,.i,W2,.i,W1,i.,W2,i.,W
0
1,ii andW 0

2,ii as in theVerification

of (2.3). Thus it could be calculated that,

E
{
Yi|Y(−i)

}
=

(
1 +W ∗�

ρ,.iW
∗
ρ,.i

)−1
{∑

l

ρl(Wl,i. +W�
l,.i)−

∑
l

ρ2lW
�
l,.iW

0
l,ii

− ρ1ρ2(W
�
1,.iW

0
2,ii +W�

2,.iW
0
1,ii)

}
Y

=
(
1 +W ∗�

ρ,.iW
∗
ρ,.i

)−1

[{∑
l

ρl(Wl,i. +W�
l,.i)

}
Y−

(∑
l

ρ2lW
�
l,.iWl

)
Y

− ρ1ρ2(W
�
1,.iW2 +W�

2,.iW1)Y +W ∗�
ρ,.iW

∗
ρ,.iYi + Yi − Yi

]

= Yi +
(
1 +W ∗�

ρ,.iW
∗
ρ,.i

)−1

[{∑
l

ρl(Wl,i. +W�
l,.i)−

∑
l

ρ2lW
�
l,.iWl

− ρ1ρ2(W
�
1,.iW2 +W�

2,.iW1)
}
Y − Yi

]
,

for l ∈ {1, 2} and 1 ≤ i ≤ n. After this, simple calculation written in vector
form will show that Q(θ) = ||dθΩθY ||2.

A.3. Proof of Proposition 2

The conclusion in Proposition 2 could be obtained as follows. Under the as-
sumption (2) in Proposition 2,

∑
j ω

2
ji and

∑
j ωjiωjk are both summations of

finite terms for any node i (1 ≤ i ≤ n). Thus the calculation complexity of
Q(ρ) and its derivatives is linear in the network size n. See Appendix A.2 for
the detailed expressions for the forms of its derivatives. If the Newton Raphson
iteration converges in K steps, where K is finite, then complexity of estimation
is also O(n). This completes the proof.

Appendix B

To investigate the theoretical property of the LSE, several useful lemmas are
proved before the establishment of the theorems.

Lemma 1. Define B1 � B2 if b
(1)
ij ≤ b

(2)
ij , where B1 = (b

(1)
ij ) ∈ Rn1×n2 and

B2 = (b
(2)
ij ) ∈ R

n1×n2 are two arbitrary matrices. Define |B|e = (|bij |) for any
arbitrary matrix B. Then, we have the following results.

(1) Assume the condition (C1) is satisfied. Then, we can find an integer
sufficiently large such that for cK ≥ K, W cK � cw1nπ

�, where cw is a positive
constant. Define W0 =

∑K
m=0 W

m + 1nπ
�, and Wq = W qW0. For positive
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integer q, further define Δn = (logn)2(K+q) if δ = 1/2 and Δn = n1/2−δ if
0 < δ < 1/2, and δ here is the positive constant, which is defined in condition
(C1). Then, we have, for 0 ≤ q1, · · · , q4 ≤ 1, and finite positive integers r1, r2,
r3 and q, as n → ∞,

λmax(W
�W ) = O{(logn)2}, λmax(W�

q Wq) = O(Δn), (B.1)

n−2tr
{
(W r1W�r2)r3

}
→ 0, (B.2)

n−2tr
{
(W�W )q1(W�

q Wq)
q2(W�W )q3(W�

q Wq)
q4
}
→ 0. (B.3)

(2) Recall that S = In − ρW , then we have

|S−1|e � csW0, |W qS−1|e � csWq,

where cs = max{1, cwcρ}, and cρ = (1− ρ)−1ρK+1.
(3) For the notations of matrices defined in Section 2 and Appendix A.2, we
have the following conclusions:

|dρ|e � c0mIn, |ḋρ|e � c1mW�W, (B.4)

|d̈ρ|e � c2m
{
W�W + (W�W )2

}
, (B.5)

|S|e � In + c1sW, (B.6)

|M1|e � c1M (In +W�), |M2|e � c2MW̃ (B.7)

|M |e � c3M (W̃ +WW̃), (B.8)

λmax(W̃�W̃) = O
{
(log n)6n1/2−δ

}
. (B.9)

where W̃ = W� +W�W +W�WW� +W�W1.

Proof. In this section, we prove (1)–(3) in Lemma 1 subsequently.

Proof of (1). We prove each of the results in the following parts.

Proof of (B.1). Recall that we have defined W1 = W + W�. As a re-
sult, we have λmax(W

�W ) = max‖u‖=1 u
�(W�W )u. Thus, for any u ∈ R

n,

u�W�Wu ≤ |u|�e W�
1 W1|u|e ≤ λ2

max(W1)‖u‖2 = λ2
max(W1). By condition (C2),

we could draw the conclusion that λmax(W
�W ) = O{(logn)2}. Furthermore,

we could verify that Wq =
∑K

m=0 W
m+q +1nπ

�. Thus, by the Cauchy-Schwarz
inequality, we could calculate that

λmax(W�
q Wq) ≤ cwq

[ K∑
m=0

λmax

{
Wm+q(Wm+q)�

}
+ nλmax(ππ

�)
]
,

where cwq is a finite constant. In addition, it could be proved

λmax{Wm+q(Wm+q)�} ≤ λmax{W2(m+q)
1 } = O{(log n)2(m+q)} by similar tech-

niques. Next, by condition (C1), one could calculate that nλmax(ππ
�) =
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n(π�π) = n1/2−δ. As a result, if δ = 1/2, (logN)2(K+q) will dominate the
diverging speed; otherwise, it will diverge with the speed in the order of n1/2−δ.

Proof of (B.2). By W � W1 and W� � W1, we could be verify the conclu-
sion that n−2tr{(W r1W�r2)r3} ≤ n−2tr(W ∗(r1+r2+r3)) ≤ n−1λr1+r2+r3

max (W1).
As λmax(W1) = O(log n), then it can be calculated that n−1λr1+r2+r3

max (W1) → 0
as n → ∞. Thus, (B.2) can be obtained.

Proof of (B.3). We assume 0 < δ < 1/2. Thus, it can be obtained that

n−2tr{(W�W )q1(W�
q Wq)

q2(W�W )q3(W�
q Wq)

q4}
≤ n−1λq1+q3

max (W�W )λq2+q4
max (W�

q Wq).

By (B.1), as n → ∞, n−1(logn)2(q1+q3)n(1/2−δ)(q2+q4) ≤ n−2δ(logn)4 → 0.
Then, (B.3) holds.

Proof of (2). By condition (C1), one can obtain the conclusion that there exists
an integer K > 0, such that for n > K, Wn � cw1Nπ�. Thus,

∞∑
m=0

ρmWm =
∑
m≤K

ρmWm +
∑
m>K

ρmWm

�
K∑

m=0

ρmWm + cw1Nπ�( ∑
m>K

ρm
)

�
K∑

m=0

Wm + cρcw1Nπ� � csW0.

As a result, |S−1|e � csW0 can be obtained. Additionally, |W qS−1|e � csWq

can be subsequently verified.

Proof of (3). The proofs of (B.4)–(B.8) are similar, and we only calculate
the upper bound for |M2| as an example. We have |M2|e � σ

{
c1mW�W (In +

c1sW
�)+c0mW�+c0m(In+c1sW

�)W (
∑K

m=0 W
m+cρc1nπ

�)
}
� c2M (W�W+

W�WW� +W� +WW0 +W�WW0) = c2MW̃.

Next, we prove (B.9). One can verify λmax(W̃�W̃) ≤=
cW̃

[
λmax(W�

1 WW�W1)+λmax

{
(W�W )2

}
+λmax

{
(W�W )3

}
+λmax(W

�W )+

λmax(W�
1 W1)

]
= cW̃

{
λ2
max(W

�W ) + λ3
max(W

�W ) + λmax(W
�W ) +

λmax(W�
1 W1) + λmax(W�

1 W1)λmax(WW�)
}
. Thus, the order is

O
{
(logn)6n1/2−δ

}
.

Lemma 2. Let ε̃i∈ R
1 (1 ≤ i ≤ n) be identically distributed variables. Assume

the following conditions are satisfied:
(1) E(ε̃i) = 0 for 1 ≤ i ≤ n;
(2) E(ε̃i, ε̃j) = 0 for any i �= j;
(3) E(ε̃iε̃j ε̃k) = 0 for any 1 ≤ i, j, k ≤ n;
(4) E(ε̃2i ) = 1 and E(ε̃4i ) = κ4, where κ4 is a finite positive constant.
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Let ε̃ = (ε̃1, ε̃2, · · · , ε̃n)� ∈ R
n, Q1 = ε̃�M1ε̃, and Q2 = ε̃�M2ε̃, where M1

and M2 are n× n dimensional matrices. Then, we have,

cov(Q1, Q2) = tr(M1M�
2 ) + tr(M1M2) + (κ4 − 3)tr

{
diag(M1)diag(M2)

}
.

(B.10)

Proof. Define M1 = (m1,ij) ∈ R
n×n and M2 = (m2,ij) ∈ R

n×n. Then we have,
E(ε̃�M1ε̃) = tr(M1). Next, it can be calculated that

E
{
(ε̃�M1ε̃)(ε̃

�M2ε̃)
}
=

n∑
i=1

n∑
j=1

n∑
l=1

n∑
m=1

m1,ijm2,lmE(ε̃iε̃j ε̃lε̃m)

=
∑
i �=j

m1,iim2,jj +
∑
i �=j

m1,ijm2,ij +
∑
i �=j

m1,ijm2,ji +
∑
i

m1,iim2,iiκ4

= tr(M1)tr(M2) + tr(M1M�
2 ) + tr(M1M2)

+ tr
{
diag(M1)diag(M2)

}
(κ4 − 3).

Therefore we have E{(ε̃�M1ε̃)(ε̃
�M2ε̃)} − E(ε̃�M1ε̃)E(ε̃�M2ε̃) =

tr(M1M�
2 )+tr(M1M2)+tr{diag(M1)diag(M2)}(κ4−3). This completes the

proof.

Lemma 3. Suppose ε = (ε1, · · · , εn) ∈ R
n. Moreover, assume maxi E(ε4i ) ≤ κ4,

and maxi E(ε2i − σ2)4 ≤ cε, where κ4 and cε are finite positive constants. Let

Q = ε�Mε− σ2tr(M),

where M ∈ Rn×n. Let M = |M|e. Define σ2
1q = limn→∞ n−1var(Q). Then, we

have n−1/2Q →d N(0, σ2
1q) as n → ∞ if

n−2tr
{
MM

�
MM

�
}
→ 0, (B.11)

Proof. We apply the martingale difference theorem to prove the asymptotic nor-
mality of Q. First, we construct a martingale difference array Qi which satisfies
Q =

∑n
i=1 Qi. Second, we apply the martingale difference theorem to prove

n−1/2Q →d N(0, σ2
1q) as n → ∞.

Define M = (Mij) ∈ R
n×n. And define Fi to be the σ-field generated by

Qi = Mii(ε
2
i − σ2) +

i−1∑
j=1

Mijεiεj +

i−1∑
j=1

Mjiεiεj ,

where ei ∈ R
n is a zero vector with only the ith element being 1. Then, we have

Q =
∑

i Qi and E(Qi|Fi−1) = 0, where Fi is defined to be the σ-field generated
by {εj : 1 ≤ j ≤ i}. Thus, we only need to prove the following two results,

n−2
n∑

i=1

E(Q4
i ) → 0, (B.12)
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n−1
n∑

i=1

E(Q2
i |Fi−1) →p σ2

1q. (B.13)

Next, we prove (B.12) and (B.13) separately.

Step I: Proof of (B.12). Define Qi1 = Mii(ε
2
i −σ2), Qi2 =

∑i−1
j=1 Mijεiεj ,

and Qi3 =
∑i−1

j=1 Mjiεiεj . By the Cauchy-Schwarz inequality, we only need to

prove that n−2
∑

j=1 E(Q4
id) → 0 holds for all d = 1, 2, 3.

For d = 1, we have EQ4
i1
= EM4

ii(ε
2
i −σ2)4. As maxi E(ε2i −σ2)4 ≤ cε, it can

be calculated that n−2
∑

EQ4
i1
≤ n−1cε → 0.

For d = 2, we have Q4
i2 =

∑
j1,j2≤i−1 Mij1Mij2ε

2
i εj1εj2 . Thus, we have,

EQ4
i2 =

∑
j1 �=j2,j1j2<i

M2
ij1M

2
ij2κ4Eε2j1Eε2j2 +

∑
j<i

M4
ijκ

2
4

=
∑

j1 �=j2,j1j2<i

M2
ij1M

2
ij2κ4σ

4 +
∑
j<i

M4
ijκ

2
4.

Define cq = max{κσ4, (κ4)
2}. Then, we have∑

i

EQ4
i2 ≤ cq

∑
i

∑
j1j2≤i,j1 �=j2

(M2
ij1M

2
ij2) ≤ cqtr(MM

�
MM

�).

Then, it can be concluded that n−2
∑

i E(Q4
i2) → 0 by (B.11).

For d = 3, the proof is similar to that of d = 2 and thus omitted.

Step II: Proof of (B.13). First, it can be derived
n−1

∑n
i=1 E{E(Q2

i |Fi−1)} = n−1
∑n

i=1 E(Q2
i ) = n−1E(Q2) → σ2

1q. We next
verify that, as n → ∞,

n−2var
{ n∑

i=1

E(Q2
i |Fi−1)

}
→ 0.

By the Cauchy-Schwarz inequality, we only need to show
n−2

∑n
i=1 var{E(Q2

id|Fi−1)} → 0 for d = 1, · · · , 3, as n → ∞. It can be eas-
ily verified var{E(Q2

id|Fi−1)} = 0 for d = 1. Next, we prove the case for d = 2.
The proof of the case when d = 3 is similar and omitted here.

We can calculate that

n∑
i=1

E(Q2
i2|Fi−1) =

∑
i

∑
j1,j2<i

(Mij1Mij2)σ
2εj1εj2

=

n∑
i=1

ε�Ii−1Mi·M
�
i· Ii−1ε,

where Mi· ∈ R
n is the ith row vector of M, Ii =

∑i
j=1 eje

�
j , recalling that

ej is a zero vector with only the jth element being 1. Thus, we only need
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to prove, n−2var(ε�M∗ε) → 0 where M∗ =
∑N

i=1 Ii−1Mi·M
�
i· Ii−1. Owing to

|Ii−1Mi·M
�
i· Ii−1| � |Mi·|e|Mi·|�e , we only need to prove N−2tr(M∗M∗�) → 0.

It can be calculated that

tr(M∗M∗�) ≤
∑
i1,i2

(|Mi1,·|�e |Mi2,·|e)(|Mi2,·|�e |Mi1,·|e) ≤ tr(MM
�
MM

�).

By (B.11), the result can be obtained.

Lemma 4. Define Q̈(ρ) to be the second-order derivative of Q(ρ) with re-
spect to ρ. Assume all the conditions satisfied in Theorem 1; then, we have
−n−1Q̈(ρ) →p σ2

2.

Proof. We have already calculated in Appendix A.2 that Q̈(ρ) = 2Ḟ�Ḟ+2F�F̈ .
Then it suffices to show that,

2n−1Ḟ�Ḟ →p σ2
2 (B.14)

2n−1F�F̈ →p 0 (B.15)

It could be easily verified that 2n−1EḞ�Ḟ = σ2
2 . Next, we verify EF�F̈ = 0.

It could be derived that F̈ = d̈ρS
�E − 2ḋρ(W

�E + S�WY ) + 2dρW
�WY .

Thus F�F̈ = S1 + S2 + S3 = E�Sdρd̈ρS
�E − 2E�Sdρḋρ(W

�E + S�WY ) +

2E�Sd2ρW
�WY . Thus, E(S1) = σ2tr(Sdρd̈ρS

�) = σ2tr(d̈ρ), E(S2) =

−2σ2tr(dρḋρW
�S)− 2σ2tr(dρḋρS

�W ), and E(S3) = 2σ2tr(d2ρW
�W ). As a re-

sult, by (A.1) and (A.2), it could be calculated that E(S1)+E(S3) = −E(S2) =

8σ2ρ2tr
{
d3ρdiag

2(W�W )
}
. Therefore, EF�F̈ = 0.

Therefore, it suffices to verify n−2var(Ḟ�Ḟ ) → 0 and n−2var(F�F̈ ) → 0.
Since the verifications are similar, we only prove n−2var(Ḟ�Ḟ ) → 0 for example.
Since Ḟ�Ḟ = ε̃�M�

2 M2ε̃, by Lemma 2, we only need to prove
n−2tr(M�

2 M2M
�
2 M2) → 0. By (B.7), it can be derived n−2var(Ḟ�Ḟ ) ≤

n−2csmtr(W̃�W̃W̃�W̃), where csm is a finite constant. It can be further derived

n−2tr(W̃�W̃W̃�W̃) ≤ n−1λ2
max(W̃�W̃) → 0 by Lemma 1. Thus n−2var(Ḟ�Ḟ )

→ 0.
Thus (B.14) and (B.15) could be obtained. This completes the proof.

Appendix C

C.1. Proof of Theorem 1

The proof will be accomplished in the following two steps accordingly. In the
first step, we establish the

√
n-consistency of ρ̂. In the second step, we show

that ρ̂ is asymptotically normal.

Step 1. One can verify that the objective function Q(ρ) is a strict convex
function in ρ under condition (C2). As a result, to complete this step, it suffices
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to follow the technique in Fan and Li (2001) to show that: for any ε > 0, there
exists a finite constant C > 0 such that

lim
n

inf P
{

inf
|u|=C

Q(ρ+ n−1/2u) > Q(ρ)
}
≥ 1− ε. (C.1)

To this end, we apply Taylor’s expansion and obtain

inf
|u|=C

{
Q(ρ+ n−1/2u)−Q(ρ)

}
= n−1/2Q̇(ρ)u+ (2n)−1C2Q̈(ρ) + op(1)

≥ (2n)−1C2Q̈(ρ)− n−1/2|Q̇(ρ)|C + op(1). (C.2)

We next consider the two terms of Q̈(ρ) and Q̇(ρ) separately in (C.2). First, by
definition, we have that,

Q̇(ρ) = −2

n∑
i=1

Y �
(−i)γ̇

∗
i (ρ)

{
Yi − Y �

(−i)γ
∗
i (ρ)

}
, (C.3)

where γ̇∗
i (ρ) is defined to be the first order derivative of γ∗

i (ρ). Moreover,
according to Proposition 1, we know that E{Yi|Y(−i)} = Y �

(−i)γ
∗
i (ρ). Conse-

quently, by (C.3), E
{
Q̇(ρ)

}
= E

[
E
{
Q̇(ρ)|Y(−i)

}]
= 0. Next, it can be concluded

limn→∞ n−1var{Q̇(ρ)} = σ2
1 by Lemma 2. This suggests that the coefficient for

the linear term of C in (C.2), n−1/2Q̇(ρ) is Op(1). In addition, by Lemma 4,

we know that n−1Q̈(ρ) > 0 asymptotically. As a result, the coefficient for the
quadratic term of C in (C.2) is a positive constant asymptotically. Consequently,
as long as C is sufficiently large, the quadratic term in (C.2) would dominate its
linear term. Therefore, Q(ρ+ n−1/2u)−Q(ρ) > 0 with probability tending to 1
as n → ∞. This proves the desired conclusion in (C.1). As a result, it completes
the first part proof of the theorem.

Step 2. By the first step of proof, we know that ρ̂ is
√
n-consistent. This

enables us to apply the Taylor’s expansion technique to obtain the following
asymptotic approximation,

√
n(ρ̂− ρ) = {n−1Q̈(ρ∗)}−1{n−1/2Q̇(ρ)},

where ρ∗ lies between ρ and ρ̂. By the proof of Lemma 4, we have already known
that n−1Q̈(ρ∗) →p σ2

2 .

We next show that n−1/2Q̇(ρ) →d N(0, σ2
1). By Lemma 3, it suffices to show

n−2tr(|M |e|M |�e |M |e|M |�e ) → 0. By (B.8), the desired result could be obtained.
This completes the proof.

C.2. Computationally feasible estimators for σ2
1 and σ2

2

Consider σ2
2 first. By the Lemma 4 in Appendix B, we can obtain σ̂2

2 by replacing
the unknown parameter ρ with the LSE ρ̂ and replacing σ2 with σ̂2 = n−1(Y −
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ρ̂WY )�(Y − ρ̂WY ) in n−1Q̈(ρ). For σ2
1 , intuitively, one could also estimate it

based on ρ̂ and σ̂2. It could be verified that,

σ̂2
1 =

σ̂4

n
tr
[
8(Ωρ̂dρ̂d̈ρ̂)

2 + 4
{
(2ρ̂W2 −W1)d

2
ρ̂

}2
+ 16Ωρ̂dρ̂d̈ρ̂(2ρ̂W2 −W1)d

2
ρ̂

]
+
σ̂2

n
tr
{
4(2ρ̂W2 −W1)d

2
ρ̂Ωρ̂d

2
ρ̂(2ρ̂W2 −W1)Σ̂

}
, (C.4)

whereW2 = W�W , Ωρ̂ is defined with the true parameter ρ replaced by ρ̂ in Ωρ;

dρ̂, ḋρ̂, d̈ρ̂ and Σ̂ are correspondingly defined. Numerical experience suggests that
the estimator (C.4) works well. However, its computational cost is high for large
n by computing the inverse of a high-dimensional matrix (I − ρ̂W�)(I − ρ̂W ).
To provide a consistent estimator which is computationally feasible for large
networks, we next propose an alternative estimator. Note that the last term
of σ2

1 is 4σ2n−1tr
{
(2ρW2 −W1)d

2
ρΩρd

2
ρ(2ρW2 −W1)Σ

}
. Moreover, Σ = var(Y )

and n−1E
(
Y �M3Y

)
= n−1tr(M3Σ), whereM3 = 4(2ρW2−W1)d

2
ρΩρd

2
ρ(2ρW2−

W1). This suggests that n
−1Y �M3Y is an unbiased estimator of n−1tr(M3Σ).

By the similar proof technique of Lemma 4, it could be verified that
n−1Y �M3Y is indeed a consistent estimator of n−1tr(M3Σ). Thus a compu-
tationally feasible estimator of σ2

1 is given by,

σ̂∗2
1 =

σ̂4

n
tr
[
8(Ωρ̂dρ̂d̈ρ̂)

2 + 4
{
(2ρ̂W2 −W1)d

2
ρ̂

}2
+ 16Ωρ̂dρ̂d̈ρ̂(2ρ̂W2 −W1)d

2
ρ̂

]
+
4σ̂2

n
Y �(2ρ̂W2 −W1)d

2
ρ̂Ωρ̂d

2
ρ̂(2ρ̂W2 −W1)Y . (C.5)

Accordingly, for a given confidence level 1−α, a confidence interval of ρ can be
constructed as (ρ̂ − Zα/2n

−1/2σ̂−2
2 σ̂∗

1 , ρ̂ + Zα/2n
−1/2σ̂−2

2 σ̂∗
1), where Zα/2 repre-

sents for the upper α/2-th quantile of a standard normal distribution.

C.3. Proof of Theorem 2

We derive the approximated form for MLE and LSE respectively in the following.

Part I. Approximation for MLE. Assume appropriate conditions for MLE
satisfied. To get the approximation for the asymptotic covariance for MLE, we
first get approximations for the basic matrices. Define γM = (ρ, σ2). Assuming
the limits of n−1 limn→∞

{
tr(G2

ρ) + tr(G�
ρ Gρ)

}
and n−1 limn→∞ tr(Gρ) exist.

Thus by (2.1), it could be derived that,
√
nγM →d N(γM ,Σ−2

M ), where ΣM =
[A,B;B,C], and A = n−1 limn→∞

{
tr(G2

ρ) + tr(G�
ρ Gρ)

}
, B =

(nσ2)−1 limn→∞ tr(Gρ), C = (2σ4)−1. Then we have σ2
M = A−1 + A−2B2(C −

B2A−1). Since Gρ = W + o(1), one could verify that B = o(1). Further-
more, we could obtain that A = n−1

{
tr(W 2) + tr(W�W )

}
+ o(1). As a result,

σ2
M = π−1

A + o(1).

Part II. Approximation for LSE. It could be derived that dρ = In + o(1),

S = In + o(1), S−1 = In + o(1), and ḋρ = o(1). Thus we have M1 = In + o(1),
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and M2 = −(W� +W ) + o(1). As as result,

σ2
1 = lim

n→∞

16

N

{
tr(W 2) + tr(WW�)

}
+ o(1), (C.6)

σ2
2 = lim

n→∞

4

N

{
tr(W 2) + tr(WW�)

}
+ o(1). (C.7)

By (C.6) and (C.7), we have σ2
L = π−1

A + o(1).

This completes the proof.
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