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1. Introduction

We consider the problem of detecting a sparse mixture. A simple variant of
the problem can be formulated as follows. Let F be a continuous distribution
function on the real line, and ε ∈ (0, 1/2] and μ > 0. The problem is to test

Hn
0 : X1, . . . , Xn

iid∼ F, (1)

versus
Hn

1 : X1, . . . , Xn
iid∼ (1− ε)F (·) + εF (· − μ). (2)

Mixtures models such as in (2) have been considered for quite some time,
particularly in the context of robust statistics, where they are known as con-
tamination models (Huber and Ronchetti, 2009, Eq 1.22).

Rather, our contribution is in line with the testing problems studied by Ing-
ster (1997) in the context of the normal sequence model, where F above corre-
sponds to the standard normal distribution. In that setting, Ingster considered
the following parameterization

ε = εn = n−β , μ = μn =
√
2r logn, (3)

for some β > 0 and r > 0. The advantage of this parameterization is that, hold-
ing β and r fixed, the situation admits a relatively simple description. Indeed,
since both the null and the alternative hypotheses are simple, by the Neyman-
Pearson Lemma, the likelihood ratio test (set at level α) is most powerful. Ingster
studied the large-sample behavior of this test procedure and discovered that, in
the case where β > 1/2, when r < ρ(β), the test is powerless in the sense of
achieving power α, while when r > ρ(β), the test was fully powerful in the sense
of achieving power 1, where the function ρ is given by

ρ(β) :=

{
β − 1/2, 1/2 < β ≤ 3/4,

(1−
√
1− β)2, 3/4 < β < 1.

Thus the existence of a detection boundary in the (β, r) plane given by r = ρ(β).
In such a situation, we will say that a test procedure ‘achieves the detection
boundary’, or is ‘first-order optimal’ (or simply ‘optimal’), if it is fully powerful
when r > ρ(β).

Such detection boundaries where derived for other models, for example, in
(Cai and Wu, 2014; Cai, Jeng and Jin, 2011; Donoho and Jin, 2004). We also
mention that the situation where β ≤ 1/2 is also well-understood, but quite
different, and will not be considered here. Most of the literature has focused on
the more interesting setting where β > 1/2 and we do the same here.
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1.1. Threshold tests

After determining what one can hope for, it becomes of interest to understand
what one can achieve with less information. Indeed, the likelihood ratio test
requires knowledge of all the quantities and objects defining the testing problem,
in this case (F, ε, μ), and even in the present stylized setting we might want to
know what can be done when some of this information is missing, in particular
what defines the alternative, namely (ε, μ). (The case where F is also unknown
has attracted much less attention. We discuss it in Section 5.)

When F is known, the problem is that of goodness-of-fit testing, albeit with
alternatives of the form (2) in mind. Donoho and Jin (2004) opened this in-
vestigation with the analysis of various tests, including the max test based on
maxi Xi and a variant of the Anderson-Darling test (Anderson and Darling,
1952). Seeing as a problem of multiple testing based on p-values defined as
Ui = 1 − F (Xi), the max test coincides with the Tippett-Šidák test combina-
tion test, while the Anderson-Darling test coincides with a proposal by Tukey
called the higher criticism (HC). More recently, Moscovich, Nadler and Spiegel-
man (2016) analyzed a goodness-of-fit (BJ) test proposed by Berk and Jones
(1979) in the same setting. For t ∈ R, define

Nn(t) = #{i ∈ [n] : Xi ≥ t}.

We note that, under the null hypothesis, Nn(t) is binomial with parameters
(n, 1− F (t)), which motivates the test that rejects for large values of

sup
t:F (t)≥1/2

Nn(t)− n(1− F (t))√
nF (t)(1− F (t)) + 1

.

This is one of many possible variants of HC.1

Let U(1) ≤ · · · ≤ U(n) denote the ordered Ui’s. We note that, under the null
hypothesis, U(i) has the beta distribution with parameters (i, n− i+ 1), which
motivates the definition of BJ, rejecting for small values of

min
i∈[n]

Pi, (4)

where Pi := B(U(i); i, n − i + 1) and B(·; a, b) denotes the distribution function
of the beta distribution with parameters (a, b).

The verdict is the following. In the normal setting, HC and BJ achieve the
detection boundary in the full range β > 1/2, while the max test is only able
to achieve the detection in the upper half of the range β > 3/4. The same
extends to other models, in particular to generalized Gaussian models where F
has density proportional to exp(−|x|a/a) for some a > 1. (The case a ≤ 1 is

1 The constraint ‘F (t) ≤ 1/2 can be replaced by F (t) ≤ γ, where γ can be taken to
be smaller, say γ = 0.05. The ‘+1’ in the denominator is roughly equivalent to adding the
constraint F (t) ≥ 1/n, which Donoho and Jin (2004) recommend for reasons of stability. In
any case, this variant performs as well (to first order) as any other variant of HC considered
in the literature, at least in all the regimes commonly considered.
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qualitatively different. HC and BJ are still first-order optimal while the max
test is suboptimal everywhere.)

These tests are all threshold tests, where we define a threshold test as any test
with a rejection region of the form

⋃
t∈T {Nn(t) ≥ ct}, for some subset T ⊂ R

and some critical values ct > 0. More broadly, any combination test that we
know of that is discussed in the multiple-testing literature is a threshold test.
(This includes the tests proposed by Fisher, Lipták-Stouffer, Tippett-Šidák,
Simes, and more.) Thus it might be of interest to understand what can be
achieved with a threshold test. In this regard, it is useful to examine how one
would optimize such an approach if one had perfect knowledge of the model.
Let φt denote the test with rejection region {Nn(t) ≥ ct}, where

ct := min
{
c ≥ 0 : P0(Nn(t) ≥ c) ≤ α

}
.

We define the oracle threshold test as the test φt∗, where

t∗ := argmax
t∈R

P1(Nn(t) ≥ ct), (5)

with P0 denoting the distribution under the null (1) and P1 that under the alter-
native (2). (Here and elsewhere, α denotes the desired significance level.) Note
that computing ct only requires knowledge of F , while computing t∗ requires
knowledge of the entire model, namely (F, ε, μ). Thus the construction of the
test φt∗ relies on the oracle knowledge of (ε, μ).

1.2. Scan tests

Detection problems arise in a variety of contexts and in very many applications.
An important example is in spatial statistics (itself a rather wide area), where
the detection of ‘hot spots’, meaning areas of unusually high concentration, has
been considered for quite some time (Kulldorff, 1997). An early contribution
to this literature is that of Naus (1965), who considered the distribution of the
maximum number of points in an interval of given length (say �) when the points
are drawn iid from the uniform distribution on [0, 1]. This would nowadays be
referred to as the scan statistic and arises when testing the null that the points
are uniformly distributed in [0, 1] against the (composite) alternative that there
is an sub-interval of length � with higher intensity. Settings where sub-interval
length is unknown have been considered (Arias-Castro, Donoho and Huo, 2005).

For s ≤ t, define Nn[s, t] = #{i ∈ [n] : Xi ∈ [s, t]} and F [s, t] = F (t)− F (s).
We note that, under the null hypothesis, Nn[s, t] is binomial with parameters
(n, F [s, t]), which motivates the test that rejects for large values of

sup
(s,t):F [s,t]≤1/2

Nn[s, t]− nF [s, t]√
nF [s, t](1− F [s, t]) + 1

. (6)

Although there are many possible variants, this is the one we will be working
with.
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We note that, under the null hypothesis, for any pair of indices i < j, U(j) −
U(i) has the beta distribution with parameters (j−i, n−j+i+1) — see (Gibbons
and Chakraborti, 2011, Th 11.1). This motivates the definition of the scan test
which rejects for small values of

min
0≤i<j≤n+1

Pi,j , (7)

where Pi,j := B(U(j)−U(i); j−i, n−j+i+1), U(0) := 0, U(n+1) := 1, P0,n+1 := 1.
In general, we define a scan test as any test with region rejection of the form⋃

(s,t)∈K{Nn[s, t] ≥ cs,t}, where K is a subset of {(s, t) : s < t} and cs,t ≥ 0 are

critical values. Let φs,t denote the test with rejection region {Nn[s, t] ≥ cs,t},
where

cs,t := min
{
c ≥ 0 : P0(Nn[s, t] ≥ c) ≤ α

}
.

We define the oracle scan test as the test φs•,t• , where

(s•, t•) := argmax
s<t

P1(Nn[s, t] ≥ cs,t).

Indeed, φs•,t• relies on oracle knowledge of (ε, μ).
To the best of our knowledge, this is the first time that such tests are consid-

ered in the line of work that concerns us here with roots in the work of Ingster
(1997) and Donoho and Jin (2004) — although a similar procedure is used in
Cai, Jin and Low (2007) to estimate the contamination proportion ε. The main
reason for considering these tests in the present context is that they happen to
be first-order optimal, not only in the models considered in the literature (such
as generalized Gaussian), but also in power-law models where F has fat tails
(e.g., t distribution, Cauchy or Pareto), whereas threshold tests fail are subopti-
mal for such models. We observe that power-law models are mostly absent from
this literature, although they are mentioned in Jin et al. (2005) in the context
of an application in cosmology.

1.3. Content

For simplicity and the sake of clarity, we will focus on oracle-type, rather than
likelihood ratio, performance bounds. The former are indeed more transparent
and can be obtained under more generality and with simpler arguments. Also
our main intention here is to compare what can be achieved with threshold
tests compared to the more general scan tests, defined next, and comparing the
corresponding oracle tests seems more appropriate.

In Section 2, we study the oracle threshold test and the oracle scan test.
We then consider a number of models. In Section 3, we consider the two scan
tests described above and compare them to the oracle scan test. In Section 4,
we present the result of some numerical experiments that illustrate our the-
ory. We briefly discuss the performance of the likelihood ratio test and that of
nonparametric approaches in Section 5.
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2. Oracle threshold test and oracle scan test

In this section we state and prove some basic results for the oracle threshold
and oracle scan tests.

2.1. Power monotonicity

It is natural to guess that the testing (1) versus (2) becomes easier as the shift μ
increases. This is indeed the case, at least from the point of view of both oracle
tests.

Proposition 1. The oracle threshold test has monotonic power in the shift.

Proof. We assume that ε > 0 is fixed and let Pμ denote the data distribution
under the alternative (2). Take μ1 ≤ μ2 and let tk denote the oracle threshold
(5) for μk, so that the oracle test for μk, meaning φtk , has rejection region
{Nn(tk) ≥ ctk} and power πk := Pμk

(Nn(tk) ≥ ctk). Thus we need to show that
π1 ≤ π2. This is so because of the fact that, for any t, Nn(t) is stochastically
non-decreasing in μ, leading to

π1 = Pμ1(Nn(t1) ≥ ct1) ≤ Pμ2(Nn(t1) ≥ ct1) ≤ Pμ2(Nn(t2) ≥ ct2) = π2,

where the last inequality is by construction of t2 and c2.

Clearly, the oracle scan test has at least as much power as the oracle threshold
test. Interestingly, it does not have monotonic power in general, although it does
under some natural assumptions on the base distribution.

Proposition 2. Assume that F , as a distribution, is unimodal. Then the oracle
scan test has monotonic power in the shift.

Proof. We stay with the setting and notation introduced in the proof of Propo-
sition 1. Let d ≥ 0 be smallest such that

F [s1 + d, t1 + μ2 − μ1] = F [s1, t1].

The fact that F , as a distribution, is unimodal implies that d ≤ μ2 − μ1. Now,
under the null, by construction,

P0(Nn[s1 + d, t1 + μ2 − μ1] ≥ cs1,t1) = P0(Nn[s1, t1] ≥ cs1,t1) ≤ α.

On the other hand, under Pμ1 , Nn[s1, t1] is binomial with parameters n and
q1 := (1−ε)F [s1, t1]+εF [s1−μ1, t1−μ1], while under Pμ2 , Nn[s1+d, t1+μ2−μ1]
is binomial with parameters n and

q2 := (1− ε)F [s1 + d, t1 + μ2 − μ1] + εF [s1 + d− μ2, t1 + μ2 − μ1 − μ2]

= (1− ε)F [s1, t1] + εF [s1 + d− μ2, t1 − μ1]

≥ q1,
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using the fact that d ≤ μ2−μ1. This explains the first inequality in the following
derivation

π1 = Pμ1(Nn[s1, t1] ≥ cs1,t1)

≤ Pμ2(Nn[s1 + d, t1 + μ2 − μ1] ≥ cs1,t1)

≤ Pμ2(Nn[s2, t2] ≥ cs2,t2) = π2,

and the second inequality is by definition of (s2, t2).

2.2. Performance bounds

We now provide necessary and sufficient conditions for the the oracle threshold
test and the oracle scan test to be fully powerful in the large-sample limit
(n → ∞). We focus on the case where

nεn → ∞,
√
nεn → 0,

where the first condition implies that, under the alternative, the sample is indeed
contaminated with probability tending to 1, while the second condition puts us
in the regime corresponding to β > 1/2 under Ingster’s parameterization (3).

Our analysis below is based on the following simple result, which is an im-
mediate consequence of Chebyshev’s inequality and the central limit theorem.

Lemma 1. Suppose that we are testing N ∼ Bin(n, pn) versus N ∼ Bin(n, qn)
where pn ≤ 1/2 and pn ≤ qn, and consider the test at level α that rejects for large
values of N — which is the most powerful test. It is asymptotically powerful if
n(qn−pn)

2/qn → ∞, while it is asymptotically powerless if n(qn−pn)
2/pn → 0.

Using Lemma 1, we easily obtain performance guarantees for the oracle
threshold test and the oracle scan test.

Proposition 3. The oracle threshold test is powerful if there is a sequence of
thresholds (tn) such that

nεnF̄ (tn − μn) → ∞, and

nε2nF̄ (tn − μn)
2/F̄ (tn) → ∞.

(8)

It is powerless if for any sequence of thresholds (tn)

nε2nF̄ (tn − μn)
2/F̄ (tn) → 0. (9)

Proof. Let (tn) denote a sequence of thresholds satisfying (8), and define pn =
F̄ (tn) and qn = (1−εn)F̄ (tn)+εnF̄ (tn−μn). We know that Nn(tn) ∼ Bin(n, pn)
under the null and Nn(tn) ∼ Bin(n, qn) under the alternative, with

n(qn − pn)
2/qn =

nε2n(F̄ (tn − μn)− F̄ (tn))
2

(1− εn)F̄ (tn) + εnF̄ (tn − μn)
.
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If the second part of (8) holds, then necessarily F̄ (tn − μn) � F̄ (tn), since

nε2nF̄ (tn − μn)
2/F̄ (tn) =

[
nε2nF̄ (tn)

][
F̄ (tn − μn)/F̄ (tn)

]2
≤ (nε2n)

[
F̄ (tn − μn)/F̄ (tn)

]2
,

with nε2n = o(1) by assumption. Hence,

n(qn − pn)
2/qn ∼ nε2nF̄ (tn − μn)

2

(1− εn)F̄ (tn) + εnF̄ (tn − μn)

� nεnF̄ (tn − μn)
∧

nε2nF̄ (tn − μn)
2/F̄ (tn).

Therefore, by Lemma 1, the sequence of tests (φtn) has full power in the limit
when (8) holds.

Now let (tn) be any sequence of thresholds and consider the sequence of tests
(φtn). By Lemma 1, it has power α in the limit since

n(qn − pn)
2/pn ≤ nε2nF̄ (tn − μn)

2/(1− εn)F̄ (tn) → 0,

where the convergence to 0 comes from (9).

Remark 1. Note that the first part of (8) may be replaced by

nF̄ (tn) → ∞.

This is because this and nε2nF̄ (tn − μn)
2/F̄ (tn) → ∞ implies nεnF̄ (tn − μn) →

∞.

Proposition 4. The oracle scan test is powerful if there is a sequence of inter-
vals ([sn, tn]) such that

nεnF [sn − μn, tn − μn] → ∞, and

nε2nF [sn − μn, tn − μn]
2/F [sn, tn] → ∞.

(10)

It is powerless if for any sequence of intervals ([sn, tn])

nε2nF [sn − μn, tn − μn]
2/F [sn, tn] → 0.

The proof is completely parallel to that of Proposition 3 and is omitted.

2.3. Examples: generalized Gaussian models and more

We look at a number of models and in each case derive the performance of the
oracle threshold and oracle scan tests, and compare that with the performance
of the likelihood ratio test.

To place the results in line with the literature on the topic, we adopt Ingster’s
parameterization (3) for εn, in fact a softer version of that

ε = εn ∼ n−β , (11)
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for some fixed β. The parameterization of μ = μn will depend on on the model.
To further simplify matters, we assume throughout that

log F̄ (x) ∼ −ϕ(x),

where ϕ(x) is continuous and strictly increasing for x large enough. In that case,
in view of Remark 1, we note that (8) is satisfied when

logn− ϕ(tn) → ∞,

(1− 2β) logn+ ϕ(tn)− 2ϕ(tn − μn) → ∞.
(12)

2.3.1. Extended generalized Gaussian

This class of models is defined by the property that ϕ satisfies2

ϕ(ut)/ϕ(t) → ua, t → ∞, ∀u ≥ 0. (13)

Here a > 0 parameterizes this class of models. This covers the generalized
Gaussian models, which are often used as benchmarks in this line of work. It
also covers the case where ϕ(t) ∼ ta(log t)b where b ∈ R is arbitrary.

For a > 1, define

ρa(β) =

{
(21/(a−1) − 1)a−1(β − 1/2), 1/2 < β < 1− 2−a/(a−1),

(1− (1− β)1/a)a, 1− 2−a/(a−1) ≤ β < 1.

For a ≤ 1, define
ρa(β) = 2(β − 1/2).

In addition to (11), assume that

μ = μn satisfies ϕ(μn) ∼ r logn, with r ≥ 0 fixed. (14)

Proposition 5. The curve r = ρa(β) in the (β, r) plane is the detection bound-
ary that the oracle threshold test achieves.

Proof. We focus on proving that the oracle threshold test achieves that bound-
ary. A simple inspection of the arguments reveal that they are tight, so that
this is the precise detection boundary that the test achieves. (See the proof of
Proposition 8 for an example.)

We divide the proof into several cases.

Case 1: a > 1. Define b = 2−1/(a−1) and note that 0 < b < 1.

Case 1.1: 1/2 < β < 1 − ba and r > ρa(β). Under these conditions, β <
1/2 + r(1/b− 1)−(a−1), and in particular there is η > 0 such that

1− 2β ≥ −2r(1/b− 1)−(a−1) + η. (15)

2 It is tempting to consider a more general condition where there is a function ω on R+

such that limt→∞ ϕ(ut)/ϕ(t) → ω(u) for all u ≥ 0. However, as long as ω is not constant
(equal to zero in that case), it can easily be shown that ω(u) = ua for some a > 0.
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Setting tn = (1− b)−1μn, by (13) and (14), we have the following

ϕ(tn − μn) =
(
rba/(1− b)a + o(1)

)
log n,

ϕ(tn) =
(
r/(1− b)a + o(1)

)
logn.

By Proposition 1 we may focus on r small enough that r/(1 − b)a < 1. This is
possible because ρa(β) < (1−b)a when β < 1−ba, which we assume here. (This
can be easily verified using the definition of b.) Assuming that r is as such, the
first part of (12) is satisfied. For the second part, with (15), we have

(1− 2β) log n− 2ϕ(tn − μn) + ϕ(tn)

≥
[
− 2r(1/b− 1)−(a−1) + η − 2rba/(1− b)a + r/(1− b)a + o(1)

]
logn

= [η + o(1)] logn → ∞,

using the definition of b and simplifying. Thus the second part of (12) is also
satisfied and the oracle threshold test is powerful.

Case 1.2: 1 − ba ≤ β < 1 and r > ρa(β). Under these conditions, we have
1− β > (1− r1/a)a, and in particular there is η > 0 such that

1− β − η ≥ (1− r1/a)a ≥ ((1− η)1/a − r1/a)a.

Set tn = ( 1r (1− η))1/aμn, we have the following

ϕ(tn − μn) =
(
(1− η)1/a − r1/a)a + o(1)

)
logn,

ϕ(tn) = (1− η + o(1)) log n.

By looking at the speed of ϕ(tn), the first part of (12) is satisfied immediately.
For the second part, with (15), we have

(1− 2β) log n− 2ϕ(tn − μn) + ϕ(tn)

= (1− 2β) log n− 2
(
(1− η)1/a − r1/a)a + o(1)

)
logn+ (1− η + o(1)) log n

= 2
[
1− β − η/2− ((1− η)1/a − r1/a)a + o(1)

]
logn → ∞.

Thus the second part of (12) is also satisfied and the oracle threshold test is
powerful.

Case 2: a ≤ 1. By Proposition 1 we may restrict attention to the case where
2β − 1 < r < 1. Here we set tn = μn. Then the first part in (12) is clearly
satisfied. For the second part, notice that

(1− 2β) logn− 2ϕ(tn − μn) + ϕ(tn)

= (1− 2β) logn+ (r + o(1)) log n

= [1− 2β + r + o(1)] log n → ∞.

This completes the proof.
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Thus, although the conditions are much more general here, the detection
boundary is the same as in the corresponding generalized Gaussian model and,
moreover, the oracle threshold test achieves that boundary.

Remark 2 (max test). In this class of models, it can be shown that the max
test achieves the detection boundary over the upper range, meaning when β ≥
1−2−a/(a−1). In fact, ρmax(β) := (1−(1−β)1/a)a defines the detection boundary
for the max test.

2.3.2. Other models

In the next few classes of models, ϕ satisfies

ϕ−1(t)− ϕ−1(vt)

λ(t)
→ ω(v), t → ∞, ∀v ∈ (0, 1]. (16)

for some functions λ and ω, with the latter being non-increasing, continuous,
and such that ω(1) = 0. This is actually also the case when ϕ(t) ∼ ta(log t)b

with a > 0 and b ∈ R, with λ(t) = t1/a(log t)−b/a and ω(v) = (1− v1/a)/ab/a.

Define

ρ(β) = inf
0<h<1−β

[
ω(h)− ω(2β − 1 + 2h)

]
. (17)

In addition to (11), assume that

μ = μn ∼ rλ(log n), r ≥ 0 fixed.

Proposition 6. The curve r = ρ(β) in the (β, r) plane is the detection boundary
that the oracle threshold test achieves.

Proof. We focus on proving that the oracle threshold test achieves that bound-
ary.

Since ω(v) is continuous, we may define

h∗ = argmin
0≤h≤1−β

[
ω(h)− ω(2β − 1 + 2h)

]
.

We focus on the case where h∗ < 1− β. In the case where h∗ = 1− β, the max
test is powerful (Remark 3), and therefore so is the oracle threshold test. By
Proposition 1 we may focus on the case where r < ω(h∗). With these assump-
tions and the fact that ω(h∗) − ω(2β − 1 + 2h∗) = ρ(β) < r, there is η > 0 be
such that

2β − 1 + 2h∗ + 2η < 1, (18)

and

ω(h∗)− ω(2β − 1 + 2h∗ + η) < r < ω(h∗)− ω(2β − 1 + 2h∗ + 2η).
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Define tn := μn + ϕ−1(h∗ logn). Using (16) multiple times, for n sufficiently
large, we have the following

μn = (r + o(1))λ(log n)

≤ [ω(h∗)− ω(2β − 1 + 2h∗ + 2η)]λ(logn)

= ϕ−1(logn)− ϕ−1(h∗ logn)− ϕ−1(logn) + ϕ−1((2β − 1 + 2h∗ + 2η) logn)

= ϕ−1((2β − 1 + 2h∗ + 2η) logn)− ϕ−1(h∗ logn).

Hence, eventually, tn ≤ ϕ−1((2β − 1 + 2h∗ + 2η) logn), implying that

logn− ϕ(tn) = logn− (2β − 1 + 2h∗ + 2η) logn

= [1− (2β − 2 + 2h∗ + 2η)] logn → ∞,

using (18). Thus the first part of (12) is satisfied.

Similarly, for n sufficiently large,

μn = (r + o(1))λ(log n)

≥ [ω(h∗)− ω(2β − 1 + 2h∗ + η)]λ(logn)

= ϕ−1((2β − 1 + 2h∗ + η) logn)− ϕ−1(h∗ logn),

so that, eventually, tn ≥ ϕ−1((2β − 1 + 2h∗ + η) logn), implying that

(1− 2β) logn− 2ϕ(tn − μn) + ϕ(tn)

≥ (1− 2β) logn− 2h∗ logn+ (2β − 1 + 2h∗ + η) logn

= η logn → ∞.

Thus the second part of (12) is satisfied.

Remark 3 (max test). In the present situation, it can be shown that ρmax(β) :=
ω(1− β) defines the detection boundary for the max test.

2.3.3. Extended generalized Gumbel

This class of models is defined by ϕ(t) = exp(ta) for some a > 0, which satisfies
(16) with λ(t) = 1

a (log t)
1/a−1 and ω(v) = log(1/v). In this case,

μ = μn ∼ r

a
(log logn)1/a−1,

and the detection boundary is given by r = − log(1 − β). Note that, at the
detection boundary, μn → ∞ when a > 1; that μn � 1 when a = 1; and μn → 0
when a < 1.
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2.3.4. Extended generalized Gumbel

This class of models is defined by ϕ(t) = exp((log t)a) for some a > 1, which
satisfies (16) with λ(t) = 1

a (log t)
1/a−1 exp((log t)1/a) and ω(v) = log(1/v). In

this case,

μ = μn ∼ r

a
(log logn)1/a−1 exp((log logn)1/a),

and the detection boundary is given by r = − log(1−β) as in the previous class
of models (since ω is the same).

Remark 4 (max test). Based on Remark 3, in the last two classes of models, the
max test achieves the detection boundary over the whole β range. The same is
true, more generally, when the infimum in (17) is at h = 1− β.

2.4. Examples: power-law models and more

In the next few classes of models, F satisfies

log(F (t+ v)− F (t)) ∼ −λ(t), t → ∞, ∀v ≥ 0, (19)

for some function λ which is increasing eventually and such that λ(t) → ∞ as
t → ∞. This includes models where

F̄ (t) ∝ t−a(log t)b(1 + o(1/t)), t → ∞, (20)

with a > 0 and b ∈ R, in which case (19) holds with λ(t) = (a+ 1) log t. It also
includes models where F̄ (t) ∝ (log t)−a(1 + o(1/t log t)), with a > 0, in which
case (19) holds with λ(t) = log t, as well as other distribution with even slower
decay.

In addition to (11), assume that

μ = μn satisfies λ(μn) ∼ r logn, r ≥ 0 fixed. (21)

Proposition 7. The curve r = ρ(β) := 2β−1 in the (β, r) plane is the detection
boundary that the oracle scan test achieves.

Proof. We focus on proving that the oracle scan test achieves that boundary.
Fix r such that r > 2β − 1. Consider the interval [sn, tn] with sn := μn and

tn := μn + v, where v > 0 is such that F [0, v] > 0. We need to verify that (10)
holds. On the one hand, we have

nεnF [sn − μn, tn − μn] = n1−βF [0, v] → ∞,

because β < 1 by assumption. So the first part of (10) holds. On the other hand,

nε2nF [sn − μn, tn − μn]
2/F [sn, tn] = n1−2βF [0, v]2/nr+o(1)

= nr+1−2β+o(1) → ∞,

since r > 2β − 1. So the second part of (10) holds.
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We now show that threshold tests are suboptimal in the main class of models
satisfying (19), namely (20). (The same happens to be true in other models with
fat tails satisfying (19).) This is the main motivation for considering scan tests.

Proposition 8. In a model satisfying (20), and with the same parameterization
(21), the curve r = (1+1/a)(2β−1) in the (β, r) plane is the detection boundary
that the oracle threshold test achieves.

Proof. We first prove that the oracle threshold test achieves this detection
boundary. By Proposition 1 we may assume that r < 1 + 1/a. Therefore, fix
r such that (1 + 1/a)(2β − 1) < r < 1 + 1/a. Set the threshold tn = μn + v,
where v is such that F̄ (v) > 0. We need to verify that (8) holds, and we do so
via Remark 1. Note that tn ∼ μn = nr/(a+1)+o(1). In particular,

nF̄ (tn) ∼ nμ−a
n (log μn)

b = n1−ar/(a+1)+o(1) → ∞,

and, by the same token,

nε2nF̄ (tn − μn)
2/F̄ (tn) ∼ n1−2βn−ar/(a+1)+o(1) = n1−2β−ar/(a+1)+o(1) → ∞.

We now turn to proving that this is the statement boundary is the best that
the oracle threshold test can hope for. For this, fix r < (1+1/a)(2β−1). We need
to verify (9). Suppose for contradiction that there is a sequence of thresholds,
(tn), such that (9) does not hold. By extracting a subsequence if needed, we
may assume that

nε2nF̄ (tn − μn)
2/F̄ (tn) → λ ∈ (0,∞]. (22)

First, suppose that lim inf tn/μn < ∞. Extracting a subsequence if needed, we
may assume that tn = O(μn). In that case, we have

nε2nF̄ (tn − μn)
2/F̄ (tn) ≤ nε2n/F̄ (tn)

≤ n1−2β+o(1)μ−a+o(1)
n

= n1−2β−ar/(a+1)+o(1) → 0.

Since this contradicts (22), we must have lim inf tn/μn = ∞, meaning that
tn � μn. In that case, we have F̄ (tn − μn) ∼ F̄ (tn), implying that

nε2nF̄ (tn − μn)
2/F̄ (tn) ∼ nε2nF̄ (tn) ≤ nε2n → 0.

This also contradicts (22). Since there is no other option, it must be that (22)
cannot hold. We conclude that, indeed, (9) holds for any sequence of thresholds.

3. Scan tests

In this section, we study the scan tests (6) and (7), and show that both of
them do as well as the oracle scan test, at least to first-order in the asymptote
where n → ∞ and under the various parameterizations used in the previous
section. We refer to (6) as the Stouffer scan test, as it is constructed as Stouffer’s
combination test (Stouffer et al., 1949); while we refer to (7) as the Tippett scan
test, for similar reasons (Tippett, 1931).
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3.1. Stouffer scan test

We study the Stouffer scan test (6). The main work goes into controlling this
statistic under the null hypothesis. The limiting distribution of higher criticism
can be derived from (Jaeschke, 1979) and the limiting distributions of some
variants of the scan statistic are known under other models (Kabluchko, 2011;
Sharpnack and Arias-Castro, 2016). We will not pursue such a fine result here,
but contend ourselves with a relatively rough upper bound.

Lemma 2. Given observations x1, . . . , xn, the maximum in (6) is attained at
some (s, t) = (xi, xj).

Proof. Define

Rn(s, t) :=
Nn[s, t]− nF [s, t]√

nF [s, t](1− F [s, t]) + 1
. (23)

Let x(1) ≤ · · · ≤ x(n) denote the ordered observations, and set x(0) = −∞ and
x(n+1) = ∞. It suffices to show that, for any 1 ≤ i ≤ j ≤ n and any (s, t) such
that x(i−1) < s ≤ x(i) and x(j) ≤ t < x(j+1), in addition to F [s, t] ≤ 1/2, we have
Rn(x(i), x(j)) ≥ Rn(s, t). The crucial observation is that Nn[s, t] = Nn[x(i), x(j)]
while F [x(i), x(j)] ≤ F [s, t].

It is thus enough to show that the function p �→ (a − p)/(p(1 − p) + b)1/2

is decreasing over [0, 1/2] for any a, b ≥ 0. This is so since this function has
derivative −(a(1− 2p) + 2b+ p)/(p(1− p) + b)3/2.

Theorem 1. With Sn defined as the statistic (6), we have

P0(Sn ≥ 3 logn) → 0.

Proof. We place ourselves under the null hypothesis. Recall the definition of Rn

in (23). By Lemma 2 and the fact that Rn(Xi, Xi) = 1 for all i, if Sn ≥ 3 logn
necessarily Sn = S∗

n := maxi �=j Rn(Xi, Xj). For any i �= j, we have

Rn(Xi, Xj) ≤ 2 + Si,j ,

with

Si,j :=
Ni,j − 2− (n− 2)pi,j√
(n− 2)pi,j(1− pi,j) + 1

,

Ni,j := Nn[Xi, Xj ], pi,j := F [Xi, Xj ].

(24)

The point of this reorganizing is that, given (Xi, Xj), Ni,j −2 ∼ Bin(n−2, pi,j),
and an application of Bernstein’s inequality gives

P0(Si,j ≥ s | Xi, Xj) ≤ exp

(
−

s2b2i,j/2

b2i,j + sbi,j/3

)

≤ exp

(
− s2/2

1 + s/3

)
≤ exp(−s), ∀s ≥ 6,
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because bi,j :=
√

(n− 2)pi,j(1− pi,j) + 1 ≥ 1. Thus, with the union bound, as
n → ∞, we have

P0(Sn ≥ 3 logn) = P0(∃i �= j : Si,j + 2 ≥ 3 logn)

≤
∑
i<j

P0(Si,j ≥ 3 logn− 2) ≤ n2 exp(−3 log n+ 2) → 0,

which proves the statement.

With Theorem 1, one obtains the following performance bound for the Stouf-
fer scan test.

Corollary 1. The Stouffer scan test is powerful if there is a sequence of intervals
([sn, tn]) such that

nεnF [sn − μn, tn − μn] � log n, and

nε2nF [sn − μn, tn − μn]
2/F [sn, tn] � (logn)2.

(25)

Proof. By Theorem 1, the Stouffer scan test at level α is at least as powerful
as the test {Sn ≥ 3 logn}, eventually. Now, under the alternative, this test is
powerful if we can prove that pn := F [sn, tn] ≤ 1/2 and Rn(sn, tn) ≥ 3 logn.
Define p′n := F [sn − μn, tn − μn] and qn := (1− εn)pn + εnp

′
n, so that (25) can

be expressed as

nεnp
′
n � logn → ∞, and nε2np

′
n
2
/pn � (log n)2 → ∞.

That pn ≤ 1/2 is true, eventually, comes from the fact that

∞ ← nε2np
′
n
2
/pn ≤ nε2n/pn,

with nε2n → 0 by assumption, so that necessarily pn → 0. Note that this implies
that qn → 0 also.

Given that Nn[sn, tn] is a binomial distribution with parameters n and qn,
with nqn ≥ np′n → ∞ by the first part of (25), we have Nn[sn, tn] = nqn +
OP (

√
nqn(1− qn)), and so

Rn(sn, tn) =
nεn(p

′
n − pn) +OP (

√
nqn(1− qn))√

npn(1− pn) + 1
∼ nεnp

′
n +OP (

√
nqn)√

npn + 1
,

since p′n � pn, by the fact that

∞ ← nε2np
′
n
2
/pn = nε2npn(p

′
n/pn)

2 = o(p′n/pn)
2.

In addition, the same conditions imply

nεnp
′
n√

nqn
�

√
nε2np

′
n
2/pn

∨
nεnp

′
n → ∞,

so that

Rn(sn, tn) ∼P nεnp
′
n/

√
npn + 1 �P

√
nε2np

′
n
2/pn

∨
nεnp

′
n � logn.

We conclude that Rn(sn, tn) ≥ 3 logn holds with probability tending to 1.
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With this performance bound, it is straightforward to verify that the Stouffer
scan test performs as well as the oracle scan test to first order, at least in the
context of the parameterization used in the models studied in Section 2.3 and
Section 2.4. This comes from the fact that, in context of these sections, the
quantity appearing in (25) increases as a (fixed) positive power of n under the
alternative. We formalize this into the following statement, left without formal
proof.

Corollary 2. The Stouffer scan test achieves the oracle scan detection boundary
in all the settings considered in Section 2.3 and Section 2.4.

3.2. Tippett scan test

We study the Tippett scan test (7), which we denote by Tn. We control this
statistic under the null hypothesis by a simple application of the union bound. A
more refined control seems possible in view of Moscovich, Nadler and Spiegelman
(2016), where the limiting distribution of (4) is obtained.

Proposition 9. With Tn defined as the statistic (7), we have

P0(Tn ≤ 1/n3) → 0.

Proof. Under the null, each Pi,j is uniformly distributed in [0, 1]. Thus the union
bound gives

P0(Tn ≤ 1/n3) ≤ n2
P0(Pi,j ≤ 1/n3) = n2/n3 = 1/n → 0,

which concludes the proof.

Thus most of the work goes into controlling the statistic under the alter-
native. We do so by bounding the Tippett scan statistic by an expression that
resembles that of the Stouffer scan statistic. We make use of the following simple
concentration bound.3

Lemma 3. For k ∈ [n],

B(u; k, n− k + 1) ≤ exp

(
− (k − nu)2/2

nu(1− u) + (k − nu)/3

)
, 0 ≤ u ≤ k/n.

Proof. Let Uk:n denote the k-th order statistic of an iid sample of size n from
the uniform distribution on [0, 1]. For u ∈ [0, 1] such that nu ≤ k, we have

B(u; k, n− k + 1) = P(Uk:n ≤ u) = P(Bin(n, u) ≥ k),

and we conclude with an application of Bernstein’s inequality.

3 Many things are known about the beta distribution and order statistics in general, but
we could not immediately find such a simple bound.
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Proposition 10. The Tippett scan test is powerful if there is a sequence of
intervals ([sn, tn]) such that

nεnF [sn − μn, tn − μn] �
√

logn,

nε2nF [sn − μn, tn − μn]
2/F [sn, tn] � log n.

(26)

Proof. Recall that Tn = mini<j Pi,j and the expression of Pi,j . Thus an appli-
cation of Lemma 3 gives

Tn ≤ 1/n3 ⇔ max
i<j

(j − i− Vi,j)
2
+/2

nVi,j(1− Vi,j) + (j − i− Vi,j)+/3
≥ 3 logn,

where Vi,j := U(j) − U(i), after taking a logarithm.
Moreover, Vi,j = F [X(n−j+1), X(n−i+1)] and j−i = Nn[X(n−j+1), X(n−i+1)]−

1, yielding

Tn ≤ 1/n3 ⇔ max
i �=j

(Ni,j − 1− npi,j)
2
+

npi,j(1− pi,j) + (Ni,j − 1− npi,j)+
≥ 6 logn,

with the notation of (24). The latter inequality holds when there is i �= j such
that

Ni,j − 1− npi,j ≥ 12 logn and
Ni,j − 1− npi,j√
npi,j(1− pi,j)

≥
√

12 logn,

which is the case when

npi,j ≥
√

12 logn and
Ni,j − 1− npi,j√
npi,j(1− pi,j)

≥
√
12 logn. (27)

Let (sn, tn) be as in the statement and let (i, j) be such that U(i) ≤ s < U(i+1)

and U(j−1) < t ≤ U(j). By construction, pi,j ≥ F [sn, tn], so that the first
part of (26) implies that the first part of (27) holds eventually. We also have
Ni,j ≥ Nn[sn, tn]− 2, so that

Ni,j − 1− npi,j√
npi,j(1− pi,j)

≥ Nn[sn, tn]− 3− nF [sn, tn]√
nF [sn, tn](1− F [sn, tn])

,

and the quantity on the RHS is controlled using the second part (26) exactly as
in the proof of Proposition 4.

Here too, these results make it straightforward to verify that the Tippett
scan test performs as well as the oracle scan test (to first order) in the models
and regimes seen earlier, leading us to state the following (left without a formal
proof).

Corollary 3. The Tippett scan test achieves the oracle scan detection boundary
in all the settings considered in Section 2.3 and Section 2.4.
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4. Numerical experiments

We performed small-scale numerical experiments to probe our theory. We gen-
erated Student t-distributions with varying numbers of degrees of freedom,
df = 0.5, 1, 2, 5}. Recall that the Student t-distribution with k degrees of free-
dom has density ∝ (1 + x/k)−(k+1)/2. We considered three different scenarios
with varying sparsity exponents, β = 0.6, 0.7, 0.8. The sample size was set to
n = 30, 000. We compared the higher criticism test, the Berk-Jones test, the
Stouffer scan test, and the Tippett scan test in each of these settings. We re-
peat each setting 200 times. See Figure 1, Figure 2, and Figure 3.

Fig 1. Here β = 0.6, the x-axis represents r in the parameterization (21), y-axis the power of
the tests identified in the legend. Each subfigure corresponds to a Student t-distribution with
the specified number of degrees of freedom. The black dashed vertical line corresponds to the
oracle scan detection boundary established in Proposition 7, while the dotted line corresponds
to the oracle threshold detection boundary established in Proposition 8.

As the theory predicts, We can check that when the number of degrees of
freedom is smaller, implying that the base distribution has fatter tails, the scan
procedures dominate the threshold procedure. The threshold procedures become
dominant as the tails become lighter. This is so at this particular sample size
as, in principle, our theory indicates that with a larger sample size, the scan
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Fig 2. Here β = 0.7, otherwise, see Figure 1 for more details.

procedures would still dominate. The transition from powerless to powerful takes
place at a larger effect size than predicted by the theory, which is also explain
by the limited sample size.4

5. Discussion

While scan tests are commonly used in a number of detection problems, thresh-
old tests are almost exclusively used in multiple testing situations. The main
purpose of our work here was to reveal that scan tests can improve on threshold
tests in somewhat standard multiple testing settings, particularly when the null
distribution (F in the paper) has heavy tails.

Likelihood ratio performance bounds Given our main objective, it was
more natural to consider oracle-type performance bounds rather than using the
likelihood ratio performance as benchmark. We can say nonetheless that, for

4The scan tests have computational complexity of order O(n2), which has limited the scale
of our experiments.
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Fig 3. Here β = 0.8, otherwise, see Figure 1 for more details.

representative models, the oracle threshold boundaries stated in Proposition 5
and Proposition 6 match those of the likelihood ratio test — for example, this
is true of generalized Gaussian models where F has density of the form f(t) ∝
exp(−|t|a) for some a > 0. The same is true of the oracle scan boundary stated
in Proposition 7 — for example, this is true of power law models where F has
density of the form f(t) ∝ (1 + |t|a)−1 for some a > 0.

Nonparametric approaches Arias-Castro and Wang (2017) consider the
situation where the null distribution, F , is symmetric about 0 but otherwise
unknown. They suggest two tests for symmetry: the CUSUM sign test and the
tail-run test, which are meant to be the nonparametric equivalent of the higher
criticism test and the tail-run sign test, respectively. Back-of-the-envelope calcu-
lations seem to indicate that these nonparametric tests achieve the same detec-
tion boundaries as their parametric counterparts in all the settings considered
here.

Multiple testing In separate work Chen, Ying and Arias-Castro (2018), we
uncover a similar phenomenon in the context of multiple testing, where the
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goal is maximizing the number of rejections while controlling the false discovery
rate (FDR). Indeed, in a similar mixture model, standard in that literature at
least since the work of Genovese and Wasserman (2002, 2004), we find that
with heavy tail distributions, scanning can improve on thresholding (what the
procedure of Benjamini and Hochberg (1995) does). This is established in the
context of the asymptotic framework of Genovese and Wasserman (2002, 2004),
which is different than the one considered here in that the mixture proportion,
ε, does not converge to zero with the sample size. However, we expect this to
extend to the present asymptotic model.5
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