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Abstract: The estimation of the coefficient matrix in a multivariate re-
sponse linear regression model is considered in situations where we can ob-
serve only strictly increasing transformations of the continuous responses
and covariates. It is further assumed that the joint dependence between
all the observed variables is characterized by an elliptical copula. Penalized
estimators of the coefficient matrix are obtained in a high-dimensional set-
ting by assuming that the coefficient matrix is either element-wise sparse or
row-sparse, and by incorporating the precision matrix of the error, which is
also assumed to be sparse. Estimation of the copula parameters is achieved
by inversion of Kendall’s tau. It is shown that when the true coefficient ma-
trix is row-sparse, the estimator obtained via a group penalty outperforms
the one obtained via a simple element-wise penalty. Simulation studies are
used to illustrate this fact and the advantage of incorporating the precision
matrix of the error when the correlation among the components of the er-
ror vector is strong. Moreover, the use of the normal-score rank correlation
estimator is revisited in the context of high-dimensional Gaussian copula
models. It is shown that this estimator remains as the optimal estimator of
the copula correlation matrix in this setting.
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1. Introduction

Suppose that a q× 1 response vector Y has been observed on a random sample
of subjects and that we wish to determine whether its behavior is influenced by
explanatory variables forming a p×1 vectorXmeasured on the same individuals.

911

http://projecteuclid.org/ejs
https://doi.org/10.1214/19-EJS1534
mailto:yue.zhao@kuleuven.be
mailto:Christian.Genest@mcgill.ca


912 Y. Zhao and C. Genest

A standard approach to this problem consists of assuming that there exist linear
relationships between the components of Y and those of X, viz.

Y� = X�B∗ + ε�, (1.1)

where ε is a q × 1 vector of errors and B∗ is a p × q matrix of coefficients to
be selected wisely. This problem has been intensely investigated, even in the
recently emerging context where the dimensions of X and Y are larger than the
sample size. In the latter case, various sparsity conditions on B∗ are typically
imposed in order to ensure that its estimation is feasible, reliable and efficient.

Model (1.1) is not always realistic in practice. However, it will here be shown
that it remains possible to estimate B∗ in a much broader class of models
in which it is merely assumed that strictly increasing transformations of the
components of X and Y (but not necessarily the original X and Y themselves)
are linked by a multivariate linear regression model. To be more precise, suppose
that there exist fixed but unknown functions f1, . . . , fp and g1, . . . , gq that are
strictly increasing on R and such that

g(Y)� = f(X)�B∗ + ε�, (1.2)

where f(X1, . . . , Xp) = (f1(X1), . . . , fr(Xp))
� and similarly, g(Y1, . . . , Yq) =

(g1(Y1), . . . , gq(Yq))
�.

The estimation of B∗ in Model (1.2) has recently been considered by Cai
and Zhang [4] in the special case where q = 1 and the vector (f(X), g(Y)) is
jointly normal and scaled in such a way that its components have unit variance.
These authors provide a rate-optimal estimation procedure for the vector B∗

which is adaptive to the unknown marginal transformations. They also use it to
investigate how American crime statistics are connected to socio-economic and
law enforcement data.

This paper extends the results of Cai and Zhang [4] in two ways. First,
by allowing (f(X), g(Y)) to have an elliptically contoured distribution [5], we
cover cases in which the variables exhibit greater tail dependence than if they
were jointly normal. The multivariate Student t distribution is an example.
Second, we address issues pertaining to the estimation of B∗ that arise only
when the response is of dimension q > 1 in Model (1.2). In this context, it is
generally advisable to take into account the overall structure of the matrix B∗

to reduce the dimension of the problem. This is especially important when p and
q are comparable to, or larger than, the sample size n, in which case traditional
estimators, e.g., those based on the least squares principle, are either unfeasible
or perform poorly.

In the framework of Model (1.2) with elliptical dependence structure and
arbitrary dimension q > 1, we consider the estimation of B∗ under two condi-
tions: row-sparsity, in which most rows of B∗ are assumed to be zero vectors,
and element-wise sparsity, where most entries of B∗ are zero but not accord-
ing to any specific pattern. Neither condition admits a univariate analog unless
cov(ε) = Σεε is diagonal. It is here shown that the estimation of a row- or
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element-wise sparse matrix B∗ can be achieved within the broad framework of
Model (1.2) without assuming that Σεε is diagonal.

In the limited context of Model (1.1), Yuan and Lin [44] showed that improved
estimation of a row-sparse matrix B∗ can be achieved through a group Lasso
penalty, with different groups corresponding to the different rows of B∗. The
advantage of group sparsity over simpler element-wise sparsity conditions on B∗

is further documented in [16, 29, 32]. However, these studies generally assume
that the components of ε in (1.1) are uncorrelated. To avoid this restriction,
we proceed as in [35, 43], where this assumption is relaxed by requiring only
that the precision matrix Ωεε = Σ−1

εε is sparse in Model (1.1). Both B∗ and
Ωεε can then be estimated using a penalized least squares with Lasso-type
penalties on the two matrices. As shown numerically by Rothman et al. [35],
the estimation accuracy for B∗ is improved by incorporating an estimate of Ωεε

when the components of the error vector ε are strongly correlated. The resulting
optimization problem is only convex in B∗ for fixed Ωεε, and vice versa. We face
a similar issue in Model (1.2) and instead of relying on an iterative procedure
to estimate the two matrices, we mimic [35] by adopting a one-step method in
which an improved estimation of B∗ is obtained after estimating Ωεε once.

Our main result, stated more precisely in Sections 5.3.1 and 5.3.2, is that
under the row-sparsity assumption, the group penalty approach leads to a better
estimation of B∗ than the element-wise penalty approach, as already reported
by Lounici et al. [29] under Model (1.1). This conclusion could not be reached by
simply aggregating the univariate-response estimator considered in [4] over the
multiple responses. It is remarkable in that it holds even though the estimation
is based on observations from (X,Y) rather than (f(X), g(Y)). We also show
through simulation the benefit of incorporating Ωεε when the correlation among
the components of the error vector is strong.

Another complication that arises in the broader context we consider is that
the raw estimator of the design matrix may fail to be positive semidefinite. The
naive formulation of the Lasso program is then no longer convex. To address
this issue, we can either modify the Lasso program, as motivated in [6], or adopt
a Dantzig selector program. In general, the former is computationally more effi-
cient, while the latter yields faster convergence rates under milder conditions, as
we will prove. Consequently, even when q = 1, our approach should be preferable
to that of Cai and Zhang [4]; see Section 3.3.

1.1. Plan of the paper

The model is further discussed in Section 2. The estimator of the coefficient
matrix B∗ is then developed in three stages described in Sections 3–5 as follows.

In Section 3, we consider a column-by-column estimator B̃ of B∗ which does
not use any information about the precision matrixΩεε. As shown in Section 3.1,
its columns are solutions to the Lasso program (3.2). An alternative approach
via the Dantzig selector is described in Section 3.2.

In Section 4, the preliminary estimator B̃ is used to obtain an estimator Ω̂εε

of the precision matrix Ωεε. The estimator Ω̂εε is the solution to the graphical
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Lasso algorithm (4.2), though any algorithm, such as CLIME [3] or the D-trace
loss [46], yielding comparable performance could also be used.

In Section 5, an improved estimation of the coefficient matrix B∗ is obtained
by incorporating the estimator Ω̂εε. In addition to an element-wise sparsity
structure, we consider a row-sparse model for B∗ and to this end, we impose
a group penalty on the coefficient matrix for its second estimation. For the
element-wise sparsity case, the final estimator B̂ of B∗ is given in (5.4); for the

row-sparse case, the final estimator B̂G via the group Lasso approach appears in
(5.7), while (5.14) gives the final estimator B̂D,G via the group Dantzig selector;
see, e.g., [21, 26].

Section 6 reports the results of a modest simulation study comparing the
estimators of B∗ produced with or without consideration of the precision matrix
Ωεε, and with or without consideration of the possible row-sparse structure of
B∗. All proofs are grouped in Section 7 and concluding comments can be found
in Section 8. Some auxiliary results are deferred to an Appendix.

As an aside, we revisit in Section F the normal-score rank correlation esti-
mator or van der Waerden correlation matrix Σn, which is known to be the
optimal estimator of the copula correlation matrix of a Gaussian copula in fixed
dimension. We show that Σn actually retains its optimality in high-dimensional
Gaussian copula models. Therefore, efficiency gains could be made by resorting
to this estimator in many high-dimensional Gaussian copula modeling contexts
where Kendall’s tau and Spearman’s rho are currently predominant. As this con-
tribution concerns a different initial estimator of the copula component rather
than the subsequent regression setup and the estimator of B∗, its mostly self-
contained presentation can be read independently from the rest of the paper.

1.2. Notations and conventions

Let Φ−1 denote the standard normal quantile function. In what follows, the
Kronecker product ⊗ and the Hadamard product ◦ always take precedence over
the usual matrix product. Furthermore, all functions act component-wise when
applied to a vector or a matrix.

For any r ∈ [0,∞], ‖ · ‖�r denotes the element-wise matrix �r norm and ‖ · ‖r
is the matrix r-norm, i.e., for M ∈ Ra×b, ‖M‖r = maxx∈Rb,‖x‖�r≤1 ‖Mx‖�r .
In particular ‖ · ‖1 is the maximum column sum and ‖ · ‖∞ is the maximum
row sum. We also use ‖ · ‖op ≡ ‖ · ‖2 to denote the operator norm. If M is
symmetric, we write M � 0 if it is positive semidefinite, in which case we
also write λmax(M) for its largest eigenvalue (which coincides with its operator
norm), λmin(M) for its smallest eigenvalue, and C(M) = λmax(M)/λmin(M) for
its condition number.

Let Q be a generic Euclidean space, e.g., Q = Rp×q or Q = Rq. For conformal
matrices or vectorsM andN in Q, we define the inner product 〈·, ·〉 as 〈M,N〉 =
tr(M�N); hence in particular ‖M‖2�2 = 〈M,M〉. For a norm R defined on Q,
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its dual norm R∗ is given by

R∗(M) ≡ sup
N∈Q\{0}

〈M,N〉/R(N).

For any a ∈ N = {1, 2, . . .}, we write [a] = {1, . . . , a}. For readability, we will
typically use i, j ∈ [n] as sample indices, and k ∈ [p] and � ∈ [q] as coordinate
indices, though sometimes k, � ∈ [p+q]. For a matrix M, we use (M)k� to denote
its (k, �)th element, (M)k• to denote its kth row, and (M)•� to denote its �th
column. We generally use S as an index set, sometimes with subscripts, e.g.,
S ⊂ [p] or S ⊂ [p]× [q]. If a ∈ Rp and if S ⊂ [p], we use aS to denote the same
vector as a but with entries at locations [p] \ S set to zero. If M ∈ Rp×q, and
if S ⊂ [p], we use (M)S• to denote the same matrix as M but with entire rows
at locations [p] \ S set to zero, while if S ⊂ [p] × [q], we use (M)S to denote
the same matrix as M but with entries at locations [p]× [q] \ S set to zero. By
convention, the letter C with subscript denotes a universal constant that can be
taken as fixed throughout the paper. Finally, we make the blanket assumption
that the sample size n is even for simplicity.

2. Model setup and rank-based estimation

Suppose that Model (1.2) holds for fixed but unknown functions f1, . . . , fp and
g1, . . . , gq that are strictly increasing on R. For identification purpose, further
assume that these functions and the scale of ε are chosen in such a way that all
components of f(X) and g(Y) have mean 0 and variance 1. The matrix parame-
ter B∗ in Models (1.1)–(1.2) is then identifiable, as mentioned in Section 1 of [4].

The above identifiability conditions are not restrictive because Model (1.1)
or (1.2) can always be modified to ensure that they hold; see Appendix E.
Note also that while B∗ depends on the identifiability conditions, the latter
cancel with those imposed on the transformation functions f and g when the
coefficient matrix enters into the important task of predicting the responses from
a sample of X. In that sense, the identifiability conditions are thus irrelevant
and an accurate estimator of B∗ will contribute to good forecasts, as we discuss
in Appendix E and in the real-world example in Section 6.2. Thus we confine
ourselves to the specific task of estimating B∗ for the rest of the paper.

When the joint distribution of (f(X)�, ε�)� is normal with f(X) indepen-
dent of ε, Model (1.2) is referred to as a Gaussian copula regression model.
We here assume more generally that the joint distribution of (f(X)�, ε�)�

has a non-degenerate elliptical distribution [5], with f(X) uncorrelated with
ε. Then, the unobserved vector (f(X)�, g(Y)�)� also has a non-degenerate
elliptical distribution, i.e., there exists a vector μ ∈ Rp+q, a nonnegative con-
tinuous random variable R and a (p + q) × (p + q) invertible matrix A such
that (f(X)�, g(Y)�)� = μ + RAU, where U is independent of R and uni-
formly distributed on the unit sphere in Rp+q. The unique copula of the vector
(f(X)�, g(Y)�)� is then said to be elliptical. The properties of elliptical cop-
ulas are reviewed, e.g., in [13]. Members of this class are characterized by a
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univariate generator ψ (in one-to-one correspondence with the distribution of
R) and a copula correlation matrix.

Given that f and g are strictly increasing, the vectors Z = (X�,Y�)� and
(f(X)�, g(Y)�)� have the same elliptical copula; see, e.g., Theorem 2.4.3 in [31].
For this reason, the model is called an elliptical copula multivariate response
regression model. Under our identifiability conditions, the common copula corre-
lation matrix Σ of Z and (f(X)�, g(Y)�)� coincides with the covariance matrix
of the latter. Accordingly Σ can then be estimated from the observed sample of
Z by inversion of Kendall’s tau, irrespective of ψ.

Let Z1 = (X�
1 ,Y

�
1 )

�, . . . ,Zn = (X�
n ,Y

�
n )

� be a random sample of size
n ≥ 2 from Z. Also let Z = (Z1, . . . , Zp+q)

� and for each i ∈ [n], set Zi =
(Zi1, . . . , Zi(p+q))

�. For arbitrary k, � ∈ [p + q], the value of Kendall’s tau be-
tween the kth and �th coordinates of Z is then defined [18, 20] as

τk� = E{sgn(Z1k − Z2k) sgn(Z1� − Z2�)}.

Let T ∈ R(p+q)×(p+q) be the matrix whose (k, �)th entry is τk�. When Z is
elliptical, we have

Σ = sin (πT/2) , (2.1)

as mentioned, e.g., in [17, 23]. Now consider the empirical analog T̂ of T, whose
(k, �)th entry τ̂k� is the empirical version of Kendall’s tau between the kth and
�th coordinates of Z, viz.

τ̂k� =
2

n(n− 1)

∑∑
1≤i<j≤n

{sgn(Zik − Zjk) sgn(Zi� − Zj�)}.

A plug-in estimator of Σ is then given by

Σ̂ = sin(πT̂/2). (2.2)

It has also long been known that T̂ is a (matrix) U -statistic, whose limiting
distribution is (matrix) Gaussian and centered at T; see, e.g., [10]. Accordingly,

Σ̂ is a consistent estimator of

Σ = cov{(f(X)�, g(Y)�)�} =

(
ΣXX ΣXY

ΣYX ΣYY

)
=

(
ΣXX ΣXXB∗

B∗�ΣXX B∗�ΣXXB∗ +Σεε

)
. (2.3)

Here the last equality in (2.3) follows from the joint ellipticity and the uncorre-
latedness of X and ε.

Note that the plug-in estimator Σ̂XX based on Kendall’s tau is not necessarily
positive semidefinite; see, e.g., [42], as well as [8] for an early mention of this

problem. This can be an issue in regularization routines involving Σ̂XX as a
design matrix. When needed, we can rely on the projection Σ̂+

XX of Σ̂XX onto
the set of positive semidefinite matrices, viz.

Σ̂+
XX = argmin

M∈Rp×p:M�0

‖M− Σ̂XX‖�∞ . (2.4)
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This projection can be computed efficiently using the algorithm described in
Appendix A of [6]. It also comes at a minimal cost in terms of the ‖ · ‖�∞ norm
because as stated in Eq. (2.3) of [6], we have

‖Σ̂+
XX −ΣXX‖�∞ ≤ 2 ‖Σ̂XX −ΣXX‖�∞ . (2.5)

As a final remark, note that in the special case of Gaussian copulas, Σ̂ in
(2.2) can be replaced by the better-performing normal-score rank correlation
estimator Σn discussed in Section F.

3. First estimation of B∗

The rank-based estimator Σ̂ of Σ can be used to estimate the coefficient matrix
B∗ through (2.3). In this section we study a preliminary, column-by-column
estimation of B∗ that ignores any information about the precision matrix Ωεε.
In Section 3.1, a Lasso program based on the design matrix Σ̂+

XX is considered;
an alternative approach rooted in the Dantzig selector is described in Section 3.2.

For each � ∈ [q], let β∗
� denote the �th column of B∗ and let S� be the

corresponding support set, i.e., the collection of indices corresponding to the
nonzero elements of β∗

� . For any α > 0, further define the cone set corresponding
to the �th column as

C�(α) = {x ∈ Rp : ‖(x)S�
�
‖�1 ≤ α ‖(x)S�

‖�1}.

The restricted eigenvalue (RE) of ΣXX over the cone set for the Lasso ap-
proach is defined as

κ� = min
x∈C�(3)

x�ΣXXx/(2 ‖x‖2�2),

while for the Dantzig selector approach, we set

κD,� = min
x∈C�(1)

x�ΣXXx/(2 ‖x‖2�2).

Finally, let R : Rp → R with R(·) = ‖ · ‖�1 be the penalty function for the
column-by-column estimation of B∗; the dual of R is R∗(·) = ‖ · ‖�∞ .

3.1. The Lasso approach

For each � ∈ [q], define the loss L� : R
p → R for the �th column of B∗ by setting,

for arbitrary β ∈ Rp,

L�(β) = β�Σ̂+
XXβ/2− (Σ̂XY)�•�β. (3.1)

As mentioned in Section 2.2 of [4], L� is motivated by the standard least
squares loss function for the �th column of B∗ in Model (1.1), but with the
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marginally transformed (yet unobserved) quantities
∑

i∈[n] f(Xi)f(Xi)
�/n and∑

i∈[n] f(Xi)g(Yi)
�/n replaced by the plug-in estimators Σ̂+

XX and Σ̂XY, re-

spectively. The loss L� is convex because Σ̂+
XX is positive semidefinite. The

Lasso estimator of β∗
� is then given by

β̂� = argmin
β∈Rp

{L�(β) + λ�R(β)} , (3.2)

where λ� is a tuning parameter. Computationally, the term L�(β) in (3.2) can
be readily converted to an equivalent univariate response least squares form
involving the vector β. This transpires from the discussion around Eq. (2.2) in
[6], or by treating L� as a special case of the loss L in (5.1); see Appendix D.
Hence (3.2) can be solved by various efficient algorithms for the standard Lasso.

The recovery rate of the estimator β̂� is given in the following proposition,
which is the analog of Theorem 1 in [4]. In what follows, C1 is a universal
constant specified just below (7.2) in Section 7.

Proposition 3.1. Suppose that κ� > 0 and n is sufficiently large to ensure that

16C1s�
√
ln(p2)/n ≤ κ�/2. (3.3)

Suppose that the tuning parameter λ� in (3.2) satisfies

λ� ≥ 2C1

{
2‖β∗

� ‖�1
√

ln(p2)/n+
√
ln(pq)/n

}
. (3.4)

Then, with probability at least 1− 1/p2 − 2/(pq), we have

‖β̂� − β∗
� ‖�2 ≤ 6

√
s� λ�/κ�, ‖β̂� − β∗

� ‖�1 ≤ 24 s�λ�/κ�. (3.5)

Remark 3.2. The event for which (3.5) holds is the intersection of the events
E∞,1,n and E∞,2,n introduced at the start of Section 7.1. Observe that E∞,1,n∩
E∞,2,n does not depend on � ∈ [q]. This fact will be used in the proofs of
subsequent results.

Motivated by Proposition 3.1, our preliminary Lasso estimator ofB∗ is chosen
to be

B̃ = (β̂1, . . . , β̂q). (3.6)

3.2. The Dantzig selector approach

For each � ∈ [q], define the loss LD,� : Rp → R for the �th column of B∗ by
setting, for arbitrary β ∈ Rp,

LD,�(β) = β�Σ̂XXβ/2− (Σ̂XY)�•�β.

Note that this expression is identical to (3.1), but with Σ̂+
XX replaced by

Σ̂XX. In what follows, ∇ denotes the gradient operator. The Dantzig selector
estimator of β∗

� is then given by

β̂D,� = argmin
β∈Rp

R(β),
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subject to

R∗{∇LD,�(β)} ≤ λD,�, (3.7)

where ∇LD,�(β) = Σ̂XXβ− (Σ̂XY)•� and λD,� > 0 is a tuning parameter. Note

that this Dantzig selector program is always convex, even when Σ̂XX is not
positive semidefinite.

The following proposition specifies the recovery rate of the Dantzig selector
estimator β̂D,�.

Proposition 3.3. Suppose that n is sufficiently large to ensure that

ln(2p2) + 8 s� ln(12p) ≤ n (3.8)

and

8 C′(ΣXX)
√
s�ln(12p)/n+ 2C2

1s�ln(p
2)/n ≤ κD,�, (3.9)

where

C′(ΣXX) = 128(1 +
√
5)π C(ΣXX), (3.10)

where C(ΣXX) is the condition number of ΣXX. Suppose that the tuning param-
eter λD,� in (3.7) satisfies

λD,� ≥ C1

{
‖β∗

� ‖�1
√
ln(p2)/n+

√
ln(pq)/n

}
. (3.11)

Then, with probability at least 1− 2/p2 − 2/(pq), we have

‖β̂D,� − β∗
� ‖�2 ≤ 4

√
s� λD,�/κD,�, ‖β̂D,� − β∗

� ‖�1 ≤ 8 s�λD,�/κD,�.

3.3. Discussion

The two approaches described above have their own merit. In general, the Lasso
program is computationally more efficient than the Dantzig selector. When
ln(p)/n ≈ 0, however, Proposition 3.1 imposes a more stringent upper bound on
the number s� of nonzero elements in each column β∗

� ofB∗ than Proposition 3.3.

This stems from the fact that Σ̂+
XX given in Eq. (2.4) lacks some of the critical

properties of U -statistics that Σ̂XX inherits from T̂. It is thus more difficult to
control the magnitude of u�(Σ̂+

XX − ΣXX)u than that of u�(Σ̂XX − ΣXX)u
uniformly over unit vectors u. Refer to the proofs of Propositions 3.1 and 3.3
for details.

In practice, it may happen that Σ̂XX is positive semidefinite. When this
occurs, the Lasso program inherits the same relaxed conditions as the Dantzig
selector approach. Therefore, a natural question is: under what conditions is
Σ̂XX likely to be positive semidefinite? Roughly speaking, the operator norm
‖Σ̂XX − ΣXX‖op is on the order of p/n +

√
p/n if we only keep factors that
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depend explicitly on the sample size n and the ambient dimension p; see, e.g.,
Lemma B.1 in the Appendix, or Theorem 2.2 in [41]. Thus, if we assume that
the smallest eigenvalue of ΣXX is on the order of unity, then the transition point
for Σ̂XX from likely being positive semidefinite to unlikely is when p becomes
larger than n. This transition is also verified by simulation studies in Section 6.

For computational sake, and because the theoretical properties of the Lasso
program and the Dantzig selector differ mostly through the condition on the
number of nonzero elements of the columns of B∗, we take the Lasso approach
as our starting point and use B̃ in (3.6) as our preliminary estimator of B∗.

Finally we address the difference between our implementation and that of
[4], who deal with the case q = 1. When Σ̂XX is not positive semidefinite, and
transposing into our q > 1 context, Cai and Zhang [4] suggest either (i) to use

the approach of [27] for non-convex M-estimation; or (ii) to project Σ̂XX onto

the semidefinite cone to produce a positive semidefinite update Σ̂+,s
XX so as to

minimize the operator norm of Σ̂+,s
XX − Σ̂XX when restricted to vectors with

at most s nonzero elements. In our case, s will correspond to the number of
nonzero elements of the single columns of B∗.

Option (i) has the disadvantage of involving non-convex analysis and an
extra tuning parameter that should bound from above the �1 norms of the
single columns of B∗; see, e.g., Theorem 3.1 in [27]. The desire to avoid such
complications was a major motivation in [6] (see their discussion in Section 1),
which we follow. Option (ii) is difficult to carry out in practice: first, we cannot
realistically expect s to be known, and second, even if we do know s, no simple
algorithm is available to carry out the required projection, in contrast to (2.4).
Therefore, our column-by-column estimation of B∗ is more straightforward and
practical than that directly implied by [4].

4. Estimation of the precision matrix

In order to incorporate the precision matrix into a refined estimation of B∗,
we need to estimate Ωεε. Our starting point is an estimator of Σεε. Then, to
deduce an estimator of Ωεε from the estimator of Σεε, we adopt the approach
of [33, 34, 45]. From Eq. (2.3), we have

Σεε = ΣYY −B∗�ΣXXB∗.

Hence a plug-in estimate of Σεε is given, for B̃ as in (3.6), by

Σ̂εε = Σ̂YY − B̃�Σ̂XXB̃. (4.1)

By analogy with (11) in [33], we estimate Ωεε by the solution to the graphical
Lasso program, viz.

Ω̂εε = argmin
Ω∈Rq×q :Ω�0

{〈Ω, Σ̂εε〉 − ln det(Ω) + λΩ‖Ω‖�1,off}, (4.2)
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where λΩ is some tuning parameter, and ‖·‖�1,off is the �1 norm of the entries of
the argument (required to be a square matrix) excluding the diagonal elements.
As is well-known, the graphical Lasso works on non-Gaussian input. Also note
that the program (4.2) is always convex, even though Σ̂εε is not necessarily
positive semidefinite. Program (4.2) can be solved using various graphical Lasso
algorithms. If the selected algorithm requires the input to be positive semidefi-
nite, we can simply project Σ̂εε onto the semidefinite cone in a manner analogous
to (2.4) to produce an update Σ̂+

εε, and substitute Σ̂εε by Σ̂+
εε in (4.2). Then

Σ̂+
εε will satisfy an inequality analogous to (7.14) with at most an extra factor

of 2 on the right-hand side, and inspection of the proof of Proposition 4.2 reveals
that this leads to at most the same extra factor in the convergence rates in the
proposition.

Following [33], we define the maximum degree or row cardinality of Ωεε as

dp = max
�∈[q]

card[{�′ ∈ [q] \ {�} : (Ωεε)��′ �= 0}],

and let κΣεε = ‖Σεε‖∞. We further let S = {(�, �′) ∈ [q]× [q] : (Ωεε)��′ �= 0},
S� = [q]× [q]\S, and Γ = Σεε⊗Σεε ∈ Rq2 ×Rq2 . Following also the notation of
[33], for any two subsets T and T ′ of [q2], let (Γ)TT ′ denote the card(T )×card(T ′)
matrix with rows and columns of Γ indexed by T and T ′, respectively. Then,
we set κΓ = ‖(Γ)−1

SS‖∞. Finally, set

Δ(Σεε) =
{
24max

�∈[q]
(s�λ�/κ�)

}{
2‖B∗‖1 + 24max

�∈[q]
(s�λ�/κ�)

}
+ C1

{
‖B∗‖21

√
ln(p2)/n+

√
ln(q2)/n

}
.

The recovery rate for the estimator Ω̂εε is stated below and derived in Sec-
tion 7 under the following standard irrepresentability condition, introduced in
Assumption 1 in [33], for the graphic Lasso.

Assumption 4.1. There exists α ∈ (0, 1] such that maxe∈S� ‖(Γ){e}S(Γ)−1
SS‖1 ≤

1− α.

Proposition 4.2. Suppose that, for all � ∈ [q], κ� > 0, λ� in (3.2) satisfies
(3.4), and n is sufficiently large to ensure that (3.3) holds (so that Proposi-
tion 3.1 applies). Further assume that Assumption 4.1 is satisfied and that n is
sufficiently large to ensure that

6 (1 + 8/α)2 max(κΣεεκΓ, κ
3
Σεε

κ2
Γ)d×Δ(Σεε) ≤ 1. (4.3)

Finally, suppose that the tuning parameter λΩ in (4.2) satisfies

λΩ = 8Δ(Σεε)/α. (4.4)

Then, with probability at least 1− (1/p+ 1/q)2, the estimator Ω̂εε satisfies

‖Ω̂εε −Ωεε‖�∞ ≤ {2κΓ(1 + 8/α)}Δ(Σεε) ≡ Δ∞(Ωεε) (4.5)

and
‖Ω̂εε −Ωεε‖op ≤ ‖Ω̂εε −Ωεε‖1 ≤ dp Δ∞(Ωεε) ≡ Δ1(Ωεε). (4.6)
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Remark 4.3. When (4.6) holds, Ω̂εε is positive semidefinite if n is large enough
to ensure that

Δ1(Ωεε) ≤ λmin(Ωεε). (4.7)

Remark 4.4. The event with probability at least 1− (1/p+ 1/q)2 in Proposi-
tion 4.2 is in fact the event E∞,1,n ∩ E∞,2,n ∩ E∞,3,n, for E∞,1,n, E∞,2,n and
E∞,3,n introduced at the start of Section 7.1. This explicit representation will
be used in the proofs of subsequent results.

5. Second estimation of the coefficient matrix

We now study improved estimates of the coefficient matrix B∗ which exploit
the estimator Ω̂εε from Section 4 and incorporate assumptions on the over-
all structure of B∗. Preliminary notions are first reviewed in Section 5.1. An
element-wise sparse model and a row-sparse model on B∗ are then considered
in Sections 5.2 and 5.3, respectively. A Lasso program based on Σ̂+

XX is used
in Sections 5.2 and 5.3.1. Because the Lasso approach fails to reveal fully the
benefit of using the group penalty under the row-sparse model, a group Dantzig
selector program based on Σ̂XX is considered in Section 5.3.2.

5.1. Preliminaries

The loss functions L(·;S,S×,Ω) : Rp×q → R used below to estimate B∗ depend
on matrices S ∈ Rp×p, S× ∈ Rp×q, and Ω ∈ Rq×q. For arbitrary B ∈ Rp×q, set

L(B;S,S×,Ω) =
〈
B�SB/2− S�

×B,Ω
〉

= vec(B)�Ω⊗ S vec(B)/2− tr(ΩS�
×B). (5.1)

The quantities S, S×, Ω in (5.1) will either be ΣXX, ΣXY andΩεε, respectively,
or their estimates. When no ambiguity occurs, we write L(·;S,S×,Ω) as L.
The loss L is motivated by the B-dependent component of the log-likelihood
of Model (1.1) when the joint distribution of (f(X), g(Y)) is normal; see, e.g.,
Eq. (1.1) in [35], or Section 2.2 of [22, 43]. When the distribution of (f(X), g(Y))
is elliptical, L remains appropriate because L(B;ΣXX,ΣXY,Ωεε) is minimized
when B = B∗.

Following [30], define, for all Δ ∈ Q,

δL(Δ,B∗) = δL(Δ,B∗;S,S×,Ω)

≡ L(B∗ +Δ;S,S×,Ω)− L(B∗;S,S×,Ω)− 〈∇L(B∗;S,S×,Ω),Δ〉
=

〈
Δ�SΔ,Ω

〉
/2 = vec(Δ)�Ω⊗ S vec(Δ)/2, (5.2)

where ∇L(B;S,S×,Ω) = SBΩ − S×Ω. Then L is said to satisfy a restricted
eigenvalue (RE) condition with constant κ > 0 over a set C if

∀Δ∈C δL(Δ,B∗) ≥ κ ‖Δ‖22. (5.3)
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5.2. Element-wise sparsity

AmatrixB∗ is called element-wise sparse if its support set S ⊂ Rp×q is such that
s = card(S) � p × q. Accordingly, to obtain an element-wise sparse estimator
of B∗, it is natural to regularize the least squares program with the penalty
R(·) = ‖ · ‖�1 , i.e., to estimate B∗ by

B̂ = argmin
B∈Rp×q

{L(B; Σ̂+
XX, Σ̂XY, Ω̂εε) + λR(B)}, (5.4)

where λ is a tuning parameter. As for (3.2), the term L(B; Σ̂+
XX, Σ̂XY, Ω̂εε) in

(5.4) can be readily converted to an equivalent univariate response least squares
form involving the vectorized B. Hence (5.4) can be solved by various efficient
algorithms for the standard Lasso. See Appendix D for details.

The recovery rate for the estimator B̂ is stated below and derived in Section 7
under the following assumption on the RE condition for the population loss
function.

Assumption 5.1. The loss L(·;ΣXX,ΣXY,Ωεε) satisfies RE condition (5.3)
with constant κ > 0 over the cone set C = {M ∈ Rp×q : ‖(M)S�‖�1 ≤
3 ‖(M)S‖�1}.

We define κ′, the empirical counterpart to κ in Assumption 5.1, as

κ′ = κ− ‖ΣXX‖opΔ1(Ωεε)/2

− 16C1{‖Ωεε‖�∞ +Δ∞(Ωεε)}s
√

ln(p2)/n. (5.5)

Theorem 5.2. Suppose that Assumption 5.1 and the assumptions of Proposi-
tion 4.2 hold. Further suppose

(i) n is sufficiently large to ensure that, for κ′ defined in (5.5), κ′ ≥ κ/2;
(ii) the tuning parameter λ in (5.4) satisfies

λ ≥ 2C1

[
2{‖B∗Ωεε‖1 + ‖B∗‖1Δ1(Ωεε)}

√
ln(p2)/n

+ {‖Ωεε‖1 +Δ1(Ωεε)}
√

ln(pq)/n
]
. (5.6)

Then, with probability at least 1− (1/p+ 1/q)2, the estimator B̂ satisfies

‖B̂−B∗‖�2 ≤ 6
√
s λ/κ, ‖B̂−B∗‖�1 ≤ 24 sλ/κ.

5.3. Row sparsity

A matrix B∗ is called row-sparse if the set SG ⊂ [p] of indices corresponding to
the nonzero rows of B∗ is such that sG = card(SG) � p. In order to obtain a
row sparse estimator of B∗, it is natural to regularize the least squares program
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by the penalty RG(·) = ‖ · ‖�1,�2 , i.e., the �1 norm of the �2 norms of the rows
of a matrix, given by

‖M‖�1,�2 =

p∑
k=1

‖(M)k•‖�2 =

p∑
k=1

{ q∑
�=1

(M)2k�

}1/2

.

The dual of RG is R∗
G(·) = ‖ · ‖�∞,�2 , i.e., the maximum norm of the �2

norms of the rows of a matrix. In what follows, the appropriate cone set for the
row-sparse model is given, for any α > 0, by

CG(α) ≡ {M ∈ Rp×q : ‖(M)S�
G•‖�1,�2 ≤ α ‖(M)SG•‖�1,�2},

i.e., for any matrix in the cone set CG(α), the ‖ · ‖�1,�2 norm of the rows of the
matrix with indices in [p] \ SG is bounded by α times the ‖ · ‖�1,�2 norm of the
rows of the same matrix with indices in SG.

5.3.1. The group Lasso approach

A group Lasso estimate of B∗ is given by

B̂G = argmin
B∈Rp×q

{L(B; Σ̂+
XX, Σ̂XY, Ω̂εε) + λGRG(B)}, (5.7)

where λG is a tuning parameter. As discussed immediately following (5.4), (5.7)
can be efficiently tackled by any of the fast solvers for the standard group Lasso.

The recovery rate for B̂G is stated next and derived in Section 7 under the
following assumption on the RE condition for the population loss function, which
is the row-sparse analog of Assumption 5.1.

Assumption 5.3. The loss L(·;ΣXX,ΣXY,Ωεε) satisfies RE condition (5.3)
with constant κG > 0 over the cone set CG(3).

We define the empirical counterpart to κG in Assumption 5.3 as

κ′
G = κG − ‖ΣXX‖opΔ1(Ωεε)/2

− 16C1{‖Ωεε‖op +Δ1(Ωεε)}sG
√

ln(p2)/n. (5.8)

Theorem 5.4. Suppose that Assumption 5.3 and the assumptions of Proposi-
tion 4.2 hold. Further suppose

(i) n is sufficiently large to ensure that (4.7) holds and, for κ′
G defined in

(5.8), κ′
G ≥ κG/2;

(ii) the tuning parameter λG in (5.7) satisfies

λG ≥ 2 {‖Ωεε‖op +Δ1(Ωεε)} ×
{
2C1 ‖B∗‖1

√
q ln(p2)/n

+ C2

√
C(ΣYY)/n

√
ln(p2) + ln(5)q

}
, (5.9)
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where C2 is the absolute constant that appears in Proposition 7.5. Then, with
probability at least 1− (1/p+ 1/q)2 − 1/p, the estimator B̂G satisfies

‖B̂G −B∗‖�2 ≤ 6
√
sG λG/κG, ‖B̂G −B∗‖�1,�2 ≤ 24 sGλG/κG.

In its current form, the group Lasso approach does not fully reveal the benefit
of the row-sparse model. For instance, say B∗ has exactly sG nonzero rows, and
all elements of these rows are nonzero. There are then qsG nonzero elements in
B∗. In this case, if the tuning parameter λ is taken to be the lower limit of the
specification (5.6), and if Δ1(Ωεε) and the parameters that are not explicitly
dependent on the ambient dimensions p and q (e.g., ‖B∗‖1) are all bounded, then
by Theorem 5.2, with high probability (i.e., for p and q large), the element-wise
Lasso program from Section 5.2 yields

‖B̂−B∗‖�2 � √
qsG ×

√
ln(p)/n+ ln(pq)/n. (5.10)

By comparison, under the same conditions, but with the tuning parameter
λG taken to be the lower limit of the specification (5.9), the first term in the
curly bracket in (5.9) is dominant, and so by Theorem 5.4 the group Lasso
program yields

‖B̂G −B∗‖�2 � √
qsG ×

√
ln(p)/n. (5.11)

Thus if p ≈ q, the element-wise and the group Lasso programs yield the same
rate, even though the more structured row-sparse model should intuitively give
the latter an advantage, as we discuss now.

When the group Lasso approach is used in the traditional non-copula context
with fixed design matrix and independent Gaussian errors, Corollary 4.1 in [29]
states that the recovery rate for B∗ under the �2 (or Frobenius) norm is bounded
above, for arbitrary p and q, by a constant multiple of√

sG/n×
√
q + ln(p). (5.12)

This bound is strictly better than the rate (5.11) implied by Theorem 5.4, and
up to a possible replacement of ln(p) by ln(p/sG), this is also the minimax lower
bound; see, e.g., the discussion below Theorem 6.1 in [29]. Moreover, under suit-
able conditions (e.g., the entries in the nonzero rows of B∗ all have nonnegligible
size) this upper bound is also strictly better than the lower bound achievable
by the element-wise Lasso program; see, e.g., the discussion in Section 7 in [29].

For reasons similar to those given in Section 3.3, the bound on the recovery
rate in Theorem 5.4 is suboptimal because ‖(Σ̂+

XX − ΣXX)B∗‖�∞,�2 is harder

to control than ‖(Σ̂XX−ΣXX)B∗‖�∞,�2 , as transpires from the proofs of Theo-

rems 5.4 and 5.7. Also, Σ̂XX may be positive semidefinite, though if the small-
est eigenvalue of ΣXX is on the order of unity, this is increasingly unlikely as p
grows larger than n. On the event {Σ̂XX � 0} = {Σ̂+

XX = Σ̂XX}, we have the
following alternative to Theorem 5.4.
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Proposition 5.5. Assume the same conditions as in Theorem 5.4, except that
the tuning parameter λG in (5.7) now satisfies

λG ≥ 2
[
C2

[√
C(ΣXX){‖B∗Ωεε‖op + ‖B∗‖opΔ1(Ωεε)}

+
√
C(ΣYY){‖Ωεε‖op +Δ1(Ωεε)}

]√
{ln(p2) + ln(5)q}/n

+ C2
1 {‖B∗Ωεε‖1 + ‖B∗‖1Δ1(Ωεε)}

√
q ln(p2)/(2n)

]
. (5.13)

Then, on the intersection of the event {Σ̂XX � 0} and another event with

probability at least 1− (1/p+ 1/q)2 − 9/p, the estimator B̂G satisfies

‖B̂G −B∗‖�2 ≤ 6
√
sG λG/κG, ‖B̂G −B∗‖�1,�2 ≤ 24 sGλG/κG.

As will be explained below Theorem 5.7, if the tuning parameter λG is taken
to be the lower limit of the specification (5.13), whose right-hand side is precisely
twice the right-hand side of (5.17), and under suitable conditions, the recovery
rate for B∗ stated in Proposition 5.5 under the �2 norm matches (5.12) and thus
reflects the improvements brought about by the group Lasso program (over an
element-wise Lasso program) under a row-sparse model. However, this result is
not universally applicable, because the stated rates are only shown on the event
{Σ̂XX � 0}, whose probability becomes very small when n is much smaller than
p. To properly tackle the row-sparse model, it is thus preferable to estimate B∗

using a group Dantzig selector program, as detailed next.

5.3.2. The group Dantzig selector approach

The group Dantzig selector estimator of B∗ is defined as

B̂D,G = argmin
B∈Rp×q

RG(B), (5.14)

subject to

R∗
G{∇L(B; Σ̂XX, Σ̂XY, Ω̂εε)} ≤ λD,G, (5.15)

where λD,G is a tuning parameter. As already noted in Section 3.2, this Dantzig

selector program is always convex even when Σ̂XX is not positive semidefinite.
The recovery rate for B̂D,G given next is derived in Section 7 under the

following assumption on the RE condition for the population loss function, which
is the Dantzig selector analog of Assumption 5.3.

Assumption 5.6. The loss L(·;ΣXX,ΣXY,Ωεε) satisfies RE condition (5.3)
with constant κD,G > 0 over the cone set CG(1).

We define κ′
D,G, the empirical counterpart to κD,G in Assumption 5.6, as

κ′
D,G = 2κD,G − ‖ΣXX‖opΔ1(Ωεε)−

[
2C2

1{sGln(p2)/n}
+ 8 C′(ΣXX){sGln(12p)/n}1/2

]
{‖Ωεε‖op +Δ1(Ωεε)}. (5.16)
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Theorem 5.7. Suppose that Assumption 5.6 and the assumptions of Proposi-
tion 4.2 hold. Further suppose

(i) n is sufficiently large to ensure that (4.7), and (3.8) with s� replaced by
sG, hold, and for κ′

D,G defined in (5.16), κ′
D,G ≥ κD,G;

(ii) the tuning parameter λD,G in (5.15) satisfies

λD,G ≥ C2

[√
C(ΣXX){‖B∗Ωεε‖op + ‖B∗‖opΔ1(Ωεε)}

+
√
C(ΣYY){‖Ωεε‖op +Δ1(Ωεε)}

]√
{ln(p2) + ln(5)q}/n

+ C2
1{‖B∗Ωεε‖1 + ‖B∗‖1Δ1(Ωεε)}

√
q ln(p2)/(2n). (5.17)

Then, with probability at least 1−(1/p+1/q)2−9/p, the estimator B̂D,G satisfies

‖B̂D,G −B∗‖�2 ≤ 4
√
sG λD,G/κD,G, (5.18)

and

‖B̂D,G −B∗‖�1,�2 ≤ 8 sGλD,G/κD,G. (5.19)

To compare the recovery rate given in Theorem 5.7 to (5.12) in terms of the
�2 norm, assume for simplicity that all quantities not explicitly dependent on
the ambient dimensions p and q are bounded. Further assume that the tuning
parameter λD,G is the lower limit of the specification (5.17) and that

(A) Δ1(Ωεε) remains bounded; (B) ln(p)/
√
n remains bounded. (5.20)

Condition (A) ensures that Ω̂εε is a good estimate ofΩεε while Condition (B)
guarantees that the row cardinality p of B∗ is not too large compared to n. The
latter condition stems from the second term on the right-hand side of (5.17),
which traces back to a second order term in the Taylor expansion of the sine
transformation (2.2) from the Kendall’s tau matrix estimate T̂XX to the copula

correlation matrix estimate Σ̂XX.

Under these mild conditions, λD,G is on the order of
√
{q + ln(p)}/n. Thus

the recovery rate in (5.18), which is in terms of the �2 norm for estimating B∗

under the row-sparse multivariate response elliptical copula regression model,
matches the recovery rate (5.12), which is also the rate achievable for the group
Lasso estimator in the traditional non-copula context with Gaussian errors. In
addition, this rate is indeed superior to that achievable with the element-wise
Lasso estimator.

6. Numerical performance

In this section we investigate the finite-sample numerical properties of the pro-
posed estimators.
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6.1. Simulation studies

In this simulation study, we focus exclusively on estimators for B∗ based on
the plug-in estimator (2.2) for Σ by inversion of Kendall’s tau. Under the uni-
variate response scenario considered in Section 4.1 of [4], when f and g are not
the identity function, such rank-based estimators for B∗ (i) routinely offer ten-
fold improvement in estimation accuracy compared to those based on sample
covariance matrix for Σ, because the sample covariance matrix is not robust
under marginal transformations, and (ii) are almost as good as the oracle esti-
mator that has full knowledge of f and g. Therefore, we omit comparisons with
methods based on the sample covariance matrix.

We consider the following specifications for B∗:

(a) element-wise sparse or row sparse;
(b) moderate dimension setting, (p, q) = (20, 10), or high dimension setting,

(p, q) = (100, 10).

For the high-dimensional setting, we chose to expand B∗ by enlarging p. Two
competing factors are at work here. As discussed below Proposition 5.5 and The-
orem 5.7, we know that under a row-sparse model for B∗ and under appropriate
conditions such as those stated in Eq. (5.20), the group Lasso estimator B̂G

achieves the rate (5.12) on the event {Σ̂XX � 0} while the element-wise Lasso

estimator B̂ achieves the rate (5.10). It is easily checked from these rates that
enlarging p increasingly favors the group Lasso estimator. When p becomes
comparable to, or larger than, n, however, the event {Σ̂XX � 0} very often
fails. The extent to which the group Lasso estimator remains superior to the
element-wise Lasso estimator when Σ̂XX � 0 no longer holds must then be
assessed empirically.

The structure of B∗ was obtained as follows. First, following [35], Toeplitz
structures were imposed on ΣXX and Σεε by setting

(ΣXX)k� = 0.7|k−�|, (Σεε)k� = Dρ|k−�|

with D = 0.5 and the value of ρ ranging from 0 to 0.9 to model the varying
strength of the correlation among the components of the error vector ε. Then
Ωεε = Σ−1

εε is a tri-diagonal sparse matrix.

To obtain a row sparse model on B∗, we first generated a p × q matrix B̃∗

so that exactly 80% of its p rows (chosen at random) were entirely filled with
zeros. For the remaining 20% of the rows, within each column 75% of the p/5
elements (chosen at random within each column) were drawn from the uniform
distribution on the set {−1,+1} while the remaining 25% were made equal to
zero.

To obtain an element-wise sparse model on B∗ instead, we first generated a
p× q matrix B̃∗ so that in each of its columns, 80% of its p elements (chosen at
random within each column) are equal to zero; the remaining 20% of the entries

of B̃∗ were drawn from the uniform distribution on {−1,+1}.
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In both cases, each column of B̃∗ was normalized to ensure that the diagonal
elements of B̃∗�ΣXXB̃∗ equal 1−D. As a result, the diagonal elements of the
sum Σεε + B̃∗�ΣXXB̃∗ are all 1 and hence this sum is indeed a correlation
matrix. This normalized version of B̃∗ was taken to be the final coefficient
matrix B∗. Samples (X�

1 ,Y
�
1 )

�, . . . , (X�
100,Y

�
100)

� were then generated from a
multivariate normal distribution with covarianceΣ given in (2.3). This served as
the observed sample because Kendall’s tau is invariant to increasing transforms
of the margins and nothing else is needed to estimate B∗.

Using this design, we were then able to compare the performance of three
estimators:
(i) the element-wise Lasso estimator B̂ with precision matrix included as

described in Section 5.2;
(ii) the group Lasso estimator B̂G with precision matrix included as described

in Section 5.3.1;
(iii) as a benchmark, the element-wise Lasso estimator without precision ma-

trix incorporated, obtained in the same way as B̂ described in Section 5.2
but with precision matrix estimate Ω̂εε simply set to the identity matrix in
Rq×q. This estimator of B∗ seemed to perform better than the preliminary
column-by-column estimator B̃ described in Section 3.1.

For the first two estimators, the tuning parameters λ1, . . . , λq needed for the
preliminary estimation in Section 3.1 were chosen column by column via 5-fold
cross-validation, while the tuning parameter combination (λΩ, λ) in Sections 4
and 5.2 (for the first estimator) or (λΩ, λG) in Sections 4 and 5.3.1 (for the sec-
ond estimator) were chosen jointly on a 2D-grid, also via 5-fold cross-validation.

Following [35], the performance of the three estimators was measured by

ME(B̂,B) = tr{(B̂−B)�ΣXX(B̂−B)},

for any estimator B̂. In each case, 500 replicates were drawn for each B∗ and ρ
specification. The median of ME(B̂,B) based on the 500 repetitions is presented
in Figure 1 for the three estimators.

The graphs in the left panels of Figure 1 correspond to the element-wise
sparse model. They should favor the element-wise Lasso estimator over the
group Lasso estimator; as ρ increases, they should also favor the estimator with
precision matrix incorporated over the one without. The latter comment applies
to the graphs in the right panels of Figure 1, which correspond to the row-sparse
model. In this case, however, the group Lasso estimator should be preferred over
the element-wise Lasso estimator, at least in the moderate dimension case with
(p, q) = (20, 10), where empirically only .04% of all the Σ̂XX generated (from
both the element-wise sparse model and the row-sparse model, at all ρ values)
failed to be positive semidefinite.

These are indeed the general trends featured in Figure 1, with a few anoma-
lies. For the high-dimensional case with (p, q) = (100, 10), none of the Σ̂XX

generated was positive semidefinite. Thus it may be a little surprising that even
in this case, under the row-sparse model, the group Lasso estimator outper-
forms the element-wise Lasso estimator, by an even larger margin than under
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Fig 1. Plot of ME(B̂,B) as a function of correlation ρ for three estimators B̂: the element-
wise Lasso with precision matrix, the group Lasso with precision matrix, and the element-
wise Lasso without precision matrix. Each panel corresponds to a different combination of
(p, q) = (20, 10) or (100, 10) and the structure of B (element-wise sparse or row-sparse). Each
point is based on 500 replicates of random samples of size n = 100.

the moderate dimension setting. Perhaps the projection operation (2.4) does not

cause much variation from Σ̂XX to Σ̂+
XX, even though (2.5) is our only theoret-

ical guarantee. Also, it is unclear why, in this high-dimensional case and under
the element-wise sparse model, the group Lasso estimator still outperforms the
element-wise Lasso estimator. This should be investigated further.

6.2. Illustration

We also studied the performance of our estimators on data summarily known as
the “Better Life Index,” gathered for the member states of the Organization for
Economic Co-operation and Development (OECD). The index “aims to involve
citizens in the debate on measuring the well-being of societies, and to empower
them to become more informed and engaged in the policy-making process that
shapes all our lives.” For each member state, the index consists of 24 socioeco-
nomic variables. We used the data for the first N = 34 member states in the
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2017 edition of the index, which is publicly available at https://stats.oecd.
org/Index.aspx?DataSetCode=BLI

We divided the 24 variables into q = 7 responses and p = 17 explanatory
variables. Three of the response variables were those labeled “Life satisfaction
average score,” “Quality of support network” and “Feeling safe walking alone,”
which are arguably subjective measures. The four other response variables were
household income and wealth, as well as measures of air and water quality.

Because in practice we do not have access to the true coefficient matrix
B∗, we measured the performance of the various estimators by their predictive
power. Given that the sample size is small, we compute for each member state
i ∈ [N ] an empirical predictor Û∗

(−i) using the data {xj : j ∈ [N ], j �= i} from
the remaining member states, and then compared the empirical predictor to
the actual response yi. Specifically, the empirical predictor was computed as in
(E.1) using

f̂(x) = (Φ−1{F ∗
n,1(x1)}, . . . ,Φ−1{F ∗

n,p(xp)}),
ĝ(y) = (Φ−1{G∗

n,1(y1)}, . . . ,Φ−1{G∗
n,q(yq)}),

where Φ denotes the cdf of a standard Normal distribution, N (0, 1), while
F ∗
n,k and G∗

n,� are respectively the empirical distribution functions for the kth
marginal of X and the �th marginal of Y; see (F.1). Refer to Appendix E for

the justification of these choices of f̂ and ĝ.
We considered seven estimators of B∗: the element-wise Lasso estimator with

precision matrix incorporated, B̂Ω; the group Lasso estimator with precision
matrix incorporated B̂G,Ω; their counterparts B̂ and B̂G without incorporating
the precision matrix; the regular (i.e., without considering the copula structure)

element-wise Lasso estimator B̃ and the regular group Lasso estimator B̃G,
neither incorporating the precision matrix; and finally the ordinary least squares
estimator B̃OLS. Following [11], we considered the �1 norm of the deviation

Û∗
(−i) − yi for i ∈ {1, . . . , 34}.
Table 1 summarizes the performance of the empirical predictor Û∗

(−i) for the
various estimators. The results can be summarized as follows:

(a) Both the element-wise Lasso estimator B̂ and the regular group Lasso

estimator B̃G, which ignores the copula structure, perform better than
the regular element-wise Lasso estimator B̃.

(b) The estimator B̂G, which uses both the group penalty and the copula

structure, thus combining the features of both B̂ and B̃G, outperform the
latter two estimators.

(c) Further incorporating precision matrix estimation to the estimators B̂ and

B̂G, which result in the estimators B̂Ω and B̂G,Ω respectively, brought
mixed results.

(d) The group Lasso estimator B̂G,Ω with precision matrix estimation per-

forms somewhat better than B̂G, but the element-wise Lasso estimator
with precision matrix estimation B̂Ω performs slightly worse than its coun-
terpart B̂.

https://stats.oecd.org/Index.aspx?DataSetCode=BLI
https://stats.oecd.org/Index.aspx?DataSetCode=BLI
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Table 1

Performance of the empirical predictor Û∗
(−i)

using various estimators of B∗ as measured

by ‖Û∗
(−i)

− yi‖�1 , where i ∈ {1, . . . , 34}.

B̂Ω B̂G,Ω B̂ B̂G B̃ B̃G B̃OLS

Median 40.7 35.4 40.0 37.4 53.6 46.8 60.9
80% Quantile 57.5 55.7 56.7 56.5 68.9 59.5 91.5
Sum 1417 1386 1403 1389 1838 1559 2302

Carefully checking the estimators Ω̂εε for the precision matrix reveals that
the fitted Ω̂εε does not differ significantly from the identity matrix for most of
the 34 empirical predictors calculated. In this illustration, therefore, the benefit
of including precision matrix estimation outweighs the variation caused by the
estimation for the group Lasso case, but not in the element-wise Lasso case. As
a side note, personal income is consistently chosen by the estimator B̂G,Ω as
the variable having the most predictive power.

7. Mathematical arguments

7.1. Preliminaries

The following basic results and terminologies will be used in the proofs of the
main results. First recall some basic deviation properties of Kendall’s tau matrix
T̂ and the plug-in estimator Σ̂. It is straightforward to show, e.g., through the
equation display just above (4.28) on p. 1207 of [41], that there exist events
E∞,1,n, E∞,2,n, E∞,3,n, with probabilities at least 1−1/p2, 1−2/(pq), 1−1/q2

respectively, such that

‖T̂XX −TXX‖�∞ ≤ 2 (C1/π)
√
ln(p2)/n, (7.1)

‖T̂XY −TXY‖�∞ ≤ 2 (C1/π)
√
ln(pq)/n,

‖T̂YY −TYY‖�∞ ≤ 2 (C1/π)
√
ln(q2)/n (7.2)

on the events E∞,1,n, E∞,2,n, E∞,3,n, respectively. Here C1 is an absolute con-
stant that can be set equal to

√
2π. Eqs. (2.1), (2.2) and the Lipschitz property

of the sine function imply that

‖Σ̂XX −ΣXX‖�∞ ≤ C1

√
ln(p2)/n, (7.3)

‖Σ̂XY −ΣXY‖�∞ ≤ C1

√
ln(pq)/n, (7.4)

‖Σ̂YY −ΣYY‖�∞ ≤ C1

√
ln(q2)/n, (7.5)

on E∞,1,n, E∞,2,n, E∞,3,n, respectively. Hence, by (7.3) and (2.5), on the event
E∞,1,n we have

‖Σ̂+
XX −ΣXX‖�∞ ≤ (2C1)

√
ln(p2)/n. (7.6)
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Next, we introduce some terminology regarding the Lasso and the Dantzig
selector. Given a generic Euclidean space Q, consider a pair of subspaces M ⊂
M of Q. We denote the orthogonal complement of M by M⊥. Following [30],
we say that a norm-based penalty function R : Q → R is decomposable with
respect to (M,M⊥) if

∀θ∈M,γ∈M⊥ R(θ + γ) = R(θ) +R(γ).

Next, we define the subspace compatibility constant with respect to the pair
(R, ‖ · ‖�2) as

Ψ(M) = sup
θ∈M\{0}

R(θ)/‖θ‖�2 .

Then, we denote the projections of θ ∈ Q onto M, M and M⊥ by θM, θM
and θM⊥ , respectively. By a cone set, we mean a subset C of Q satisfying the
property that there exists C ≥ 0 such that all θ ∈ C satisfies R(θM⊥) ≤
CR(θM).

Next, let F : Q → R be a generic loss function and let β∗ denote the true
(but unknown) parameter value. Let also C ⊂ Q be an arbitrary constraint set
which will typically be a “cone set.” Following [30], we define, for all δ ∈ Q,

δF(δ,β∗) ≡ F(β∗ + δ)−F(β∗)− 〈∇F(β∗), δ〉.

Then F is said to satisfy a restricted strong convexity (RSC) condition with
curvature κF and tolerance function τF over the set C if

∀δ∈C δF(δ,β∗) ≥ κF ‖δ‖22 − τF (β
∗). (7.7)

If τF (β
∗) is zero, then F is said to satisfy a restricted eigenvalue (RE) con-

dition with constant κF over the set C. Conversely, the RE condition with
constant κF over a set C implies the RSC condition with curvature κF and
tolerance function equal to zero over the same set C. The definitions of δL and
the RE condition of L given in Section 5.1 are special cases of these general
concepts.

Finally, for the analysis of Dantzig selectors, a variant of the above RSC
condition will be used. By analogy with [28], a function F is said to satisfy
RSC-D condition with curvature κF and tolerance function τF over the set C if

∀δ∈C 〈∇F(β∗ + δ)−∇F(β∗), δ〉 ≥ κF ‖δ‖22 − τF (β
∗). (7.8)

If F is a quadratic function, as will be the case here, the left-hand sides of
(7.7) and (7.8) are both quadratic in δ (the exact expressions differ by a factor
2), and thus the RSC and RSC-D conditions are largely identical on the same
cone set C, though they could differ further for more general loss functions. One
relation between the two conditions is that, as commented on p. 565 of [28], if
F is convex, then the RSC condition implies the RSC-D condition.
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7.2. Proofs for Section 3

Proof of Proposition 3.1. The proof relies on the following result on the RSC
condition.

Proposition 7.1. On the event E∞,1,n the loss function L� satisfies RSC con-

dition (7.7) with curvature κ� − 16C1s�
√
ln(p2)/n and tolerance function van-

ishing on the cone set C�(3).

Proof of Proposition 7.1. We fix arbitrary δ ∈ C�(3). It is easy to see that

∇L�(β
∗
� ) = Σ̂+

XXβ∗
� − (Σ̂XY)•�,

so that in view of Definition (5.2),

δL�(δ,β
∗
� ) = L�(β

∗
� + δ)− L�(β

∗
� )− 〈∇L�(β

∗
� ), δ〉 = δ�Σ̂+

XXδ/2

= δ�ΣXXδ/2 + δ�(Σ̂+
XX −ΣXX)δ/2.

It then follows from two successive applications of Hölder’s inequality and the
definition of κ� that

δL�(δ,β
∗
� ) ≥ κ�‖δ‖2�2 − ‖Σ̂+

XX −ΣXX‖�∞ × ‖δ‖2�1/2. (7.9)

Because δ ∈ C�(3), we also have

‖δ‖�1 = ‖δS�
‖�1 + ‖δS�

�
‖�1 ≤ 4 ‖δS�

‖�1 ≤ 4
√
s� ‖δS�

‖�2 . (7.10)

Now we focus on the event E∞,1,n. Plugging (7.10) into (7.9), we have

δL�(δ,β
∗
� ) ≥ κ� ‖δ‖2�2 − 8 s� ‖Σ̂+

XX −ΣXX‖�∞‖δ‖2�2
≥ {κ� − 16C1s�

√
ln(p2)/n}‖δ‖2�2 ,

where the last step follows by (7.6), which holds on the event E∞,1,n. This
concludes the proof.

We wish to apply Corollary 1 in [30]. To this end, we need to (i) identify the
subspaces M and M; (ii) check that the appropriate RSC condition holds; (iii)
check that the tuning parameter is large enough compared to the noise level.
We carry out these tasks in sequence. We focus on the event E∞,1,n ∩ E∞,2,n,
whose probability is at least 1− 1/p2 − 2/(pq). First, we set

M = M = {β = (β1, . . . , βp)
� ∈ Rp : ∀k∈S�

�
βk = 0}. (7.11)

Then β∗
� ∈ M and the penalty R is decomposable with respect to (M,M⊥

).
The subspace compatibility constant is Ψ(M) =

√
s�.

Next, starting from Proposition 7.1, we conclude that, over the cone set C�(3),
the loss function L� satisfies RSC condition (7.7) with tolerance function equal
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to zero and curvature κ′
� = κ�/2 > 0, because κ�/2 ≤ κ�− 16C1s�

√
ln(p2)/n by

(3.3).
Furthermore, recall that the dual norm R∗ of R is given by R∗(·) = ‖ · ‖�∞ .

We then have

R∗{∇L�(β
∗
� )} = ‖Σ̂+

XXβ∗
� − (Σ̂XY)•�‖�∞

= ‖(Σ̂+
XX −ΣXX)β∗

� − (Σ̂XY −ΣXY)•�‖�∞ ,

and hence

R∗{∇L�(β
∗
� )} ≤ ‖Σ̂+

XX −ΣXX‖�∞ × ‖β∗
� ‖�1 + ‖(Σ̂XY −ΣXY)•�‖�∞

≤ C1{2‖β∗
� ‖�1

√
ln(p2)/n+

√
ln(pq)/n} ≤ λ�/2.

In the transition to the last line, we have invoked (7.4) and (7.6), and the last
inequality follows by the choice of λ� in (3.4). The conclusions of the proposition
then follow from Corollary 1 in [30].

Proof of Proposition 3.3. Set δ = 1/p2 and consider the event Eop,k,n = Eop,k,δ,n

from Lemma B.1, whose probability is at least 1− 1/p2. The proof relies on the
following result on the RSC-D condition.

Proposition 7.2. Suppose that n is sufficiently large to ensure that (3.8) holds.
On the event E∞,1,n∩Eop,4s�,n, the loss function LD,� satisfies RSC-D condition
(7.8) with curvature

2κD,� − {8 C′(ΣXX)
√

s� ln(12p)/n+ 2C2
1s� ln(p

2)/n}

and tolerance function equal to zero over the cone set C�(1).

Proof. We fix an arbitrary δ ∈ C�(1). If s� = 0, then δ = 0 and the conclusion
of the proposition follows trivially, so we assume that s� > 0. We have

〈∇LD,�(β
∗ + δ)−∇LD,�(β

∗), δ〉 = δ�ΣXXδ + δ�(Σ̂XX −ΣXX)δ,

from which it is easy to see that

〈∇LD,�(β
∗ + δ)−∇LD,�(β

∗), δ〉 ≥ 2κD,�‖δ‖2�2 − |δ�(Σ̂XX −ΣXX)δ|. (7.12)

We fix δ = 1/p2, let k ∈ N be an arbitrary integer, and assume that (B.1)
holds. We focus on the event E∞,1,n ∩ Eop,k,n, on which (B.2) in Lemma B.1
holds with u = δ (and δ = 1/p2). We also have

{ln(2/δ) + 2k ln(12p)}1/2 ≤ 2 {k ln(12p)}1/2 ,

which when plugged into (B.2) (with u = δ and δ = 1/p2) yields

|δ�(Σ̂XX −ΣXX)δ| ≤ [C2
1 ln(p

2)/(2n) + 2 C′(ΣXX){k ln(12p)/n}1/2/k]‖δ‖2�1
+ 2 C′(ΣXX) {k ln(12p)/n}1/2 ‖δ‖2�2
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≤ [2C2
1s�ln(p

2)/n+ 2 C′(ΣXX){ln(12p)/n}1/2

× (4 s�/
√
k +

√
k)]‖δ‖2�2 , (7.13)

where the second inequality follows because δ ∈ C�(1) implies ‖δ‖2�1 ≤ 4 s�‖δ‖2�2
by a derivation similar to that of (7.10).

To balance the terms 4 s�/
√
k and

√
k in the last line of (7.13), we choose

k = 4s�. Then (B.1) translates into (3.8), which holds by assumption, and so
(7.13) also holds. Plugging (7.13) into (7.12), we then find

〈∇LD,�(β
∗ + δ)−∇LD,�(β

∗), δ〉
≥ [2κD,� − {8 C′(ΣXX)

√
s�ln(12p)/n+ 2C2

1s�ln(p
2)/n}]‖δ‖2�2 ,

as claimed in the proposition.

We wish to apply Lemma A.2. To this end, we check the three conditions at
the beginning of the proof of Proposition 3.1, but with the appropriate RSC-D
condition instead of the RSC condition. We focus on the event E∞,1,n∩E∞,2,n∩
Eop,4s�,n whose probability is at least 1− 2/p2 − 2/(pq).

First, we set M and M as in (7.11) again. Then again β∗
� ∈ M, the penalty

R is decomposable with respect to (M,M⊥
), and the subspace compatibility

constant is Ψ(M) =
√
s�.

Next, starting from Proposition 7.2, we conclude that, over the cone set C�(1),
the loss function LD,� satisfies RSC-D condition (7.8) with tolerance function
equal to zero and curvature κD,� > 0, because by (3.9) we have

κD,� ≤ 2κD,� − {8 C′(ΣXX)
√
s�ln(12p)/n+ 2C2

1s�ln(p
2)/n}.

Furthermore, the dual norm R∗ of R is given by R∗(·) = ‖ ·‖�∞ , and we have

R∗{∇LD,�(β
∗
� )} = ‖Σ̂XXβ∗

� − (Σ̂XY)•�‖�∞
= ‖(Σ̂XX −ΣXX)β∗

� − (Σ̂XY −ΣXY)•�‖�∞ .

Therefore,

R∗{∇LD,�(β
∗
� )} ≤ ‖Σ̂XX −ΣXX‖�∞ × ‖β∗

� ‖�1 + ‖(Σ̂XY −ΣXY)•�‖�∞
≤ C1{‖β∗

� ‖�1
√
ln(p2)/n+

√
ln(pq)/n} ≤ λD,�,

where the last inequality follows by the choice of λD,� in (3.11). The conclusions
of the proposition then follow from Lemma A.2.

7.3. Proof of Proposition 4.2

Proof. We have

‖Σ̂εε −Σεε‖�∞ = ‖(Σ̂YY − B̃�Σ̂XXB̃)− (ΣYY −B∗�ΣXXB∗)‖�∞
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≤ ‖Σ̂YY −ΣYY‖�∞ + ‖B̃�Σ̂XXB̃−B∗�ΣXXB∗‖�∞ .

From now on we focus on the event E∞,1,n∩E∞,2,n∩E∞,3,n whose probability
is at least 1− (1/p+ 1/q)2. Then in the last line above, the first term satisfies
the bound (7.5), while for the second term,

‖B̃�Σ̂XXB̃−B∗�ΣXXB∗‖�∞
≤ ‖(B̃−B∗)�Σ̂XX(B̃−B∗)‖�∞ + ‖B∗�Σ̂XX(B̃−B∗)‖�∞

+ ‖(B̃−B∗)�Σ̂XXB∗‖�∞ + ‖B∗�(Σ̂XX −ΣXX)B∗‖�∞ .

We treat the terms on the right-hand side above in sequence. First,

‖(B̃−B∗)�Σ̂XX(B̃−B∗)‖�∞ ≤ ‖(B̃−B∗)�‖∞ × ‖Σ̂XX(B̃−B∗)‖�∞
≤ ‖(B̃−B∗)�‖∞ × ‖Σ̂XX‖�∞ × ‖B̃−B∗‖1

=
(
max
�∈[q]

‖β̂� − β∗
� ‖�1

)2

,

and hence

‖(B̃−B∗)�Σ̂XX(B̃−B∗)‖�∞ ≤
{
24max

�∈[q]
(s�λ�/κ�)

}2

.

Here we have invoked the conclusion of Proposition 3.1 (see Remark 3.2). Next,

‖B∗�Σ̂XX(B̃−B∗)‖�∞ ≤ ‖B∗‖1 × ‖Σ̂XX(B̃−B∗)‖�∞
≤ ‖B∗‖1 × ‖Σ̂XX‖�∞ × ‖B̃−B∗‖1
≤ 24max

�∈[q]
(s�λ�/κ�) ‖B∗‖1.

Finally, we have

‖B∗�(Σ̂XX −ΣXX)B∗‖�∞ ≤ ‖B∗‖21 × ‖Σ̂XX −ΣXX‖�∞
≤ C1‖B∗‖21

√
ln(p2)/n.

In the end, we obtain that

‖Σ̂εε −Σεε‖�∞ ≤ Δ(Σεε). (7.14)

The conclusions of our proposition then follow from a slight variation of The-
orem 1 in [33]. We let Σ̃εε be some generic estimator ofΣεε, and suppose that on

some event A, the estimator Σ̃εε satisfies the error bound ‖Σ̃εε −Σεε‖�∞ ≤ δ.

Note that in the context and notation of Theorem 1 in [33], Σ̃εε is the ob-
served covariance matrix for a random sample drawn directly from a distribu-
tion with covariance Σεε, and ‖Σ̃εε − Σεε‖�∞ ≤ δ̄f (n, p

τ ) with probability at
least 1− p2−τ .
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We consider the program (4.2) with Σ̂εε replaced by Σ̃εε. Theorem 1 in [33]
states that, if the sample size is large enough so that (4.3) with Δ(Σεε) replaced
by δ holds, and if the tuning parameter λΩ of the program (4.2) satisfies (4.4),

then on the event A the output Ω̂εε satisfies (4.5) with Δ(Σεε) replaced by δ,

and (Ω̂εε)k� is zero whenever (Ωεε)k� is zero. For our purpose, Σ̃εε = Σ̂εε, the
event A = E∞,1,n ∩ E∞,2,n ∩ E∞,3,n, and the error bound δ = Δ(Σεε). From

the above discussion, we conclude that (4.5) holds and (Ω̂εε)k� is zero whenever
(Ωεε)k� is zero, which further imply that (4.6) hold.

7.4. Proofs for Section 5

Proof of Theorem 5.2. The proof relies in part on the following result on the
RSC condition.

Proposition 7.3. Suppose that Assumption 5.1 and the assumptions of Propo-
sition 4.2 hold. Then on the event E∞,1,n ∩ E∞,2,n ∩ E∞,3,n the empirical loss

L(·; Σ̂+
XX, Σ̂XY, Ω̂εε) satisfies RSC condition (7.7) with curvature κ′ introduced

in (5.5) and tolerance function equal to zero over the cone set C.

Proof. We fix arbitrary Δ ∈ C. We have

δL(Δ,B∗; Σ̂+
XX, Σ̂XY, Ω̂εε) = vec(Δ)�Ω̂εε ⊗ Σ̂+

XX vec(Δ)/2,

and hence

δL(Δ,B∗; Σ̂+
XX, Σ̂XY, Ω̂εε)

= vec(Δ)�Ωεε ⊗ΣXX vec(Δ)/2

+ 〈Δ�ΣXXΔ, Ω̂εε −Ωεε〉/2
+ 〈Δ�(Σ̂+

XX −ΣXX)Δ, Ω̂εε〉/2. (7.15)

We treat the three terms on the right-hand side of (7.15) one by one. For the
first term, by definition of δL(Δ,B∗;ΣXX,ΣXY,Ωεε) and Assumption 5.1, we
have

vec(Δ)�Ωεε ⊗ΣXX vec(Δ)/2 = δL(Δ,B∗;ΣXX,ΣXY,Ωεε),

and hence

vec(Δ)�Ωεε ⊗ΣXX vec(Δ)/2 ≥ κ ‖Δ‖2�2 . (7.16)

For the second term, we have

|〈Δ�ΣXXΔ, Ω̂εε −Ωεε〉| = |〈ΣXXΔ,Δ(Ω̂εε −Ωεε)〉|
≤ ‖ΣXXΔ‖�2 × ‖Δ(Ω̂εε −Ωεε)‖�2
≤ ‖ΣXX‖op × ‖Ω̂εε −Ωεε‖op × ‖Δ‖2�2 . (7.17)
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For the third term, we have

|〈Δ�(Σ̂+
XX −ΣXX)Δ, Ω̂εε〉| = | tr{Δ�(Σ̂+

XX −ΣXX)ΔΩ̂εε}|

=
∣∣∣ q∑
�=1

(Δ)�•�((Σ̂
+
XX −ΣXX)ΔΩ̂εε)•�

∣∣∣
≤

q∑
�=1

‖(Δ)•�‖�1×‖((Σ̂+
XX −ΣXX)ΔΩ̂εε)•�‖�∞ ,

and hence

|〈Δ�(Σ̂+
XX −ΣXX)Δ, Ω̂εε〉|

≤
q∑

�=1

‖(Δ)•�‖�1 × ‖Σ̂+
XX −ΣXX‖�∞ × ‖(ΔΩ̂εε)•�‖�1 . (7.18)

Now, we bound the last factor in (7.18) as

‖(ΔΩ̂εε)•�‖�1 = ‖Δ(Ω̂εε)•�‖�1 =

p∑
k=1

|(Δ)k•(Ω̂εε)•�|

≤
p∑

k=1

‖(Δ)k•‖�1 × ‖(Ω̂εε)•�‖�∞ = ‖Δ‖�1 × ‖(Ω̂εε)•�‖�∞ ,

and therefore, continuing from (7.18), we have

|〈Δ�(Σ̂+
XX −ΣXX)Δ, Ω̂εε〉|

≤
q∑

�=1

‖(Δ)•�‖�1 × ‖Σ̂+
XX −ΣXX‖�∞ × ‖Δ‖�1 × ‖(Ω̂εε)•�‖�∞

≤ ‖Σ̂+
XX −ΣXX‖�∞ × ‖Ω̂εε‖�∞ × ‖Δ‖2�1 . (7.19)

Combining (7.15), (7.16), (7.17) and (7.19), we have

δL(Δ,B∗; Σ̂+
XX, Σ̂XY, Ω̂εε)

≥ κ ‖Δ‖2�2 − ‖ΣXX‖op × ‖Ω̂εε −Ωεε‖op × ‖Δ‖2�2/2
− ‖Σ̂+

XX −ΣXX‖�∞ × ‖Ω̂εε‖�∞ × ‖Δ‖2�1/2,

and hence, upon writing the right-hand side in a different form,

δL(Δ,B∗; Σ̂+
XX, Σ̂XY, Ω̂εε)

≥ (κ− ‖ΣXX‖op × ‖Ω̂εε −Ωεε‖op/2)‖Δ‖2�2
− ‖Σ̂+

XX −ΣXX‖�∞ × ‖Ω̂εε‖�∞ × ‖Δ‖2�1/2. (7.20)
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By a derivation similar to that of (7.10), we have

‖Δ‖�1 ≤ 4 ‖(Δ)S‖�1 ≤ 4
√
s ‖Δ‖�2 . (7.21)

Then, plugging (7.21) into (7.20), we conclude that

δL(Δ,B∗; Σ̂+
XX, Σ̂XY, Ω̂εε)

≥ (κ− ‖ΣXX‖op × ‖Ω̂εε −Ωεε‖op/2
− 8 ‖Σ̂+

XX −ΣXX‖�∞ × ‖Ω̂εε‖�∞ × s)‖Δ‖2�2 . (7.22)

Next we focus on the event E∞,1,n∩E∞,2,n∩E∞,3,n. Then (7.6) holds, and if
in addition the assumptions in Proposition 4.2 are satisfied, then Proposition 4.2
states that (4.5) and (4.6) also hold. Thus we can further bound from below the
right-hand side of (7.22) as

κ− ‖ΣXX‖op × ‖Ω̂εε −Ωεε‖op/2− 8 ‖Σ̂+
XX −ΣXX‖�∞ × ‖Ω̂εε‖�∞ × s

≥ κ− ‖ΣXX‖opΔ1(Ωεε)/2− 16C1 {‖Ωεε‖�∞ +Δ∞(Ωεε)} s
√

ln(p2)/n.

This concludes the proof of Proposition 7.3.

We wish to apply Corollary 1 in [30]. To this end, we check the three itemized
conditions at the beginning of the proof of Proposition 3.1. We focus on the event
E∞,1,n ∩ E∞,2,n ∩ E∞,3,n whose probability is at least 1 − (1/p + 1/q)2. First,
we set

M = M = {Δ ∈ Rp×q : ∀(k,�)∈S� (Δ)k� = 0}.

Then B∗ ∈ M, and the penalty R is decomposable with respect to (M,M⊥
).

The subspace compatibility constant is Ψ(M) =
√
s. Next, by Proposition 7.3

and assumption on κ′, over the cone set C, the loss L(·; Σ̂+
XX, Σ̂XY, Ω̂εε) satisfies

RSC condition (7.7) with tolerance function equal to zero and curvature κ′′ =
κ/2 > 0. Finally, the dual of R is R∗(·) = ‖ · ‖�∞ , and

R∗{∇L(B∗; Σ̂+
XX, Σ̂XY, Ω̂εε)} = ‖Σ̂+

XXB∗Ω̂εε − Σ̂XYΩ̂εε‖�∞ .

Therefore

R∗{∇L(B∗;Σ̂+
XX, Σ̂XY, Ω̂εε)}

= ‖(Σ̂+
XX −ΣXX)B∗Ω̂εε − (Σ̂XY −ΣXY)Ω̂εε‖�∞

≤ ‖Σ̂+
XX −ΣXX‖�∞ × ‖B∗Ω̂εε‖1 + ‖Σ̂XY −ΣXY‖�∞ × ‖Ω̂εε‖1

≤ ‖Σ̂+
XX −ΣXX‖�∞ × (‖B∗Ωεε‖1 + ‖B∗‖1‖Ω̂εε −Ωεε‖1)

+ ‖Σ̂XY −ΣXY‖�∞(‖Ωεε‖1 + ‖Ω̂εε −Ωεε‖1)
≤ λ/2.

The last inequality follows by the bounds (7.6) and (7.4), Proposition 4.2,
and the choice of λ in (5.6). The conclusions then follow from Corollary 1 in
[30].
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Proof of Theorem 5.4. The proof partially relies on the following result on the
RSC condition.

Proposition 7.4. Suppose that Assumption 5.3 holds, the assumptions of Propo-
sition 4.2 hold, and n is sufficiently large to ensure that (4.7) holds. Then on

the event E∞,1,n ∩E∞,2,n ∩E∞,3,n the loss L(·; Σ̂+
XX, Σ̂XY, Ω̂εε) satisfies RSC

condition (7.7) with curvature κ′
G introduced in (5.8) and tolerance function

equal to zero over the cone set CG(3).

Proof. We fix arbitrary Δ ∈ CG(3), and use the same decomposition (7.15)
in the proof of Proposition 7.3. The treatment for the second term in the last
line of (7.15) remains the same as (7.17). For the first term, by definition of
δL(Δ,B∗;ΣXX,ΣXY,Ωεε) and Assumption 5.3, we have

vec(Δ)�Ωεε ⊗ΣXX vec(Δ)/2 = δL(Δ,B∗;ΣXX,ΣXY,Ωεε)

≥ κG‖Δ‖2�2 . (7.23)

For the third term, suppose that Ω̂εε is positive semidefinite. Then we can

take its symmetric positive semidefinite square root Ω̂
1/2
εε and use the fact that

|〈Δ�(Σ̂+
XX −ΣXX)Δ, Ω̂εε〉| = | tr{(ΔΩ̂1/2

εε )�(Σ̂+
XX −ΣXX)ΔΩ̂1/2

εε }|

=
∣∣∣ q∑
�=1

(ΔΩ̂1/2
εε )�•�((Σ̂

+
XX −ΣXX)ΔΩ̂1/2

εε )•�

∣∣∣
to deduce that

|〈Δ�(Σ̂+
XX −ΣXX)Δ, Ω̂εε〉|

≤ ‖Σ̂+
XX −ΣXX‖�∞

q∑
�=1

‖(ΔΩ̂1/2
εε )•�‖2�1

≤ ‖Σ̂+
XX −ΣXX‖�∞ × ‖ΔΩ̂1/2

εε ‖2�1,�2
≤ ‖Σ̂+

XX −ΣXX‖�∞ × ‖Ω̂εε‖op × ‖Δ‖2�1,�2 . (7.24)

The second inequality follows by (B.4) in Proposition B.2. Therefore, com-
bining (7.15), (7.23), (7.17) and (7.24) we have

δL(Δ,B∗;Σ̂+
XX, Σ̂XY, Ω̂εε)

≥ κG‖Δ‖2�2 − ‖ΣXX‖op × ‖Ω̂εε −Ωεε‖op × ‖Δ‖2�2/2
− ‖Σ̂+

XX −ΣXX‖�∞ × ‖Ω̂εε‖op × ‖Δ‖2�1,�2/2
= (κG − ‖ΣXX‖op × ‖Ω̂εε −Ωεε‖op/2)× ‖Δ‖2�2

− ‖Σ̂+
XX −ΣXX‖�∞ × ‖Ω̂εε‖op × ‖Δ‖2�1,�2/2. (7.25)

Because Δ ∈ CG(3),

‖Δ‖�1,�2 = ‖(Δ)SG•‖�1,�2 + ‖(Δ)S�
G•‖�1,�2
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≤ 4 ‖(Δ)SG•‖�1,�2 ≤ 4
√
sG‖(Δ)SG•‖�2 ≤ 4

√
sG‖Δ‖�2 . (7.26)

Then, plugging (7.26) into (7.25), we conclude that

δL(Δ,B∗; Σ̂+
XX,Σ̂XY, Ω̂εε)

≥ (κG − ‖ΣXX‖op × ‖Ω̂εε −Ωεε‖op/2
− 8 ‖Σ̂+

XX −ΣXX‖�∞ × ‖Ω̂εε‖opsG)× ‖Δ‖2�2 . (7.27)

Now we focus on the event E∞,1,n∩E∞,2,n∩E∞,3,n. Then (7.6) holds, and if in
addition the assumptions in Proposition 4.2 are satisfied, then Proposition 4.2
states that (4.6) also holds. Moreover, if in addition (4.7) holds, then Ω̂εε is
indeed positive semidefinite. Then (7.27) holds, and furthermore we can lower
bound the right-hand side of (7.27) as

κG − ‖ΣXX‖op × ‖Ω̂εε −Ωεε‖op/2
− 8 ‖Σ̂+

XX −ΣXX‖�∞ × ‖Ω̂εε‖opsG
≥ κG − ‖ΣXX‖opΔ1(Ωεε)/2

− 16C1{‖Ωεε‖op +Δ1(Ωεε)}sG
√
ln(p2)/n.

This concludes the proof of Proposition 7.4.

We wish to apply Corollary 1 in [30]. To this end, we check the three itemized
conditions at the beginning of the proof of Proposition 3.1. We focus on the event
E∞,1,n ∩ E∞,2,n ∩ E∞,3,n. First set

M = M = {Δ ∈ Rp×q : ∀k∈[p]\S�
G

(Δ)k• = 0}. (7.28)

Then B∗ ∈ M, and the penalty RG is decomposable with respect to (M,M⊥
).

The subspace compatibility constant is Ψ(M) =
√
sG. Next, by Proposition 7.4

and assumption on κ′
G, over the cone set CG(3), the loss L(·; Σ̂+

XX, Σ̂XY, Ω̂εε)
satisfies RSC condition (7.7) with tolerance function equal to zero and curvature
κ′′
G = κG/2 > 0. Finally, we verify that

R∗
G{∇L(B∗; Σ̂+

XX, Σ̂XY, Ω̂εε)}
= ‖Σ̂+

XXB∗Ω̂εε − Σ̂XYΩ̂εε‖�∞,�2

= ‖(Σ̂+
XX −ΣXX)B∗Ω̂εε − (Σ̂XY −ΣXY)Ω̂εε‖�∞,�2 ,

so that

R∗
G{∇L(B∗;Σ̂+

XX, Σ̂XY, Ω̂εε)}
≤ {‖(Σ̂+

XX −ΣXX)B∗‖�∞,�2 + ‖Σ̂XY −ΣXY‖�∞,�2}‖Ω̂εε‖op
≤ {√q ‖(Σ̂+

XX −ΣXX)B∗‖�∞ + ‖Σ̂XY −ΣXY‖�∞,�2}
× (‖Ωεε‖op + ‖Ω̂εε −Ωεε‖op)
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≤ {√q ‖Σ̂+
XX −ΣXX‖�∞ × ‖B∗‖1 + ‖Σ̂XY −ΣXY‖�∞,�2}

× (‖Ωεε‖op + ‖Ω̂εε −Ωεε‖op). (7.29)

The necessary bound for ‖Σ̂XY − ΣXY‖�∞,�2 , which appears in (7.29), is
given in the next proposition.

Proposition 7.5. There exists an event F1,n with probability at least 1 − 1/p
such that on the event F1,n we have, for some absolute constant C2,

‖Σ̂XY −ΣXY‖�∞,�2 ≤ C2

√
C(ΣYY)

√
{ln(p2) + ln(5)q}/n.

Proof. The proof can be found in Section C.1.

From now on we focus on the event E∞,1,n ∩ E∞,2,n ∩ E∞,3,n ∩ F1,n, whose
probability is at least 1−(1/p+1/q)2−1/p. Continuing from (7.29), and invoking
the bound (7.6), Propositions 4.2 and 7.5, and the choice (5.9) of λG, it is easy
to verify that

R∗
G{∇L(B∗; Σ̂+

XX, Σ̂XY, Ω̂εε)} ≤ λG/2.

The conclusions of the theorem then follow from Corollary 1 in [30].

Proof of Proposition 5.5. Our proof is largely similar to that of Theorem 5.4.
However, instead of bounding R∗

G{∇L(B∗; Σ̂+
XX, Σ̂XY, Ω̂εε)}, we will bound

R∗
G{∇L(B∗; Σ̂XX, Σ̂XY, Ω̂εε)}. Later we will focus on the event {Σ̂+

XX = Σ̂XX},
and on this event the two bounds coincide.

Starting with a derivation similar to that in (7.29), we have

R∗
G{∇L(B∗; Σ̂XX, Σ̂XY, Ω̂εε)}

= ‖(Σ̂XX −ΣXX)B∗Ω̂εε − (Σ̂XY −ΣXY)Ω̂εε‖�∞,�2

≤ ‖(Σ̂XX −ΣXX)B∗Ω̂εε‖�∞,�2

+ ‖Σ̂XY −ΣXY‖�∞,�2 × ‖Ω̂εε‖op,

and hence

R∗
G{∇L(B∗; Σ̂XX, Σ̂XY, Ω̂εε)}

≤ ‖(Σ̂XX −ΣXX)B∗Ωεε‖�∞,�2

+ ‖(Σ̂XX −ΣXX)B∗‖�∞,�2 × ‖Ω̂εε −Ωεε‖op
+ ‖Σ̂XY −ΣXY‖�∞,�2(‖Ωεε‖op + ‖Ω̂εε −Ωεε‖op). (7.30)

In (7.30), the necessary bound for ‖Σ̂XY − ΣXY‖�∞,�2 has been provided

in Proposition 7.5; the necessary bounds for ‖(Σ̂XX − ΣXX)B∗Ωεε‖�∞,�2 and

‖(Σ̂XX −ΣXX)B∗‖�∞,�2 will be obtained next.
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Proposition 7.6. Let D ∈ Rp×q be an arbitrary non-random matrix. There
exists an event FD,n with probability at least 1 − 4/p such that on the event
E∞,1,n ∩ FD,n we have

‖(Σ̂XX −ΣXX)D‖�∞,�2

≤ C2‖D‖op
√
C(ΣXX)

√
{ln(p2) + ln(5)q}/n

+ C2
1‖D‖1

√
q ln(p2)/(2n).

Here C2 is the same absolute constant as introduced in Proposition 7.5.

Proof. The proof can be found in Section C.2.

From Proposition 7.6, where we take D to be B∗Ωεε or B∗, we conclude that
there exist events F2,n and F3,n, each with probability at least 1 − 4/p, such
that we have

‖(Σ̂XX −ΣXX)B∗Ωεε‖�∞,�2

≤ C2‖B∗Ωεε‖op
√

C(ΣXX)
√

{ln(p2) + ln(5)q}/n
+ C2

1‖B∗Ωεε‖1
√
q ln(p2)/(2n), (7.31)

and

‖(Σ̂XX −ΣXX)B∗‖�∞,�2

≤ C2‖B∗‖op
√
C(ΣXX)

√
{ln(p2) + ln(5)q}/n

+ C2
1‖B∗‖1

√
q ln(p2)/(2n), (7.32)

respectively on E∞,1,n ∩ F2,n and E∞,1,n ∩ F3,n.
From now on we further focus on the event E∞,1,n∩E∞,2,n∩E∞,3,n∩F1,n∩

F2,n ∩ F3,n. Starting from (7.30), (7.31), (7.32) and Proposition 7.5, we then
have

R∗
G{∇L(B∗; Σ̂XX, Σ̂XY, Ω̂εε)}

≤ C2‖B∗Ωεε‖op
√

C(ΣXX)
√

{ln(p2) + ln(5)q}/n
+ C2

1‖B∗Ωεε‖1
√
q ln(p2)/(2n)

+ {C2‖B∗‖op
√
C(ΣXX)

√
{ln(p2) + ln(5)q}/n

+ C2
1‖B∗‖1

√
q ln(p2)/(2n)}‖Ω̂εε −Ωεε‖op

+ C2

√
C(ΣYY)

√
{ln(p2) + ln(5)q}/n

× (‖Ωεε‖op + ‖Ω̂εε −Ωεε‖op) ≤ λG/2. (7.33)

The last step follows by Proposition 4.2 and the choice of λG in (5.13).
Next, focus on the event E∞,1,n ∩ E∞,2,n ∩ E∞,3,n ∩ F1,n ∩ F2,n ∩ F3,n,

whose probability is at least 1− (1/p+ 1/q)2 − 9/p, intersected with the event
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{Σ̂XX � 0} = {Σ̂+
XX = Σ̂XX}. The proof of Theorem 5.4 entirely goes through

(on this smaller event), with the new bound R∗
G{∇L(B∗; Σ̂+

XX, Σ̂XY, Ω̂εε)} =

R∗
G{∇L(B∗; Σ̂XX, Σ̂XY, Ω̂εε)} ≤ λG/2 by (7.33). The conclusions of the propo-

sition then follow.

Proof of Theorem 5.7. The proof partially relies on the following result on the
RSC-D condition.

Proposition 7.7. Suppose that Assumption 5.6 and the assumptions of Propo-
sition 4.2 hold, and that n is large enough to ensure that (4.7), and (3.8) with
s� replaced by sG, hold. Then on the event E∞,1,n∩E∞,2,n∩E∞,3,n∩Eop,4sG,n,
where Eop,4sG,n is the same event as Eop,k,n introduced above Proposition 7.2

with k = 4sG, the empirical loss L(·; Σ̂XX, Σ̂XY, Ω̂εε) satisfies RSC-D condi-
tion (7.8) with curvature κ′

D,G in (5.16) and tolerance function equal to zero
over the cone set CG(1).

Proof. We have

〈∇L(Δ,B∗ +Δ; Σ̂XX, Σ̂XY, Ω̂εε)

−∇L(Δ,B∗; Σ̂XX, Σ̂XY, Ω̂εε),Δ〉 = 〈Σ̂XXΔΩ̂εε,Δ〉,

and hence

〈∇L(Δ,B∗ +Δ; Σ̂XX, Σ̂XY, Ω̂εε)−∇L(Δ,B∗; Σ̂XX, Σ̂XY, Ω̂εε),Δ〉
= vec(Δ)�Ωεε ⊗ΣXX vec(Δ) + 〈Δ�ΣXXΔ, Ω̂εε −Ωεε〉

+ 〈Δ�(Σ̂XX −ΣXX)Δ, Ω̂εε〉, (7.34)

which is identical to (7.15) apart from a factor of 2.
We fix Δ ∈ CG(1), and focus on the event E∞,1,n ∩ E∞,2,n ∩ E∞,3,n. If

sG = 0, then Δ = 0 and the conclusion of the proposition follows trivially,
so we assume that sG > 0. The treatment for the second term in the last
line of (7.34) remains the same as (7.17). For the first term, by definition of
δL(Δ,B∗;ΣXX,ΣXY,Ωεε) and Assumption 5.6, we have

vec(Δ)�Ωεε ⊗ΣXX vec(Δ)

= 2 δL(Δ,B∗;ΣXX,ΣXY,Ωεε) ≥ 2κD,G‖Δ‖2�2 . (7.35)

For the third term, because the assumptions stated in Proposition 4.2 are
satisfied, (4.6) holds. Together with (4.7), this further implies that Ω̂εε is posi-
tive semidefinite. Hence we can take its symmetric positive semidefinite square

root Ω̂
1/2
εε and use

|〈Δ�(Σ̂XX −ΣXX)Δ, Ω̂εε〉|
= | tr{(ΔΩ̂1/2

εε )�(Σ̂+
XX −ΣXX)ΔΩ̂1/2

εε }|
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≤
q∑

�=1

|(ΔΩ̂1/2
εε )�•�(Σ̂

+
XX −ΣXX)(ΔΩ̂1/2

εε )•�|. (7.36)

Now, fix an arbitrary integer k ∈ N, and assume that (B.1) holds with δ =
1/p2. In addition to the event E∞,1,n∩E∞,2,n∩E∞,3,n, we further focus on the
event Eop,k,n. Then, (B.2) in Lemma B.1 applies with δ = 1/p2, and the first

step of (7.13) with the substitution of δ by (ΔΩ̂
1/2
εε )•� yields

|(ΔΩ̂1/2
εε )�•�(Σ̂XX −ΣXX)(ΔΩ̂1/2

εε )•�|
≤ [C2

1 ln(p
2)/(2n) + 2 C′(ΣXX){k ln(12p)/n}1/2/k]× ‖(ΔΩ̂1/2

εε )•�‖2�1
+ 2 C′(ΣXX) {k� ln(12p)/n}1/2 × ‖(ΔΩ̂1/2

εε )•�‖2�2 . (7.37)

Plugging (7.37) into (7.36), we have

|〈Δ�(Σ̂XX −ΣXX)Δ, Ω̂εε〉|

≤
q∑

�=1

[
C2

1 ln(p
2)/(2n) + 2 C′(ΣXX){k ln(12p)/n}1/2/k

]
× ‖(ΔΩ̂1/2

εε )•�‖2�1

+

q∑
�=1

2 C′(ΣXX){k ln(12p)/n}1/2 × ‖(ΔΩ̂1/2
εε )•�‖2�2 .

Now the right-hand term can be rewritten as

[
C2

1 ln(p
2)/(2n) + 2 C′(ΣXX){k ln(12p)/n}1/2/k

] q∑
�=1

‖(ΔΩ̂1/2
εε )•�‖2�1

+ 2 C′(ΣXX){k ln(12p)/n}1/2
q∑

�=1

‖(ΔΩ̂1/2
εε )•�‖2�2 ,

and hence, by applying (B.4) in Proposition B.2 to the term
∑q

�=1 ‖(ΔΩ̂
1/2
εε )•�‖2�1 ,

we find that it is bounded from above by[
C2

1 ln(p
2)/(2n) + 2 C′(ΣXX){k ln(12p)/n}1/2/k

]
× ‖ΔΩ̂1/2

εε ‖2�1,�2
+ 2 C′(ΣXX){k ln(12p)/n}1/2 × ‖ΔΩ̂1/2

εε ‖2�2 .

Therefore,

|〈Δ�(Σ̂XX −ΣXX)Δ, Ω̂εε〉|
≤

[
C2

1 ln(p
2)/(2n) + 2 C′(ΣXX){k ln(12p)/n}1/2/k

]
× ‖Ω̂εε‖op × ‖Δ‖2�1,�2

+ 2 C′(ΣXX){k ln(12p)/n}1/2‖Ω̂εε‖op × ‖Δ‖2�2 . (7.38)

By a derivation similar to that of (7.26), now for Δ ∈ CG(1), we have

‖Δ‖�1,�2 ≤ 2
√
sG‖Δ‖�2 . (7.39)
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Then, plugging (7.39) into (7.38), we conclude that

|〈Δ�(Σ̂XX −ΣXX)Δ,Ω̂εε〉|
≤ [2C2

1{sGln(p2)/n}+ 2 C′(ΣXX){ln(12p)/n}1/2

× (4sG/
√
k +

√
k)]× ‖Ω̂εε‖op × ‖Δ‖2�2 .

Now, to balance the terms 4 sG/
√
k and

√
k in the last line above, we choose

k = 4 sG. Then (B.1) translates into (3.8) with s� replaced by sG, which holds
by assumption, and therefore we have

|〈Δ�(Σ̂XX −ΣXX)Δ, Ω̂εε〉|
≤

[
2C2

1{sGln(p2)/n}+ 8 C′(ΣXX){sGln(12p)/n}1/2
]

× ‖Ω̂εε‖op × ‖Δ‖2�2 . (7.40)

Then, from (7.34), (7.35), (7.17) and (7.40), we have

〈∇L(Δ,B∗ +Δ; Σ̂XX, Σ̂XY, Ω̂εε)−∇L(Δ,B∗; Σ̂XX, Σ̂XY, Ω̂εε),Δ〉
≥ (2κG − ‖ΣXX‖op × ‖Ω̂εε −Ωεε‖op

−
[
2C2

1{sGln(p2)/n}+ 8 C′(ΣXX){sGln(12p)/n}1/2
]

× ‖Ω̂εε‖op)‖Δ‖2�2 . (7.41)

Finally, invoking (4.6) in (7.41) yields the conclusion of the proposition.

We wish to apply Lemma A.2. To this end, we check the three itemized
conditions at the beginning of the proof of Proposition 3.1, except that now we
check that appropriate RSC-D condition, instead of RSC condition, holds. We
focus on the event E∞,1,n ∩ E∞,2,n ∩ E∞,3,n ∩ Eop,4sG,n ∩ F1,n ∩ F2,n ∩ F3,n

whose probability is at least 1 − (1/p + 1/q)2 − 9/p. Here the event F1,n is
introduced in Proposition 7.5, and the events F2,n and F3,n are introduced
below Proposition 7.6.

First, we set M and M as in (7.28) again. Then again B∗ ∈ M, the penalty

RG is decomposable with respect to (M,M⊥
), and the subspace compatibility

constant is Ψ(M) =
√
sG. Next, by Proposition 7.7 and assumption on κ′

D,G,

over the cone set CG(1), the loss L(·; Σ̂XX, Σ̂XY, Ω̂εε) satisfies RSC-D condi-
tion (7.8) with tolerance function equal to zero and curvature κ′′

D,G = κD,G > 0.
Finally, essentially by (7.33), we can verify that

R∗
G{∇L(B∗; Σ̂XX, Σ̂XY, Ω̂εε)} ≤ λD,G.

The conclusions of the theorem then follow from Lemma A.2.

8. Discussion

In this paper, we studied the estimation of the coefficient matrix in an elliptical
copula multivariate response regression model. In this model, the joint distri-
bution of the responses and covariates has an elliptical copula and arbitrary
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marginal distributions, and after applying some unknown monotonic marginal
transformations, the responses and covariates are jointly elliptically distributed
and are linked to one another in a linear regression model. As such, this model
is much more flexible than the conventional multivariate response linear regres-
sion model. We provide penalized estimators of the coefficient matrix that in
particular are computationally efficient and adaptive to the unknown marginal
transformations, incorporate the precision matrix of the error vector and can
take advantage of the potential row-sparsity of the coefficient matrix.

Extensions are possible. First, we could consider the issue of support recov-
ery of B∗, which we have not dealt with here. In particular, analogous to the
improvement in the estimation of B∗ that we have seen by employing a group
penalty under a row-sparse model for B∗, it would be interesting to investigate
the extent to which group penalty will help with the recovery of row-support of
B∗ in our copula context. Second, our current algorithm terminates after an im-
proved estimation of B∗ is obtained. To further improve the estimation accuracy
of B∗ and Ωεε, we could attempt to reiterate the procedures in Sections 4–5, but
starting with the improved estimator of B∗ instead of B̃ in (4.1). Convergence
of the iteration scheme analogous to that derived in [22] is then needed.
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Appendix A: Results for the general Dantzig selector problem

We follow the convention set in Section 7.1. We let Q be a generic Euclidean
space, and consider two subspaces M ⊂ M of Q. Assume that the norm-based
penalty functionR is decomposable with respect to (M,M⊥), letR∗ denote the
dual of R, and let Ψ(M) be the subspace compatibility constant with respect
to the pair (R, ‖ · ‖�2). We define the cone set

C = {θ ∈ Q : R(θM⊥) ≤ R(θM)} .

Let L : Q → R be a generic loss function and let β∗ denote the true (but un-

known) parameter value. To estimate β∗, consider the solution β̂ to the Dantzig
selector program

β̂ = argmin
β∈Q

R(β),

subject to R∗{∇L(β)} ≤ λD, where λD is a tuning parameter. Further let

δ = β̂ − β∗.
The first lemma below is a slight extension of a well-known result on the

geometry of the solution of a Dantzig selector program; see, e.g., Section III in
[9]. The second lemma states bounds on δ.



Elliptical copula multivariate regression 949

Lemma A.1. Assume that β∗ ∈ M (so β∗ = β∗
M and β∗

M⊥ = 0) and that β∗

is a feasible solution, i.e., λD ≥ R∗{∇L(β∗)}. Then δ always satisfies the cone
condition δ ∈ C.

Proof. The derivation is standard. Here we follow the first part of the proof of
Theorem 4.3 in [21]. By the triangle inequality and the assumption that β∗ ∈ M,
we have

R(β̂) = R(β∗ + δ) = R(β∗
M + δM + δM⊥) ≥ R(β∗

M + δM⊥)−R(δM).

From the decomposability of R and the assumption β∗ ∈ M, we also have

R(β∗
M + δM⊥) = R(β∗

M) +R(δM⊥) = R(β∗) +R(δM⊥).

Therefore, R(δM⊥) ≤ R(δM) +R(β̂) −R(β∗). Furthermore, given that β∗ is

a feasible solution, we have R(β̂) ≤ R(β∗) and hence we can conclude.

Lemma A.2. Assume that β∗ ∈ M and that λD ≥ R∗{∇L(β∗)}. Further
assume that L satisfies RSC-D condition (7.8) with curvature κF = κ1 > 0 and
tolerance function τF (β

∗) = κ2R2(δ) with κ2 ≥ 0 over the cone set C, and that
κ1 − 4Ψ2(M)κ2 > 0. Then

‖δ‖�2 ≤ 4 {κ1 − 4Ψ2(M)κ2}−1Ψ(M)λD, (A.1)

and
R(δ) ≤ 8 {κ1 − 4Ψ2(M)κ2}−1Ψ2(M)λD. (A.2)

Proof. First observe that the assumption on λD makes β∗ a feasible solution,
so that δ ∈ C by Lemma A.1. Next note that by Hölder’s inequality and the
triangle inequality,

〈∇L(β∗ + δ)−∇L(β∗), δ〉 ≤ R(δ)R∗{∇L(β∗ + δ)−∇L(β∗)}
≤ R(δ) [R∗{∇L(β∗ + δ)}+R∗{∇L(β∗)}] .

The assumption on λD and the fact that β̂ is a feasible solution then im-
ply that the right-hand side is bounded above by 2λDR(δ). Furthermore, the
triangle inequality, the fact that δ ∈ C, and the definition of the subspace com-
patibility constant successively imply that

R(δ) ≤ R(δM⊥) +R(δM) ≤ 2R(δM)

≤ 2Ψ(M)‖δM‖�2 ≤ 2Ψ(M)‖δ‖�2 . (A.3)

Therefore,

〈∇L(β∗ + δ)−∇L(β∗), δ〉 ≤ 2λDR(δ) ≤ 4λDΨ(M)‖δ‖�2 . (A.4)

Moreover, inequality (A.3) and the condition (7.8) on L imply

〈∇L(β∗ + δ)−∇L(β∗), δ〉 ≥ κ1‖δ‖2�2 − κ2R2(δ)

≥ {κ1 − 4Ψ2(M)κ2}‖δ‖2�2 . (A.5)

Inequality (A.1) then follows from (A.4) and (A.5). Finally, (A.1) and (A.3)
together yield (A.2).
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Appendix B: Other auxiliary lemmas

B.1. Deviation bound in operator norm for the plug-in estimator
based on Kendall’s tau

We propose a slight reformulation of Corollary 4.8 from [1].

Lemma B.1. Let k ∈ N be an arbitrary integer and fix δ > 0. Assume that

n ≥ ln(2/δ) + 2k ln(12p). (B.1)

Then there exists an event Eop,k,δ,n with probability at least 1 − δ such that on
the event E∞,1,n ∩ Eop,k,δ,n, we have, for all u ∈ Rp,

|u�(Σ̂XX −ΣXX)u| ≤ C2
1 ln(p

2) ‖u‖2�1/(2n)
+ C′(ΣXX)

√
{ln(2/δ) + 2k ln(12p)}/n (‖u‖2�2 + ‖u‖2�1/k), (B.2)

where C′(ΣXX) is as defined in (3.10).

Proof. Following Section 4.3 of [1], define Sk = {v ∈ Rp : ‖v‖�2 ≤ 1, ‖v‖�0 ≤
k}. For arbitrary u ∈ Rp, it follows easily from Lemma 4.9 and the proof of
Lemma 4.7 in [1] that

|u�(Σ̂XX −ΣXX)u| ≤ (π2/8)‖T̂XX −TXX‖2�∞ ‖u‖2�1
+ 2π sup

v,v′∈Sk

|v�(T̂XX −TXX)v′| (‖u‖�2 + ‖u‖�1/
√
k)2. (B.3)

Next, Lemma 4.6 in [1] also states that on an event Eop,k,δ,n with probability
at least 1− δ,

sup
v,v′∈Sk

|v�(T̂XX −TXX)v′| ≤ 32(1 +
√
5) C(ΣXX)

√
{ln(2/δ) + 2k ln(12p)}/n.

Thus (B.2) follows from (B.3), the above bound on Eop,k,δ,n, and the bound
(7.1) on E∞,1,n.

B.2. A matrix inequality

We have the following result.

Proposition B.2. Consider an arbitrary matrix A ∈ Rp×q. Then

q∑
�=1

‖(A)•�‖2�1 ≤ ‖A‖2�1,�2 . (B.4)

Proof. Assume without loss of generality that A has entries ak� ≥ 0. Then

q∑
�=1

‖(A)•�‖2�1 =

q∑
�=1

( p∑
k=1

ak�

)2

=

q∑
�=1

p∑
k,k′=1

ak�ak′� =

p∑
k,k′=1

( q∑
�=1

ak�ak′�

)
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and

‖A‖2�1,�2 =
{ p∑

k=1

( q∑
�=1

a2k�

)1/2}2

=

p∑
k,k′=1

{( q∑
�=1

a2k�

)1/2( q∑
�=1

a2k′�

)1/2}
.

Thus it suffices to show that for each pair (k, k′) ∈ [p]× [p], we have

( q∑
�=1

ak�ak′�

)2

≤
( q∑

�=1

a2k�

)( q∑
�=1

a2k′�

)
,

which is an easy consequence of the Cauchy–Schwarz inequality.

B.3. Conditional moments of Gaussian distributions

Lemma B.3. Let Y and Z be N (0, 1) random variables that are in addition
jointly normal with correlation ρ. For any integer r ∈ N,

E(|Y |r|Z = z) ≤ 2r−1ρr|z|r + 2r−1(1− ρ2)r/2(r − 1)!!

where r!! denotes the double or semifactorial of an integer r, i.e., the product of
all the integers from 1 up to r that have the same parity (odd or even) as r.

Proof. Given that Y |Z = z has the same distribution as ρz + (1− ρ2)1/2Y , we
can write

E(|Y |r|Z = z) = E{|ρz + (1− ρ2)1/2Y |r}
≤ 2r−1ρr|z|r + 2r−1(1− ρ2)r/2E(|Y |r),

from which the conclusion follows from the formula for the rth absolute moment
of Y .

B.4. Bernstein’s inequality

The following result is Theorem 2.10 in [2].

Lemma B.4. Let X1, . . . , Xn be centered independent random variables such
that for every integer k ≥ 2 and all i ∈ [n], E(|Xi|k) ≤ k!σ2

i c
k−2/2, and set

σ2 =
∑
i∈[n]

σ2
i , Sn =

∑
i∈[n]

Xi.

Then, for all t ∈ [0,∞), Pr(Sn ≥
√
2σ2t+ ct) ≤ e−t.
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Appendix C: Bounding the ‖ · ‖�∞,�2 norm of some random matrices

Let Sq−1 = {v ∈ Rq : ‖v‖�2 = 1} be the unit Euclidean sphere in Rq and let N
be a (1/2)-net of Sq−1 equipped with the Euclidean norm; see Definition 5.1 in
[40]. From, e.g., Lemma 5.2 in [40], we can and will take N to satisfy card(N ) ≤
{1+1/(1/2)}q = 5q. Let ιk ∈ Rp have a 1 at the kth coordinate, and 0 elsewhere.
Then, for any matrix M ∈ Rp×q,

‖M‖�∞,�2 = sup
k∈[p]

‖ι�k M‖�2 = sup
k∈[p],v∈Sq−1

ι�k Mv. (C.1)

The following result shows that the supremum over v ∈ Sq−1 in the above
can be replaced by a supremum over the net N at the cost of a constant factor.

Proposition C.1. For any M ∈ Rp×q, we have

‖M‖�∞,�2 ≤ 2 sup
k∈[p],v∈N

ι�k Mv.

Proof. In view of (C.1), we can find k∗ ∈ [p] and v∗ ∈ Sq−1 such that ‖M‖�∞,�2 =
‖ι�k∗M‖�2 = ι�k∗Mv∗. Choose v′ ∈ N so that ‖v∗ − v′‖�2 ≤ 1/2. Then

|ι�k∗Mv∗ − ι�k∗Mv′| ≤ ‖ι�k∗M‖�2 × ‖v∗ − v′‖�2 ≤ ‖M‖�∞,�2/2,

and hence ι�k∗Mv′ ≥ ι�k∗Mv∗ − ‖M‖�∞,�2/2 = ‖M‖�∞,�2/2, which implies that
‖M‖�∞,�2 ≤ 2ι�k∗Mv′. This is enough to conclude.

C.1. Proof of Proposition 7.5

First note that because the sine function is Lipschitz, we have

‖Σ̂XY −ΣXY‖�∞,�2 ≤ π ‖T̂XY −TXY‖�∞,�2/2.

So it suffices to bound the right-hand side from above. The proof proceeds in
three steps.

C.1.1. Reduction to a net

By Proposition C.1, we have

‖T̂XY −TXY‖�∞,�2 ≤ 2 sup
k∈[p],v∈N

ι�k (T̂XY −TXY)v.

For fixed k ∈ [p], v ∈ N and δ > 0, consider the event

Ak,v,δ = {ι�k (T̂XY −TXY)v < δ}.

Using the Chernoff bound technique, we then have, for all t > 0,

Pr{(Ak,v,δ)
�} ≤ e−tδE

[
exp{t ι�k (T̂XY −TXY)v}

]
. (C.2)
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C.1.2. Decoupling the U -statistic

For arbitrary i, j ∈ [n], let

h(Xi,Xj ,Yi,Yj) = sgn(Xi −Xj) sgn(Yi −Yj)
�,

and for any permutation i1, . . . , in of the integers 1, . . . , n, define

W (Xi1 , . . . ,Xin ,Yi1 , . . . ,Yin)

= 2{h(Xi1 ,Xi2 ,Yi1 ,Yi2) + h(Xi3 ,Xi4 ,Yi3 ,Yi4)

+ · · ·+ h(Xin−1 ,Xin ,Yin−1 ,Yin)}/n.

Summing over all possible permutations, we can then write

T̂XY =
∑
n,n

W (Xi1 , . . . ,Xin ,Yi1 , . . . ,Yin)/n!

in terms of the sample (X1,Y1), . . . , (Xn,Yn). It then follows from (C.2) and
the convexity of the exponential function that

Pr{(Ak,v,δ)
�}

≤ e−tδ
∑
n,n

E
[
exp[t ι�k {W (Xi1 , . . . ,Xin ,Yi1 , . . . ,Yin)−TXY}v]

]
/n!

= e−tδE
[
exp[t ι�k {W (X1, . . . ,Xn,Y1, . . . ,Yn)−TXY}v]

]
.

C.1.3. Conversion into an average of sub-Gaussian random variables

For each i ∈ [n/2], let

SX,i = sgn(X2i−1 −X2i), SY,i = sgn(Y2i−1 −Y2i), (C.3)

so that

ι�k {W (X1, . . . ,Xn,Y1, . . . ,Yn)−TXY}v

= 2ι�k

n/2∑
i=1

{SX,iS
�
Y,i − E(SX,iS

�
Y,i)}v/n,

and hence

Pr{(Ak,v,δ)
�} ≤ e−tδE

[
exp

[
2tι�k

n/2∑
i=1

{SX,iS
�
Y,i − E(SX,iS

�
Y,i)}v/n

]]
. (C.4)

For each i ∈ [n/2], further let Uk,i = ι�k SX,i and Wv,i = v�SY,i. Then

ι�k

n/2∑
i=1

{SX,iS
�
Y,i − E(SX,iS

�
Y,i)}v =

n/2∑
i=1

{Uk,iWv,i − E(Uk,iWv,i)}.
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Given that the variables SX,1, . . . ,SX,n/2 are iid, as are SY,1, . . . ,SY,n/2, we
have

E
[
exp

[
2t

n/2∑
i=1

{Uk,iWv,i − E(Uk,iWv,i)}/n
]]

=
[
Eexp[2t{Uk,1Wv,1 − E(Uk,1Wv,1)}/n]

]n/2
,

and hence (C.4) becomes

Pr{(Ak,v,δ)
�} ≤ e−tδ

[
Eexp[2t{Uk,1Wv,1 − E(Uk,1Wv,1)}/n]

]n/2
. (C.5)

The problem is thus reduced to finding an upper bound on the moment
generating function of Uk,1Wv,1. To this end, define the sub-Gaussian norm
‖ · ‖ψ2 of a random variable R by

‖R‖ψ2 = sup
m∈N

m−1/2 (E|R|m)
1/m

,

as in Definition 5.7 of [40]. By Remark 5.18 in [40], and considering that |Uk,1| =
1, we have

‖Uk,1Wv,1 − E(Uk,1Wv,1)‖ψ2 ≤ 2 ‖Uk,1Wv,1‖ψ2 = 2 ‖Wv,1‖ψ2 . (C.6)

Furthermore, by Lemma 5.5 in [40], notably the equivalence of the constants
K2 and K4 in that lemma up to an absolute constant factor, there exists an
absolute constant C ′ such that

E exp
[
2t{Uk,1Wv,1 − E(Uk,1Wv,1)}/n

]
≤ exp{C ′t2‖Uk,1Wv,1 − E(Uk,1Wv,1)‖2ψ2

/n2}
≤ exp(C ′4t2‖Wv,1‖2ψ2

/n2), (C.7)

where the second inequality follows by (C.6).
Next, Lemmas 4.4–4.5 in [1] imply that for all i ∈ [n/2], SY,i is C(ΣYY)-sub-

Gaussian, i.e., for any fixed w ∈ Rq, we have

E exp(w�SY,i) ≤ exp{C(ΣYY) ‖w‖2�2/2}.

Thus, for all θ ∈ R,

E{exp(θWv,1)} = Eexp{(θv)�SY,1}
≤ exp{C(ΣYY) ‖θv‖2�2 /2} = exp{θ2 C(ΣYY)/2}.

By the above and again by Lemma 5.5 in [40], in particular the equivalence
of the constants K2 and K4 in that lemma up to an absolute constant factor,
the centered random variable Wv,1 satisfies

‖Wv,1‖ψ2 ≤ C ′′ √C(ΣYY) (C.8)
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for some absolute constant C ′′. Combining (C.7) and (C.8), we conclude that

E exp[2t{Uk,1Wv,1 − E(Uk,1Wv,1)}/n] ≤ exp{t2C ′′′ C(ΣYY)/n2}, (C.9)

with C ′′′ = (4C ′)× (C ′′)2. Combining (C.9) and (C.5), we get

Pr{(Ak,v,δ)
�} ≤ exp{−tδ + t2C ′′′ C(ΣYY)/(2n)}

for all t ∈ (0,∞), and hence also, by minimizing over all such values of t,

Pr{(Ak,v,δ)
�} ≤ exp

[
− nδ2/{2C ′′′C(ΣYY)}

]
.

Thus if
δ = δ∗ =

√
2C ′′′ C(ΣYY)

√
{ln(p2) + ln(5)q}/n,

we then hav e Pr{(Ak,v,δ∗)
�} ≤ 1/(p2 5q). Finally, consider the event F1,n =

∩k∈[p],v∈NAk,v,δ∗ . From the above upper bound on Pr{(Ak,v,δ∗)
�}, valid for all

k ∈ [p] and v ∈ N , together with the union bound, we get Pr(F1,n) ≥ 1− 1/p.
Summing up, we have

‖Σ̂XY −ΣXY‖�∞,�2 ≤ πδ∗ = π
√

2C ′′′ C(ΣYY)
√
{ln(p2) + ln(5)q}/n,

on the event F1,n, which is the desired conclusion.

C.2. Proof of Proposition 7.6

It mimics the proof of Proposition 7.5 but extra steps are needed to tackle the
right-multiplication of Σ̂XX −ΣXX by D. First, a Taylor expansion yields

‖(Σ̂XX −ΣXX)D‖�∞,�2 = ‖(π/2) cos(πTXX/2) ◦ (T̂XX −TXX)D

− (π2/8) sin(πTXX/2) ◦ (T̂XX −TXX) ◦ (T̂XX −TXX)D‖�∞,�2 ,

which, by the triangle inequality, is bounded above by

(π/2)‖ cos(πTXX/2) ◦ (T̂XX −TXX)D‖�∞,�2

+ (π2/8)‖ sin(πTXX/2) ◦ (T̂XX −TXX) ◦ (T̂XX −TXX)D‖�∞,�2 , (C.10)

where TXX is a symmetric random matrix such that each entry (TXX)k� is a

random number strictly between (T̂XX)k� and (TXX)k�. The second summand
in (C.10) is bounded above by

(π2√q/8)‖ sin(πTXX/2) ◦ (T̂XX −TXX) ◦ (T̂XX −TXX)D‖�∞
≤ (π2√q/8) ‖ sin(πTXX/2) ◦ (T̂XX −TXX) ◦ (T̂XX −TXX)‖�∞ × ‖D‖1
≤ (π2√q/8) ‖T̂XX −TXX‖2�∞ × ‖D‖1. (C.11)

It remains to find an upper bound on the first summand in (C.10).
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C.2.1. Reduction to a net

By Proposition C.1, the first summand in (C.10) is no larger than

π sup
k∈[p],v∈N

ι�k cos(πTXX/2) ◦ (T̂XX −TXX)Dv.

For fixed k ∈ [p], v ∈ N and δ > 0, consider the event

Bk,v,δ = {ι�k cos(πTXX/2) ◦ (T̂XX −TXX)Dv < δ}.

Using the Chernoff bound technique, we have, for all t > 0,

Pr{(Bk,v,δ)
�} ≤ e−tδE

[
exp{tι�k cos(πTXX/2) ◦ (T̂XX −TXX)Dv}

]
. (C.12)

C.2.2. Treating the cosine function transformation

By Lemma E.1 in [1], there exist vectors a1,a2, . . . and b1,b2, . . . , all belonging
to Rp, with ‖ar‖�∞ , ‖br‖�∞ ≤ 1 for every integer r ∈ N, and a sequence t1, t2. . . .
of non-negative numbers adding up to 4, such that

cos(πTXX/2) =
∑
r∈N

trarb
�
r .

For any vector u, let diag(u) be the diagonal matrix with the elements of
u arranged on the diagonal. Plugging the above expression into the expecta-
tion term on the right-hand side of (C.12), and calling on the fact that the
exponential function is convex, we find

Pr{(Bk,v,δ)
�} ≤ e−tδE

[
exp

{∑
r∈N

tr t ι
�
k diag(ar)(T̂XX −TXX)diag(br)Dv

}]
≤ e−tδ

∑
r∈N

tr E
[
exp{t ι�k diag(ar)(T̂XX −TXX)diag(br)Dv}

]
,

and hence

Pr{(Bk,v,δ)
�}

≤ 4e−tδ max
r∈N

E
[
exp{t ι�k diag(ar)(T̂XX −TXX)diag(br)Dv}

]
. (C.13)

C.2.3. Decoupling the U -statistic

For arbitrary i, j ∈ [n], let

h(Xi,Xj) = sgn(Xi −Xj) sgn(Xi −Xj)
�,

and for any permutation i1, . . . , in of the integers 1, . . . , n, write

V (Xi1 , . . . ,Xin) = 2{h(Xi1 ,Xi2) + h(Xi3 ,Xi4) + · · ·+ h(Xin−1 ,Xin)}/n.
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Summing over all possible permutations, we can again write

T̂XX =
∑
n,n

V (Xi1 , . . . ,Xin)/n!.

Thus, for any integer r ∈ N,

E exp
{
(t ι�k diag(ar)(T̂XX −TXX)diag(br)Dv

}
= Eexp

[
t ι�k diag(ar)

[∑
n,n

{V (Xi1 , . . . ,Xin)−TXX}/n!
]
diag(br)Dv

]
,

and from the convexity of the exponential function, this expression is bounded
above by∑

n,n

E
[
exp[t ι�k diag(ar){V (Xi1 , . . . ,Xin)−TXX}diag(br)Dv]

]
/n!

= E
[
exp[t ι�k diag(ar){V (X1, . . . ,Xn)−TXX}diag(br)Dv]

]
.

Therefore,

E exp{(t ι�k diag(ar)(T̂XX −TXX)diag(br)Dv}

≤ E
[
exp

[
2tι�k diag(ar)

×
∑

i∈[n/2]

{SX,iS
�
X,i − E(SX,iS

�
X,i)}diag(br)Dv/n

]]
, (C.14)

where SX,1, . . . ,SX,n/2 are as defined in (C.3) and iid.

C.2.4. Conversion into an average of sub-Gaussian random variables

For each i ∈ [n/2], define Uk,r,i = ι�k diag(ar)SX,i and Vv,r,i = v�D�diag(br)SX,i.
Given that the pairs (Uk,r,i, Vv,r,i) are iid, we can rewrite the right-hand side of
(C.14) as

E
[
exp

[
2t

∑
i∈[n/2]

{Uk,r,iVv,r,i − E(Uk,r,iVv,r,i)}/n
]]

=
[
Eexp[2t{Uk,r,1Vv,r,1 − E(Uk,r,1Vv,r,1)}/n]

]n/2
.

It then follows from (C.13) that

Pr{(Bk,v,δ)
�}

≤ 4 e−tδ max
r∈N

E
[
exp[2t{Uk,r,1Vv,r,1 − E(Uk,r,1Vv,r,1)}/n]

]n/2
. (C.15)

The problem is thus reduced to finding an upper bound on the moment
generating function of Uk,r,1Vv,r,1. To this end, we use its sub-Gaussian property.
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Given that ‖ar‖�∞ ≤ 1, we have |Uk,r,1| ≤ 1 and hence ‖Uk,r,1Vv,r,1‖ψ2 ≤
‖Vv,r,1‖ψ2 . By Remark 5.18 in [40], we also have

‖Uk,r,1Vv,r,1 − E(Uk,r,1Vv,r,1)‖ψ2 ≤ 2 ‖Uk,r,1Vv,r,1‖ψ2 ≤ 2 ‖Vv,r,1‖ψ2 . (C.16)

By Lemma 5.5 in [40], and specifically the equivalence of the constants K2 and
K4 in that lemma up to an absolute constant factor, there exists an absolute
constant C ′ as introduced in the proof of Proposition 7.5, such that

E
[
exp[2t{Uk,r,1Vv,r,1 − E(Uk,r,1Vv,r,1)}/n]

]
≤ exp{C ′t2‖Uk,r,1Vv,r,1 − E(Uk,r,1Vv,r,1)‖2ψ2

/n2}
≤ exp(4C ′t2‖Vv,r,1‖2ψ2

/n2), (C.17)

where the second inequality follows by (C.16).
Next, Lemmas 4.4–4.5 in [1] imply that for all i ∈ [n/2], SX,i is C(ΣXX)-sub-

Gaussian, i.e., for any fixed u ∈ Rp, we have

E exp(u�SX,i) ≤ exp{C(ΣXX) ‖u‖2�2/2}.

Thus, for all θ ∈ R,

E{exp(θVv,r,1)} = E
[
exp[{θdiag(br)Dv}�SX,1]

]
≤ exp{C(ΣXX) ‖θdiag(br)Dv‖2�2/2}
≤ exp{θ2 C(ΣXX) ‖D‖2op/2}.

From the above and again by Lemma 5.5 in [40], in particular the equivalence
of the constants K2 and K4 in that lemma up to an absolute constant factor,
the centered random variable Vv,r,1 satisfies

‖Vv,r,1‖ψ2 ≤ C ′′ ‖D‖op
√

C(ΣXX), (C.18)

for the same constant C ′′ as in (C.8). Combining (C.17) and (C.18), we conclude
that

E
[
exp[2t{Uk,r,1Vv,r,1 − E(Uk,r,1Vv,r,1)}/n]

]
≤ exp{C ′′′ t2‖D‖2op C(ΣXX)/n2}, (C.19)

for the same constant C ′′′ as in (C.9). In view of (C.19), (C.15) thus becomes

Pr{(Bk,v,δ)
�} ≤ 4 exp{−tδ + t2C ′′′ ‖D‖2op C(ΣXX)/(2n)}

for all t ∈ (0,∞), and hence also, by minimizing over all such values of t,

Pr{(Bk,v,δ)
�} ≤ 4 exp[−nδ2/{2C ′′′‖D‖2opC(ΣXX)}].

Thus Pr{(Bk,v,δ∗)
�} ≤ 4/(p25q) as soon as

δ = δ∗ =
√

2C ′′′ ‖D‖2op C(ΣXX)
√
{ln(p2) + ln(5)q}/n.



Elliptical copula multivariate regression 959

Finally, consider the event FD,n = ∩k∈[p],v∈NBk,v,δ∗ . From the above upper

bound on Pr{(Bk,v,δ∗)
�}, valid for all k ∈ [p] and v ∈ N , together with the

union bound, we get Pr(FD,n) ≥ 1 − 4/p. Summing up (in particular recall
(C.11)), we have, on the event E∞,1,n ∩ FD,n

‖(Σ̂XX −ΣXX)D‖�∞,�2 ≤ πδ∗ + (π2√q/8)‖T̂XX −TXX‖2�∞‖D‖1,

and hence, by invoking (7.1), we have, on the same event,

‖(Σ̂XX −ΣXX)D‖�∞,�2

≤ π‖D‖op
√
2C ′′′ C(ΣXX)

√
{ln(p2) + ln(5)q}/n+ C2

1‖D‖1
√
q ln(p2)/(2n),

which is the desired conclusion.

Appendix D: Computational aspects

We can write (5.1) in a form to which a solver for a standard Lasso problem
can be readily applied. Section 2 of [6], specifically at the top of p. 6 around
Eq. (2.2), describes a procedure similar in spirit but that applies to a univariate
response problem. To see how, first recall that S, S× and Ω are supposed to be
proxies for ΣXX, ΣXY and Ωεε, respectively. We further assume that S and Ω
are positive definite. Let A ∈ R(pq)×(pq) be a Cholesky factor of Ω⊗ S, so that
A�A = Ω ⊗ S. Next, let y ∈ R(pq) be such that A�y = vec(S×Ω). We can
then rewrite the right-hand side of (5.1) as

vec(B)�Ω⊗ S vec(B)/2− tr(ΩS�
×B)

= vec(B)�A�A vec(B)/2− vec(S×Ω)� vec(B)

= vec(B)�A�A vec(B)/2− y�A vec(B)

= ‖y −A vec(B)‖2�2/2− y�y/2. (D.1)

We have thus converted (5.1) to an equivalent univariate response least squares
form (D.1) with y as the response, A as the explanatory variables, and the
vectorized B as the regression coefficient.

Appendix E: Identifiability issues and prediction

Suppose we are given Model (1.1) but not all components of X and Y have
mean 0 and variance 1. The model can then be transformed into a form that
does. Model (1.1) implies that

{diag(ΣYY)−1/2(Y − EY)}�

= [diag(ΣXX)−1/2{X− E(X)}]�{diag(ΣXX)1/2B∗diag(ΣYY)−1/2}
+ [diag(ΣYY)−1/2{ε− E(ε)}]�,
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where diag denotes the diagonal matrix with diagonal elements identical to those
of the argument. Obviously, all components of diag(ΣXX)−1/2{X−E(X)} and
diag(ΣYY)−1/2{Y − E(Y)} have mean 0 and variance 1. Then, by making the
simultaneous substitutions,

diag(ΣXX)−1/2{X− E(X)} �→ Xnew, diag(ΣYY)−1/2{Y − E(Y)} �→ Ynew,

diag(ΣYY)−1/2{ε−E(ε)} �→ εnew, diag(ΣXX)1/2B∗diag(ΣYY)−1/2 �→ Bnew,

we can convert the original Model (1.1) into a new form where all components of
the covariates and the responses have mean 0 and variance 1. In Model (1.2), the
substitutions performed on f(X) and g(Y) can be absorbed into the functions
f and g, respectively.

Now we briefly discuss the prediction problem for Model (1.2) under the
elliptical copula multivariate response regression model, where given a value
X∗ of the covariate, we would like to predict the response Y∗. Our discussion
essentially follows Section 2.1 in [11], which deals with a variant of the Gaussian
copula regression model. In the ideal setting where the transformation functions
f and g and the coefficient matrix B∗ are known, the oracle predictor for the
median of Y∗ is

U∗ = g−1{B∗�f(X∗)}.

This results from adapting Eq. (4) in [11] to our context using the conditionals
of elliptical distributions; see, e.g., Theorem 2.18 in [12]. The oracle predictor
U∗ has a unique value, irrespective of the identifiability conditions. Prediction
at other quantile levels of Y∗ is also possible but more involved.

In practice, f , g and B∗ are not available, and it is natural to substitute them
by their estimates f̂ , ĝ and B̂ when the latter are available. Then, an empirical
predictor for the median is given by

Û∗ = ĝ−1{B̂�f̂(X∗)}, (E.1)

where ĝ−1 is a suitable inverse of ĝ. Therefore, accurate estimations of f , g
and B∗ are all important for achieving good prediction performance. We have
addressed the estimation of B∗ in this paper.

In the most commonly encountered Gaussian copula regression model, the
estimators of f and g are also straightforward to construct. We focus our dis-
cussion on f because the treatment for g is analogous. In this case, because
f(X) is multivariate normal and all its components have mean 0 and variance 1
by our identification conditions, f(x1, . . . , xp) = (f1(x1), . . . , fp(xp))

� is explic-
itly given by fr = Φ−1 ◦ Fr, where Fr is the marginal distribution function of
the rth coordinate of X, and Φ−1 is the N (0, 1) quantile function. To obtain an

estimator f̂r of fr, it is typical to substitute Fr in fr = Φ−1◦Fr by (sometimes a
Winsorized, i.e., truncated version of) the empirical marginal distribution func-
tion F ∗

n,k in (F.1); see, e.g., Eq. (3.26) in [19] and Section 4 in [25]. In the more

general case where f(X) is elliptical, Φ−1 should be replaced by proper quantile
functions for the marginals of f(X) to obtain f .
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Appendix F: Use of the normal-score rank correlation estimator in
the Gaussian copula case

In this Appendix, we examine the properties of the normal-score rank correlation
estimator Σn, also known as van der Waerden correlation matrix, as an esti-
mator of the copula correlation matrix when the underlying copula is Gaussian.
The discussion is carried out in a general context. For space consideration, only
a brief discussion on the application of Σn to the Gaussian copula regression
problem is included at the end.

Let X ∈ Rp be a continuous random vector with Gaussian copula and copula
correlation matrix Σ. Let F1, . . . , Fp denote the marginal distribution functions
of X = (X1, . . . , Xp)

�. For each i ∈ [n], let Xi = (Xi,1, . . . , Xi,p)
� be an inde-

pendent copy of X. We define the (rescaled version of the) empirical marginal
distribution function for the kth coordinate of X as

F ∗
n,k(t) =

1

n+ 1

∑
i∈[n]

1(Xi,k ≤ t) =
n

n+ 1
Fn,k(t). (F.1)

Then, the normal-score rank correlation estimator or van der Waerden correla-
tion matrix Σn = [rn,kk′ ]k,k′∈[p] of Σ = [rkk′ ]k,k′∈[p] is defined, for all k, k

′ ∈ [p],
as

rn,kk′ =
φn

n

∑
i∈[n]

Φ−1{F ∗
n,k(Xi,k)} × Φ−1{F ∗

n,k′(Xi,k′)}.

See, e.g., Eq. (7) on p. 113 in [15]. Here φn is a deterministic correction factor
given by

φn =
[ 1
n

∑
i∈[n]

{
Φ−1

(
i

n+ 1

)}2 ]−1

= 1 +O{n−1 ln(n)}. (F.2)

For each i ∈ [n], define the Gaussianized observation

Z
(n)
i ≡ (Φ−1{F ∗

n,1(Ei,1)}, . . . ,Φ−1{F ∗
n,p(Ei,p)})� (F.3)

and let Σn be the corresponding sample covariance matrix, viz.

Σn =
φn

n

∑
i∈[n]

Z
(n)
i Z

(n)�
i . (F.4)

The correction φn is asymptotically negligible, but with it the diagonal ele-
ments of Σn all equal to 1, and so Σn becomes a genuine correlation matrix. The
elements of Σn belong to multivariate rank order statistics that are common in
the literature; see [15, 36] for some early references.

In fixed dimension, the van der Waerden correlation matrix Σn enjoys one
crucial property: it is asymptotically semiparametrically efficient. More pre-
cisely, Σn achieves the asymptotic covariance matrix lower bound in the Hájek–
Le Cam convolution theorem; see [19]. The analogous estimators based on
Kendall’s tau and Spearman’s rho do not share this property.
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Whether or not the dimension is fixed, it also stems readily from (F.4) that
Σn is always positive semidefinite. As a result, when the Lasso estimator studied
earlier in this paper is equipped with the estimator Σn, it no longer requires the
projection trick in (2.4) that sometimes leads to complication in the analysis,
as in Section 3.3 or 5.3.1. Therefore, at least in fixed dimension, when estimat-
ing the copula correlation matrix for Gaussian copulas, the van der Waerden
correlation matrix Σn should clearly be favored over the estimators based on
Kendall’s tau and Spearman’s rho.

That the estimatorΣn is semiparametrically efficient in the fixed-dimensional
setting is equivalent to the characterization that Σn is asymptotically linear in
the efficient influence function; see, e.g., Lemma 25.23 in [39]. The main goal
of this Appendix is to establish a high-dimensional counterpart to the above
statement in Theorem F.1. The theorem states that, in high dimensions, each
element of the estimator Σn is the summation of a term which is linear in the
efficient influence function (thus this term is asymptotically normal after scaling
by n1/2) and a remainder term which is, with high probability, uniformly small
(at a rate n−1 up to logarithm factors) over all coordinates.

While the elements of the Kendall’s tau or the Spearman’s rho matrix are
also asymptotically linear in their own influence function, the latter is inefficient.
Thus, our result implies that the covariance matrix of Σn is smaller than both
the Kendall’s tau and the Spearman’s rho estimators, so long as the remainder
terms do not appreciably affect the covariance matrix. Further discussion is
provided in Section F.3.

To state Theorem F.1, first define the efficient influence function � for esti-
mating elements of Σ as in, e.g., Theorem 3.1 in [19]. For any given correlation
coefficient ρ ∈ R and arbitrary marginal distribution functions G and H, let

�(y, z; ρ,G,H) = Φ−1{G(y)}Φ−1{H(z)} − (ρ/2)[{Φ−1(G(y))}2

+ {Φ−1(H(z))}2] : (y, z) ∈ R2 → R.

In the statement of Theorem F.1 and in its proof, detailed in Section F.2,
C denotes a finite absolute constant that does not depend on n and p (nor on
k, k′, m, r which occur later). However, this constant C may change at each
occurrence. Furthermore, � denotes an inequality that holds up to such a C as
the multiplicative factor.

Theorem F.1. Assume that ln(p) = o(n) and ln(n) = O(p). The normal-score
rank correlation estimator Σn = [rn,kk′ ]k,k′∈[p] of Σ = [rkk′ ]k,k′∈[p] then satisfies

rn,kk′ − rkk′ =
1

n

∑
i∈[n]

�(Xi,k, Xi,k′ ; rkk′ , Fk, Fk′) +Rn,kk′ , (F.5)

where the remainder term Rn,kk′ satisfies, with probability at least 1− C/p2,

max
k,k′∈[p]

|Rn,kk′ | ≤ C{ln(p) ln2(n) + ln3/2(p)}/n. (F.6)



Elliptical copula multivariate regression 963

The condition ln(p) = o(n) is common in the literature on high-dimensional
statistics. The other condition ln(n) = O(p) is purely for convenience: with it,

δn,p in (F.7) admits the simple upper bound C ln1/2(p). This simplification will
be used repetitively without further mention.

F.1. Preliminaries

At a high level, the proof follows that of Theorem 3.1 in [19] up to Eq. (3.35).
However, the derivation there is for the fixed-dimensional setting, and even
then only heuristic, and with the remainder term simply stated as having order
op(n

−1/2) in contrast to our (F.6). Theorem 3.1 in [19] was formally established
using the result from [36], which in turn is strictly for the fixed-dimensional
setting. The core of our proof is showing that the term B21,kk′ −B21,kk′ is small,
which relies heavily on the realization that this term has a hidden canonical U -
statistic structure.

To start, we need the following classical but important lemma for the con-
vergence of the empirical distribution function under a weighted metric, which
is Corollary 1 in Section 11.2 in [38]. We define

δn,p = ln1/2{p ln(n)}. (F.7)

Lemma F.2. Assume the same conditions as in Theorem F.1. Then for all
k ∈ [p] and n ∈ N, there exist events E4,k,n, each with probability at least
1− 1/p3, such that for the same absolute constant M1 > 0, we have

sup
t∈Λn,1

|(F ∗
n,k − Fk)(t)|/

√
Fk(t) ∧ (1− Fk)(t) ≤ M1δn,p/

√
n (F.8)

on E4,k,n, where in general, a ∧ b = min(a, b),

Λn,1 = {t : (2M1/3)
2δ2n,p/n ≤ Fk(t) ≤ 1− (2M1/3)

2δ2n,p/n}

and δn,p is defined in (F.7). Thus, setting

Λn,2 = {t : 4M2
1 δ

2
n,p/n ≤ Fk(t) ≤ 1− 4M2

1 δ
2
n,p/n},

we have, on the event E4,k,n,

sup
t∈Λn,2

|(F ∗
n,k − Fk)(t)|/{Fk(t) ∧ (1− Fk)(t)} ≤ 1/2. (F.9)

Proof. For the quantities in Corollary 1 in Section 11.2 in [38], we choose

λ = M1δn,p, a = (2/3)2λ2/n → 0, b = δ = 1/2.

As λ = 3 δ
√
an, we can choose γ+ = 1 − δ = 1/2. We can also choose γ− = 1.

That (F.8) holds with probability at least 1−1/p3 then follows from the corollary,
and the simple fact that ‖F ∗

n,k − Fn,k‖∞ ≤ 1/(n+ 1), for large enough M1 > 0.
Then, (F.9) follows as a simple consequence.
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We also record two auxiliary lemmas whose proofs we omit. Below, φ denotes
the N (0, 1) density.

Lemma F.3. We have dΦ−1(u)/du = 1/φ{Φ−1(u)} and d2Φ−1(u)/d2u =
Φ−1(u)/φ2{Φ−1(u)}.
Lemma F.4. For some absolute constant M2 < ∞,

sup
u∈(0,1)

u ∧ (1− u)

φ{Φ−1(u)} ≤ M2, sup
u∈(0,1)

|Φ−1(u)|√
2 ln[1/[2{u ∧ (1− u)}]]

≤ 1. (F.10)

F.2. Proof of Theorem F.1

First, because the diagonal elements of Σn all equal to 1, Rn,kk′ = 0 when
k = k′ and so (F.6) clearly holds. Thus we focus on the case k �= k′. We have
the decomposition

√
n (rn,kk′ − rkk′) = Ξ1,n,kk′ + · · ·+ Ξ4,n,kk′ +O{n−1/2 ln(n)}, (F.11)

where

Ξ1,n,kk′ =
1√
n

∑
i∈[n]

[Φ−1{Fk(Xi,k)} × Φ−1{Fk′(Xi,k′)} − rkk′ ],

Ξ2,n,kk′ =
1√
n

∑
i∈[n]

[Φ−1{F ∗
n,k(Xi,k)} − Φ−1{Fk(Xi,k)}]× Φ−1{Fk′(Xi,k′)},

Ξ3,n,kk′ =
1√
n

∑
i∈[n]

Φ−1{Fk(Xi,k)} × [Φ−1{F ∗
n,k′(Xi,k′)} − Φ−1{Fk′(Xi,k′)}]

Ξ4,n,kk′ =
1√
n

∑
i∈[n]

[Φ−1{F ∗
n,k(Xi,k)} − Φ−1{Fk(Xi,k)}],

× [Φ−1{F ∗
n,k′(Xi,k′)} − Φ−1{Fk′(Xi,k′)}],

and the O{ln(n)n−1/2} term in (F.11) comes from the factor φn given in (F.2).
We treat the terms Ξ2,n,kk′ ,Ξ3,n,kk′ ,Ξ4,n,kk′ on the right-hand side of (F.11)

in sequence. We define an = 4M2
1 δ

2
n,p/n, where M1 is the absolute constant in

Lemma F.2, and the sets A1,n = (0, an] ∪ (1 − an, 1) and A2,n = (an, 1 − an]
which form a partition of the interval (0, 1).

Proposition F.5. For the term Ξ2,n,kk′ in (F.11), we have

Ξ2,n,kk′ = −rkk′

2

1√
n

∑
i∈[n]

[Φ−1{Fk(Xi,k)}2 − 1] +R1,n,kk′ ,

where the remainder term R1,n,kk′ satisfies, with probability at least 1− C/p2,

max
k,k′∈[p]

|R1,n,kk′ | ≤ Cn−1/2{ln(p) ln2(n) + ln3/2(p)}.
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Proof. We treat the “tail region” where i ∈ [n] satisfies Fk(Xi,k) ∈ A1,n sepa-
rately from the region where i ∈ [n] satisfies Fk(Xi,k) ∈ A2,n. We write

Ξ2,n,kk′ ≡ B1,kk′ +B2,kk′ , (F.12)

where

B1,kk′ =
1√
n

∑
Fk(Xi,k)∈A1,n

[Φ−1{F ∗
n,k(Xi,k)}−Φ−1{Fk(Xi,k)}]×Φ−1{Fk′(Xi,k′)}

and

B2,kk′ =
1√
n

∑
Fk(Xi,k)∈A2,n

[Φ−1{F ∗
n,k(Xi,k)}−Φ−1{Fk(Xi,k)}]×Φ−1{Fk′(Xi,k′)}.

Part 1: Treatment of the term B1,kk′ . We write B1,kk′ = B11,kk′ −B12,kk′ , where

B11,kk′ =
1√
n

∑
Fk(Xi,k)∈A1,n

Φ−1{F ∗
n,k(Xi,k)} × Φ−1{Fk′(Xi,k′)}

and

B12,kk′ =
1√
n

∑
Fk(Xi,k)∈A1,n

Φ−1{Fk(Xi,k)} × Φ−1{Fk′(Xi,k′)}.

We only analyze the term B12,kk′ in detail; this will culminate in the bound
(F.16). The term B11,kk′ is bounded similarly (with a possibly different C). This
follows by an argument similar to that for B12,kk′ , but simply using the bound

maxi∈[n] |Φ−1{F ∗
n,k(Xi,k)}| � ln1/2(n), which follows from the facts that

min{F ∗
n,k(Xi,k), 1− F ∗

n,k(Xi,k) : i ∈ [n]} ≥ 1/(n+ 1),

and the right-hand inequality in (F.10).
We first control the expectation of B12,kk′ . We let Fkk′ be the bivariate distri-

bution function of (Xk, Xk′), and let Fn,kk′ be its empirical counterpart based
on {(Xi,k, Xi,k′) : i ∈ [n]}. We can write

B12,kk′ = n1/2

∫
1{Fk(y) ∈ A1,n}

× Φ−1{Fk(y)}Φ−1{Fk′(z)}dFn,kk′(y, z) (F.13)

and so

|EB12,kk′ | ≤ n1/2

∫
1{Fk(y) ∈ A1,n}|Φ−1{Fk(y)}| × |Φ−1{Fk′(z)}|dFkk′(y, z)

≤ n1/2

∫
1{Fk(y) ∈ A1,n}|Φ−1{Fk(y)}| × {|Φ−1{Fk(y)}|+ 1}dFk(y)
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� n1/2

∫
1{u ∈ (0, an]}{ln(1/2u) + ln1/2(1/2u)}du

� n−1/2 ln(p) ln(n). (F.14)

The second step follows by integrating over z upon conditioning on y, using
the fact that given X1,k = y, the variable Φ−1{Fk′(X1,k′)} is Gaussian with
mean rkk′Φ−1{Fk(y)} and variance 1− r2kk′ , and calling on Lemma B.3. In the
third step, we have invoked the right-hand inequality in (F.10).

Next, we study the concentration of B12,kk′ around E(B12,kk′). We will apply
Bernstein’s inequality, slightly simplified here as Lemma B.4. To this end, we
bound the rth absolute moment, where r ≥ 2, of the integrand in (F.13). We
obtain∫

1{Fk(y) ∈ A1,n}|Φ−1{Fk(y)}Φ−1{Fk′(z)}|rdFkk′(y, z)

�
∫

1{Fk(y) ∈ A1,n}|Φ−1{Fk(y)}|r

× {2r−1|Φ−1{Fk(y)}|r + 2r−1(r − 1)!!}dFk(y), (F.15)

where we have again invoked Lemma B.3. We first concentrate on the first term
in the curly bracket above. Using the right-hand inequality of (F.10), we have

2r−1

∫
1{Fk(y) ∈ A1,n}|Φ−1{Fk(y)}|2rdFk(y)

� 22r−1

∫
1{u ∈ (0, an]} lnr(1/2u)du

and the right-hand side can be successively rewritten as follows:

(−1)r22r−1

∫
1{u ∈ (0, an]} lnr(2u)du

= (−1)r22r−1u

r∑
m=0

(−1)r−m r!

m!
lnm(2u)|u=an

= 22r−1an

r∑
m=0

(−1)m
r!

m!
lnm(2an).

Furthermore, the right-hand most term in the above expression reduces to

r! 22r−1an

r∑
m=0

1

m!
lnm{1/(2an)} ≤ r! 22r−1an

r∑
m=0

lnm(1/2an).

Therefore,

2r−1

∫
1{Fk(y) ∈ A1,n}|Φ−1{Fk(y)}|2rdFk(y) � r!22r−1an ln

r{1/(2an)}.
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In the last step, we simply used the formula for the sum of a geometric series.
For the second term in the curly bracket in (F.15), Hölder’s inequality implies

2r−1(r − 1)!!

∫
1{Fk(y) ∈ A1,n}|Φ−1{Fk(y)}|rdFk(y)

� 23r/2−1(r − 1)!!

{∫
1{u ∈ (0, an]} lnr(1/2u)du

}1/2{∫
1{u ∈ (0, an]}du

}1/2

� 23r/2−1(r − 1)!![r!an ln
r{1/(2an)}]1/2a1/2n ≤ 23r/2−1r!an ln

r/2{1/(2an)}.

Therefore, overall the left-hand side of (F.15) can be bounded above by the
multiple of a constant which is uniform over all integers r ≥ 2, and the quantity

r!22ran ln
r{1/(2an)} = r![16an ln

2{1/(2an)}]× [4 ln{1/(2an)}]r−2

uniformly over r and n. We can then apply Bernstein’s inequality with c �
ln{1/(2an)} and σ2

i � an ln
2(1/2an), and conclude that

Pr[|B12,kk′ − E(B12,kk′)| ≥ Cn−1/2{δn,p ln(n)
√
u+ ln(n)u}] ≤ 2e−u.

Combining the above with the expectation bound (F.14) earlier, and setting
u = C ln(p) for C large enough, we conclude that

Pr{|B12,kk′ | ≥ Cn−1/2 ln(p) ln(n)} ≤ 1/(2p4). (F.16)

Together with an identical bound for B11,kk′ (as argued earlier), we conclude
that there exists an event E5,kk′,n with probability at least 1− 1/p4 on which

|B1,kk′ | ≤ Cn−1/2 ln(p) ln(n). (F.17)

Part 2: Treatment of the term B2,kk′ . By Taylor expansion to second order and
Lemma F.3, the term B2,kk′ can be written as

1√
n

∑
Fk(Xi,k)∈A2,n

1

φ[Φ−1{Fk(Xi,k)}]
(F ∗

n,k − Fk)(Xi,k)Φ
−1{Fk′(Xi,k′)}

+
1√
n

∑
Fk(Xi,k)∈A2,n

[
Φ−1(F

∗
n,k,i)

φ2{Φ−1(F
∗
n,k,i)}

]
(F ∗

n,k − Fk)
2(Xi,k)Φ

−1{Fk′(Xi,k′)}

≡ B21,kk′ +B22,kk′ . (F.18)

In the above, for each i, the quantity F
∗
n,k,i is a random number strictly

between F ∗
n,k(Xi,k) and Fk(Xi,k). We can write B21,kk′ equivalently as

B21,kk′ =

∫
1{Fk(y) ∈ A2,n}

Φ−1{Fk′(z)}
φ[Φ−1{Fk(y)}]

√
n (F ∗

n,k − Fk)(y)dFn,kk′(y, z).



968 Y. Zhao and C. Genest

We intend to approximate B21,kk′ by

B21,kk′ ≡
∫

1{Fk(y) ∈ A2,n}
Φ−1{Fk′(z)}
φ[Φ−1{Fk(y)}]

√
n (Fn,k − Fk)(y)dFkk′(y, z).

We now show that B21,kk′ − B21,kk′ is indeed small through a U -statistic
argument. Introduce the functions fn,kk′ , gn,kk′ : R2 × R2 → R specifically as

fn,kk′(y1, z1; y2, z2) = 1{Fk(y1) ∈ A2,n}
Φ−1{Fk′(z1)}
φ[Φ−1{Fk(y1)}]

{1(y2 ≤ y1)− Fk(y1)},

gn,kk′(y1, z1; y2, z2) = fn,kk′(y1, z1; y2, z2)−
∫

fn,kk′(y, z; y2, z2)dFkk′(y, z),

and the index set I2n = {(i, j) : i, j ∈ [n], i �= j}. First replace F ∗
n,k by Fn,k and

then write out Fn,k explicitly as in (F.1). We find

B21,kk′ −B21,kk′ ≡ Δ21,kk′,1 +Δ21,kk′,2 +Δ21,kk′,3, (F.19)

where we have introduced the quantities

Δ21,kk′,1 = n−3/2
∑

(i,j)∈I2
n

gn,kk′(Xi,k, Xi,k′ ;Xj,k, Xj,k′),

Δ21,kk′,2 = n−3/2
∑
i∈[n]

gn,kk′(Xi,k, Xi,k′ ;Xi,k, Xi,k′),

Δ21,kk′,3 =
−√

n

n+ 1

∫
1{Fk(y) ∈ A2,n}

Φ−1{Fk′(z)}
φ[Φ−1{Fk(y)}]

Fn,k(y)dFn,kk′(y, z).

The quantity Δ21,kk′,1 is clearly (the “off-diagonal” part of) a U -statistic, with
kernel gn,kk′ . Moreover,

E{gn,kk′(Xk, Xk′ ; y2, z2)} = 0, E{gn,kk′(y1, z1;Xk, Xk′)} = 0. (F.20)

Indeed, the first equality follows by integration with respect to the measure Fkk′

whereas the second stems from the fact that E{1(Xk ≤ y1)− Fk(y1)} = 0.
Thus gn,kk′ is canonical (i.e., completely degenerate) for the measure Fkk′ . If

the kernel gn,kk′ were “nice,” this would suggest that Δ21,kk′,1 could be on the
order of n−1/2. However, this kernel is unbounded, and it diverges ever more
quickly as n increases. Thus, establishing a deviation inequality for Δ21,kk′,1 is
quite tedious. The formal treatment of Δ21,kk′,1, as well as the “leftover” terms
Δ21,kk′,2 (which is the “diagonal”, i.e., the i = j part of a U -statistic) and
Δ21,kk′,3, will be considered next.

Proposition F.6. The terms Δ21,kk′,1, Δ21,kk′,2, Δ21,kk′,3 satisfy

Pr[|Δ21,kk′,1| > C{ln(p) ln(n) + ln3/2(p)}n−1/2] ≤ C/p4, (F.21)

Pr{|Δ21,kk′,2|+ |Δ21,kk′,3| ≥ C ln3/2(n)n−1/2} ≤ 2/p4. (F.22)
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Therefore, there exists an event E6,kk′,n with probability at least 1 − C/p4 on
which

|B21,kk′ −B21,kk′ | ≤ C{ln(p) ln(n) + ln3/2(p) + ln3/2(n)}n−1/2. (F.23)

Proof. Let hn,kk′ be the symmetrized version of gn,kk′(·11, ·12; ·21, ·22), i.e.,

hn,kk′(y1, z1; y2, z2)

=
1

2
{fn,kk′(y1, z1; y2, z2)−

∫
fn,kk′(y, z; y2, z2)dFkk′(y, z)

+ fn,kk′(y2, z2; y1, z1)−
∫

fn,kk′(y, z; y1, z1)dFkk′(y, z)}

≡ (hn,kk′,1 + hn,kk′,2 + hn,kk′,3 + hn,kk′,4)(y1, z1; y2, z2)/2. (F.24)

From (F.20), the variant with gn,kk′ replaced by hn,kk′ holds, too; thus hn,kk′ is
also canonical for the measure Fkk′ .

We consider the “decoupled” version of the U -statistic Δ21,kk′,1. For each
i ∈ [n], let X∗

i = (X∗
i,1, . . . , X

∗
i,p) be an independent copy of Xi. The decoupled

version of Δ21,kk′,1, including the diagonal part to be precise, is then∑
i,j∈[n]

gn,kk′(Xi,k, Xi,k′ ;X∗
j,k, X

∗
j,k′) =

∑
i,j∈[n]

hn,kk′(Xi,k, Xi,k′ ;X∗
j,k, X

∗
j,k′).

We wish to apply Theorem 3.2 in [14] to bound, for every integer m ≥ 3, the
mth moment of the quantity above. Via Markov’s inequality, this will lead to a
tail probability bound for the quantity above and, via the decoupling theorem,
to a tail probability bound for the un-decoupled Δ21,kk′,1.

Let ‖ · ‖L2→L2 be defined as in (3.9) in [14]. Also for a (generic) random
variable X, let EX denote the expectation taken with respect to the random
variable X only. Then, Theorem 3.2 in [14] states that there exists a universal
constant K < ∞ such that (for the canonical kernel hn,kk′ of two variables, and
independent random variables Xi, X

∗
i for all i ∈ [n]), for every integer m ≥ 2,

E
∣∣∣ ∑
i,j∈[n]

hn,kk′(Xi,k, Xi,k′ ;X∗
j,k, X

∗
j,k′)

∣∣∣m
≤ Km

[
mm/2

[ ∑
i,j∈[n]

E{h2
n,kk′(Xi,k, Xi,k′ ;X∗

j,k, X
∗
j,k′)}

]m/2

+mm‖hn,kk′‖mL2→L2

+m3m/2E{Xi,i∈[n]} max
i∈[n]

[ ∑
j∈[n]

EX∗
j
{h2

n,kk′(Xi,k, Xi,k′ ;X∗
j,k, X

∗
j,k′)}

]m/2

+m2mE
{

max
i,j∈[n]

|hm
n,kk′(Xi,k, Xi,k′ ;X∗

j,k, X
∗
j,k′)|

}]
. (F.25)

Note that while the statement of the theorem requires a bounded kernel,
inspection of the proof reveals that it is not necessary. If in doubt, we can
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always truncate the unbounded kernel hn,kk′ , and then let the truncation level
go to infinity on both sides of (F.25).

In what follows, sometimes we will write hn,kk′ simply as h. To apply (F.25),
we need to bound four quantities, namely

(i) E{h2(Xi,k, Xi,k′ ;X∗
j,k, X

∗
j,k′)};

(ii) ‖h‖L2→L2 ;

(iii) E{Xi,i∈[n]}

[
maxi∈[n]{EX∗

j
h2(Xi,k, Xi,k′ ;X∗

j,k, X
∗
j,k′)}m/2

]
;

(iv) Emaxi,j∈[n] |hm(Xi,k, Xi,k′ ;X∗
j,k, X

∗
j,k′)|.

We carry out these tasks in sequence. For (i), first by Jensen’s inequality,

E{h2(Xi,k, Xi,k′ ;X∗
j,k, X

∗
j,k′)} ≤ 4E{f2

n,kk′(Xi,k, Xi,k′ ;X∗
j,k, X

∗
j,k′)}

and the latter can be rewritten as follows:

4E

[
1{Fk(Xi,k) ∈ A2,n}

{
Φ−1{Fk′(Xi,k′)}
φ[Φ−1{Fk(Xi,k)}]

}2

× {1(X∗
j,k ≤ Xi,k)− Fk(Xi,k)}2

]

= 4EXi

[
1{Fk(Xi,k) ∈ A2,n}

{
Φ−1{Fk′(Xi,k′)}
φ[Φ−1{Fk(Xi,k)}]

}2

× EX∗
j
{1(X∗

j,k ≤ Xi,k)− Fk(Xi,k)}2
]

= 4EXi

[
1{Fk(Xi,k) ∈ A2,n}

{
Φ−1{Fk′(Xi,k′)}
φ[Φ−1{Fk(Xi,k)}]

}2

× Fk(Xi,k) {1− Fk(Xi,k)}
]
.

Therefore, upon invoking Lemma B.3 and then (F.10), we can deduce that

E{h2(Xi,k, Xi,k′ ;X∗
j,k, X

∗
j,k′)} ≤ C ln2{1/(2an)}. (F.26)

For (ii), first by definition (see (3.9) in [14]), we can write ‖h‖L2→L2 as

sup

{
E

∑
i,j∈[n]

h(Xi,k, Xi,k′ ;X∗
j,k, X

∗
j,k′)fi(Xi,k, Xi,k′)gj(X

∗
j,k, X

∗
j,k′) :

E
∑
i∈[n]

f2
i (Xi,k, Xi,k′) ≤ 1,E

∑
j∈[n]

g2j (X
∗
j,k, X

∗
j,k′) ≤ 1

}

so that, by Jensen’s inequality,
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‖h‖L2→L2 ≤ sup

{ ∑
i,j∈[n]

{
Eh2(Xi,k, Xi,k′ ;X∗

j,k, X
∗
j,k′)

}1/2

× {Ef2
i (Xi,k, Xi,k′)}1/2 ×

{
Eg2j (X

∗
j,k, X

∗
j,k′)

}1/2
:

E
∑
i∈[n]

f2
i (Xi,k, Xi,k′) ≤ 1,E

∑
j∈[n]

g2j (X
∗
j,k, X

∗
j,k′) ≤ 1

}
.

Now, by (F.26), the right-hand side of this inequality can be bounded above by

C ln{1/(2an)}

× sup

{{ ∑
i,j∈[n]

Ef2
i (Xi,k, Xi,k′)

}1/2{ ∑
i,j∈[n]

Eg2j (X
∗
j,k, X

∗
j,k′)

}1/2

:

E
∑
i∈[n]

f2
i (Xi,k, Xi,k′) ≤ 1,E

∑
j∈[n]

g2j (X
∗
j,k, X

∗
j,k′) ≤ 1

}
,

and hence
‖h‖L2→L2 ≤ Cn ln{1/(2an)}. (F.27)

For (iii), we first compute the inner expectation with respect to X∗
j . To this

end, the contributions from the squares of the four terms in the curly bracket
in (F.24) are computed separately. For the first term involving hn,kk′,1,

EX∗
j
{h2

n,kk′,1(y1, z1;X
∗
j,k, X

∗
j,k′)} = EX∗

j
{f2

n,kk′(y1, z1;X
∗
j,k, X

∗
j,k′)}.

Then, realizing that 1(X∗
j,k ≤ y1) is Bernoulli with success probability Fk(y1),

we can rewrite the right-hand term as

EX∗
j

[
1{Fk(y1) ∈ A2,n}

Φ−1{Fk′(z1)}
φ[Φ−1{Fk(y1)}]

{1(X∗
j,k ≤ y1)− Fk(y1)}

]2
= 1{Fk(y1) ∈ A2,n}

[
Φ−1{Fk′(z1)}
φ[Φ−1{Fk(y1)}]

]2
Fk(y1) {1− Fk(y1)} .

For the second term involving hn,kk′,2, given that

hn,kk′,2(y1, z1; y2, z2) = −EXi{fn,kk′(Xi,k, Xi,k′ ; y2, z2)},

it follows from Jensen’s inequality that

h2
n,kk′,2(y1, z1; y2, z2) ≤ EXi{f2

n,kk′(Xi,k, Xi,k′ ; y2, z2)}

and hence

EX∗
j
{h2

n,kk′,2(y1, z1;X
∗
j,k, X

∗
j,k′)}
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≤ EX∗
j
EXi{f2

n,kk′(Xi,k, Xi,k′ ;X∗
j,k, X

∗
j,k′)}

= E{f2
n,kk′(Xi,k, Xi,k′ ;X∗

j,k, X
∗
j,k′)} ≤ C ln2{1/(2an)},

where the last step follows from (F.26). For the third term involving hn,kk′,3,
note that

EX∗
j
{h2

n,kk′,3(y1, z1;X
∗
j,k, X

∗
j,k′)}

= EX∗
j

[
1{Fk(X

∗
j,k) ∈ A2,n}

Φ−1{Fk′(X∗
j,k′)}

φ[Φ−1{Fk(X∗
j,k)}]

{1(y1 ≤ X∗
j,k)− Fk(X

∗
j,k)}

]2

= EX∗
j

[
1{Fk(X

∗
j,k) ∈ A2,n}

Φ−1{Fk′(X∗
j,k′)}

φ[Φ−1{Fk(X∗
j,k)}]

× [1{Fk(y1) ≤ Fk(X
∗
j,k)} − Fk(X

∗
j,k)]

]2

. (F.28)

To be precise, the last equality holds with probability 1 when eventually we set
y1 = Xi,k. If Fk(y1) ≤ an, (F.28) can be rewritten and bounded from above as
follows:

EX∗
j

[
1{Fk(X

∗
j,k) ∈ A2,n}

Φ−1{Fk′(X∗
j,k′)}

φ[Φ−1{Fk(X∗
j,k)}]

{
1− Fk(X

∗
j,k)

}]2

≤ CEX∗
j

[
1{Fk(X

∗
j,k) ∈ A2,n}

Φ−1{Fk(X
∗
j,k)}2 + 1

φ[Φ−1{Fk(X∗
j,k)}]2

{
1− Fk(X

∗
j,k)

}2

]

= C

∫ 1−an

an

Φ−1(u)2 + 1

φ{Φ−1(u)}2 (1− u)2du ≤ Ca−1
n ln{1/(2an)}.

If an < Fk(y1) ≤ 1/2, dividing the range of integration based on the position
of Fk(X

∗
j,k) relative to Fk(y1) and 1/2, and making multiple uses of (F.10), we

can rewrite (F.28) and bound it as follows:

EX∗
j

[
1{Fk(X

∗
j,k) ∈ (an, Fk(y1))}

Φ−1{Fk′(X∗
j,k′)}

φ[Φ−1{Fk(X∗
j,k)}]

{
−Fk(X

∗
j,k)

}]2

+ EX∗
j

[
1{Fk(X

∗
j,k) ∈ [Fk(y1), 1− an]}

Φ−1{Fk′(X∗
j,k′)}

φ[Φ−1{Fk(X∗
j,k)}]

{
1− Fk(X

∗
j,k)

}]2

≤ C

∫ Fk(y1)

an

Φ−1(u)2 + 1

φ{Φ−1(u)}2 u2du+ C

∫ 1/2

Fk(y1)

Φ−1(u)2 + 1

φ{Φ−1(u)}2 (1− u)2 du

+ C

∫ 1−an

1/2

Φ−1(u)2 + 1

φ{Φ−1(u)}2 (1− u)2 du

≤ C

∫ Fk(y1)

an

[ln{1/(2u)}+ 1]du+ C

∫ 1/2

Fk(y1)

[ln{1/(2u)}+ 1]
(1− u)2

u2
du
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+ C

∫ 1−an

1/2

[ln{1/2(1− u)}+ 1] du

≤ C

[
1

Fk(y1)
ln[1/{2Fk(y1)}] + Fk(y1)

]
.

As the case where Fk(y1) > 1/2 is analogous, we conclude that

EX∗
j
{h2

n,kk′,3(y1, z1;X
∗
j,k, X

∗
j,k′)}

≤ C

[
1

an ∨ {Fk ∧ (1− Fk)} (y1)
ln

[
1

2[an ∨ {Fk ∧ (1− Fk)} (y1)]

]

+ {Fk ∧ (1− Fk)} (y1)
]
. (F.29)

For the fourth term involving hn,kk′,4, note that

hn,kk′,4(y1, z1; y2, z2) = −E{hn,kk′,3(y1, z1;Xj,k, Xj,k′)}.

Therefore, by Jensen’s inequality,

EX∗
j
{h2

n,kk′,4(y1, z1;X
∗
j,k, X

∗
j,k′)}

= EX∗
j
[E{hn,kk′,3(y1, z1;Xj,k, Xj,k′)}]2

≤ E{h2
n,kk′,3(y1, z1;Xj,k, Xj,k′)},

which then admits the same bound as (F.29).
Thus, for the term (iii), we first have

EX∗
j
{h2(y1, z1;X

∗
j,k, X

∗
j,k′)} ≤ h̄(y1, z1),

where the right-hand side is defined by

1{Fk(y1) ∈ A2,n}
[

Φ−1{Fk′(z1)}
φ[Φ−1{Fk(y1)}]

]2
Fk(y1) {1− Fk(y1)}

+ C

[
ln2{1/(2an)}+ {Fk ∧ (1− Fk)} (y1)

+
1

an ∨ {Fk ∧ (1− Fk)}(y1)
ln

[ 1

2[an ∨ {Fk ∧ (1− Fk)}(y1)]
]]

.

Form ≥ 3, the expectation of h̄m/2(Xi,k, Xi,k′) can be bounded above as follows:

E{h̄m/2(Xi,k, Xi,k′)}

≤ Cm

∫ [
1{Fk(y) ∈ A2,n}

[
Φ−1{Fk′(z)}
φ[Φ−1{Fk(y)}]

]2
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× Fk(y) {1− Fk(y)}
]m/2

dFkk′(y, z)

+ Cm

∫ [
1

an ∨ {Fk ∧ (1− Fk)} (y)

ln

[
1

2[an ∨ {Fk ∧ (1− Fk)}(y)]

] ]m/2

dFk(y)

+ Cm

∫
{Fk ∧ (1− Fk)}m/2

(y)dFk(y) + Cm ln2(m/2)(1/2an)

≤ Cm lnm/2{1/(2an)}a1−m/2
n + Cmmm/2a1−m/2

n .

Then, simply bounding the maximum over all i ∈ [n] by the summation over
i ∈ [n], we find

E{Xi,i∈[n]}

[
max
i∈[n]

{EX∗
j
h2(Xi,k, Xi,k′ ;X∗

j,k, X
∗
j,k′)}m/2

]
≤ E

{ ∑
i∈[n]

h̄(Xi,k, Xi,k′)m/2
}

≤ Cmn[lnm/2{1/(2an)}a1−m/2
n +mm/2a1−m/2

n ]. (F.30)

Finally, for the term (iv), first compute, for any integer m ≥ 3,

E|hm(Xi,k, Xi,k′ ;X∗
j,k, X

∗
j,k′)| ≤ Cm[lnm/2{1/(2an)}a2−m

n +mm/2a2−m
n ].

Then, bounding the maximum over i, j ∈ [n] by the summation over i, j ∈ [n],
we obtain

E max
i,j∈[n]

|hm(Xi,k, Xi,k′ ;X∗
j,k, X

∗
j,k′)|

≤ Cmn2[lnm/2{1/(2an)}a2−m
n +mm/2a2−m

n ]. (F.31)

Now we are ready to apply (F.25). Combining (F.26), (F.27), (F.30), (F.31),
we obtain

E

∣∣∣∣∣∣
∑

i,j∈[n]

hn,kk′(Xi,k, Xi,k′ ;X∗
j,k, X

∗
j,k′)

∣∣∣∣∣∣
m

≤ Cm max{mm/2(Am)m,mm(Bm)m,m3m/2(Cm)m,

m2m(Dm)m,m5m/2(Em)m} (F.32)

for the quantities

Am = Bm = ln{1/(2an)}n, Cm = ln1/2{1/(2an)}a−1/2+1/m
n n1/2+1/m,

Dm = a−1/2+1/m
n n1/2+1/m + ln1/2{1/(2an)}a−1+2/m

n n2/m,
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and Em = a
−1+2/m
n n2/m. Now, let

tm = Cemax(m1/2Am,mBm,m3/2Cm,m2Dm,m5/2Em), (F.33)

where the constant C could be the same as that in (F.32). By Markov’s inequal-
ity, we have

Pr
(∣∣∣ ∑

i,j∈[n]

hn,kk′(Xi,k, Xi,k′ ;X∗
j,k, X

∗
j,k′)

∣∣∣ > tm

)
≤ 1

tmm
E
∣∣∣ ∑
i,j∈[n]

hn,kk′(Xi,k, Xi,k′ ;X∗
j,k, X

∗
j,k′)

∣∣∣m ≤ e−m (F.34)

for every integer m ≥ 3. Now let m = �4 ln(p)�, so that the last line in (F.34)
is e−m ≤ 1/p4. For this value of m, tm in (F.33) admits the bound tm ≤
C{ln(p) ln(n) + ln3/2(p)}n. Thus we conclude that

Pr
[∣∣∣ ∑

i,j∈[n]

hn,kk′(Xi,k, Xi,k′ ;X∗
j,k, X

∗
j,k′)

∣∣∣
> C{ln(p) ln(n) + ln3/2(p)}n

]
≤ 1/p4. (F.35)

To properly apply the decoupling theorem, we also need to treat the “diago-
nal” component of

∑
i,j∈[n] hn,kk′(Xi,k, Xi,k′ ;X∗

j,k, X
∗
j,k′), namely (up to scaling

by n−3/2)

Δ21,kk′,4 ≡ n−3/2
∑
i∈[n]

hn,kk′(Xi,k, Xi,k′ ;X∗
i,k, X

∗
i,k′).

It is easy to check that for each i ∈ [n], hn,kk′(Xi,k, Xi,k′ ;X∗
i,k, X

∗
i,k′) is cen-

tered, and that for arbitrary integer r ≥ 2, its rth absolute moment can be
bounded above by a constant multiple of∫

1{Fk(y) ∈ A2,n}
|Φ−1{Fk′(z1)}|r
φ[Φ−1{Fk(y1)}]r

× |1(y2 ≤ y1)− Fk(y1)|rdFkk′(y1, z1)dFkk′(y2, z2)

≤
∫

1{Fk(y) ∈ A2,n}
|Φ−1{Fk′(z1)}|r
φ[Φ−1{Fk(y1)}]r

dFkk′(y1, z1)

≤ 2r−11{Fk(y) ∈ A2,n}
|Φ−1{Fk(y1)}|r + (r − 1)!!

φ[Φ−1{Fk(y1)}]r
dFk(y1)

� 23r/2−1Mr
2

∫
1{u ∈ (an, 1/2]}

lnr/2(1/2u)

ur
du

+ 2r−1Mr
2 (r − 1)!!

∫
1{u ∈ (an, 1/2]}

1

ur
du

� 23r/2−1Mr
2 lnr/2{1/(2an)}a−r+1

n + 2r−1Mr
2 (r − 1)!!a−r+1

n
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� r!{ln{1/(2an)}a−1
n }[23/2M2 ln

1/2{1/(2an)}a−1
n ]r−2.

Then, by Bernstein’s inequality,

Pr{|Δ21,kk′,4| ≥ C ln1/2(n)n−1/2} ≤ 1/p4. (F.36)

Next, first by (F.35), (F.36) and basic probability axioms, and then by de-
coupling using, e.g., Theorem 3.4.1 in [7], we can conclude that there exists an
absolute constant K ∈ (0,∞) such that

2/p4 ≥ Pr
[∣∣∣ ∑

i,j∈[n]

hn,kk′(Xi,k, Xi,k′ ;X∗
j,k, X

∗
j,k′)

∣∣∣
> C{ln(p) ln(n) + ln3/2(p)}n

]
+ Pr{n3/2|Δ21,kk′,4| ≥ C ln1/2(n)n}

≥ Pr
[∣∣∣ ∑

(i,j)∈I2
n

hn,kk′(Xi,k, Xi,k′ ;X∗
j,k, X

∗
j,k′)

∣∣∣ > C{ln(p) ln(n) + ln3/2(p)}n
]

≥ 1

K
Pr

[∣∣∣ ∑
(i,j)∈I2

n

hn,kk′(Xi,k, Xi,k′ ;Xj,k, Xj,k′)
∣∣∣

> KC{ln(p) ln(n) + ln3/2(p)}n
]
.

Then, recalling that Δ21,kk′,1 contains an overall n−3/2 factor, (F.21) in the
proposition follows.

We then turn to the term Δ21,kk′,2. To treat it, write

Δ21,kk′,2 = n−3/2
∑
i∈[n]

fn,kk′(Xi,k, Xi,k′ ;Xi,k, Xi,k′)

− n−3/2
∑
i∈[n]

EX∗
i
{fn,kk′(X∗

i,k, X
∗
i,k′ ;Xi,k, Xi,k′)}.

For the summand fn,kk′(Xi,k, Xi,k′ ;Xi,k, Xi,k′) in the first term on the right-
hand side, we can bound the expectation of |fn,kk′(Xi,k, Xi,k′ ;Xi,k, Xi,k′)| from
above by C ln3/2{1/(2an)}, while for any integer r ≥ 2, its rth absolute moment
can be bounded similarly as that for Δ21,kk′,4.

As for the summand EX∗
i
{fn,kk′(X∗

i,k, X
∗
i,k′ ;Xi,k, Xi,k′)} in the second term

on the right-hand side above, its expectation is zero, while for any integer r ≥ 2,
its rth absolute moment can be bounded via Jensen’s inequality as

E|EX∗
i
{fn,kk′(X∗

i,k, X
∗
i,k′ ;Xi,k, Xi,k′)}|r

≤ E{EX∗
i
|fn,kk′(X∗

i,k, X
∗
i,k′ ;Xi,k, Xi,k′)|r},

which can again be bounded similarly as that for Δ21,kk′,4. Thus,

Pr{|Δ21,kk′,2| ≥ C ln3/2(n)n−1/2} ≤ 1/p4.
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Analogously, Δ21,kk′,3 satisfies the same bound. Then, (F.22) in the proposition
follows.

Finally, (F.23) holds as a simple consequence of (F.19), (F.21) and (F.22).
This completes the proof of Proposition F.6.

Next, we rewrite

B21,kk′ = rkk′

∫
1{Fk(y) ∈ A2,n}

Φ−1{Fk(y)}
φ[Φ−1{Fk(y)}]

√
n (Fn,k − Fk)(y)dFk(y)

= rkk′

∫
1{Fk(y) ∈ A2,n}Φ−1{Fk(y)}

√
n (Fn,k − Fk)(y)dΦ

−1{Fk(y)}

=
rkk′

2

{
−
∫

1{Fk(y) ∈ A2,n}
√
nΦ−1{Fk(y)}2d(Fn,k − Fk)(y) +D2

}
,

so that

B21,kk′ = −rkk′

2

1√
n

∑
i∈[n]

[Φ−1{Fk(Xi,k)}2 − 1] +
rkk′D1

2
+

rkk′D2

2
. (F.37)

The first step follows by integrating over z upon conditioning on y and the
fact that given Xk = y, the variable Φ−1{Fk′(Xk′)} is Gaussian with mean
rkk′ Φ−1{Fk(y)}. The third step and (F.37) follow by integration by parts, and
upon setting

D1 =

∫
1{Fk(y) ∈ A1,n}

√
nΦ−1{Fk(y)}2d(Fn,k − Fk)(y)

and

D2 =
√
nΦ−1(1− an)

2(Fn,k − Fk){F←
k (1− an)}
−

√
nΦ−1(an)

2(Fn,k − Fk){F←
k (an)}.

The term D1 has expectation zero, and its concentration around expectation
can be treated in a similar way as B12,kk′ earlier to arrive at a bound similar to
(F.16). Specifically, there exists an event E7,k,n with probability at least 1−1/p3

on which

|D1| ≤ Cn−1/2 ln(p) ln(n). (F.38)

Lemma F.2 also easily ensures that on E4,k,n,

|D2| ≤ Cn−1/2 ln(p) ln(n). (F.39)

We finally treat the term B22,kk′ from (F.18). By the mean value theorem
and (F.9) on the event E4,k,n, we have, on the same event, and for Fk(y) ∈ A1,n,

|Φ−1(F
∗
n,k,i)− Φ−1{Fk(Xi,k)}| = |F ∗

n,k,i − Fk(Xi,k)|/φ{Φ−1(F̃ ∗
n,k,i)}
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�
|F ∗

n,k(Xi,k)− Fk(Xi,k)|
F̃ ∗
n,k,i ∧ (1− F̃ ∗

n,k,i)
�

|F ∗
n,k(Xi,k)− Fk(Xi,k)|

{Fk ∧ (1− Fk)}(Xi,k)
≤ 1

2
.

Here F̃ ∗
n,k,i is a random number strictly between F

∗
n,k,i and Fk(Xi,k). Therefore,

|B22,kk′ | can be bounded above by

∑
Fk(Xi,k)∈A2,n

|Φ−1(F
∗
n,k,i)|√

nφ2{Φ−1(F
∗
n,k,i)}

× (F ∗
n,k − Fk)

2(Xi,k)|Φ−1{Fk′(Xi,k′)}|

�
∑

Fk(Xi,k)∈A2,n

|Φ−1{Fk(Xi,k)}|+ 1
√
n {F ∗

n,k,i ∧ (1− F
∗
n,k,i)}2

× (F ∗
n,k − Fk)

2(Xi,k)|Φ−1{Fk′(Xi,k′)}|

�
∑

Fk(Xi,k)∈A2,n

|Φ−1{Fk(Xi,k)}|+ 1√
n {Fk ∧ (1− Fk)}2(Xi,k)

× (F ∗
n,k − Fk)

2(Xi,k)|Φ−1{Fk′(Xi,k′)}|,

on the event E4,k,n, and hence, by (F.8),

|B22,kk′ | � n−3/2δ2n,p
∑

Fk(Xi,k)∈A2,n

|Φ−1{Fk(Xi,k)}|+ 1

{Fk ∧ (1− Fk)}(Xi,k)

× |Φ−1{Fk′(Xi,k′)}| ≡ C22,kk′ (F.40)

on the event E4,k,n. It is easy to see that

E(C22,kk′) ≤ Cn−1/2 ln(p) ln2(n). (F.41)

Next, after some algebra it can be shown that for any integer r ≥ 2, the
rth absolute moment of the summand in C22,kk′ is bounded by a multiple
of a constant which is uniform over r ≥ 2, and r!23r lnr{1/(2an)}a−r+1

n =

r!
{
64 ln2(1/2an)a

−1
n

}{
8 ln(1/2an)a

−1
n

}r−2
uniformly over r and n. Then, by

Bernstein’s inequality, there exists an event E8,kk′,n with probability at least
1− 1/p4 on which

|C22,kk′ − EC22,kk′ | ≤ Cn−1/2 ln(p) ln(n). (F.42)

Therefore, from (F.40), (F.41) and (F.42) we conclude that on E4,k,n ∩E8,kk′,n,

|B22,kk′ | ≤ Cn−1/2 ln(p) ln2(n). (F.43)

We now finally collect the above results. By (F.12) and (F.18), we obtain

Ξ2,n,kk′ = B1,kk′ +B21,kk′ +B22,kk′
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= B1,kk′ +B21,kk′ + (B21,kk′ −B21,kk′) +B22,kk′ ,

where B21,kk′ satisfies (F.37). The terms B1,kk′ , (B21,kk′ −B21,kk′) and B22,kk′

in the expansion of Ξ2,n,kk′ , and then the terms D1 and D2 in the expansion
of Ξ2,n,kk′ are bounded as in (F.17), (F.23), (F.43), (F.38), (F.39) respectively.
Together these bounds yield that, on the intersection of some events En,k and
En,kk′ with probabilities at least 1−C/p3 and 1−C/p4 respectively, the magni-
tude of the sum of these remainder terms is bounded by Cn−1/2{ln(p) ln2(n) +
ln3/2(p)}. Taking the intersection of En,k and En,kk′ over k, k′ ∈ [p] then yields
the conclusion of Proposition F.5.

By an analogous argument, the term Ξ3,n,kk′ (F.11) satisfies

Ξ3,n,kk′ = −rkk′

2

1√
n

∑
i∈[n]

[Φ−1{Fk′(Xi,k′)}2 − 1] +R2,n,kk′ ,

where the remainder term R2,n,kk′ satisfies the same bound as R1,n,kk′ in Propo-
sition F.5. Finally, the term Ξ4,n,kk′ in (F.11), which is a second-order term, is
treated by the following proposition. The conclusion of Theorem F.1 then fol-
lows.

Proposition F.7. For the term Ξ4,n,kk′ in (F.11), with probability at least
1− 1/p2,

max
k,k′∈[p]

|Ξ4,n,kk′ | ≤ Cn−1/2 ln(p) ln(n). (F.44)

Proof. Using Hölder’s inequality, we bound Ξ4,n,kk′ as

|Ξ4,n,kk′ | ≤
[ 1√

n

∑
i∈[n]

[Φ−1{F ∗
n,k(Xi,k)} − Φ−1{Fk(Xi,k)}]2

]1/2
×

[ 1√
n

∑
i∈[n]

[Φ−1{F ∗
n,k′(Xi,k′)} − Φ−1{Fk′(Xi,k′)}]2

]1/2
.

For the first term on the right-hand side above, as in (F.12), we again decom-
pose the sum over i ∈ [n] into the cases Fk(Xi,k) ∈ A1,n and Fk(Xi,k) ∈ A2,n.
We then apply the mean value theorem to the summands in the second case.
We arrive at

1√
n

∑
i∈[n]

[Φ−1{F ∗
n,k(Xi,k)} − Φ−1{Fk(Xi,k)}]2 = B5,k +B6,k,

say, where

B5,k =
1√
n

∑
Fk(Xi,k)∈A1,n

[Φ−1{F ∗
n,k(Xi,k)} − Φ−1{Fk(Xi,k)}]2
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and

B6,k =
1√
n

∑
Fk(Xi,k)∈A2,n

1

φ2{Φ−1(F
∗
n,k,i)}

(F ∗
n,k − Fk)

2(Xi,k).

In the above, for each i, F
∗
n,k,i is a random number strictly between F ∗

n,k(Xi,k)
and Fk(Xi,k). For the term B5,k, similar to (F.17), there exists an event E9,k,n

with probability at least 1− 1/(2p3) on which B5,k ≤ Cn−1/2 ln(p) ln(n).
For the term B6,k, we can follow the derivation of the bound (F.43) for the

term B22,kk′ in (F.18) (in fact, the present case is easier because of the lack of
the function Φ−1 in the numerator). We obtain that there exists an event E10,k,n

with probability at least 1− 1/(2p3) on which |B6,k| ≤ Cn−1/2 ln(p) ln(n).
Then, it is easy to see that the bound (F.44) holds on the intersection

∩k∈[p](E9,k,n ∩ E10,k,n) with probability at least 1 − 1/p2. This concludes the
proof of Proposition F.7.

F.3. Discussion

To the best of our knowledge, this paper is the first to provide a justification
for the use of a matrix Σn of normal-score rank correlations or van der Waer-
den correlations to estimate the copula correlation matrix in high-dimensional
Gaussian copula models. The analysis of this coefficient faces the double hurdle
of an unbounded score function (namely Φ−1) and the non-independence of the
Gaussianized observations in (F.3). Nonetheless, in view of the clear superiority
of the estimator Σn in the fixed-dimensional setting, perhaps it is a bit sur-
prising that it did not receive more attention in high dimensions. Theorem F.1
shows that the estimator Σn retains its advantages in the latter regime. More-
over, this result has other immediate and broad practical applications which we
briefly describe below.

It should first be observed that in the literature, circumstances often require
deviation inequalities on the element-wise maximum norm of the deviation be-
tween the target Σ and an estimate thereof, previously often based on Kendall’s
tau or Spearman’s rho. For this purpose but based on the estimator Σn, the re-
mainder term in (F.5) converges so fast that it can practically be ignored. Next,
the leading term in (F.5), which is linear in the efficient influence function, in-
volves only iid, centered, sub-exponential random variables. Hence establishing
such deviation inequalities for this term is trivial. Thus Theorem F.1 implies
that in all such circumstances, the van der Waerden correlation matrix Σn can
be used instead. In fact, as mentioned earlier, efficiency gains can be expected
from the use of Σn due to its established linearity in the efficient influence
function. Relevant examples include, but are not limited to, [11, 24, 42] and,
in the present context but restricted to the Gaussian copula regression model,
Propositions 3.1, 4.2 and Theorem 5.2, for which the estimator Σ̂ in (2.2) of the
copula correlation matrix Σ in (2.1) can simply be replaced by Σn.

Second, it sometimes happens that matrix deviation inequalities stronger
than those in terms of the element-wise maximum norm are called for. For
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instance, in this paper Proposition 3.3 and later in the case of row-sparsity,
Theorems 5.4 and 5.7 require a deviation inequality for either the operator
norm or the ‖ · ‖�∞,�2 norm. For the leading term in (F.5), this should again be
straightforward. In contrast, simply aggregating over the remainder term Rn,kk′

element-wise may yield suboptimal (though useful) results. Properly treating
the remainder term in these cases may require more refined arguments, which
we do not pursue further herein.

For completeness, we should mention here that a Winsorized version Σ̃n of
the van der Waerden correlation matrix Σn was considered by Liu et al. [25],
who were able to establish a convergence rate of n−1/4, up to logarithm fac-
tors. Such a rate is clearly too slow to be competitive. These authors later
claimed in [24] that the “efficiency result (from [19]) cannot be generalized to
the high-dimensional setting.” To establish a satisfactory convergence rate, es-
timation of the copula correlation matrix in Gaussian copulas then quickly and
overwhelmingly switched to the Kendall’s tau or the Spearman’s rho estimator,
whose explicit U -statistic structure with bounded score function makes these
estimators more amenable to analysis; see, e.g., [1, 24, 42]. Despite the claim
from [25] that the lack of Winsorization “does not lead to accurate inference,”
Theorem F.1 is in fact obtained without truncation. Nevertheless, it may be
that some truncation, perhaps not as heavy as that in [25], may still improve
performance.

In [24], a simulation study comparing Σn or its Winsorized version Σ̃n to
the estimators of Σ based on Kendall’s tau and Spearman’s rho estimator was
carried out. The authors concluded that without contamination, all these esti-
mators performed similarly while with contamination, the estimators based on
Kendall’s tau and Spearman’s rho outperformed Σn and Σ̃n. We carried out a
small simulation study to verify these claims. Specifically we repeated Models 1
and 2 in Section 4.1 in [42], with n = p = 100. Without contamination, on
average Σn outperforms the Kendall’s tau and Spearman’s rho estimators by
5% in terms of Frobenius norm. With contamination present, the message is
mixed: with light, deterministic contamination, the estimator Σn can outper-
form the Kendall’s tau and the Spearman’s rho estimators by as much as 20%,
although in other scenarios the estimator Σn may perform less well. While 5%
gain may seem modest, in fixed dimensions and in a constrained parametriza-
tion (by a lower-dimensional copula parameter θ) such as the Toeplitz matrix
model, the efficiency gain for θ through the one-step estimator that involves Σn

can sometimes be as large as 400%; see, e.g., Example 5.2 in [37]. We defer the
high-dimensional analogy of this phenomenon to future studies.
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