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Abstract: In this paper, we propose an invariant test based on the mod-
ified correction to the likelihood ratio test (LRT) of the equality of two
high-dimensional covariance matrices. It is well-known that the classical
log-LRT is not well defined when the dimension is larger than or equal
to one of the sample sizes. Or even the log-LRT is well-defined, it is usu-
ally perceived as a bad statistic in the high-dimensional cases because of
their low powers under some alternatives. In this paper, we will justify the
usefulness of the modified log-LRT, and an invariant test that works well
in cases where the dimension is larger than the sample sizes. Besides, the
test is established under the weakest conditions on the dimensions and the
moments of the samples. The asymptotic distribution of the proposed test
statistic is also obtained under the null hypothesis. What is more, we also
propose a lite version of the modified LRT in the paper. A simulation study
and a real data analysis show that the performances of the two proposed
statistics are invariant under affine transformations.
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1. Introduction

Since the assumption of homogeneity of covariance matrices is needed in many
multivariate statistical analyses based on two populations, the equality of two
covariance matrices is among the most active hypothesis tests. These tests date
back to the work of [19], which was followed by a huge amount of literature.

Suppose we have N := N1+N2 observations {z(l)i ∼ N(μl,Σl), i = 1, . . . Nl, l =
1, 2} and wish to test the hypothesis

H0 : Σ1 = Σ2 v.s. H1 : Σ1 �= Σ2, (1.1)

where μl and Σl are the population mean vectors and covariance matrices of the

p-dimensional vectors z
(l)
i , l = 1, 2 respectively. It is natural to first consider the
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likelihood ratio test (LRT) if it is “applicable”. But when is the LRT applicable
to testing the equality of two covariance matrices? The traditional viewpoint is
that the LRT is applicable if the sample sizes are both much larger than the
dimensions based on the χ2 approximation [20]. However, [5] and [12] showed
that when the dimensions are large but smaller than the sample sizes, the tra-
ditional χ2 approximation of the LRT fails. This problem encouraged us to
investigate the conditions under which the high-dimensional LRT is applicable.
Additionally, we consider a lite LRT proposed by [16, 17].

Currently, there are three general types of test procedures for the high-
dimensional hypothesis (1.1) that are widely discussed in the literature: (i) Cor-
rected classical LRTs, see [5, 11, 12]; (ii) Nonparametric methods, see [13, 14, 18];
(iii) Maximum element methods, see [7, 8]. The strengths and weaknesses of
these three methods are significant. Nonparametric methods and maximum ele-
ment methods can address cases where the dimensions are much larger than the
sample sizes but are strongly restricted by the structure or eigenvalues of the
population covariance matrices. By contrast, corrected classical LRT requires
the dimensions to be smaller than the sample sizes, but there is no assump-
tion on the population covariance matrices. In addition, if the dimensions are
fixed, LRT has been shown to be unbiased and uniformly most powerful among
affine-transform-invariant tests. Therefore, we focus on the LRT.

In the following, we denote X
(1)
N1

= (x
(1)
ij )p×N1 , where {x(1)

ij } are independent
and identically distributed (i.i.d.) random variables with mean zero and variance

one. Similarly X
(2)
N2

= (x
(2)
ij )p×N2 , which is independent with X

(1)
N1

, constitutes
another i.i.d. sample with mean zero and variance one. For l = 1, 2, we assume

that the Nl observations z
(l)
j satisfy the linear transformation model

z
(l)
j = Σ

1/2
l x

(l)
j + μl, (1.2)

where x
(l)
j is the jth column of X

(l)
Nl

and μl and Σl are the population mean

vectors and covariance matrices of {z(l)j }, respectively. Here, Σ1/2
l can be chosen

as any square root of matrix Σl. The linear transformation model covers the case

where the samples z
(l)
i are normally distributed, although we are not restricted

here. Denote nl = Nl − 1, z̄(l) = 1
Nl

∑Nl

i=1 z
(l)
i , z̊

(l)
i = zi − z̄(l) and Sz

l :=

S
(l)
nl = 1

nl

∑Nl

i=1 z̊
(l)
i (̊z

(l)
i )′. We recall the famous Bartlett corrected LRT statistic

L proposed by [6], which is given by,

L =
2

n1 + n2
log

(
|Sz

1|
n1
2 · |Sz

2|
n2
2

|c1Sz
1 + c2Sz

2|
n1+n2

2

)
.

Here, and in the following, we denote c1 = n1/(n1 +n2) and c2 = n2/(n1 +n2).
Moreover, under the null hypothesis of (1.1) and linear transformation model
(1.2), it is not difficult to rewrite this statistic as

L =
2

n1 + n2
log

(
|Sx

1 |
n1
2 · |Sx

2 |
n2
2

|c1Sx
1 + c2Sx

2 |
n1+n2

2

)
,
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where Sx
l = 1

nl

∑Nl

i=1(x
(l)
i − 1

Nl

∑Nl

i=1 x
(l)
i )(x

(l)
i − 1

N1

∑Nl

i=1 x
(l)
i )′, l = 1, 2. Thus

we know that L is independent with the population means μl and covariance
matrices Σl under the null hypothesis H0. In the following, we drop the super-
scripts of S and denote S1 := Sx

1 and S2 := Sx
2 for simplicity. In addition, by

simple calculation, we can rewrite

L = c1 log(c
−1
1 |Bn|) + c2 log(c

−1
2 |Ip −Bn|),

where
Bn = n1S1(n1S1 + n2S2)

−1.

We now analyze L. If p > n1 or p > n2, then L is undefined because: (1)
if p ≥ n1 + n2, then matrix n1S1 + n2S2 is singular, which makes the inverse
of matrix n1S1 + n2S2 undefined; and (2) if p < n1 + n2, i.e., the inverse
of n1S1 + n2S2 is well-defined almost surely (with the fourth moments finite
assumption), but p > n1 or p > n2, then the determinant of Bn or Ip − Bn

is zero, which makes the logarithm functions undefined. However, from random

matrix theory (RMT), we know that if the fourth moment of x
(l)
ij exists, matrix

Bn almost certainly has p − n1 zero eigenvalues and p − n2 one eigenvalues
according to the condition p > n1 and p > n2, respectively (see [1]). Therefore,
we can naturally redefine the LRT L by restricting the non-zero and non-one
eigenvalues of Bn, i.e.,

L =
∑

λBn
i ∈(0,1)

[c1 log λ
Bn
i + c2 log(1− λBn

i )], (1.3)

where λBn

i denotes the i-th smallest eigenvalue of Bn. It is clear that L is
invariant with respect to transformations

z
∗(l)
j = Cz

(l)
j + νl,

where C is nonsingular. Therefore, we only need to obtain the asymptotic dis-
tributions of the redefined LRT in (1.3), which is addressed in the next section.

This paper also considers the test statistic L̃,

L̃ = log |n1S
z
1(n1S

z
1 + n2S

z
2)

−1|,

which was proposed in [19] and discussed in [16, 17]. As L̃ is the first term of
L, thus it can be viewed as a lite LRT. Similar to L , we redefine L̃ by

L̃ =
∑

λBn
i ∈(0,1)

log λBn
i . (1.4)

Unlike L , it is obvious that L̃ is monotone for matrix Bn. That means under
the alternative Σ1 > Σ2 or Σ1 < Σ2, all the eigenvalues {λBn

i | λBn

i ∈ (0, 1)}
become bigger or smaller than that under the null hypothesis. Thus, L̃ becomes
bigger or smaller correspondingly. However, it is uncertain for L . Therefore, L̃
should be more powerful than L in the two cases.
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The rest of this paper is organized as follows. The main results are presented
in Section 2, including the asymptotic normality of L and L̃ and their neces-
sary conditions, which stand for the modification of LRT cannot be improved
anymore in our model settings. In Section 3, we present the simulation results
for the proposed statistics by comparison with that proposed by [14] and [7]. In
Section 5, we introduce a real data application to demonstrate the application
of the proposed tests. All technical details are relegated to the appendix. We
note that for the high-dimensional testing problem (1.1), the exact distribution
of the test statistic is difficult to obtain when the distributions are arbitrary.

2. Main results

In this section, we give the asymptotic distributions of the redefined LRT in
(1.3) and (1.4). For the application, we also present consistent estimators for
the fourth moments of the samples under the null hypothesis. Before presenting
the main results, we give some notation and the necessary assumptions. In
the following, we denote the indicator function by δ(·), the natural logarithm

function by log(·), convergence in distribution by
D→, and

y1 := yn1 = p/n1, y2 := yn2 = p/n2, h := hn =
√
y1 + y2 − y1y2,

c1 := n1/(n1 + n2) = y2/(y1 + y2), c1 := n2/(n1 + n2) = y1/(y1 + y2),

l(y1, y2) = log(h
2c1h2

y1y2 )δy1>1 − log(y
c1(1+y2)

y2
1 y

c1(1−y1)
y1

2 )δy1>1,

u(y1, y2) = log(
yc11
hc1

)δy1>1, v(y1, y2) = log

(
y2c11

h2c1(c1+2c2)

)
δy1>1,

Ψ(y1, y2) = c2y
2
1 [y

4
2δy2<1 + h2(2y22 − h2)δy2>1]

−c1y
2
2 [y

3
1(y1 + 2y2)δy1<1 + h2(y1 + y2 + y1y2)δy1>1].

We set two assumptions of the sample that will be shown to be necessary for
the proposed test statistics.

• (Moments Assumption:) Ex
(1)
11 = Ex

(2)
11 = 0,E(x

(1)
11 )

2 = E(x
(2)
11 )

2 = 1,

E(x
(1)
11 )

4 = Δ1 + 3 < ∞ and E(x
(2)
11 )

4 = Δ2 + 3 < ∞;
• (Dimensions Assumption:) y1 �= 1, y2 �= 1 and p/(n1 + n2) < 1.

We are now ready to present the main results of this paper.

Theorem 2.1. In addition to the Moments Assumption and Dimensions As-
sumption, we assume that as min{p, n1, n2} → ∞, lim y1 �∈ {0, 1}, lim y2 �∈
{0, 1} and lim p/(n1 + n2) ∈ (0, 1). Then under the null hypothesis, we have

T :=
L − p�n − μn

νn

D→ N(0, 1), (2.1)

where

�n = log

⎛
⎝ yc21 yc12 h

2h2

y1y2

(y1 + y2)
(y1+y2)

y1y2 |1− y1|
c1|1−y1|

y1 |1− y2|
c2|1−y2|

y2

⎞
⎠− l(y1, y2)− l(y2, y1),
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μn = log

[
(y1 + y2)

1
2 |1− y1|

c1
2 |1− y2|

c2
2

h

]
− u(y1, y2)− u(y2, y1)

+
Δ1Ψ(y1, y2)

2y1y22(y1 + y2)2
+

Δ2Ψ(y2, y1)

2y2y21(y1 + y2)2
,

and

ν2n = log
h4

|1− y1|2c21 |1− y2|2c22(y1 + y2)2
+ 2[v(y1, y2) + v(y2, y1)

+ log(h4c1c2)δy1>1δy2>1]

+
(y1Δ1 + y2Δ2)

y21y
2
2(y1 + y2)2

[(y1 − 1)y22δy1>1 − (y2 − 1)y21δy2>1]
2.

According to the above theorem, we can easily conclude the following corol-
lary under normal circumstances:

Corollary 2.2. If z
(l)
j , j = 1 . . . , nl, l = 1, 2 are normally distributed, then

(2.1) in Theorem 2.1 reduces to:

T :=
L − p�n − μn

νn

D→ N(0, 1),

where

�n = log

⎛
⎝ yc21 yc12 h

2h2

y1y2

(y1 + y2)
(y1+y2)

y1y2 |1− y1|
c1|1−y1|

y1 |1− y2|
c2|1−y2|

y2

⎞
⎠− l(y1, y2)− l(y2, y1),

μn = log

[
(y1 + y2)

1
2 |1− y1|

c1
2 |1− y2|

c2
2

h

]
− u(y1, y2)− u(y2, y1),

and

ν2n = log
h4

|1− y1|2c21 |1− y2|2c22(y1 + y2)2

+ 2[v(y1, y2) + v(y2, y1) + log(h4c1c2)δy1>1δy2>1].

Remark 2.3. If the Dimensions Assumption in Theorem 2.1 is satisfied, the
limit condition that lim y1 �∈ {0, 1}, lim y2 �∈ {0, 1} and lim p/(n1 + n2) ∈ (0, 1)
could be considered to hold, because there is no information for the convergence
of the dimensions and sizes for any dataset. In addition, [12] showed that if
p/nl → 1, Theorem 2.1 also holds for normally distributed data. However, if yl
is near 1, then the variance νn will be large and the LRT will become unstable,
see Figure 1 for illustration.

Remark 2.4. When y1 < 1 and y2 < 1, Corollary 2.2 recovers Theorem 4.1 in
[5] directly.
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The necessity of the Dimensions Assumption is clear because of the definitions
of �n, μn and νn. For the Moments Assumption, we only need to consider the
fourth moments of the sample. From the variance νn in Theorem 2.1, we know
that its fourth-moment term cannot be removed except y1 < 1 and y2 < 1.
However, if y1 < 1 and y2 < 1, it is not difficult to obtain that

Ψ(y2, y1) = Ψ(y1, y2) = −y31y
3
2 ,

which implies that the fourth-moment term of μn cannot be removed. Therefore,
we conclude that the existence of the fourth moment of the sample is necessary
for the modified LRT statistic L . However, when y1 or y2 is close to 1, the
variance νn will increase rapidly, resulting in poor power. For illustration, we
present two 3D figures of μn and ν2n with Δ1 = Δ2 = 0 in Figure 1.

Fig 1. This figure was made using Maple software with y1 ∈ (0, 2) and y2 ∈ (0, 2). The
vertical axes present the values of μn and νn, respectively.

Now, we give the asymptomatic distribution of L̃ .

Theorem 2.5. In addition to the Moments Assumption and Dimensions As-
sumption, we assume that as min{p, n1, n2} → ∞, lim y1 �= 1, lim y2 �= 1 and
lim p/(n1 + n2) < 1. Then under the null hypothesis, we have

T̃ :=
L̃ − p�̃n − μ̃n

ν̃n

D→ N(0, 1),

where

�̃n = log

⎛
⎝ y2h

2h2

y1y2

(y1 + y2)
(y1+y2)

y1y2 |1− y1|
|1−y1|

y1

⎞
⎠− log

⎛
⎝ h

2h2

y1y2

y
1+y2
y2

1 y
1−y1
y1

2

⎞
⎠ δy1>1



856 Q. Zhang et al.

μ̃n = log

[
(y1 + y2)

1
2 |1− y1|

1
2

h

]
− log(

y1
h
)δy1>1

− Δ1[y
3
1(y1 + 2y2)δy1<1 + h2(y1 + y2 + y1y2)δy1>1]

2y1(y1 + y2)2

+
Δ2[y

4
1y2δy1<1 + h2y2(2y

2
1 − h2)δy1>1]

2y21(y1 + y2)2
,

and

ν̃2n =2 log
h2

|1− y1|(y1 + y2)
+ 2 log

(
y21
h2

)
δy1>1

+
(y1Δ1 + y2Δ2)

y21(y1 + y2)2
[y41δy1<1 + h4δy1>1].

Remark 2.6. Notice that the asymptotic distributions in Theorem 2.1 and The-
orem 2.5 are obtained under the null hypothesis, which can only guarantee the
Type I errors. For the powers, that is under the alternative hypothesis Σ1 �= Σ2,
the asymptotic distributions of statistics L and L̃ will depend on the eigen-
values of Σ1Σ

−1
2 . In this case, if the dimension p is smaller than either of the

two sample sizes, the power functions for T and T̃ can be obtained by the CLT
of the general Fisher matrices which is derived by [22]. However, if p is bigger
than both of the two sample sizes, because of the lack of theoretical results about
the general Beta matrix n1S1(n1S1 + n2A

1/2S2A
1/2)−1, the asymptotic distri-

butions of statistics L and L̃ are also open problems and will be left for our
future work. Here A is any non-random symmetric matrix.

If Δl �= 0, or more specifically, if the samples are not normally distributed,
the estimates for Δl are necessary for the test application. Thus, we obtain their
consistent estimators using the method of moments and random matrix theory.
Let

Δ̂1 =(1− y)2
∑N1

j=1[(z
(1)
j − z̄(1))′(c11S

z
1j + c12S

z
2)

−1(z
(1)
j − z̄(1))− p

1−y ]
2

pN1

− 2

1− y
, (2.2)

Δ̂2 =(1− y)2
∑N2

j=1[(z
(2)
j − z̄(2))′(c21S

z
1 + c22S

z
2j)

−1(z
(2)
j − z̄(2))− p

1−y ]
2

pN2

− 2

1− y
, (2.3)

where y = p
n1+n2−1 , c11 = n1−1

n1+n2−1 , c12 = n2

n1+n2−1 , c21 = n1

n1+n2−1 , c22 =
n2−1

n1+n2−1 and Sz
lj is the sample covariance matrix by removing the vector z

(l)
j

from the l-th sample, l = 1, 2.

Theorem 2.7. Under the same assumptions of Theorem 2.1 and under the null
hypothesis, we have that the estimators Δ̂l, l = 1, 2, defined in (2.2) and (2.3),
are weakly consistent and asymptotically unbiased.
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Remark 2.8. Actually, (c11S
z
1j + c12S

z
2)

−1 in (2.2) is used to avoid the case
where the sample sizes are not larger than the dimension, which gives rise to
the singularity of the sample covariance matrix. Otherwise, if the dimension p
is smaller than some sample size, say, p < n1, we can estimate Δ1 by replacing
the term (c11S

z
1j + c12S

z
2)

−1 and y = p
n1+n2−1 in (2.2) by (Sz

1j)
−1 and y = p

n1−1

respectively. The estimator Δ̂2 in (2.3) can be treated analogously.

The proofs of Theorem 2.1, Theorem 2.5 Theorem 2.7 are given in the ap-
pendix.

3. Results of the simulation

In this section, we compare the performance of the statistics proposed in [14]
and [7] and our modified LRTs L and L̃ under various settings of sample
size and dimensionality. The classical LRT statistic in [20] was shown to have
poor performance for (1.1) by [5]; thus, it will not be considered in this section.
Without loss of generality, we assume μl = 0 and set

Σ1 = (1 + a/n1)Σ2,

where a is a constant. The samples are drawn from the following distributions:

• Case 1: x(1) and x(2) are both standard normal distributed and Σ2 = Ip;
• Case 2: x(1) and x(2) are from the uniform distribution U(−

√
3,
√
3) and

Σ2 = Ip;
• Case 3: x(1) and x(2) are from the uniform distribution U(−

√
3,
√
3) and

Σ2 = Diag(p2, 1, . . . , 1);

• Case 4: x(1) and x(2) are from the uniform distribution U(−
√
3,
√
3) and

Σ2 = (0.5Ip + 0.51p1
′
p).

Here, 1p represents a p-dimensional vector with all entries 1. The results are

obtained based on 10,000 replicates. In the tables, T and T̃ denote the proposed
modified LRTs, Tlc denotes the nonparametric test of [14] and Tclx denotes the
maximum element test of [7].

In the first part of this section, we report the results by assuming the forth
moments of the x(1) and x(2) are known. Tables 1-4 present the empirical sizes
and empirical powers of Cases 1-4. Additionally, we provide four figures (Figures
2-5) to show the divergence of powers of the four test statistics as the parameter
a increases. The results indicate that the sizes T and T̃ perform quite well for all
cases. However, in Case 3 and Case 4, the sizes of Tlc and Tclx are not accurate,
which reflects the fact that the null distributions of the test statistics Tlc and
Tclx are not well approximated by their asymptotic distributions in these cases.
For the empirical power, we can conclude that T and T̃ are more sensitive than
Tlc and Tclx when at least one of the sample sizes is smaller than the dimensions.
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Table 1

Empirical sizes and empirical powers of the tests T , T , Tlc and Tclx in Case 1. These
results are based on the 5% significance level.

(n1, n2, p)
y1 > 1,y2 > 1

(25,35,40) (50,70,80) (100,140,160) (200,280,320)
size power size power size power size power
a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20

T 0.055 0.951 1 0.053 0.951 1 0.054 0.951 1 0.051 0.946 1

T̃ 0.056 0.999 1 0.048 1 1 0.048 1 1 0.049 1 1
Tlc 0.074 0.804 1 0.057 0.489 0.999 0.054 0.208 0.954 0.054 0.093 0.571
Tclx 0.082 0.152 0.591 0.057 0.071 0.343 0.048 0.049 0.120 0.042 0.046 0.062

(n1, n2, p)
y1 > 1,y2 < 1

(25,35,30) (50,70,60) (100,140,120) (200,280,240)
size power size power size power size power
a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20

T 0.059 0.685 0.999 0.057 0.618 0.998 0.054 0.558 0.994 0.052 0.523 0.987

T̃ 0.058 0.997 1 0.053 0.999 1 0.050 0.999 1 0.049 1 1
Tlc 0.063 0.793 1 0.055 0.494 0.999 0.053 0.205 0.952 0.050 0.098 0.574
Tclx 0.081 0.154 0.621 0.054 0.076 0.380 0.049 0.048 0.147 0.045 0.046 0.068

(n1, n2, p)
y1 < 1,y2 > 1

(35,25,30) (70,50,60) (140,100,120) (280,200,240)
size power size power size power size power
a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20

T 0.060 0.109 0.075 0.055 0.167 0.282 0.050 0.213 0.515 0.050 0.248 0.645

T̃ 0.056 0.956 1 0.052 0.985 1 0.052 0.989 1 0.046 0.994 1
Tlc 0.068 0.314 0.992 0.059 0.143 0.896 0.054 0.077 0.489 0.051 0.054 0.179
Tclx 0.077 0.203 0.677 0.054 0.102 0.433 0.049 0.061 0.189 0.042 0.051 0.076

(n1, n2, p)
y1 < 1,y2 < 1

(25,35,20) (50,70,40) (100,140,80) (200,280,160)
size power size power size power size power
a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20

T1 0.060 0.251 0.960 0.056 0.119 0.715 0.050 0.079 0.330 0.049 0.053 0.139

T̃ 0.057 0.996 1 0.052 0.999 1 0.049 1 1 0.050 0.999 1
Tlc 0.069 0.783 1 0.059 0.476 0.999 0.051 0.211 0.948 0.049 0.095 0.563
Tclx 0.076 0.169 0.679 0.058 0.083 0.438 0.046 0.053 0.180 0.047 0.050 0.072

Fig 2. Graphs of the divergence of the four powers in Case 1.
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Table 2

Empirical sizes and empirical powers of the tests T , T , Tlc and Tclx in Case 2. These
results are based on the 5% significance level.

(n1, n2, p)
y1 > 1,y2 > 1

(25,35,40) (50,70,80) (100,140,160) (200,280,320)
size power size power size power size power
a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20

T 0.052 0.961 1 0.046 0.953 1 0.046 0.950 1 0.048 0.948 1

T̃ 0.054 1 1 0.050 1 1 0.049 1 1 0.048 1 1
Tlc 0.055 0.815 1 0.056 0.486 0.999 0.050 0.209 0.959 0.050 0.093 0.579
Tclx 0.191 0.858 1 0.125 0.567 1 0.086 0.207 0.996 0.070 0.095 0.663

(n1, n2, p)
y1 > 1,y2 < 1

(25,35,30) (50,70,60) (100,140,120) (200,280,240)
size power size power size power size power
a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20

T 0.056 0.701 0.999 0.050 0.610 0.998 0.047 0.563 0.994 0.053 0.517 0.986

T̃ 0.057 0.999 1 0.052 1 1 0.051 1 1 0.050 1 1
Tlc 0.061 0.818 1 0.053 0.481 0.999 0.050 0.205 0.956 0.050 0.093 0.573
Tclx 0.163 0.855 1 0.112 0.581 1 0.087 0.228 0.997 0.068 0.095 0.679

(n1, n2, p)
y1 < 1,y2 > 1

(35,25,30) (70,50,60) (140,100,120) (280,200,240)
size power size power size power size power
a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20

T 0.056 0.108 0.071 0.052 0.179 0.272 0.058 0.225 0.503 0.055 0.247 0.654

T̃ 0.058 0.977 1 0.053 0.993 1 0.053 0.997 1 0.051 0.998 1
Tlc 0.058 0.307 0.995 0.050 0.137 0.904 0.052 0.072 0.488 0.049 0.051 0.177
Tclx 0.169 0.755 1 0.117 0.409 0.998 0.087 0.156 0.858 0.066 0.081 0.303

(n1, n2, p)
y1 < 1,y2 < 1

(25,35,20) (50,70,40) (100,140,80) (200,280,160)
size power size power size power size power
a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20

T 0.053 0.245 0.976 0.055 0.117 0.724 0.050 0.072 0.330 0.051 0.055 0.134

T̃ 0.061 0.999 1 0.056 1 1 0.050 1 1 0.047 1 1
Tlc 0.052 0.813 1 0.057 0.490 0.999 0.052 0.204 0.957 0.051 0.093 0.568
Tclx 0.146 0.845 1 0.106 0.583 1 0.078 0.237 0.996 0.064 0.098 0.706

Fig 3. Graphs of the divergence of the four powers in Case 2.
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Table 3

Empirical sizes and empirical powers of the tests T , T , Tlc and Tclx in Case 3. These
results are based on the 5% significance level.

(n1, n2, p)
y1 > 1,y2 > 1

(25,35,40) (50,70,80) (100,140,160) (200,280,320)
size power size power size power size power
a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20

T 0.051 0.960 1 0.046 0.954 1 0.046 0.949 1 0.048 0.949 1

T̃ 0.054 1 1 0.050 1 1 0.049 1 1 0.048 1 1
Tlc 0.020 0.618 0.982 0.017 0.409 0.934 0.016 0.219 0.746 0.016 0.106 0.455
Tclx 0.191 0.861 1 0.125 0.568 1 0.086 0.210 0.996 0.070 0.095 0.662

(n1, n2, p)
y1 > 1,y2 < 1

(25,35,30) (50,70,60) (100,140,120) (200,280,240)
size power size power size power size power
a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20

T 0.056 0.702 0.999 0.051 0.610 0.998 0.046 0.564 0.994 0.052 0.517 0.986

T̃ 0.058 0.999 1 0.053 1 1 0.052 1 1 0.049 1 1
Tlc 0.019 0.613 0.983 0.011 0.407 0.934 0.016 0.216 0.755 0.015 0.103 0.458
Tclx 0.162 0.856 1 0.112 0.579 1 0.087 0.229 0.997 0.068 0.094 0.679

(n1, n2, p)
y1 < 1,y2 > 1

(35,25,30) (70,50,60) (140,100,120) (280,200,240)
size power size power size power size power
a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20

T 0.057 0.106 0.071 0.052 0.179 0.274 0.057 0.223 0.502 0.054 0.249 0.648

T̃ 0.060 0.978 1 0.053 0.992 1 0.053 0.997 1 0.052 0.998 1
Tlc 0.019 0.313 0.869 0.016 0.185 0.667 0.018 0.098 0.408 0.017 0.056 0.220
Tclx 0.168 0.757 1 0.117 0.407 0.999 0.088 0.157 0.855 0.067 0.081 0.305

(n1, n2, p)
y1 < 1,y2 < 1

(25,35,20) (50,70,40) (100,140,80) (200,280,160)
size power size power size power size power
a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20

T 0.053 0.250 0.975 0.054 0.119 0.725 0.050 0.071 0.327 0.052 0.054 0.136

T̃ 0.060 0.999 1 0.056 1 1 0.050 1 1 0.048 1 1
Tlc 0.019 0.629 0.983 0.016 0.403 0.930 0.015 0.212 0.752 0.015 0.113 0.445
Tclx 0.147 0.847 1 0.106 0.581 1 0.079 0.237 0.996 0.063 0.098 0.706

Fig 4. Graphs of the divergence of the four powers in Case 3.
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Table 4

Empirical sizes and empirical powers of the tests T , T , Tlc and Tclx in Case 4. These
results are based on the 5% significance level.

(n1, n2, p)
y1 > 1,y2 > 1

(25,35,40) (50,70,80) (100,140,160) (200,280,320)
size power size power size power size power
a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20

T 0.052 0.961 1 0.046 0.954 1 0.045 0.950 1 0.047 0.949 1

T̃ 0.052 1 1 0.049 1 1 0.049 1 1 0.048 1 1
Tlc 0.083 0.505 0.909 0.081 0.348 0.793 0.087 0.240 0.587 0.082 0.179 0.386
Tclx 0.062 0.207 0.778 0.044 0.076 0.492 0.030 0.032 0.187 0.022 0.020 0.068

(n1, n2, p)
y1 > 1,y2 < 1

(25,35,30) (50,70,60) (100,140,120) (200,280,240)
size power size power size power size power
a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20

T 0.055 0.701 0.999 0.050 0.611 0.998 0.046 0.565 0.994 0.053 0.518 0.987

T̃ 0.057 0.999 1 0.053 1 1 0.052 1 1 0.049 1 1
Tlc 0.089 0.517 0.918 0.083 0.359 0.786 0.083 0.235 0.596 0.081 0.172 0.395
Tclx 0.068 0.230 0.818 0.043 0.085 0.539 0.031 0.036 0.221 0.021 0.023 0.078

(n1, n2, p)
y1 < 1,y2 > 1

(35,25,30) (70,50,60) (140,100,120) (280,200,240)
size power size power size power size power
a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20

T 0.057 0.107 0.069 0.051 0.178 0.276 0.057 0.224 0.506 0.054 0.248 0.649

T̃ 0.060 0.979 1 0.054 0.993 1 0.053 0.997 1 0.051 0.998 1
Tlc 0.084 0.310 0.736 0.083 0.229 0.563 0.081 0.170 0.375 0.084 0.125 0.247
Tclx 0.065 0.272 0.777 0.042 0.145 0.487 0.029 0.084 0.244 0.021 0.048 0.112

(n1, n2, p)
y1 < 1,y2 < 1

(25,35,20) (50,70,40) (100,140,80) (200,280,160)
size power size power size power size power
a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20 a=0 a=10 a=20

T 0.052 0.245 0.975 0.055 0.119 0.724 0.050 0.072 0.329 0.051 0.055 0.135

T̃ 0.061 0.999 1 0.056 1 1 0.050 1 1 0.048 1 1
Tlc 0.084 0.518 0.924 0.079 0.362 0.792 0.083 0.249 0.595 0.081 0.172 0.398
Tclx 0.072 0.273 0.862 0.043 0.107 0.608 0.032 0.044 0.261 0.021 0.025 0.092

Fig 5. Graphs of the divergence of the four powers in Case 4.
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Table 5

Numerical results for the estimator Δ̂1 of standard normal distribution. Here the true value
Δ1 = 0.

(200,280) (400,560) (800,1120)

p mean variance p mean variance p mean variance

2 0.0186 0.1368 4 0.0099 0.0441 8 0.0049 0.0160

10 0.0197 0.0642 20 0.0081 0.0260 40 0.0034 0.0116

20 0.0193 0.0563 40 0.0107 0.0252 80 0.0040 0.0116

100 0.0310 0.0732 200 0.0121 0.0338 400 0.0057 0.0166

180 0.0552 0.1189 360 0.0223 0.0555 720 0.0135 0.0261

220 0.0719 0.1634 440 0.0332 0.0736 880 0.0137 0.0355

240 0.0739 0.1887 480 0.0395 0.0870 960 0.0190 0.0424

300 0.1491 0.3568 600 0.0695 0.1598 1200 0.0373 0.0771

Table 6

Numerical results for the estimator Δ̂1 of uniform distribution (−
√
3,

√
3). Here the true

value Δ1 = −1.2.

(200,280) (400,560) (800,1120)

p mean variance p mean variance p mean variance

2 -1.2021 0.0058 4 -1.2020 0.0032 8 -1.2012 0.0015

10 -1.2009 0.0073 20 -1.2002 0.0036 40 -1.2018 0.0019

20 -1.2005 0.0081 40 -1.2001 0.0039 80 -1.1994 0.0020

100 -1.1971 0.0179 200 -1.1977 0.0091 400 -1.2001 0.0044

180 -1.1858 0.0450 360 -1.1892 0.0213 720 -1.1957 0.0105

220 -1.1704 0.0721 440 -1.1894 0.0314 880 -1.1938 0.0159

240 -1.1650 0.0902 480 -1.1829 0.0417 960 -1.1892 0.0204

300 -1.1170 0.2170 600 -1.1537 0.0974 1200 -1.1760 0.0445

Otherwise, the LRT T does not perform as well when the dimensions are large.
However, the lite LRT T̃ is always powerful because of its monotonicity for
matrix Bn, which coincides with our intuition.

Next we will show the performance of the estimator we proposed in Theorem
2.7. Here we have to explain the reason that why we did not use the estimators in
the previous simulation results. Because our estimator is based on the method of
moments and requires n = n1+n2 loops and inverse process for one replication,
and we need 10,000 replications for one result, which makes the running times
to be excessive. In the simulation, we set xij be standard normal distributed
and uniform distributed on (−

√
3,
√
3) to estimate the Δ1 respectively. Under

each circumstance we repeat 10,000 times and the results are reported at Table
5 and Table 6. From the numerical results, the performance of the estimator is
remarkable, especially when the sample size is large. Therefore, we believe that
the proposed modified LRTs must also perform well under the null hypothesis
when using the estimators instead of their true values. But, under the alter-
native, we can not have any supporting evidence because of lack of theoretical
results about the general Beta matrix.
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Table 7

p-values of the test of equality of the two covariance matrices of daily returns from the
Consumer Discretionary (C.D.) sector and Materials sector (M.) in different quarters.

C.D. C.D. M. M.
(n1,n2,p) (61,62,71) (60,61,71) (60,58,22) (60,61,22)

T 0 0 0.0458 0
T̃ 0 0.0003 0.2214 0
Tlc 0 0 0.0632 0
Tclx 0.0048 0.0002 0.2053 0.0001

4. An example

For illustration, we apply the proposed test statistics to the daily returns of a
selection of stocks issued by companies on Standard & Poor’s (S&P) 500. The
original data are the closing prices or the bid/ask average of these stocks for the
trading days during 2012 and 2013. This dataset is derived from the Center for
Research in Security Prices Daily Stock from Wharton Research Data Services.
A common interest is to test whether the covariance matrices of the logarithmic
daily returns for some stocks are the same over a period of time. Logarithmic
daily returns are commonly used in finance. There are several theoretical and
practical advantages of using logarithmic daily returns, including that we can
assume that the sequences of logarithmic daily returns are independent of each
other, see [10].

According to the Global Industry Classification Standard (GICS), which is
an industry taxonomy developed in 1999 by MSCI and S&P for use by the
global financial community, we select two sectors, Consumer Discretionary and
Materials, which include 71 and 22 stocks, respectively. First, for Consumer
Discretionary sector, we test whether the covariance matrices of the logarithmic
daily returns of the second quarters (1 April-30 June) of 2012 and 2013 are the
same. There were 63 and 64 trading days, respectively, in the second quarters
of 2012 and 2013. By using the logarithmic difference transformation on the
original data, we obtain the logarithmic daily returns dataset with sample sizes
n1 = 61 and n2 = 62. Simultaneously, we use the first quarters (1 January-31
March) data of 2012 and 2013 when applying to Materials sector. That makes
the sample sizes be n1 = 60 and n2 = 58. The p values obtained by applying the
four test statistics T , T̃ , Tlc and Tclx are shown in the first and third columns of
Table 7. Next, we use the same procedure to test whether the covariance matrices
of the logarithmic daily returns of the first quarter (1 January-31 March) and
the second quarter (1 April-30 June) of 2012 are the same. The results are
shown in the second and fourth columns of Table 7. The results show that all
the p-values are much smaller than 0.05. Thus, there is strong evidence that the
two covariance matrices are different. Therefore, we suggest caution with the
assumption that the daily returns are identically distributed.

5. Conclusion and discussion

In this paper, we propose two modified LRTs for the equality of two high-
dimensional covariance matrices and show the asymptotic distributions under
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the Moments Assumption and the null hypothesis. Furthermore, we show that
the Moments Assumption and Dimensions Assumption are necessary for our
results. We also present the weakly consistent and asymptotic unbiased estima-
tors of Δl for non-Gaussian distributions under the null hypothesis. According
to the simulation results, the performances of these modified LRTs are remark-
able under conditions where they are applicable, but the theoretical results for
the alternative hypothesis are not considered in this paper because of the lack
of random matrix theory. The modification of the LRT under the alternative
hypothesis test will be presented in the future.

Appendix A: Technical details

In the appendix, we give the proofs of Theorem 2.1, Theorem 2.5 and Theorem
2.7. By comparing the definitions of L and L̃ , it is easy to verify that the
proof of Theorem 2.1 can be split into two parts, one of which is the same as
the proof of Theorem 2.5 and the other of which is an analogous analysis. Hence,
we first present the proof Theorem 2.5, and then give the rough proof of the
other analogue part.

A.1. Proof of Theorem 2.5

The main tool used to prove the theorems is the Cauchy integral formula and
Theorem 1.6 in [1], which established the central limit theorem of linear spectral
statistics of random matrix Bn and is presented below for convenience. Denote
αn = n2/n1, Gn(x) = p(FBn(x)− Fy1,y2(x)) and

Fy1,y2(x) =
(αn + 1)

√
(xr − x)(x− xl)

2πy1x(1− x)
δx∈(xl,xr)

xl, xr = y2(h∓y1)
2

(y1+y2)2
be the limit spectral distribution of Bn with parameters αn,

y1, y2,

Lemma A.1 (Theorem 1.6 in [1]). In addition to the Moments Assumption
and the Dimensions Assumption, we further assume that:

(1) As min{p, n1, n2} → ∞, y1 → γ1 ∈ (0, 1) ∪ (1,∞), y2 → γ2 ∈ (0, 1) ∪
(1,∞), and αn → α > 0.

(2) Let f1, ......fk be the analytic functions on an open region containing the
interval [al, ar], where al = v−1(1−√

γ1)
2, ar = 1− αv−1(1−√

γ2)
2, and v is

defined as v = (1 + γ1

γ2
)(1−

√
γ1γ2

γ1+γ2
)2.

Then, as min (n1, n2, p) → ∞, the random vector

(

∫
fidGn(x)), i = 1, ......, k,

converges weakly to a Gaussian vector (Gf1 , ......Gfk) with mean functions

EGfi =
1

4πi

∮
fi(

z

α+ z
)d log(

(1− γ2)m
2
3(z) + 2m3(z) + 1− γ1
(1 +m3(z))2

)
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+
Δ1

2πi

∮
γ1fi(

z

α+ z
)(1 +m3)

−3dm3(z)

+
Δ2

4πi

∮
fi(

z

α+ z
)(1− γ2m

2
3(z)(1 +m3(z))

−2)d log(1− γ2m
2
3(z)(1 +m3(z))

−2)

and covariance functions

Cov(Gfi , Gfj ) = − 1

2π2

∮ ∮
fi(

z1
α+z1

)fj(
z2

α+z2
)dm3(z1)dm3(z2)

(m3(z1)−m3(z2))2

−γ1Δ1 + γ2Δ2

4π2

∮ ∮
fi(

z1
α+z1

)fj(
z2

α+z2
)dm3(z1)dm3(z2)

(m3(z1) + 1)2(m3(z2) + 1)2
,

where

m0(z) =
(1 + γ1)(1− z)− αz(1− γ2)

2z(1− z)(γ1(1− z) + αzγ2)

+

√
((1− γ1)(1− z) + αz(1− γ2))2 − 4αz(1− z)

2z(1− z)(γ1(1− z) + αzγ2)
− 1

z
,

m1(z) =
α

(α+ z)2
m0(

z

α+ z
)− 1

α+ z
, m2(z) = −z−1(1− γ1) + γ1m1(z),

mγ2
mp(z) =

1− γ2 − z +
√

(z − 1− γ2)2 − 4γ2
2γ2z

,

m3(z) =γ2m
γ2
mp(−m2(z)) + (m2(z))

−1(1− γ2).

All the above contour integrals can be evaluated on any contour enclosing the
interval [ αcl

1−cl
, αcr
1−cr

].

Note that Lemma A.1 is proved based on the centralized sample covariance
matrices, which are constructed by not subtracting the sample mean vector from
each sample vector. However, [21] showed that the only difference between the
two types of sample covariance matrices is normalization by p/nl and p/Nl. It
is not difficult to verify that Theorem 2.7 satisfies Lemma A.1 by choosing the
kernel function to the logarithmic function. Therefore, the main task of proving
Theorem 2.7 is to calculate the three integrals, which will be shown step by
step.

Proof of the limit part �̃n. When calculating the integral

p

∫
log x

(αn + 1)
√

(xr − x)(x− xl)

2πy1x(1− x)
δx∈(xl,xr)dx (A.1)

to achieve the limit part �̃n, we choose a transformation

x =
y2|y1 + hξ|2
(y1 + y2)2

.
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Clearly, when x moves from y2(h−y1)
2

(y1+y2)2
to y2(h+y1)

2

(y1+y2)2
two times, ξ shifts along a

unit circle in the positive direction. Then, we obtain that the integral (A.1) is
equal to

p
(y1 + y2)h

2i

4π

∮
[log

y2|y1 + hξ|2
(y1 + y2)2

] · (ξ2 − 1)2

ξ3|y1 + hξ|2|y2 − hξ|2 dξ (A.2)

when y1 > 1 and

p
(y1 + y2)h

2i

4π

∮
[log

y2|h+ y1ξ|2
(y1 + y2)2

] · (ξ2 − 1)2

ξ3|y1 + hξ|2|y2 − hξ|2 dξ (A.3)

when y1 < 1. Two forms of the integral ensure that the logarithmic function
returns a finite number of poles related to y1 of the integrand. The pole related
to y2 of the integrand is h/y2 when y2 > 1. There is no differentce in the integral
value before and after the transformation ξ = 1/ξ, except that the residue point
in the unit disc turns into y2/h, which is the residue point under the assumption
y2 < 1. Thus, we assume y2 > 1 without loss of generality. Then, we obtain that
if y1 > 1, (A.2) can be rewritten as

p
(y1 + y2)h

2i

4π

∮
[log

y2(y1 + hξ)

(y1 + y2)2
]× (ξ2 − 1)2

ξ3|y1 + hξ|2|y2 − hξ|2 dξ

+p
(y1 + y2)h

2i

4π

∮
[log

y2(y1 +
h
ξ )

(y1 + y2)2
]× (ξ2 − 1)2

ξ3|y1 + hξ|2|y2 − hξ|2 dξ

which is equal to

p
(y1 + y2)h

2i

4π

∮
[log

y2(y1 + hξ)2

(y1 + y2)2
]× (ξ2 − 1)2

ξ3(y1 + hξ)(y1 +
h
ξ )(y2 − hξ)(y2 − h

ξ )
dξ.

Similarly, if y1 < 1, we have (A.3) equals

p
(y1 + y2)h

2i

4π

∮
[log

y2(h+ y1ξ)
2

(y1 + y2)2
]× (ξ2 − 1)2

ξ3(y1 + hξ)(y1 +
h
ξ )(y2 − hξ)(y2 − h

ξ )
dξ.

According to Cauchy’s residue theorem, we find three poles {0, − h
y1
, h

y2
} under

the settings of y1 > 1, y2 > 1. The corresponding residues are

p(y1 + y2)

2y1y2
log

y21y2
(y1 + y2)2

,
p(1− y1)

2y1
log

y2(y1 − 1)2

y21
,

p(1− y2)

2y2
log

1

y2
,

respectively. In the same way, under the assumptions y1 < 1, y2 > 1, we obtain
three poles {0, − y1

h , h
y2
} and three residues

p(y1 + y2)

2y1y2
log

h2y2
(y1 + y2)2

,
p(1− y1)

2y1
log

h2

y2(1− y1)2
,

p(1− y2)

2y2
log

h2

y2
.
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Therefore, by combining the above results and basic calculations, we obtain the
limit part (A.1) is

log

⎛
⎝ y2h

2h2

y1y2

(y1 + y2)
(y1+y2)

y1y2 |1− y1|
|1−y1|

y1

⎞
⎠− log(

h
2h2

y1y2

y
1+y2
y2

1 y
1−y1
y1

2

)δy1>1,

which completes the proof.

Proof of the mean part μ̃n. Because m3 satisfies the equation

z = −m3(z)(m3(z) + 1− y1)

(1− y2)(m3(z) +
1

1−y2
)
,

we make an integral conversion z = (1 + hrξ)(1 + h
rξ )/(1 − y2)

2, where r is
a number greater than but close to 1. According to the discussion in the last
section, we assume y2 > 1 without loss of generality. From the equation

(1 + hrξ)(1 + h
rξ )

(1− y2)2
= −m3(m3 + 1− y1)

(1− y2)m3 + 1
,

we obtain thatm3 = −(1+hrξ)/(1−y2) orm3 = −(1+ h
rξ )/(1−y2). When z runs

in the positive direction around the contour enclosing the interval [ αcl
1−cl

, αcr
1−cr

],
m3 runs in the opposite direction. Thus, when y2 > 1, we choose the outcome
m3 = −(1 + h

rξ )/(1− y2). Consequently, we have

z

α+ z
=

y2|1 + hrξ|2
|y2 + hrξ|2 .

Therefore, for y1 > 1, we get the mean part μ̃n is equal to

lim
r↓1

1

4πi

∮
|ξ|=1

(log
y2(1 + hrξ)(1 + h

rξ )

(y2 + hrξ)(y2 +
h
rξ )

)× (
1

ξ − 1
r

+
1

ξ + 1
r

− 2

ξ + h
y2r

)dξ (A.4)

+ lim
r↓1

Δ1

2πi

∮
−y1(log

y2(1 + hrξ)(1 + h
rξ )

(y2 + hrξ)(y2 +
h
rξ )

)
(1− y2)

2h

y32

ξ

(ξ + h
y2r

)3
dξ (A.5)

+ lim
r↓1

Δ2

4πi

∮
(log

y2(1 + hrξ)(1 + h
rξ )

(y2 + hrξ)(y2 +
h
rξ )

)
(y2 − 1)(ξ2 − h2

y2r2
)

y2(ξ +
h

y2r
)2

×[
2ξ

(ξ2 − h2

y2r2
)
− 2

ξ + h
y2r

]dξ. (A.6)

If y1 < 1, we only need to change the logarithmic term in the above expression
into the following form

log
y2(1 + hrξ)(1 + h

rξ )

(h+ y2rξ)(h+ y2

rξ )
,
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and the other terms remain the same. For y1 > 1, there are four poles of term
(A.4)

1

r
, −1

r
, − h

y2r
, 0,

and four residues

1

2
log

y2(1 + h)

y2 + h
,

1

2
log

y2(1− h)

y2 − h
,

1

2
log

(y1 + y2)
2

y22y
2
1

, 0.

Thus, by Cauchy’s residue theorem, we have

(A.4) =
1

2
log

(y1 + y2)(y1 − 1)

y21
.

Analogously,

(A.5) = −Δ1
h2(y1 + y2 + y1y2)

2y1(y1 + y2)2
and (A.6) = Δ2

h2y2(2y
2
1 − h2)

2y21(y1 + y2)2
.

For y1 < 1,

lim
r↓1

1

4πi

∮
|ξ|=1

(log
y2(1 + hrξ)(1 + h

rξ )

(h+ y2rξ)(h+ y2

rξ )
)× (

1

ξ − 1
r

+
1

ξ + 1
r

− 2

ξ + h
y2r

)dξ

= lim
r↓1

1

4πi

∮
|ξ|=1

(log
y2(1 +

h
rξ )

(h+ y2

rξ )
)× (

1

ξ − 1
r

+
1

ξ + 1
r

− 2

ξ + h
y2r

)dξ

+ lim
r↓1

1

4πi

∮
|ξ|=1

(log
(ξ + hr)

(hξ + y2r)
)× 1

ξ
× (

r

r − ξ
+

r

r + ξ
−

2y2r
h

y2r
h + ξ

)dξ

=
1

2
log

(y1 + y2)(1− y1)

h2
,

lim
r↓1

Δ1

2πi

∮
−y1(log

y2(1 + hrξ)(1 + h
rξ )

(h+ y2rξ)(h+ y2

rξ )
)
(1− y2)

2h

y32

ξ

(ξ + h
y2r

)3
dξ

= Δ1
y21(y1 + 2y2)

−2(y1 + y2)2
,

and

lim
r↓1

Δ2

4πi

∮
(log

y2(1 + hrξ)(1 + h
rξ )

(h+ y2rξ)(h+ y2

rξ )
)
(y2 − 1)(ξ2 − h2

y2r2
)

y2(ξ +
h

y2r
)2

×[
2ξ

(ξ2 − h2

y2r2
)
− 2

ξ + h
y2r

]dξ = Δ2
y21y2

2(y1 + y2)2
.

Thus, by combining the above results, the mean part μ̃n is

log[
(y1 + y2)

1
2 |1− y1|

c1
2

h
]− log(

y1
h
)δy1>1
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−Δ1[y
3
1(y1 + 2y2)δy1<1 + h2(y1 + y2 + y1y2)δy1>1]

2y1(y1 + y2)2

+
Δ2[y

4
1y2δy1<1 + h2y2(2y1 − h2)δy1>1]

2y21(y1 + y2)2
.

This completes the proof.

Proof of the variance part. To calculate the variance part ν̃n

− 1

2π2

∮ ∮
f( z1

α+z1
)f( z2

α+z2
)dm3(z1)dm3(z2)

(m3(z1)−m3(z2))2
(A.7)

− y1Δ1 + y2Δ2

4π2

∮ ∮
f( z1

α+z1
)f( z2

α+z2
)dm3(z1)dm3(z2)

(m3(z1) + 1)2(m3(z2) + 1)2
, (A.8)

we make an analogous integral conversion

z1 = (1 + hr1ξ1)(1 +
h

r1ξ1
)/(1− y2)

2

and

z2 = (1 + hr2ξ2)(1 +
h

r2ξ2
)/(1− y2)

2.

Therefore, the relationship between ξl and m3(zl), l = 1, 2 is

m3(z1) = −
1 + h

r1ξ1

(1− y2)
, m3(z2) = −

1 + h
r2ξ2

(1− y2)
.

Without loss of generality, we assume r1 < r2. When y1 > 1, y2 > 1,

− 1

2π2

∮ ∮
fi(

z1
α+z1

)fj(
z2

α+z2
)dm3(z1)dm3(z2)

(m3(z1)−m3(z2))2

=2 lim
r2↓1

∮
1

2πi
(log

y2(1 + hr2ξ2)(1 +
h

r2ξ2
)

(y2 + hr2ξ2)(y2 +
h

r2ξ2
)
)

× { lim
r1↓1

∮
1

2πi
(log

y2(1 + hr1ξ1)(1 +
h

r1ξ1
)

(y2 + hr1ξ1)(y2 +
h

r1ξ1
)
)

r1
(r1ξ1 − r2ξ2)2

dξ1}r2dξ2

=2 lim
r2↓1

∮
1

2πi
(log

y2(1 + hr2ξ2)(1 +
h

r2ξ2
)

(y2 + hr2ξ2)(y2 +
h

r2ξ2
)
)

× { lim
r1↓1

∮
1

2πi
[(log

y2(1 + hr1ξ1)

(y2 + hr1ξ1)
)

r1
(r1ξ1 − r2ξ2)2

+ (log
(1 + h

r1ξ1
)

(y2 +
h

r1ξ1
)
)

r1
r22ξ

2
2(

r1
r2ξ2

− ξ1)2
]dξ1}r2dξ2.



870 Q. Zhang et al.

There is only one pole r1
r2ξ2

in the unit disc of the integration formula with

respect to ξ1. Thus, by Cauchy’s residue theorem, (A.7) is equal to

2 lim
r2↓1

∮
1

2πi
(log

y2(1 + hr2ξ2)(1 +
h

r2ξ2
)

(y2 + hr2ξ2)(y2 +
h

r2ξ2
)
) · 1

ξ2
(

h

h+ r2ξ2
− h

h+ y2r2ξ2
)dξ2

which has three poles 0, − h
r2
, − h

r2y2
. Thus, we finally obtain that

(A.7) =
2y21

(y1 + y2)(y1 − 1)
.

Similarly, if y1 < 1, y2 > 1, (A.7) = 2h2

(y1+y2)(1−y1)
. In addition, as when y1 >

1, y2 > 1,

−y1Δ1 + y2Δ2

4π2

∮ ∮
fi(

z1
α+z1

)fj(
z2

α+z2
)dm3(z1)dm3(z2)

(m3(z1) + 1)2(m3(z2) + 1)2

= (y1Δ1 + y2Δ2){ lim
r2↓1

∮
1

2πi
(log

y2(1 + hr2ξ2)(1 +
h

r2ξ2
)

(y2 + hr2ξ2)(y2 +
h

r2ξ2
)
)
(1− y2)r1hdξ1
(y2r1ξ1 + h)2

}×

{ lim
r1↓1

∮
1

2πi
(log

y2(1 + hr1ξ1)(1 +
h

r1ξ1
)

(y2 + hr1ξ1)(y2 +
h

r1ξ1
)
)
(1− y2)r2hdξ2
(y2r2ξ2 + h)2

}

= (y1Δ1 + y2Δ2) ·
h4

y21(y1 + y2)2

and

−y1Δ1 + y2Δ2

4π2

∮ ∮
fi(

z1
α+z1

)fj(
z2

α+z2
)dm3(z1)dm3(z2)

(m3(z1) + 1)2(m3(z2) + 1)2

= (y1Δ1 + y2Δ2) ·
y21

(y1 + y2)2

when y1 < 1, y2 > 1. Thus, the variance part ν̃n is equal to

2 log
h2

|1− y1|(y1 + y2)
+ 2 log(

y21
h2

)δy1>1 +
(y1Δ1 + y2Δ2)

y21(y1 + y2)2
[y41δy1<1 + h4δy1>1].

This completes the proof.

A.2. Proof of Theorem 2.1

In this part, we give the proof of Theorem 2.1.

Proof. First, calculate the limit part �n,

p

∫
[c1 log x+ c2 log(1− x)]

(1 + α)
√

(xr − x)(x− xl)

2πy1x(1− x)
dx, (A.9)
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where

xl, xr =
y2(h∓ y1)

2

(y1 + y2)2
.

Make the transformation

x =
y2|y1 + hξ|2
(y1 + y2)2

,

correspondingly,

1− x =
y1|y2 − hξ|2
(y1 + y2)2

.

To ensure the logarithmic functions are not infinity, we change the transforma-
tion into following tow forms

x =
y2|y1 + hξ|2
(y1 + y2)2

=
y2(y1 + hξ)(y1 +

h
ξ )

(y1 + y2)2
,

when y1 > 1, and

x =
y2|y1 + hξ|2
(y1 + y2)2

=
y2(h+ y1ξ)(h+ y1

ξ )

(y1 + y2)2
,

when y1 < 1.
Because of that the log(1 − x) part can only be affect by y2, with same

discussion, we get

1− x =
y1|y2 − hξ|2
(y1 + y2)2

=
y1(y2 − hξ)(y2 − h

ξ )

(y1 + y2)2
,

when y2 > 1, and

1− x =
y1|y2 − hξ|2
(y1 + y2)2

=
y1(h− y2ξ)(h− y2

ξ )

(y1 + y2)2
.

when y2 < 1. Thus,

p

∫
c1 log x

(1 + α)
√

(xr − x)(x− xl)

2πy1x(1− x)
dx (A.10)

=pc1
(y1 + y2)h

2i

4π

∮
log

y2(y1 + hξ)(y1 +
h
ξ )

(y1 + y2)2
· (ξ2 − 1)2

ξ3|y1 + hξ|2|y2 − hξ|2 dξ

=pc1
(y1 + y2)h

2i

4π

∮
log

y2(y1 + hξ)(y1 +
h
ξ )

(y1 + y2)2

× (ξ2 − 1)2

ξ3(y1 + hξ)(y1 +
h
ξ )(y2 − hξ)(y2 − h

ξ )
dξ.

There are three poles

0, − h

y1
,

h

y2
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and three residues

− log
( y21y2
(y1 + y2)2

) c1
y1y2h2

, log
(y2(y1 − h2

y1
)2

y1 + y2

) c1(y1−1)

y1h2(y1+y2)
,

log
(y2(y1 + h2

y2
)2

y1 + y2

) c1(y2−1)

y2h2(y1+y2)

in (A.10), respectively. Then we get

(A.10) = pc1(−
y1 + y2
y1y2

log(y1 + y2) +
y2 + 1

y2
log y1

+
1− y1
y1

log(y1 − 1) +
1

y1
log y2).

In the same way, (A.11) has the same poles with (A.10)

p

∫
c2 log(1− x)

(1 + α)
√

(xr − x)(x− xl)

2πy1x(1− x)
dx (A.11)

= pc2
(y1 + y2)h

2i

4π

∮
log

y1(y2 − hξ)(y2 − h
ξ )

(y1 + y2)2
· (ξ2 − 1)2

ξ3|y1 + hξ|2|y2 − hξ|2 dξ

= pc2(−
y1 + y2
y1y2

log(y1 + y2) +
y1 + 1

y1
log y2 +

1− y2
y2

log(y2 − 1) +
1

y2
log y1).

Thus we have that,

(A.9) =

p[c1(−
y1 + y2
y1y2

log(y1 + y2) +
y2 + 1

y2
log y1 +

1− y1
y1

log(y1 − 1) +
1

y1
log y2)

+c2(−
y1 + y2
y1y2

log(y1 + y2) +
y1 + 1

y1
log y2 +

1− y2
y2

log(y2 − 1) +
1

y2
log y1)]

When the assumption becomes y1 > 1, y2 < 1, we use the following form of
the transformation

x =
y2(y1 + hξ)(y1 +

h
ξ )

(y1 + y2)2
,

and

1− x =
y1(h− y2ξ)(h− y2

ξ )

(y1 + y2)2
.

Thus, we get

(A.9) =

p[c1(−
y1 + y2
y1y2

log(y1 + y2) +
y2 + 1

y2
log y1 +

1− y1
y1

log(y1 − 1) +
1

y1
log y2)

+c2(−
y1 + y2
y1y2

log(y1 + y2) +
h2

y1y2
log h2 +

y2 − 1

y2
log(1− y2) + log y1)].
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We can get the conclusion of other two cases similarly. According to the discus-
sion above, we find out that the limit part is

�n = log

⎛
⎝ yc21 yc12 h

2h2

y1y2

(y1 + y2)
(y1+y2)

y1y2 |1− y1|
c1|1−y1|

y1 |1− y2|
c2|1−y2|

y2

⎞
⎠− l(y1, y2)− l(y2, y1),

where

l(y1, y2) = log(h
2c1h2

y1y2 )δy1>1 − log(y
c1(1+y2)

y2
1 y

c1(1−y1)
y1

2 )δy1>1.

Next, we calculate the mean μn. By the transformation

m3 = −(1 + hrξ)/(1− y2)

when y2 < 1, and

m3 = −(1 +
h

rξ
)/(1− y2)

when y2 > 1, in order to make the logarithmic function meaningful, we stipulate
that

z

α+ z
=

y2|1 + hrξ|2
|y2 + hrξ|2 =

y2(1 + hrξ)(1 + h
rξ )

(y2 + hrξ)(y2 +
h
rξ )

if y1 > 1,

z

α+ z
=

y2|1 + hrξ|2
|y2 + hrξ|2 =

y2(h+ 1
rξ )(h+ rξ)

(y2 +
h
rξ )(y2 + hrξ)

if y1 < 1,

1− z

α+ z
=

y1(y2 − 1)2

|y2 + hrξ|2 =
y1(y2 − 1)2

(y2 + hrξ)(y2 +
h
rξ )

if y2 > 1, and

1− z

α+ z
=

y1(y2 − 1)2

|y2 + hrξ|2 =
y1(y2 − 1)2

(h+ y2rξ)(h+ y2

rξ )

if y2 < 1. We first calculate the y1 > 1, y2 > 1 case. We cut each logarithmic
function into two pieces

1

4πi

∮
fi(

z

α+ z
)d log(

(1− y2)m
2
3(z) + 2m3(z) + 1− y1
(1 +m3(z))2

) (A.12)

+
Δ1

2πi

∮
y1fi(

z

α+ z
)(1 +m3)

−3dm3(z) (A.13)

+
Δ2

4πi

∮
fi(

z

α+ z
)(1− y2m

2
3(z)(1 +m3(z))

−2)d log(1− y2m
2
3(z)(1 +m3(z))

−2)

(A.14)
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= lim
r↓1

1

4πi

∮
|ξ|=1

c1 log
y2(1 + hrξ)(1 + h

rξ )

(y2 + hrξ)(y2 +
h
rξ )

· ( 1

ξ − 1
r

+
1

ξ + 1
r

− 2

ξ + h
y2r

)dξ

+ lim
r↓1

1

4πi

∮
|ξ|=1

c2 log
y1(y2 − 1)2

(y2 + hrξ)(y2 +
h
rξ )

· ( 1

ξ − 1
r

+
1

ξ + 1
r

− 2

ξ + h
y2r

)dξ

+ lim
r↓1

Δ1

2πi

∮
−y1c1(log

y2(1 + hrξ)(1 + h
rξ )

(y2 + hrξ)(y2 +
h
rξ )

)
(1− y2)

2h

y32

ξ

(ξ + h
y2r

)3
dξ

+ lim
r↓1

Δ1

2πi

∮
−y1c2(log

y1(y2 − 1)2

(y2 + hrξ)(y2 +
h
rξ )

)
(1− y2)

2h

y32

ξ

(ξ + h
y2r

)3
dξ

+ lim
r↓1

Δ2

4πi

∮
(log

y2(1 + hrξ)(1 + h
rξ )

(y2 + hrξ)(y2 +
h
rξ )

)
(y2 − 1)(ξ2 − h2

y2r2
)

y2(ξ +
h

y2r
)2

× [
2c1ξ

(ξ2 − h2

y2r2
)
− 2c1

ξ + h
y2r

]dξ

+ lim
r↓1

Δ2

4πi

∮
(log

y1(y2 − 1)2

(y2 + hrξ)(y2 +
h
rξ )

)
(y2 − 1)(ξ2 − h2

y2r2
)

y2(ξ +
h

y2r
)2

× [
2c2ξ

(ξ2 − h2

y2r2
)
− 2c2

ξ + h
y2r

]dξ.

According to Cauchy’s residue theorem, we get

(A.12) + (A.13) + (A.14)

=
c1
2
log

(y1 + y2)(y1 − 1)

y21
+

c2
2
log

(y1 + y2)(y2 − 1)

y22

+Δ1c1
y21y

2
2 − (y1 + y2)

2

2y1(y1 + y2)2
+Δ1c2

y1(2y
2
2h

2 − h4)

2y22(y1 + y2)2

+Δ2c1
h2y2(2y

2
1 − h2)

2y21(y1 + y2)2
+Δ2c2

h2(y1 + y2 + y1y2)

−2y2(y1 + y2)2
.

The integral transforms of (A.12), (A.13) and (A.14) are different between
the setting y2 > 1 and the setting y2 < 1. We find that, when y2 < 1,

d log(
(1− y2)m

2
3(z) + 2m3(z) + 1− y1
(1 +m3(z))2

) = (
1

ξ − 1
r

+
1

ξ + 1
r

− 2

ξ + y2

hr

)dξ,

1

(1 +m3)3
dm3(z) =

(1− y2)
2

h2

1

(ξ + y2

hr )
3
dξ

and

(1− y2m
2
3(z)

(1 +m3(z))2
)d log(1− y2m

2
3(z)

(1 +m3(z))2
)
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=
(1− y2)(ξ

2 − y2

h2r2 )

(ξ + y2

hr )
2

[
2ξ

ξ2 − y2

h2r2
− 2

ξ + y2

hr

]dξ.

Thus we draw a conclusion that

(A.12) + (A.13) + (A.14)

=
c1
2
log

(y1 + y2)(y1 − 1)

y21
+

c2
2
log

(y1 + y2)(1− y2)

h2

+Δ1c1
y21y

2
2 − (y1 + y2)

2

2y1(y1 + y2)2
+Δ1c2

y1y
2
2

2(y1 + y2)2

+Δ2c1
h2y2(2y

2
1 − h2)

2y21(y1 + y2)2
+Δ2c2

y22(2y1 + y2)

−2(y1 + y2)2

when y1 > 1, y2 < 1. Merging the conclusion of other two settings, the outcome
of the mean part obviously is

μn = log

[
(y1 + y2)

1
2 |1− y1|

c1
2 |1− y2|

c2
2

h

]
− u(y1, y2)− u(y2, y1)

+
Δ1Ψ(y1, y2)

2y1y22(y1 + y2)2
+

Δ2Ψ(y2, y1)

2y2y21(y1 + y2)2
,

where

u(y1, y2) = log(
yc11
hc1

)δy1>1. v(y1, y2) = log

(
y2c11

h2c1(c1+2c2)

)
δy1>1,

Ψ(y1, y2) = c2y
2
1 [y

4
2δy2<1 + h2(2y22 − h2)δy2>1]

−c1y
2
2 [y

3
1(y1 + 2y2)δy1<1 + h2(y1 + y2 + y1y2)δy1>1].

Then we complete the calculation.
At last, we show the variance part νn. Under the circumstance y2 > 1 with

the transformation discussed above, we can easily find

dm3(z1)dm3(z2)

(m3(z1)−m3(z2))2

=
(1− y2)

2

( h
r1ξ1

− h
r2ξ2

)2
hdξ1

(1− y2)r1ξ21

hdξ2
(1− y2)r2ξ22

=
r1r2

(r1ξ1 − r2ξ2)2
dξ1dξ2,

dm3(z1)

(m3(z1) + 1)2
=

(1− y2)
2

(y2 +
h

r1ξ1
)2

· hdξ1
(1− y2)r1ξ21

=
(1− y2)r1hdξ1
(y2r1ξ1 + h)2

,

dm3(z2)

(m3(z2) + 1)2
=

(1− y2)
2

(y2 +
h

r2ξ2
)2

hdξ2
(1− y2)r2ξ22

=
(1− y2)r2hdξ2
(y2r2ξ2 + h)2

.
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Because of the symmetry of the function dm3(z1)dm3(z2)
(m3(z1)−m3(z2))2

related to m3, integral

transform of dm3(z1)dm3(z2)
(m3(z1)−m3(z2))2

keeps the same form with y2 > 1 setting. When

y2 < 1, integral transformation is

dm3(z1)

(m3(z1) + 1)2
=

(1− y2)
2

(y2 + hr1ξ1)2
· hr1dξ1
(y2 − 1)

=
(y2 − 1)r1hdξ1
(hr1ξ1 + y2)2

,

dm3(z2)

(m3(z2) + 1)2
=

(1− y2)
2

(y2 + hr2ξ2)2
· hr2dξ2
(y2 − 1)

=
(y2 − 1)r2hdξ2
(hr2ξ2 + y2)2

.

Thus by Cauchy’s residue theorem, we reach the decision that when y1 > 1 and
y2 > 1,

− 2

4π2

∮ ∮
fi(

z1
α+z1

)fj(
z2

α+z2
)dm3(z1)dm3(z2)

(m3(z1)−m3(z2))2
(A.15)

− y1Δ1 + y2Δ2

4π2

∮ ∮
fi(

z1
α+z1

)fj(
z2

α+z2
)dm3(z1)dm3(z2)

(m3(z1) + 1)2(m3(z2) + 1)2
(A.16)

=− 2c22 log(y2 − 1)− 2c21 log(y1 − 1) + 4c2 log y2 + 4c1 log y1

− 2 log(y1 + y2) + c(
(y1 − y2)h

2

y1y2(y1 + y2)
)2.

Similarly, when y1 > 1, y2 < 1, we get that

(A.15) + (A.16) = −2c21 log(y1 − 1) + 2c22 log
h2

(1− y2)

+ 4c1 log y1 − 2 log(y1 + y2) + c(
(y1 − 1)y2
y1(y1 + y2)

)2.

Combining the other two cases, we come to a conclusion

ν2n =2 log
h2

|1− y1|c21 |1− y2|c22(y1 + y2)
+ 2v(y1, y2) + 2v(y2, y1)

+ 2 log(h4c1c2)δy1>1δy2>1

+
(y1Δ1 + y2Δ2)

y21y
2
2(y1 + y2)2

[(y1 − 1)y22δy1>1 − (y2 − 1)y21δy2>1]
2.

Then we complete the proof.

A.3. Proof of Theorem 2.7

We now prove that Δ̂1 is a weakly consistent and asymptotically unbiased esti-
mator of Δ1.

Proof. From the definition of Δ1 in (2.6) and Chebyshev’s inequality, we only
need to prove the following two results: Under the same assumptions in Theorem
1 and the null hypothesis,

EΔ̂1 → Δ1 (A.17)
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and

E(Δ̂1 −Δ1)
2 → 0. (A.18)

We first consider (A.17). Without loss of generality, we assume the mean of z
(1)
j

is zero. By using the truncation steps in [2] we may truncate and re-normalize
the random variables as follows

|x(1)
ij | ≤ ηn

√
n, Ex

(1)
ij = 0, E(x

(1)
ij )2 = 1 and E(x

(1)
ij )4 = Δ1 + 3 +O(n−1),

where ηn → 0 slowly. In addition, in the following we assume the sample co-
variance matrix without the negative sample mean, because their difference is
only a rank one matrix z̄1z̄

′
1 which will not affect the results. From the proof

of Theorem 1 in [4], one can conclude that under the conditions of Theorem 1,
there exists a constant M > 0 such that for any k > 0

P(‖(c11Sx
1j + c12S

x
2 )

−1‖ ≥ M) ≤ n−k,

where ‖ · ‖ means the spectral norm of a matrix. Thus, in the sequel, we can
assume the smallest eigenvalue of c11S

x
1j + c12S

x
2 is bounded away from zero

uniformly. Then we have

E[(z
(1)
j − z̄(1))′(c11S

z
1j + c12S

z
2)

−1(z
(1)
j − z̄(1))− p

1− y
]2

=E[(z
(1)
j )′(c11S

z
1j + c12S

z
2)

−1z
(1)
j ]2 +

p2

(1− y)2

− 2p

1− y
E[(z

(1)
j )′(c11S

z
1j + c12S

z
2)

−1z
(1)
j ] +O(p).

Here we use the fact that

E[(z̄(1))′(c11S
z
1j + c12S

z
2)

−1(z̄(1))] = O(1)

and
E[(z̄(1))′(c11S

z
1j + c12S

z
2)

−1(z
(1)
j )] = O(1).

These results can be found in [15]. According to the independence of z
(1)
j and

Sz
1j and under the null hypothesis, we obtain that

E[(z
(1)
j )′(c11S

z
1j + c12S

z
2)

−1z
(1)
j ]

=E[(x
(1)
j )′(c11S

x
1j + c12S

x
2 )

−1x
(1)
j ] = Etr[(c11S

x
1j + c12S

x
2 )

−1]

and

E[(z
(1)
j )′(c11S

z
1j + c12S

z
2)

−1z
(1)
j ]2

=Δ1Etr[(c11S
x
1j + c12S

x
2 )

−1 ◦ (c11Sx
1j + c12S

x
2 )

−1]

+ 2Etr[(c11S
x
1j + c12S

x
2 )

−2] + {Etr[(c11Sx
1j + c12S

x
2 )

−1]}2.
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where ◦ is the Hadamard product. Notice that c11S
x
1j+c12S

x
2 is a sample covari-

ance matrix with dimension p and sample size n1 +n2 − 1, whose limit spectral
distribution is the famous Marcenko-Pastur law with Stieltjes transform

smp(z, γ) =
1− γ − z +

√
(z − 1− γ)2 − 4γ

2γz
, z ∈ C

+. (A.19)

Here y := p/(n1 +n2 − 1) → γ ∈ (0,∞) and for any distribution function F , its
Stieltjes transform is defined by

s(z) =

∫ +∞

−∞

1

x− z
dF (x),

where z ∈ C
+. Thus it is not difficult to check (see Section 3.3.2 in [3]) that

1

p
Etr[(c11S

x
1j + c12S

x
2 )

−1]− lim
z↓0

smp(z, y) → 0 (A.20)

and

1

p
Etr[(c11S

x
1j + c12S

x
2 )

−2]− lim
z↓0

∂smp(z, y)

∂z
→ 0.

From (A.19), L’Hospital’s rule and the fact that y < 1, we have

lim
z↓0

smp(z, y)−
1

1− y
= 0 (A.21)

and

lim
z↓0

∂smp(z, y)

∂z
− 1

(1− y)3
= 0.

In addition, applying Lemma 4.3 of [1], we obtain that

Etr[(c11S
x
1j + c12S

x
2 )

−1 ◦ (c11Sx
1j + c12S

x
2 )

−1]

=E

p∑
i=1

[(c11S
x
1j + c12S

x
2 )

−1(i, i)]2 = p−1{Etr[(c11Sx
1j + c12S

x
2 )

−1]}2 + o(p),

which together with (A.20) and (A.21) implies

Etr[(c11S
x
1j + c12S

x
2 )

−1 ◦ (c11Sx
1j + c12S

x
2 )

−1] =
p

(1− y)2
+ o(p).

Thus, combining the above results, we conclude that

E[(z
(1)
j − z̄(1))′(c11S

z
1j + c12S

z
2)

−1(z
(1)
j − z̄(1))− p

1− y
]2

=
pΔ1

(1− y)2
+

2p

(1− y)3
+ o(p),
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which complete the proof of (A.17).
For (A.18), by the same argument as above, we have that E(Δ̂1 −Δ1)

2 to

E(Δ̂1 −Δ1)
2

=
(1− y)4E{

∑N1

j=1[(x
(1)
j )′(c11S

x
1j + c12S

x
2 )

−1x
(1)
j − tr(c11S

x
1j + c12S

x
2 )

−1]2}2

p2N2
1

− (Δ1 +
2

1− y
)2 + o(1).

Now, by (2.1) in [2], we obtain that∑N1

j=1 E[(x
(1)
j )′(c11S

x
1j + c12S

x
2 )

−1x
(1)
j − tr(c11S

x
1j + c12S

x
2 )

−1]4

p2N2
1

=O(η4nN
−1
1 ) → 0. (A.22)

Next we use the fact that

(c11S
x
1j + c12S

x
2 )

−1 = (c11S
x
1ji + c12S

x
2 )

−1

−
1

n1+n2−1 (c11S
x
1ji + c12S

x
2 )

−1x
(1)
i (x

(1)
i )′(c11S

x
1ji + c12S

x
2 )

−1

1 + 1
n1+n2−1 (x

(1)
i )′(c11Sx

1ji + c12Sx
2 )

−1x
(1)
i

and

(x
(1)
i )′(c11S

x
1j + c12S

x
2 )

−1x
(1)
i =

(x
(1)
i )′(c11S

x
1ji + c12S

x
2 )

−1x
(1)
i

1 + 1
n1+n2−1 (x

(1)
i )′(c11Sx

1ji + c12Sx
2 )

−1x
(1)
i

,

where Sx
1ji is the sample covariance matrix by removing the vector x

(1)
j and

x
(1)
i . Thus, we get that

N1∑
i �=j

E{[(x(1)
j )′(c11S

x
1j + c12S

x
2 )

−1x
(1)
j − tr(c11S

x
1j + c12S

x
2 )

−1]2

× [(x
(1)
i )′(c11S

x
1i + c12S

x
2 )

−1x
(1)
i − tr(c11S

x
1i + c12S

x
2 )

−1]2}

= N1(N1 − 1)E{[(x(1)
1 )′(c11S

x
112 + c12S

x
2 )

−1x
(1)
1 − tr(c11S

x
112 + c12S

x
2 )

−1]2

×[(x
(1)
2 )′(c11S

x
112 + c12S

x
2 )

−1x
(1)
2 − tr(c11S

x
112 + c12S

x
2 )

−1]2}+O(N2
1 )

= N1(N1 − 1)(
pΔ1

(1− y)2
+

2p

(1− y)3
)2 +O(N3

1 ),

which together with (A.22) implies

(1− y)4E{
∑N1

j=1[(x
(1)
j )′(c11S

x
1j + c12S

x
2 )

−1x
(1)
j − tr(c11S

x
1j + c12S

x
2 )

−1]2}2

p2N2
1

=(Δ1 +
2

1− y
)2 + o(1).

Then we complete the proof of Theorem 2.7.
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