
Electronic Journal of Statistics
Vol. 12 (2018) 3953–4001
ISSN: 1935-7524
https://doi.org/10.1214/18-EJS1494

Empirical Bayes analysis of spike and

slab posterior distributions∗
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Abstract: In the sparse normal means model, convergence of the Bayesian
posterior distribution associated to spike and slab prior distributions is con-
sidered. The key sparsity hyperparameter is calibrated via marginal maxi-
mum likelihood empirical Bayes. The plug-in posterior squared–L2 norm is
shown to converge at the minimax rate for the euclidean norm for appro-
priate choices of spike and slab distributions. Possible choices include stan-
dard spike and slab with heavy tailed slab, and the spike and slab LASSO
of Ročková and George with heavy tailed slab. Surprisingly, the popular
Laplace slab is shown to lead to a suboptimal rate for the empirical Bayes
posterior itself. This provides a striking example where convergence of as-
pects of the empirical Bayes posterior such as the posterior mean or median
does not entail convergence of the complete empirical Bayes posterior itself.
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1. Introduction

In the sparse normal means model, one observes a sequence X = (X1, . . . , Xn)

Xi = θi + εi, i = 1, . . . , n, (1)

with θ = (θ1, . . . , θn) ∈ R
n and ε1, . . . , εn i.i.d. N (0, 1). Given θ, the distribution

of X is a product of Gaussians and is denoted by Pθ. Further, one assumes that
the ‘true’ vector θ0 belongs to

�0[sn] = {θ ∈ R
n, #{i : θi �= 0} ≤ sn} ,

the set of vectors that have at most sn nonzero coordinates, where 0 ≤ sn ≤ n.
A typical sparsity assumption is that sn is a sequence that may grow with n
but is ‘small’ compared to n (e.g. in the asymptotics n → ∞, one typically
assumes sn/n = o(1) and sn → ∞). A natural problem is that of estimating θ
with respect to the euclidean loss ‖θ − θ′‖2 =

∑n
i=1(θi − θ′i)

2. A benchmark is
given by the minimax rate for this loss over the class of sparse vectors �0[sn].
Denoting

rn := 2sn log(n/sn),

[7] show that the minimax rate equals (1 + o(1))rn as n → ∞.
Taking a Bayesian approach, one of the simplest and arguably most natural

classes of prior distributions in this setting is given by so-called spike and slab
distributions,

θ ∼
n⊗

i=1

(1− α)δ0 + αG,
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where δ0 denotes the Dirac mass at 0, the distribution G has density γ with re-
spect to Lebesgue measure and α belongs to [0, 1]. These priors were introduced
and advocated in a number of papers, including [15, 8, 9, 21]. One important
point is the calibration of the tuning parameter α, which can be done in a num-
ber of ways, including: deterministic n-dependent choice, data-dependent choice
based on a preliminary estimate α̂, fully Bayesian choice based on a prior dis-
tribution on α. Studying the behaviour of the posterior distributions in sparse
settings is currently the object of a lot of activity. A brief (and by far not ex-
haustive) overview of recent works is given below. Given a prior distribution
Π on θ, and interpreting Pθ as the law of X given θ, one forms the posterior
distribution Π[· |X] which is the law of θ given X. The frequentist analysis of
the posterior distribution consists in the study of the convergence of Π[· |X] in
probability under Pθ0 , thus assuming that the data has actually been generated
from some ‘true’ parameter θ0.

In the present paper, we follow this path and are more particularly interested
in obtaining a uniform bound on the posterior squared L2-moment of the order
of the optimal minimax rate, that is in proving, with C a large enough constant,

sup
θ0∈�0[sn]

Eθ0

ˆ
‖θ − θ0‖2dΠ(θ |X) ≤ Crn (2)

for Π a prior distribution constructed using a spike and slab approach, whose
prior parameters may be calibrated using the data, that is following an empirical
Bayes method. This is of interest for at least three reasons

• this provides adaptive convergence rates for the entire posterior distri-
bution, using a fully data-driven procedure. This is more than obtaining
convergence of aspects of the posterior such that posterior mean or mode,
and in fact may require different conditions on the prior, as we shall see
below.

• the inequality (2) automatically implies convergence of several commonly
used point estimators derived from the posterior Π[· |X]: it implies con-
vergence at rate Crn of the posterior mean

´
θdΠ(θ |X) (using Jensen’s

inequality, see e.g. [6]), but also of the coordinatewise posterior median
(see the supplement of [6] for details) and in fact of any fixed posterior
coordinatewise quantile, for instance the quantile 1/4 of Π[· |X]. It also
implies, using Tchebychev’s inequality, convergence of the posterior dis-
tribution at rate Mnrn for ‖ · ‖2 as in (3) below with M = Mn, for any
Mn → ∞.

• knowing (2) is a first step towards results for uncertainty quantification,
in particular for the study of certain credible sets. Indeed, (2) suggests a
natural way to build such a set, that is C ⊂ R

n with Π[C |X] ≥ 1− α for
a given α ∈ (0, 1). Namely, define C = {θ : ‖θ − θ̄‖2 ≤ rX}, with θ̄ the
posterior mean (or another suitable point estimate of θ) and rX a large
enough multiple of the (1− α)–quantile of

´
‖θ − θ̄‖2dΠ(θ |X).

The present work is the first of a series of papers where we study aspects of
inference using spike and slab prior distributions. In particular, based on the
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present results, the behaviour of the previously mentioned credible sets is studied
in the forthcoming paper [5].

Previous results on frequentist analysis of spike and slab type priors. In a
seminal paper, Johnstone and Silverman [12] considered estimation of θ using
spike and slab priors combined with an empirical Bayes method for choosing
α. They chose α = α̂ based on a marginal maximum likelihood approach to be
described in more details below. Denoting θ̂ the associated posterior median (or
posterior mean), [12] established that

sup
θ0∈�0[sn]

Eθ0‖θ̂ − θ0‖2 ≤ Crn,

thereby proving minimaxity up to a constant of this estimator over �0[sn]. The
estimator is adaptive, as the knowledge of sn is not required in its construction.

In [6], convergence of the posterior distribution is studied in the case α is given
a prior distribution. If α ∼ Beta(1, n + 1), Π is the corresponding hierarchical
prior, and Π[· |X] the associated posterior distribution, it is established in [6]
that for large enough M , as n → ∞,

sup
θ0∈�0[sn]

Eθ0Π[‖θ − θ0‖2 ≤ Mrn |X] → 1. (3)

In [14], Martin and Walker use a fractional likelihood approach to construct a
certain empirical Bayes spike and slab prior, where the idea is to reweight the
standard spike and slab prior by a power of the likelihood. They derive rate-
optimal concentration results for the corresponding posterior distribution and
posterior mean.

A related class of prior distributions recently put forward by Ročková [16]
and Ročková and George [17], is given by

θ ∼
n⊗

i=1

(1− α)G0 + αG1,

where both distributions G0, G1 have densities with respect to Lebesgue mea-
sure. The authors in particular consider the choices G0 = Lap(λ0) and G1 =
Lap(λ1), where Lap(λ) denotes the Laplace (double-exponential) distribution.
Taking λ0 large enough enables one to mimic the spike of the standard spike
and slab prior, and the fact that both G0, G1 are continuous distributions of-
fers some computational advantages, especially when working with the posterior
mode. One can also note that the posterior mode when α = 1 leads to the stan-
dard LASSO estimator. For this reason, the authors in [16, 17] call this prior the
spike and slab LASSO prior. It is shown in [16], Theorem 5.2 and corollaries,
that a certain deterministic n-dependent choice of α, λ0, λ1 (but independent on
the unknown sn) leads to posterior convergence at near-optimal rate sn logn,
while putting a prior on α can yield ([16], Theorem 5.4) the minimax rate for
the posterior, if a certain condition on the strength of the true non-zero coeffi-
ciencents of θ0 is verified.
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Other priors and related work. We briefly review other options to induce
sparsity using a Bayesian approach. One option considered in [6] is first to draw
a subset S ⊂ {1, . . . , n} at random and then to draw nonzero coordinates on
this subset only. That is, sample first a dimension k ∈ {0, . . . , n} at random
according to some prior π. Given k, sample S uniformly at random over subsets
of size k and finally set

θi ∼ G i ∈ S

θi = 0 i /∈ S.

Under the assumption that the prior π on k is of the form, referred to as the
complexity prior,

π(k) = ce−ak log(nb/k), (4)

[6] show that under this prior, both (3) and (2) are satisfied. However, such
a ‘strong’ prior on the dimension is not necessary at least for (3) to hold:
it can be checked for instance, for π the prior on dimension induced by the
spike and slab prior on θ with α ∼ Beta(1, n + 1), that π(sn) � exp(−csn) 
exp(−csn log(n/sn)). So in a sense the complexity prior ‘penalises slightly more
than necessary’.

Another popular way to induce sparsity is via the so-called horseshoe prior,
which draws a θ from a continous distribution which is itself a mixture. As
established in [18]–[19] the horseshoe yields the nearly-optimal rate sn logn
uniformly over the whole space �0[sn], up again to the correct form of the log-
arithmic factor. In a different spirit but still without using Dirac masses at
0, the paper [11] shows that, remarkably, it is also possible to adopt an em-
pirical Bayes approach on the entire unknown distribution function F of the
vector θ, interpreting θ as sampled from a certain distribution, and the au-
thors derive oracle results over �p, p > 0, balls for the plug-in posterior mean
(not including the case p = 0 though). We also note the interesting work [20]
that investigates necessary and sufficient conditions for sparse continuous pri-
ors to be rate-optimal. However the latter is for a fixed regularity parameter
sn, while the results decribed in Section 2 (in particularity the suboptimality
phenomenon, but also upper-bounds using the empirical Bayes approach) are
related to adaptation.

Using complexity–type priors on the number of non-zero coordinates, Belitser
and co-authors [1]–[2] consider Gaussian priors on non-zero coefficients, with a
recentering of the posterior mean at the observation Xi– for those coordinates
i that are selected– to adjust for overshrinkage. In [2], oracle results for the
corresponding posterior are derived, that in particular imply convergence at the
minimax rate up to constant over �0[sn], and the authors also derive results on
uncertainty quantification by studying the frequentist coverage of credible sets
using their procedure.

For further references on the topic, in particular about relationships between
spike and slab priors and absolutely continuous counterparts such as the horse-
shoe or the spike and slab LASSO, we refer to the paper [19] and its discussion
by several authors of the previously mentioned works.
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Overview of results and outline. This paper obtains the following results.

1. For the spike and slab prior, in Section 2.2 we establish lower bound results
that show that the popular Laplace slab yields suboptimal rates when the
complete empirical Bayes posterior is considered.

2. In Sections 2.3 and 2.6, we establish rate-optimal results for the posterior
squared L2–moment for the usual spike and slab with a Cauchy slab, when
the prior hyperparameter is chosen via a marginal maximum likelihood
method.

3. In Section 2.4, the spike and slab LASSO prior is considered and we pro-
vide a near-optimal adaptive rate for the corresponding complete empirical
Bayes posterior distribution.

Section 2 introduces the framework, notation, and the main results, ending with
a brief simulation study in Section 2.5 and discussion. Section 3 gathers the
proofs of the lower-bound results as well as upper-bounds on the spike and slab
prior. Technical lemmas for the spike and slab prior can be found in Section 4,
while Sections 5–6 contain the proof of the result for the spike and slab LASSO
prior.

For real-valued functions f, g, we write f � g if there exists a universal
constant C such that f(x) ≤ Cg(x), and f � g is defined similarly. When x is a
positive real number or an integer, we write f(x) � g(x) if there exists positive
constants c, C,D such that for x ≥ D, we have cf(x) ≤ g(x) ≤ Cf(x). For reals
a, b, one denotes a ∧ b = min(a, b) and a ∨ b = max(a, b).

2. Framework and main results

2.1. Empirical Bayes estimation with spike and slab prior

In the setting of model (1), the spike and slab prior on θ with fixed parameter
α ∈ [0, 1] is

Πα ∼ ⊗n
i=1(1− α)δ0 + αG(·), (5)

where G is a given probability measure on R. We consider the following choices

G =

⎧⎪⎨
⎪⎩

Lap(1)

or

Cauchy(1)

where Lap(λ) denotes the Laplace (double exponential) distribution with pa-
rameter λ and Cauchy(1) the standard Cauchy distribution. Different choices
of parameters and prior distributions are possible (a brief discussion is included
below) but for clarity of exposition we stick to these common distributions. In
the sequel γ denotes the density of G with respect to Lebesgue measure.

By Bayes’ formula the posterior distribution under (1) and (5) with fixed
α ∈ [0, 1] is

Πα[· |X] ∼ ⊗n
i=1(1− a(Xi))δ0 + a(Xi)GXi(·), (6)
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where, denoting by φ the standard normal density and g(x) = φ ∗ G(x) =´
φ(x − u)dG(u) the convolution of φ and G at point x ∈ R, the posterior

weight a(Xi) is given by, for any i,

a(Xi) = aα(Xi) =
αg(Xi)

(1− α)φ(Xi) + αg(Xi)
. (7)

The distribution GXi has density

γXi(·) :=
φ(Xi − ·)γ(·)

g(Xi)
(8)

with respect to Lebesgue measure on R. The behaviour of the posterior distri-
bution Πα[· |X] heavily depends on the choices of the smoothing parameters α
and γ. It turns out that some aspects of this distribution are thresholding-type
estimators, as established in [12].

Posterior median and threshold t(α). The posterior median θ̂med
α (Xi) of the

ith coordinate has a thresholding property: there exists t(α) > 0 such that

θ̂med
α (Xi) = 0 if and only if |Xi| ≤ t(α). A default choice can be α = 1/n; one
can check that this leads to a posterior median behaving similarly as a hard
thresholding estimator with threshold

√
2 logn. One can significantly improve

on this default choice by taking a well-chosen data-dependent α.
In order to choose α, in this paper we follow the empirical Bayes method

proposed in [12]. The idea is to estimate α by maximising the marginal likelihood
in α in the Bayesian model, which is the density of α |X. The log-marginal
likelihood in α can be written as

�(α) = �n(α;X) =

n∑
i=1

log((1− α)φ(Xi) + αg(Xi)). (9)

Let α̂ be defined as the maximiser of the log-marginal likelihood

α̂ = argmax
α∈An

�n(α;X), (10)

where the maximisation is restricted to An = [αn, 1], with αn defined by

t(αn) =
√
2 logn.

The reason for this restriction is that one does not need to take α smaller than
αn, which would correspond to a choice of α ‘more conservative’ than hard-
thresholding at threshold level

√
2 logn.

In [12], Johnstone and Silverman prove that the posterior median α̂med(Xi)
has remarkable optimality properties, for many choices of the slab density γ.
For γ with tails ‘at least as heavy as’ the Laplace distribution, then this point
estimator converges at the minimax rate over �0[sn]. More precisely, it follows
from Theorem 1 in [12] that there exists constants C, c0, c1 such that if

c1 log
2 n ≤ sn ≤ c0n, (11)
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then the posterior median θ̂med
α̂ = (θ̂med

α̂ (Xi))1≤i≤n is rate optimal

sup
θ∈�0[sn]

Eθ‖θ̂med
α̂ − θ‖2 ≤ Csn log(n/sn). (12)

One can actually remove the lower bound in condition (11) – see Theorem 2 in
[12] – by a more complicated choice of α̂, for which α̂ in (10) is replaced by a
smaller value if the empirical Bayes estimate is close to αn given by t(αn) =√
2 logn. In the present paper for simplicity of exposition we first work under

the condition (11). In Section 2.6, we show that the lower bound part of the
condition can be removed when working with the modified estimator as in [12].

Plug-in posterior distribution. The posterior we consider in this paper is
Πα̂[· |X], that is the distribution given by (6), where α has been replaced by its
empirical Bayes (EB) estimate α̂ given by (10). This posterior is called complete
EB posterior in the sequel. The value α̂ is easily found numerically, as imple-
mented in the R package EbayesThresh, see [13]. As noted in [12], the posterior
median α̂med(Xi) displays excellent behaviour in simulations. However, the en-
tire posterior distribution Πα̂[· |X] has not been studied so far. It turns out that
the behaviour of the posterior median does not always reflect the behaviour of
the complete posterior, as is seen in the next subsection.

2.2. Suboptimality of the Laplace slab for the complete EB posterior
distribution

Theorem 1. Let Πα be the spike and slab prior distribution (5) with slab dis-
tribution G equal to the Laplace distribution Lap(1). Let Πα̂[· |X] be the cor-
responding plug-in posterior distribution given by (6), with α̂ chosen by the
empirical Bayes procedure (10). There exist D > 0, N0 > 0, and c0 > 0 such
that, for any n ≥ N0 and any sn with 1 ≤ sn ≤ c0n, there exists θ0 ∈ �0[sn]
such that,

Eθ0

ˆ
‖θ − θ0‖2dΠα̂[θ |X] ≥ Dsne

√
log (n/sn).

Theorem 1 implies that taking a Laplace slab leads to a suboptimal conver-
gence rate in terms of the posterior squared L2–moment. This result is surprising
at first, as we know by (12) that the posterior median converges at optimal rate
rn. The posterior mean also converges at rate rn uniformly over �0[sn], by The-
orem 1 of [12]. So at first sight it would be quite natural to expect that so does
the posterior second moment.

One can naturally ask whether the suboptimality result from Theorem 1 could
come from considering an integrated L2–moment, instead of simply asking for a
posterior convergence result in probability, as is standard in the posterior rates
literature following [10]. We now derive a stronger result than Theorem 1 under
the mild condition sn � log2 n. The fact that the result is stronger follows from
bounding from below the integral in the display of Theorem 1 by the integral
restricted to the set where ‖θ− θ0‖2 is larger than the target lower bound rate.



Spike and slab empirical Bayes 3961

Theorem 2. Under the same notation as in Theorem 1, if Πα is a spike and
slab distribution with as slab G the Laplace distribution, there exists m > 0 such
that for any sn with sn/n → 0 and log2 n = O(sn) as n → ∞, there exists
θ0 ∈ �0[sn] such that, as n → ∞,

Eθ0Πα̂

[
‖θ − θ0‖2 ≤ msne

√
2 log (n/sn) |X

]
= o(1).

Theorem 2, by providing a lower bound in the spirit of [3], shows that the
answer to the above question is negative, and for a Laplace slab, the plug-in
posterior Πα̂[· |X] does not converge at minimax rate uniformly over �0[sn].

Note that the suboptimality occuring here does not result from an artificially
constructed example (we work under exactly the same framework as [12]) and
that this has important (negative) consequences for construction of credible sets.
Due to the rate-suboptimality of the EB Laplace-posterior, typical credible sets
derived from it (such as, e.g., taking quantiles of a recentered posterior second
moment) will inherit the suboptimality in terms of their diameter, and therefore
will not be of optimal size. Fortunately, it is still possible to achieve optimal
rates for certain spike and slab EB posteriors: the previous phenomenon indeed
disappears if the tails of the slab in the prior distribution are heavy enough, as
seen in the next subsection.

2.3. Optimal posterior convergence rate for the EB spike and
Cauchy slab

The next result considers Cauchy tails, although other examples can be covered,
as discussed below. In the sequel, we abbreviate by SAS prior a spike and slab
prior with Cauchy slab.

Theorem 3. Let Πα be the SAS prior distribution (5) with slab distribution
G equal to the standard Cauchy distribution. Let Πα̂[· |X] be the corresponding
plug-in posterior distribution given by (6), with α̂ chosen by the empirical Bayes
procedure (10). There exist C > 0, N0 > 0, and c0, c1 > 0 such that, for any
n ≥ N0, for any sn such that (11) is satisfied for such c0, c1,

sup
θ0∈�0[sn]

Eθ0

ˆ
‖θ − θ0‖2dΠα̂(θ |X) ≤ Crn.

If one only assumes sn ≤ c0n in (11), then the last statement holds with the
bound Crn replaced by Crn + C log3 n.

Theorem 3 confirms that the empirical Bayes plug-in posterior, with α̂ cho-
sen by marginal maximum likelihood, converges at optimal rate with precise
logarithmic factor, at least under the mild condition (11), if tails of the slab dis-
tribution are heavy enough. Inspection of the proof of Theorem 3 reveals that
any slab density γ with tails of the order x−1−δ with δ ∈ (0, 2) gives the same
result. Sensibility to the tails, in particular in view of posterior convergence in
terms of dq-distances, will be further investigated in [5].
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We note that the horseshoe prior on θ considered in [18]–[19] also has Cauchy-
like tails, which seems to confirm that for empirical Bayes–calibrated (product–
type) sparse priors, heavy tails are important to ensure optimal or near-optimal
behaviour, see also the discussion [4].

The lower bound in condition (11) is specific to the estimate α̂. Note that in
the very sparse regime where sn ≤ c1 log

2 n, the rate is no more than C log3 n,
thus missing the minimax rate by at most a logarithmic factor. This lower bound
on sn can be removed and the minimax rate obtained over the whole range of
sparsities sn if one modifies slightly α̂, where the estimator is changed if α̂ is
too close to the lower boundary of the maximisation interval, see Section 2.6.

2.4. Posterior convergence for the EB spike and slab LASSO

Now consider the following prior on θ with fixed parameter α ∈ [0, 1]

Πα ∼ ⊗n
i=1(1− α)G0(·) + αG1(·), (13)

where for k = 0, 1, Gk is given by

G0 = Lap(λ0), G1 =

⎧⎪⎨
⎪⎩

Lap(λ1)

or

Cauchy(1/λ1),

which leads to the spike and slab LASSO prior of [17] in the case of a Laplace G1,
and to a heavy-tailed variant of the spike and slab LASSO if G1 is Cauchy(1/λ1),
that is if its density is γ1(x) = (λ1/π)(1+ λ2

1x
2)−1. In this setting γ0, γ1 denote

the densities of G0, G1 with respect to Lebesgue measure. We call SSL prior a
spike and slab LASSO prior with Cauchy slab.

By Bayes’ formula the posterior distribution under (1) and (13) with fixed
α ∈ [0, 1] is

Πα[· |X] ∼ ⊗n
i=1(1− a(Xi))G0,Xi(·) + a(Xi)G1,Xi(·), (14)

where gk(x) = φ ∗ Gk(x) =
´
φ(x − u)dGk(u) is the convolution of φ and Gk

at point x ∈ R for k = 0, 1, the posterior weight a(Xi) is defined through the
function a(·) given by

a(x) = aα(x) =
αg1(x)

(1− α)g0(x) + αg1(x)
,

and if Gk has density γk with respect to Lebesgue measure, the distribution
Gk,Xi has density

γk,Xi(·) :=
φ(Xi − ·)γk(·)

gk(Xi)
.

In slight abuse of notation, we keep the same notation in the case of the SSL
prior for quantities such as a(x) or α̂ below, as it will always be clear from the
context which prior we work with.
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We consider the following specific choices for the constants λ0, λ1{
λ0 = L0n, L0 = 5

√
2π,

λ1 = L1, L1 = 0.05.
(15)

The choice of the constants L0, L1 is mostly for technical convenience, and is
similar to that of, e.g. Corollary 5.2 in [16]. Any other constant L0 (resp. L1)
larger (resp. smaller) than the above value also works for the following result.
The above numerical values may not be optimal.

Let α̂ be defined as the maximiser of the log-marginal likelihood,

α̂ = argmax
α∈[C logn/n,1]

�n(α;X), (16)

for C = C0(γ0, γ1) a large enough constant to be chosen below (this ensures that
α̂ belongs to an interval on which we can verify that β is increasing, see (40)).
This time we do not have access to the threshold t, since for the SSL prior the
posterior median is not a threshold estimator, so here C logn/n plays the role
of an approximated version of αn in (10).

Theorem 4. Let Πα be the SSL prior distribution (13) with Cauchy slab and
parameters (λ0, λ1) given by (15). Let Πα̂[· |X] be the corresponding plug-in pos-
terior distribution given by (14), with α̂ chosen by the empirical Bayes procedure
(16). There exist C > 0, N0 > 0, and c0, c1 > 0 such that, for any n ≥ N0, for
any sn such that (11) is satisfied for such c0, c1, then

sup
θ0∈�0[sn]

Eθ0

ˆ
‖θ − θ0‖2dΠα̂(θ |X) ≤ Csn logn.

If one only assumes sn ≤ c0n in (11), then the last bound holds with Csn logn
replaced by C(sn log n+ log3 n).

This result is an SSL version of Theorem 3. It shows that a spike and slab
LASSO prior with heavy-tailed slab distribution and empirical Bayes choice of
the weight parameter leads to a nearly optimal contraction rate for the entire
posterior distribution. Hence it provides a theoretical guarantee of a fully data-
driven procedure of calibration of the smoothing parameter in SSL priors.

2.5. A brief numerical study

Theorems 1–2 imply that the posterior distribution for the spike and slab prior
and Laplace(1) slab does not converge at optimal rate and the discrepancy
between the actual rate and the minimax rate for some ‘bad’ θ0s is at least of
order

Rn =
exp

(√
2 log(n/sn)

)
log(n/sn)

,

up to a multiplicative constant factor, as both lower and upper bounds are up
to a constant. Note that Rn grows more slowly than a polynomial in n/sn, so
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the sub-optimality effect will typically be only visible for quite large values of
n/sn. For instance, if n = 104 and sn = 10, one has Rn ≈ 6, which is quite
small given that an extra multiplicative constant is also involved.

For the present simulation study we took n = 107, sn = 10, for which
Rn ≈ 13.9, and the non-zero values of θ0 equal to {2 log(n/sn)}1/2, as the
lower bound proof of Theorems 1–2 suggests. We computed α̂ using the package
EBayesThresh of Johnstone and Silverman [13] and computed

´
‖θ−θ0‖22dΠα̂(X)

using its explicit expression, which can be obtained in closed form for a Laplace
slab, with similar computations as in [13], Section 6.3. We then took the em-
pirical average over 100 repetitions to estimate the target expectation R2 :=
Eθ0

´
‖θ − θ0‖22dΠα̂(X). We first took γ = Lap(1) a standard Laplace slab and

obtained R̂2 ≈ 1110. For comparison, we computed the empirical quadratic risk
R̂mean for the posterior mean (approximating Eθ0‖θ̂mean − θ0‖2) and R̂median

the posterior median of the same posterior, obtaining R̂mean ≈ 158 and
R̂median ≈ 167. So, in this case R̂2 is already 6 to 7 times larger than the
risk of either mean or median.

To further illustrate the ‘blow-up’ in the rate for the posterior second moment
R2, we took a Laplace slab Lap(a) with inverse-scale parameter a, for which the
numerator in the definition of Rn becomes exp{a

√
2 log(n/sn)} (let us also note

that the multiplicative constant we refer to above also depends on a). The same
simulation experiment as above was conducted, with the standard Laplace slab
replaced by a Lap(a) slab, for different values of a. The numerical results are
presented in Table 1, which feature a noticeable increase in the second moment
R̂2, while the risks of posterior mean and median stay around the same value,
as expected.

Table 1

Empirical risks R̂2, R̂med, R̂mean for Laplace slabs Lap(a) and a ∈ [0.5, 3.5]

a 0.5 1 1.5 2 2.5 3 3.5
Second moment 394 1110 2847 5716 8093 16530 34791
Median 173 167 169 174 185 209 219
Mean 157 158 166 172 182 224 336

We also performed the same experiments for the quasi-Cauchy slab prior in-
troduced in [12]-[13] (it is very close to the standard Cauchy slab – in particular
it has the same Cauchy tails – but more convenient from the numerical per-
spective, see [13], Section 6.4). We found R̂median ≈ 192, R̂mean ≈ 191 for the
posterior mean and R̂2 ≈ 287 for the posterior second moment. This time, as
expected, the posterior second moment is not far from the two other risks.

2.6. Modified empirical Bayes estimator

For n ≥ 3 andA ≥ 0, let us set t2n =2 logn−5 log logn and tA =
√
2(1 +A) log n.

For Πα the SAS prior with a Cauchy slab, let as before t(α) be the posterior
median threshold for fixed α. It is not hard to check that t(·) is continuous and
strictly decreasing so has an inverse (see [12], Section 5.3). In a similar fashion
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as in [12], Section 4, let us introduce a modified empirical Bayes estimator as,
for A ≥ 0 and t̂ := t(α̂), αA := t−1(tA),

α̂A =

{
α̂, if t̂ ≤ tn,

αA, if t̂ > tn.
(17)

Theorem 5. Let Πα be the SAS prior distribution with slab distribution G
equal to the standard Cauchy distribution. For a fixed A > 0, let Πα̂A

[· |X] be
the corresponding plug-in posterior distribution, with α̂A the modified estimator
(17). There exist C, c0 > 0, N0 > 0, such that, for any n ≥ N0, for any sn such
that sn ≤ c0n,

sup
θ0∈�0[sn]

Eθ0

ˆ
‖θ − θ0‖2dΠα̂(θ |X) ≤ Crn.

Theorem 5 shows that the plug-in SAS posterior distribution using the mod-
ified estimator (17), A > 0, and a Cauchy slab attains the minimax rate of
convergence rn even in the very sparse regime sn � log2 n, for which the un-
modified estimate of Theorem 3 may lose a logarithmic factor.

2.7. Discussion

In this paper, we have developped a theory of empirical Bayes choice of the hy-
perparameter of spike and slab prior distributions. It extends the work of John-
stone and Silverman [12] in that here the complete EB posterior distribution is
considered. One important message is that such a generalisation preserves opti-
mal convergence rates at the condition of taking slab distributions with heavy
enough tails. If the tails of the slab are only moderate (e.g. Laplace), then the
complete EB posterior rate may be suboptimal. This is in contrast with the
hierarchical case considered in [6], where a Laplace slab combined with a Beta
distributed prior on α was shown to lead to an optimal posterior rate. On the
one hand, the empirical Bayes method often leads to simpler or/and more eas-
ily tractable practical algorithms; on the other hand, we have illustrated here
that the complete EB posterior may in some cases need slightly stronger con-
ditions to conserve optimal theoretical guarantees. This phenomenon had not
been pointed out so far in the literature, to the best of our knowledge.

We also note that Theorem 3 (or Theorem 5 if one allows for very sparse sig-
nals) enables one to recover the optimal form of the logarithmic factor log(n/sn)
in the minimax rate. This entails significant work, as one needs to control the
empirical Bayes weight estimate α̂ both from above and below. This could work
too in the SSL setting of Theorem 4, although this seems to need substantial
extra technical work.

Looking at Theorems 1 and 2, it is natural to wonder why the Empirical Bayes
approach fails for the Laplace slab where the full Bayes approach succeeds as
seen in [6] Theorem 2.2. The reason why the hierarchical Bayes version works
also for γ Laplace is the extra penalty in model size induced by the hierarchical
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prior on dimension. Indeed, in the full Bayes approach, the posterior distribution
of α given X has density

fα |X(α) ∝ p(X |α)π(α),

where p(X |α) is the marginal density one maximises when considering the
MMLE α̂. Hence adding a term log π(α) for well-chosen π – for instance that
arising from a Beta(1, n+1) prior on α as considered in [6] – to the log-marginal
likelihood one maximises forces α̂ to concentrate on smaller values. For instance,
in the present setting, one could consider a penalised log-marginal maximum
likelihood, which would force the estimate α̂ to concentrate on slightly smaller

values, which would allow one to avoid the extra e
√

logn/sn term arising in
Theorems 1–2.

The present work can also serve as a basis for constructing confidence regions
using spike-and-slab posterior distributions. This question is considered in the
forthcoming paper [5].

3. Proofs for the spike and slab prior

Let us briefly outline the ingredients of the proofs to follow. For Theorems 1
and 3, our goal is to bound the expected posterior risk Rn(θ0) = Eθ0

´
‖θ −

θ0‖2dΠα̂(θ |X). There are three main tools. First, after introducing notation
and basic bounds in Section 3.1, bounds on the posterior risk for fixed α are
given in Section 3.2, as well as corresponding bounds for random α. Let us note
that the corresponding upper bounds are different from those obtained on the
quadratic risk for the posterior median in [12] (and in fact, must be, in view
of the negative result in Theorem 1). Second, inequalities on moments of the
score function are stated in Section 3.3. As a third tool, we obtain deviation
inequalities on the location of α̂ in Section 3.4. One of the bounds sharpens the
corresponding bound from [12] in case the signal belongs to the nearly-black
class �0[sn] which we assume here.

Proofs of Theorems 1 and 3 are given in Sections 3.5 and 3.6. For Theorem
3, we also needed to slightly complete the proof of one of the inequalities on
thresholds stated in [12], see Lemma 11. The proof of Theorem 2, which uses
ideas from both previous proofs, is given in Section 3.7. Proofs of technical
lemmas for the SAS prior are given in Section 4.

3.1. Notation and tools for the SAS prior

Expected posterior L2–squared risk. For a fixed weight α, the posterior distribu-
tion of θ is given by (6). On each coordinate, the mixing weight a(Xi) is given
by (7) and the density of the non-zero component γXi by (8). In the sequel we
will obtain bounds on the following quantity, already for a given α ∈ [0, 1],

ˆ
‖θ − θ0‖2dΠα(θ |X) =

n∑
i=1

ˆ
(θi − θ0,i)

2dΠα(θi |Xi).
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To do so, we study r2(α, μ, x) :=
´
(u − μ)2dπα(u |x), where πα(· |x) ∼ (1 −

a(x))δ0 + a(x)γx(·). By definition

r2(α, μ, x) = (1− a(x))μ2 + a(x)

ˆ
(u− μ)2γx(u)du.

This quantity is controlled by a(x) and the term involving γx. From the defi-
nition of a(x), bounding the denominator from below by one of its two compo-
nents, and using a(x) ≤ 1 yields, for any real x and α ∈ [0, 1],

α
g

g ∨ φ
(x) ≤ a(x) ≤ 1 ∧ α

1− α

g

φ
(x). (18)

The marginal likelihood in α. By definition, the empirical Bayes estimate α̂ in
(10) maximises the logarithm of the marginal likelihood in α in (9). In case the
maximum is not taken at the boundary, α̂ is a zero of the derivative (score) of
the previous likelihood. Its expression is S(α) =

∑n
i=1 β(Xi, α), where following

[12] we set, for 0 ≤ α ≤ 1 and any real x,

β(x, α) =
β(x)

1 + αβ(x)
, β(x) =

g

φ
(x)− 1.

The study of α̂ below uses in a crucial way the first two moments of β(Xi, α),
so we introduce the corresponding notation next. Let Eτ , for τ ∈ R

n, denote
the expectation under θ0 = τ . Define

m̃(α) = −E0β(X,α) (19)

and further denote

m1(τ, α) = Eτ [β(X,α)] =

ˆ ∞

−∞
β(t, α)φ(t− τ)dt.

m2(τ, α) = Eτ [β(X,α)2].

The thresholds ζ(α), τ̃(α) and t(α). Following [12], we introduce several useful
thresholds. From Lemma 1 in [12], we know that g/φ, and therefore β = g/φ−1,
is a strictly increasing function on R

+. It is also continuous, so given α, a pseudo-
threshold ζ = ζ(α) can be defined by

β(ζ) =
1

α
. (20)

Further one can also define τ(α) as the solution in x of

Ω(x, α) :=
a(x)

1− a(x)
=

α

1− α

g

φ
(x) = 1.

Equivalently, a(τ(α)) = 1/2. Also, β(τ(α)) = α−1 − 2 so τ(α) ≤ ζ(α). Define
α0 as τ(α0) = 1 and set

τ̃(α) = τ(α ∧ α0). (21)
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Recall from Section 2 that t(α) is the threshold associated to the posterior
median for given α. It is shown in [12], Lemma 3, that t(α) ≤ ζ(α). Finally, the
following bound in terms of τ(α), see [12] p. 1623, is also useful for large x,

1− a(x) ≤ 1{|x|≤τ̃(α)} + e−
1
2 (|x|−τ̃(α))21{|x|>τ̃(α)}. (22)

3.2. Posterior risk bounds

Recall the notation r2(α, μ, x) =
´
(u− μ)2dΠα(u).

Lemma 1. Let γ be the Cauchy or Laplace density. For any x and α ∈ [0, 1/2],

r2(α, 0, x) ≤ C
[
1 ∧ α

1− α

g

φ
(x)

]
(1 + x2)

r2(α, μ, x) ≤ (1− a(x))μ2 + Ca(x)((x− μ)2 + 1).

Let γ be the Cauchy density. For any real x and α ∈ [0, 1/2],

E0r2(α, 0, x) ≤ Cτ(α)α

Eμr2(α, μ, x) ≤ C(1 + τ̃(α)2).

The following lower bound is used in the proof of Theorem 1.

Lemma 2. Let γ be the Laplace density. There exists C0 > 0 such that, for
x ∈ R and α ∈ [0, 1]

r2(α, 0, x) ≥ C0α.

We now turn to bounding r2(α̂, μ, x). This is the quantity r2(α, μ, x), where
α (which comes in via a(x) = aα(x)) is replaced by α̂. This is done with the
help of the threshold τ̃(α).

Lemma 3 (no signal or small signal). Let γ be the Cauchy density. Let α be
a fixed non-random element of (0, 1). Let α̂ be a random element of [0, 1] that
may depend on x ∼ N (0, 1) and on other data. Then there exists C1 > 0 such
that

Er2(α̂, 0, x) ≤ C1

[
ατ̃(α) + P (α̂ > α)1/2

]
.

There exists C2 > 0 such that for any real μ, if x ∼ N (μ, 1),

Er2(α̂, μ, x) ≤ μ2 + C2.

Lemma 4 (signal). Let γ be the Cauchy density. Let α be a fixed non-random
element of (0, 1). Let α̂ be a random element of [0, 1] that may depend on x ∼
N (μ, 1) and on other data and such that τ̃(α̂)2 ≤ d log(n) with probability 1 for
some d > 0. Then there exists C2 > 0 such that for all real μ,

Er2(α̂, μ, x) ≤ C2

[
1 + τ̃(α)2 + (1 + d log n)P (α̂ < α)1/2

]
.
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3.3. Moments of the score function

The next three lemmas are borrowed from [12] and apply to any density γ such
that log γ is Lipschitz on R and satisfies

γ(y)−1

ˆ ∞

y

γ(u)du ≈ yκ−1, as y → ∞. (23)

Both Cauchy and Laplace densities satisfy (23), with κ = 2 and κ = 1 respec-
tively, and their logarithm is Lipschitz.

Lemma 5. For κ ∈ [1, 2] as in (23), as α → 0,

m̃(α) � ζκ−1g(ζ).

Also, the function α → m̃(α) is nonnegative and increasing in α.

Lemma 6. The function α → m1(μ, α) is decreasing in α. Also, m1(ζ, α) ∼
1/(2α) as α → 0. For small enough α,

m2(μ, α) ≤ Cα−1m1(μ, α), μ ≥ 1.

Lemma 7. There exist a constant c1 such that for any x and α,

|β(x, α)| ≤ 1

α ∧ c1
,

and constants c2, c3, c4 such that for any α, and κ as in (23),

m1(μ, α) ≤ −m̃(α) + c2ζ(α)μ
2, |μ| ≤ 1/ζ(α)

m1(μ, α) ≤ (α ∧ c3)
−1 for all μ

and

m2(μ, α) ≤ c4
m̃(α)

ζ(α)κα
|μ| ≤ 1/ζ = 1/ζ(α)

m2(μ, α) ≤ (α ∧ c3)
−2 for all μ.

3.4. In-probability bounds for α̂

Lemma 9 below implies that, for any possible θ0, the estimate α̂ is smaller than
a certain α1 with high probability. One can interpret this as saying that α̂ does
not lead to too much undersmoothing (i.e. too many nonzero coefficients). On
the other hand, if there is enough signal in a certain sense, α̂ does not lead to
too much oversmoothing (i.e. too many zero coefficients), see Lemma 10.

Although we generally follow the approach of [12], there is one significant
difference. One needs a fairly sharp bound on α1 below. Using the definition
from [12] would lead to a loss in terms of logarithmic factors for the posterior
L2–squared moment. So we work with a somewhat different α1, and shall thus
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provide a detailed proof of the corresponding Lemma 9. For the oversmoothing
case, one can borrow the corresponding Lemma of [12] as is.

Let α1 = α1(d) be defined as the solution of the equation, with ηn = sn/n,

dα1m̃(α1) = ηn, (24)

where d is a constant to be chosen (small enough for Lemma 9 to hold). A
solution of (24) exists, as using Lemma 5, α → αm̃(α) is increasing in α, and
equals 0 at 0. Also, provided ηn is small enough, α1 can be made smaller than any
given arbitrary constant. The corresponding threshold ζ1 is defined by β(ζ1) =
α−1
1 . From Lemma 5, we have m̃(α1) � ζg(ζ1) if γ is Cauchy and m̃(α1) � g(ζ1)

if γ is Laplace.

Lemma 8. Let κ be the constant in (23). Let α1 be defined by (24) for d a given
constant and let ζ1 be given by β(ζ1) = α−1

1 . Then there exist real constants c1, c2
such that for large enough n,

log(n/sn) + c1 ≤ ζ21
2

≤ log(n/sn) +
κ− 1

2
log log n+ c2,

with κ as in (23). Also, ζ21 ∼ 2 log(n/sn) as n/sn goes to ∞.

Lemma 9. Let α1 be defined by (24) for d a given small enough constant and
let ζ1 be given by β(ζ1) = α−1

1 . Suppose (11) holds. Then for some constant
C > 0,

sup
θ∈�0[sn]

Pθ[ζ̂ < ζ1] ≤ exp(−Csn).

For the oversmoothing case, one denotes the proportion of signals above a
level τ by

π̃(τ ;μ) =
1

n
#{i : |μi| ≥ τ}. (25)

We also set, recalling that α0 is defined via τ(α0) = 1,

α(τ, π) = sup{α ≤ α0 : πm1(τ, α) ≥ 2m̃(α)}. (26)

One defines ζτ,π as the corresponding pseudo-threshold β−1(α(τ, π)−1).

Lemma 10 ([12], Lemma 11). There exists C and π0 such that if π < π0, then
for all τ ≥ 1,

sup
θ: π̃(τ ;θ)≥π

Pθ[ζ̂ > ζτ,π] ≤ exp{−Cnφ(ζτ,π)}.

3.5. Proof of Theorem 1

Proof. Let α∗ be defined as the solution in α of the equation,

αm̃(α) = ηn/4, (27)

where ηn = sn/n (that is α∗ = α1(d) with d = 4 in (24)). Let ζ∗ be defined via
β(ζ∗) = α∗.
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Let θ0 be the specific signal defined by, for α∗, ζ∗ as in (27),

θ0,i =

{
ζ∗, 1 ≤ i ≤ sn

0, sn < i ≤ n
.

Using Lemma 5, one gets m̃(α∗) � g(ζ∗) � γ(ζ∗) as ζ∗ → ∞. Lemma 8 implies
ζ∗2 ≥ 2 log(1/ηn) +C, for C a possibly negative constant. Combining this with
the definition γ(ζ∗) = e−ζ∗

/2 leads to

α∗ � ηne
√

log(1/ηn), (28)

for c0 in (11) small enough to have 2 log(1/ηn) +C ≥ log(1/ηn). We next prove
that, for α̂ given by (10), for small enough c > 0,

Pθ0 [α̂ < α∗] ≤ e−csn . (29)

If α∗ ≤ αn the probability at stake is 0, as α̂ belongs to [αn, 1] by definition.
For α∗ > αn, we have {α̂ < α∗} = {S(α∗) < 0}. With A =

∑n
i=1 m1(μi, α

∗),

Pθ0 [α̂ < α∗] = Pθ0 [S(α
∗) < 0] = Pθ0

[
n∑

i=1

β(θ0,i + Zi, α
∗)−m1(θ0,i, α

∗) < −A

]

Setting Wi = m1(θ0,i, α
∗) − β(θ0,i + Zi, α

∗), we have |Wi| ≤ 2C/α∗ =: M and
Wi are independent. So by Bernstein’s inequality,

Pθ0

[
n∑

i=1

Wi > A

]
≤ exp

[
−1

2

A2

V + 1
3MA

]
,

where V is an upper-bound for
∑n

i=1 Var(Wi). The term A equals

A = (n− sn)(−m̃(α∗)) + snm1(ζ
∗, α∗).

The function α → αm̃(α) is increasing, as m̃(·) is (Lemma 5), so by its definition
(27), α∗ can be made smaller than any given positive constant, provided c0 in
(11) is small enough, ensuring ηn = sn/n is small enough. Using Lemma 6,
m1(ζ, α) ∼ 1/(2α) as α → 0. So, using (27), one obtains, for small enough c0,

A ≥ sn
3α∗ − sn

4α∗ =
sn

12α∗ .

On the other hand, the last part of Lemma 7 implies

V ≤
∑
i/∈S0

m2(0, α
∗) +

∑
i∈S0

m2(ζ
∗, α∗)

≤ C(n− sn)
m̃(α∗)

ζ∗α∗ + C
sn
α∗2 .
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Using the definition of α∗, one deduces V � sn/α
∗2 and from this

V

A2
+

MA

3A2
� 1

sn
,

which in turn implies (29), as then Pθ0 [
∑n

i=1 Wi > A] ≤ exp[−csn]. Next one
writes

ˆ
‖θ − θ0‖2dΠα̂[θ |X] ≥

ˆ
‖θ − θ0‖2dΠα̂[θ |X]1α̂≥α∗

≥
∑
i/∈S0

ˆ
θ2i dΠα̂(θ |X)1α̂≥α∗

Lemma 2 implies, for any possibly data-dependent weight α, that

ˆ
θ2i dΠα(θ |X) � α,

so ˆ
‖θ − θ0‖2dΠα̂[θ |X] ≥ (n− sn)α̂1α̂≥α∗ ≥ (n− sn)α

∗1α̂≥α∗ .

As (n− sn)α
∗Pθ0 [α̂ ≥ α∗] � Cnα∗(1− e−csn), an application of (28) concludes

the proof.

3.6. Proof of Theorem 3

Let us decompose the risk Rn(θ0) = Eθ0

´
‖θ − θ0‖2dΠα̂(θ |X) according to

whether coordinates of θ correspond to a ‘small’ or ‘large’ signal, the threshold
being ζ1 = β−1(α−1

1 ), with α1 defined in (24). One can write

Rn(θ0) =
[ ∑
i: θ0,i=0

+
∑

i: 0<|θ0,i|≤ζ1

+
∑

i: |θ0,i|>ζ1

]
Eθ0

ˆ
(θi − θ0,i)

2dΠα̂(θi |X).

We next use the first part of Lemma 3 with α = α1 and the second part of the
Lemma to obtain, for any θ0 in �0[sn],[ ∑

i: θ0,i=0

+
∑

i: 0<|θ0,i|≤ζ1

]
Eθ0

ˆ
(θi − θ0,i)

2dΠα̂(θi |X)

≤ C1

∑
i: θ0,i=0

[α1τ(α1) + Pθ0(α̂ > α1)] +
∑

i: 0<|θ0,i|≤ζ1

(θ20,i + C)

≤ C1

[
(n− sn)α1τ(α1) + (n− sn)e

−c1 log2 n
]
+ (ζ21 + C)sn,

where for the last inequality we use Lemma 9 and (11). From (24) one gets,
with ηn = sn/n,

nα1 � nηnζ
−1
1 g(ζ1)

−1 � snζ1.
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Now using Lemma 8 and the fact that τ(α1) ≤ ζ1, one obtains that the con-
tribution to the risk of the indices i with |θ0,i| ≤ ζ1 is bounded by a constant
times sn log(n/sn).

It remains to bound the part of the risk for indexes i with |θ0,i| > ζ1. To
do so, one uses Lemma 4 with α chosen as α = α2 := α(ζ1, π1) and π1 =
π̃(ζ1; θ0), following the definitions (25)–(26). One denotes by ζ2 the pseudo-
threshold associated to α2. The following estimates are useful below

ζ21 < ζ22 (30)

π1ζ
2
2 ≤ Cηn log(1/ηn). (31)

These are established in a similar way as in [12], but with the updated definition
of α1, ζ1 from (24), so we include the proof below for completeness. One can now
apply Lemma 4 with α = α2,∑

i: |θ0,i|>ζ1

Eθ0

ˆ
(θi − θ0,i)

2dΠα̂(θi |X)

≤ C2nπ1

[
1 + ζ22 + (1 + d log n)Pθ0(α̂ < α2)

1/2
]

≤ C2nπ1

[
1 + ζ22 + (1 + d log n)Pθ0(ζ̂ > ζ2)

1/2
]
.

Let us verify that the term in brackets in the last display is bounded above by
C(1 + ζ22 ). If ζ2 > log n, this is immediate by bounding Pθ0(ζ̂ > ζ2) by 1. If

ζ2 ≤ log n, Lemma 10 implies Pθ0(ζ̂ > ζ2) ≤ exp(−Cnφ(ζ2)) ≤ exp(−C
√
n), so

this is also the case. Conclude that the last display is bounded above by Cnπ1(1+
ζ22 ) ≤ C ′nπ1ζ

2
2 . Using (31), this term is itself bounded by Csn log(n/sn), which

concludes the proof of the Theorem, given (30)–(31).
We now check that (30)–(31) hold. We first compare α1 and α2. For small

enough α, the bound on m1 from Lemma 7 becomes 1/α, so that, using the
definition (24) of α1,

m1(ζ1, α1)

m̃(α1)
≤ 1

α1

(
ηn
dα1

)−1

≤ d

ηn
≤ d

π1
,

using the rough bound π1 ≤ ηn. Note that both functions m̃(·)−1 and m1(ζ1, ·)
are decreasing via Lemmas 5–6, and so is their product on the interval where
both functions are positive. As d < 2, by definition of α2 this means α2 < α1

that is ζ1 < ζ2.
To prove (31), one compares ζ2 first to a certain ζ3 = ζ(α3) defined by α3

(largest) solution of

Φ̄(ζ(α3)− ζ1) =
8

π1
α3m̃(α3),

with Φ̄(x) = P [N (0, 1) > x]. Using Lemma 11, which also gives the existence of
ζ3, one gets

m1(ζ1, α3)

m̃(α3)
≥

1
4β(ζ3)Φ̄(ζ3 − ζ1)

m̃(α3)
=

1

4α3

8α3m̃(α3)

π1m̃(α3)
=

2

π1
.
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This shows, reasoning as above, that α3 ≤ α2, that is ζ2 ≤ ζ3. Following [12],
one distinguishes two cases to further bound ζ3.

If ζ3 > ζ1 + 1, using ζ22 ≤ ζ23 and m̃(α3) � ζ3g(ζ3),

π1ζ
2
2 ≤ ζ23

8α3m̃(α3)

Φ̄(ζ3 − ζ1)
� ζ33

g(ζ3)

β(ζ3)

ζ3 − ζ1
φ(ζ3 − ζ1)

≤ Cζ43
φ(ζ3)

φ(ζ3 − ζ1)
= Cζ43φ(ζ1)e

−(ζ3−ζ1)ζ1

≤ C(ζ1 + 1)4e−ζ1φ(ζ1),

where for the last inequality we have used that x → x4e−(x−ζ1)ζ1 is decreasing
for x ≥ ζ1 + 1. Lemma 8 now implies that φ(ζ1) � ηn. As ζ1 goes to ∞ with
n/sn, one gets π1ζ

2
2 � ηn.

If ζ1 ≤ ζ3 ≤ ζ1 + 1, let ζ4 = ζ(α4) with α4 solution in α of

Φ̄(1) = 8αm̃(α)π−1
1 .

By the definition of ζ3, since Φ̄(1) ≤ Φ̄(ζ3− ζ1), we have 8α4m̃(α4) ≤ 8α3m̃(α3)
so that α4 ≤ α3. Using Lemma 5 as before,

Φ̄(1) � g(ζ4)

β(ζ4)
π−1
1 � φ(ζ4)π

−1
1 .

Taking logarithms this leads to

ζ24 ≤ C + 2 log(π−1
1 ).

In particular, ζ22 ≤ 2 log(π−1
1 ) + C. As x → x log(1/x) is increasing, one gets,

using π1 ≤ ηn,

π1ζ
2
2 ≤ 2ηn log(1/ηn) + Cηn,

which concludes the verification of (30)–(31) and the proof of Theorem 3.
In checking (31), one needs a lower bound on m1. In [12], the authors men-

tion that it follows from their lower bound (82), Lemma 8. But this bound
cannot hold uniformly for any smoothing parameter α (denoted by w in [12]),
as m1(μ, 0) = −m̃(w) < 0 if w �= 0. So, although the claimed inequality is cor-
rect, it does not seem to follow from (82). We state the inequality we use now,
and prove it in Section 4.3.

Lemma 11. Let Φ̄(t) =
´∞
t

φ(u)du. For π1, ζ1 as above, a solution 0 < α ≤ α1

to the equation

Φ̄(ζ(α)− ζ1) = 8π−1
1 αm̃(α). (32)

exists. Let α3 be the largest such solution. Then for c0 in (11) small enough,

m1(ζ1, α3) ≥
1

4
β(ζ3)Φ̄(α3 − ζ1). (33)
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3.7. Proof of Theorem 2

Let θ0, α
∗, ζ∗ be defined as in the proof of Theorem 1. Below we show that the

event A = {α̂ ∈ [α∗, cα∗]}, for c a large enough constant, has probability going
to 1, faster than a polynomial in 1/n. Recall from the proof of Theorem 1 that, if
α̂ ≥ α∗, so in particular onA, we have VX ≥ (n−sn)α

∗ ≥ nα∗/2 ≥ C1sng(ζ
∗)−1.

Denote

vn = msng(ζ
∗)−1

VX =

ˆ
‖θ − θ0‖2dΠα̂(θ |X),

where m is chosen small enough so that vn ≤ VX/2 on A. Then,

Πα̂

[
‖θ − θ0‖2 < vn |X

]
1A = Πα̂

[
‖θ − θ0‖2 − VX < vn − VX |X

]
1A

≤ Πα̂

[
‖θ − θ0‖2 − VX < −VX/2 |X

]
≤ 4V −2

X

ˆ
{‖θ − θ0‖2 − VX}2dΠα̂(θ |X),

where the second line follows from Markov’s inequality. One now writes the
L2–norm in the previous display as sum over coordinates and one expands the
square, while noting that given X the posterior Πα̂[· |X] makes the coordinates
of θ independent

ˆ
{‖θ − θ0‖2 − VX}2dΠα̂(θ |X)

=

ˆ ∑
i,j

[
(θi − θ0,i)

2 −
ˆ
(θi − θ0,i)

2dΠα̂(θ |X)

]

×
[
(θj − θ0,j)

2 −
ˆ

(θj − θ0,j)
2dΠα̂(θ |X)

]
dΠα̂(θ |X)

=

n∑
i=1

ˆ [
(θi − θ0,i)

2 −
ˆ
(θi − θ0,i)

2dΠα̂(θ |X)

]2
dΠα̂(θ |X)

≤
n∑

i=1

ˆ
(θi − θ0,i)

4dΠα̂(θ |X).

The last bound is the same as in the proof of the upper bound Theorem 3,
except the fourth moment replaces the second moment. Denote r4(α, μ, x) =´
(u− μ)4dπα(u |x), then

r4(α, μ, x) = (1− a(x))μ4 + a(x)

ˆ
(u− μ)4γx(u)du.

In a similar way as in the proof of Lemma 1, one obtains
´
(u − μ)4γx(u)du ≤

C(1+(x−μ)4). Next, noting that since now γ is Laplace so g has Laplace tails,
x → (1+ x4)g(x) is integrable, proceeding as in the proof of Lemma 1, one gets
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E0r4(α, 0, x) � α as well as Eμr4(α, μ, x) � 1+ τ̃(α)4, for any fixed α. Similarly
as in Lemmas 3–4, one then derives the following random α bounds

Er4(α̂, 0, x) � cα∗ + P (α̂ > cα∗)1/2

and, for any μ,

Er4(α̂, μ, x) � 1 + τ(α∗)4 + (1 + log2 n)P (α̂ < α∗)1/2.

By using that the probabilities in the last displays go to 0 faster than 1/n, which
we show below, and gathering the bounds for all i,

Eθ0

n∑
i=1

ˆ
(θi − θ0,i)

4dΠα̂(θ |X) � sn(1 + τ(α∗)4) + nα∗.

From this deduce that

Eθ0Πα̂

[
‖θ − θ0‖2 < vn |X

]
� P [Ac] + [sn(1 + τ(α∗)4) + nα∗]/(sng(ζ

∗)−1)2

� P [Ac] + s−1
n (1 + τ(α∗)4)g(ζ∗) + s−1

n g(ζ∗).

The last bound goes to 0, as τ(α∗) ≤ ζα∗ = ζ∗ and g has Laplace tails. To
conclude the proof, we show that Pθ0(α̂ ∈ [α∗, cα∗]) is small. From the proof
of Theorem 1, one already has Pθ0 [α̂ < α∗] ≤ exp(−csn), which is a o(1/n)
using sn � log2 n. To obtain a bound on Pθ0 [α̂ > cα∗], one can now revert
the inequalities in the reasoning leading to the Bernstein bound in the proof of
Theorem 1. With A =

∑n
i=1 m1(μi, α), we have

Pθ0 [α̂ > cα∗] = Pθ0 [S(cα
∗) > 0]

= Pθ0

[
n∑

i=1

β(θ0,i + Zi, cα
∗)−m1(θ0,i, cα

∗) > −A

]
.

But here, −A = (n − sn)m̃(cα∗) − snm1(ζ
∗, cα∗). As α → m̃(α) is increasing,

m̃(cα∗) ≥ m̃(α∗). Now by Lemma 7,

m1(ζ
∗, cα∗) ≤ (cα∗ ∧ c3)

−1 ≤ 1

cα∗ ,

provided α∗ ≤ c3/c = c3/16, which is the case for ηn small enough. Since by
definition nm̃(α∗) = sn/(4α

∗), we have −A ≥ sn/(8α
∗). From there one can

carry over the same scheme of proof as for the previous Bernstein inequality,
with now Ã = −A and Ṽ the variance proxy which is bounded by

Ṽ ≤ (n− sn)m2(0, cα
∗) + snm2(ζ

∗, cα∗) � n
m̃(cα∗)

ζcα∗cα∗ +
sn

(cα∗)2
.

Now m̃(cα∗) � Cg(ζcα∗). Using bounds similar to those of Lemma 8, one can
check that C1 + ζ2α∗ ≤ ζ2cα∗ ≤ C2 + ζ2α∗ , which implies that m̃(cα∗)/ζcα∗ �
m̃(α∗)/ζ∗ � m̃(α∗). From this one deduces, with M̃ ≤ C/sn,

Ṽ

Ã2
+

M̃Ã

3Ã2
� C ′

sn
,

which by Bernstein’s inequality implies Pθ0 [α̂ > cα∗] ≤ exp[−Csn], which com-
pletes the proof of Theorem 2.
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4. Technical lemmas for the SAS prior

4.1. Proofs of posterior risk bounds: fixed α

Proof of Lemma 1. First one proves the first two bounds. To do so, we derive
moment bounds on γx. Since γx(·) is a density function, we have for any x,´
γx(u)du = 1. This implies (log g)′(x) =

´
(u − x)γx(u)du =

´
uγx(u)du − x.

In [12], the authors check, see p. 1623, that
´
uγx(u)du =: m̃1(x) is a shrinkage

rule, that is 0 ≤ m̃1(x) ≤ x for x ≥ 0, so by symmetry, for any real x,

|
ˆ

uγx(u)du| ≤ |x|.

Decomposing u2 = (u−x)2+2x(u−x)+x2 and noting that
´
(u−x)2γx(u)du =

g′′(x)/g(x) + 1,

ˆ
u2γx(u)du =

g′′

g
(x) + 1 + 2x

g′

g
(x) + x2.

Note that for γ Laplace or Cauchy, we have |γ′| ≤ c1γ and |γ′′| ≤ c2γ. This
leads to

|g′(x)| = |
ˆ

γ′(x− u)φ(u)du| ≤ c1

ˆ
γ(x− u)φ(u)du = c1g(x)

and similarly |g′′| ≤ c2g, so that
´
u2γx(u)du ≤ C(1 + x2) which gives the first

bound using (18). We note, en passant, that the one but last display also implies
for any real x that

ˆ
u2γx(u)du ≥ 1− c2 − 2c1|x|+ x2, (34)

which implies that
´
u2γx(u)du goes to ∞ with x. Also, for any real μ,

ˆ
(u− μ)2γx(u)du = (x− μ)2 +

g′′

g
(x) + 1 + 2(x− μ)

g′

g
(x).

Now using again g′/g ≤ c1 and g′′/g ≤ c2 leads to
ˆ
(u− μ)2γx(u)du ≤ C(1 + (x− μ)2).

By using the expression of r2(α, μ, x), this yields the second bound of the lemma.
We now turn to the bounds in expectation. For a zero signal μ = 0, one notes

that x = τ(α) is the value at which both terms in the minimum in the first
inequality of the lemma are equal. So

E0r2(α, 0, x) �
ˆ

1|x|≤τ(α)
α

1− α

g

φ
(x)φ(x)(1 + x2)dx

+

ˆ
1|x|>τ(α)(1 + x2)φ(x)dx.
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For γ Cauchy, g has Cauchy tails and x → (1+x2)g(x) is bounded, so one gets,
with α ≤ 1/2,

E0r2(α, 0, x) � α

ˆ
1|x|≤τ(α)dx+ τ(α)φ(τ(α)) + φ(τ(α))/τ(α)

� τ(α)α+ τ(α)φ(τ(α)) � τ(α)α+ τ(α)αg(τ(α)) � τ(α)α.

Turning to the last bound of the lemma, we distinguish two cases. Set for the
remaining of the proof T := τ̃(α) for simplicity of notation. The first case is
|μ| ≤ 4T , for which

Eμr2(α, μ, x) ≤ μ2 + C ≤ C1(1 + T 2).

The second case is |μ| > 4T . We bound the expectation of each term in the
second bound of the lemma (that for r2(α, μ, x)) separately. First, E[a(x)(1 +
(x− μ)2)] ≤ C. It thus suffices to bound μ2Eμ[1− a(x)]. To do so, one uses the
bound (22) and starts by noting that, if Z ∼ N (0, 1),

E[1|Z+μ|≤T ] ≤ P [|Z| ≥ |μ| − T ] ≤ P [|Z| ≥ |μ|/2].

This implies, with Φ̄(u) =
´∞
u

φ(t)dt ≤ φ(u)/u for u > 0,

Eμ[μ
21|x|≤T ] ≤ C2|μ|φ(|μ|) ≤ C3.

If A = {x, |x− μ| ≤ |μ|/2} and Ac denotes its complement,

√
2πEμ[e

− 1
2 (|x|−T )2 ] ≤

ˆ
Ac

e−
1
2 (x−μ)2dx+

ˆ
A

e−
1
2 (|x|−T )2dx.

The first term in the last sum is bounded above by 2Φ̄(|μ|/2). The second term,
as A ⊂ {x, |x| ≥ |μ|/2}, is bounded above by 2Φ̄(|μ|/4). This implies, in the
case |μ| > 4T , that

Eμr2(α, μ, x) ≤ C4 + 4μ2Φ̄(|μ|/4) + 5 ≤ C.

The last bound of the lemma follows by combining the previous bounds in the
two cases.

Proof of Lemma 2. From the expression of r2(α, 0, x) it follows

r2(α, 0, x) ≥ a(x) inf
x∈R

ˆ
u2γx(u)du ≥ α

g

φ ∨ g
(x) inf

x∈R

ˆ
u2γx(u)du

≥ α inf
x∈R

g

φ ∨ g
(x) inf

x∈R

ˆ
u2γx(u)du ≥ C0α,

where c0 > 0. Indeed, both functions whose infimum is taken in the last display
are continuous in x, are strictly positive for any real x, and have respective
limits 1 and +∞ as |x| → ∞, using (34), so these functions are bounded below
on R by positive constants.
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4.2. Proofs of posterior risk bounds: random α

Proof of Lemma 3. Using the bound on r2(α, 0, x) from Lemma 1,

r2(α̂, 0, x) = r2(α̂, 0, x)1α̂≤α + r2(α̂, 0, x)1α̂>α

≤
[

α̂

1− α̂

g

φ
(x) ∧ 1

]
(1 + x2)1α̂≤α + C(1 + x2)1α̂>α

≤
[

α

1− α

g

φ
(x) ∧ 1

]
(1 + x2)1α̂≤α + C(1 + x2)1α̂>α.

For the first term in the last display, one bounds the indicator from above
by 1 and proceeds as in the proof of Lemma 1 to bound its expectation by
Cατ̃(α). The first part of the lemma follows by noting that E[(1 + x2)1α̂>α]
is bounded from above by (2 + 2E0[x

4])1/2P (α̂ > α)1/2 ≤ C1P (α̂ > α)1/2

by Cauchy-Schwarz inequality. The second part of the lemma follows from the
fact that using Lemma 1, r2(α, μ, x) ≤ (1 − a(x))μ2 + Ca(x)((x − μ)2 + 1) ≤
μ2 + C(x− μ)2 + C for any α.

Proof of Lemma 4. Combining (22) and the third bound of Lemma 1,

r2(α̂, μ, x) ≤ μ2
[
1|x|≤τ̃(α̂) + e−

1
2 (|x|−τ̃(α̂))21|x|>τ̃(α̂)

]
+ C((x− μ)2 + 1).

Note that it is enough to bound the first term on the right hand side in the last
display, as the last one is bounded by a constant under Eμ. Let us distinguish
the two cases α̂ ≥ α and α̂ < α.

In the case α̂ ≥ α, as τ̃(α) is a decreasing function of α,[
1|x|≤τ̃(α̂) + e−

1
2 (|x|−τ̃(α̂))21|x|>τ̃(α̂)

]
1α̂≥α

≤
[
1|x|≤τ̃(α̂) + 1τ̃(α̂)<|x|≤τ̃(α) + e−

1
2 (|x|−τ̃(α̂))21|x|>τ̃(α)

]
1α̂≥α

≤ 1|x|≤τ̃(α) + e−
1
2 (|x|−τ̃(α))21|x|>τ̃(α),

where we have used e−
1
2 v

2 ≤ 1 for any v and that e−
1
2 (u−c)2 ≤ e−

1
2 (u−d)2 if

u > d ≥ c. As a consequence, one can borrow the fixed α bound obtained
previously so that

E [r2(α̂, μ, x)1α̂≥α] ≤ 2Eμr2(α, μ, x) ≤ C
[
1 + τ̃(α)2

]
.

In the case α̂ < α, setting bn =
√
d log n and noting that τ̃(α̂) ≤ bn with

probability 1 by assumption, proceeding as above, with bn now replacing τ̃(α),
one can bound

1|x|≤τ̃(α̂) + e−
1
2 (|x|−τ̃(α̂))21|x|>τ̃(α̂)

≤ 1|x|≤bn + e−
1
2 (|x|−bn)

2

1|x|>bn .
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From this one deduces that

E
(
μ2

[
1|x|≤τ̃(α̂) + e−

1
2 (|x|−τ̃(α̂))21|x|>τ̃(α̂)

]
1α̂<α

)
≤ C

(
Eμ

[
μ41|x|≤bn + μ4e−(|x|−bn)

2
])1/2

P (α̂ < α)1/2.

Using similar bounds as in the fixed α case, one obtains

Eμ

[
μ41|x|≤bn + μ4e−(|x|−bn)

2
]
≤ C(1 + b4n).

Taking the square root and gathering the different bounds obtained concludes
the proof.

4.3. Proofs on pseudo-thresholds

Proof of Lemma 8. For small α, or equivalently large ζ, we have (g/φ)(ζ) =
β(ζ) + 1 � β(ζ). Deduce that for large n, using ηn = dα1m̃(α1) and Lemma 5
on m̃,

ηn � α1ζ
κ−1
1

g(ζ1)

β(ζ1)
β(ζ1) � ζκ−1

1 φ(ζ1) � ζκ−1
1 e−ζ2

1/2.

From this deduce that

| log c+ (κ− 1) log ζ1 −
ζ21
2

+ log(1/ηn)| ≤ C.

In particular, using log ζ ≤ a+ ζ2/4 for some constant a > 0 large enough, one
gets ζ21 ≤ 4(C + log(1/ηn)) ≤ 4(C + logn). Inserting this back into the previous
inequality leads to

ζ21/2 ≤ log(1/ηn) + C + (1/2)(κ− 1) log logn.

The lower bound is obtained by bounding (κ− 1) log(ζ1) ≥ 0, for small enough
α1.

Proof of Lemma 9. Using (11), log(1/ηn) ≤ log(n)− 2 log logn, and the bound
on ζ from Lemma 8 gives ζ21 ≤ 2 logn− 3

2 log logn, so that t(α1) ≤ ζ(α1) = ζ1 ≤√
2 logn = t(αn). It follows that α1 belongs to the interval [αn, 1] over which

the likelihood is maximised.
Then one notices that {ζ̂ < ζ1} = {α̂ > α1} = {S(α1) > 0}, regardless of

the fact that the maximiser α̂ is attained in the interior or at the boundary of
[αn, 1]. So

Pθ[ζ̂ < ζ1] = Pθ[S(α1) > 0].

The score function equals S(α) =
∑n

i=1 β(Xi, α), a sum of independent vari-
ables. By Bernstein’s inequality, if Wi are centered independent variables with
|Wi| ≤ M and

∑n
i=1 Var(Wi) ≤ V , then for any A > 0,

P

[
n∑

i=1

Wi > A

]
≤ exp{−1

2
A2/(V +

1

3
MA)}.
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Set Wi = β(Xi, α1) −m1(θ0,i, α1) and A = −
∑n

i=1 m1(θ0,i, α1). Then one can
take M = c3/α1, using Lemma 7. One can bound −A from above as follows,
using the definition of α1,

−A ≤ −
∑
i/∈S0

m̃(α1) +
∑
i∈S0

c

α1
≤ −(n− sn)m̃(α1) + csn/α1

≤ −nm̃(α1)/2 + cdnm̃(α1) ≤ −nm̃(α1)/4,

provided d is chosen small enough and, using again the definition of α1,

V ≤
∑
i/∈S0

m2(0, α1) +
∑
i∈S0

m2(θ0,i, α1) ≤
C

α1

[
(n− sn)m̃(α1)ζ

−κ
1 + csn/α1

]
≤ Cα−1

1

[
nm̃(α1)ζ

−κ
1 /2 + cdnm̃(α1)

]
≤ C ′dnm̃(α1)/α1,

where one uses that ζ−1
1 is bounded. This leads to

V + 1
3MA

A2
≤ C ′d

nα1m̃(α1)
+

4c3
3nα1m̃(α1)

≤ c−1
5

nα1m̃(α1)
.

One concludes that P [α̂ > α1] ≤ exp{−c5nα1m̃(α1)} = exp{−Csn} using (24).

Proof of Lemma 11. First we check the existence of a solution. Set ζα = ζ(α)
and Rα := Φ̄(ζα − ζ1)/(αm̃(α)). For α → 0 we have ζα − ζ1 → ∞ so by using
Φ̄(u) � φ(u)/u as u → ∞ one gets, treating terms depending on ζ1 as constants
and using φ(ζα) � αg(ζα),

Φ̄(ζα − ζ1) �
φ(ζα − ζ1)

ζα − ζ1
� αg(ζα)e

ζαζ1 .

As m̃(α) � ζαg(ζα), one gets Rα � eζαζ1/ζα → ∞ as α → 0. On the other hand,
with π1 ≤ sn/n and α1m̃(α1) = dsn/n,

Rα1 =
1

2α1m̃(α1)
=

dn

2sn
≤ 8

π1

d

16
,

so that Rα1 < 8/π1 as d < 2. This shows that the equation at stake has at least
one solution for α in the interval (0, α1).

By definition of m1(μ, α), for any μ and α, and ζ = ζ(α),

m1(μ, α) =

ˆ ζ

−ζ

β(x)

1 + αβ(x)
φ(x− μ)dx +

ˆ
|x|>ζ

β(x)

1 + αβ(x)
φ(x− μ)dx

= (A) + (B).

By definition of ζ, the denominator in (B) is bounded from above by 2αβ(x) so

(B) ≥ 1

2α

ˆ
|x|>ζ

φ(x− μ)dx ≥ 1

2
β(ζ)Φ̄(ζ − μ).
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One splits the integral (A) in two parts corresponding to β(x) ≥ 0 and β(x) < 0.
Let c be the real number such that g/φ(c) = 1. By construction the part of the
integral (A) with c ≤ |x| ≤ ζ is nonnegative, so, for α ≤ |β(0)|−1/2,

(A) ≥
ˆ c

−c

β(x)

1 + αβ(x)
φ(x− μ)dx

≥ −
ˆ c

−c

|β(0)|
1− α|β(0)|φ(x− μ)dx

≥ −2|β(0)|
ˆ c

−c

φ(x− μ)dx,

where one uses the monotonicity of y → y/(1 + αy). For μ ≥ c, the integral´ c

−c
φ(x− μ)dx is bounded above by 2

´ c

0
φ(x− μ)dx ≤ 2cφ(μ− c). To establish

(33), it thus suffices to show that

(i) := 4|β(0)|cφ(ζ1 − c) ≤ 1

4
β(ζ3)Φ̄(ζ3 − ζ1) =: (ii).

The right hand-side equals 2m̃(α3)/π1 by definition of ζ3. Since γ is Cauchy,
Lemma 5 gives m̃(α3) � ζ3g(ζ3) � ζ−1

3 . It is enough to show that (π1ζ3)
−1 is

larger than Cφ(ζ1 − c), for suitably large C > 0.
Let us distinguish two cases. In the case ζ3 ≤ 2ζ1, the previous claim is

obtained, since ζ1 goes to infinity with n/sn by Lemma 8 and φ(ζ1−c) = o(ζ−1
1 ).

In the case ζ3 > 2ζ1, we obtain an upper bound on ζ3 by rewriting the equation
defining it. For t ≥ 1, one has Φ̄(t) ≥ Cφ(t)/t. Since ζ3 − ζ1 > ζ1 in the present
case, it follows from the equation defining ζ3 that

C
φ(ζ3 − ζ1)

ζ3 − ζ1
≤ 8α3m̃(α3)/π1.

This can be rewritten using φ(ζ3− ζ1) =
√
2πφ(ζ3)φ(ζ1)e

ζ1ζ3 , as well as φ(ζ3) =
g(ζ3)α3/(1 + α3) � α3g(ζ3) and m̃(α3) � ζ3g(ζ3). This leads to

eζ1ζ3

ζ23
≤ C

π1
eζ

2
1/2.

By using ex/x2 ≥ Cex/2 for x ≥ 1 one obtains ζ21e
ζ1ζ3/2 ≤ eζ

2
1/2C/π1, that is,

using ζ21 ≥ 1,

π1ζ3 ≤ π1ζ1 +
π1 log(C/π1)

ζ1
≤ π1ζ1 + C ≤ C ′ζ1,

using that u → u log(1/u) is bounded on (0, 1). So the previous claim is also
obtained in this case, as φ(ζ1−c) is small compared to (C ′ζ1)

−1 for large ζ1.

4.4. Proof of the convergence rate for the modified estimator

Proof of Theorem 5. The proof is overall in the same spirit as that of Theorem
2 in [12] and goes by distinguishing the two cases sn ≥ log2 n and sn < log2 n.
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The main difference is that here we work with the full posterior distribution, and
the risk bounds require Lemmas 1–4, that bound the posterior risk in various
settings, as well as a result, Lemma 13 below, in the same vein.

Also, we need to work with a modified version of ζ1, to make sure that the
probability in Lemma 9 goes to 0 fast enough. We note that this version of ζ1
is the one used in [12] for both their Theorems 1 and 2 (in our Theorem 3, such
a modification is not needed and we worked with the simpler version there). To
do so, one replaces ηn = sn/n in the definition (24) of α1 by

η̃n = max

(
ηn,

log2 n

n

)
.

To keep notation simple, we still denote the corresponding threshold by ζ1. In
the first part of the proof below, ηn ≥ log2(n)/n, so this is the same version as
in definition (24). In the second part of the proof, we have η̃n = log2 n/n and
we now indicate the relevant properties of the corresponding modified threshold
ζ1. First, the statement of Lemma 8 becomes, with κ = 2 (as γ is Cauchy),

log(1/η̃n) + c1 ≤ ζ21
2

≤ log(1/η̃n) +
1

2
log logn+ c2. (35)

Second, we need below a bound on P [ζ̂ < ζ1] with the modified version of ζ1 as
above. It is not hard to check from the proof of Lemma 9 that this proof goes
through with the new version of ζ1 and ηn replaced by η̃n. The only difference
is with the term csn/α1 which is bounded by cnη̃n/α1 = nm̃(α1), so that
Bernstein’s inequality gives

P [ζ̂ < ζ1] ≤ exp{−C ′nα1m̃(α1)} ≤ exp{−Cnη̃n} ≤ e−C log2 n. (36)

We are now ready for the proof of Theorem 5. First consider the case sn ≥
log2 n and let us show that the risk of the empirical Bayes posterior Πα̂A

[· |X]
is not larger than that of the non-modified one. One decomposes

Eθ0

ˆ
‖θ − θ0‖2dΠα̂A

(θ |X)

= Eθ0

ˆ
‖θ − θ0‖2dΠα̂(θ |X)1t̂≤tn

+ Eθ0

ˆ
‖θ − θ0‖2dΠα̂A

(θ |X)1t̂>tn

≤ Eθ0

ˆ
‖θ − θ0‖2dΠα̂(θ |X) + Eθ0

ˆ
‖θ − θ0‖2dΠαA

(θ |X)1t̂>tn
= (I) + (II).

The term (I) corresponds to the risk of the unmodified estimator, so is bounded
as in Theorem 3. For (II), one splits it according to small and large signals θ0,i:

(II) = S + S̃, with

S =
∑

i: |θ0,i|≤ζ1

Eθ0

ˆ
(θi − θ0,i)

2dΠαA
(θi |X)1t̂>tn

,
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and S̃ = (II) − S. From Lemma 1, one knows that r2(αA, μ, x) ≤ μ2 + C(1 +
(x−μ)2), while for μ = 0, one can use the bound in expectation E0r2(α, 0, x) ≤
Cατ(α), so that

S ≤ {
∑

i: |θ0,i|=0

+
∑

i: 0<|θ0,i|≤ζ1

}Eθ0

ˆ
(θi − θ0,i)

2dΠαA
(θi |X)

≤ CnαAτ(αA) + Csnζ
2
1 .

We now use the definition of αA to bound αA and τ(αA). To bound τ(αA),
note that for any α ∈ (0, 1), by definition a(τ(α)) = 1/2, so for a signal of
amplitude τ(α), the posterior puts 1/2 of its mass at zero, which means the
posterior median is 0, implying τ(α) ≤ t(α), so that τ(αA) ≤ tA. Combining
with the bound for αA of Lemma 12,

nαAτ(αA) ≤ Cn−At3A.

For any fixed A > 0, this goes to 0 with n so it is a o(snζ
2
1 ), while snζ

2
1 is bounded

by Csn log(n/sn) as follows from Lemma 8. Now to bound S̃, one adapts the
last bound of Lemma 1 to accommodate for the indicator 1t̂>tn

. This is done

in Lemma 13 whose bound (38) implies S̃ ≤ Csnt
2
AP (t̂ > tn)

1/2. This bound
coincides up to a universal constant with the corresponding bound (128) in [12]
(taken for p = 0, p̃ = 1 and q = 2, which corresponds to our setting, i.e. working
with �0 classes and quadratic risk). So the remaining bounds of [12] for the case
sn > c log2 n can be used directly (the distinction of the three cases as in [12] p.
1646-1647 can be reproduced word by word, and is omitted for brevity), leading
to S̃ ≤ Csn log(n/sn).

Second, consider the case where sn ≤ log2 n. We note that for this regime of
sn, the inequalities (35) become, using that by definition η̃n = log2 n/n,

logn− 2 log logn+ c1 ≤ ζ21
2

≤ log n− 3

2
log logn+ c2. (37)

Let us show that the risk of the plug-in posterior using the modified estimator
is at most of the order of the minimax risk. For ζ1 as above,

Eθ0

ˆ
‖θ − θ0‖2dΠα̂A

(θ |X)

=
[ ∑
i: θ0,i=0

+
∑

i: 0<|θ0,i|≤ζ1

+
∑

i: |θ0,i|>ζ1

]
Eθ0

ˆ
(θi − θ0,i)

2dΠα̂A
(θi |X)

=: (i) + (ii) + (iii).

For the terms (i) and (ii), apply respectively each bound of Lemma 3 with
α = αA to get (ii) ≤ Csn

[
ζ21 + 1

]
≤ C ′snζ

2
1 � sn logn using (35), which is

bounded from above by Csn log(n/sn) in the regime sn ≤ log2 n. Also,

(i) ≤ Cn
[
αAτ̃(αA) + P [α̂A > αA]

1/2
]
.
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For large enough n, we have τ̃(αA) = τ(αA) which is less than t(αA) = tA
as noted above. Now αA is bounded using Lemma 12, so that nαAτ̃(αA) �
tA(1 +A)(log n)n−A = o(1) for A > 0.

We now bound the probability P [α̂A > αA]
1/2. Recall the inequality t(α)2 ≥

ζ(α)2−C (see e.g. (53) in [12]). Using (37), we have ζ21 ≥ 2 logn−4 log logn+2c1
so, writing in slight abuse of notation t(ζ1) = t(α1) seeing t(·) as a function of
ζ1 instead of α1,

t(ζ1)
2 ≥ t2n + log logn− C + 2c1

so that t(ζ1) ≥ tn for n large enough. Deduce {α̂A > αA} = {t̂ < tn} ⊂ {t̂ <
t(ζ1)} = {ζ̂ < ζ1}. Using (36), we have P [ζ̂ < ζ1] ≤ e−C log2 n, so that (i) goes
to 0, and so is a o(sn log(n/sn)).

Finally, for the term (iii) one uses Lemma 4 with α = αA. Note {α̂A < αA} =
{t(α̂A) > tA}. But by definition note that t(α̂A) equals either tA if t̂ > tn or
t(α̂) if t̂ = t(α̂) ≤ tn, so that t(α̂) ≤ tn. As t

2
n < 2 log n < t2A for A > 0, conclude

that in all cases t(α̂A) ≤ tA with probability one, so that P [α̂A < αA] = 0. Thus

(iii) ≤
∑

i: |θ0,i|>ζ1

Eθ0,ir2(α̂A, θ0,i, Xi) ≤ C
∑

i: |θ0,i|>ζ1

(1 + τ̃(αA)
2 + 0) ≤ Csnτ̃(αA)

2,

which is no more than 2Csn(1 + A) log n ≤ C ′sn logn. As sn ≤ c log2 n, we
have logn � log(n/sn) so (iii) ≤ Csn log(n/sn). Putting the previous bounds
together, one gets (i) + (ii) + (iii) ≤ Csn log(n/sn), which concludes the proof.

Lemma 12. For A ≥ 0, with t2A = 2(1+A) log n and αA = t−1(tA), there exist
N0 > 0 and C > 0 both independent of A such that for n ≥ N0,

αA ≤ C(1 +A)(log n)n−1−A.

Proof. First recall the bound t(α) < ζ(α). Setting α = t−1(u) in this inequality
leads, using ζ(u) = β−1(1/u), to u < β−1(1/t−1(u)). As β is increasing on R

+,
one has t−1(u) < 1/β(u), so

αA <
1

β(tA)
=

g

φ− g
(tA)

φ

g
(tA) ≤ 2

φ

g
(tA) ≤ Ct2Ae

−t2A ,

where we use that g has Cauchy tails. The result follows by using the expression
of tA.

Lemma 13. For any real μ, for B := {t̂ > tn}, and αA, tA as above,

Eμ[r2(αA, μ, x)1B ] ≤ C(t2A + 1)P (B)1/2. (38)

Proof. Similar to the proof of Lemma 1, one sets T := τ(αA) and distinguishes
two cases: if |μ| ≤ 4T , Lemma 1 implies r2(αA, μ, x) ≤ μ2 + (1 + (x − μ)2), so
using Cauchy-Schwarz inequality,

Eμ[r2(αA, μ, x)1B ] ≤ CT 2P (B) + P (B) + Eμ[(x− μ)4]1/2P (B)1/2

≤ C(1 + T 2)P (B)1/2.
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If |μ| > 4T , one uses the bound on r2 from Lemma 1 again keeping the depen-
dence in a(x). First,

E[a(x){1 + (x− μ)2}1B ] ≤ E[{1 + (x− μ)2}2]1/2P (B)1/2 ≤ CP (B)1/2.

Let us now focus on Eμ[(1−a(x))μ21B ] ≤ Eμ[{1|x|≤T +e−(|x|−T )2/21|x|>T }1B ].
The first term, using Pμ[|x| < T ] ≤ Φ̄(|μ|/2), is bounded by

μ2Φ(|μ|/2)1/2P (B)1/2 ≤ CP (B)1/2.

The second term is bounded by

μ2{Eμ[e
(−|x|−T )2 ]}1/2P (B)1/2.

In the proof of Lemma 1, we showed that Eμ[e
(−|x|−T )2/2]1/2 is bounded by

a universal constant times Φ̄(|μ|/4). As e−y2 ≤ e−y2/2, the term at stake is
bounded from above by μ2Φ̄(|μ|/4)P (B)1/2 ≤ CP (B)1/2, which implies (38).

5. Proof of Theorem 4: the SSL prior

Recall that we use the notation of the SAS case, keeping in mind that every
instance of g is replaced by g1 and (some of the) φs by g0. Similarly, β(x, α), m̃,
m1 and m2 are defined as in Section 3.1, but with β(x) = g1/g0 − 1.

The main steps of the proof generally follow those of Theorem 3, although
technically there are quite a few differences. In the SSL case, we do not know
whether the function β = g1/g0 − 1 is nondecreasing over the whole R

+. Yet,
we managed to show that β, which is an even function, is nondecreasing on the
interval

Jn = [2λ1,
√
2 logn],

see Proposition 1 below. This allows us to define its inverse β−1 = β|Jn

−1 on this
interval. Further, we prove in Lemma 20 that β crosses the horizontal axis on the
previous interval, is strictly negative on [0, 2λ1] and tends to ∞ when x → ∞.
As β is continuous, the graph of the function crosses any given horizontal line
y = c, for any c > 0.

The threshold ζ in the SSL case. For every α ∈ (0, 1), one sets

ζ = ζ(α) = min{s > 0, β(s) = 1/α}. (39)

This is well defined by the property noted in the previous paragraph. Now one
notes that g0 ≤ 2φ for x ≤ λ0/2, see Lemma 19, and that the function g1/φ
takes a value at

√
2 logn not smaller than Cn/ logn, since g1 � γ1 has Cauchy

tails. This implies the existence of a constant C > 1 such that

β(
√

2 logn) ≥ n/(C logn). (40)
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Now we claim that for any α ∈ (C logn/n, 1], we have the identity ζ(α) =
β−1(α−1). To see this, first note that for any α ∈ (C logn/n, 1], by (40) and
β(2λ1) < 0, we have α−1 ∈ β(Jn). This shows that t = β−1(α−1) solves β(t) =
α−1. Also, it is the smallest possible solution t > 0, as β takes negative values
on [0, 2λ1], which establishes the identity.

The threshold ζ1 in the SSL case. In the SSL case, the function α → m̃(α) =
−E0[β(X,α)] is still nondecreasing, since for any real z, the map Mz : α →
z/(1 + αz) is nonincreasing and β(X,α) = Mβ(X)(α). By Proposition 2, we
also have that m̃ is positive for α ≥ C logn/n and is of the order of a constant
for α = 1. So, the map α → αm̃(α) is nondecreasing on [C log n/n, 1], its value
at C logn/n is less than C ′ logn/n, and its value at one is of the order of a
constant. This shows, using sn ≥ c1 log

2 n by (11), that the following equation
has a unique solution α1 ∈ (C logn/n, 1)

α1m̃(α1) = dsn/n, (41)

with d a small enough constant to be chosen later (see the proof of Lemma 21).
Thus we can set

ζ1 = β−1(α−1
1 ),

and by the above arguments we have ζ1 ∈ Jn. So Proposition 2 gives α−1
1 �

n
sn
ζ1g1(ζ1) � n

snζ1
. Now we can follow the same proof as in Lemma 8, replacing

up to constants instances of g0(ζ1) by φ(ζ1) thanks to Lemma 17 and (46) (as
ζ1 ≤

√
2 logn < λ0/2), to obtain

ζ21 � C log(n/sn).

Defining τ(α) and τ̃(α). In the SSL case, we set

Ω(x, α) =
α

1− α

2g1
φ

(x).

This definition is as in the SAS case except that g is replaced by 2g1. We still
use the same notation for simplicity. As g1 satisfies the same properties as g,
one defines τ(α) and τ̃(α) similarly to the SAS case. More precisely, τ(α) is
the unique solution to the equation Ω(τ(α), α) = 1, whenever α ≤ α∗, where
Ω(0, α∗) = 1. One sets τ(α) = 0 for α ≥ α∗ and τ̃(α) = τ(α ∧ α0) with
τ(α0) = λ1 (this slightly differs from the SAS case).

As in the proof of Theorem 3, one can now decompose the risk Rn(θ0) =
Eθ0

´
‖θ − θ0‖2dΠα̂(θ |X) according to whether coordinates of θ correspond to

a ‘small’ or ‘large’ signal, the threshold being ζ1 that we define next. One can
write

Rn(θ0) =
[ ∑
i: θ0,i=0

+
∑

i: 0<|θ0,i|≤ζ1

+
∑

i: |θ0,i|>ζ1

]
Eθ0

ˆ
(θi − θ0,i)

2dΠα̂(θi |X).

We next use the first part of Lemma 16 with α = α1 and the second part of the
Lemma to obtain, for any θ0 in �0[sn],[ ∑

i: θ0,i=0

+
∑

i: 0<|θ0,i|≤ζ1

]
Eθ0

ˆ
(θi − θ0,i)

2dΠα̂(θi |X)
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≤ C
∑

i: θ0,i=0

[
α1τ̃(α1) + Pθ0(α̂ > α1) + λ−2

0

]
+

∑
i: 0<|θ0,i|≤ζ1

(θ20,i + C)

≤ C(n− sn)
[
α1τ̃(α1) + e−C log2 n + λ−2

0

]
+ (ζ21 + C)sn,

where for the last inequality we use Lemma 21. From (41) one gets

nα1 � snζ
−1
1 g(ζ1)

−1 � snζ1.

Let us now check that τ̃(α1) ≤ ζ1. First, β(ζ1) = α−1
1 > α−1

1 − 1. By definition
of τ(α1), using φ ≤ 2g0 by Lemma 17,

α−1
1 − 1 = 2(g1/φ)(τ(α1)) ≥ β(τ(α1)) + 1.

This gives us that β(ζ1) ≥ β(τ(α1))+1 which implies the result as β is increasing
here. Now with the previous bound on ζ1 one obtains that the contribution to the
risk of the indices i with |θ0,i| ≤ ζ1 is bounded by a constant times sn log(n/sn).

It remains to bound the part of the risk for indexes i with |θ0,i| > ζ1. To do so,
one uses the second part of Lemma 16 with α chosen as α′

2 = C(log n/n), with
C as in (40). By definition of α̂ in (16), the probability that α̂ is smaller than

α′
2 equals zero. Also, one has τ̃(α′

2)
2 ≤ C log n. Indeed, setting ζ ′2 = β−1(α′

2
−1

),
we have as before τ(α′

2) ≤ ζ ′2 ≤
√
2 log n. This implies

∑
i: |θ0,i|>ζ1

Eθ0

ˆ
(θi − θ0,i)

2dΠα̂(θi |X) ≤ Csn logn,

which concludes the proof of Theorem 4.

6. Technical lemmas for the SSL prior

6.1. Fixed α bounds

As in the SAS case, we use the notation r2(α, μ, x) =
´
(u−μ)2dπα(u |x), where

now πα(· |x) is the posterior on one coordinate (X1, say) for fixed α in the SSL
case, given X1 = x.

Lemma 14. For a zero signal μ = 0, we have for any x and α ∈ [0, 1/2],

r2(α, 0, x) ≤ C
[
1 ∧ α

1− α

g1
φ
(x)

]
(1 + x2) +

ˆ
u2γ0,x(u)du

E0r2(α, 0, x) ≤ Cτ(α)α+ 4/λ2
0.

For an arbitrary signal μ ∈ R, we have that for any real x and α ∈ [0, 1/2],

r2(α, μ, x) ≤ (1− a(x))

ˆ
(u− μ)2γ0,x(u)du+ Ca(x)((x− μ)2 + 1)

Eμr2(α, μ, x) ≤ C(1 + τ̃(α)2).
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Proof. By definition, in the SSL case, r2(α, 0, x) = (1 − a(x))
´
u2γ0,x(u)du +

a(x)
´
u2γ1,x(u)du. Similar to Lemma 1, we have a(x)

´
u2γ1,x(u)du ≤ C

[
1 ∧

α
1−α

g1
g0
(x)

]
(1 + x2). The first bound now follows from the inequality g0 ≥ φ/2

obtained in Lemma 17. For the bound in expectation,

E0

[ˆ
u2γ0,x(u)du

]
=

ˆ (ˆ
u2φ(x− u)γ0(u)

g0(x)
du

)
φ(x)dx

≤ 2

ˆ
u2

ˆ
φ(x− u)dxγ0(u)du = 2

ˆ
u2γ0(u)du = 4/λ2

0,

and one then proceeds as in Lemma 1 to obtain the bound for zero signal.
Now for a general signal μ, the bound for r2(α, μ, x) follows from the definition

and the previous bound. For the bound in expectation, by symmetry one can
assume μ ≥ 0. Also note that the term with the a(x) factor is bounded in
expectation by a constant, by using a(x) ≤ 1. To handle the term with 1−a(x),
we distinguish two cases. First, one assumes that μ ≤ λ0/2. We have, using
(a+ b)2 ≤ 2a2 + 2b2,

(1−a(x))

ˆ
(u−μ)2γ0,x(u)du � (1−a(x))μ2+(1−a(x))

ˆ
u2φ(x−u)

γ0(u)

g0(x)
du.

For the first term we proceed as in Lemma 1, for the second using g0 ≥ φ/2
from Lemma 17,

Eμ

[
(1− a(x))

ˆ
u2φ(x− u)

γ0(u)

g0(x)
du

]
≤ 2

ˆ
u2γ0(u)

ˆ
φ(x− u)φ(x− μ)

φ(x)
dxdu

�
ˆ

u2γ0(u)

ˆ
e−(x−(u+μ))2/2+uμdxdu � λ0

ˆ
u2e−λ0|u|+uμdu.

As μ ≤ λ0/2, this is in turn bounded by a constant times (λ0)
−2. Now in the

case that μ > λ0/2, recall from the proof of Lemma 1 that for any real x,

ˆ
(u− μ)2γ0,x(u)du = (x− μ)2 + 1 +

g′′0
g0

(x) + 2(x− μ)
g′0
g0

(x). (42)

The first two terms are, in expectation, bounded by a constant. Next one writes

Eμ

[
(1− a(x))

g′′0
g0

(x)

]
=

ˆ
(1− a(x))

g′′0
g0

(x)φ(x− μ)dx

By Lemma 17, we have |g′′0 | = λ2
0|g0 − φ| ≤ 1. One splits the integral on the

last display in two parts. For |x| ≤ μ/4, one uses that g′′0 is bounded together
with the bound g0 ≥ φ/2. For |x| > μ/4, one uses g′′0/g0 = λ2

0(g0 − φ)/g0 ≤ λ2
0

together with 1 − a(x) ≤ (g0/g1)(x)/α, which follows from the expression of
a(x). This leads to

Eμ

[
(1− a(x))

g′′0
g0

(x)

]
≤
ˆ
|x|≤μ/4

exμ−
μ2

2 dx+
λ2
0

α

ˆ
|x|>μ/4

g0
g1

(x)φ(x− μ)dx.



3990 I. Castillo and R. Mismer

The first term in the last expression is bounded. The second one is bounded by
a constant given our choice of λ0 by combining the following: α−1 ≤ n from
(16), g0 � γ0 for μ > λ0/8 from (47) and g1 � γ1.

To conclude the proof, for the last term in (42), using (45), the bound on
1 − a(x) from Lemma 15 below, and the fact that x �→ xφ(x) is bounded,

Eμ

[
2(1− a(x))(x− μ)

g′
0

g0
(x)

]
is bounded by

2

ˆ
(1− a(x))|g

′
0

g0
(x)||(x− μ)φ(x− μ)|dx �

ˆ
(1− a(x))|x|dx

�
ˆ
|x|≤τ̃(α)

|x|dx+

ˆ
τ̃(α)≤|x|≤λ0

2

|x|e−
(|x|−τ̃(α))2

2 dx+

ˆ
|x|≥λ0

2

|x|(1− a(x))dx

� τ̃(α)2 + 2(1− e−
(
λ0
2

−τ̃(α))2

2 ) + τ̃(α) +

ˆ
|x|≥λ0

2

n3|x|γ0
γ1

(x)dx � 1 + τ̃(α)2.

Lemma 15. For any x ∈ [0, λ0/2] and α ∈ [0, 1],

1− a(x) ≤ 1|x|≤τ̃(α) + 4e−
1
2 (|x|−τ̃(α))21|x|>τ̃(α).

Proof. One first notes that 1 − a(x) ≤ 4Ω(x, α)−1 for x ≤ λ0/2, using the fact
that for such x, g0(x) ≤ 2φ(x) as found in Lemma 19. The following inequalities
hold for τ̃(α) ≤ x ≤ λ0/2, using τ̃(α) ≥ λ1 by definition and that |(log g1)′| ≤ λ1

as seen in (44),

Ω(x, α) =Ω(τ̃(α), α) exp

(ˆ x

τ̃(α)

((log g1)
′(u)− (log φ)′(u))du

)

≥ exp

(ˆ x

τ̃(α)

(u− λ1)du

)
≥ exp

(ˆ x

τ̃(α)

(u− τ̃(α))du

)
= e

(x−τ̃(α))2

2 .

6.2. Random α bounds

Lemma 16. Let α be a fixed non-random element of (0, 1). Let α̂ be a random
element of [0, 1] that may depend on x ∼ N (0, 1) and on other data. Then there
exists C1 > 0 such that

Er2(α̂, 0, x) ≤ C1

[
ατ̃(α) + P (α̂ > α)1/2

]
+

4

λ2
0

.

There exists C2 > 0 such that for any real μ, if x ∼ N (μ, 1),

Er2(α̂, μ, x) ≤ μ2 + C2.
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Suppose now that τ̃(α̂)2 ≤ d log(n) with probability 1 for some d > 0, and that
x ∼ N (μ, 1). Then there exists C2 > 0 such that for all real μ,

Er2(α̂, μ, x) ≤ C2

[
1 + τ̃(α)2 + (1 + d log n)P (α̂ < α)1/2

]
.

Proof of Lemma 16. For the first two inequalities, the proof is the same as in
the SAS case in Lemma 3, the only difference being the presence of the term
4/λ2

0 coming from Lemma 14 for the first inequality. For the third inequality, it
follows from Lemma 14 that

r2(α̂, μ, x) ≤ (1− aα̂(x))

ˆ
(u− μ)2γ0,x(u)du+ C[(x− μ)2 + 1].

In expectation the last term is constant. For the first term, with Lemma 15,

1− aα̂(x) ≤ 1|x|≤τ̃(α̂) + 4e−
1
2 (|x|−τ̃(α̂))21λ0

2 ≥|x|>τ̃(α̂)
+ 1|x|≥λ0

2
n
g0
g1

(x),

where the last estimate uses the bound α ≥ 1/n. As in Lemma 4, let us distin-
guish the two cases α̂ ≥ α and α̂ < α. In the case α̂ ≥ α, as τ̃(α) is a decreasing
function of α,[

1|x|≤τ̃(α̂) + 4e−
1
2 (|x|−τ̃(α̂))21λ0

2 ≥|x|>τ̃(α̂)

]
1α̂≥α

�
[
1|x|≤τ̃(α̂) + 1τ̃(α̂)<|x|≤τ̃(α) + e−

1
2 (|x|−τ̃(α̂))21λ0

2 ≥|x|>τ̃(α)

]
1α̂≥α

� 1|x|≤τ̃(α) + e−
1
2 (|x|−τ̃(α))21λ0

2 ≥|x|>τ̃(α)
,

where we have used e−
1
2 v

2 ≤ 1 for any v and that e−
1
2 (u−c)2 ≤ e−

1
2 (u−d)2 if

u > d ≥ c.
For the third term, we have to control

Eμ

[
1|x|≥λ0

2
n
g0
g1

(x)

ˆ
(u− μ)2γ0,x(u)du

]
.

To do so, one uses (42). In expectation, the term in factor of (x − μ)2 + 1 is
bounded by a constant. Using (47) and the fact that g′′0/g0 ≤ λ2

0, the term in
factor g′′0/g0 is bounded by

λ2
0n

ˆ
|x|≥λ0

2

g0
g1

(x)φ(x− μ)dx � n3

ˆ
|x|≥λ0

2

γ0
γ1

(x)dx

� n4

ˆ
|x|≥λ0

2

x2e−λ0|x|dx � n4e−Cn2

.

Finally, using (45) and the fact that x �→ xφ(x) is bounded, one obtains

Eμ

[
1|x|≥λ0

2
n
g0
g1

(x)(x− μ)
g′0
g0

(x)

]
≤
ˆ
|x|≥λ0

2

n
g0
g1

(x)|x||(x− μ)φ(x− μ)|dx

�
ˆ
|x|≥λ0

2

n
g0
g1

(x)|x|dx.
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As a consequence, one can borrow the fixed α bound obtained previously so
that

E [r2(α̂, μ, x)1α̂≥α] � Eμr2(α, μ, x) �
[
1 + τ̃(α)2

]
.

In the case α̂ < α, setting bn =
√
d log n and noting that τ̃(α̂) ≤ bn with

probability 1 by assumption, proceeding as above, with bn now replacing τ̃(α),
one can bound

1|x|≤τ̃(α̂) + 4e−
1
2 (|x|−τ̃(α̂))21λ0

2 ≥|x|>τ̃(α̂)
+ 1|x|≥λ0

2
n
g0
g1

(x)

� 1|x|≤bn + e−
1
2 (|x|−bn)

2

1λ0
2 ≥|x|>bn

+ 1|x|≥λ0
2
n
g0
g1

(x).

From this one deduces that E
[
(1− aα̂(x))

´
(u− μ)2γ0,x(u)du

]
is bounded from

above by a constant times

(
Eμ

[(ˆ
(u− μ)2γ0,x(u)du

)2

[1|x|≤bn + e−(|x|−bn)
2

]

])1/2

P (α̂ < α)1/2.

Using the same bounds but squared as in the fixed α case, one obtains that the
expectation in the last display is bounded from above by C(1+ b4n). Taking the
square root and gathering the different obtained bounds concludes the proof.

6.3. Properties of the functions g0 and β for the SSL prior

Recall the notation φ, γ0, g0 from Section 2. For any real x, we also write ψ(x) =´∞
x

e−u2/2du. Our key result on β is the following.

Proposition 1. β = g1
g0

− 1 is strictly increasing on [2λ1;
√
2 logn].

We next state and prove some Lemmas used in the proof of Proposition 1
below.

Lemma 17. The convolution g0 = φ ∗ γ0 satisfies g′′0 = λ2
0(g0 − φ) as well as

1

g0
≤ 2

φ
and |g0 − φ| ≤ 1

λ2
0

.

Proof. The first identity follows by differentiation. One computes g0(x) by sep-
arating the integral in a positive and negative part to get, for any real x,

g0(x) =
λ0e

λ2
0
2

2
√
2π

[
eλ0xψ(λ0 + x) + e−λ0xψ(λ0 − x)

]
. (43)

Now combining the standard inequality (1− x−2)e−x2/2 ≤ xψ(x) ≤ e−x2/2, for
x > 0, with the expression of g0(0) obtained from (43), we get 1

2 ≤ g0
φ (0) ≤ 1

for large enough n. By [12], Lemma 1, the function g0/φ is increasing, which
implies the first inequality of the lemma.
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The approximation property of φ by g0 is obtained by a Taylor expansion.
For any x, u ∈ R, there exists c between x and x−u such that φ(x−u)−φ(x) =
uxφ(x) + u2(c2 − 1)φ(c)/2, so that

2(g0(x)−φ(x)) =

ˆ
(2uxφ(x)+u2(c2−1)φ(c))γ0(u)du =

ˆ
u2(c2−1)φ(c)γ0(u)du,

whose absolute value is bounded by
´
u2|c2 − 1|φ(c)γ0(u)du. This is less than´

u2γ0(u)du = λ−2
0 .

Lemma 18. Let L0 = 5
√
2π. Then for all x ∈ [0;

√
2 log(λ0/L0)],

(log g0)
′(x) ≤ −x/2.

Proof. Let go+(x) =
´∞
0

φ(v + x)γ0(v)dv and go−(x) =
´ 0

−∞ φ(v + x)γ0(v)dv.
First we check that for any x in the prescribed interval, we have

λ0(go+ − go−)(x) ≤ −x(φ(x)− 2/λ0) ≤ 0.

For any real x, using the inequality ev ≥ 1 + v,

go−(x) =

ˆ ∞

0

φ(x− u)γ0(u)du =

ˆ ∞

0

φ(x+ u)e2xuγ0(u)du

≥
ˆ ∞

0

φ(x+ u)(1 + 2xu)γ0(u)du

≥ go+(x) + λ0x

ˆ ∞

0

uφ(x+ u)e−λ0udu.

Setting Δ(x) =
´∞
0

uφ(x+ u)e−λ0udu, one can write

Δ(x) =

ˆ ∞

0

u(φ(x+ u)− φ(x))e−λ0udu+ φ(x)

ˆ ∞

0

ue−λ0udu

=

ˆ ∞

0

u(φ(x+ u)− φ(x))e−λ0udu+ φ(x)/λ2
0.

As φ is 1–Lipshitz, one can bound from below φ(x + u) − φ(x) ≥ −u, which
leads to, for any x ≥ 0,

Δ(x) ≥ −
ˆ ∞

0

u2e−λ0udu+ φ(x)/λ2
0 ≥ −2/λ3

0 + φ(x)/λ2
0.

This leads to inequality on go+ − go− above, using that x belongs to the pre-
scribed interval to get the nonpositivity. From this one deduces

g′0(x) = λ0(go+ − go−)(x) ≤ −x(φ(x)− 2/λ0).

This now implies
g′0
g0

(x) ≤ −x
φ(x)− 2λ−1

0

φ(x)+λ−2
0
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On the prescribed interval φ(x) ≥ 5/λ0, so using that t → (t − a)/(t + b) is
increasing,

g′0
g0

(x) ≤ −x
5λ−1

0 − 2λ−1
0

5λ−1
0 + λ−2

0

= − 3x

5 + λ−1
0

≤ −x

2
,

for large enough n, which concludes the proof.

Proof of Proposition 1. We will firstly note that if G1 has a Cauchy(1/λ1) law,

|(log g1)′(x)| ≤ λ1. (44)

Indeed, for any real x, recalling that γ1(x) = (λ1/π)(1 + λ2
1x

2)−1, one sees that
γ′
1(x)/γ1(x) = (−2λ2

1x)/(1+2λ2
1x

2) and |γ′
1(x)/γ1(x)| ≤ 2

√
2λ1/3. This implies

(44), as

|(log g1)′(x)| = |
ˆ

φ(x− u)γ′
1(u)du|/g1(x)

≤ 2
√
2

3
λ1

ˆ
φ(x− u)γ1(u)du/g1(x) ≤

2
√
2

3
λ1 ≤ λ1.

Let (x, y) ∈ [2λ1;λ0/4]
2 with x ≤ y. Using Lemma 18 one can find c ∈ [x; y]

with log(g0(x)/g0(y)) = (x − y)(log g0)
′(c) ≥ (x − y)(−c/2) ≥ (y − x)x/2.

On the other hand, by (44) one deduces that for some c ∈ [x; y], we have
log(g1(x)/g1(y)) = (x− y)(log g1)

′(c) ≤ (y − x)λ1. Thus for any x, y as before,

g1(x)

g1(y)
≤ e(y−x)λ1 and e(y−x) x

2 ≤ g0(x)

g0(y)
.

As x ≥ 2λ1 by assumption, this leads to the announced inequality.

Lemma 19. For n large enough, recalling that λ0 depends on n, we have

(log g0)
′(x) ≥ −x for any x > 0, (45)

g0(x) ≤ 2φ(x) for any 0 ≤ x ≤ λ0/2, (46)

g0(x) � γ0(x) for any x ≥ λ0/8. (47)

Proof. For any real x, we set μ0,1(x) =
´
uφ(x−u)γ0(u)

g0(x)
du, the expectation of

γ0,x. A direct computation shows, for x > 0 that (log g0)
′(x) = −x + μ0,1(x).

But

μ0,1(x) =

ˆ ∞

0

u
λ0φ(x− u)e−λ0u

2g0(x)
du+

ˆ 0

−∞
u
λ0φ(x− u)eλ0u

2g0(x)
du

=

ˆ ∞

0

u
λ0e

−λ0u

2g0(x)
(φ(x− u)− φ(x+ u))du

=

ˆ ∞

0

u
λ0e

−λ0u

2g0(x)
φ(x+ u)(e2xu − 1)du ≥ 0,
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which leads to (45). For the second point, we first prove the identity, for x > 0,

g0(x) =
eλ

2
0/2

√
2π

ψ(λ0)γ0(x)+φ(x)
λ0

2

(
e(λ0−x)2/2(ψ(λ0 − x)− ψ(λ0))

+ e(λ0+x)2/2ψ(λ0 + x)
)
.

Indeed, g0(x) =
´∞
0

φ(u)(γ0(x + u) + γ0(x − u))du = γ0(x)
´∞
0

φ(u)e−λ0udu +´∞
0

φ(u)γ0(x−u)du, for x > 0. The first term equals eλ
2
0/2ψ(λ0)γ0(x)/

√
2π. The

second one equalsˆ ∞

−x

φ(x+ v)γ0(v)dv = φ(x)

ˆ ∞

−x

e−
v2

2 −vxγ0(v)dv

= φ(x)
λ0

2

(ˆ 0

−x

e−
v2

2 −vx+λ0vdv +

ˆ ∞

0

e−
v2

2 −vx−λ0vdv

)

= φ(x)
λ0

2

(ˆ x

0

e−
v2

2 +vx−λ0vdv + e
(x+λ0)2

2

ˆ ∞

0

e−
(v+x+λ0)2

2 dv

)

= φ(x)
λ0

2

(
e

(λ0−x)2

2

ˆ λ0

λ0−x

e−
u2

2 du+ e
(x+λ0)2

2 ψ(x+ λ0)

)

which gives the announced identity. If x ≤ λ0/2, using the inequality yψ(y) ≤
e−y2/2 for y > 0, we have

g0(x) ≤ λ−1
0 γ0(x)/

√
2π + φ(x)(λ0/2)

[
(λ0 − x)−1 + (λ0 + x)

−1
]
.

This leads, using γ0(x)/λ0 ≤ e−λ2
0/2 for x ≤ λ0/2, to g0(x) ≤ φ(x)(1/2 + 1 +

1/2) = 2φ(x).
For the third point, if x ≥ λ0/8, the first term is bounded as follows:

λ0e
λ2
0/2eλ0xψ(λ0 + x) ≤ λ0e

λ2
0/2eλ0xe−λ2

0/2−x2/2−λ0x(λ0 + x)−1

≤ λ0(λ0 + x)−1e−x2/2 ≤ λ0(9λ0/8)
−1e−x2/2.

Now ψ(λ0 − x) ≤ e−λ2
0/2−x2/2+λ0x(λ0 − x)−1 ≤ 4e−λ2

0/2−x2/2+λ0xλ−1
0 if

λ0/8 ≤ x ≤ 3λ0/4, which leads to g0(x) � φ(x). If x ≥ 3λ0/4 one bounds

the second term by λ0e
λ2
0/2−λ0x ≤ λ0e

2λ0x/3−λ0x ≤ λ0e
−λ0x/3, so that, for

x ≥ λ0/8,
g0(x) � γ0(x).

The next lemma is useful to control β outside [2λ1,
√
2 logn].

Lemma 20. Set λ1 = 0.05. For n large enough, for some C > 0, we have

(g1/g0)(2λ1) < 0.25,

β(x) < 0 for all x ∈ [0, 2λ1],

β(x) � n/logn, for all
√
2 logn ≤ x ≤ λ0/2,

β(x) � eCn2

γ1(n)/n for all x ≥ λ0/8.
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Proof. 1) We have g1
g0
(2λ1) ≤ λ1

√
2π

λ0

´
e−(u−2λ1)2/2e−λ0|u|du

. For the denominator, we

have

ˆ
e−(u−2λ1)

2/2e−λ0|u|du ≥
ˆ ∞

0

e−(u−2λ1)
2/2−λ0udu

≥ eλ
2
0/2−2λ1λ0

ˆ ∞

0

e−(u−(2λ1−λ0))
2/2du

≥ e−2λ2
1ψ(λ0 − 2λ1)/(λ0 − 2λ1)

≥ e−2λ2
1(λ0 − 2λ1)

−1(1− (λ0 − 2λ1)
−2)

≥ 0.99e−2λ2
1(λ0 − 2λ1)

−1for n large enough.

This implies (g1/g0)(2λ1) < 0.25 for λ1 = 0.05.

2) Let x ∈ [0, 2λ1], using Lemma 17, we have β ≤ 2g1/φ − 1. As the
last function is increasing as we know from the SAS case, we have β(x) ≤
2(g1/φ)(2λ1)− 1. With (46) we end up with β(x) ≤ 4(g1/φ)(2λ1)− 1, which is
strictly negative by the first point.

3) Let x ∈ [
√
2 logn, λ0/2]. With (46), we have β(x) ≥ (g1/2φ)(x) − 1 ≥

(g1/2φ)(
√
2 log n)− 1, and as g1 � γ1, we end up with β(x) � n/ log n.

4) For x ≥ λ0/8, via (47) we have β(x) + 1 ≥ (γ1/γ0)(x) ≥ (γ1/γ0)(λ0/8)
which gives the result.

6.4. Bounds on moments of the score function

Recall that, for all k ≥ 1, μ ∈ R and α ∈ [0, 1], mk(μ, α) = E[β(Z + μ)k] where
Z ∼ N (0, 1), and m̃(α) = −m1(0, α) = −2

´∞
0

β(z, α)φ(z)dz.

Proposition 2. With κ as in (23), there exist constants D1 and D2 such that
for α ∈ (C logn/n, 1], D1ζ

κ−1g1(ζ) ≤ m̃(α) ≤ D2ζ
κ−1g1(ζ). Also, c ≤ m̃(1) ≤

C with c, C independent of n.

Proof. Recall that for α ∈ (C logn/n, 1], we have ζ = β−1(α−1) and ζ ≤√
2 logn.

m̃(α) =− 2

ˆ ∞

0

β(z)

1 + αβ(z)
φ(z)dz

=− 2

ˆ ∞

0

β(z)φ(z)dz + 2

ˆ ∞

0

αβ2(z)

1 + αβ(z)
φ(z)dz

=− 2

ˆ ∞

0

β(z)φ(z)dz + 2

ˆ ζ

0

αβ2(z)

1 + αβ(z)
φ(z)dz

+ 2

ˆ ∞

ζ

αβ2(z)

1 + αβ(z)
φ(z)dz

:=A+B + C
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• For the first term, with K a positive constant one can write

A = 2

ˆ ∞

0

(φ− g1
g0

φ) = 2

ˆ ∞

0

(φ− g1
g0

(φ− g0 + g0))

= 2

ˆ ∞

0

(φ− g1) + 2

ˆ ∞

0

g1(g0 − φ)

g0

= 0 + 2

ˆ Kζ

0

g1(g0 − φ)

g0
+ 2

ˆ ∞

Kζ

g1(g0 − φ)

g0

:= (i) + (ii).

Using the fact that g1/φ is increasing, we have

|(i)| ≤ 2λ−2
0

ˆ Kζ

0

g1/g0 ≤ 4λ−2
0

ˆ Kζ

0

g1/φ

≤ 4Kζg1(Kζ)λ−2
0 /φ(Kζ) � KnK2−2ζg1(Kζ)

Taking K = 6/5, we end up with |(i)| � ζn−2/5g1(6ζ/5) and this term is
strictly dominated by ζκ−1g1(ζ). By Lemma 17, and the fact that g1 � γ1,
we have:

|(ii)| ≤ 2

ˆ ∞

Kζ

g1(1 + φ/g0) ≤ 6

ˆ ∞

Kζ

g1

� (6ζ/5)κ−1g1(6ζ/5) using (23)

This term too is dominated by ζκ−1g1(ζ).
• For the second term, we use the fact that on (0, ζ), α|β| < 1, so 1 + b0 ≤
1 + αβ ≤ 2, where b0 = g1(2λ1)/2φ(0)− 1 does not depend on n, so that

B �
ˆ ζ

0

αβ2(z)φ(z)dz

We will now use the fact that, with h := g21/φ,
´ ζ

0
h(z)dz ≤ 16h(ζ)/ζ. This

is a direct corollary of lemma 4 in [12]. We have, also using (46):

ˆ ζ

0

β2(z)φ(z)dz �
ˆ ζ

0

(g21/g
2
0)φ �

ˆ ζ

0

g21/φ

� g21(ζ)/(ζφ(ζ)) � β(ζ)g1(ζ)/ζ � g1(ζ)(αζ)
−1

hence B � g1(ζ)ζ
−1, dominated by ζκ−1g1(ζ).

• For the last term, we first use the fact that αβ(z) < 1 + αβ(z), so that
C �

´∞
ζ

β(z)φ(z)dz.

C �
ˆ ∞

ζ

g1φ/g0 �
ˆ ∞

ζ

g1(z)dz using Lemma 17

� ζκ−1g1(ζ) using (23)



3998 I. Castillo and R. Mismer

For an upper bound we write

C = 2

ˆ λ0/2

ζ

αβ2(z)

1 + αβ(z)
φ(z)dz + 2

ˆ ∞

λ0/2

αβ2(z)

1 + αβ(z)
φ(z)dz =: (i) + (ii).

For the first term, using (46), we have for every z ∈ [ζ, λ0/2], β(z) ≥
g1
2φ (z)− 1 ≥ g1

4φ (z) and α g1
4φ (z) � α n

logn � 1, so that

(i) ≥ 2

ˆ λ0/2

ζ

α(g21/16φ
2)(z)

1 + α(g1/4φ)(z)
φ(z)dz

�
ˆ λ0/2

ζ

g1(z)dz � ζκ−1g1(ζ)

For the second term, we have

(ii) �
ˆ ∞

λ0/2

β(z)φ(z)dz

�
ˆ ∞

λ0/2

g1(z)dz � λκ−1
0 g1(λ0) � λ−1

0 .

Putting the bounds together finally leads to m̃(α) � g1(ζ)ζ
κ−1.

To prove m̃(1) ≤ φ(0)/g1(2λ1), write m̃(1) = −2
´∞
0

φ+ 2
´∞
0

φ/(1 + β).

Now
´∞
0

φ/(1 + β) =
´ 2λ1

0
φ/(1 + β) +

´ λ0/2

2λ1
φ/(1 + β) +

´ +∞
λ0/2

φ/(1 + β).

Using that on [0, 2λ1], 1 + β ≥ 1 + b0 = g1(2λ1)/2φ(0) and (46) and (47),
we have

ˆ ∞

0

φ/(1 + β) ≤
ˆ 2λ1

0

φ/(1 + b0) +

ˆ λ0/2

2λ1

φ2/g1 +

ˆ ∞

λ0/2

γ0φ/g1

≤
ˆ 2λ1

0

φ/(1 + b0) +

ˆ ∞

2λ1

φ2/g1 +

ˆ ∞

0

φ/g1 ≤ C.

For the lower bound, recall that m̃(1) = −2
´∞
0

φ+2
´∞
0

φ/(1+β) and use

Lemma 17 to write 2
´∞
0

φ/(1+β) ≥
´∞
0

φ2/g1 which does not depend on
n.

Proposition 3. Let α ∈ [C logn/n, 1].
1) For small enough α, we have m2(0, α) � m̃(α)(αζκ)−1

2) For k = 1 or 2, for all μ and all α small enough, mk(μ, α) ≤ (α∧|B0|/(1+
B0))

−k with B0 = g1(0)/2φ(0)− 1.

Proof. 1) Let α ∈ [0; 1], we have

m2(0, α) = 2

ˆ ∞

0

β2(z)

(1 + αβ(z))2
φ(z)dz

= 2

ˆ ζ

0

β2(z)

(1 + αβ(z))2
φ(z)dz + 2

ˆ ∞

ζ

β2(z)

(1 + αβ(z))2
φ(z)dz
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For the first term, as in Proposition 2, and using Proposition 17, we have

ˆ ζ

0

β2(z)

(1 + αβ(z))2
φ(z)dz �

ˆ ζ

0

β2(z)φ(z)dz � g1(ζ)(αζ)
−1

For the last term, by the fact that β is increasing on [ζ,
√
2 logn], (46) and

(47) we have that β > 0 on [ζ,∞] so that

ˆ ∞

ζ

β2(z)

(1 + αβ(z))2
φ(z)dz � 1/α2

ˆ ∞

ζ

φ(z)dz � β2(ζ)φ(ζ)/ζ � β(ζ)g1(ζ)/ζ

hence m2(0, α) � g1(ζ)
αζ . Yet m̃(α) � ζκ−1g1(ζ) when α → 0, which yields the

first point.

2) Recall the definition mk(μ, α) =
´ (

β(t)
1+αβ(t)

)k

φ(t − μ)dt. If β(t) ≥ 0,∣∣∣ β(t)
1+αβ(t)

∣∣∣ ≤ 1/α. Otherwise we have |t| < λ0/2 so using (46) for the numerator

leads to β(t) ≥ g1(0)/2φ(0) − 1 = B0 and for the denominator |1 + αβ(t)| =
1 + αβ(t) ≥ 1 + β(t) ≥ 1 +B0.

6.5. In-probability bounds

Lemma 21. We take α = α1 and ζ = ζ1 as defined by (41). There exists C > 0
such that

sup
θ∈�0(sn)

Pθ(ζ̂ < ζ) ≤ exp(−C(logn)2).

Proof. First note that, almost surely, α̂−1 ≥ 1 > β(2λ1) with the help of the

first point of Lemma 20, so ζ̂ = β−1(α̂−1) > 2λ1. Since β is increasing on

(2λ1,
√
2 logn) and ζ ≤

√
2 log n, we have {ζ̂ < ζ} = {α̂ > α}, so P (ζ̂ < ζ) =

P (α̂ > α) = P (α̂ > α ∩ S(α) > 0) + P (α̂ > α ∩ S(α) ≤ 0).
Let us now focus on the event {α̂ > α} ∩ {S(α) ≤ 0}. If S(α) ≤ 0, since

S is decreasing, S < 0 on ]α, α̂]. So the likelihood l is decreasing on ]α, α̂[. It
implies that there exists α′ ∈]α, α̂[ such that l(α′) > l(α̂). But this contradicts

the maximality of α̂. Therefore {α̂ > α} ∩ {S(α) ≤ 0} = ∅. Hence P (ζ̂ < ζ) =
P (α̂ > α ∩ S(α) > 0) ≤ P (S(α) > 0).

The score function S(α) =
∑n

i=1 β(θi+Zi, α) is a sum of independent random
variables, each bounded by α−1. We have P (S(α) > 0) = P (

∑n
i=1 Wi > A), with

A = −
∑n

i=1 m1(θi, α) and Wi = β(θi + Zi, α) − m1(θi, α) centered variables,
bounded by M = (1 + c)/α using the second point of Proposition 3. Setting
V =

∑n
i=1 var(Wi), Bernstein’s inequality gives

P (S(α) > 0) ≤ exp(
−A2

2(V + MA
3 )

).

Moreover, proceeding as in Lemma 9 in the SAS case, we have −A � −nm̃(α)

and V � n m̃(α)
α , so

(
A2

2(V+MA
3 )

)−1

= V
A2 +

M
3A ≤ C

αnm̃(α)+
C′

αnm̃(α) � (αnm̃(α))−1
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therefore A2

2(V+MA
3 )

� αnm̃(α) � sn � (logn)2 and finally

P (S(α) > 0) ≤ exp(−C(logn)2).
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[16] V. Ročková. Bayesian estimation of sparse signals with a continuous spike-
and-slab prior. Ann. Statist., 46(1):401–437, 2018. MR3766957
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