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Abstract: In this work, we focus on some conditional extreme risk mea-
sures estimation for elliptical random vectors. In a previous paper, we
proposed a methodology to approximate extreme quantiles, based on two
extremal parameters. We thus propose some estimators for these param-
eters, and study their consistency and asymptotic normality in the case
of heavy-tailed distributions. Thereafter, from these parameters, we con-
struct extreme conditional quantiles estimators, and give some conditions
that ensure consistency and asymptotic normality. Using recent results on
the asymptotic relationship between quantiles and other risk measures, we
deduce estimators for extreme conditional Lp−quantiles and Haezendonck-
Goovaerts risk measures. Under similar conditions, consistency and asymp-
totic normality are provided. In order to test the effectiveness of our esti-
mators, we propose a simulation study. A financial data example is also
proposed.
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1. Introduction

In many fields such as finance or actuarial science, quantile, or Value-at-Risk
(see [43]) is a recognized tool for risk measurement. In [39], quantile is seen as
minimum of an asymmetric loss function. However, Value-at-Risk, or VaR, has
some disadvantages, such as that of not being a coherent measure in the sense
of [3]. These limits have led many authors to use alternative risk measures.

On the basis of Koenker’s approach, [48] proposed another measure called
expectile, which has since been widely studied (see for example [55] or more
recently [13]) and applied ([57] and [9]). Later, [8] introduced M-quantiles, a
family of measures minimizing an asymmetric loss function, and [11] focused on
asymmetric power functions to define Lp−quantiles. The cases p = 1 and p = 2
correspond respectively to the quantile and expectile. Recently, [7] provided
some results concerning Lp−quantiles for Student distributions, and have shown
that closed formula are difficult to obtain in the general case.

In parallel, [3] introduced the Tail-Value-at-Risk as an alternative to Value-
at-Risk, and this risk measure subsequently had many applications (see, e.g. [4]).
Moreover, TVaR belongs to a larger family of risk measures called Haezendonck-
Goovaerts risk measures and introduced in [27], [26] and [56]. In the same way
as Lp−quantiles, we do not have an explicit formula in the general case.

However, for a heavy-tailed random variable, [14] proved that Lp−quantile
and L1−quantile (or quantile) are asymptotically proportional. Then, as pro-
posed in [13], an estimator of a Lp−quantile may be deduced from a suitable
estimator of the quantile, for extreme levels. In the same spirit, [56] provided a
similar asymptotic relationship between a subclass of Haezendonck-Goovaerts
risk measures and quantiles. Finally, all these risk measures we introduced may
be estimated through a quantile estimation in an asymptotic setting.

Extreme quantiles estimation is a very active area of research. In recent years,
we can give many examples: [24] focused on Weibull tail distributions, [20] pro-
posed a study for heavy and light tailed distributions, [25] was interested in
functions of dependent variables, and [18] provided a methodology for high quan-
tiles estimation. The question of extreme conditional quantiles estimation has
also been explored in [58] in a regression framework. However, [45] and [46] have
shown that the regression setting may lead to a poor estimation of extreme mea-
sures in the case of elliptical distributions. Elliptical distributions, introduced
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in [37], aim to generalize the gaussian distribution, i.e. to define symmetric dis-
tributions with different properties, such as a heavy tail. This is why elliptical
distributions are more and more used in finance (see for example [50] or [59]).

For all these reasons, we consider, in this paper, an elliptical random vec-
tor Z = (X, Y ) with the consistency property (in the sense of [36]), where
X ∈ R

N , Y ∈ R, and propose to estimate some extreme quantiles (and deduce
Lp−quantiles and Haezendonck-Goovaerts risk measures) of Y |X = x, i.e. of
a component conditionally to the others. In order to improve the conditional
quantile estimation, we proposed in [45] a methodology based on two extremal
parameters, and the unconditional quantile of Y . Indeed, if we denote F−1

Y |x(α)

the quantile of level α of Y |X = x, the latter is asymptotically equivalent to a
quantile of Y (F−1

Y will be the quantile function of Y ), in the following manner:

F−1
Y |x(α) ∼

α→1
F−1
Y (δ(α, η, �)) , (1.1)

where δ is a known function (detailed later) depending on α and two parameters
η and � called extremal parameters. One can notice that Equation (1.1) may only
holds under the consistency property of Z. [45] has also shown that extremal
parameters do not exist for some consistent elliptical distributions (see, e.g. the
Laplace distribution).

In this paper, the goal will be in a first time to give a sufficient condition on Z
that ensures the existence of η and �. This is why a regularly varying assumption
is done. After having proved their existence, estimators for the parameters η and
� are proposed, and therefore for extreme conditional quantiles.

The paper is organized as follows. Section 2 provides some definitions and
properties of elliptical distributions, including the extremal parameters intro-
duced in [45]. A particular interest is given to consistent elliptical distributions.
Section 3 is devoted to extremal parameters η and �. Under a regularly varying
assumption, their existence is proved, and estimators are proposed. By adding
some conditions, consistency and asymptotic normality results are given. In Sec-
tion 4, we use the results of Section 3 to introduce some estimators of extreme
quantiles, and give consistency and asymptotic normality results. The asymp-
totic relationships between Lp−quantiles and quantiles recalled in Section 5
allow us to give extreme Lp−quantiles estimators. The same approach is pro-
posed for extreme Haezendonck-Goovaerts risk measures. In order to analyze
the efficiency of our estimators, we propose a simulation study in Section 6, and
a real data example in Section 7.

2. Preliminaries

In this section, we first recall some classical results on elliptical distributions.
We consider a d−dimensional vector Z from an elliptical distribution with pa-
rameters μ ∈ R

d and Σ ∈ R
d×d, a symmetric and positive definite matrix. Then

the density of Z, if it exists, is given by:

cd

|Σ| 12
gd

(
(z − μ)

�
Σ−1 (z − μ)

)
. (2.1)
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cd and gd will respectively be called normalization coefficient and generator of
Z. [10] gives another way to characterize an elliptical distribution, through the
following stochastic representation:

Z
d
= μ+RΛU (d), (2.2)

where Λ is the Cholesky root of Σ, i.e. ΛΛ� = Σ, U (d) is a d−dimensional
random vector uniformly distributed on the unit sphere of dimension d, and
R is a non-negative random variable independent of U (d). R is called radius
of Z. In the following, the radius must have a particular shape. Indeed, [33]
and [36] propose a representation for some particular elliptical distributions.
Let us consider (Zd)d∈N∗ a family of elliptical distributions of dimension d.
Then (Zd)d∈N∗ possesses the consistency property if it admits the following
representation for all d ∈ N

∗:

Zd
d
= μ+ χdξΛU (d), (2.3)

where χd is the square root of a χ2 distribution with d degrees of freedom,
ξ is a non-negative random variable which does not depend on d, and χd, ξ
and U (d) are mutually independent. In [36], such elliptical distributions are said
consistent, have the advantage of being stable by linear combinations (combining
Theorem 2.16 of [21] and Theorem 1 in [36]), and allow us to define elliptical
random fields (see, e.g. [49]). In the following, we focus on consistent elliptical
distributions, and take the notation

Rd = χdξ. (2.4)

For the sake of clarity, we will say that a random variable Z = (Z1, . . . , Zd) with
stochastic representation (2.3) is (ξ, d)−elliptical with parameters μ and Σ. We
can notice, using Theorem 2.16 of [21] and Theorem 1 in [36], that for all subset
I ⊂ {1, . . . , d} such that |I| = k, ZI = (ZI1 , . . . , ZIk) is (ξ, k)−elliptical with
parameters μI and ΣI . Using this terminology, the purpose of the paper is as
follows. Let Z = (X, Y ) ∈ R

N+1 be a (ξ,N + 1)−elliptical random vector with
parameters μ and Σ, where X ∈ R

N and Y ∈ R. Consistency property of Z
implies thatX and Y are respectively (ξ,N)− and (ξ, 1)−elliptical distributions
with parameters μX ∈ R

N , ΣX ∈ R
N×N and μY ∈ R, ΣY ∈ R. We also denote

ΣXY the covariance vector between X and Y . The aim is thus to provide a
predictor for the quantile of the conditional distribution Y |X = x. According
to Theorem 7 of [23], such a distribution is still elliptical, with a radius R∗

different from R in the general case. In particular, we have:

{Y |X = x} d
= μY |X + σY |XR∗U (1), (2.5)

where μY |X = μY +Σ�
XY ΣX

−1(x− μX) and σ2
Y |X = ΣY −Σ�

XY ΣX
−1ΣXY .

Then, denoting ΦR∗(t) = P
(
R∗U (1) ≤ t

)
, and using the translation equivari-

ance and positive homogeneity of quantile risk measure (see, e.g. [5] or [47]),
conditional quantiles of Y |X = x may be expressed as:

qα(Y |X = x) = μY |X + σY |XΦ−1
R∗(α), (2.6)
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where α ∈]0, 1[. Thus, in order to give a good prediction of qα(Y |X = x), we
need to estimate the conditional function Φ−1

R∗ . Unfortunately, when we have
a data set X1, ...,Xn, we only observe the unconditional distribution of X.
This is why, in [45], we have given a predictor for conditional quantiles, based
solely on the unconditional c.d.f. ΦR(t) = P

(
R1U

(1) ≤ t
)
. This approximation

is based on two parameters η > 0 and 0 < � < +∞ such that:

lim
t→∞

Φ̄R∗(t)

Φ̄R(tη)
= �. (2.7)

Table 1 gives some examples of coefficients η and � for classical elliptical distri-
butions. However, we have shown in [45] that such parameters not always exist

Table 1

Coefficients η and � for classical distributions, where M(x) = (x− μX)�ΣX
−1(x− μX).

Distribution η �
Gaussian 1 1

Student, ν > 0 N
ν

+ 1
Γ
(

ν+N+1
2

)
Γ( ν

2 )

Γ
(

ν+N
2

)
Γ
(

ν+1
2

) (1 +
M(x)

ν

)N+ν
2 ν

N
2

+1

ν+N

UGM 1
min(θ1,...,θn)

N exp

{
−min(θ1,...,θn)2

2
M(x)

}
n∑

k=1
πkθ

N
k

exp

(
−

θ2
k
2

M(x)

)

Slash, a > 0 N
a

+ 1
Γ
(

N+1+a
2

)
M(x)

N+a
2

Γ
(

N+a
2

)
(N+a)χ2

N+a
(M(x))2

a
2
−1

Γ
(

1+a
2

)

for all elliptical distributions (see, e.g. Laplace distribution). In a first time,
we can wonder in which setting these parameters exist. We thus consider the
following assumption, that will ensure the existence of η and �.

Assumption 1 (Second order regular variation). We assume that there exists
a positive or negative function A such that A(t) → 0 as t → +∞, and

lim
t→+∞

Φ−1
R (1− 1

ωt )
Φ−1

R (1− 1
t )

− ωγ

A(t)
= ωγ ω

ρ − 1

ρ
, (2.8)

where γ > 0 and ρ < 0.

This assumption is widespread in literature of extreme quantiles (see, e.g,
[13]). A first consequence is that ΦR, or equivalently FR1 is attracted to the
maximum domain of Pareto-type distributions with tail index γ. Furthermore, it

entails Φ−1
R (1−1/t) ∼ c1t

γ , or equivalently Φ̄R(t) ∼ c2t
− 1

γ as t → +∞ (see [15]).
As example, Student distribution satisfies Assumption 1. The following lemma
provides some results concerning asymptotic equivalences.

Lemma 2.1 (Regular variation properties). Under Assumption 1, we get the
following regular variation properties:

(i) The random variable ξ satisfies

F̄ξ(t) ∼
t→+∞

λt−
1
γ , λ > 0. (2.9)
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(ii) For all d ∈ N
∗, the random variable Rd = χdξ is attracted to the maximum

domain of Pareto-type distribution with tail index γ, and

F̄Rd
(t) ∼

t→+∞
2

1
2γ

Γ
(

d+γ−1

2

)
Γ
(
d
2

) F̄ξ(t) ∼
t→+∞

2
1
2γ

Γ
(

d+γ−1

2

)
Γ
(
d
2

) λt−
1
γ , λ > 0.

(2.10)
(iii) For all η > 0, d ∈ N

∗,

fRd
(t)

fR1(t
η)

∼
t→+∞

√
πΓ
(

d+γ−1

2

)
Γ
(
d
2

)
Γ
(

1+γ−1

2

) t(η−1)(γ−1+1). (2.11)

These results will be useful throughout the paper, and especially in the fol-
lowing result which proves the existence of our parameters.

Proposition 2.2 (Existence of extremal parameters). Under Assumption 1,
parameters η and � exist, and are expressed:⎧⎨

⎩
η = 1 + γN

� =
Γ
(

N+γ−1+1
2

)
Γ
(

γ−1+1
2

) γ−1π−N
2

(N+γ−1)cNgN (M(x))

. (2.12)

One can notice that η is only related to the tail index γ, and not to the
covariates vector x, while � is depending on cNgN (M(x)). In the next, we thus
denote rather �(x), in order to emphasize the role played by the covariates
vector x.

Equation (2.7) provides an asymptotic equivalence between the survival func-
tions Φ̄R and Φ̄R∗ . Using some results of [19], [45] proposed to inverse this equiv-
alence in order to get an asymptotic relationship between the quantile functions
Φ−1

R and Φ−1
R∗ . Based on the latter paper, we give the following predictor for

qα (Y |X = x):

qα↑(Y |X = x) = μY |X + σY |X

[
Φ−1

R

{
1− 1

�(x)
1−α + 2(1− �(x))

}]1/η
. (2.13)

From there, we have proved in Theorem 7 of [45] that qα↑(Y |X = x) and
qα(Y |X = x) were asymptoticaly equivalent as α → 1, i.e.

qα↑(Y |X = x) ∼
α→1

qα(Y |X = x). (2.14)

A similar equivalence has been easily deduced for α → 0, using the symmetry
properties of elliptical distributions. In this paper, we focus on the case α → 1,
case α → 0 being easily deduced. In Section 3, we propose some estimators
for extremal parameters η and �(x). Before that, we need to do a little sim-
plification. Indeed, Equation (2.13) shows that the extreme quantile estimation
requires the prior estimation of quantities μY |X and σY |X . These quantities
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may be easily estimated by the method of moments or fixed-point algorithm
(c.f. p.66 of [23]). In a spatial setting, even if the variable Y is not observed, a
stationarity assumption on the random field makes it possible to estimate these
values (see [12]). Furthermore, the speed of convergence of these methods is
higher than those of the estimators we propose in this paper, and therefore do
not interfere in the asymptotic results. This is why, in the following, we suppose
that μY |X , σY |X , and therefore μX , ΣX are known. Then, it remains to esti-

mate η, �(x) and Φ−1
R∗ . Section 3 focuses on η and �(x), while Section 4 deals

with Φ−1
R∗ .

3. Extremal coefficients estimation

In this section, the aim is to estimate the extremal parameters η and �(x)
conditionaly to the covariates vector X = x. For that purpose, we consider
a random sample X1, ...,Xn independent and identically distributed from an
(ξ,N)−elliptical vector with the same distribution as X, and denote M(x) =

(x− μX)
�
ΣX

−1 (x− μX). The aim is then to give two suitable estimators η̂

and �̂(x), respectively for η and �(x).

3.1. Estimation of η

We notice that coefficient η is directly related to the tail index γ. Then, us-
ing a suitable estimator of γ, we easily deduce η. There are several estimators
widespread in the literature. As examples, [52], [54] or [40] provide some esti-
mators for γ. In the following, we use the Hill estimator, introduced in [30]:

γ̂kn =
1

kn

kn∑
i=1

ln

(
W[i]

W[kn+1]

)
, (3.1)

where W[1] ≥ . . . ≥ W[kn+1] ≥ . . . ≥ W[n] and kn = o(n) such that kn → +∞ as
n → +∞. In this context, the statistic W may be:

• The first (or indifferently any) component of the reduced centered co-
variates vector ΛX

−1 (X − μX), where ΛX
�ΛX = ΣX . This approach

works well, but we do not use all available data.

• The Mahalanobis norm
√
(X − μX)�ΣX

−1(X − μX). This approach

has the advantage of using all available data.

Indeed, according to Theorem 2 of [29], the two last quantities both admit γ as
tail index.

In the following we will use the one-component approach, since the asymptotic
results we give are valid under Assumption 1, applied to the univariate c.d.f.
ΦR. Moreover, numerical comparisons seem show that the second approach does
not significantly improve the estimation of the parameters. Main properties of
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γ̂kn may be found in [16]. Under second order condition given in Assumption 1,
[15] proved the following asymptotic normality for γ̂kn .

√
kn (γ̂kn − γ) →

n→+∞
N
(

λ

1− ρ
, γ2

)
, (3.2)

where λ = lim
n→+∞

√
knA

(
n
kn

)
and kn = o(n) such that kn → +∞ as n →

+∞. Then, using Proposition 2.2 and Equation (3.1), we define the following
estimator for η.

Definition 3.1 (Estimator of η). We define η̂kn as

η̂kn =
N

kn

kn∑
i=1

ln

(
W[i]

W[kn+1]

)
+ 1. (3.3)

As an affine transformation of Hill estimator, asymptotic normality of η̂kn is
obvious. In order to simplify the next results, we suppose λ = 0 in what follows.

Proposition 3.1 (Asymptotic normality of η̂kn). Under Assumption 1, and if

lim
n→+∞

√
knA

(
n
kn

)
= λ ∈ R, then

√
kn (η̂kn − η) →

n→+∞
N
(

Nλ

1− ρ
,N2γ2

)
. (3.4)

3.2. Estimation of �(x)

The form of �(x), given in Proposition 2.2, leads to a more complicated es-
timation. Indeed, �(x) is related on both γ and cNgN (M(x)). Our estimator
for γ is given in Equation (3.1). Concerning cNgN (M(x)), we propose a kernel
estimator. Class of kernel estimators, introduced in [51], makes it possible to
estimate probability densities. Then, the following lemma will be useful for the
construction of our estimator. This result comes from p.108 of [35].

Lemma 3.2. The Mahalanobis distance M(X) = (X −μX)�ΣX
−1(X −μX)

has density:

fM(X)(t) =
π

N
2

Γ
(
N
2

) tN
2 −1cNgN (t). (3.5)

Using Lemma 3.2, we introduce a kernel estimator ĝhn(x) for cNgN (M(x)).

Definition 3.2 (Generator estimator). We define ĝhn(x) as

ĝhn(x) =
M(x)1−

N
2 Γ
(
N
2

)
π

N
2

f̂M(X)(M(x))

=
M(x)1−

N
2 Γ
(
N
2

)
π

N
2 nhn

n∑
i=1

K

(
M(x)− (Xi − μX)

�
ΣX

−1 (Xi − μX)

hn

)
, (3.6)
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where the kernel K fills some conditions given in [51] and bandwith hn verifies
hn → 0 and nhn → +∞ as n → +∞.

[51] provided the asymptotic normality for kernel estimators. We first define
some assumptions concerning K and gN needed for the next results.

• (K1): K is a bounded probability density function, compactly supported
on [−1, 1]. In addition, K(u) = K(−u) ∀u ∈ R.

• (K2): In the neighborhood ofM(x), gN is bounded and twice continuously
differentiable with bounded derivatives.

The following results may be found in [42]. Under conditions (K1) − (K2), it
may be proved that:⎧⎨

⎩
E

[
f̂M(X)(M(x))

]
− fM(X)(M(x)) = O(h2

n)

Var
[
f̂M(X)(M(x))

]
= O

(
1

nhn

) . (3.7)

By adding the condition nh5
n → 0 as n → +∞, we also obtain the asymptotic

normality:

√
nhn

(
f̂M(X)(M(x))− fM(X)(M(x))

)
→ N

(
0, fM(X)(M(x))

∫
K(u)2du

)
.

(3.8)
Using the previous results given above, the following asymptotic normality for
ĝhn(x) is easily deduced.

Proposition 3.3 (Asymptotic normality of generator estimator). Under con-
ditions (K1) − (K2), and taking a sequence hn such that hn → 0, nhn → +∞
and nh5

n → 0 as n → +∞, then the following relationship holds:

√
nhn (ĝhn(x)− cNgN (M(x))) → N

(
0,

M(x)1−
N
2 Γ
(
N
2

)
π

N
2

cNgN (M(x))

∫
K(u)2du

)

(3.9)
as n → +∞.

Replacing γ by γ̂kn and cNgN (M(x)) by ĝhn(x) in Equation (2.12), we are

now able to provide an estimator �̂(x) for �(x), in the following definition.

Furthermore, under Assumption 1, we give the asymptotic normality of �̂(x).

Definition 3.3 (Estimator of �(x)). We define �̂kn,hn(x) as:

�̂kn,hn(x) =

Γ

(
N+γ̂−1

kn
+1

2

)

Γ

(
γ̂−1
kn

+1

2

) γ̂−1
kn

π−N
2(

N + γ̂−1
kn

)
ĝhn(x)

. (3.10)

where γ̂kn and ĝhn(x) are respectively given in Equations (3.1) and (3.6).

Proposition 3.4. Under Assumption 1, conditions (K1)− (K2) and if in ad-

dition lim
n→+∞

√
knA

(
n
kn

)
= 0, then the following asymptotic relationships hold:
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(i) If nhn/kn →
n→+∞

+∞ and
√
knh

2
n →

n→+∞
0, then

√
kn

(
�̂kn,hn(x)− �(x)

)
→

n→+∞
N (0, V1) . (3.11)

(ii) If nhn/kn →
n→+∞

0 and nh5
n →

n→+∞
0, then

√
nhn

(
�̂kn,hn(x)− �(x)

)
→

n→+∞
N (0, V2) , (3.12)

where (Ψ is the digamma function (see p. 258 of [2]))⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V1 = π−Nγ2

c2NgN (M(x))2

Γ
(

N+γ−1+1
2

)2

Γ
(

γ−1+1
2

)2

[
Ψ
(

γ−1+1
2

)
−Ψ

(
N+γ−1+1

2

)
2γ2(Nγ+1) − N

(Nγ+1)2

]2

V2 =
Γ(N

2 )
∫
K(u)2du

M(x)
N
2

−1π
N
2

cNgN (M(x))

[
Γ
(

N+γ−1+1
2

)
Γ
(

γ−1+1
2

) γ−1π−N
2

(N+γ−1)c2NgN (M(x))2

]2 .

(3.13)

We have the asymptotic normality for our estimators η̂kn and �̂kn,hn(x).
The next proposition gives the joint distribution according to the asymptotic
relationship between kn and hn. The proof derives from delta method.

Proposition 3.5. Under Assumption 1, conditions (K1)− (K2) and if in ad-

dition
√
knA

(
n
kn

)
→ 0 as n → +∞, then the following asymptotic relationships

hold:

(i) If nhn/kn →
n→+∞

0 and nh5
n →

n→+∞
0, then

√
nhn

(
�̂kn,hn(x)− �(x)

η̂kn − η

)
→

n→+∞
N
((

0
0

)
,

(
V2 0
0 0

))
, (3.14)

where V2 is given in Equation (3.13).
(ii) If nhn/kn →

n→+∞
+∞ and

√
knh

2
n →

n→+∞
0, then

√
kn

(
�̂kn,hn(x)− �(x)

η̂kn − η

)
→

n→+∞
N
((

0
0

)
,

(
V1 −Nγ

√
V1

−Nγ
√
V1 N2γ2

))
,

(3.15)
where V1 is given in Equation (3.13).

Using the previous results, we propose, in Section 4, some estimators of ex-
treme conditional quantiles based on �̂kn,hn(x) and η̂kn .

4. Extreme quantiles estimation

In this section, we propose some estimators of extreme quantiles qαn (Y |X = x),
for a sequence αn → 1 as n → +∞. For that purpose, we divide the study in
two cases:
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• Intermediate quantiles, i.e. we suppose n(1−αn) → +∞. It entails that the
estimation of the αn−quantile leads to an interpolation of sample results.

• High quantiles. According to [17], we suppose n(1−αn) → 0, i.e. we need
to extrapolate sample results to areas where no data are observed.

In both cases, the asymptotic results require some conditions we will provide
throughout the section. The first one brings together the assumptions of Propo-
sition 3.5.

• (C): Kernel conditions (K1)− (K2) hold. In addition, kn → +∞, hn → 0,

kn = o(nhn),
√
knh

2
n → 0 and

√
knA

(
n
kn

)
→ 0 as n → +∞.

Condition (C) will be common to both approaches, and ensures in a first time
that Hill estimator is such that

√
kn (γ̂kn − γ) is asymptotically unbiased, ac-

cording to Equation (3.2). Moreover, kn = o(nhn) means that ĝhn(x) converges
to cNgN (M(x)) faster than γ̂kn to γ. In practice, this condition seems appro-
priate, because kn must not be too large for the Hill estimator to be unbiased,
and hn must be large enough to provide a good estimation of �(x).

4.1. Intermediate quantiles

We consider the case where n(1−αn) → +∞ with αn → 1 as n → +∞. We recall
qαn (Y |X = x) = μY |X + σY |XΦ−1

R∗(αn). According to Equation (2.13), we can

approximate Φ−1
R∗(αn) by Φ−1

R

(
1−
(
2 + �(x)

(
(1− αn)

−1 − 2
))−1

)
. The idea is

then to estimate a quantile of level 1− vn = 1−
(
2 + �(x)

(
(1− αn)

−1 − 2
))−1

on the unconditional radius R, easier to deal with. By noticing that nvn ∼
�(x)−1n(1− αn) → +∞ as n → +∞, we introduce the following statistic order
based estimator q̂αn (Y |X = x) for qαn (Y |X = x), inspired by Theorem 2.4.1
in [15].

Definition 4.1 (Intermediate quantile estimator). Let (q̂αn (Y |X = x))n∈N
be

such that:

q̂αn (Y |X = x) = μY |X + σY |X
(
W[nṽn+1]

) 1
η̂kn , (4.1)

where ṽn =
(
2 + �̂kn,hn(x)

(
1

1−αn
− 2
))−1

, η̂kn and �̂kn,hn(x) are respectively

given in Definitions 3.1 and 3.3, and W is the first (or indifferently any) com-
ponent of the vector ΛX

−1(X − μX).

In order to prove the consistency of our estimator, we need a further condition
(Cint) concerning the sequences αn and kn, useful in the proof.

• (Cint): n(1−αn) → +∞, ln(1−αn) = o(
√
kn),

√
kn

ln(1−αn)
= o
(√

n(1− αn)
)

as n → +∞.

Obviously, (Cint) contains n(1−αn) → +∞, as mentioned above. Furthermore,
ln(1−αn) = o(

√
kn) ensures that the rate of convergence in Theorem 4.1 goes to

infinity (see below) and the last relationship allows us to eliminate a term in the
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proof. In order to make this condition more meaningful, let us propose a simple
example: we choose our sequences in polynomial forms kn = nb, 0 < b < 1 and
αn = 1 − n−a, a > 0. It is straightforward to see that ln(1 − αn) = o(kn) and

ln(n(1−αn)) = o(kn) , ∀a > 0, 0 < b < 1. However,
√
kn

ln(1−αn)
= o
(√

n(1− αn)
)

if and only if b < 1− a, i.e. a < 1 and n(1− αn) → +∞ as n → +∞.
Firstly, we give a result concerning the asymptotic behavior of q̂αn (Y |X = x)

with respect to qαn↑ (Y |X = x). Then, with Equation (2.14), we easily deduce
a consistency result for q̂αn (Y |X = x).

Theorem 4.1 (Consistency of q̂αn (Y |X = x)). Let us denote the sequences

vn = (2 + �(x)((1 − αn)
−1 − 2))−1, ṽn = (2 + �̂kn,hn(x)((1 − αn)

−1 − 2))−1.
Under Assumption 1, and conditions (C), (Cint):

√
kn

ln (1− αn)

(
q̂αn (Y |X = x)

qαn↑ (Y |X = x)
− 1

)
→

n→+∞
N
(
0,

N2γ4

(γN + 1)
4

)
. (4.2)

And therefore:
q̂αn (Y |X = x)

qαn (Y |X = x)

P→ 1. (4.3)

The same asymptotic normality with qαn (Y |X = x) instead of qαn↑ (Y |X = x)
may be deduced from Proposition 4.1 under the condition

lim
n→+∞

√
kn

ln (1− αn)
ln

(
Φ−1

R (1− vn)
1
η

Φ−1
R∗(αn)

)
= 0.

This condition, which seems quite simple, is difficult to prove in a general con-
text. Indeed, we need a second order expansion of Equation (2.14). But the
second order properties of the unconditional quantile Φ−1

R given by Assump-
tion 1 are not necessarily the same as those of the conditional quantile Φ−1

R∗ ,
which makes the study complicated. However, in some simple cases, we are able
to solve the problem. We thus give another assumption, stronger that Assump-
tion 1. In the following, we refer to this assumption for results of asymptotic
normality.

Assumption 2. ∀d ∈ N
∗, there exists λ1 > 0, λ2 ∈ R such that:

cdgd(t) = λ1t
− d+γ−1

2

[
1 + λ2t

ρ
2γ + o

(
t

ρ
2γ

)]
. (4.4)

It is obvious that Assumption 2 implies Assumption 1. Indeed, according
to [32], Equation (4.4) is equivalent to say that c1g1(t

2) is regularly varying of
second order with indices −1− γ−1, ρ/γ and an auxiliary function proportional

to t
ρ
γ . Then, Proposition 6 in [32] entails Φ̄R(t) is second order regularly vary-

ing with −γ−1, ρ/γ and the same kind of auxiliary function. Finally, this is
equivalent (see [15]) to Assumption 1 with indicated γ and ρ, and an auxiliary
function A(t) proportional to tρ.
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Furthermore, according to [36], the dependance on d in Equation (4.4) re-
mains coherent with the assumption of consistent elliptical distributions, the
latter having to have a function gd depending on d. As an example, the Student
distribution fills Assumption 2. The latter allows us to provide a second order
expansion for Equation (2.14).

In order to prove the asymptotic normality of q̂αn (Y |X = x), we add a tech-
nical condition

(
CHG

int

)
that involves tail indices γ and ρ.

•
(
CHG

int

)
: (Cint) holds. In addition,

√
kn(1− αn) = o (ln(1− αn)), and:

lim
n→+∞

√
kn

ln (1− αn)
(1− αn)

min(−ρ,2γ)
γN+1 = 0. (4.5)

In view of Equation (4.5), it is obvious that if N (or γ) is too large,
(
CHG

int

)
is

not filled. The tail of the underlying distribution may thus not be too heavy,
and the number N of covariates not too large. Similarly, they no longer hold
if γ or −ρ is too small, i.e. if either the underlying distribution is too lightly
varying, or t1/γΦ̄R(t) converges too slowly.

It may be interesting to compare conditions (Cint) and
(
CHG

int

)
by taking the

example introduced previously, i.e. kn = nb, 0 < b < 1 and αn = 1−n−a, a > 0.
(Cint) entails a < 1 and b < 1 − a, while

(
CHG

int

)
requires in addition b < 2a

and b < 2amin(−ρ, 2γ)/(γN + 1). Finally, the latter adds restrictions on the
parameter b, without beeing in contradiction with (Cint).

Proposition 4.2 (Asymptotic normality of q̂αn (Y |X = x)). Assume that As-
sumption 2 and conditions (C),

(
CHG

int

)
hold. Then:

√
kn

ln (1− αn)

(
q̂αn (Y |X = x)

qαn (Y |X = x)
− 1

)
→

n→+∞
N
(
0,

N2γ4

(γN + 1)
4

)
. (4.6)

We notice that asymptotic variance in Equation (4.2) tends to 0 as the num-
ber of covariates N goes to +∞. Indeed, we observe a fast convergence of q̂αn to
qαn↑ when N is large. However,

(
CHG

int

)
is not filled if N is large. Then asymp-

totic normality (4.6) no longer holds. This is explained by the fact that more N
is large, more qαn (Y |X = x) /qαn↑ (Y |X = x) (see Equation (2.14)) tends to 1
slowly.

4.2. High quantiles

We now consider n(1 − αn) → 0 as n → +∞. In the following definition, we

introduce another quantile estimator ˆ̂qαn (Y |X = x) for qαn (Y |X = x). We
first recall that the idea is to estimate an unconditional quantile of level 1 −
vn = 1 −

(
2 + �(x)

(
(1− αn)

−1 − 2
))−1

. A quick calculation proves that vn is
asymptotically equivalent to �(x)−1(1−αn), and therefore nvn → 0 as n → +∞.
The use of statistic order (at level nvn) is then impossible in that case. According
to Theorem 4.3.8 in [15], a way to estimate such a quantile may be to take the
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statistic order at the intermediate level kn (we recall kn → +∞), and apply
an extrapolation coefficient (kn/(nvn))

γ
. This approach inspired the following

estimator.

Definition 4.2 (High quantile estimator). We define
(
ˆ̂qαn (Y |X = x)

)
n∈N

as:

ˆ̂qαn (Y |X = x) = μY |X + σY |X

[
W[kn+1]

(
kn

n

(
2 + �̂kn,hn (x)

(
1

1− αn
− 2

)))γ̂kn

] 1
η̂kn

.

(4.7)

The aim is now to study the asymptotic properties of ˆ̂qαn (Y |X = x). As
for the intermediate quantile estimator, we propose a result of asymptotic nor-
mality, under a condition (Chigh) (given below) which we then refine under
Assumption 2.

• (Chigh): n(1− αn) → 0, ln (n(1− αn)) = o(
√
kn) and

ln(1−αn)

ln( n
kn

(1−αn))
→ θ ∈

[0,+∞[ as n → +∞.

The second statement is added in order to apply Theorem 4.3.8 in [15], and the
third one is a notation used in the following. Let us propose a simple example: if
we choose our sequences in polynomial forms kn = nb, 0 < b < 1 and αn = 1−
n−a, a > 0, the first condition is filled if and only if a > 1, ln(n(1−αn)) = o(

√
kn)

is always true and the last assertion holds with a particular θ given later.
The consistency result that follows immediatly is given just below.

Theorem 4.3 (Consistency of high quantile estimator). Let us denote vn =

(2+ �(x)((1−αn)
−1−2))−1 and ṽn = (2+ �̂kn,hn(x)((1−αn)

−1−2))−1. Under
Assumption 1, and conditions (C), (Chigh):

√
kn

ln
(

kn

n(1−αn)

)
(

ˆ̂qαn (Y |X = x)

qαn↑ (Y |X = x)
− 1

)
→ N

(
0,

(
γ

γN + 1
− θ

Nγ2

(γN + 1)2

)2
)

(4.8)
as n → +∞. And therefore:

ˆ̂qαn (Y |X = x)

qαn (Y |X = x)

P→ 1 as n → +∞. (4.9)

We can emphasize that condition (Chigh) is filled in most of the common
cases. Indeed, the simple examples to find that do not satisfy (ii) are of the form
αn = 1 − n−1 ln(n)−κ, κ > 0 and kn = ln(n). But such a choice of sequences
would lead to a poor estimation of γ̂kn and η̂kn , since kn → +∞ very slowly,
and moreover a poor estimation of the quantile, the level αn tending to 1 slowly.
These sequences are therefore not recommanded in practice. Next corollary gives
the value of θ when sequences kn and αn have a polynomial form.

Corollary 4.4. Under Assumption 1, conditions (C), (Chigh), and taking kn =
nb, 0 < b < 1 and αn = 1− n−a, a > 1, asymptotic relationship (4.8) holds with
θ = a

a+b−1 .
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As for the intermediate quantile estimator, asymptotic normality (4.8) may
be improved under the condition

lim
n→+∞

√
kn

ln
(

kn

n(1−αn)

) ln

(
Φ−1

R (1− vn)
1
η

Φ−1
R∗(αn)

)
= 0.

Assumption 2 places us in a framework where it is quite simple to prove it, if
we add the following condition:

•
(
CHG

high

)
: (Chigh) holds. In addition,

lim
n→+∞

√
kn

ln
(

kn

n(1−αn)

) (1− αn)
min(−ρ,2γ)

γN+1 = 0. (4.10)

As
(
CHG

int

)
, condition

(
CHG

high

)
means that sequence kn must be small enough.

If we compare with the previous conditions, by taking the example introduced

above Theorem 4.1, (Chigh) requires only a > 1, while
(
CHG

high

)
needs in ad-

dition b < 2amin(−ρ, 2γ)/(γN + 1). Both conditions are therefore completely
compatible. However, in view of Equation (4.10), we deduce that if N or γ is

too large,
(
CHG

high

)
is not filled. The tail of the underlying distribution may thus

not be too heavy, and the number N of covariates not too large. Similarly, they
no longer hold if γ or −ρ is too small.

By combining Assumption 2 and
(
CHG

high

)
, the following result is obtained.

Proposition 4.5 (Asymptotic normality of high quantile estimator). Assume

that Assumption 2 and conditions (C),
(
CHG

high

)
hold. Then:

√
kn

ln
(

kn
n(1−αn)

)
(

ˆ̂qαn (Y |X = x)

qαn (Y |X = x)
− 1

)
→

n→+∞
N
(
0,

(
γ

γN + 1
− θ

Nγ2

(γN + 1)2

)2
)
.

(4.11)

We can make the same kind of remark as in the previous subsection when
N is large. In the following, we give estimators for two other classes of extreme
risk measures, based on the estimators given in Equations (4.1) and (4.7). The
first one generalizes quantiles.

5. Some extreme risk measures estimators

5.1. Lp−quantiles

Let p > 0 and Z be a real random variable such that E [|Z|p] < +∞. The
Lp−quantiles of Z with level α ∈]0, 1[, denoted qp,α(Z), is solution of the mini-
mization problem (see [11]):

qp,α(Z) = argmin
z∈R

E
[
(1− α) (z − Z)

p
+ + α (Z − z)

p
+

]
, (5.1)
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where Z+ = Z1{Z>0}. Equation (5.1) requires the existence of moment of or-
der p. Equivalently, the Lp−quantile of Z may also be seen as the solution of

(1 − α)E
[
(z − Z)p−1

+

]
= αE

[
(Z − z)p−1

+

]
, and thus only refers to moment of

order p− 1.
According to [39], the case p = 1 leads to the quantile q1,α(Z) = F−1

Z (α),
where FZ is the c.d.f. of Z. The case p = 2, formalized in [48], leads to more com-
plicated calculations, and admits, with the exception of some particular cases
(see, e.g. [38]), no general formula. The general case p ≥ 1 has seen some recent
advances. [5] has shown that Lp−quantiles get the translation equivariance and
positive homogeneity properties for p ≥ 1. More recently, the particular case of
Student distributions has, for example, been explored in [7]. However, it seems
difficult to obtain a general formula. On the other hand, in the case of extreme
levels α, i.e. when α tends to 1, [14] proved that the following relationship holds,
for a heavy-tailed random variable with tail index γ < 1/(p− 1).

qp,α (Z)

qα(Z)
→

α→1

[
γ

B (p, γ−1 − p+ 1)

]−γ

:= fL (γ, p) , (5.2)

where p > 1 and B(., .) is the beta function. We add that for a Pareto-type
distribution with tail index γ, the Lp−quantile exists if and the only if the
moment of order p − 1 exists, i.e. if γ < 1/(p − 1). The expectile case p = 2
leads to the result of [5]. Using this result, we can estimate the conditional
Lp−quantiles from the quantile estimated in Section 4. For that purpose, we
need to know the tail index of the conditional radius R∗, given in the following
lemma.

Lemma 5.1. The conditional distribution Y |X = x is attracted to a maximum
domain of Pareto-type distribution with tail index (γ−1 +N)−1, i.e.

lim
t→+∞

Φ̄R∗(ωt)

Φ̄R∗(t)
= ω− 1

γ −N . (5.3)

With Lemma 5.1 and Equation (5.2), we define the following estimators for
the Lp−quantile of Y |X = x, according to whether if n(1 − αn) tends to 0 or
+∞.

Definition 5.1. Let (αn)n∈N be a sequence such that αn → 1 as n → +∞. For
all 1 < p < N + 1 + γ−1, we define:⎧⎪⎪⎨
⎪⎪⎩

q̂p,αn (Y |X = x) = μY |X + σY |X
(
W[nṽn+1]

) 1
η̂kn fL

((
γ̂−1
kn

+N
)−1

, p
)

ˆ̂qp,αn (Y |X = x) = μY |X + σY |X

[
W[kn+1]

(
kn
nṽn

)γ̂kn

] 1
η̂kn

fL
((

γ̂−1
kn

+N
)−1

, p
) .

(5.4)
where γ̂kn and ṽn are respectively given in Equation (3.1) and Theorem 4.1.

According to Lemma 5.1, condition p < N +1+ γ−1 ensures the existence of
moment of order p− 1 for Y |X = x, and therefore that of Lp−quantiles.
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We have proved the convergence in probability of both q̂αn (Y |X = x) and
ˆ̂qαn (Y |X = x). Furthermore, the convergence in probability of the asymptotic
term, and consequently the empirical Lp−quantile is not difficult to get, this is
why we omit the proof.

Proposition 5.2 (Consistency of Lp−quantile estimators). Assume that As-
sumption 1 and condition (C) hold. Under conditions (Cint) and (Chigh) re-

spectively, q̂p,αn (Y |X = x) and ˆ̂qp,αn (Y |X = x) are consistent for all 1 < p <
N + 1 + γ−1, i.e.: ⎧⎨

⎩
q̂p,αn (Y |X=x)
qp,αn (Y |X=x)

P→ 1
ˆ̂qp,αn (Y |X=x)
qp,αn (Y |X=x)

P→ 1
. (5.5)

Using the second order expansion of Equation (5.2) given in [14], and doing
some stronger assumptions, we can deduce the following asymptotic normality
results. For that purpose, let us add two conditions.

•
(
C

Lp

int

)
: (Cint) holds. In addition,

√
kn(1− αn) = o (ln(1− αn)), and:

lim
n→+∞

√
kn

ln (1− αn)
(1− αn)

min(−ρ,γ)
γN+1 = 0. (5.6)

•
(
C

Lp

high

)
: (Chigh) holds. In addition,

lim
n→+∞

√
kn

ln
(

kn

n(1−αn)

) (1− αn)
min(−ρ,γ)

γN+1 = 0. (5.7)

These conditions will be used below. If we compare
(
C

Lp

int

)
and

(
C

Lp

high

)
with(

CHG
int

)
and

(
CHG

high

)
respectively, sequence kn must be chosen smaller. Indeed,

the classical example of sequences introduced above Theorem 4.1 leads to b <
2amin(−ρ, γ)/(γN + 1), instead of 2amin(−ρ, 2γ)/(γN + 1) for

(
CHG

)
. The(

CLp
)
conditions are thus a bit more restrictive, by remaining compatible with

(C) and
(
CHG

)
. Finally, we can draw the same conclusions than above, i.e. these

conditions are applicable for regularly varying distributions with an intermediate
level γ, and a small number of covariates N .

To sum up, among all these conditions, we can deduce the following ordering:⎧⎨
⎩

(
C

Lp

int

)
⇒
(
CHG

int

)
⇒ (Cint)(

C
Lp

high

)
⇒
(
CHG

high

)
⇒ (Chigh)

.

Proposition 5.3 (Asymptotic normality of Lp−quantile estimators). Assume

that Assumption 2 and condition (C) hold. Under conditions
(
C

Lp

int

)
and

(
C

Lp

high

)
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respectively, then:⎧⎪⎨
⎪⎩

√
kn

ln(1−αn)

(
q̂p,αn (Y |X=x)
qp,αn (Y |X=x) − 1

)
→

n→+∞
N
(
0, N2γ4

(γN+1)4

)
√
kn

ln( kn
n(1−αn) )

(
ˆ̂qp,αn (Y |X=x)
qp,αn (Y |X=x) − 1

)
→

n→+∞
N
(
0,
(

γ
γN+1 − θ Nγ2

(γN+1)2

)2) ,

(5.8)
for all 1 < p < N + 1 + γ−1.

An example of L2−quantile, or expectile, is provided in Section 6. The second
risk measure we focus on is called Haezendonck-Goovaerts risk measure.

5.2. Haezendonck-Goovaerts risk measures

Let ϕ a non-negative and convex function with ϕ(0) = 0 and ϕ(1) = 1, and
Z a real random variable such that E [ϕ (|Z|/h)] < +∞ for some h > 0. The
Haezendonck-Goovaerts risk measure of Z with level α ∈]0, 1[ associated to ϕ,
is given by the following (see [56]):

Hα(Z) = inf
z∈R

{z +Hα(Z, z)} , (5.9)

where Hα(Z, z) is the unique solution h to the equation:

E

[
ϕ

(
(Z − z)+

h

)]
= 1− α. (5.10)

ϕ is called Young function. This family of risk measures has been firstly intro-
duced as Orlicz risk measure in [27], then Haezendonck risk measure in [26],
and finally Haezendonck-Goovaerts risk measure in [56]. According to [6], such
a risk measure is coherent, and therefore translation equivariant and positively
homogeneous. The particular case ϕ(t) = t leads to the Tail Value at Risk
with level α TVaRα(X), introduced in [3]. In the following, we denote Hp,α(Z)
the Haezendonck-Goovaerts risk measure of Z with a power Young function
tp, p ≥ 1. We can notice that in this case, the definition given above requires
E [|Z|p] < +∞. In [56], the authors provided the following result.

Proposition 5.4 ([56]). If Z fills Assumption 1 with γ < 1, and taking a Young
function ϕ(t) = tp, 1 ≤ p < γ−1, then the following relationship holds:

Hp,α(Z)

qα(Z)
→

α→1

γ−1
(
γ−1 − p

)pγ−1

pγ(p−1)
B
(
γ−1 − p, p

)γ
:= fH (γ, p) . (5.11)

In particular, taking p = 1 leads to TVaRα(Z) ∼ (1 − γ)−1 qα(Z) as α →
1. Using Lemma 5.1, extreme quantile estimators in Definitions 4.1, 4.2 and
Proposition 5.4, we can deduce estimators for extreme Haezendonck-Goovaerts
risk measure Hp,α (Y |X = x) (with power Young function ϕ(t) = tp, p ≥ 1) of
Y |X = x.
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Definition 5.2. Let (αn)n∈N be a sequence such that αn → 1 as n → +∞. If
1 ≤ p < N + γ−1, we define:⎧⎪⎪⎨
⎪⎪⎩

Ĥp,αn (Y |X = x) = μY |X + σY |X
(
W[nṽn+1]

) 1
η̂kn fH

((
γ̂−1
kn

+N
)−1

, p
)

ˆ̂
Hp,αn (Y |X = x) = μY |X + σY |X

[
W[kn+1]

(
kn
nṽn

)γ̂kn

] 1
η̂kn

fH
((

γ̂−1
kn

+N
)−1

, p
) .

(5.12)

The condition p < N+γ−1 simply ensures the existence of Hp,αn (Y |X = x).
Using the consistency results given in Propositions 4.1 and 4.3, the consistency
of these estimators is immediate. The proof is also omitted from the appendix.

Proposition 5.5 (Consistency of H-G estimators). Assume that Assumption 1
and condition (C) are filled. Under conditions (Cint) and (Chigh) respectively,

Ĥp,αn (Y |X = x) and
ˆ̂
Hp,αn (Y |X = x) are consistent for all 1 ≤ p < N +γ−1,

i.e.: ⎧⎨
⎩

Ĥp,αn (Y |X=x)
Hp,αn (Y |X=x)

P→ 1
ˆ̂
Hp,αn (Y |X=x)
Hp,αn (Y |X=x)

P→ 1
. (5.13)

Proposition 5.6 (Asymptotic normality of H-G estimators). Assume that As-

sumption 2 and condition (C) hold. Under conditions
(
CHG

int

)
and

(
CHG

high

)
re-

spectively, we have:⎧⎪⎨
⎪⎩

√
kn

ln(1−αn)

(
Ĥp,αn (Y |X=x)
Hp,αn (Y |X=x) − 1

)
→

n→+∞
N
(
0, N2γ4

(γN+1)4

)
√
kn

ln( kn
n(1−αn) )

(
ˆ̂
Hp,αn (Y |X=x)
Hp,αn (Y |X=x) − 1

)
→

n→+∞
N
(
0,
(

γ
γN+1 − θ Nγ2

(γN+1)2

)2) ,

(5.14)
for all 1 ≤ p < N + γ−1.

We can emphasize that conditions for asymptotic normality are less strong in
the case of Haezendonck-Goovaerts risk measures. We propose some examples
(with p = 1, i.e. TVaR) in Sections 6 and 7.

6. Simulation study

In this section, we apply our estimators to 1,000 samples of n simulations of a
Student vector Z = (X, Y ) ∈ R

3 (X ∈ R
2 and Y ∈ R) with ν = 2 degrees of

freedom, and compare with theoretical results. According to [15], the Student
distribution with ν degrees of freedom fills Assumption 1 with indices γ = 1/ν,
ρ = −2/ν, and an auxiliary function A(t) proportional to t−2/ν . The latter
even fills Assumption 2, and is the only heavy-tailed elliptical distribution (to
our knowledge) where we can obtain closed formula for conditional quantiles.
In addition, such a degree of freedom makes the tail of the distribution suffi-
ciently heavy to easily observe the asymptotic results. We can notice that the
unconditional distribution Y has tail index 1/2, then, using Lemma 5.1, the
conditional distribution Y |X = x has tail index 2/5 < 1, and admits quantile,
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expectile (L2−quantile) and TVaR. This section beeing uniquely devoted to the
performance of our estimators, we take for conveniance μ = 0R3 and Σ = I3.
Let us now estimate the extreme quantiles of Y |X = x. For that purpose, we
have to choose an arbitrary value of x. We thus suppose for example that the
observed covariates vector x satisfies M(x) = 1.

6.1. Choice of parameters

As mentioned in Sections 3 and 4, the asymptotic results obtained are sensitive
to the choice of sequences kn, hn, αn, and to a lesser extent to the kernel K. The
latter will be K(t) = (1/2)1{|t|≤1} in the following. Concerning the sequences,
we propose in this section to consider the polynomial forms αn = 1−n−a, a > 0,
kn = nb, b > 0 and hn = n−c, c > 0. In order to deal with high quantiles, we
take in a first time a = 1.25. We now have to choose carefully the parameters b

and c, fulfilling the conditions (C), (Chigh) and
(
CHG

high

)
. (C) imposes b < 1− c,

b < 4c and b < 4/(ν + 4) = 2/3, (Chigh) is satisfied with θ = a/(a + b − 1)

(see Corollary 4.4),
(
CHG

high

)
entails b ≤ 2a = 2.5 and b ≤ 4a/(N + ν) = 1.25.

Finally, it seems reasonable to choose b (respectively c) as large (respectively
small) as possible. We propose, in the following, to compare the performances
of our estimators according to b and c.

6.2. Extremal parameters estimation

The next step is to estimate the quantities η and �(x). For that purpose, we

use our estimators η̂kn and �̂kn,hn(x) respectively introduced in Equations (3.3)
and (3.10). These two estimators are related to the Hill estimator γ̂kn , and
asymptotic results of Section 3 hold only if the data is independent. This is why
we do the estimation of γ only with the n realizations of the first component
from the vector Z.

Figure 1 shows the box plots of our estimators η̂kn and �̂kn,hn(x) for b = 0.3
(A), 0.6 (B), 0.8 (C) and c = 0.1 (1), 0.3 (2) and 0.5 (3). In this example, the
theoretical value of η is 2/2+ 1 = 2, and �(x) is equal to 3.375 (cf. Table 1). As
mentioned in the previous paragraph, the estimation of both η and �(x) seems
better when b is large. However, when b > 2/3 (case C), (C) is no longer filled,

and the estimators perform very poorly. Finally, the variance of �̂kn,hn(x) seems
increasing with c. We can also notice that case (B-1) does not fill (C), since
b > 4c. Thus the optimal choice of parameters seems to be b around 0.6 and c
around 0.2, which confirms the conclusions of the previous paragraph.

6.3. Extreme risk measures estimation

It remains to estimate the conditional quantiles, expectiles and TVaRs of Y |X =
x. Theoretical formulas (or algorithms) for conditional quantiles and expectiles
may be found in [45] and [46]. Furthermore, using straightforward calculations,
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Fig 1. From left to right: box plots of 1,000 estimators η̂kn and �̂kn,hn (x), for n = 10,000.
Theoretical values are in red. The chosen sequences are kn = n0.3 (A), n0.6 (B), n0.8 (C),
hn = n−0.1 (1), n−0.3 (2), n−0.5 (3) and αn = 1− n−1.25.

formulas for Tail-Value-at-Risk may be obtained.⎧⎪⎨
⎪⎩

qα (Y |X = x) =
√

ν+M(x)
ν+N Φ−1

ν+N (α)

TVaRα (Y |X = x) = 1
1−α

Γ(N+1+ν
2 )

Γ(N+ν
2 )

√
ν+M(x)√

π(ν+N−1)

(
1 +

Φ−1
ν+N (α)2

ν+N

) 1−N−ν
2 ,

(6.1)
where Φν is the c.d.f. of a Student distribution with ν degrees of freedom. In
order to give an idea of the performance of our estimator, we propose in Figure 2
some box plots representing 1,000 relative errors (based on sample sizes n from
100 to 10,000) of our quantile estimator (4.7) with αn = 1− n−1.25.

Finally, we would like to compare these results with other estimators already
used. The most common and widespread methods for estimating conditional
quantiles and expectiles are respectively quantile and expectile regression, in-
troduced in [39] and [48]. In [45] and [46], we have shown that such approaches
lead to a poor estimation in case of extreme levels. Indeed, in this example,
a quantile regression estimator will converge to Φ−1

ν (αn) = 223.6034, very far
from 20.20626, the theoretical result. Obviously, since the quantile regression es-
timator does not assume any structure on the underlying distribution, the latter
is clearly less efficient than the tailored extreme quantile estimators introduced
in this paper.

It may also be interesting to compare the empirical variance of our esti-
mator with our asymptotic result given in Proposition 4.5. Furthermore, the
latter allows us to provide confidence intervals for qαn (Y |X = x). We thus

introduce ζ̂n as the empirical variance of
√
kn

ln( kn
n(1−αn) )

(
ˆ̂qαn (Y |X=x)
qαn (Y |X=x) − 1

)
, while

ζ =
(

γ
γN+1 − θ Nγ2

(γN+1)2

)2
= 4.38× 10−3 in this section. In addition, we denote

mn the number of times the theoretical value qαn (Y |X = x) is in the 95% con-
fidence interval. Table 2 gives an overview of the behavior of these quantities
according to n.
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Fig 2. Box plots representing 1,000 relative errors
ˆ̂qαn (Y |X=x)

qαn (Y |X=x)
− 1,

ˆ̂q2,αn (Y |X=x)

q2,αn (Y |X=x)
− 1 and

ˆ̂
H1,αn (Y |X=x)

H1,αn (Y |X=x)
− 1 respectively (based on sample sizes n from 100 to 10,000) with αn =

1− n−1.25, kn = n0.6 and hn = n−0.2.

Table 2

Empirical variance ζ̂n, number of 95% confidence intervals containing the theoretical value
mn for 1,000 estimations ˆ̂qαn (Y |X = x) of qαn (Y |X = x), with n ranging from 100 to

10,000. Chosen sequences are αn = 1− n−1.25, kn = n0.6 and hn = n−0.2.

n 1− αn ζ̂n mn

100 3.16 ×10−3 1.39 ×10−2 478
1,000 1.78 ×10−4 6.06 ×10−3 869
10,000 1 ×10−5 4.55 ×10−3 938

Finally, based on these quantile estimates, we deduce, using Definitions 5.1
and 5.2, L2−quantile (or expectile) and Tail-Value-at-Risk estimates. Figure 2

provides relative errors for estimators ˆ̂q2,αn and
ˆ̂
H1,αn .

In the previous figures, only the first component of the vector is used to
estimate the tail index. There is therefore some loss of information. We have
suggested in Section 3 another approach. Furthermore, [53] or [31] proved that
the Hill estimator may also work with dependent data. Thus it would be possible
to improve the estimation of γ̂kn by adding the other components of the vector
in Equation (3.1), but in that case the asymptotic results of Propositions 3.1 or
3.3 would not hold anymore.

7. Real data example

As an application, we use the daily market returns (computed from the closing
prices) of financial assets from 2006 to 2016, available at http://stanford.edu/
class/ee103/portfolio.html. We focus on the first four assets, i.e. iShares Core
U.S. Aggregate Bond ETF, PowerShares DB Commodity Index Tracking Fund,
WisdomTree Europe SmallCap Dividend Fund and SPDR Dow Jones Industrial
Average ETF which will be our vector of covariates X. Figure 3 represents the
daily returns for each day.

The reason for focusing solely on the value of these assets could be, for exam-
ple, that they are the first available every day. The aim would be to anticipate

http://stanford.edu/class/ee103/portfolio.html
http://stanford.edu/class/ee103/portfolio.html
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Fig 3. Daily market returns of 4 different assets.

the behavior of another asset on another market. We thus consider the return
of WisdomTree Japan Hedged Equity Fund as random variable Y . The size of
the sample is 2519. The first 2518 days (from January 3, 2007 to December 5,
2016) will be our learning sample, and we focus on the 2519th day, when the
covariates vector X is x = (−0.0185%,−0.4464%, 0.9614%, 0.1405%). Pending
the opening of the second market, let us estimate the quantile of the return Y
given X = x.

After a brief study of the autocorrelation functions, we consider that the daily
returns can be considered as independent. Concerning the shape of the data,
histograms of the marginals seem symmetrical. Furthermore, the measured tail
indices are approximately the same for the 4 marginals. This is why suppose that
the data is elliptical. We can also wonder if the consistency property, defined
in Section 2 and quite difficult to verify, is reasonable in this example. We thus
refer to the literature, where consistent elliptical distributions, also called normal
scale mixtures, are widely used to model financial asset returns (see, e.g. [22] or
more recently [1]).

After having estimated μ and Σ by the method of moments, we get M(x) =

1.073. We apply our estimators η̂kn and �̂kn,hn(x) given in Equations (3.3)
and (3.10). We take as sequences kn = n0.6 (b = 0.6) and hn = n−0.2 (c = 0.2),
and as kernel K(t) = (1/2)1{|t|≤1}, hence we deduce the asymptotic confidence

bounds from Equation (3.14). We then obtain η̂kn = 2.62 and �̂kn,hn(x) = 6.36.
Let us now estimate the high quantile qαn (Y |X = x) with level αn = 1− n−a,
a > 1. In order to minimize the asymptotic variance of Equation (4.11), we
choose a = (1− b) (γ̂kn + 1) ≈ 1.05. By applying estimator (4.7), we get a quan-
tile of level 1− 2.68× 10−4 close to 3.75% for Y |X = x. In other words, before
the opening of the second market, we consider that given the returns of our first
four assets, that of WisdomTree Japan Hedged Equity Fund has a probability
1− 2.68× 10−4 of beeing less than 3.75%. For information, the true return that
day was 0.714%. If we do the same experience every day of the sample, we get
the extreme quantile curve of Figure 4.

Finally, the true returns curve has exceeded that of extreme quantiles 4 times:
04/04/2013, 06/10/2013, 10/31/2014 and 04/22/2016, hence a frequency of
4/2519 ≈ 1.59×10−3, a little bit more than the 2.68×10−4 expected. However,
some of these overruns are a direct result of the economic policy decisions of the
Bank of Japan. For instance, 04/04/2013 is the day when the latter announced
the Quantitative and Qualitative Monetary Easing (see [41]).
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Fig 4. Estimated quantiles of level 0.9997316 (in red) and true returns (in black) of Wis-
domTree Japan Hedged Equity Fund.

8. Conclusion

In this paper, we propose two estimators �̂kn,hn(x) and η̂kn respectively for ex-
tremal parameters �(x) and η introduced in Equation (2.13). We have proved
their consistency and asymptotic normality according to the asymptotic re-
lationship between the sequences kn and hn. Using these estimators, we have
defined estimators for intermediate and high quantiles, proved their consistency,
given their asymptotic normality under stronger conditions, and deduced esti-
mators for extreme Lp−quantiles and Haezendonck-Goovaerts risk measures.
Consistency and asymptotic normality are also provided for these estimators,
under conditions. We have also illustrated with a numerical example the per-
formance of our estimators, and applied them to real data set.

As working perspectives, we intend to propose a method of optimal choice of
the sequences kn and hn, which is not totally discussed in this paper. Further-
more, the shape of �(x) and η leaving Assumption 1 is a current research topic.
More generally, the asymptotic relationships between conditional and uncondi-
tional quantile in other maximum domains of attraction, using for example the
results of [28], may be developed. However, we need a second-order refinement,
as we need a second-order refinement of Equation (2.14) to propose asymptotic
normalities 4.2 and 4.5 under weaker assumptions than Assumption 2. Finally,
it seems that the ratio of the two terms in Equation (2.14) tends to 1 more
and more slowly when the covariates vector size N becomes large. Then, our
estimation approach may perform poorly if N is large. This is why it might be
wise to propose another method when the covariates vector size N is large.

Appendix A: Proofs

Proof of Lemma 2.1

(i) We recall R1
d
= χ1ξ, where χ1 has a Lebesgue density

√
2
π e

− x2

2 . Accord-

ing to Lemma 4.3 in [34], ξ satisfies F̄ξ(tω)/F̄ξ(t) → ω− 1
γ as t → +∞.
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Furthermore, Lemma 4.2 in [34] entails

P (ξ > t) ∼
t→+∞

E

[
χ

1
γ

1

]−1

P (R1 > t) .

Assumption 1 provides P(R1 > t) ∼ λt−
1
γ , hence the result.

(ii) Using again Lemma 4.2 in [34] for Rd
d
= χdξ, it comes immediatly

P (Rd > t) ∼
t→+∞

E

[
χ

1
γ

d

]
P (ξ > t) .

Some straightforward calculations provide E

[
χ

1
γ

d

]
= 2

1
γ
Γ
(

d+γ−1

2

)
Γ( d

2 )
.

(iii) From (ii), we have, for all d ∈ N, fRd
(t) ∼

t→+∞
2

1
γ
Γ
(

d+γ−1

2

)
Γ( d

2 )
λ′t−

1
γ −1, where

λ′ > 0 is not related to d. The result is immediate with this expression. �

Proof of Proposition 2.2

The conditional density (Proposition 3 in [45]) leads to:

lim
t→∞

Φ̄R∗(t)

Φ̄R(tη)
= lim

t→∞

cN+1gN+1(M(x) + t2)

cNgN (M(x)) ηtη−1c1g1(t2η)

= lim
t→∞

Γ
(
N+1
2

)
(M(x) + t2)−

N
2

π
N+1

2 cNgN (M(x)) ηtη−1

fRN+1

(√
M(x) + t2

)
fR1(t

η)
.

Using Equation (2.11) of Lemma 2.1, it comes

Φ̄R∗(t)

Φ̄R(tη)
∼

t→+∞
1

π
N
2 cNgN (M(x)) η

Γ
(

N+1+γ−1

2

)
Γ
(

1+γ−1

2

) t(η−1)(γ−1+1)+1−η−N .

Obviously, we impose 0 < �(x) < +∞, then 1− η −N + (η − 1)(γ−1 + 1) = 0,
hence η = Nγ+1. Replacing η in the previous equation, �(x) is easily deduced:

�(x) =
1

π
N
2 cNgN (M(x)) η

Γ
(

N+1+γ−1

2

)
Γ
(

1+γ−1

2

) . �

Proof of Proposition 3.4

It is obvious that under conditions (K1)−(K2),
√
kn(ĝhn(x)−cNgN (M(x)))

P→
0 as n → +∞ if kn = o(nhn) and

√
knh

2
n → 0. Then we get the following

asymptotic normality:√
kn

(
γ̂kn − γ

ĝhn(x)− cNgN (M(x))

)
→

n→+∞
N
((

0
0

)
,

(
γ2 0
0 0

))
.
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Since �(x) = u(γ), the delta method entails

√
kn

(
�̂kn,hn(x)− �(x)

)
→

n→+∞
N
(
0, u′(γ)2γ2

)
.

A quick calculation of u′, using Equation (2.12), gives the first result. The second
part of the proof is similar. Indeed, if nhn = o(kn) and nh5

n → 0 as n → +∞,
then

√
nhn

(
γ̂kn − γ

ĝhn(x)− cNgN (M(x))

)

→
n→+∞

N

⎛
⎝(0

0

)
,

⎛
⎝0 0

0
M(x)1−

N
2 Γ(N

2 )
π

N
2

cNgN (M(x))
∫
K(u)2du

⎞
⎠
⎞
⎠ .

The delta method completes the proof. �
In order to make the proof of Theorem 4.1 easier to read, we give the follow-

ing lemma, which provides the asymptotic behavior of a statistic order under
Assumption 1.

Lemma A.1. Under Assumption 1 and condition (C),

√
nvn

( (
W[nvn+1]

)
Φ−1

R (1− vn)
− 1

)
→

n→+∞
N
(
0, γ2

)
. (A.1)

Proof of Lemma A.1

The proof is inspired by Theorem 2.4.1 in [15]. Let Y1, Y2, . . . be independant and
identically distributed random variables with c.d.f. 1 − y−1, y > 1. We denote
in addition Y[n] ≤ . . . ≤ Y[1]. We thus have

√
nvn

(
vnY[nvn+1] − 1

)
→

n→+∞
N (0, 1).

By noticing that W[nvn+1]
d
= Φ−1

R

(
1− 1/Y[nvn+1]

)
, it comes

√
nvn

( (
W[nvn+1]

)
Φ−1

R (1− vn)
− 1

)
d
=

√
nvn

(
Φ−1

R

(
1− 1/Y[nvn+1]

)
Φ−1

R (1− vn)
−
(
vnY[nvn+1]

)γ)

+
√
nvn

((
vnY[nvn+1]

)γ − 1
)
.

The delta method entails that the second term tends to N (0, γ2). Moreover,

Assumption 1 and
√
knA

(
n
kn

)
→ 0 as n → +∞ ensure the asymptotic nullity

of the first term.
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Proof of Theorem 4.1

In a first time, we can notice that ṽn is related to �̂kn,hn(x). Then, accord-
ing to Proposition 3.4, (i) entails that we can deal with vn instead of ṽn in
Equation (4.2). Furthermore, we give the decomposition:

√
kn

ln (1− αn)

(
q̂αn (Y |X = x)

qαn↑ (Y |X = x)
− 1

)
∼

n→+∞

√
kn

ln (1− αn)

⎛
⎝ (W[nvn+1]

)1/η̂kn

Φ−1
R (1− vn)

1/η
− 1

⎞
⎠

=

√
kn

ln (1− αn)

⎛
⎝ (

W[nvn+1]

)1/η̂kn

Φ−1
R (1− vn)

1/η̂kn
− 1

⎞
⎠ Φ−1

R (1− vn)
1/η̂kn−1/η

+

√
kn

ln (1− αn)

(
Φ−1

R (1− vn)
1/η̂kn−1/η − 1

)
.

Under Assumption 1, and according to Proposition 3.1 and Theorem 2.4.1 in [15]
(with (C)), we have:⎧⎪⎨

⎪⎩
√
kn

(
1

η̂kn
− 1

η

)
→

n→+∞
N
(
0, N2γ2

(γN+1)4

)
√
nvn

(
(W[nvn+1])
Φ−1

R (1−vn)
− 1

)
→

n→+∞
N
(
0, γ2

) ,

By noticing that vn is equivalent to �(x)−1(1 − αn) as n → +∞, and using

condition
√
kn = o

(
ln(1− αn)

√
n(1− αn)

)
in (Cint), it comes

√
kn

ln (1− αn)

( (
W[nvn+1]

)1/η̂kn

Φ−1
R (1− vn)

1/η̂kn
− 1

)
→ 0 as n → +∞.

Furthermore, under Assumption 1, ln
(
Φ−1

R (1− vn)
)
is clearly equivalent to

−γ ln(vn), or −γ ln(1 − αn). Then (Cint) ensures Φ−1
R (1− vn)

1/η̂kn−1/η → 1
as n → +∞, and therefore the first term of the decomposition tends to 0. It
thus remains to calculate the limit of the second term. It is not complicated to
notice that

√
kn

ln
(
Φ−1

R (1− vn)
) (Φ−1

R (1− vn)
1/η̂kn−1/η − 1

)
→

n→+∞
N
(
0,

N2γ2

(γN + 1)
4

)
.

Using the equivalence ln
(
Φ−1

R (1− vn)
)
∼ −γ ln(vn) ∼ −γ ln(1−αn), we get the

result (4.2). Using asymptotic relationship (2.14), the consistency 4.3 is obvious.
�

Proof of Proposition 4.2

We recall that density of ΦR∗ is proportional to cN+1gN+1

(
M(x) + t2

)
, and,

from Assumption 2, there exist λ1 > 0, λ2 ∈ R such that:

cN+1gN+1

(
M(x) + t2

)
= λ1

(
M(x) + t2

)−N+1+γ−1

2

[
1 + λ2

(
M(x) + t2

) ρ
2γ + o

(
t
ρ
γ

)]
.
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The previous expression may be rewritten as follows, where λ1 > 0, λ2, λ3 ∈ R:

cN+1gN+1

(
M(x) + t2

)
= λ1t

−(N+1+γ−1)
[
1 + λ2

(
M(x) + t2

) ρ
2γ + λ3t

−2 + o
(
t
ρ
γ

)]
.

In order to make the proof more readable, we do not specify the values of
constants λi, because they are not essential. Then, in the case, ρ/γ ≤ −2, we
get

cN+1gN+1

(
M(x) + t2

)
= λ1t

−(N+1+γ−1)
[
1 + λ2t

−2 + o
(
t−2
)]

, λ1 > 0, λ2 ∈ R.

In other terms, cN+1gN+1

(
M(x) + t2

)
is regularly varying of second order with

indices −N − 1 − γ−1, −2, and an auxiliary function proportional to t−2. Ac-
cording to Proposition 6 of [32], Φ̄R∗(t) =

∫ +∞
t

cN+1gN+1

(
M(x) + u2

)
du ∈

2RV−N−γ−1,−2 with an auxiliary function proportional to t−2. Equivalently,
there exists λ1 > 0, λ2 ∈ R such that

Φ−1
R∗

(
1− 1

t

)
= λ1t

γ
γN+1

[
1 + λ2t

− 2γ
γN+1 + o

(
t−

2γ
γN+1

)]
.

Since Assumption 1 and Assumption 2 provide the relationship Φ−1
R (1− 1/t) =

λ3t
γ [1 + λ4t

ρ + o (tρ)], it comes

Φ−1
R (1− vn)

1
η

Φ−1
R∗ (αn)

= �(x)
− γ

γN+1

(
1− αn

vn

) γ
γN+1 1 + λ1v

−ρ
n + o

(
v−ρ
n

)
1 + λ2(1− αn)

2γ
γN+1 + o

(
(1− αn)

2γ
γN+1

) ,

for some constants λ1, λ2 ∈ R. In that case, we considered ρ ≤ −2γ, hence
−ρ > 2γ/(γN + 1). We then deduce the following expansion:

Φ−1
R (1− vn)

1
η

Φ−1
R∗ (αn)

= �(x)
− γ

γN+1

(
1− αn

vn

) γ
γN+1

[
1 + λ(1− αn)

2γ
γN+1 + o

(
(1− αn)

2γ
γN+1

)]
,

for a certain constant λ ∈ R. We can notice that (1−αn)/vn = 2(1− �(x))(1−
αn) + �(x), and let us now focus on the limit:

lim
n→+∞

√
kn

ln (1− αn)
ln

(
Φ−1

R (1− vn)
1
η

Φ−1
R∗(αn)

)

=
γ

γN + 1
lim

n→+∞

√
kn

ln (1− αn)
ln

(
2
1− �(x)

�(x)
(1− αn) + 1

)

+ lim
n→+∞

√
kn

ln (1− αn)
ln
(
1 + λ(1− αn)

2γ
γN+1 + o

(
(1− αn)

2γ
γN+1

))
.

The first term is easy to calculate. Indeed, since
√
kn(1− αn)/ ln (1− αn) → 0

as n → +∞, we deduce

lim
n→+∞

√
kn

ln (1− αn)
ln

(
2
1− �(x)

�(x)
(1− αn) + 1

)

= 2
1− �(x)

�(x)
lim

n→+∞

√
kn

ln (1− αn)
(1− αn) = 0.
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By a similar calculation, the second term also tends to 0, supposing in addition√
kn

ln(1−αn)
(1− αn)

2γ
γN+1 → 0 as n → +∞. Then, we deduce, using Proposition 4.1:

√
kn

ln (1− αn)

(
q̂αn (Y |X = x)

qαn (Y |X = x)
− 1

)
∼

√
kn

ln (1− αn)

⎛
⎝ (W[nvn+1]

)1/η̂kn

Φ−1
R∗ (αn)

− 1

⎞
⎠

=

√
kn

ln (1− αn)

⎛
⎝ q̂αn

(
R∗U(1)

)
Φ−1

R (1− vn)
1
η

− 1

⎞
⎠ Φ−1

R (1− vn)
1
η

Φ−1
R∗ (αn)

+

√
kn

ln (1− αn)

⎛
⎝Φ−1

R (1− vn)
1
η

Φ−1
R∗ (αn)

− 1

⎞
⎠ →

n→+∞
N
(
0,

N2γ4

(γN + 1)4

)
.

Now, let us focus on the case ρ/γ > −2. The proof is exactly the same, with

cN+1gN+1

(
M(x) + t2

)
= λ1t

−(N+1+γ−1)
[
1 + λ2t

ρ
γ + o

(
t

ρ
γ

)]
, λ1 > 0, λ2 ∈ R.

Using the same calculations and supposing lim
n→+∞

√
kn

ln(1−αn)
(1− αn)

− ρ
γN+1 = 0

leads to the result. �

Proof of Theorem 4.3

Firstly, we can notice that

ˆ̂qαn (Y |X = x)

qαn↑ (Y |X = x)
− 1 ∼

n→+∞

[
W[kn+1]

(
kn

nṽn

)γ̂kn

] 1
η̂kn

Φ−1
R (1− vn)

1
η

− 1 =

⎛
⎜⎜⎜⎝
[
W[kn+1]

(
kn

nvn

)γ̂kn

] 1
η̂kn

Φ−1
R (1− vn)

1
η

− 1

⎞
⎟⎟⎟⎠
(
vn
ṽn

) γ̂kn
η̂kn

+

(
vn
ṽn

) γ̂kn
η̂kn − 1.

Since kn = o(nhn), we deduce, as n → +∞:

√
kn

ln
(

kn
nvn

)
⎛
⎜⎜⎜⎝
[
W[kn+1]

(
kn
nṽn

) γ̂kn

] 1
η̂kn

Φ−1
R (1 − vn)

1
η

− 1

⎞
⎟⎟⎟⎠ ∼

√
kn

ln
(

kn
nvn

)
⎛
⎜⎜⎜⎝
[
W[kn+1]

(
kn
nvn

) γ̂kn

] 1
η̂kn

Φ−1
R (1 − vn)

1
η

− 1

⎞
⎟⎟⎟⎠ .

Furthermore, according to Theorem 4.3.8 in [15], (C) and (Chigh) lead to

√
kn

ln
(

kn

nvn

)
⎛
⎜⎝W[kn+1]

(
kn

nvn

)γ̂kn

Φ−1
R (1− vn)

− 1

⎞
⎟⎠ ∼

n→+∞

√
kn

ln
(

kn

nvn

)
((

kn
nvn

)γ̂kn−γ

− 1

)
.
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From Assumption 1, it is obvious to prove that ln
(
Φ−1

R (1− vn)
)
/ ln (kn/(nvn))

is asymptotically equivalent to γ ln(1−αn)/ ln (n(1− αn)/kn). Then, if we focus
on the second term, it comes, using the limit given in (Chigh):

√
kn

ln
(

kn
nvn

)
⎛
⎝

(
kn
nvn

)γ̂kn−γ
− 1

ΦR (1− vn)
1

η̂kn
− 1

η − 1

⎞
⎠ →

n→+∞
N

⎛
⎝(0

0

)
,

⎛
⎝ γ2 −θ Nγ3

(γN+1)2

−θ Nγ3

(γN+1)2
θ2 N2γ4

(γN+1)4

⎞
⎠
⎞
⎠ .

Finally,

√
kn

ln
(

kn
nvn

)
⎛
⎜⎜⎜⎝
[
W[kn+1]

(
kn
nṽn

)γ̂kn

] 1
η̂kn

Φ−1
R (1− vn)

1
η

− 1

⎞
⎟⎟⎟⎠ =

√
kn

ln
(

kn
nvn

) (Φ−1
R (1− vn)

1
η̂kn

− 1
η − 1

)

+

√
kn

ln
(

kn
nvn

)
⎛
⎜⎜⎜⎝
[
W[kn+1]

(
kn
nṽn

)γ̂kn

] 1
η̂kn

Φ−1
R (1− vn)

1
η̂kn

− 1

⎞
⎟⎟⎟⎠ Φ−1

R (1− vn)
1

η̂kn
− 1

η .

When n → ∞, this expression is the sum of the following bivariate normal
distribution:

√
kn

ln
(

kn
nvn

)
⎛
⎜⎜⎜⎝
[
W[kn+1]

(
kn
nṽn

) γ̂kn

] 1
η̂kn

Φ−1
R

(1−vn)

1
η̂kn

− 1

ΦR (1− vn)
1

η̂kn
− 1

η − 1

⎞
⎟⎟⎟⎠ → N

⎛
⎝(0

0

)
,

⎛
⎝ γ2

(γN+1)2
−θ Nγ3

(γN+1)3

−θ Nγ3

(γN+1)3
θ2 N2γ4

(γN+1)4

⎞
⎠
⎞
⎠ ,

To conclude, ln
(

kn

nvn

)
∼ ln

(
kn

n(1−αn)

)
as n → +∞, hence the result. The con-

sistency is immediate. �

Proof of Proposition 4.5

The proof is similar to that of Proposition 4.2. Indeed, we have given, in the
case ρ/γ ≤ −2:

Φ−1
R (1− vn)

1
η

Φ−1
R∗(αn)

= �(x)−
γ

γN+1 (2(1− �(x))(1− αn) + �(x))
γ

γN+1

×
[
1 + λ(1− αn)

2γ
γN+1 + o

(
(1− αn)

2γ
γN+1

)]
,

for a certain constant λ ∈ R. It thus remains to calculate

lim
n→+∞

√
kn

ln
(

kn

n(1−αn)

) ln

(
Φ−1

R (1− vn)
1
η

Φ−1
R∗(αn)

)

=
γ

γN + 1
lim

n→+∞

√
kn

ln
(

kn

n(1−αn)

) ln

(
2
1− �(x)

�(x)
(1− αn) + 1

)

+ lim
n→+∞

√
kn

ln
(

kn

n(1−αn)

) ln
(
1 + λ(1− αn)

2γ
γN+1 + o

(
(1− αn)

2γ
γN+1

))
.
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The first term is easy to calculate. Indeed, since n(1 − αn) → 0 and kn = o(n)
as n → +∞, we deduce

lim
n→+∞

√
kn

ln
(

kn

n(1−αn)

) ln

(
2
1− �(x)

�(x)
(1− αn) + 1

)

= 2
1− �(x)

�(x)
lim

n→+∞

√
kn

ln
(

kn

n(1−αn)

) (1− αn) = 0.

By a similar calculation, the second term also tends to 0, supposing in addition√
kn

ln( kn
n(1−αn) )

(1− αn)
2γ

γN+1 → 0 as n → +∞. Then, we deduce, using Proposi-

tion 4.3:

√
kn

ln
(

kn
n(1−αn)

)
⎛
⎜⎜⎜⎝
[
W[kn+1]

(
kn
nṽn

)γ̂kn

] 1
η̂kn

Φ−1
R∗ (αn)

− 1

⎞
⎟⎟⎟⎠ =

√
kn

ln
(

kn
n(1−αn)

)
⎛
⎝Φ−1

R (1− vn)
1
η

Φ−1
R∗ (αn)

− 1

⎞
⎠

+

√
kn

ln
(

kn
n(1−αn)

)
⎛
⎜⎜⎜⎝
[
W[kn+1]

(
kn
nṽn

)γ̂kn

] 1
η̂kn

Φ−1
R (1− vn)

1
η

− 1

⎞
⎟⎟⎟⎠ Φ−1

R (1− vn)
1
η

Φ−1
R∗ (αn)

→
n→+∞

N
(
0,

γ2

(γN + 1)2
− 2θ

Nγ3

(γN + 1)3
+ θ2

N2γ4

(γN + 1)4

)
.

Now, let us focus on the case ρ/γ > −2. The proof is exactly the same, with

Φ−1
R (1− vn)

1
η

Φ−1
R∗(αn)

= �(x)−
γ

γN+1 (2(1− �(x))(1− αn) + �(x))
γ

γN+1

×
[
1 + λ(1− αn)

−ρ
γN+1 + o

(
(1− αn)

−ρ
γN+1

)]
, λ ∈ R.

Using the same calculations and supposing lim
n→+∞

√
kn

ln( kn
n(1−αn) )

(1− αn)
− ρ

γN+1 = 0

leads to the result. �

Proof of Lemma 5.1

The density of Y |X = x is given by

cN+1gN+1

(
M(x) + (t− μY |X)2σ−2

Y |X

)
(cNgN (M(x)))

−1
,

where M(x) = (x − μX)�Σ−1
X (x − μX). In order to simplify, we consider the

case reduced and centered, i.e. μY |X = 0 and σY |X = 1. A quick calculation
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gives

lim
t→+∞

Φ̄R∗(ωt)

Φ̄R∗(t)
= ω lim

t→+∞

gN+1(M(x) + ω2t2)

gN+1(M(x) + t2)

= ω lim
t→+∞

(M(x) + ω2t2)−
N
2

(M(x) + t2)−
N
2

fRN+1

(√
M(x) + ω2t2

)
fRN+1

(√
M(x) + t2

) .

Equation (2.10) leads to

lim
t→+∞

Φ̄R∗(ωt)

Φ̄R∗(t)
= ωω−Nω− 1

γ −1 = ω− 1
γ −N . �

Proof of Proposition 5.3

We recall in a first time that condition
(
C

Lp

int

)
entails

(
CHG

int

)
. We have the

following decomposition:

√
kn

ln (1 − αn)

(
q̂p,αn (Y |X = x)

qp,αn (Y |X = x)
− 1

)

∼
n→+∞

√
kn

ln (1 − αn)

⎛
⎜⎜⎝
(
W[nṽn+1]

)1/η̂kn fL

((
γ̂−1
kn

+ N
)−1

, p

)
qp,αn

(
R∗U(1)

) − 1

⎞
⎟⎟⎠ =

√
kn

ln (1 − αn)

⎛
⎜⎜⎝

fL

((
γ̂−1
kn

+ N
)−1

, p

)
fL
(
(γ−1 + N)−1 , p

) − 1

⎞
⎟⎟⎠
(
W[nṽn+1]

)1/η̂kn

Φ−1
R∗ (αn)

fL
((

γ−1 + N
)−1

, p
)
Φ−1

R∗ (αn)

qp,αn

(
R∗U(1)

)

+

√
kn

ln (1 − αn)

( (
W[nṽn+1]

)1/η̂kn

Φ−1
R∗ (αn)

− 1

)
fL
((

γ−1 + N
)−1

, p
)
Φ−1

R∗ (αn)

qp,αn

(
R∗U(1)

)

+

√
kn

ln (1 − αn)

⎛
⎝ fL

((
γ−1 + N

)−1
, p
)
Φ−1

R∗ (αn)

qp,αn

(
R∗U(1)

) − 1

⎞
⎠ .

We know that fL

((
γ̂−1
kn

+N
)−1

, p
)
, as a function of γ̂kn , is asymptotically

normal with rate
√
kn (see Equation (3.2)). Then, the first term in the sum

clearly tends to 0 as n → +∞. Using Proposition 4.2, the second term tends to
the normal distribution given in (4.6). Finally, we have to check that the third
term tends to 0. For that purpose, we use the second order expansion given
in [14]:

qp,αn

(
R∗U(1)

)
fL

(
(γ−1 +N)−1 , p

)
qαn

(
R∗U(1)

) = 1− (γ−1 +N)−1r(αn, p) + (λ+ o(1))A∗
(

1

1− αn

)
,

where r(αn, p) = λ1
1

qαn(R∗U(1))

(
E
[
R∗U (1)

]
+ o(1)

)
+ λ2A

∗
(

1
1−αn

)
(1 + o(1)),

λ, λ1, λ2 ∈ R are not related to n and A∗(t) is the auxiliary function of
Φ−1

R∗
(
1− 1

t

)
. It seems important to precise that the conditional distribution
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R∗U (1) is regularly varying with tail index γ−1+N > 1, then E
[
R∗U (1)

]
exists

and, R∗U (1) being symmetric, equals 0. Then, a sufficient condition for asymp-
totic normality may be⎧⎨

⎩
lim

n→+∞

√
kn

ln(1−αn)qαn(R∗U(1))
= 0

lim
n→+∞

√
kn

ln(1−αn)
A∗
(

1
1−αn

)
= 0

.

We know, using Assumption 2 and the proof of Proposition 4.5, that the quan-
tile qαn

(
R∗U (1)

)
= Φ−1

R∗(αn) is asymptotically proportional to (1 − αn)
− γ

γN+1 ,

while A∗
(

1
1−αn

)
is asymptotically proportional to (1− αn)

− ρ
γN+1 if ρ > −2γ

and (1− αn)
2γ

γN+1 otherwise. Finally, it is not difficult to check that
(
C

Lp

int

)
leads

to the nullity of the two limits, and therefore to the third term of the decompo-
sition, hence the result. The proof is exactly the same for the second normality,

replacing q̂p,αn (Y |X = x) by ˆ̂qp,αn (Y |X = x), ln (1− αn) by ln
(

kn

n(1−αn)

)
and

using Proposition 4.5 instead of 4.2. �

Proof of Proposition 5.6

We have the following decomposition:

√
kn

ln (1 − αn)

(
Ĥp,αn (Y |X = x)

Hp,αn (Y |X = x)
− 1

)

∼
n→+∞

√
kn

ln (1 − αn)

⎛
⎜⎜⎝
(
W[nṽn+1]

)1/η̂kn fH

((
γ̂−1
kn

+ N
)−1

, p

)
Hp,αn

(
R∗U(1)

) − 1

⎞
⎟⎟⎠ =

√
kn

ln (1 − αn)

⎛
⎜⎜⎝

fH

((
γ̂−1
kn

+ N
)−1

, p

)
fH
(
(γ−1 + N)−1 , p

) − 1

⎞
⎟⎟⎠
(
W[nṽn+1]

)1/η̂kn

Φ−1
R∗ (αn)

fH
((

γ−1 + N
)−1

, p
)
Φ−1

R∗ (αn)

Hp,αn

(
R∗U(1)

)

+

√
kn

ln (1 − αn)

( (
W[nṽn+1]

)1/η̂kn

Φ−1
R∗ (αn)

− 1

)
fH
((

γ−1 + N
)−1

, p
)
Φ−1

R∗ (αn)

Hαn

(
R∗U(1)

)

+

√
kn

ln (1 − αn)

⎛
⎝ fH

((
γ−1 + N

)−1
, p
)
Φ−1

R∗ (αn)

Hp,αn

(
R∗U(1)

) − 1

⎞
⎠ .

We know that fH

((
γ̂−1
kn

+N
)−1

, p
)
, as a function of γ̂kn , is asymptotically

normal with rate
√
kn (see Equation (3.2)). Then, the first term in the sum

clearly tends to 0 as n → +∞. Using Proposition 4.2, the second term tends to
the normal distribution given in (4.6). Finally, we have to check that the third
term tends to 0. For that purpose, we use the result of Theorem 4.5 in [44],
which ensures that there exists λ ∈ R such that:

Hp,αn

(
R∗U (1)

)
fH

(
(γ−1 +N)

−1
, p
)
Φ−1

R∗(αn)
= 1 + λA∗

(
1

1− αn

)
(1 + o(1)),
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where A∗ is the auxiliary function of Φ−1
R∗
(
1− 1

t

)
. In the proof of Proposition 4.2,

we have seen that A∗(t) was proportional either to t−
2γ

γN+1 if ρ ≤ −2γ or t
ρ

γN+1

otherwise. Then condition
(
CHG

int

)
ensures

lim
n→+∞

√
kn

ln (1− αn)
ln

⎛
⎝ Hαn

(
R∗U (1)

)
fH

(
(γ−1 +N)

−1
, p
)
Φ−1

R∗(αn)

⎞
⎠ = 0.

Hence the third term in the sum tends to 0, and the first result of (5.14) is

proved. The proof is exactly the same for the second one, with rate
√
kn

ln( kn
n(1−αn) )

instead of
√
kn

ln(1−αn)
. Then condition

(
CHG

high

)
gives the expected result. �
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