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of view and our primary objective is to describe the smallest Euclidean
distance between the null and alternative hypotheses such that there is a
test with small total error probability. In particular, we focus on the de-
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bounds on this rate for different smooth and non-smooth choices for C.
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1. Introduction

In this paper we consider the problem of testing whether a vector μ ∈ Rd belongs
to a closed convex subset C of Rd with d ∈ N, based on a noisy observation X
obtained from the Gaussian sequence model with variance scaling parameter
n ∈ N, i.e.

X = μ+
1√
n
ε, (1.1)

where ε is a standard Gaussian vector. More precisely, in an l2 sense, we aim at
finding the order of magnitude of the smallest separation distance ρ > 0 from C
such that the testing problem

H0 : μ ∈ C vs. Hρ : inf
c∈C

‖μ− c‖2 ≥ ρ, (1.2)

where ‖.‖2 is the Euclidean distance, can be solved in the following sense: For
η ∈ (0, 1), we can construct a uniformly η−consistent test ϕ for (1.2), i.e.

sup
μ∈C

Pμ(ϕ = 1) + sup
μ∈Aρ

Pμ(ϕ = 0) ≤ η, (1.3)

where Aρ ⊂ Rd corresponds to Hρ. We write ρ∗(C) := ρ∗(C, d, n, η) for the
minimax-optimal separation distance ρ of this test, i.e.

ρ∗(C) = inf{ρ ≥ 0|∃ test φ : sup
μ∈C

Pμ(ϕ = 1) + sup
μ∈Aρ

Pμ(ϕ = 0) ≤ η},

i.e. the smallest distance ρ that enables the existence of a uniformly consistent
test of level η for the testing problem (1.2). See Section 2 for a more precise
description of the model and relevant quantities. The theory of minimax testing
in general has been profiting very much from the seminal work of Ingster and
Suslina, see for example their book [15].

An instance of this problem that was extensively studied is signal detection,
i.e. the case where C is a singleton, see e.g. [14] for an extensive survey of this
problem and also [2]. From this literature, we can deduce that the minimax-
optimal order of ρ∗ in this case is

d1/4√
n
.

In its general form however, this problem is a composite-composite testing
problem (i.e. neither C nor Aρ is only a singleton). A versatile way of solving
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such testing problems was introduced in [12], where the authors combine sig-
nal detection ideas with a covering of the null hypothesis, for deriving minimax
optimal testing procedures for composite-composite testing problems, provided
that the null hypothesis is not too large (i.e. that its entropy number is not
too large, see Assumption (A3) in [12]). In this case, the authors prove that
the minimax-optimal testing separation rate is the same as the signal detection

separation rate, namely d1/4
√
n
. This idea can be generalised also to the case where

the null hypothesis is “too large” (when Assumption (A3) in [12] is not satis-
fied); the approach then implies that an upper bound on the minimax rate of
separation is the sum of the signal detection rate and the optimal estimation
rate in the null hypothesis C – see [5] for an illustration of this for a specific
convex shape. Using this technique, one finds that the smaller the entropy of C,
the smaller the separation rate.

This idea has the advantage of generality, but is nevertheless sub-optimal
in many simple cases. For instance, if C is a half-space, the minimax-optimal
separation rate is 1√

n
, which is much smaller than the minimax-opimal signal

detection rate, even though a half-space has a much larger entropy (it is even
infinite) and larger dimension than a single point. See Section 3 for an extended
discussion on this case. This highlights the fact that for such a testing problem,
it is in many cases not the entropy, or size, of the null hypothesis that drives
the rate, but rather some other properties of the shape of C.

In order to overcome the limitations of this approach, some other ideas were
proposed. A first line of work can be found in [3], where the authors consider
the general testing problem (1.2), but for separation in ‖.‖∞-norm instead of
‖.‖2-norm. Since any convex set can be written as a intersection of half-spaces,
they rewrite the problem as a multiple testing problem. This approach is quite
fruitful, but the ‖.‖∞-norm results translate in a non-optimal way to ‖.‖2-norm
in terms of the dependence on the dimension d, particularly for large d. A second
main direction that was investigated was to consider testing for some specific
convex shapes, as e.g. the cone of positive, monotone, or convex functions, see
e.g. [16], or also balls for some metrics [17, 8]. These papers exhibit the minimax-
optimal separation distance - or near optimal distance, in some cases of [16]
and [17] - for the specific convex shapes that are considered, namely cones and
smoothness balls. The models considered in these works are different from our
model as they consider functional estimation; also, they do not provide results
for more general choices of the null hypothesis. In Sections 3 and 5, we derive
results for our model and shapes related to those of these papers - namely the
positive orthant and the Euclidian ball - in order to relate our work with these
earlier results. Finally, a last type of results that are related to our problem is
the case where the null hypothesis can be parametrised, see e.g. [11] where the
authors consider shapes that can be parametrised by a quadratic functional.
This approach and their results suggest that the smoothness of the shape of C
has an impact on the testing rate.

In this paper, we want to take a more general approach toward the testing
problem (1.2). In Section 3, we expose the range of possible separation rates by
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demonstrating that, without any further assumptions on C, the statement

∃w(η), w′(η) ∈ (0,∞) : w(η)
1√
n
≤ ρ∗(C) ≤ w′(η)

√
d√
n

(1.4)

is sharp up to ln(d)-factors. After that, in Sections 4 and 5, we investigate the
potential of a geometric smoothness property of the boundary of C. Despite its
simplicity, this property takes us quite far: In particular, given any separation
rate satisfying (1.4), it allows for constructing a set C exhibiting this rate up to
ln(d)-factors.

2. Setting

Let d, n ∈ N. We consider the d-dimensional statistical model

X = μ+
1√
n
ε, (2.1)

where μ ∈ Rd is unknown and ε is a standard Gaussian vector, written ε ∼
N (Od, Id). For k ∈ N, Ok denotes the origin of Rk and Ik ∈ Rk×k the identity
matrix. Clearly, by construction, the variance scaling parameter n may also be
interpreted as sample size since the distribution ofX is precisely the distribution
of the mean of n iid observations from N (μ, Id).

Now, let C � Rd be closed, nonempty and convex. For x ∈ Rd we write

dist(x, C) := inf
c∈C

‖x− c‖,

where ‖ · ‖ := ‖ · ‖2 denotes Euclidean (l2) norm, i.e. ‖x‖ =

√∑k
i=1 x

2
i for

x ∈ Rk, k ∈ N. A corresponding open Euclidean ball with center z ∈ Rk and
radius r > 0 is denoted Bk(z, r); moreover, we indicate vector concatenation by
[·, ·], so that, for instance, [z, 1] ∈ Rd if z ∈ Rd−1.

Given ρ > 0, we are interested in the testing problem

H0 : μ ∈ C vs. Hρ : dist(μ, C) ≥ ρ (2.2)

and we write Aρ := {x ∈ Rd | dist(x, C) ≥ ρ}. Our goal is to find the small-
est value of ρ such that testing (2.2) with prescribed total error probability is
possible in a minimax sense, i.e. the quantity

ρ∗(C) := ρ∗(C, d, n, η)
= inf{ρ > 0 | ∃ test ϕ : sup

μ∈C
Pμ(ϕ = 1) + sup

μ∈Aρ

Pμ(ϕ = 0) ≤ η}

for some fixed η ∈ (0, 1). Here, a test ϕ is a measurable function ϕ : R → {0, 1}.
In particular, we focus on the dependence of ρ∗(C) on the dimension d and n.

In terms of notation, this is done by using the symbols �,� and � as follows:
For some function gC that may only depend on n and d, we define

ρ∗(C) � gC(d, n) :⇐⇒ ∃w(η) ∈ (0,∞) : ρ∗(C) ≤ w(η)gC(d, n).
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We define in a similar way the symbol � (other direction). Finally, if gC(d, n) �
ρ∗(C) � gC(d, n), we write ρ∗(C) � gC(d, n); gC(d, n) then exhibits the minimax
Euclidean separation rate for (2.2) or simply separation rate.

Remark 2.1. In the proofs for upper bounds on ρ∗(C) it is necessary to consider
the type-I and type-II errors sup

μ∈C
Pμ(ϕ = 1) and sup

μ∈Aρ

Pμ(ϕ = 0) separately

leading to parameters α, β ∈ (0, 1
2 ) rather than η. However, this does not affect

the separation rate. For the sake of consistency in notation, we will state the
exact constants w(η) in upper bounds with α = β = η

2 . In these statements and
in the proofs, we use the abbreviation vx := ln

(
1
x

)
, x > 0.

3. A general guarantee and extreme cases

The quantity ρ∗(C) clearly depends on C.
Let us firstly examine a simple, essentially one-dimensional case, namely a

half-space.

Theorem 3.1. Let C = CHS := Rd−1 × (−∞, 0] (if d = 1, CHS = (−∞, 0]).
Then, in the testing problem (2.2), we have√

1

n
ln(1 + 4(1− η)2) ≤ ρ∗(C) ≤

√
8

n
vη

and therefore

ρ∗(C) �
1√
n
.

Remark 3.2. As can be seen in the proof (section 6.2.1), this testing problem
is essentially equivalent to the problem μ = 0 vs. μ = ρ in dimension d = 1, so
that, alternatively, the rate 1√

n
can be obtained by analysing the optimal test in

the sense of Neyman-Pearson. Furthermore, and in fact closely related to that,
note that the lower bound in the previous theorem is valid for any choice of
closed convex set C such that C and Rd\C are non-empty:

1√
n
� ρ∗(C).

Indeed, we find this rate by considering a fixed pair of points (μ0, μ1) ∈ C ×Aρ

that minimises the distance between C and Aρ, i.e. ‖μ0 − μ1‖ = ρ. That seems
to have firstly been discussed in [6]; other related (classical) literature would be
for instance [10] and [13].

Now, on the other hand, making no additional assumptions about C, a natural
choice ϕ for solving (2.2) is a plug-in test based on confidence balls. This gives
rise to the following general upper bound:
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Theorem 3.3. Let C be an arbitrary closed convex subset of Rd such that C
and Rd \ C are non-empty. Then, in the testing problem (2.2), we have

ρ∗(C) ≤ 2

√
d

n
+

2

n

√
dvη/2 +

2

n
vη/2

and therefore

ρ∗(C) �
√
d√
n
.

Remark 3.4. Note that this upper bound is the rate of estimation of μ in l2
norm in the model (2.1) (See Equation (6.2) in Section 6.1.2).

Remark 3.5. From Remark 3.2 and Theorem 3.3 it is clear that

1√
n
� ρ∗(C) �

√
d√
n

whenever C is a closed convex subset of Rd such that C and Rd\C are non-empty.

Given this observation, it is natural to ask if the upper bound in Theorem 3.3
is also sharp in the sense that there is a choice of C that requires the separation

rate
√
d√
n
, at least up to logarithmic factors. It turns out that the answer is yes

when C is taken to be an orthant:

Theorem 3.6. Let C = CO := (−∞, 0]d, d ≥ 42, η ∈ (0, 8
9 ) and

Mη := max

(
32,

⌈
2

1− ln(2)
ln(d) + 1 +

2

1− ln(2)
ln

(
1.8

8
9 − η

)⌉)
.

Then, for the testing problem (2.2), we have

ρ∗(C) ≥ 1

28

1

M
3/2
η

√
d√
n

and therefore, if d is large enough in the sense that Mη ≤ C ln(d) for some
C > 0, √

d

ln(d)3/2
√
n

� ρ∗(C) �
√
d√
n
.

This result heavily relies on tailoring the priors such that they have a certain
number of moments in common. A related application of this approach can be
found in the proof theorem 1 in [16], see also for instance [7].

4. A simple smoothness-type property

Clearly, the two extreme cases CHS and CO differ significantly with respect to
smoothness of their boundaries. Based on this observation, in order to be able to
handle ρ∗(C) more flexibly, we propose to describe convex sets by their bound-
aries’ degree of smoothness, where the boundary of a set S ∈ Rd is denoted by
∂S and its closure by S = S ∪ ∂S. To begin with, we examine the potential of
the following very simple and purely geometric smoothness concept:
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Definition 4.1. Let R ≥ 0 and S ⊆ Rd with non-empty interior. S is called
R-rounded if

∀x ∈ ∂S ∃z ∈ S : x ∈ Bd(z,R) ⊆ S. (4.1)

Remark 4.2. Note that R-rounding is a stronger requirement the higher the
value of R, i.e. intuitively the degree of the boundary’s smoothness grows with
R. In particular, a half space CHS is ∞-rounded, a ball Bd(z,R) (with z ∈ Rd,
R ∈ (0,∞)) is R-rounded and the orthant CO is 0−rounded. The definition
of R−rounding is closely related to the so-called R-rolling condition employed
in [1]. In fact, R-rounding of S is equivalent to saying that Rd\S fulfils the
R-rolling condition.

Another related concept worth mentioning is the radius of curvature, though
the connection is more subtle: The radius of curvature at a point x ∈ ∂S would
be the radius r of the ball B that best fits ∂S in the sense of a common tangential
hyperplane of ∂S and B at x and common analytical curvature, see for instance
[9]. Hence, it is possible that the infimum R of these radii r with respect to
x ∈ ∂S corresponds to the parameter R in our previous definition. However,
we can then still not easily guarantee that the resulting balls B of the form
Bd(z,R) fulfil Bd(z,R) ⊆ S as required in Definition 4.1.

Since smoothness is usually defined as a local property of a function, we
provide a suggestion for how to cast the above concept in that context for a
closed convex set C: Given any x ∈ ∂C, without loss of generality (w.l.o.g.)
apply a rotation and translation G such that x′ = G(x) = Od and C′ := G(C) ⊆
Rd−1 × [0,∞). Now, assume that there is an r ∈ (0, R] and a function f : B →
[0,∞), where B = Bd−1(Od−1, r), such that its graph is contained in ∂C′ and
C′ ∩ (B × [0,∞)) is contained in the epigraph of f – see the figure below for
an illustration. The following lemma states sufficient conditions for R-rounding
locally at x ∈ C′, i.e. at G−1(x) ∈ ∂C:
Lemma 4.3. In the situation described in the latter paragraph, if f is twice
differentiable on B (i.e. the gradient ∇f(·) and Hessian matrix Hf(·) exist), the
following conditions are sufficient in order that the graph of f remains below
Bd([Od−1, R], R), i.e. C′ is locally R-rounded at Od.⎧⎪⎪⎨⎪⎪⎩

∇f(Od−1) = Od−1,

∀x ∈ B\{Od−1} : 0 ≤ λmin(Hf(x)), λmax(Hf(x)) ≤ 1

R
,

where λmin(·) and λmax(·) are the lowest and highest eigenvalues of a real
symmetric matrix, respectively.

Now, let us examine how the additional assumption of R−rounding may
affect the general upper bound of Theorem 3.3:

Theorem 4.4. If C is R−rounded for some R ∈ (0,∞), for the testing problem
(2.2), we have

ρ∗(C) ≤
√

2
nvη/8 +

d
2nR + 2

nR

√
dvη/4 +

1
nRvη/4 +

√
2
nvη/2
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Fig 1. In this example C is only 0-rounded in the sense of Definition 4.1, but in the local sense
of Lemma 4.3, there are points x ∈ ∂C with 0-rounding, ∞-rounding and “non-degenerate”
rounding such as Od, where, however, the maximum admissible radius r of B is strictly smaller
than R.

and therefore, taking Theorem 3.3 into account,

ρ∗(C) � max

(
1√
n
,min

(√
d√
n
,
d

nR

))

The following result confirms that this upper bound can be sharp up to ln(d)
factors, namely in the case where C is taken as an R-inflated orthant:

Theorem 4.5. Let d ≥ 43, η ∈ (0, 8
9 ) and

C = CIO = CO +B(Od, R) =
⋃

z∈CO

B(z,R),

where CO = (−∞, 0]d is the orthant from Theorem 3.6. Furthermore, let

Mη := max

(
32,

⌈
2

1− ln(2)
ln(d− 1) + 1 +

2

1− ln(2)
ln

(
1.8

8
9 − η

)⌉)
.
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Then, in the testing problem (2.2), we have with s =
√
3

28
1

M
3/2
η

√
n

ρ∗(C) ≥ 1

12
min

(
(d− 1)s2

R
,
√
3
√
d− 1 s

)
and therefore, if d is large enough in the sense that Mη ≤ C ln(d− 1) for some
C > 0,

ρ∗(C) � max

(
1√
n
,min

(
1

ln(d)3
· d

nR
,

1

ln(d)3/2
·
√
d√
n

))
.

5. Discussion

The concept of R-rounding allows for the construction of hypotheses C with any

separation rate 1√
n
� ρ∗(C) �

√
d√
n
, up to ln(d)-factors. On the other hand, we

must acknowledge that R−rounding is too weak a concept to fully describe the
difficulty of testing an arbitrary C; an examination of the natural R-rounded set,
namely a ball of radius R, provides clear evidence of this drawback. The result

is a direct generalisation of the known rate ρ∗(C) ∼ d
1
4√
n
in the signal detection

setting, see [2].

Theorem 5.1. Let η ∈ (0, 1) and d≥ ln(2/η). If C = CB = Bd(z,R), z ∈ Rd and

R > 0, for the testing problem (2.2), we have for s :=
√
d−1
n

√
2
e ln(1 + 4(1− η)2)

ρ∗(C) ≥ s

2
√
s+R2

� min

(
d

1
4

√
n
,

√
d

nR

)

and also

ρ∗(C) ≤ min

(
2
√
2
d

1
4

n
1
2

√
vη/2 + 3

√
2

n
vη/2,

2
√
d

nR+ 2
√
nvη/2

√
vη/2 + 3

√
2

n
vη/2

)

� max

(
1√
n
,min

(
d

1
4

√
n
,

√
d

nR

))
.

Therefore,

ρ∗(C) � max

(
1√
n
,min

(
d

1
4

√
n
,

√
d

nR

))
. (5.1)

Clearly, Theorem 4.5 does not capture this case. As a consequence, future
work will be concerned with finding a stronger concept, possibly a localised
version of R−rounding, that ideally allows for describing ρ∗(C) for any choice
of C. However, we suspect this to be quite an ambitious goal.
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6. Proofs

6.1. General preparations

6.1.1. Techniques for obtaining lower bounds

We employ a classical Bayesian approach for proving lower bounds, see refer-
ences in [2] for its origins. We briefly give the main theoretical ingredients of
this approach for our setting:

Let ν0 be a distribution with S0 := supp(ν0) ⊆ C and νρ be a distribution
with Sρ := supp(νρ) ⊆ {μ ∈ Rd | dist(μ, C) = ρ} (priors). For instance, Dirac
priors on some x ∈ R will be denoted δx. Furthermore, for i ∈ {0, ρ}, let Pνi

be the resulting distribution of X given μ ∼ νi. Now, we see that for any test
ϕ = 1A, A ∈ B(Rd),

sup
μ∈C

Pμ(ϕ = 1) + sup
μ∈Aρ

Pμ(ϕ = 0) ≥ Pν0(ϕ = 1) + Pνρ(ϕ = 0)

≥ 1− 1

2
‖Pνρ − Pν0‖TV.

≥ 1− 1

2

(∫
Rd

(
dPνρ

dPν0

)2

dPν0 − 1

) 1
2

,

see for instance [2]. This justifies the following reasoning used for each lower
bound proof in the present paper:

Let η ∈ (0, 1). For any ρ̃ > 0 such that either

1

2
‖Pν0 − Pνρ̃

‖TV ≤ 1− η

or ∫
Rd

(
dPνρ

dPν0

)2

dPν0 ≤ 1 + 4(1− η)2, (6.1)

it holds that
sup
μ∈C

Pμ(ϕ = 1) + sup
μ∈Aρ

Pμ(ϕ = 0) ≥ η

and thus, for the testing problem (2.2), we have

ρ∗(C) ≥ ρ̃.

6.1.2. Concentration properties of Gaussian and χ2 random variables

We will repeatedly make use of the following classical properties ofN ∼ N (0, σ2)
and Z ∼ χ2

λ(d) (that is, a χ2- distribution with d degrees of freedom and non-
centrality parameter λ ≥ 0): For any δ ∈ (0, 1), the following concentration
inequalities hold:

(I) P(N ≥ σ
√
2vδ) ≤ δ

(II) P(Z ≥ d+ λ+ 2
√
(d+ 2λ)vδ + 2vδ) ≤ δ,

(III) P(Z ≤ d+ λ− 2
√
(d+ 2λ)vδ) ≤ δ,

(6.2)

See [4] for proofs of (6.2.II) and (6.2.III).
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6.1.3. Frequently used bounds for expressions containing square roots

We will employ the following bounds on several occasions which makes it con-
venient to mention them here.

Lemma. For any a > 0, b ∈ R, we have

a

2
√
a+ b2

≤
√
a+ b2 − b ≤ a

2b
(6.3)

and for any b > 0, a ≤ b2 we have

b−
√
b2 − a ≥ a

2b
(6.4)

Proof. Firstly, through Taylor expansion of
√
a+ b2 − b as a function in a, we

see that there is a ξ ∈ (0, a) such that√
a+ b2 − b =

a

2
√
ξ + b2

.

Now, with ξ ≥ 0 and ξ ≤ a we obtain the upper and lower bounds in (6.3),
respectively. Secondly, explicit calculation tells us that

b−
√

b2 − a ≥ a

2b
⇔ a2

4b2
≥ 0,

which concludes the proof. �

6.2. Proofs for Section 3

6.2.1. Proof of Theorem 3.1

Proof. We prove independently that the order of ρ∗(C) is lower and upper
bounded by 1√

n
.

1. Lower Bound.
In accordance with the framework in Section 6.1.1, we verify that the
bound holds in the special case ν0 = δOd

and νρ = δρ·ed , where ed is the last
standard basis vector ed = [Od−1, 1]. Since both the null and alternative
hypotheses are simple, the corresponding density functions Fν0(x) and
Fνρ(x) are readily given and we obtain

∫
Rd

F 2
νρ

Fν0

(x) dx =

√
n

2π

d ∫
Rd

exp
(
−n(xd − ρ)2 +

n

2
x2
d −

n

2
(‖x‖2 − x2

d)
)

dx

=

√
n

2π

∫
R

exp
(
−n(xd − ρ)2 +

n

2
x2
d

)
dxd
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=

√
n

2π
exp(nρ2)

∫
R

exp
(
−n

2
(xd − 2ρ)2

)
dxd

= exp(nρ2).

Therefore inequality (6.1) is satisfied (with equality) if the latter quantity
is equal to 1 + 4(1− η)2, i.e. for

ρ =

√
1

n
ln(1 + 4(1− η)2).

This yields the claim.
2. Upper Bound.

Given α, β ∈ (0, 1
2 ), let δ = min(α, β) and τδ =

√
2
nvδ. Define the test

ϕ(X) = 1{Xd≥τδ}.

Then for any μ ∈ C, we have

Pμ(ϕ(X) = 1) ≤ P
(

1√
n
εd ≥ τδ

) (6.2.I)
≤ δ ≤ α.

On the other hand, let now ρ = 2τδ. Then for any μ ∈ Aρ, we have

Pμ(ϕ(X) = 0) ≤ P
(
2τδ +

1√
n
εd ≤ τδ

)
≤ P

(
1√
n
εd ≤ −τδ

) (6.2.I)
≤ δ ≤ β.

This concludes the proof since ρ � 1√
n
. �

6.2.2. Proof of Theorem 3.3

Proof. Given α, β ∈ (0, 1
2 ), let δ = min(α, β) and τδ = d

n + 2
n

√
dvδ + 2

nvδ.
Define the test

ϕ(X) = 1{B(X,
√
τδ)∩C=∅} = 1{dist(X,C)≥√

τδ}.

Then for any μ ∈ C, we have

Pμ(ϕ(X) = 1) ≤ P (‖X − μ‖ ≥ √
τδ) ≤ P

(
1
n‖ε‖

2 ≥ τδ
) (6.2.II)

≤ δ ≤ α.

On the other hand, let now ρ = 2
√
τδ and μ ∈ Aρ arbitrary. Then analogously

dist(X, C) < τ ⇒ ‖X − μ‖ >
√
τδ

and hence
Pμ(ϕ(X) = 0) ≤ β.

This concludes the proof since
√
τδ �

√
d
n . �
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6.2.3. Proof of Theorem 3.6

Proof. The arguments of this proof are related to the ones used in [16] and [7].
We decompose the proof into several steps.

1. Choice of priors.
We make use of the following lemma used and explained in [16]:

Lemma. For any M ∈ N and b > 0, there are distributions ν̃0 and ν̃1
with the following properties:

(I) supp(ν̃0) ⊆ [−b, 0], supp(ν̃1) ⊆ [−b, 0] ∪
{

b
4M2

}
(II) ν̃1

({
b

4M2

})
≥ 1

2
(6.5)

(III) ∀k ∈ {0, 1, . . . ,M} :

∫
zk ν̃0(dz) =

∫
zk ν̃1(dz).

For now, let ν̃i be such distributions and νi = ν̃⊗d
i , i ∈ {0, 1}; M, b and ρ

will be specified later. Furthermore, writing σ2 = 1
n , let

Pi =
(
ν̃i ∗ N (0, σ2)

)⊗d
, i ∈ {0, 1},

where ∗ denotes convolution. Clearly, the corresponding density function
can be written as

Fi(x) =

d∏
j=1

(
Eμj∼ν̃i

[φ(xj ;μj , σ
2)]

)
, i ∈ {0, 1},

where φ(x;μ, σ2) is the density of N (μ, σ2). It will be convenient to ex-

amine the case d = 1, denoted by P̃i.
Note that P0 is in accordance with Pν0 from Section 6.1.1, but the con-
struction of ν1 does not warrant the notion of Euclidean distance we are
interested in - ν1 has support inside CO - hence the slight difference in
notation. This technical obstacle is necessary for the property (6.5.III),
but it can be resolved for a small price, which we explain in the last step
of this proof.

2. Controlling the total variation distance.
Based on our construction, we have for i ∈ {0, 1} and fixed x ∈ R

Eμ∼ν̃i
[φ(x;μ, σ2)] = φ(x; 0, σ2)

∫
exp

(
2xμ− μ2

2σ2

)
ν̃i(dμ)

= φ(x; 0, σ2)

∫ ∞∑
k=0

1

k!

(
2xμ− μ2

2σ2

)k

ν̃i(dμ)

= φ(x; 0, σ2)

∫ ∞∑
k=0

1

k!(2σ2)k
(2xμ− μ2)k ν̃i(dμ). (6.6)
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Let now

Dk(x) :=

∫
(2xμ− μ2)k ν̃1(dμ)−

∫
(2xμ− μ2)k ν̃0(dμ).

Then (6.6) in conjunction with (6.5.III) tells us that

Eμ∼ν̃1
[φ(x;μ, σ2)]− Eμ∼ν̃0

[φ(x;μ, σ2)]

φ(x; 0, σ2)
=

∞∑
k=�M/2�+1

1

k!(2σ2)k
Dk(x).

and thus

‖P̃1 − P̃0‖TV =

∫ ∣∣Eμ∼ν̃1
[φ(x;μ, σ2)]− Eμ∼ν̃0

[φ(x;μ, σ2)]
∣∣ dx

≤
∞∑

k=�M/2�+1

1

k!(2σ2)k

∣∣∣∣∫ Dk(x)φ(x; 0, σ
2) dx

∣∣∣∣ (6.7)

We take a moment to upper bound the individual summands: Since

(2xμ− μ2)k ≤ 4k|x|kbk + 2kb2k

and, by a classical formula for Gaussian absolute moments,∫
|x|kφ(x, 0, σ2) dx =

σk
√
2
k

√
π

Γ((k + 1)/2) ≤ σk
√
2
k

√
π

⌈
k

2

⌉
!,

we have∣∣∣∣∫ Dk(x)φ(x; 0, σ
2) dx

∣∣∣∣ ≤ 2

(
4kbk

∫
|x|kφ(x; 0, σ2) dx+ 2kb2k

)
≤ 2

(
1√
π

(
4
√
2bσ

)k
⌈
k

2

⌉
! + 2kb2k

)
.

Now through Stirling’s approximation and elementary manipulation, with
M ≥ 32 we obtain ⌈

k
2

⌉
!

k!
≤ e√

2π

⌈
k
2

⌉� k
2 �

kk+
1
2

⌈
k
2

⌉1/2
e� k

2 �︸ ︷︷ ︸
≤
√
3/k

ek

≤ e
√
3√

2π

(√
k + 1

2k2

)k+1

ek

≤ e
√
3

5
√
2π

(√
17

32

1√
k

)k

≤ 1

2

(√
17

32

1√
k

)k
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and

k! ≥
√
2πkk

√
ke−k ≥ 4

√
π

(
k

e

)k

.

That yields

1

k!(2σ2)k

∣∣∣∣∫ Dk(x)φ(x; 0, σ
2) dx

∣∣∣∣
≤ 2

(
1

k!
√
π

(
4√
2

b

σ

)k ⌈
k

2

⌉
! +

1

k!

(
b

σ

)2k
)

≤ 2

⎛⎝1

2

(√
17

2

b

σ
√
k

)k

+
1

4
√
π

(
e
b2

σ2k

)k
⎞⎠

At this point, we introduce a more explicit choice of b, namely b = c
√
Mσ

with c = 2
√
2√

17e
≥ 1

4 . This choice guarantees

1

k!(2σ2)k

∣∣∣∣∫ Dk(x)φ(x; 0, σ
2) dx

∣∣∣∣ ≤ (
1 +

1

2
√
π

)(√
17

2

b

σ
√
k

)k

and moreover, continuing (6.7),

‖P̃1 − P̃0‖TV ≤
(
1 +

1

2
√
π

) ∞∑
k=�M/2�+1

(√
17

2

b

σ
√
k

)k

≤
(
1 +

1

2
√
π

)
2

e− 2

(
2

e

)�M/2�

and hence finally

‖P1 − P0‖TV ≤ d

(
1 +

1

2
√
π

)
2

e− 2

(
2

e

)�M/2�
.

By direct computation, we now see that for any η′ ∈ (0, 1)

1

2
‖P1 − P0‖TV ≤ 1− η′

is fulfilled if

M ≥ 2

1− ln(2)
ln(d) + 1 +

2

1− ln(2)
ln

(
1.8

1− η′

)
︸ ︷︷ ︸

=:cη′

,

so we choose

M := max

(
32,

⌈
2

1− ln(2)
ln(d) + cη′

⌉)
.
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3. Application.
Note that this upper bound 1

2‖P1 − P0‖TV ≤ 1 − η′ does not formally
allow for determining a lower bound on ρ∗(C) yet since H0 and H1 are not
separated in a Euclidean sense. In a final step, we will resolve this by a
suitable restriction of H1.
Let Y =

∑d
i=1 1{μi=u}, i.e. the number of coordinates of μ taking the

value u = b
4M2 . Obviously, if μ ∼ ν1, we have Y ∼ Bin(d, ν̃1({u})). By

property (6.5.II) and Hoeffding’s inequality, this yields that if d ≥ 42,

Pμ∼ν1

(
Y ≥ d

3

)
≥ 9

10
.

Now, let ξ = {Y ≥ d
3} and

H ′
1 : μ ∼ ν1|ξ.

Assuming that for some test ϕ the relation

Pμ∼ν0(ϕ = 1) + Pμ∼ν1(ϕ = 0) ≥ η′

holds, we can conclude

Pν0(ϕ = 1) + Pν1|ξ(ϕ = 0) = Pν0(ϕ = 1) + 1− Pν1({ϕ = 1} ∩ ξ)

Pν1(ξ)

≥ Pν0(ϕ = 1) + 1− 10

9
Pν1(ϕ = 1)

≥ Pν0(ϕ = 1) +
10

9
Pν1(ϕ = 0)− 1

9

≥ Pν0(ϕ = 1) + Pν1(ϕ = 0)− 1

9

≥ η′ − 1

9
.

Hence, inference from the testing problem discussed in Steps 1 and 2 to
the problem

H0 : μ ∼ ν0 vs. H ′
1 : μ ∼ ν1|ξ

is valid as long as η ∈ (0, 8
9 ) (η corresponds to η′ − 1

9 above).
The following observation concludes the proof: Clearly, H ′

1 agrees with Aρ

for

ρ =

√
d√
3

b

4M2
=

1

2e
√
25.5

1

M3/2

√
d√
n

′

≥ 1

28

1

M3/2

√
d√
n
. �

6.3. Proofs for Section 4

6.3.1. Proof of Lemma 4.3

Proof. We need to ensure that on B, the graph of f remains below B̃ =
Bd([Od−1, R], R) since that corresponds to the fact that B̃ is locally contained
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in C, as required in Definition 4.1. This is equivalent to

∀x ∈ B : 0 ≤ f(x) ≤ R−
√
R2 − ‖x‖2.

Applying Taylor’s theorem with Lagrange’s remainder yields

∃s ∈ (0, 1) : f(x) =
1

2
xTHf(sx)x,

since by construction f(Od−1) = 0 and ∇f(Od−1) = Od−1. Clearly, in order
that f ≥ 0 on B, it is sufficient to require λmin(Hf(y)) ≥ 0 for y ∈ B\{Od−1}.
On the other hand, we can use a classical eigenvalue representation to obtain
the desired upper bound: For some s ∈ (0, 1),

f(x) =
1

2
‖x‖2

(
x

‖x‖

)T

Hf(sx)

(
x

‖x‖

)
≤ 1

2
‖x‖2 max

‖y‖=1
yTHf(sx)y

=
1

2
‖x‖2λmax(Hf(sx))

≤ 1

2R
‖x‖2

≤ R−
√

R2 − ‖x‖2

by assumption and (6.4). �

6.3.2. Proof of Theorem 4.4

Proof. We define the test statistic

T (X) := dist(X, C),

and a corresponding test of the form ϕ(X) = 1{T (X)≥τ}.

Let μ ∈ C. W.l.o.g. assume that μ′ := Od ∈ C ⊆ Rd−1 × [0,∞) and μ′

minimises the distance between μ and ∂C. Now let z = [Od−1, R] so that by
construction μ′ ∈ Bd(z,R) ⊆ C.

For τ > 0, we have

dist(X, C) ≥ τ =⇒ dist(X,Bd(z,R)) ≥ τ

=⇒
∥∥∥ 1√

n
ε− z

∥∥∥−R ≥ τ.

Now, writing ε1:(d−1) := [ε1, ε2, . . . , εd−1] and using (6.3), we obtain

∥∥∥ 1√
n
ε− z

∥∥∥−R =

√∥∥∥ 1√
n
ε− z

∥∥∥2

−R
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=

√
1
n‖ε1:(d−1)‖2 +

(
1√
n
εd −R

)2

−R

≤
√

1
n‖ε1:(d−1)‖2 +

(
R+ 1√

n
|εd|

)2

−R

≤ R+ 1√
n
|εd|+ ‖ε1:(d−1)‖2

2n(R+
1√
n
|εd|)

−R

≤ 1√
n
|εd|+ ‖ε1:(d−1)‖2

2nR ,

which tells us

Pμ(T (X) ≥ τ) ≤ P
(

1√
n
|εd|+ ‖ε1:(d−1)‖2

2nR ≥ τ
)
.

Clearly, this bound holds generally in the sense

sup
μ∈C

Pμ(ϕ(X) = 1) ≤ P
(

1√
n
|εd|+ ‖ε1:(d−1)‖2

2nR ≥ τ
)
.

Based on the general property

P(A ≥ τ1) ≤ α
2 ∧ P(B ≥ τ2) ≤ α

2 =⇒ P(A+B ≥ τ1 + τ2) ≤ α

for random variables A and B and by using (6.2.I) and (6.2.II), we finally obtain
the rejection threshold

τ :=
√

2
nvα/4 +

d
2nR + 2

nR

√
dvα/2 +

1
nRvα/2 � max

(
1√
n
,
d

nR

)
for a fixed level α ∈ (0, 1

2 ).

On the other hand, w.l.o.g., choose μ = [Od−1,−ρ]. This is valid since by
construction μ minimises the distance between C and Aρ and Od represents an
arbitrary element of ∂C. We have

dist(X, C) ≤ τ =⇒ Xd ≥ −τ ⇐⇒ εd ≥
√
n(ρ− τ),

so that it is sufficient to ensure

sup
μ∈Aρ

Pμ(ϕ(X) = 0) ≤ P(εd ≥
√
n(ρ− τ)) ≤ β ∈ (0, 1

2 ),

which leads to the condition

ρ ≥ τ +
√

2
nvβ ∼ τ.

This concludes the proof. �
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6.3.3. Proof of Theorem 4.5

Proof. This is a variation on the proof of Theorem 3.6. Using the same con-
struction and notation as previously, and taking d ≥ 3, let now for i ∈ {0, 1}

νi = ν̃⊗d−1
i ⊗ δR.

Since the mutual deterministic coordinate μd = R is irrelevant for the total
variation distance between the resulting distributions P0 and P1, the bounds in
Step 2 of the proof of Theorem 3.6 also hold here with d− 1 instead of d.

The most important modification arises when calculating ρ: Now, if at least
d−1
3 of the coordinates take the value u = b

4M2 , computing the Euclidean dis-
tance of μ from C and using (6.3) leads to

ρ∗(C) ≥
√

R2 +
d− 1

3
u2 −R ≥ (d− 1)u2

6
√
R2 + d−1

3 u2

≥ (d− 1)u2

6R+ 6√
3

√
d− 1u

≥ 1

12
min

(
(d− 1)u2

R
,
√
3
√
d− 1u

)
∼ min

(
1

ln(d)3
· d

nR
,

1

ln(d)3/2
·
√
d√
n

)
,

if d is large enough in the sense that Mη ≤ C ln(d − 1) for some C > 0, where
Mη is given in the statement of the theorem. This concludes the proof. �

6.4. Proofs for Section 5

6.4.1. Proof of Theorem 5.1

Proof. W.l.o.g., let z = Od. We prove independently that ρ∗(C) is lower and
upper bounded by the right hand side of (5.1).

Lower Bound. Let ν0 = δRed , giving rise to the density function

Fν0(x) :=
( n

2π

) d
2

exp
(
−n

2
(xd −R)2

) d−1∏
i=1

exp
(
−n

2
x2
i

)
.

On the other hand, for a suitable h > 0 specified in a moment, let νρ be the
uniform distribution on

Ph := {[h · v,R] | v ∈ {−1, 1}d−1}
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Since each element of Ph has Euclidean distance
√

R2 + (d− 1)h2 −R from C,
which should correspond to ρ, we set h2 = (R+ρ)2−R2

d−1 . This gives rise to the
following density function:

Fνρ(x) :=
( n

2π

) d
2

exp
(
−n

2
(xd −R)2

) 1

2d−1

×
∑

v1,...,vd−1∈{−1,1}

d−1∏
i=1

exp
(
−n

2
(xi − h · vi)2

)

=
( n

2π

) d
2

exp
(
−n

2
(xd −R)2

) 1

2d−1

d−1∏
i=1

exp
(
−n

2
x2
i −

n

2
h2

)
2 cosh (nhxi)

=
( n

2π

) d
2

exp
(
−n

2
(xd −R)2 − (d− 1)

n

2
h2
) d−1∏

i=1

exp
(
−n

2
x2
i

)
cosh (nhxi) ,

so that

F 2
νρ
(x) :=

( n

2π

)d

exp
(
−n(xd −R)2 − (d− 1)nh2

) d−1∏
i=1

exp
(
−nx2

i

)
cosh2 (nhxi) .

Now, using the fact that E[cosh2(aY )] = exp(a2σ2) cosh(a2σ2) for Y ∼ N (0, σ2),
we have∫

Rd

F 2
νρ

(x)

Fν0 (x)
dx =

∫
Rd

(
n
2π

) d
2 exp

(
−n

2 (xd −R)2 − (d− 1)nh2
)

·
d−1∏
i=1

cosh2 (nhxi) exp
(
−n

2x
2
i

)
dx

=
(

n
2π

) d
2 exp

(
−(d− 1)nh2

) ∫
R

exp
(
−n

2 (xd −R)2
)
dxd

·
[∫

R

cosh2 (nhx) exp
(
−n

2x
2
)
dx

]d−1

= exp
(
−(d− 1)nh2

)
·
[
exp(nh2) cosh(nh2)

]d−1

= cosh(nh2)d−1.

Now, by Taylor expansion we obtain the bound

nh2 ≤ 1 =⇒ cosh(nh2) ≤ 1 +
e

2
n2h4, (6.8)

so that

ln
(
cosh(nh2)d−1

)
≤ (d− 1)

e

2
n2h4 =

n2

(d− 1)

e

2
((R+ ρ)2 −R2)2, (6.9)

whenever

nh2 ≤ 1 i.e. ρ ≤
√

d− 1

n
+R2 −R. (6.10)
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The upper bound (6.9) leads to the following condition:

ρ ≤

√√
d− 1

n
s+R2 −R, where s :=

√
2

e
ln(1 + 4(1− η)2), (6.11)

which is sufficient for ensuring (6.1), provided that (6.10) holds. It is straight-
forward to see that (6.11) implies (6.10) as long as

d ≥ 1 +
2

e
ln(5) i.e. d ≥ 3.

It remains to investigate (6.11) a little closer. Application of (6.3) now yields

the following, defining t > 0 via the relation R2 = t2s
√
d−1
n :√√

d− 1

n
s+R2 −R ≥

√
s

2
√
1 + t2

(d− 1)
1
4

n
1
2

�
(d− 1)

1
4

n
1
2

min(t−1, 1)

� min

(
(d− 1)

1
4

n
1
2

,
(d− 1)

1
2

n ·R

)
.

If on the one hand R � (d−1)
1
4

n
1
2

√
s, that is R ≤ t

√
s (d−1)

1
4

n
1
2

for t > 0, we have√√
d− 1

n
s+R2 −R ≥

√
s

2
√
1 + t2

(d− 1)
1
4

n
1
2

� min

(
(d− 1)

1
4

n
1
2

,
(d− 1)

1
2

n ·R

)
.

Analogously, the case R � (d−1)
1
4

n
1
2

√
s also yields√√

d− 1

n
s+R2 −R � min

(
(d− 1)

1
4

n
1
2

,
(d− 1)

1
2

n ·R

)
.

Upper Bound. We define the test statistic

T (X) := ‖X‖2 −R2

and a corresponding test of the form ϕ(X) = 1{T (X)≥τ}. On the one hand, in
order to control the type-I-error probability, take any μ ∈ C, so that ‖μ‖ ∈
[0, R]. Clearly, n‖X‖2 ∼ χ2

n‖μ‖2(d). Therefore, for τ ′ > 0 and with the notation

Zλ ∼ χ2
λ(d), we can guarantee

Pμ(ϕ(X) = 1) = P(Zn‖μ‖2 ≥ n‖μ‖2 + nτ ′) ≤ α

by setting

τ ′ =
d

n
+ 2

√(
d

n2
+

2

n
‖μ‖2

)
vα +

2

n
vα,
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where we use (6.2.II). Since ‖μ‖ ≤ R, this yields that

sup
μ∈C

Pμ(ϕ(X) = 1) ≤ sup
μ∈C

P(Zn‖μ‖2 ≥ nR2 + nτ) ≤ α

for

τ =
d

n
+ 2

√(
d

n2
+

2

n
R2

)
vα +

2

n
vα.

On the other hand, in order to satisfy a prescribed level β ∈ (0, 1
2 ) for the Type-

II-error, take any μ ∈ Aρ with ‖μ‖ ≥ R + ρ. Then again, n‖X‖2 ∼ χ2
n‖μ‖2(d),

so that we need to ensure

Pμ(ϕ(X) = 0) = P(Z ′ ≤ nR2 + nτ) ≤ β, where Z ′ ∼ χ2
n‖μ‖2(d). (6.12)

In this case, (6.2.III) yields the sufficient condition

d+ nR2 + 2
√

(d+ 2nR2)vα + 2vα ≤ d+ n‖μ‖2 − 2
√
(d+ 2n‖μ‖2)vβ .

The right hand side is increasing in ‖μ‖ if d ≥ ln(1/β), so that, similar as for
the type-I-error, (6.12) holds uniformly over Aρ if

d+ nR2 + 2
√
(d+ 2nR2)vα + 2vα ≤ d+ n(R+ ρ)2 − 2

√
(d+ 2n(R+ ρ)2)vβ .

Using
√
a+ b ≤ √

a +
√
b (for a, b > 0) and (6.3) respectively, we obtain two

different sufficient bounds for ρ:

ρ ≥
√
2
d

1
4

√
n
(
√
vα +

√
vβ) +

√
2

n
(
√
vα + 2

√
vβ) ;

ρ ≥
√
d

nR+ 2
√
nvα

(
√
vα +

√
vβ) +

√
2

n
(
√
vα + 2

√
vβ).

Therefore, as claimed, the upper bound

ρ∗(C) � max

(
1√
n
,min

(
d

1
4

√
n
,

√
d

nR

))

holds. This concludes the proof. �
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