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Abstract: Based on independently distributed X1 ∼ Np(θ1, σ2
1Ip) and

X2 ∼ Np(θ2, σ2
2Ip), we consider the efficiency of various predictive den-

sity estimators for Y1 ∼ Np(θ1, σ2
Y Ip), with the additional information

θ1 − θ2 ∈ A and known σ2
1 , σ

2
2 , σ

2
Y . We provide improvements on bench-

mark predictive densities such as those obtained by plug-in, by maximum
likelihood, or as minimum risk equivariant. Dominance results are obtained
for α−divergence losses and include Bayesian improvements for Kullback-
Leibler (KL) loss in the univariate case (p = 1). An ensemble of techniques
are exploited, including variance expansion, point estimation duality, and
concave inequalities. Representations for Bayesian predictive densities, and
in particular for q̂πU,A associated with a uniform prior for θ = (θ1, θ2)

truncated to {θ ∈ R
2p : θ1 − θ2 ∈ A}, are established and are used for

the Bayesian dominance findings. Finally and interestingly, these Bayesian
predictive densities also relate to skew-normal distributions, as well as new
forms of such distributions.
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1. Introduction

1.1. Problem and model

Consider independently distributed

X =

(
X1

X2

)
∼ N2p

(
θ =

(
θ1
θ2

)
, Σ =

( σ2
1Ip 0

0 σ2
2Ip

))
, Y1 ∼ Np(θ1, σ

2
Y Ip) , (1)

where X1, X2, θ1, θ2 are p−dimensional, and with the additional information
(or constraint) θ1 − θ2 ∈ A ⊂ R

p, A, σ2
1 , σ

2
2 , σ

2
Y all known, the variances not

necessarily equal. We investigate how to gain from the additional information in
providing a predictive density q̂(·;X) as an estimate of the density qθ1(·) of Y1.
Such a density is of interest as a surrogate for qθ1 , as well as for generating either
future or missing values of Y1. The additional information θ1−θ2 ∈ A rendersX2

useful in estimating the density of Y1 despite the independence and the otherwise
unrelated parameters. Moreover, one can anticipate that the potential usefulness
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ofX2 is mitigated by its precision relative toX1. For instance, if the ratio
σ2
2

σ2
1
≈ 0,

then efficient inference about θ1, or efficient predictive density estimation for Y1,
should be governed by the high probability that “θ1 − X2 ∈ A”. At the other

extreme if
σ2
2

σ2
1
is much larger than 1, little benefit of making of X2 should be

expected. And, for intermediate values of
σ2
2

σ2
1
, such as 1, inference about θ1 or

for Y1 should be calibrated somewhat by the observed value of X2. Much of
the above discussion is relevant to situations where data about X2 is relatively
plentiful or cheap to acquire.

The reduced X data of the above model is pertinent to summaries X1 and
X2 that arise through a sufficiency reduction, a large sample approximation, or
limit theorems. Specific forms of A include:

(i) order constraints θ1,i − θ2,i ≥ 0 for i = 1, . . . , p ; the θ1,i and θ2,i’s repre-
senting the components of θ1 and θ2;

(ii) rectangular constraints |θ1,i − θ2,i| ≤ mi for i = 1, . . . , p ;
(iii) spherical constraints ‖θ1 − θ2‖ ≤ m ;
(iv) order and bounded constraints m1 ≥ θ1,i ≥ θ2,i ≥ m2 for i = 1, . . . , p .

There is a very large literature on statistical inference in the presence of such
constraints, mostly for (i) (e.g., Hwang and Peddada [22]; Dunson and Neelon
[15]; Park, Kalbfleisch and Taylor [35]) among many others). Other sources on
estimation in restricted parameter spaces can be found in the review paper of
Marchand and Strawderman [33], as well as the monograph by van Eeden [45].
There exist various findings for estimation problems with additional information,
dating back to Blumenthal and Cohen [8] and Cohen and Sackrowitz [12], with
further contributions by van Eeden and Zidek [43, 44], Marchand et al. [30],
Marchand and Strawderman [33].

Remark 1.1. Our set-up applies to various other situations that can be trans-
formed or reduced to model (1) with θ1 − θ2 ∈ A. Here are some examples.

(I) Consider model (1) with the linear constrained c1θ1 − c2θ2 + d ∈ A,
c1, c2 being constants not equal to 0, and d ∈ R

p. Transforming X ′
1 =

c1X1, X
′
2 = c2X2−d, and Y ′

1 = c1Y1 leads to model (1) based on the triplet
(X ′

1, X
′
2, Y

′
1), expectation parameters θ′1 = c1θ1, θ

′
2 = c2θ2 − d, covariance

matrices c2iσ
2
i Ip, i = 1, 2 and c21σ

2
Y Ip, and with the additional information

θ′1− θ′2 ∈ A. With the class of losses being intrinsic (see Remark 1.2), and
the study of predictive density estimation for Y ′

1 equivalent to that for Y1,
our basic model and the findings below in this paper will indeed apply for
linear constrained c1θ1 − c2θ2 + d ∈ A.

(II) Consider a bivariate normal model for X with means θ1, θ2, variances σ
2
1,

σ2
2, correlation coefficient ρ > 0, and the additional information θ1 − θ2 ∈

A. The transformation X ′
1 = X1, X ′

2 = 1√
1+ρ2

(X2 − ρσ2

σ1
X1) leads to

independent coordinates with means θ′1 = θ1, θ
′
2 = 1√

1+ρ2
(θ2 − ρσ2

σ1
θ1),

and variances σ2
1, σ2

2. We thus obtain model (1) for (X ′
1, X

′
2) with the

additional information θ1 − θ2 ∈ A transformed to c1θ
′
1 − c2θ

′
2 + d ∈ A, as
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in part (I) above, with c1 = 1 + ρσ2

σ1
, c2 =

√
1 + ρ2, and d = 0.

1.2. Predictive density estimation

Several loss functions are at our disposal to measure the efficiency of estimate
q̂(·;x), and these include the class of α−divergence loss functions (e.g., Csiszàr
[14]) given by

Lα(θ, q̂) =

∫
Rp

hα

(
q̂(y;x)

qθ1(y)

)
qθ1(y) dy , (2)

with

hα(z) =

⎧⎨
⎩

4
1−α2 (1− z(1+α)/2) for |α| < 1

z log(z) for α = 1
− log(z) for α = −1.

Notable examples in this class include Kullback-Leibler (h−1), reverse Kullback-
Leibler (h1), and Hellinger (h0/4). The cases |α| < 1 merit study with many
fewer results available, and stand apart in the sense that these losses are typically
bounded, whereas Kullback-Leibler loss is typically unbounded (see Remark
4.2). For an above given loss, we measure the performance of a predictive density
q̂(·;X) by the frequentist risk

Rα(θ, q̂) =

∫
R2p

Lα (θ, q̂(·;x)) pθ(x) dx , (3)

pθ representing the density of X.
Such a predictive density estimation framework was outlined for Kullback-

Leibler loss in the pioneering work of Aitchison and Dunsmore [2], as well as
Aitchison [1], and has found its way in many different fields of statistical sci-
ence such as decision theory, information theory, econometrics, machine learn-
ing, image processing, and mathematical finance. There has been much recent
Bayesian and decision theory analysis of predictive density estimators, in par-
ticular for multivariate normal or spherically symmetric settings, as witnessed
by the work of Komaki [24], George, Liang and Xu [18], Brown, George and Xu
[10], Kato [23], Fourdrinier et al. [17], Ghosh, Mergel and Datta [19], Maruyama
and Strawderman [34], Kubokawa, Marchand and Strawderman [26, 27], among
others.

Remark 1.2. We point out that losses in (2) are intrinsic in the sense that
predictive density estimates of the density of Y ′ = g(Y ), with invertible g : Rp →
R

p and inverse Jacobian J , lead to an equivalent loss with the natural choice
q̂(g−1(y′);x) |J | as
∫
Rp

hα

(
q̂(g−1(y′);x) |J |
qθ1(g

−1(y′)) |J |

)
qθ1(g

−1(y′)) |J | dy′ =

∫
Rp

hα

(
q̂(y;x)

qθ1(y)

)
qθ1(y) dy ,

which is indeed Lα(θ, q̂) independently of g.
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1.3. Description of main findings

In our framework, we study and compare the efficiency of various predictive
density estimators such as: (i) plug-in densities Np(θ̂1(X), σ2

Y Ip), which include
the maximum likelihood predictive density estimator q̂mle obtained by taking
θ̂1(X) to be the restricted (i.e., under the constraint θ1 − θ2 ∈ A) maximum
likelihood estimator (mle) of θ1; (ii)minimum risk equivariant (MRE) predictive

density q̂mre; (iii) variance expansions Np(θ̂1(X), cσ2
Y Ip), with c > 1, of plug-in

predictive densities; and (iv) Bayesian predictive densities with an emphasis
on the uniform prior for θ truncated to the information set A. The predictive
mle density q̂mle is a natural benchmark exploiting the additional information,
but not the chosen divergence loss. On the other hand, the predictive density
q̂mre does optimize in accordance to the loss function, but ignores the additional
information. It remains nevertheless of interest as a benchmark and the degrees
attainable by improvements inform us on the value of the additional information
θ1 − θ2 ∈ A. Our findings focus, except for Section 2, on the frequentist risk
performance (3) and related dominance results, for Kullback-Leibler divergence
loss and other Lα losses with −1 ≤ α < 1, as well as for various types of
information sets A. 1

Sections 2 and 3 relate to the Bayesian predictive density q̂πU,A
with respect

to the uniform prior restricted to A. Section 2 presents various representations
for q̂πU,A

, with examples connecting not only to known skewed-normal distribu-
tions, but also to seemingly new families of skewed-normal type distributions.
Section 3 contains Bayesian dominance results for Kullback-Leibler loss. For
p = 1, making use of Section 2’s representations, we show that the Bayes pre-
dictive density q̂πU,A

improves on q̂mre under Kullback-Leibler loss for both
θ1 ≥ θ2 or |θ1 − θ2| ≤ m. For the former case, the dominance result is further
proven in Theorem 3.3 to be robust with respect to various misspecifications of
σ2
1 , σ

2
2 , and σ2

Y .
Subsection 4.1 provides Kullback-Leibler improvements on plug-in densities

by variance expansion. Such variance (or scale) expansions refer toNp(θ̂1, cσ
2
Y Ip)

densities with c > 1, in other words with a greater scale than the target
Np(θ1, σ

2
Y Ip) density. We make use of a technique due to Fourdrinier et al. [17],

which is universal with respect to p and A and requiring a determination, or
lower-bound, of the infimum mean squared error of the plug-in estimator. Such
a determination is facilitated by a mean squared error decomposition (Lemma
4.2) expressed in terms of the risk of a one-population restricted parameter
space estimation problem.

The dominance results of Subsection 4.2 apply to Lα losses and exploit point
estimation duality. The targeted predictive densities to be improved upon in-
clude plug-in densities, q̂mre, and more generally predictive densities of the form
q̂θ̂1,c ∼ Np(θ̂1(X), cσ2

Y Ip). The focus here is on improving on plug-in estimates

θ̂1(X) by exploiting a correspondence with the problem of estimating θ1 under

1We refer to Sadeghkhani [38] for various results pertaining to reverse Kullback-Leibler
divergence loss, which we do not further study here.
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a dual loss. Kullback-Leibler loss leads to dual mean squared error performance.
In turn, as in Marchand and Strawderman [33], the above risk decomposition
relates this performance to a restricted parameter space problem. Results for
such problems are thus borrowable to infer dominance results for the original
predictive density estimation problem. For other α−divergence losses, the strat-
egy is similar, with the added difficulty that the dual loss relates to a reflected
normal loss. But, this is handled through a concave inequality technique (e.g.,
Kubokawa, Marchand and Strawderman [26]) relating risk comparisons to mean
squared error comparisons. Several examples complement the presentation of
Section 4. Finally, numerical illustrations and an application are presented and
commented upon in Section 5.

2. Bayesian predictive density estimators and skewed normal type
distributions

2.1. Bayesian predictive density estimators

We provide here a general representation of the Bayes predictive density es-
timator of the density of Y1 in model (1) associated with a uniform prior on
the additional information set A. Multivariate normal priors truncated to A are
plausible choices that are also conjugate, lead to similar results, but will not
be further considered here. Throughout this manuscript, we denote φ as the
Np(0, Ip) p.d.f., and Φ as the N(0, 1) c.d.f.

Lemma 2.1. Consider model (1) and the Bayes predictive density q̂πU,A
with

respect to the (uniform) prior πU,A(θ) = IA(θ1− θ2) for α-divergence loss Lα in
(2). Then, for −1 ≤ α < 1, we have

q̂πU,A
(y1;x) ∝ q̂mre(y1;x1) I

2
1−α (y1;x) , (4)

with q̂mre(y1;x1) the minimum risk predictive density based on x1 given by

a Np(x1, (σ
2
1
(1−α)

2 + σ2
Y )Ip) density, and I(y1;x) = P(T ∈ A), with T ∼

Np

(
μT , σ

2
T Ip

)
, μT = β(y1 − x1) + (x1 − x2), σ2

T =
2σ2

1σ
2
Y

(1−α)σ2
1+2σ2

Y
+ σ2

2, and

β =
(1−α)σ2

1

(1−α)σ2
1+2σ2

Y
.

Proof. See Appendix.

The general form of the Bayes predictive density estimator q̂πU,A
is thus a

weighted version of q̂mre, with the weight a multivariate normal probability
raised to the 2/(1−α)th power which is a function of y1 and which depends on
x, α,A. Observe that the representation applies in the trivial case A = R

p, yield-
ing I ≡ 1 and q̂mre as the Bayes estimator. As expanded on in Subsection 2.2,
the densities q̂πU,A

for Kullback-Leibler loss relate to skew-normal distributions,
and more generally to skewed distributions arising from selection (see for in-
stance Arnold and Beaver [4]; Arellano-Valle, Branco and Genton [3]; among
others). Moreover, it is known (e.g. Liseo and Loperfido [29]) that posterior
distributions present here also relate to such skew-normal type distributions.
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Lemma 2.1 does not address the evaluation of the normalization constant for
the Bayes predictive density q̂πU,A

, but we now proceed with this for the partic-
ular cases of Kullback-Leibler and Hellinger losses, and more generally for cases
where 2

1−α is a positive integer, i.e., α = 1 − 2
n where n = 1, 2, . . .. In what

follows, we denote 1m as the m dimensional column vector with components
equal to 1, and ⊗ as the usual Kronecker product.

Lemma 2.2. For model (1), α−divergence loss with n = 2
1−α ∈ {1, 2, . . .},

the Bayes predictive density q̂πU,A
(y1;x) , y1 ∈ R

p, with respect to the (uniform)
prior πU,A(θ) = IA(θ1 − θ2), is given by

q̂πU,A
(y1;x) = q̂mre(y1;x1)

{P(T ∈ A)}n
P(∩n

i=1{Zi ∈ A}) , (5)

with q̂mre(y1;x1) a Np(x1, (σ
2
1/n + σ2

Y )Ip) density, T ∼ Np(μT , σ
2
T Ip) with

μT = β(y1 − x1) + (x1 − x2), σ2
T = σ2

2 + nσ2
Y β, β =

σ2
1

σ2
1+nσ2

Y
, and Z =

(Z1, . . . , Zn)
′ ∼ Nnp(μZ ,ΣZ) with μZ = 1n ⊗ (x1 − x2) and ΣZ = (σ2

T +

σ2
Y β

2)Inp + (
β2σ2

1

n 1n1
′
n ⊗ Ip) .

Remark 2.1. The Kullback-Leibler case corresponds to n = 1 and the above
form of the Bayes predictive density simplifies to

q̂πU,A
(y1;x) = q̂mre(y1;x1)

P(T ∈ A)

P(Z1 ∈ A)
, (6)

with q̂mre(y1;x1) a Np(x1, (σ
2
1 + σ2

Y )Ip) density, T ∼ Np(μT , σ
2
T Ip) with μT =

σ2
1

σ2
1+σ2

Y
(y1 − x1) + (x1 − x2) and σ2

T =
σ2
1σ

2
Y

σ2
1+σ2

Y
+ σ2

2, and Z1 ∼ Np(x1 − x2, (σ
2
1 +

σ2
2)Ip). In the univariate case (i.e., p = 1), T is univariate normally distributed,

and the expectation and covariance matrix of Z simplify to 1n(x1 − x2) and

(σ2
T +σ2

Y β
2)In + β2 σ2

1

n 1n1
′
n respectively. Finally, we point out that the diagonal

elements of ΣZ simplify to σ2
1+σ2

2, a result which will arise below several times.

Proof of Lemma 2.2. It suffices to evaluate the normalization constant (say C)
for the predictive density in (4). We have

C =

∫
Rp

q̂mre(y1;x1) {P(T ∈ A)}n dy1

=

∫
Rp

q̂mre(y1;x1)P (∩n
i=1{Ti ∈ A}) dy1 ,

with T1, . . . , Tn independent copies of T . With the change of variables u0 =
y1−x1√
σ2
1/n+σ2

Y

and letting U0, U1, . . . , Un i.i.d. Np(0, Ip), we obtain

C =

∫
Rp

φ(u0)P

(
∩n
i=1{σTUi + βu0

√
σ2
1/n+ σ2

Y + x1 − x2} ∈ A

)
du0

= P

(
∩n
i=1{σTUi + βU0

√
σ2
1/n+ σ2

Y + x1 − x2} ∈ A

)
,

= P (∩n
i=1{Zi ∈ A}) .
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The result follows by verifying that the expectation and covariance matrix of
Z = (Z1, . . . , Zn)

′ are as stated.

We conclude this section on a posterior distribution decomposition and with
an accompanying representation of the posterior expectation E(θ1|x) in terms
of a truncated multivariate normal expectation. The latter coincides with the
expectation under the Bayes Kullback-Leibler predictive density q̂πU,A

.

Lemma 2.3. Consider X|θ as in model (1) and the uniform prior πU,A(θ) =

IA(θ1 − θ2). Set r =
σ2
2

σ2
1
, ω1 = θ1 − θ2, and ω2 = rθ1 + θ2. Then, conditional on

X = x, ω1 and ω2 are independently distributed with

ω1 ∼ Np(μω1 , τ
2
ω1
) truncated to A, ω2 ∼ Np(μω2 , τ

2
ω2
) ,

μω1 = x1 − x2, μω2 = rx1 + x2, τ
2
ω1

= σ2
1 + σ2

2, and τ2ω2
= 2σ2

2 . Furthermore, we
have E(θ1|x) = 1

1+r (E(ω1|x) + μω2).

Proof. With the posterior density π(θ|x) ∝ φ( θ1−x1

σ1
) φ( θ2−x2

σ2
) IA(θ1 − θ2), the

result follows by transforming to (ω1, ω2).

2.2. Examples of Bayesian predictive density estimators

With the presentation of the Bayes predictive estimator q̂πU,A
in Lemmas 2.1

and 2.2, which is quite general with respect to the dimension p, the additional
information set A, and the α−divergence loss, it is pertinent and instructive to
continue with some illustrations. Moreover, various skewed-normal or skewed-
normal type, including new extensions, arise as predictive density estimators.
Such distributions have indeed generated much interest for the last thirty years
or so, and continue to do so, as witnessed by the large literature devoted to their
study. The most familiar choices of α−divergence loss are Kullback-Leibler and
Hellinger (i.e., n = 2

1−α = 1, 2 below) but the form of the Bayes predictive
density estimator q̂πU,A

is nevertheless expanded upon below in the context of
Lemma 2.2, in view of the connections with an extended family of skewed-normal
type distributions (e.g., Definition 2.1), which is also of independent interest.
Subsections 2.2.1, 2.2.2, and 2.2.3. deal with Kullback-Leibler and α−divergence
losses for situations: (i) p = 1, A = R+; (ii) p = 1, A = [−m,m]; and (iii) p ≥ 1
and A a ball of radius m centered at the origin.

2.2.1. Univariate case with θ1 ≥ θ2

From (5), we obtain for p = 1, A = R+: P(T ∈ A) = Φ(μT

σT
) and

q̂πU,A
(y1;x) ∝

1√
σ2
1/n+ σ2

Y

φ(
y1 − x1√
σ2
1/n+ σ2

Y

) Φn(
β(y1 − x1) + (x1 − x2)

σT
) ,

(7)
with β and σ2

T given in Lemma 2.2. These densities are of the following form.
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Definition 2.1. A generalized Balakrishnan type skewed-normal distribution,
with shape parameters n ∈ N+, α0, α1 ∈ R, location and scale parameters ξ ∈ R

and τ ∈ R+, denoted SN(n, α0, α1, ξ, τ), has density on R given by

1

Kn(α0, α1)

1

τ
φ(

t− ξ

τ
) Φn(α0 + α1

t− ξ

τ
) , (8)

with

Kn(α0, α1) = Φn

(
α0√
1 + α2

1

, · · · , α0√
1 + α2

1

; ρ =
α2
1

1 + α2
1

)
, (9)

Φn(·; ρ) representing the cdf of a Nn(0,Λ) distribution with covariance matrix
Λ = (1− ρ) In + ρ 1n1

′
n.

Remark 2.2. (The case n = 1)
SN(1, α0, α1, ξ, τ) densities are given by (8) with n = 1 and K1(α0, α1) =
Φ( α0√

1+α2
1

). Properties of SN(1, α0, α1, ξ, τ) distributions were described by

Arnold et al. [5], as well as Arnold and Beaver [4], with the particular case
α0 = 0 reducing to the original skew normal density, modulo a location-scale
transformation, as presented in Azzalini’s seminal 1985 paper. Namely, the ex-
pectation of T ∼ SN(1, α0, α1, ξ, τ) is given by

E(T ) = ξ + τ
α1√
1 + α2

1

R(
α0√
1 + α2

1

) , (10)

with R =: φ
Φ known as the inverse Mill’s ratio.

Remark 2.3. For α0 = 0, n = 2, 3, . . ., the densities were proposed by Balakr-
ishnan as a discussant of Arnold and Beaver [4], and further analyzed by Gupta
and Gupta [20]. We are not aware of an explicit treatment of such distributions
in the general case, but standard techniques may be used to derive the following
properties. For instance, as handled more generally above in the proof of Lemma
2.2, the normalization constant Kn may be expressed in terms of a multivariate
normal c.d.f. by observing that

Kn(α0, α1) =

∫
R

φ(z)Φn(α0 + α1z) dz

= P(∩n
i=1{Ui ≤ α0 + α1U0})

= P(∩n
i=1{Wi ≤

α0√
1 + α2

1

}) , (11)

with (U0, . . . , Un) ∼ Nn+1(0, In+1), Wi
d
= Ui−α1 U0√

1+α2
1

, for i = 1, . . . , n, and

(W1, . . . ,Wn) ∼ Nn(0,Λ).
In terms of expectation, we have, for T ∼ SN(n, α0, α1, ξ, τ), E(T ) = ξ +

τE(W ) where W ∼ SN(n, α0, α1, 0, 1) and

E(W ) =
nα1√
1 + α2

1

φ(
α0√
1 + α2

1

)
Kn−1(

α0√
1+α2

1

, α1√
1+α2

1

)

Kn(α0, α1)
. (12)
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This can be obtained via Stein’s identity EUg(U) = Eg′(U) for differentiable
g and U ∼ N(0, 1). Indeed, we have

∫
R

uφ(u) Φn(α0 + α1u) du = nα1

∫
R

φ(u)φ(α0 + α1u) Φ
n−1(α0 + α1u) du ,

and the result follows by using the identity φ(u)φ(α0+α1u) = φ( α0√
1+α2

1

)φ(v),

with v =
√

1 + α2
1 u+

α0α1√
1+α2

1

, the change of variables u → v, and the definition

of Kn−1.

The connection between the densities of Definition 2.1 and the predictive
densities in (7) is thus explicitly stated as follows, with the Kullback-Leibler
and Hellinger cases corresponding to n = 1, 2 respectively.

Corollary 2.1. For p = 1, A = R+, πU,A(θ) = IA(θ1−θ2), the Bayes predictive
density estimator q̂πU,A

under α−divergence loss, with n = 2
1−α ∈ N+ positive

integer, is given by a SN(n, α0 = x1−x2

σT
, α1 = βτ

σT
, ξ = x1, τ =

√
σ2
1

n + σ2
Y )

density, with σ2
T = σ2

2 + nβσ2
Y and β =

σ2
1

σ2
1+nσ2

Y
.

Remark 2.4. (a) For the equal variances case with σ2
1 = σ2

2 = σ2
Y = σ2,

the above predictive density estimator is a SN(n, α0 =
√

n+1
(2n+1)σ (x1 −

x2), α1 =
√

1
n(2n+1) , ξ = x1, τ =

√
n+1
n σ) density.

(b) Under the conditions of Corollary 2.1 with A = R− instead, an analogous

calculation yields a SN(n, α0 = x2−x1

σT
, α1 = − βτ

σT
, ξ = x1, τ =

√
σ2
1

n + σ2
Y )

density as the Bayes density q̂πU,A
.

2.2.2. Univariate case with |θ1 − θ2| ≤ m

From (5), we obtain for p = 1, A = [−m,m]: P(T ∈ A) = Φ(μT+m
σT

)−Φ(μT−m
σT

),
and we may write

q̂πU,A
(y1;x) =

1

τ
φ(

t− ξ

τ
)
{Φ(α0 + α1

t−ξ
τ )− Φ(α2 + α1

t−ξ
τ )}n

Jn(α0, α1, α2)
, (13)

with ξ = x1, τ =
√

σ2
1/n+ σ2

Y , α0 = x1−x2+m
σT

, α1 = βτ
σT

α2 = x1−x2−m
σT

, β, μT ,

and σ2
T given in Lemma 2.2, and Jn(α0, α1, α2) (independent of ξ, τ) a special

case of the normalization constant given in (5). For fixed n, the densities in (13)
form a five-parameter family of densities with location and scale parameters
ξ ∈ R and τ ∈ R+, and shape parameters α0, α1, α2 ∈ R such that α0 > α2.
The Kullback-Leibler predictive densities (n = 1) match densities introduced
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by Arnold et al. [5] with the normalization constant in (13) simplifying to:

J1(α0, α1, α2) = Φ(
α0√
1 + α2

1

)− Φ(
α2√
1 + α2

1

)

= Φ(
m− (x1 − x2)√

σ2
1 + σ2

2

)− Φ(
−m− (x1 − x2)√

σ2
1 + σ2

2

) . (14)

The corresponding expectation which is readily obtained as in (10) equals

E(T ) = ξ + τ
α1√
1 + α2

1

φ( α0√
1+α2

1

)− φ( α2√
1+α2

1

)

Φ( α0√
1+α2

1

)− Φ( α2√
1+α2

1

)

= x1 +
σ2
1√

σ2
1 + σ2

2

φ(x1−x2+m√
σ2
1+σ2

2

)− φ(x1−x2−m√
σ2
1+σ2

2

)

Φ(x1−x2+m√
σ2
1+σ2

2

)− Φ(x1−x2−m√
σ2
1+σ2

2

)
, (15)

by using the above values of ξ, τ, α0, α1, α2.
Hellinger loss yields the Bayes predictive density in (13) with n = 2, and a

calculation as in Remark 2.3 leads to the evaluation

J2(α0, α1, α2) = Φ2(α
′
0, α

′
0;α

′
1) + Φ2(α

′
2, α

′
2;α

′
1)− 2Φ2(α

′
0, α

′
2;α

′
1)

with α′
i =

αi√
1+α2

1

for i = 0, 1, 2.

2.2.3. Multivariate case with ||θ1 − θ2|| ≤ m

For p ≥ 1, the ball A = {t ∈ R
p : ||t|| ≤ m}, μT and σ2

T as given in Lemma 13,
the Bayes predictive density in (5) under α−divergence loss with 2

1−α = n ∈ N+

is expressible as

q̂πU,A
∝ q̂mre(y1;x1) {P(||T ||2 ≤ m2)}n

with T ∼ σ2
Tχ

2
p(‖μT ‖2/σ2

T ), i.e., the weight attached to q̂mre is proportional to

the nth power of the c.d.f. of a non-central chi-square distribution. For Kullback-
Leibler loss, we obtain from (5)

q̂πU,A
(y1;x) = q̂mre(y1;x1)

P(||T ||2 ≤ m2)

P(||Z1||2 ≤ m2)

= q̂mre(y1;x1)
Fp,λ1(x,y1)(m

2/σ2
T )

Fp,λ2(x)(m
2/(σ2

1 + σ2
2))

, (16)

where Fp,λ represents the c.d.f. of a χ2
p(λ) distribution, λ1(x, y1) = ‖μT ‖2

σ2
T

=

‖β(y1−x1)+(x1−x2)‖2

σ2
T

; with β =
σ2
1

σ2
1+σ2

Y
, σ2

T = σ2
2+βσ2

Y , and λ2(x) =
‖x1−x2‖2

σ2
1+σ2

2
. Ob-

serve that the non-centrality parameters λ1 and λ2 are random, and themselves

non-central chi-square distributed as λ1(X,Y1) ∼ χ2
p(

||θ1−θ2||2
σ2
T

) and λ2(X) ∼
χ2
p(

||θ1−θ2||2
σ2
1+σ2

2
). Of course, the above predictive density (16) matches the Kullback-

Leibler predictive density given in (13) for n = 1, and represents an otherwise
interesting multivariate extension.
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3. Bayesian dominance results

We focus here on Bayesian improvements for Kullback-Leibler divergence loss of
the benchmark minimum risk equivariant predictive density. We establish that
the uniform Bayes predictive density estimator q̂πU,A

dominates q̂mre for the
univariate cases where θ1 − θ2 is either restricted to a compact interval, lower-
bounded, or upper-bounded. We also investigate situations where the variances
of model (1) are misspecified, but where the dominance persists. There is no
loss in generality in taking A = [−m,m] in the former case, and A = [0,∞) for
the latter two cases. We begin with the lower bounded case.

Theorem 3.1. Consider model (1) with p = 1 and A = [0,∞). For estimating
the density of Y1 under Kullback-Leibler loss, the Bayes predictive density q̂πU,A

dominates the minimum risk equivariant predictive density estimator q̂mre. The
Kullback-Leibler risks are equal iff θ1 = θ2.

Proof. Making use of Corollary 2.1’s representation of q̂πU,A
, the difference in

risks is given by

Δ(θ) = RKL(θ, q̂mre)−RKL(θ, q̂πU,A
)

= E
X,Y1 log

(
q̂πU,A

(Y1;X)

q̂mre(Y1;X)

)

= E
X,Y1 log

(
Φ(α0 + α1

Y1 −X1

τ
)

)
− E

X,Y1 log

(
Φ(

α0√
1 + α2

)

)
(17)

with α0 = X1−X2

σT
, α1 = βτ

σT
, τ =

√
σ2
1 + σ2

Y , β =
σ2
1

σ2
1+σ2

Y
, and σ2

T = σ2
2 + βσ2

Y .

Now, observe that

α0 + α1
Y1 −X1

τ
=

X1 −X2 + β(Y1 −X1)

σT
∼ N(

θ1 − θ2
σT

, 1) , (18)

and
α0√
1 + α2

1

=
X1 −X2√
σ2
1 + σ2

2

∼ N(
θ1 − θ2√
σ2
1 + σ2

2

, 1) . (19)

We thus can write
Δ(θ) = EG(Z) ,

with G(Z) = log Φ(Z +
θ1 − θ2
σT

)− log Φ(Z +
θ1 − θ2√
σ2
1 + σ2

2

) , Z ∼ N(0, 1) .

With θ1 − θ2 ≥ 0 and σ2
T < σ2

1 + σ2
2 , we infer that Pθ(G(Z) ≥ 0) = 1 and

Δ(θ) ≥ 0 for all θ such that |θ1 − θ2| ≤ m, with equality iff θ1 − θ2 = 0.

We now obtain an analogue dominance result in the univariate case for the
additional information θ1 − θ2 ∈ [−m,m].

Theorem 3.2. Consider model (1) with p = 1 and A = [−m,m]. For estimating
the density of Y1 under Kullback-Leibler loss, the Bayes predictive density q̂πU,A

(strictly) dominates the minimum risk equivariant predictive density estimator
q̂mre.
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Proof. Making use of (13) and (14) for the representation of q̂πU,A
, the difference

in risks is given by

Δ(θ) = RKL(θ, q̂mre)−RKL(θ, q̂πU,A
)

= E
X,Y1 log

(
q̂πU,A

(Y1;X)

q̂mre(Y1;X)

)

= E
X,Y1 log

(
Φ(α0 + α1

Y1 −X1

τ
)− Φ(α2 + α1

Y1 −X1

τ
)

)

− E
X,Y1 log

(
Φ(

α0√
1 + α2

1

)− Φ(
α2√
1 + α2

1

)

)

with the αi’s given in Section 2.2. Now, observe that

α0 + α1
Y1 −X1

τ
=

m+X1 −X2 + β(Y1 −X1)

σT
∼ N(δ0 =

m+ θ1 − θ2
σT

, 1) ,

(20)
and

α0√
1 + α2

1

=
m+ (X1 −X2)√

σ2
1 + σ2

2

∼ N(δ′0 =
m+ θ1 − θ2√

σ2
1 + σ2

2

, 1) . (21)

Similarly, we have α2+α1
Y1−X1

τ ∼ N(δ2 = −m+θ1−θ2
σT

, 1) and α2√
1+α2

1

∼ N(δ′2 =

−m+θ1−θ2√
σ2
1+σ2

2

, 1). We thus can write for Z ∼ N(0, 1)

Δ(θ) = EH(Z) ,

with H(Z) = log (Φ(Z + δ0)− Φ(Z + δ2)) − log (Φ(Z + δ′0)− Φ(Z + δ′2)) .

With −m ≤ θ1 − θ2 ≤ m and σ2
T < σ2

1 + σ2
2 , we infer that δ0 ≥ δ′0 with

equality iff θ1 − θ2 = −m and δ2 ≤ δ′2 with equality iff θ1 − θ2 = m, so that
Pθ(H(Z) > 0) = 1 and Δ(θ) > 0 for all θ such that |θ1 − θ2| ≤ m.

We now investigate situations where the variances in model (1) are misspec-
ified. To this end, we consider σ2

1 , σ
2
2 and σ2

Y as the nominal variances used to
construct the predictive density estimates q̂πU,A

and q̂mre, while the true vari-
ances, used to assess frequentist Kullback-Leibler risk, are, unbeknownst to the
investigator, given by a21σ

2
1 , a

2
2σ

2
2 and a2Y σ

2
Y respectively. We exhibit, below in

Theorem 3.3, many combinations of the nominal and true variances such that
the Theorem 3.1’s dominance result persists. Such conditions for the dominance
to persist includes the case of equal a21, a

2
2 and a2Y (i.e., the three ratios true

variance over nominal variance are the same), among others.
We require the following intermediate result.

Lemma 3.1. Let U ∼ N(μU , σ
2
U ) and V ∼ N(μV , σ

2
V ) with μU ≥ μV and

σ2
U ≤ σ2

V . Let H be a differentiable function such that both H and −H ′ are
increasing. Then, we have EH(U) ≥ EH(V ).
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Proof. Suppose without loss of generality that μV = 0, and set s = σU

σV
. Since

U and μU + sV share the same distribution and μU ≥ 0, we have:

EH(U) = EH(μU + sV )

≥ EH(sV )

=

∫
R+

(H(sv) +H(−sv))
1

σV
φ(

v

σV
) dv .

Differentiating with respect to s, we obtain

d

ds
EH(sV ) =

∫
R+

v (H ′(sv)−H ′(−sv))
1

σV
φ(

v

σV
) dv ≤ 0

since H ′ is decreasing. We thus conclude that

EH(U) ≥ EH(sV ) ≥ EH(V ) ,

since s ≤ 1 and H is increasing by assumption.

Theorem 3.3. Consider model (1) with p = 1 and A = [0,∞). Suppose that
the variances are misspecified and that the true variances are given by V(X1) =
a21σ

2
1 ,V(X2) = a22σ

2
2 ,V(Y1) = a2Y σ

2
Y . For estimating the density of Y1 under

Kullback-Leibler loss, the Bayes predictive density q̂πU,A
dominates the minimum

risk equivariant predictive density q̂mre whenever σ2
U ≤ σ2

V with

σ2
U =

a22σ
2
2 + (1− β)2a21σ

2
1 + β2a2Y σ

2
Y

σ2
2 + βσ2

Y

, σ2
V =

a21σ
2
1 + a22σ

2
2

σ2
1 + σ2

2

, β =
σ2
1

σ2
1 + σ2

Y

.

(22)
In particular, dominance occurs for cases : (i) a21 = a22 = a2Y , (ii) a

2
Y ≤ a21 = a22,

(iii) σ2
1 = σ2

2 = σ2
Y and

a2
2+a2

Y

2 ≤ a21.

Remark 3.1. Conditions (i), (ii) and (iii) are quite informative. One common
factor for the dominance to persist, especially seen by (iii), is for the variance
of X1 to be relatively large compared to the variances of X2 and Y1.

Proof. Particular cases (i), (ii), (iii) follow easily from (22). To establish con-
dition (22), we prove, as in Theorem 3.1, that Δ(θ) given in (17) is greater or
equal to zero. We apply Lemma 3.1, with H ≡ log Φ increasing and concave as
required, showing that E log(Φ(U)) ≥ E log(Φ(V )) with U = α0 + α1

Y1−X1

τ ∼
N(μU , σ

2
U ) and V = α0√

1+α2
1

∼ N(μV , σ
2
V ). Since μU = θ1−θ2

σT
> θ1−θ2√

σ2
1+σ2

2

= μV ,

the inequality σ2
U ≤ σ2

V will suffice to have dominance. Finally, the proof is com-
plete by checking that σ2

U and σ2
V are as given in (22), when the true variances

are given by V(X1) = a21σ
2
1 ,V(X2) = a22σ

2
2 ,V(Y1) = a2Y σ

2
Y .

Remark 3.2. In opposition to the above robustness analysis, the dominance
property of q̂πU,A

versus q̂mre for the restriction θ1 − θ2 ≥ 0 does not persist for
parameter space values such that θ1 − θ2 < 0, i.e., the additional information
difference is misspecified. In fact, it is easy to see following the proof of Theorem
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3.1 that RKL(θ, q̂mre) − RKL(θ, q̂πU,A
) < 0 for θ’s such that θ1 − θ2 < 0. A

potential protection is to use the predictive density estimator q̂πU,A′ with A′ =
[ε,∞), ε < 0, and with dominance occurring for all θ such that θ1 − θ2 ≥ ε
(Remark 1.1 and Theorem 3.1).

4. Further dominance results

We exploit different channels to obtain predictive density estimation improve-
ments on benchmark procedures such as the maximum likelihood predictive
density q̂mle and the minimum risk equivariant predictive density q̂mre. These
predictive densities are members of the broader class of densities

qθ̂1,c ∼ Np(θ̂1(X), cσ2
Y Ip) , (23)

with, for instance, the choice θ̂1(X) = θ̂
1,mle(X), c = 1 yielding q̂mle, and

θ̂1(X) = X, c = 1 +
(1−α)σ2

1

2σ2
Y

yielding q̂mre for loss Lα. In opposition to the

previous section, our analysis and findings apply to all α−divergence losses
with −1 ≤ α < 1.

Two main strategies are exploited to produce improvements: (A) scale ex-
pansion and (B) point estimation duality.

(A) Plug–in predictive densities qθ̂1,1 were shown in Fourdrinier et al. [17],
in models where X2 is not observed and for Kullback-Leibler loss, to be
universally deficient and improved upon uniformly in terms of risk by a
subclass of scale expansion variants qθ̂1,c with c− 1 positive and bounded
above by a constant depending on the infimum mean squared error of
θ̂1. An adaptation of their result leads to dominating predictive densities
of q̂mle, as well as other plug–in predictive densities which exploit the
additional information θ1−θ2 ∈ A, in terms of Kullback-Leibler risk. This
is expanded upon in Subsection 4.1.

(B) By duality, we mean that the frequentist risk performance of a predic-
tive density qθ̂1,c is equivalent to the point estimation frequentist risk

of θ̂1 in estimating θ1 under an associated dual loss (e.g., Robert [36]).
For Kullback-Leibler risk, the dual loss is squared error (Lemma 4.3) and
our problem connects to the problem of estimating θ1 with θ1 − θ2 ∈ A
based on model (1). In turn, as expanded upon in Marchand and Straw-
derman [33], improvements for the latter problem can be generated by
improvements for a related restricted parameter space problem. Findings
for α−divergence loss with α ∈ (−1, 1) are also obtained by exploiting a
dual relationship with reflected normal loss. Details and illustrations are
provided in Subsection 4.2.

4.1. Improvements by variance expansion

For Kullback-Leibler divergence loss, improvements on plug–in predictive den-
sities by variance expansion stem from the following result.
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Lemma 4.1. Consider model (1) with θ1 − θ2 ∈ A, a given estimator θ̂1 of
θ1, and the problem of estimating the density of Y1 under Kullback-Leibler loss
by a predictive density estimator qθ̂1,c as in (23). Let R = infθ{Eθ[‖θ̂1(X) −
θ1‖2]}/(pσ2

Y ), where the infimum is taken over the parameter space, i.e. {θ ∈
R

2p : θ1 − θ2 ∈ A}, and suppose that R > 0.

(a) Then, qθ̂1,1 is inadmissible and dominated by qθ̂1,c for 1 < c < c0(1 + R),

with c0(s), for s > 1, the root c ∈ (s,∞) of Gs(c) = (1− 1/c) s− log c.

(b) Furthermore, we have s2 < c0(s) < es for all s > 1, and lims→∞
c0(s)
es = 1.

Proof. See Appendix.

Remark 4.1. Part (b) above is indicative of the large allowance in the degree
of expansion that leads to improvement on the plug–in procedure. A minimal
complete subclass of predictive densities qθ̂1,c is given by the values c ∈ [1 +

R, 1 + R], with R = supθ{Eθ[‖θ̂1(X) − θ1‖2]}/(pσ2
Y ), where the supremum is

taken over the restricted parameter space, i.e., θ1 − θ2 ∈ A (see Fourdrinier
[17], Remark 5.1).

The above result is, along with Theorem 4.1 below, universal with respect to
the choice of the plug-in estimator θ̂1, the dimension p and the constraint set
A. We will otherwise focus below on the plug-in maximum likelihood predictive
density q̂mle, and the next result will be useful. Its first part presents a decom-

position of θ̂1,mle, while the second and third parts relate to a squared error risk
decomposition of estimators given by Marchand and Strawderman [33].

Lemma 4.2. Consider the problem of estimating θ1 in model (1) with θ1−θ2 ∈
A and based on X. Set r = σ2

2/σ
2
1, μ1 = (θ1−θ2)/(1+r), μ2 = (rθ1+θ2)/(1+r),

W1 = (X1 −X2)/(1 + r),W2 = (rX1 +X2)/(1 + r), and consider the subclass
of estimators of θ1

C = {δψ : δψ(W1,W2) = W2 + ψ(W1)} . (24)

Then,

(a) The maximum likelihood estimator (mle) of θ1 is a member of C with
ψ(W1) the mle of μ1 based on W1 ∼ Np(μ1, σ

2
1/(1+r)Ip) and (1+r)μ1 ∈ A;

(b) The frequentist risk under squared error loss ‖δ − θ1‖2 of an estimator
δψ ∈ C is equal to

R(θ, δψ) = Eμ1 [‖ψ(W1)− μ1‖2] +
pσ2

2

1 + r
; (1 + r)μ1 ∈ A; (25)

(c) Under squared error loss, the estimator δψ1 dominates δψ2 iff ψ1(W1) dom-
inates ψ2(W1) as an estimator of μ1 under loss ‖ψ − μ1‖2 and the con-
straint (1 + r)μ1 ∈ A.

Proof. Part (c) follows immediately from part (b). Part (b) follows since

R(θ, δψ) = Eθ

[
‖W2 + ψ(W1)− θ1‖2

]
= Eθ

[
‖ψ(W1)− μ1‖2

]
+ Eθ

[
‖W2 − μ2‖2

]
,
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yielding (25) given that W1 and W2 are independently distributed with W2 ∼
Np(μ2, (σ

2
2/(1 + r))Ip). Similarly, for part (a), we have θ̂1,mle = μ̂1,mle + μ̂2,mle

with μ̂2,mle(W1,W2) = W2. Finally, since W1 and W2 are independent, the
estimator μ̂1,mle(W1,W2) depends only on W1 ∼ Np(μ1, (σ

2
1/(1 + r))Ip).

Combining Lemmas 4.1 and 4.2, we obtain the following.

Theorem 4.1. Lemma 4.1 applies to plug-in predictive densities qδψ,1 ∼
Np(δψ, σ

2
Y Ip) with δψ ∈ C, as defined in (24), and

R =
1

σ2
Y

(
σ2
1σ

2
2

σ2
1 + σ2

2

+
1

p
inf
μ1

E[‖ψ(W1)− μ1‖2]
)

. (26)

Namely, qδψ,c ∼ Np(δψ, cσ
2
Y Ip) dominates qδψ,1 for 1 < c < c0(1+R). Moreover,

we have c0(1 + R) ≥ (1 + R)2 ≥ (1 + 1
σ2
Y

σ2
1σ

2
2

σ2
1+σ2

2
)2 . Finally, the above applies to

the maximum likelihood predictive density

q̂mle ∼ Np(θ̂1,mle, σ
2
Y Ip) , with θ̂1,mle(X) = W2 + μ̂1,mle(W1) , (27)

and

R =
1

σ2
Y

(
σ2
1σ

2
2

σ2
1 + σ2

2

+
1

p
inf
μ1

E[‖μ̂1,mle(W1)− μ1‖2]
)

, (28)

where μ̂1,mle(W1) the mle of μ1 based on W1 ∼ Np(μ1, (σ
2
1/(1+r))Ip) and under

the restriction (1 + r)μ1 ∈ A.

We pursue with a pair of examples. With the above dominance result quite
general, one further issue is the determination of R in (26). An analytical as-
sessment is a challenge in general, but the univariate order restriction case leads
to an explicit solution as detailed upon in Example 4.1. Otherwise a numeri-
cal evaluation of (26) is quite feasible and such a strategy is illustrated with
Example 4.2.

Example 4.1. (Univariate case with θ1 ≥ θ2)
Consider model (1) with p = 1 and A = [0,∞). The maximum likelihood pre-
dictive density q̂mle is given by (27) with μ̂1,mle(W1) = max(0,W1). The mean

squared error of θ̂1,mle(X) may be derived from (25) and equals

R(θ, θ̂1,mle) = Eμ1 [ |μ̂1,mle(W1)− μ1|2] +
σ2
2

1 + r
, μ1 ≥ 0.

A standard calculation for the mle of a non-negative normal mean based on
W1 ∼ N

(
μ1, σ

2
W1

= σ2
1/(1 + r)

)
yields the expression

Eμ1 [ |μ̂1,mle(W1)− μ1|2] = μ2
1 Φ(−

μ1

σW1

) +

∫ ∞

0

(w1 − μ1)
2 φ(

w1 − μ1

σW1

)
dw1

σW1

= σ2
W1

{
1

2
+ ρ2Φ(−ρ) +

∫ ρ

0

t2 φ(t) dt

}
,
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with the change of variables t = (w1 − μ1)/σW1 , and setting ρ = μ1/σW1 .
Furthermore, the above risk increases in μ1, as

d
dρ

{
ρ2Φ(−ρ) +

∫ ρ

0
t2 φ(t) dt

}
=

2ρΦ(−ρ) > 0 for ρ > 0, ranging from a minimum value of σ2
W1

/2 to a supremum
value of σ2

W1
. Theorem 4.1 thus applies with

R =
1

σ2
Y

(
σ2
1σ

2
2

σ2
1 + σ2

2

+
σ2
W1

2
) =

σ2
1

σ2
Y (σ

2
1 + σ2

2)
(σ2

2 + σ2
1/2) .

Similarly, Remark 4.1 applies with R = σ2
1/σ

2
Y .

As a specific illustration of Theorem 4.1 and Remark 4.1, consider the equal
variances case with σ2

1 = σ2
2 = σ2

Y for which the above yields R = 3/4, R = 1
and for which we can infer that:

(a) qθ̂1,mle,c
dominates q̂mle under Kullback-Leibler loss for 1 < c < c0(7/4) ≈

3.48066;
(b) A minimal complete subclass among the qθ̂1,mle,c

’s is given by the choices

c ∈ [1 +R, 1 +R] = [7/4, 2].

Example 4.2. Here is a further illustration of the dominance results in a mul-
tivariate setting for Y1. Consider X,Y1 as distributed as in (1) with p = 3, σ2

1 =
1, σ2

2 = 2, σ2
Y = 1. Further suppose that we can stipulate as additional informa-

tion that ‖θ1− θ2‖ ≤ m for some known m. We apply Lemma 4.2 and Theorem
4.1 to obtain improvements to the maximum likelihood predictive density

q̂mle ∼ N3(θ̂1,mle(X), I3) .

From Lemma 4.2, we have for W2 = X1+2X2

3 and W1 = 2(X1−X2)
3 :

θ̂1,mle(X1, X2) = W2 + ψmle(W1) ,

with ψmle(W1) = min{ 2m
3 , ‖W1‖} W1

‖W1‖ (e.g., Marchand and Perron [32]) the

mle of μ1 = 2(θ1−θ2)
3 based on W1 ∼ N3(μ1,

2
3I3) and the parametric restriction

‖μ1‖ ≤ 2m
3 .

Theorem 4.1 tells us that variance expansion variants qθ̂1,mle,c
∼

N3(θ̂1,mle(X), cI3) dominate q̂mle for Kullback-Leibler loss and for ‖θ1−θ2‖ ≤ m
as long as 1 < c ≤ c0(1 +R), with

R =
1

3

(
1 + inf

μ1

E[‖[ψmle(W1)− μ1‖2]
)

;

with the infimum taken over {μ1 ∈ R
3 : ‖μ1‖ ≤ 2m

3 }. Taking m = 2, a numerical

evaluation tells us that R ≈ 0.672 and R ≈ 0.763 (Lemma 4.1)). The dominance
of qθ̂1,mle,c

over q̂mle will thus occur for 1 < c ≤ c0(1 +R) ≈ 3.108. But, among

these choices of variance expansion, only c ∈ [1 + R, 1 + R] ≈ [1.672, 1.763]
are admissible (Remark 4.1). Figure 1 reproduces the Kullback-Leibler risks of
q̂mre, q̂mle and qθ̂1,mle,c

for c = 1.672 and c = 2, as a function of ‖μ1‖ =
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Fig 1. Kullback-Leibler risks, as a function of λ = ‖μ1‖ ∈ [0, 4/3] of q̂mre (brown), qθ̂1,mle,c

for c = 1 (green), c = 2 (blue), c = 1.672 ≈ 1 +R (red), for p = 3, σ2
1 = σ2

2 = 0.5, σ2
Y = 1

2
3‖θ1 − θ2‖ ∈ [0, 4/3]. The dominance of the two variance expansions densities
qθ̂1,mle,c

is clear and impressive, with gains of between 31% and 34%, or so,

of qθ̂1,mle,1.672
over q̂mle. The complete subclass result is also illustrated with

the slight ordering between the two variance expansion densities. The density
q̂mre ∼ N3(X1, 2I3) ignores the additional information on the means (A), but
does incorporate an expansion of variance (B). As seen by the comparison with
q̂mle, which does the opposite, the latter quality (A) compensates to a significant
extent for the former deficiency (B). Supplementary details on the computation
of the Kullback-Leibler risks and the mean squared error of ψmle are provided
in the Appendix (see in particular expressions (31) and (35)).

4.2. Improvements through duality

We consider again here predictive density estimators qθ̂1,c, as in (23), but focus

rather on the role of the plugged-in estimator θ̂1. We seek improvements on
benchmark choices such as q̂mre, and plug–in predictive densities with c = 1.
We begin with the Kullback-Leibler case which relates to squared error loss.

Lemma 4.3. For model (1), the frequentist risk of the predictive density estima-
tor qθ̂1,c of the density of Y1, under Kullback-Leibler divergence loss, is dual to

the frequentist risk of θ̂1(X) for estimating θ1 under squared error loss ‖θ̂1−θ1‖2.
Namely, qθ̂1,A,c dominates qθ̂1,B ,c under loss Lα iff θ̂1,A(X) dominates θ̂1,B(X)

under squared error loss.

Proof. See for instance Fourdrinier [17].

As exploited by Ghosh, Mergel and Datta [19], and also more recently by
Marchand, Perron and Yadegari [31], for other α−divergence losses, it is reflected
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normal loss which is dual for plug–in predictive density estimators, as well as
scale expansions in (23).

Lemma 4.4. (Duality between α−divergence and reflected normal losses)
For model (1), the frequentist risk of the predictive density estimator qθ̂1,c of the

density of Y1 under α−divergence loss (2), with |α| < 1, is dual to the frequentist

risk of θ̂1(X) for estimating θ1 under reflected normal loss

Lγ0(θ1, θ̂1) = 1− e−‖θ̂1−θ1‖2/2γ0 , (29)

with γ0 = 2 ( c
1+α + 1

1−α )σ
2
Y . Namely, qθ̂1,A,c dominates qθ̂1,B ,c under loss Lα iff

θ̂1,A(X) dominates θ̂1,B(X) under loss Lγ0 as above.

Proof. See for instance Ghosh, Mergel and Datta [19].

Remark 4.2. Observe that limγ0→∞ 2γ0 Lγ0(θ1, θ̂1) = ‖θ̂1 − θ1‖2, so that the
point estimation performance of θ1 under reflected normal loss Lγ0 should be
expected to match that of squared error loss when γ0 → ∞. In view of Lemma
4.3 and Lemma 4.4, this in turn suggests that the α−divergence performance of
q̂θ̂1,c will match that of Kullback-Leibler when taking α → −1. Finally, we point

out that the boundedness nature of the loss in (29) stands out in contrast to KL
loss and its dual unbounded squared-error loss.

Now, pairing Lemma 4.3 and Lemma 4.2 leads immediately to the following
general dominance result for Kullback-Leibler loss.

Theorem 4.2. Consider model (1) with θ1 − θ2 ∈ A and the problem of es-
timating the density of Y1 under Kullback-Leibler loss. Set r = σ2

2/σ
2
1, W1 =

(X1−X2)/(1+ r),W2 = (rX1+X2)/(1+ r), μ1 = (θ1− θ2)/(1+ r), and further
consider the subclass of predictive densities qδψ,c, as in (23) for fixed c, with δψ
an estimator of θ1 of the form δψ(W1,W2) = W2 + ψ(W1). Then, qδψA

,c dom-
inates qδψB

,c if and only if ψA dominates ψB as an estimator of μ1 under loss

‖ψ−μ1‖2, for W1 ∼ Np(μ1,
σ2
1

1+r Ip) and the parametric restriction (1+r)μ1 ∈ A.

Proof. The result follows from Lemma 4.3 and Lemma 4.2.

The above result connects three problems, namely:

(I) the efficiency of qδψ,c under KL loss as a predictive density for Y1 with the
additional information θ1 − θ2 ∈ A;

(II) the efficiency of δψ(X) as an estimator of θ1 under squared error loss
‖δψ − θ1‖2 with the additional information θ1 − θ2 ∈ A;

(III) the efficiency of ψ(W1) for W1 ∼ Np(μ1, σ
2
1/(1 + r)Ip) as an estimator

of μ1 under squared error loss ‖ψ − μ1‖2 with the parametric restriction
(1 + r)μ1 ∈ A.

Previous authors (Blumenthal and Cohen [8]; Cohen and Sackrowitz [12]; van
Eeden and Zidek [43, 44], for p = 1; Marchand and Strawderman [33], for p ≥ 1)
have exploited the (II)-(III) connection (i.e., Lemma 4.2) to obtain findings for
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problem (II) based on restricted parameter space findings for (III). The above
Theorem further exploits connections (I)-(II) (i.e., Lemma 4.3) and permits one
to derive findings for predictive density estimation problem (I) from restricted
parameter space findings for (III). An example, which will also be illustrative
of α−divergence results, is provided below at the end of this section.

For other α−divergence losses, the above scheme is not immediately available
for the dual reflected normal loss since Lemma 4.2 is intimately linked to squared
error loss. However, the following slight extension of a result due to Kubokawa,
Marchand and Strawderman [26], exploiting a concave loss technique dating
back to Brandwein and Strawderman [9], permits us to connect reflected normal
loss to squared error loss, and consequently the efficiency of predictive densities
under α-divergence loss to point estimation in restricted parameter spaces as in
(III) above. The proof of the next Lemma is omitted, but is quite analogous to
that given by Kubokawa, Marchand and Strawderman [26].

Lemma 4.5. Consider model (1) and the problem of estimating θ1 based on
X, with θ1 − θ2 ∈ A and reflected normal loss as in (29) with |α| < 1. Then

θ̂1(X) dominates X1 whenever θ̂1(Z) dominates Z1 as an estimate of θ1, under

squared error loss ‖θ̂1 − θ1‖2, with θ1 − θ2 ∈ A, for the model

Z =

(
Z1

Z2

)
∼ N2p

(
θ =

(
θ1
θ2

)
, ΣZ =

( σ2
Z1

Ip 0

0 σ2
2Ip

))
, (30)

with σ2
Z1

=
γσ2

1

γ+σ2
1
.

Theorem 4.3. Consider model (1) with θ1 − θ2 ∈ A and the problem of esti-
mating the density of Y1 under α−divergence loss with |α| < 1. Set r = σ2

2/σ
2
1,

W1 = (X1 −X2)/(1 + r),W2 = (rX1 +X2)/(1 + r), μ1 = (θ1 − θ2)/(1 + r), and
further consider the subclass of predictive densities qδψ,c, as in (23) for fixed c,
with δψ an estimator of θ1 of the form δψ(W1,W2) = W2+ψ(W1). Then, qδψA

,c

dominates qδψB
,c as long as ψA dominates ψB as an estimator of μ1 under loss

‖ψ − μ1‖2, for W1 ∼ Np(μ1,
σ2
Z1

1+r Ip), the parametric restriction (1 + r)μ1 ∈ A,

and σ2
Z1

=
{(1+α)+c(1−α)}σ2

1

{(1+α)+c(1−α)}+(1−α2)σ2
1/(2σ

2
Y )

.

Proof. The result follows from Lemma 4.4 and its dual reflected normal loss

Lγ0 , the use of Lemma 4.5 applied to σ2
Z1

=
γ0σ

2
1

γ0+σ2
1
, and an application of part

(c) of Lemma 4.2 to Z as distributed in (30).

As for Kullback-Leibler loss, the above α− divergence result connects several
problems, analogous to (I), (II), and (III), and additionally

(IB) the efficiency of δψ(X) as an estimator of θ1 under reflected normal loss Lγ0

with γ0 = 2 ( c
1+α + 1

1−α )σ
2
Y with the additional information θ1 − θ2 ∈ A.

Here is an illustration.

Example 4.3. Here is an illustration of both Theorems 4.2 and 4.3. Consider
model (1) with A a convex set with a non-empty interior, and α−divergence
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loss (−1 ≤ α < 1) for assessing a predictive density for Y1. Further con-
sider the minimum risk predictive density q̂mre as a benchmark procedure, which
is of the form qδψB

as in Theorem 4.3 with δψB
∈ C, ψB(W1) = W1 and

c = cmre = 1 + (1 − α)σ2
1/(2σ

2
Y ). Now consider the Bayes estimator ψU (W1)

under squared error loss of μ1 associated with a uniform prior on the restricted

parameter space (1 + r)μ1 ∈ A, for W1 ∼ Np((μ1,
σ2
Z1

1+r Ip) as in Theorem 4.3.
It follows from Hartigan’s theorem (Hartigan [21]; Marchand and Strawderman
[33]) that ψA(W1) ≡ ψU (W1) dominates ψB(W1) under loss ‖ψ − μ1‖2 and
for (1 + r)μ1 ∈ A. It thus follows from Theorem 4.3 that the predictive den-
sity Np(δψB

(X), ( 1−α
2 σ2

1+σ2
Y )Ip) dominates q̂mre under α−divergence loss with

δψB
(X) = rX1+X2

1+r + ψU (
X1−X2

1+r ). The dominance result is unified with respect
to α ∈ [−1, 1), the dimension p, and the set A.

We conclude this section with an adaptive two-step strategy, building on
both variance expansion and improvements through duality, to optimise poten-
tial Kullback-Leibler improvements on q̂mle ∼ Np(θ̂1,mle, σ

2
Y Ip), in cases where

point estimation improvements on θ̂1,mle(X) under squared error loss are readily
available.

(I) Select an estimator δ∗ which dominates θ̂1,mle under squared error loss.
This may be achieved via part (c) of Lemma 4.2 resulting in a dominating
estimator of the form δ∗(X) = W2 + ψ∗(W1) = (rX1 + X2)/(1 + r) +
ψ∗((X1−X2)/(1+r)) where ψ∗(W1) dominates μ̂1,mle(W1) as an estimator
of μ1 under squared error loss and the restriction (1 + r)μ1 ∈ A.

(II) Now, with the plug-in predictive density estimator qδ∗,1 dominating q̂mle,
further improve qδ∗,1 by a variance expanded qδ∗,c. Suitable choices of c are
prescribed by Theorem 4.1 and given by c0(1 +R), with R given in (26).
The evaluation of R hinges on the infimum risk infμ1 E[‖ψ∗(W1)− μ1‖2],
and such a quantity can be either estimated by simulation, derived in some
cases analytically, or safely underestimated by 0.

Examples where the above can be applied include the cases: (i) A = [0,∞)
with the use of Shao and Strawderman’s [39] dominating estimators, and (ii)
A the ball of radius m centered at the origin with the use of Marchand and
Perron’s [32] dominating estimators.

5. Further examples and illustrations

We present and comment numerical evaluations of Kullback-Leibler risks in the
univariate case for both θ1 ≥ θ2 (Figures 2, 3) and |θ1 − θ2| ≤ m,m = 1, 2.
(Figures 4, 5). Each of the figures consists of plots of risk ratios, as functions of
Δ = θ1 − θ2 with the benchmark q̂mre as the reference point. The variances are
set equal to 1, except for Figure 3 which highlights the effect of varying σ2

2 .
Figure 2 illustrates the effectiveness of variance expansion (Theorem 4.1), as

well as the dominance finding of Theorem 3.1. More precisely, the Figure relates
to Example 4.1 where q̂mle is improved by the variance expansion version q̂mle,2,
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Fig 2. Kullback-Leibler risk ratios for p = 1, A = [0,∞), and σ2
1 = σ2

2 = σ2
Y = 1

Fig 3. Kullback-Leibler risk ratios for p = 1, A = [0,∞), σ2
1 = σ2

Y = 1 and σ2
2 = 1, 2, 4

which belongs both to the subclass of dominating densities q̂mle,c as well as to
the complete subclass of such predictive densities. The gains are impressive
ranging from a minimum of about 8% at Δ = 0 to a supremum value of about
44% for Δ → ∞. Moreover, the predictive density q̂mle,2 also dominates q̂mre by
duality, but the gains are more modest. Interestingly, the penalty of failing to
expand is more severe than the penalty for using an inefficient plug-in estimator
of the mean. In accordance with Theorem 3.1, the Bayes predictive density q̂πU,A

improves uniformly on q̂mre except at Δ = 0 where the risks are equal. As well,
q̂πU,A

compares well to q̂mle,2, except for small Δ, with R(θ, q̂mle,2) ≤ R(θ, q̂πU,A
)

if and only if Δ ≤ Δ0 with Δ0 ≈ 0.76.
Figure 3 compares the efficiency of the predictive densities q̂πU,A

and q̂mre

for varying σ2
2 . Smaller values of σ2

2 represent more precise estimation of θ2 and
translates to a tendency for the gains offered by q̂πU,A

to be greater for smaller
σ2
2 ; but the situation is slightly reversed for larger Δ.
Figures 4 and 5 compare the same estimators as in Figure 2, but they are

adapted to the restriction to compact interval. Several of the features of Figure 2
are reproduced with the noticeable inefficiency of q̂mle compared to both q̂mle,2

and q̂πU,A
. For the larger parameter space (i.e. m = 2), even q̂mre outperforms

q̂mle as illustrated by Figure 5, but the situation is reversed for m = 1 where the
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Fig 4. Kullback-Leibler risk ratios for p = 1, A = [−1, 1], and σ2
1 = σ2

2 = σ2
Y = 1

Fig 5. Kullback-Leibler risk ratios for p = 1, A = [−2, 2], and σ2
1 = σ2

2 = σ2
Y = 1

efficiency of better point maximum likelihood estimates plays a more important
role. The Bayes performs well, dominating q̂mre in accordance with Theorem
3.2, especially for small of moderate Δ, and even improving on q̂mle,2 for m = 1.
Finally, we have extended the plots outside the parameter space which is useful
for assessing performance for slightly incorrect specifications of the additional
information.

We conclude with an application.

Example 5.1. We consider data presented in Silvapulle and Sen [40] and orig-
inating in Zelazo, Zelazo and Kolb [46]. The data consists of ages (in months)
of infants for walking alone and divided into active-exercise and passive-exercise
groups.

Active exercise 9 9.5 9.75 10 13 9.5 Mean = 10.125 (X1)
Passive exercise 11 10 10 11.75 10.5 15 Mean = 11.375 (X2)

Let Y1 ∼ N(θ1, σ
2
Y ) be the age for walking alone for a new infant and for

the active exercise group. Consider choosing a predictive density for Y1 and
Kullback-Leibler loss. Assume that the observed means are actually occurrences
of X1 ∼ N(θ1, σ

2
1) and X2 ∼ N(θ2, σ

2
2) and that one is willing to assume that

θ1 ≤ θ2 (i.e., the active exercise regime can only lower the average age for
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walking). We are thus in set-up (1) with A = (−∞, 0], and such an application
is both a continuation of, and relates to, Corollary 2.1, Theorem 3.1, Example
4.1, and the risk evaluation of this Section.

Suppose that we are willing to assume that the variances at the level of the
individual measurements are equal (i.e., 6σ2

1 = 6σ2
2 = σ2

Y ), and that past data
suggests that σ2

Y ≈ 2. Consider the restricted maximum likelihood estimator of
θ1 given by

θ̂1,mle(X) =
X1 +X2

2
+ max{0, X1 −X2

2
}

(e.g., Lemma 4.2). Under squared error loss, with the additional information

θ1 ≤ θ2, θ̂1,mle(X) dominates X1 as an estimator of θ1 (e.g., Lee, 1981) and,

consequently, the predictive density q̂θ̂1,mle,c
∼ N(θ̂1,mle, 2c) dominates the den-

sity N(X1, 2c) for all c > 0 under Kullback-Leibler loss (Lemma 4.3). This
includes the case c = 2 where the latter of these densities is q̂mre.

With the given data, and supported by theoretical findings of this paper
summarized by (I) and (II) below, two plausible predictive densities for Y1

are q̂θ̂1,mle,2
∼ N(10.125, 4) and q̂πU,A

given by a SN(1, α0 =
√
525/208, α1 =

−
√
13/13, 10.125,

√
7/3) density (Remark 2.4, (b)). The expectation for the

Bayes density is slightly less (10.071 vs. 10.125). There is more variability for
the Bayes density than that of Y1 (standard deviation of 1.5155 versus

√
2),

but less than for q̂θ̂1,mle,2
which has standard deviation equal to 2. Finally,

summarizing some of the theoretical support for these choices, we have that:

(I) q̂πU,A
dominates q̂mre for Kullback-Leibler loss (Theorem 3.1);

(II) q̂θ̂1,mle,2
dominates q̂mre for Kullback-Leibler loss, and belongs to the com-

plete class of variance expansions consisting of densities q̂θ̂1,mle,c
with

c ∈ [7/4, 2] (Example 4.1).

6. Concluding remarks

For multivariate normal observables X1 ∼ Np(θ1, σ
2
1Ip), X2 ∼ Np(θ2, σ

2
2Ip), we

have provided findings concerning the efficiency of predictive density estimators
Y1 ∼ Np(θ1, σ

2
1Ip) with the added parametric information θ1 − θ2 ∈ A. Several

findings provide improvements on benchmark predictive densities, such those
obtained as plug-in’s or as minimum risk equivariant. Namely, for plug-in densi-
ties, we have illustrated the benefits of variance expansion for Kullback-Leibler
loss. The efficiency of the plug-in estimator matters, and other methods than
maximum likelihood, such as a weighted likelihood approach are worth inves-
tigating, but the Kullback-Leibler performance will still remain defective. The
results obtained range over a class of α−divergence losses, different settings for
A, and include Bayesian improvements for Kullback-Leibler divergence loss. The
various techniques used lead to novel connections between different problems,
which are described following both Theorem 4.2 and Theorem 4.3.

Although the Bayesian dominance results for Kullback-Leibler loss for p = 1
extend to the rectangular case with θ1,i − θ2,i ∈ Ai for i = 1, . . . , p and the A′

is



Predictive density estimation 4233

either lower bounded, upper bounded, or bounded to intervals [−mi,mi] (since
the Kullback-Leibler divergence for the joint density of Y factors and becomes
the sum of the marginal Kullback-Leibler divergences, and that the posterior
distributions of the θ1,i’s are independent), a general Bayesian dominance result
of q̂πU,A

over q̂mre, is lacking and would be of interest. As well, comparisons of
predictive densities for the case of homogeneous, but unknown variance (i.e.,
σ2
1 = σ2

2 = σ2
Y ), are equally of interest. Finally, the analyses carried out here

should be useful as benchmarks in situations where the constraint set A has an
anticipated form, but yet is unknown. In such situations, a reasonable approach
would be to consider priors that incorporate uncertainty on A, such as setting
A = {θ ∈ R

2p| ‖θ1 − θ2‖ ≤ m}, A = [m,∞), with prior uncertainty specified for
m.

Appendix

Proof of Lemma 2.1

As shown by Corcuera and Giummolè [13], the Bayes predictive density estima-
tor of the density of Y1 in (1) under loss Lα, α �= 1, is given by

q̂πU,A
(y1;x) ∝

{∫
Rp

∫
Rp

φ(1−α)/2(
y1 − θ1
σY

)π(θ1, θ2|x) dθ1 dθ2
}2/(1−α)

.

With prior measure πU,A(θ) = IA(θ1 − θ2), we obtain

q̂πU,A
(y1;x)

∝
{∫

Rp

∫
Rp

φ(
y1 − θ1√

2
1−ασ

2
Y

)φ(
θ1 − x1

σ1
)φ(

θ2 − x2

σ2
) IA(θ1 − θ2) dθ1 dθ2

}2/(1−α)

,

given that φm(z) ∝ φ(m1/2z) for m > 0. By the decomposition

‖θ1 − y1‖2
a

+
‖θ1 − x1‖2

b
=

‖y1 − x1‖2
a+ b

+
‖θ1 − w‖2

σ2
w

,

with a =
2σ2

Y

1−α , b = σ2
1 , and w = by1+ax1

a+b = βy1 + (1 − β)x1, σ
2
w = ab

a+b =
2σ2

1σ
2
Y

2σ2
Y +(1−α)σ2

1
, we obtain

q̂πU,A
(y1;x) ∝ φ2/(1−α)(

y1 − x1√
2σ2

Y

1−α + σ2
1

)

×
{∫

R2p

φ(
θ1 − w

σw
)φ(

θ2 − x2

σ2
) IA(θ1 − θ2) dθ1 dθ2

}2/(1−α)

∝ q̂mre(y1;x1) {P(Z1 − Z2 ∈ A)}2/(1−α)
,

with Z1, Z2 independently distributed as Z1 ∼ Np(w, σ
2
w), Z2 ∼ Np(x2, σ

2
2). The

result follows by setting T =d Z1 − Z2.



4234 É. Marchand and A. Sadeghkhani

Proof of Lemma 4.1

See Fourdrinier et al. ([17], Theorem 5.1) for part (a). For the first part of (b), it
suffices to show that (i) Gs(s

2) > 0 and (ii) Gs(e
s) < 0, given that Gs(·) is, for

fixed s, a decreasing function on (s,∞). We have indeed Gs(e
s) = −se−s < 0,

while Gs(s
2)|s=1 = 0 and ∂

∂sGs(s
2) = (1− 1/s)2 > 0, which implies (i). Finally,

set k0(s) = log c0(s), s > 1, and observe that the definition of c0 implies that

u(k0(s)) =
k0(s)

1−e−k0(s) = s. Since u(k) increases in k ∈ (1,∞), it must be the case

that k0(s) increases in s ∈ (1,∞) with lims→∞ k0(s) ≥ lims→∞ log s2 = ∞. The
result thus follows since lims→∞ k0(s)/s = lims→∞(1− e−k0(s)) = 1.

The risk evaluation of Example 4.2

We expand here on the Kullback-Leibler risk computation of densities q̂mle,c ∼
N3(θ̂1,mle(X), cI3) in the setting of Example 4.2 (i.e., σ2

1 = σ2
Y = 1, σ2

2 =
1/2, ‖θ1 − θ2‖ ≤ m). Namely, we present a risk decomposition in terms of
one-dimensional integral which facilitates the numerical evaluations required
for Figure 1.

(A) With qθ1(y) = (2π)−3/2 e−
‖y−θ‖2

2 and

q̂mle,c(y;x) = (2πc)−3/2 e−
‖y−θ̂1,mle(x)‖2

2c ,

we have

RKL(θ, q̂mle,c) = E
X,Y1 log

qθ1(Y1)

q̂mle,c(Y1;X)

=
3

2
log c+

1

2c
E
X,Y1(‖Y1 − θ̂1,mle(X)‖2)− 1

2
E
Y1‖Y1 − θ1‖2

=
3

2
log c+

1

2c
E
X,Y1(‖Y1 − θ1‖2 + ‖θ̂1,mle(X)− θ1‖2)

− 1

2
E
Y1‖Y1 − θ1‖2

=
3

2
(log c+

1

c
− 1) +

1

2c
E
X(‖θ̂1,mle(X)− θ1‖2) ,

by making use of the independence of X and Y1 and since EY1‖Y1−θ1‖2 =
3. Now, make use of (25) to obtain from the above

RKL(θ, q̂mle,c) =
3

2
(log c− 1) +

2

c
+

1

2c
E(‖ψmle(W1)− μ1‖2) , (31)

with W1 ∼ N(μ1, σ
2
W1

I3), σ
2
W1

= 2
3 , μ1 = 2

3 (θ1 − θ2), and ‖μ1‖ ≤ 2m/3.
As in Fourdrinier et al. (2011), the above provides the risk of q̂mle,c in
terms of the expected squared-error loss of the restricted mle ψmle(W1) of
μ1.



Predictive density estimation 4235

(B) As in Marchand and Perron (2001), the risk E(‖ψmle(W1) − μ1‖2) can

be evaluated by conditioning on R = ‖W1‖ ∼
√
σ2
W1

χ2
3(

‖μ1‖2

σ2
W1

) which has

density on R+ given by:

fW1(r) =
r

σ2
W1

(
r

λ
)1/2 I1/2(

λr

σ2
W1

) e
−λ2+r2

2σ2
W1 , (32)

with λ = ‖μ1‖ and Iν(·) is the modified Bessel function of order ν. To
proceed, it is convenient to write

ψmle(W1) = hmle(‖W1‖)
W1

‖W1‖
,

with hmle(t) = min{ 2m
3 , t}. We obtain

E(‖ψmle(W1)− μ1‖2) = E
R
E[‖hmle(‖W1‖)

W1

‖W1‖
− μ1‖2|R ]

= λ2 + Eh2
mle(R) (33)

− 2λE

⎡
⎣hmle(R)

I3/2(
λR
σ2
W1

)

I1/2(
λR
σ2
W1

)

⎤
⎦ , (34)

where we make use of the identity (e.g., Berry, 1990; Robert, 1990)

E

[
μ′S

‖S‖ | ‖S‖ = r

]
= ‖μS‖

Ip/2(‖μS‖r/σ2
S)

I(p−2)/2(‖μS‖r/σ2
S)

,

for S ∼ Np(μS , σ
2
SIp). Finally, combining the density of R in (32) with

(33) yields the expression

E(‖ψmle(W1)− μ1‖2)

= λ2 +

∫ ∞

0

fW1(r)hmle(r)

{
hmle(r)− 2λ

I3/2(λr/σ
2
W1

)

I1/2(λr/σ
2
W1

)

}
dr , (35)

which generates an explicit expression for the Kullback-Leibler risk in (31).
2

Acknowledgements

Author Marchand gratefully acknowledges the research support from the Nat-
ural Sciences and Engineering Research Council of Canada. We are grateful to
Bill Strawderman for useful discussions. Finally, we are thankful to two referees
for constructive comments and queries that led to an improved version of the
manuscript.

2We point out that the identities I1/2(z) =
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[27] Kubokawa, T., Marchand, É. & Strawderman, W.E. (2017). On predictive
density estimation for location families under integrated absolute value loss.
Bernoulli, 23, 3197-3212. MR3654804

[28] Lee, C.I.C. (1981). The quadratic loss of isotonic regression under normal-
ity. Annals of Statistics, 9, 686-688. MR0615447

[29] Liseo, B. & Loperfido, N. (2003). A Bayesian interpretation of the multivari-
ate skew-normal distribution. Statistics & Probability Letters, 61, 395-401.
MR1959075
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4238 É. Marchand and A. Sadeghkhani

problems. Contemporary Developments in Bayesian analysis and Statistical
Decision Theory: A Festschrift for William E. Strawderman, Institute of
Mathematical Statistics Volume Series, 8, 42-56. MR3202501

[35] Park, Y., Kalbfleisch, J.D. & Taylor, J. (2014). Confidence intervals under
order restrictions. Statistica Sinica, 24, 429-445. MR3183692

[36] Robert, C. (1996). Intrinsic loss functions. Theory and Decision, 40, 192-
214. MR1385186

[37] Robert, C. (1990). Modified Bessel functions and their applications in
probability and statistics. Statistics and Probability Letters, 9, 155-161.
MR1045178

[38] Sadeghkhani, A. (2017). Estimation d’une densité prédictive avec infor-
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