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Abstract: We consider the problem of robustifying high-dimensional struc-
tured estimation. Robust techniques are key in real-world applications which
often involve outliers and data corruption. We focus on trimmed versions
of structurally regularized M-estimators in the high-dimensional setting,
including the popular Least Trimmed Squares estimator, as well as analo-
gous estimators for generalized linear models and graphical models, using
convex and non-convex loss functions. We present a general analysis of
their statistical convergence rates and consistency, and then take a closer
look at the trimmed versions of the Lasso and Graphical Lasso estimators
as special cases. On the optimization side, we show how to extend algo-
rithms for M-estimators to fit trimmed variants and provide guarantees on
their numerical convergence. The generality and competitive performance
of high-dimensional trimmed estimators are illustrated numerically on both
simulated and real-world genomics data.

Keywords and phrases: Lasso, robust estimation, high-dimensional vari-
able selection, sparse learning.
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1. Introduction

We consider the problem of high-dimensional estimation, where the number of
variables p is much higher than the number of observations n. These problems
arise in a variety of domains, including signal processing, computational biol-
ogy and finance. The development and the statistical analysis of structurally
constrained estimators for high-dimensional estimation has recently attracted
considerable attention. These estimators seek to minimize the sum of a loss
function and a weighted regularizer. The most popular example is that of
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Lasso [43], which solves an �1-regularized (or equivalently �1-constrained) least
squares problem. Under sub-Gaussian errors, Lasso has been shown to have
strong statistical guarantees [44, 46]. Regularized maximum likelihood estima-
tors (MLEs) have been developed for sparsity-structured Generalized Linear
Models (GLMs), with theoretical guarantees such as �1 and �2-consistency [29],
and model selection consistency [10]. For matrix-structured regression problems,
estimators using nuclear-norm regularization have been studied e.g. by [36]. An-
other prime example is that of sparse inverse covariance estimation for graphical
model selection [35].

In practice, however, the desirable theoretical properties of such regular-
ized M-estimators can be compromised, since outliers and corruptions are often
present in high-dimensional data problems. These challenges motivate the devel-
opment of robust structured learning methods that can cope with observations
deviating from the model assumptions. The problem of reliable high-dimensional
estimation under possibly gross error has gained increasing attention. Relevant
prior work includes the “extended” Lasso formulation [31, 53] which incorporates
an additional sparse error vector to the original Lasso problem so as to account
for corrupted observations, the LAD-Lasso [47] which uses the least absolute
deviation combined with an �1 penalty, the “matrix uncertainty selectors” [38]
which consider the case where the predictor matrix is observed with additive
error, and the Robust Matching Pursuit method of Chen et al. [12] which per-
forms feature selection based on a trimmed inner product of the features with
the residuals to mitigate the impact of corrupted observations. Extending M-
estimators beyond the least squares case along these directions is challenging.
For example, Yang et al. [51], Tibshirani and Manning [42] extend the strategy
in Nguyen and Tran [31] to generalized linear models in two ways: (1) modeling
errors in the input space, using a convex objective with stringent conditions for
consistency; and (2) modeling errors in the output space, breaking convexity but
yielding milder conditions. Recent works [33, 24] consider estimation frameworks
based on robust mean estimation however they are not able to guarantee consis-
tent solutions (the estimation upper bound depends on the standard deviation
of dense white noise, σ, which does not converge to zero even n → ∞).

Another line of work aims at trimming outliers by minimizing the residuals
over a selected subset. A key motivation for trimmed approaches is that con-
vex loss functions with linear tail growth (such as the �1-norm and Huber loss)
are not robust enough. As Alfons et al. [1] points out, these approaches have a
breakdown point of ε = 0, since even a single gross contamination can arbitrar-
ily distort the regression coefficients. Remarkably, the median of least squares
residual originally proposed by Rousseeuw [39] avoids this problem, reaching
breakdown point of nearly 50%; the approach is equivalent to ‘trimming’ a por-
tion of the largest residuals. This leads to the consideration of sparse Least
Squares (sparse LTS) for robust high-dimensional linear models [1], who look
for approximate solutions using alternating minimization schemes, since solving
the trimming problem is combinatorial — computationally intractable as the
number of features grows. While Alfons et al. [1] established high breakdown
point property for sparse LTS, its statistical convergence has not been analyzed.
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Statistical consistency under arbitrary corruption is certainly not a given.
Consider a case of adversarial corruption, where some measurements are re-
placed by very high values, all exactly consistent with an estimator that is
arbitrarily far away from the truth. Any likelihood formulation can easily be
fooled and led to find the ‘wrong’ estimator. Some additional assumptions are
thus needed as safeguard in the statistical analysis. In practice, extreme devia-
tions might be easily detected in specific datasets; it is more difficult to catch
outliers which masquerade as real data.

In this paper, we present a unified framework and statistical analysis for
trimmed regularized M-estimators, generalizing the sparse least trimmed squares
(Sparse LTS) estimator [1] to allow for a wide class of (possibly non-convex) loss
functions as well as structured regularization. Using our analysis, we derive error
bounds for the sparse LTS estimator. These require less stringent conditions for
estimation consistency than those of Extended Lasso. [6] and follow-up work of
Zhang et al. [54] consider this high dimensional linear model and propose a hard
thresholding-based algorithm, which can be seen as a special case of the partial
trimmed optimization discussed in Section 4. The analysis provided in [6] allows
for a linear faction corruption but again involves the standard deviation of dense
white noise σ in estimating the upper bound, which our analysis avoids. We also
derive error bounds for sparse Gaussian graphical models (GGMs) as a specific
example. In contrast, existing approaches for robust sparse GGMs estimation
lack statistical guarantees.

We also show how to extend optimization algorithms for M-estimators to
trimmed formulations, using partial minimization over auxiliary variables. An
important example of the approach is a modified proximal gradient method. For
convex M-estimators, we show that under moderate assumptions, the ‘trimming’
is completed in finitely many steps, and thereafter the method reduces to a
descent method for a convex problem over a fixed set of identified ‘inliers’. We
use simulated data to compare with competing methods, and then apply our
approach to real genomics datasets.

The manuscript is organized as follows. In Section 2 we introduce the general
setup and present the family of High-Dimensional Trimmed estimators. Results
on convergence and consistency of these estimators are given in Section 3, along
with corollaries for linear models and Gaussian graphical models. Algorithms
are developed in Section 4. Empirical results are presented in Section 5 for
simulated data and Section 6 for the analysis of genomics datasets. All proofs
are in the Appendix.

2. A general framework for high-dimensional trimmed estimators

Motivating example 1: Linear regression We start with high-dimensional
linear regression. The real-valued observation yi ∈ R comes from the linear
model

yi = 〈xi, θ
∗〉+ oi, i = 1, . . . , n, (1)
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where xi ∈ R
p is a covariate, the true regression parameter vector is θ∗ =

(θ∗1 , . . . , θ
∗
p)

� ∈ R
p, and oi is the observation noise. Since outliers are commonly

present in high-dimensional data problems, we assume p is substantially larger
than n without loss of generality.

Let G be the set of “good” samples, and B denote the set of “bad” sam-
ples, corrupted arbitrarily. To deal with observations that deviate from the true
model, Alfons et al. [1] proposed sparse LTS, an �1-penalized version of the
classical least trimmed squares (LTS) estimator [39] solving

minimize
θ

1

2h

h∑
i=1

[r2(θ)](i) + λ‖θ‖1, (2)

where r2(θ) = (r21, . . . , r
2
n)

T with r2i = (yi − 〈xi, θ〉)2, and [r2(θ)](1) ≤ . . . ≤
[r2(θ)](n) are the order statistics of the squared residuals r2(θ). Alfons et al.
[1] established the breakdown point of the resulting sparse LTS estimator, and
proposed an iterative algorithm for its computation. At iteration t, the algorithm
computes the Lasso solution based on the current subset Ht of observations
with pre-defined size h = |Ht|, and constructs the next subset Ht+1 from the
observations corresponding to the h smallest squared residuals.

Our starting point is the following reformulation of regularized LTS problem:

minimize
w∈Δh,θ∈ρB1

1

2h

n∑
i=1

wi

(
yi − 〈xi, θ〉

)2
+ λ‖θ‖1 (3)

where Δh := {w : w ∈ [0, 1]n, 1Tw = h} is the h-scaled capped unit simplex,
B1 is the �1-norm ball, and the constraint θ ∈ ρB1 (or equivalently ‖θ‖1 ≤ ρ)
ensures that the optimum of non-convex problem (3) exists as discussed in
Loh and Wainwright [25]. This constraint on θ is a theoretical safeguard, since
problem (3) is equivalent to the problem (2) when ρ is large enough.

A family of trimmed estimators Based on the reformulation (3), we pro-
pose the family of trimmed estimators for general high-dimensional problems:
given a collection of arbitrary corrupted samples Zn

1 = {Z1, . . . , Zn}, and a
differentiable (possibly non-convex) loss function L̄, we solve

minimize
w∈Δh,θ∈ρBR

f(w, θ) :=
1

h

n∑
i=1

wiL̄(θ;Zi) + λR(θ) (4)

where R(·) is a decomposable norm used as a regularizer [29] to encourage par-
ticular low-dimensional structure of the estimator, and BR is the unit ball for
R(·) (in other words, the constraint θ ∈ ρBR ensures R(θ) ≤ ρ). The param-
eter h selects the number of samples (or sum of weights) used in the training.
Ideally, h is the number of uncorrupted samples in G, but we can tune h by
cross-validation along with parameter λ. Cross-validation is a popular choice
in practice and has been recently analyzed for the vanilla Lasso estimator [13].
Though beyond the scope of this paper, it would be interesting to explore the
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applicability of other selection strategies including self-tuning approaches which
are pivotal with respect to the penalty parameters [5, 4] and approaches esti-
mating h by treating it as concomitant similarly to [22]

Having a general choice of loss function L in (4) is particularly important,
given the wide variety of losses used by practitioners in statistics and machine
learning.

Motivating example 2: Graphical models Gaussian graphical models
(GGMs) form a powerful class of statistical models for representing distribu-
tions over a set of variables [23]. These models use undirected graphs to encode
conditional independence assumptions among the variables, which is particu-
larly convenient for exploring network structures. GGMs are widely used in
variety of domains, including computational biology [32], natural language pro-
cessing [27], image processing [48, 19, 14], statistical physics [20], and spatial
statistics [37].

In such high-dimensional settings, sparsity constraints are particularly per-
tinent for estimating GGMs, as they encourage only a few parameters to be
non-zero and induce graphs with few edges. The most widely used estimator,
the Graphical Lasso minimizes the negative Gaussian log-likelihood regularized
by the �1 norm of the entries (or the off-diagonal entries) of the precision ma-
trix (see [52, 17, 3]). This estimator has strong statistical guarantees (see e.g.
[35]). The corresponding optimization problem is a log-determinant program
that can be solved with interior point methods [7] or by co-ordinate descent
algorithms [17, 3]. Alternatively neighborhood selection [28, 50] can be used to
estimate conditional independence relationships separately for each node in the
graph, via Lasso linear regression [43]. Under certain assumptions, the sparse
GGM structure can still be recovered even under high-dimensional settings.

The aforementioned approaches rest on a fundamental assumption: the mul-
tivariate normality of the observations. However, outliers and corruption are fre-
quently encountered in high-dimensional data (see e.g. [15] for gene expression
data). Contamination of a few observations can drastically affect the quality of
model estimation. It is therefore imperative to devise procedures that can cope
with observations deviating from the model assumptions. Despite this fact, lit-
tle attention has been paid to robust estimation of high-dimensional graphical
models. Partially Relevant work includes [16], which leverages multivariate t-
distributions for robustified inference and the EM algorithm. They also propose
an alternative t-model which adds flexibility to the classical t but requires the
use of Monte Carlo EM or variational approximation as the likelihood function is
not available explicitly. Another pertinent work is that of [41] which introduces a
robustified likelihood function. A two-stage procedure is proposed for model es-
timation, where the graphical structure is first obtained via coordinate gradient
descent and the concentration matrix coefficients are subsequently re-estimated
using iterative proportional fitting so as to guarantee positive definiteness of the
final estimate.

A special case of the proposed family is that of the Trimmed Graphical Lasso
for robust estimation of sparse GGMs:
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minimize
Θ∈Ω∩RB1,w∈Δh

〈〈
Θ,

1

h

n∑
i=1

wiX
(i)(X(i))�

〉〉
− log det(Θ) + λ‖Θ‖1,off . (5)

Here for matrices U ∈ R
p×p and V ∈ R

p×p, 〈〈U, V 〉〉 denotes the trace inner
product tr(ABT ). For a matrix U ∈ R

p×p and parameter a ∈ [1,∞], ‖U‖a
denotes the element-wise �a norm, and ‖U‖a,off does the element-wise �a norm
only for off-diagonal entries. For example, ‖U‖1,off :=

∑
i �=j |Uij |.

We provide statistical guarantees on the consistency of this estimator. To the
best of our knowledge, this is in stark contrast with prior work on robust sparse
GGM estimation (e.g. [16, 41]) which are not statistically guaranteed in theory.

3. Statistical guarantees of trimmed estimators

In this section, we provide a statistical analysis of the family of structurally
regularized estimators (4). In order to simplify the notation in our theorem and
its corollaries, we assume without loss of generality that the number of good
samples is known a priori and the tuning parameter h in (4) is exactly set as
the genuine samples size, |G|. This is an unrealistic assumption, but as long as
we set h smaller than |G|, the statements in the main theorem and its corollaries
apply.

Noting that the optimization problem (4) is non-convex, estimators returned

by iterative methods for (4) will be stationary points. We call (θ̃, w̃) a local
minimum of (4) when

1. θ̃ is a local minimum of g1(θ) := f(θ, w̃) and

2. w̃ is a global minimum of g2(w) := f(θ̃, w).

These are precisely the points that are found by the algorithms developed in
Section 4. In this section, we give statistical error bounds for any such points.

Consider any such local minimum (θ̃, w̃). While we are mainly interested in

the error bounds of our estimator for target parameter θ∗ (that is, θ̃ − θ∗), we
first define w∗ as follows: for the index i ∈ G, w∗

i is simply set to w̃i so that
w∗

i − w̃i = 0. Otherwise for the index i ∈ B, we set w∗
i = 0. Note that while θ∗

is fixed unconditionally, w∗ is dependent on w̃. However, w∗ is fixed given w̃.

In order to guarantee bounded errors, we first assume that given (θ̃, w̃), the

following restricted strong convexity condition for (θ̃, w̃) holds:

(C-1) (Restricted strong convexity (RSC) on θ) We overload notation
and use L(θ, w) to denote 1

h

∑n
i=1 wiL̄(θ;Zi). Then, for any possible Δ :=

θ − θ∗, the differentiable loss function L̄ satisfies〈
∇θL

(
θ∗ +Δ, w∗)−∇θL

(
θ∗, w∗), Δ〉

≥ κl‖Δ‖22 − τ1(n, p)R(Δ)2,

where κl is a curvature parameter, and τ1(n, p) is a tolerance function on n
and p.
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Note that this condition is slightly different from the standard restricted strong
convexity condition because of the dependency on w∗ and therefore on w̃. Each
local optimum has its own restricted strong convexity condition. In case of no
corruption with w∗

i = 1 for all i, this condition will be trivially reduced to the
standard RSC condition, under which the standard general M -estimator has
been analyzed (see Negahban et al. [29] for details).

We additionally require the following condition for a successful estimation
with (4) on corrupted samples:

(C-2) Consider arbitrary local optimum (θ̃, w̃). Letting Δ̃ := θ̃ − θ∗ and

Γ̃ := w̃ − w∗ ∈ [0, 1]n,〈
∇θL

(
θ∗ + Δ̃, w∗ + Γ̃

)
−∇θL

(
θ∗ + Δ̃, w∗), Δ̃〉

≥ −τ2(n, p)‖Δ̃‖2 − τ3(n, p)R(Δ̃) .

(C-2) can be understood as a structural incoherence condition between θ and
w. This type of condition is also needed for the guarantees of extended LASSO
[31] and other dirty statistical models with more than a single parameter [49].
Due to the dependence on w̃, each local optimum will have its own conditions
(C-1) and (C-2). We will see later in this section that these two conditions are
mild enough for the popular estimators (such as linear models and GGMs) to
satisfy.

Armed with these conditions, we state the main theorem on the error bounds
of (4):

Theorem 1. Consider an M -estimator from (4) with any local minimum

(θ̃, w̃), and suppose that it satisfies the conditions (C-1) and (C-2). Suppose
also that the regularization parameter λ in (4) is set as

λ ≥ 4max
{
R∗

(
∇θL

(
θ∗, w∗)) , 2ρτ1(n, p) + τ3(n, p)

}
(6)

where R∗(v) is the dual norm of R(·): supu∈Rp\{0}
〈u, v〉
R(u) . Then the following

error bounds for θ̃ are guaranteed for a given model space M:

‖θ̃ − θ∗‖2 ≤ 1

κl

(3λΨ
2

+ τ2(n, p)
)

and R
(
θ̃ − θ∗

)
≤ 2

λκl

(
2λΨ+ τ2(n, p)

)2

,

where
Ψ := sup

u∈M\{0}
R(u)/‖u‖2

measures the compatibility between R(·) and �2 norms.

For sparse vectors, Ψ := supu∈M\{0} ‖u‖1/‖u‖2 =
√
k where k is the sparsity

of true parameter θ∗, and M is the space of vectors with the correct support
set [29].

The statement in Theorem 1 is applicable to any local minimum of (4),
and it holds deterministically. Probabilistic statements come in when the con-
dition on λn specified in Theorem 1 is satisfied. In (6), λ is chosen based
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on R∗(∇θL(θ∗, w∗)
)
similarly to Negahban et al. [29]. We shall see that the

remaining terms with tolerance functions τ in (6) have the same order as
R∗(∇θL(θ∗, w∗)

)
for the specific cases of linear models and GGMs developed

in the next sections.

3.1. Statistical guarantees of high-dimensional least trimmed
squares

We now focus on the special case of high-dimensional linear regression, and
apply Theorem 1 to problem (3). In particular, if i ∈ G, yi = 〈xi, θ

∗〉 + εi
where the observation noise εi follows zero mean and has sub-Gaussian tails.
Otherwise, for i ∈ B, yi = 〈xi, θ

∗〉 + δi where δi is the amount of arbitrary
corruption.

While Theorem 1 holds for any setting under (C-1) and (C-2), we consider the
following natural setting with dependent design matrices. This setting has been
widely studied in past work on conventional (without outliers) high dimensional
linear models (e.g. [29]):

(LTS1) (Σ-Gaussian ensemble) Each sample xi is i.i.d. sampled from
N(0,Σ).

(LTS2) (Sub-Gaussian noise) The noise vector ε ∈ R
n is zero-mean and

has sub-Gaussian tails, which means that for any fixed vector v such that

‖v‖2 = 1, P [|〈v, ε〉| ≥ t] ≤ 2 exp
(
− t2

2σ2

)
for all t > 0. The sub-Gaussian is

quite a wide class of distributions, and contains the Gaussian family as well as
and all bounded random variables.

(LTS3) (Column normalization) Let X ∈ R
n×p be the design matrix

whose i-th row is the covariate i-th sample: x�
i , and Xj ∈ R

n be the j-th

column vector of X. Then, ‖Xj‖2√
h

≤ 1. As pointed out in Negahban et al. [29],

we can always rescale linear models with out loss of generality to satisfy this
condition.

In addition to the standard conditions above, we further assume the following
conditions, which will guarantee structural incoherence (C-2):

(C-h) Let h be the number of good samples: |G| = h and hence |B| = n− h.
Then, we assume that at least half of samples are genuine and uncorrupted

so that |G|−|B|
|G| ≥ α where 0 < α ≤ 1. If we assume that 40% of samples are

corrupted, then α = 1/3.

(LTS4) We set the tuning parameter ρ in (3) as ρ ≤ C1

2

√
h

log p for some

constant C1. This setting requires that the number of good samples h is larger

than or equal to
( 2k‖θ∗‖∞

C1

)2
log p so that the true regression parameter θ∗ is

feasible for the objective.

Under these conditions, we can recover the following error bounds of high-
dimensional LTS (3), as a corollary of Theorem 1:
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Corollary 1. Consider corrupted linear models (1) when ‖θ∗‖0 ≤ k. Suppose
that conditions (C-h), (LTS1), (LTS2), (LTS3), and (LTS4) hold. Also suppose

that we find a local minimum (θ̃, w̃) of (3), choosing

λ = c

√
log p

h

where c is some constant dependent on Σ, σ and the upper bound of
(maxi δ

2
i )|B|

h
1. Then, (θ̃, w̃) is guaranteed to satisfy (C-1) and (C-2) for the specific case of
(3), and have the following error bounds: for some constant c′ depending on c,
Σ and the portion of genuine samples α in (C-h),

‖θ̃ − θ∗‖2 ≤ c′
(√

k log p

h
+

√
|B| log p

h

)
,

‖θ̃ − θ∗‖1 ≤ 4c′

λ

(√
k log p

h
+

√
|B| log p

h

)2

with probability at least 1−c1 exp(−c′1hλ
2) for some universal positive constants

c1 and c′1.

Note that Corollary 1 concerns any single local minimum. For the guarantees
of multiple local optima simultaneously, we may use a union bound from the
corollary.

Remarks While the error bounds in Corollary 1 hold under the condition
|B| < |G| ((C-h)), in order to have meaningful and consistent bounds, α in

(C-h) should be properly lower bounded so that |B| log p
h converges to zero as n

and p increase. When the fraction of corruptions is linearly proportional to the
number of overall samples n, then the parameters are estimated within some
bounded error involving the logarithm of n. It might imply that our method is
more resilient to massive outliers than other existing works such as [12] having
up to an additive error bound of

√
p under linear fraction of corruptions. Also

note that this is also the case in the �2 error bound of extended Lasso analyzed
in Nguyen and Tran [31], which has a similar term with asymptotically the same
rate. Specifically, the extended Lasso estimator solves:

minimize
θ,e

1

2n

n∑
i=1

(
yi − 〈xi, θ〉 − ei

)2
+ λθ‖θ‖1 + λe‖e‖1

1From a theoretical standpoint it is impossible to recover the true signal by trimming
when the amount of corruptions exceed that of normal observation errors. An adversarial
‘corruption’ could be constructed to point to the wrong estimator, and be a local minimum
of the formulation. The required assumption for success is that the squared loss for corrupted
samples should be less than or equal to squared loss for good samples: (maxi δ

2
i )|B| ≤ C2

2h
for some constant C2. In practice, large deviations that are not adversarial (e.g. random) are
easily detected by the approach, even when their magnitude far exceeds normal observations
errors.
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where λe is the regularization parameter for parameter e capturing corruptions.
e is encouraged to be sparse to reflect the fact that only a fraction of samples
is corrupted. The �2 norm-based error rate in Corollary 1 is almost the same as

that of extended Lasso: ‖θ̂E Lasso − θ∗‖2 = O
(√

k log p
n +

√
|B| logn

n

)
under the

standard Gaussian design setting (LTS1), which is asymptotically the same as
that in Corollary 1 (since 1/h ≤ 2/n under (C-h)).

However, it is important to revisit the conditions required for the statisti-
cal guarantees of extended Lasso. Besides an extended version of the restricted
eigenvalue condition, Nguyen and Tran [31] assumes a mutual incoherence condi-

tion, which in turn requires c
√
|||Σ|||2max

{
k
|B| ,

|B|
k

}(√
k
n+

√
|B|
n +

√
log p
n

)
≤ 1

16

for some large and fixed constant c. Provided that k and |B| are fixed, the in-
equality can hold for a large enough sample size n. However, when |B| grows
with n, this condition will be violated; for example if (i) a square root fraction
of samples is corrupted (|B| = α

√
n) for a fixed k or (ii) a linear fraction of n is

corrupted (|B| = αn), then c′
√

|||Σ|||2 can easily exceed 1/16. Our experimental
results of Section 5 will confirm this observation: as the fraction of corruptions
increases, the performance of extended Lasso deteriorates compared to that of
our estimator (3).

Statistical guarantees when covariates are corrupted In the linear model
(1), corruption is considered in the space of the response variable yi ∈ R: namely
an additional random variable δi ∈ R is used to model corruption in the re-
sponse space. Even in the case where we have outliers with corrupted covariates
xi + δ′ ∈ R

p, δi can be understood as the mean-shift variable to model 〈δ′, θ∗〉.
For linear models, modeling outliers in the parameter space or modeling them in
the output space is thus equivalent (In constrast, for more general GLM settings,
the link function is not the identity function and both approaches are distinct,
see e.g. [51]). Nevertheless, when outliers stem from corrupted covariates, con-
dition (LTS1) might be violated. For this setting, we introduce the following
alternative condition:

(LTS5) (Σ-Gaussian ensemble) Each sample xi in G is i.i.d. sampled from
N(0,ΣG). Let XB be the sub-design matrix in R

|B|×p corresponding to out-
liers. Then, we define f(XB) such that |||XB|||2 ≤ f(XB)

√
|B| log p.

Under condition (LTS5) we recover results similar to Corollary 1:

Corollary 2. Consider linear models in (1) where ‖θ∗‖0 ≤ k. Suppose that all
the conditions (C-h), (LTS2), (LTS3), (LTS4) and (LTS5) hold. Also suppose
that we choose the regularization parameter

λ = c

√
log p

h

where c is some constant dependent on ΣG, f(X
B), σ and the upper bound of

(maxi δ
2
i )|B|

h . Then, (θ̃, w̃) is guaranteed to have the following error bounds as
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before: for some constant c′ depending on c, ΣG and the portion of genuine
samples α in (C-h),

‖θ̃ − θ∗‖2 ≤ c′
(√

k log p

h
+

√
|B| log p

h

)
,

‖θ̃ − θ∗‖1 ≤ 4c′

λ

(√
k log p

h
+

√
|B| log p

h

)2

with probability at least 1−c1 exp(−c′1hλ
2) for some universal positive constants

c1 and c′1.

3.2. Statistical guarantees of trimmed graphical Lasso

We now focus on Gaussian graphical models and provide the statistical guar-
antees of our Trimmed Graphical Lasso estimator as presented in Section 2
(Motivating Example 2). Our theory in this section provides the statistical er-
ror bounds on any local minimum of (5). We use ‖U‖F and |||U |||2 to denote the
Frobenius and spectral norms, respectively.

Let X = (X1, X2, . . . , Xp) be a zero-mean Gaussian random field parameter-
ized by p× p concentration matrix Θ∗:

P(X; Θ∗) = exp
(
− 1

2
〈〈Θ∗, XX�〉〉 −A(Θ∗)

)
(7)

where A(Θ∗) is the log-partition function of Gaussian random field. Here, the
probability density function in (7) is associated with p-variate Gaussian distri-
bution, N(0,Σ∗) where Σ∗ = (Θ∗)−1.

We consider the case where the number of random variables p may be sub-
stantially larger than the number of sample size n, however, the concentration
parameter of the underlying distribution is sparse so that the number of non-zero
off-diagonal entries of θ∗ is at most k: |{Θ∗

ij : Θ∗
ij �= 0 for i �= j}| ≤ k.

We now investigate how easily we can satisfy the conditions in Theorem 1.
Intuitively it is impossible to recover true parameter by weighting approach as in
(5) when the amount of corruptions exceeds that of normal observation errors.

To this end, suppose that we have some upper bound on the corruptions:

(TGL1) For some function f(·), we have
(
|||XB|||2

)2 ≤ f(XB)
√
h log p

where XB denotes the sub-design matrix in R
|B|×p corresponding to outliers.

Under this assumption, we can recover the following error bounds of Trimmed
Graphical Lasso (5), as a new corollary of Theorem 1:

Corollary 3. Consider corrupted Gaussian graphical models with conditions
(C-h) and (TGL1). Suppose that we compute the local optimum (Θ̃, w̃) of (5)
choosing

λ =4max

{
8(max

i
Σ∗

ii)

√
30 log p

h− |B| +
|B|
h

‖Σ∗‖∞ , f(XB)

√
log p

h

}
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≤
c1 − f(XB)

√
|B| log p

h

3R
.

Then, (θ̃, w̃) is guaranteed to satisfy (C-1) and (C-2) for the specific case of (5)
and have the error bounds of

‖Θ̃−Θ∗‖F ≤ 1

κl

(
3λ

√
k + p

2
+ f(XB)

√
|B| log p

h

)
and

‖Θ̃−Θ∗‖1,off ≤ 2

λκl

(
3λ

√
k + p+ f(XB)

√
2|B| log p

n

)2

(8)

with probability at least 1−c2 exp(−c′2hλ
2) for some universal positive constants

c2 and c′2.

In Corollary 3, the term
√
k + p captures the relation between element-wise

�1 norm and the error norm ‖ · ‖F including diagonal entries.
If we further assume that the number of corrupted samples scales with

√
n

at most:

(TGL2) |B| ≤ a
√
n for some constant a ≥ 0,

then we can derive the following result as another corollary of Theorem 1:

Corollary 4. Consider corrupted Gaussian graphical models, and compute the
local minimum (Θ̃, w̃) of (5), setting

λ = c

√
log p

n
, c := 4max

{
16(max

i
Σ∗

ii)
√
15 +

2a‖Σ∗‖∞√
log p

,
√
2f(XB)

}
.

Suppose that the conditions (C-h), (TGL1) and (TGL2) hold. Then, if the sam-
ple size n is lower bounded as

n ≥ max

{
16a2 ,

(
|||Θ∗|||2 + 1

)4(
3Rc+ f(XB)

√
2|B|

)2

(log p)

}
,

then (Θ̃, w̃) is guaranteed to satisfy (C-1) and (C-2) for the specific case of (5)
and have the following error bound:

‖Θ̃−Θ∗‖F ≤ 1

κl

(
3c

2

√
(k + p) log p

n
+ f(XB)

√
2|B| log p

n

)
(9)

with probability at least 1−c1 exp(−c′1hλ
2) for some universal positive constants

c1 and c′1.

Note that an ‖ · ‖1,off-norm error bound can also be easily derived using the
selection of λ from (8).
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Remarks Corollary 4 reveals an interesting result: even when O(
√
n) samples

out of total n samples are corrupted, our estimator (5) can successfully recover
the true parameter with guaranteed error in (9). The first term in this bound

is O
(√

(k+p) log p
n

)
which exactly matches the Frobenius error bound for the

case without outliers (see Ravikumar et al. [35], Loh and Wainwright [26] for
example). Due to the outliers, the performance degrades with the second term,

which is O
(√

|B| log p
n

)
. To the best of our knowledge, our results are the first

statistical error bounds available in the litterature on parameter estimation for
Gaussian graphical models with outliers.

When outliers follow a Gaussian graphical model Now let us provide a
concrete example and show how f(XB) in (TGL1) is precisely specified in this
case:

(TGL3) Outliers in the set B are drawn from another Gaussian graphical
model (7) with a parameter (ΣB)

−1.

This can be understood as a Gaussian mixture model where most of the samples
are drawn from (Θ∗)−1 which we want to estimate, and a small portion of
samples are drawn from ΣB. In this case, Corollary 4 can be further shaped as
follows:

Corollary 5. Suppose that the conditions (C-h), (TGL2) and (TGL3) hold.

Then the statement in Corollary 4 holds with f(XB) :=
4
√
2a
(
1+

√
log p

)2
|||ΣB |||2√

log p
.

4. Optimization for trimmed estimators

While the objective function f(w, θ) in (4) is non-convex in (w, θ), it simpli-
fies for block w or θ held fixed. Perhaps for this reason, prior algorithms for
trimmed approaches [39, 1] alternated between solving for θ and w. These ap-
proaches are inefficient, since each solve in θ is as expensive as finding the
original (untrimmed) estimator.

We take advantage of the computational complexity gap between subprob-
lems in θ and in w. With w fixed, the problem in θ is equivalent to classic
high-dimensional problems, e.g. Lasso. In contrast, the problem in w for fixed θ
is the simple linear program

minimize
w∈Δh

n∑
i=1

wiL̄(θ;Zi) (10)

with all dependence on the predictors captured by the current losses L̄(θ;Zi).
The solution is obtained setting wi = 1 for the h smallest values of L̄(θ;Zi),
and setting remaining wi to 0.

We exploit structure using partial minimization. Similar ideas have been used
for optimizing a range of nonlinear least squares problems [18] as well as more
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Algorithm 1 Partial Minimization using Proximal Gradient Descent for (11)

Initialize θ(0), t = 0
repeat

Compute w(t) given θ(t) as the global minimum of (10)

Given w(t), compute the direction G(t+1) ← 1
h

∑n
i=1 w

(t)
i ∇θL̄(θ(t); yi, xi)

Update θ(t+1) ← Sη(t+1)λ(θ
(t) − η(t+1)G(t+1)), with η(t) selected using line search.

until stopping criterion is satisfied

general problems involving nuisance parameters [2]. Rather than an alternating
scheme (similar to that of [1] for least squares) where we solvemultiple ‘weighted’
regularized problems to completion, we can rewrite the problem as follows:

minimize
θ∈ρBR

L̃(θ) + λR(θ), L̃(θ) := min
w∈Δh

1

h

n∑
i=1

wiL̄(θ;Zi) =
1

h

n∑
i=1

wi(θ)L̄(θ;Zi).

(11)

Problem (11) is equivalent to (4). The reader can verify that L̃(θ) is non-smooth
and non-convex2. However, partial minimization provides a way to modify any
descent method for fitting an M-estimator to find the corresponding trimmed es-
timator (11). Algorithm 1 gives a description of the steps involved for the specific
case of proximal gradient descent. The algorithm uses the proximal mapping,
which for the case of �1 regularization is the soft-thresholding operator defined
as [Sν(u)]i = sign(ui)max(|ui| − ν, 0). We assume that we pick ρ sufficiently
large, so one does not need to enforce the constraint R(θ) ≤ ρ explicitly.

When the loss L is convex and smooth with Lipschitz continuous gradient, the
proximal gradient has a global convergence theory (see e.g. [30]). Convergence
of the extended Algorithm 1 is analyzed in the following proposition.

Proposition 1. Consider any monotonic algorithm A for solving θ̂ ∈
argminθ F (θ) := L(θ) + λR(θ), i.e. (i) A guarantees that F (θk+1) ≤ F (θk)
and (ii) for any fixed w ∈ Δh, A produces converging sequence of {θ(t)} when
solving argminθ F (θ;w) := f(w, θ). If A is extended to solve (11) using partial
minimization (10), the monotonic property is preserved, at least one limit point
exists, and every limit point of the sequence {(θ(t), w(t))} is a stationary point
of (4). Moreover, if F is convex, and estimators over each feasible data selection
have different optimal values, then w(t) converge in finitely many steps, and the
extended algorithm converges to a local minimum3 of (4).

Finite convergence of the weights w(t) is an important point for practical im-
plementation, since once the weights converge, one is essentially solving a single
estimation problem, rather than a sequence of such problems. In particular,
after finitely many steps, the extended algorithm inherits all properties of the
original algorithm A for the M-estimator over the selected data.

2When h = 1, trimming equates to minimizing the minimum of Li, a problem which is
nonsmooth and nonconvex.

3θ̃ is a local minimum of g1(θ) := f(θ, w̃) and w̃ is a global minimum of g2(w) := f(θ̃, w).
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5. Simulated data experiments

We illustrate the generality of our approach by considering sparse logistic re-
gression, trace-norm regularized multi-reponse regression and sparse GGMs (For
experiments with sparse linear models, see Alfons et al. [1]).

5.1. Simulations for sparse logistic regression

We begin with sparse logistic regression. We adopt an experimental protocol
similar to [51]. We consider p = 200 features. The parameter vectors have k =√
p non-zero entries sampled i.i.d. from N(0, 1). The data matrix X is such

that each of its n observations is sampled from a standard Normal distribution
N(0, Ip). Given each observation, we draw a true class label from {0, 1} following
the logistic regression model. We show two scenarios, selecting either

√
n or

0.1n samples with the highest amplitude of 〈θ∗, xi〉 and flipping their labels. We
compare the �2 errors over 100 simulation runs of the new estimator with those
of vanilla Lasso for logistic regression, and with two extended Lasso methods for
logistic regression of [51] (with “error in parameter” and in “error in output”)
as the sample size n increases. The tuning parameters for each method are set
via holdout where we use a separate dataset of size n with the same type and
amount of corruption. This tuning also applies to the trimming parameter h.
Specifically, we set a grid for the trimming parameter ranging from 5% to 45%
of the sample size with an increment of 5%.

Figure 1 shows that the trimmed approach has both better performance
(achieves lower errors), and is faster, matching the computational efficiency
of the vanilla Lasso method. This result is anticipated by Proposition 1: the
weights w(t) converge in finitely many steps, and then we are essentially solving
the Lasso with a fixed weight set thereafter.

5.2. Simulations for trace-norm regularized regression

Beyond the �1 penalty, we consider trace-norm regularized multi response re-
gression. We set R(Θ) = ‖Θ‖∗, for Θ ∈ R

p×q. We consider n = 50 samples,
p = 300 covariates, and q = 10 responses. Each entry of X is generated inde-
pendently from N(0, 1). To generate the true low rank weights, we first sample
a p× q matrix of coefficients, with each coefficient sampled independently from
N(0, 1). We then set the true parameter matrix to the best rank 3 approxima-
tion of the sample, obtained using an SVD. For clean samples in G, we then set
the error term as εi ∼ N(0, 0.01). The contaminated terms are generated with
an error term as δi ∼ N(2, 1). We consider varying corruption levels ranging
from 5% to 30%. The parameters are tuned via holdout validation as in the
previous section and we present the average �2 error based on 100 simulation
runs. Figure 2 further illustrates the computational advantage of the partial
minimization scheme described in Section 4 for general structures.
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Fig 1. �2 error vs.sample size n under logistic regression model (a)
√
n corruptions (b) 0.1n

corruptions. (c) Timing comparison for 0.1n corruptions and n = p.

Table 1

Average �2 error for comparison methods on simulated data under low-rank multi response
linear models with contaminated data.

Contamination % No trimming Low-Rank LTS

5% 20.43 19.20
10% 33.49 25.10
20% 33.70 26.05
30% 40.78 30.10

5.3. Simulations for Gaussian graphical models

We compare the Trimmed Graphical Lasso (trim-glasso) algorithm against the
vanilla Graphical Lasso(glasso) [17]; the t-lasso and t*-lasso methods [16], and
robust-LL: the robustified-likelihood approach of [41].

Our simulation setup is similar to [41] and is a akin to gene regulatory net-
works. Namely we consider four different scenarios where the outliers are gener-
ated from models with different graphical structures. Specifically, each sample
is generated from the following mixture distribution:

yk ∼ (1− p0)Np(0, θ
−1) +

p0
2
Np(−μ, θ−1

o ) +
p0
2
Np(μ, θ

−1
o ), k = 1, . . . , n,



A general family of trimmed estimators 3535

Fig 2. Average timing of TraceNorm-LTS with partial minimization,TraceNorm-LTS with
full alternate minimization, and TraceNorm-Prox under 20% of contaminated data.

Fig 3. Average ROC curves for the comparison methods for contamination scenarios M1–M4.

where po = 0.1, n = 100, and p = 150. Four different outlier distributions are
considered:

M1: μ = (1, . . . , 1)T , θo = θ̃, M2: μ = (1.5, . . . , 1.5)T , θo = θ̃,
M3: μ = (1, . . . , 1)T , θo = Ip, M4: μ = (1.5, . . . , 1.5)T , θo = Ip.

For each simulation run, θ is a randomly generated precision matrix cor-
responding to a network with 9 hub nodes simulated as follows. Let A be the
adjacency of the network. For all i < j we set Aij = 1 with probability 0.03, and
zero otherwise. We set Aji = Aij . We then randomly select 9 hub nodes and set
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Fig 4. QQ-plots of fitted residuals for the Sparse-LTS method in the genomic study.

the elements of the corresponding rows and columns of A to one with probability
0.4 and zero otherwise. Using A, the simulated nonzero coefficients of the preci-
sion matrix are sampled as follows. First we create a matrix E so that Ei,j = 0
if Ai,j = 0, and Ei,j is sampled uniformly from [−0.75,−0.23] ∪ [0.25, 0.75] if

Ai,j �= 0. Then we set E = E+ET

2 . Finally we set θ = E + (0.1 − Λmin(E))Ip,

where Λmin(E) is the smallest eigenvalue of E. θ̃ is a randomly generated pre-
cision matrix in the same way θ is generated.

For the robustness parameter β of the robust-LL method, we consider β ∈
{0.005, 0.01, 0.02, 0.03} as recommended in [41]. For the trim-glasso method we
consider 100h

n ∈ {90, 85, 80}. Since all the robust comparison methods converge
to a stationary point, we tested various initialization strategies for the concen-
tration matrix, including Ip, (S + λIp)

−1 and the estimate from glasso. We did
not observe any noticeable impact on the results.

Figure 3 presents the average ROC curves of the comparison methods over
100 simulation data sets for scenarios M1–M4 as the tuning parameter λ varies.
In the figure, for robust-LL and trim-glasso methods, we depict the best curves
with respect to parameter β and h respectively. The detailed results for all the
values of β and h considered are provided in the appendix.

From the ROC curves we can see that our proposed approach is competitive
compared the alternative robust approaches t-lasso, t*-lasso and robust-LL. The
edge over glasso is even more pronounced for scenarios M2, M4. Surprisingly,
trim-glasso with h/n = 80% achieves superior sensitivity for nearly any speci-
ficity.

Computationally the trim-glasso method is also competitive compared to
alternatives. The average run-time over the path of tuning parameters λ is
45.78s for t-lasso, 22.14s for t*-lasso, 11.06s for robust-LL, 1.58s for trimmed
lasso, 1.04s for glasso. Experiments were run on R in a single computing node
with a Intel Core i5 2.5GHz CPU and 8G memory. For t-lasso, t*-lasso and
robust-LL we used the R implementations provided by the methods’ authors.
For glasso we used the glassopath package.
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Table 2

Average Trimmed Mean Square Error from 10-fold cross validation for comparison methods
on the Yeast dataset.

Method T-MSE

Lasso 0.137
LAD-Lasso 0.132
Extended Lasso 0.093
ROMP 0.135
Sparse-LTS 0.081

Table 3

Marker position of SNPs selected on chromosome 8 by comparison methods for the Yeast
dataset.

LAD-Lasso Sparse-LTS

111682 46007
213237 46055

111682
111683
111686
111687
111690

6. Application genomic analysis

6.1. Analysis of Yeast genotype and expression data

We apply Sparse-LTS, Extended Lasso [31], LAD Lasso [47], standard Least
Squares Lasso estimator [43], and ROMP [12] to the analysis of yeast genotype
and gene expression data. We employ the “yeast” dataset from [9]. The data set
concerns n = 112 F1 segregants from a yeast genetic cross between two strains:
BY and RM. For each of these 112 samples, we observe p = 3244 SNPs (These
genotype data are our predictors x) and focus on the gene expression of gene
GPA1 (our response y), which is involved in pheromone response [9]. For both
Sparse-LTS-Ada and Sparse LTS considering a total of |B| = 11 contaminated
observations lead to the best predictive performance on the uncontaminated
data. In addition, the QQ-plots of the fitted residuals from the various com-
parison methods indicated heavy left tails (see Figure 4). This suggests that it
might be advisable to use robust methods.

We compare the trimmed mean square error (T-MSE) computed from 10-
folds cross validation for each method, where for each method we exclude the
11 observations with largest residual absolute error. From Table 2 we can see
thatSparse-LTS exhibit the smallest T-MSE.

We conclude by examining the SNPs selected by the methods achieving the
lowest T-MSE: Sparse-LTS and LAD Lasso. Out of p = 3244 SNPs, Sparse-
LTS selected 30 SNPs, and LAD Lasso chose 61 SNPs. Table 3 provides a list
of the SNPs selected on chromosome 8, which is where gene GPA1 resides. In
the dataset, there is a total of 166 SNPs on chromosome 8. From the table
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Fig 5. (a) Histogram of standardized gene expression levels for gene ORC3. (b) Network
estimated by trim-glasso.

we can see that there is some overlap in terms of the selected SNPs across
the various methods. Sparse-LTS tends to select a larger number of SNPs on
chromosome 8 even though it selects fewer SNPs in total (namely within and
beyond chromosome 8). Five of these are very close to GPA1 which is consistent
with the fact that GPA1 can directly inhibit the mating signal by binding to
its own subunit [40].

6.2. Application to the analysis of Yeast gene expression data

We analyze a yeast microarray dataset generated by [8]. The dataset concerns
n = 112 yeast segregants (instances). We focused on p = 126 genes (variables)
belonging to cell-cycle pathway as provided by the KEGG database [21]. For
each of these genes we standardize the gene expression data to zero-mean and
unit standard deviation. We observed that the expression levels of some genes
are clearly not symmetric about their means and might include outliers. For
example the histogram of gene ORC3 is presented in Figure 5(a). For the robust-
LL method we set β = 0.05 and for trim-glasso we use h/n = 80%. We use
5-fold-CV to choose the tuning parameters for each method. After λ is chosen
for each method, we rerun the methods using the full dataset to obtain the final
precision matrix estimates.

Figure 5(b) shows the cell-cycle pathway estimated by our proposed method.
For comparison the cell-cycle pathway from the KEGG [21] is provided in Fig-
ure 6. It is important to note that the KEGG graph corresponds to what is
currently known about the pathway. It should not be treated as the ground
truth. Certain discrepancies between KEGG and estimated graphs may also be
caused by inherent limitations in the dataset used for modeling. For instance,
some edges in cell-cycle pathway may not be observable from gene expression
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Fig 6. Reference Yeast Cell Signaling Network from the KEGG database [21].

data. Additionally, the perturbation of cellular systems might not be strong
enough to enable accurate inference of some of the links.

glasso tends to estimate more links than the robust methods. We postulate
that the lack of robustness might result in inaccurate network reconstruction and
the identification of spurious links. Robust methods tend to estimate networks
that are more consistent with that from the KEGG (F1-score of 0.23 for glasso,
0.37 for t*-lasso, 0.39 for robust-NLL and 0.41 for trim-glasso, where the F1

score is the harmonic mean between precision and recall). For instance our
approach recovers several characteristics of the KEGG pathway. For instance,
genes CDC6 (a key regulator of DNA replication playing important roles in the
activation and maintenance of the checkpoint mechanisms coordinating S phase
and mitosis) and PDS1 (essential gene for meiotic progression and mitotic cell
cycle arrest) are identified as a hub genes, while genes CLB3, BRN1, YCG1 are
unconnected to any other genes.

7. Concluding remarks

We presented a family of trimmed estimators for a wide class of structured
high-dimensional problems. We provided general results on their statistical con-
vergence rates and consistency. In particular our results for sparse linear regres-
sion and gaussian graphical models allow to precisely characterize the impact
of corruptions on the statistical performance of the resulting estimators, while
recovering the rates of their ‘untrimmed’ counterparts under clean data. We
showed how to efficiently adapt existing optimization algorithms to solve the
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modified trimmed problems. Relevant directions for future work include spe-
cializing our theoretical analysis to generalized linear models, applying and an-
alyzing trimmed approaches for more general structural regularizations, and the
study of concomitant selection of the amount of trimming.

Appendix A: Proof of Theorem 1

We use the shorthand for local optimal error vector: Δ̃ := θ̃−θ∗ and Γ̃ := w̃−w∗

where (θ̃, w̃) is an arbitrary local optimum of M -estimator of (4). Our proof

mainly uses the fact that (θ̃, w̃) is a local minimum of (4) satisfying〈
∇θL

(
θ∗ + Δ̃, w∗ + Γ̃

)
, θ̃ − θ

〉
≤ −

〈
∂λ‖θ∗ + Δ̃‖1, θ̃ − θ

〉
for any feasible θ.

This inequality comes from the first order stationary condition (see Loh and
Wainwright [25] for details) in terms of only θ fixing w at w̃. In order to provide
the complete proof of the theorem, we need to define the set of notations on
the model space, perturbation space and corresponding projections following
Negahban et al. [29]. The sparse LTS (3) is a typical example of (4), and such
notations can be naturally defined based on the true support set S. In this proof,
we specifically focus on the case with R(·) := ‖ ·‖1 for notational simplicity, but
statements here can be seamlessly extendible for the general regularizer R(·)
and the appropriately defined model/perturbation spaces.

If we take θ = θ∗ above, we have

〈
∇θL

(
θ∗ + Δ̃, w∗ + Γ̃

)
, Δ̃

〉
≤ −

〈
∂λ‖θ∗ + Δ̃‖1, Δ̃

〉 (i)

≤ λ(‖θ∗‖1 − ‖θ̃‖1)
≤λ(‖θ∗‖1 + ‖Δ̃Sc‖1 − ‖Δ̃Sc‖1 − ‖θ̃‖1) = λ(‖θ∗ + Δ̃Sc‖1 − ‖Δ̃Sc‖1 − ‖θ̃‖1)

(ii)

≤ λ
(
‖θ∗ + Δ̃Sc + Δ̃S‖1 + ‖Δ̃S‖1 − ‖Δ̃Sc‖1 − ‖θ̃‖1

)
= λ(‖Δ̃S‖1 − ‖Δ̃Sc‖1) ,

(12)

where S is true support set of θ∗, the inequalities (i) and (ii) hold by respectively
the convexity and the triangular inequality of �1 norm.

Now, by the RSC condition in (C-1), we obtain

κl‖Δ̃‖22 − τ1(n, p)‖Δ̃‖21
≤

〈
∇θL

(
θ∗ + Δ̃, w∗)−∇θL

(
θ∗, w∗), Δ̃〉

=
〈
∇θL

(
θ∗ + Δ̃, w∗ + Γ̃

)
−∇θL

(
θ∗ + Δ̃, w∗ + Γ̃

)
+∇θL

(
θ∗ + Δ̃, w∗)−∇θL

(
θ∗, w∗), Δ̃〉

,

which is equivalent with

κl‖Δ̃‖22 − τ1(n, p)‖Δ̃‖21 +
〈
∇θL

(
θ∗ + Δ̃, w∗ + Γ̃

)
−∇θL

(
θ∗ + Δ̃, w∗), Δ̃〉

≤
〈
∇θL

(
θ∗ + Δ̃, w∗ + Γ̃

)
−∇θL

(
θ∗, w∗), Δ̃〉

. (13)
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Combining (12), (13) and (C-2) yields

κl‖Δ̃‖22 − τ1(n, p)‖Δ̃‖21 − τ2(n, p)‖Δ̃‖2 − τ3(n, p)‖Δ̃‖1
≤ −

〈
∇θL

(
θ∗, w∗), Δ̃〉

+ λ
(
‖Δ̃S‖1 − ‖Δ̃Sc‖1

)
≤

∥∥∇θL
(
θ∗, w∗)∥∥

∞‖Δ̃‖1 + λ
(
‖Δ̃S‖1 − ‖Δ̃Sc‖1

)
.

Since the theorem assumes max
{
‖∇θL

(
θ∗, w∗)‖∞, 2ρτ1(n, p) + τ3(n, p)

}
≤ λ

4 ,
we can conclude that

0 ≤ κl‖Δ̃‖22
≤

∥∥∇θL
(
θ∗, w∗)∥∥

∞‖Δ̃‖1 + λ
(
‖Δ̃S‖1 − ‖Δ̃Sc‖1

)
+

(
2ρτ1(n, p) + τ3(n, p)

)
‖Δ̃‖1 + τ2(n, p)‖Δ̃‖2

≤ 3λ

2
‖Δ̃S‖1 −

λ

2
‖Δ̃Sc‖1 + τ2(n, p)‖Δ̃‖2. (14)

As a result, we can finally have an �2 error bound as follows:

κl‖Δ̃‖22 ≤ 3λ

2
‖Δ̃S‖1 + τ2(n, p)‖Δ̃‖2

≤ 3λ
√
k

2
‖Δ̃S‖2 + τ2(n, p)‖Δ̃‖2 ≤

(3λ√k

2
+ τ2(n, p)

)
‖Δ̃‖2

implying that

‖Δ̃‖2 ≤ 1

κl

(3λ√k

2
+ τ2(n, p)

)
.

At the same time in order to derive �1 error bound, we again use the inequality
by (14):

‖Δ̃Sc‖1 ≤ 3‖Δ̃S‖1 +
2

λ
τ2(n, p)‖Δ̃‖2 .

Hence,

‖Δ̃‖1 ≤‖Δ̃S‖1 + ‖Δ̃Sc‖1 ≤ 4‖Δ̃S‖1 +
2

λ
τ2(n, p)‖Δ̃‖2

≤ 4
√
k‖Δ̃S‖2 +

2

λ
τ2(n, p)‖Δ̃‖2

≤
(
4
√
k +

2

λ
τ2(n, p)

)
‖Δ̃‖2 ≤ 2

λκl

(
2λ

√
k + τ2(n, p)

)2

,

which completes the proof.

Appendix B: Proof of Corollary 1 and Corollary 2 (results for LTS)

We begin with specifying (C-1) and (C-2) for the showcasing example of (3):

1

h

n∑
i=1

w∗
i 〈xi, Δ̃〉2 ≥ κl‖Δ̃‖22 − τ1(n, p)R(Δ̃)2 , and (15)
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1

h

n∑
i=1

Γ̃i

(
〈xi, θ

∗ + Δ̃〉 − yi
)
〈xi, Δ̃〉 ≥ −τ2(n, p)‖Δ̃‖2 − τ3(n, p)R(Δ̃) . (16)

In order to directly utilize Theorem 1 for linear models, we only need to show
that (15) (for the condition (C-1)) and (16) (for (C-2)) hold. Throughout the

proof, we use the fact that all elements in Γ̃ corresponding to G (set of good

examples) are all zeros: Γ̃G = 0 by construction.
First, consider the condition (C-1) in (15): 1

h

∑n
i=1 w

∗
i 〈xi, Δ〉2. Recall that

we constructed w∗ as follows: w∗
i is simply set to w̃i if i ∈ G, and w∗

i = 0 for
i ∈ B. Hence, by construction,

∑
i∈G w∗

i ≥ h− (n− h) (since 1�w = h), and at

least h−(n−h)
2 samples in G have w̃i (therefore w∗

i ) larger than
h−(n−h)

2h . Let G,
which is the subset of G, be the set of such samples.

Then, 1
h

∑n
i=1 w

∗
i 〈xi, Δ〉2 can be lower bounded as follows:

1

h

n∑
i=1

w∗
i 〈xi, Δ〉2

=
1

h

∑
i∈G

w∗
i 〈xi, Δ〉2 ≥ 1

h

∑
i∈Ḡ

w∗
i 〈xi, Δ〉2 ≥ h− (n− h)

2h2

∑
i∈Ḡ

〈xi, Δ〉2 .

Noting that all xi ∈ G are uncorrupted and iid sampled from N(0,ΣG), we can
appeal to the result in Raskutti et al. [34]: with probability at least 1−c1 exp

(
−

c2|G|
)
,

1

|G|
∑
i∈Ḡ

〈xi, Δ〉2 ≥ κ1‖Δ‖22 − κ2
log p

|G|
‖Δ‖21 for all Δ ∈ R

p (17)

where κ1 and κ2 are strictly positive constants depending only on ΣG. Therefore,

1

h

n∑
i=1

w∗
i 〈xi, Δ〉2 ≥

(
h− (n− h)

)
|G|

2h2

(
κ1‖Δ‖22 − κ2

log p

|G|
‖Δ‖21

)
,

hence, (15) holds with

κl =
κ1(2h− n)2

4h2
, τ1(n, p) =

κ2(2h− n) log p

2h2
(18)

since |G| ≥ h− (n− h) as discussed.
Now, we consider the condition (C-2) in (16).

1

h

n∑
i=1

Γi

(
〈xi, θ

∗ +Δ〉 − yi
)
〈xi, Δ〉

=
1

h

n∑
i=1

Γi〈xi, Δ〉2 − 1

h

n∑
i=1

Γi

(
εi + δi

)
〈xi, Δ〉



A general family of trimmed estimators 3543

≥ − 1

h

n∑
i=1

Γi

(
εi + δi

)
〈xi, Δ〉

where the inequality comes from (1) and from the fact that Γi is always greater
than 0: if i ∈ G, Γi = 0, and if i ∈ B, Γi := w̃i − w∗

i ≥ 0 since w̃i ≥ 0 and
w∗

i = 0.
Now, we follow similar strategy as in Nguyen and Tran [31]: given Δ, we

divide the index of Δ into the disjoint exhaustive subsets S1, S2, . . . , Sq of size
|B| such that S1 contains |B| largest absolute elements in Δ, and so on. Then,
we have∣∣∣ n∑

i=1

Γi

(
εi + δi

)
〈xi, Δ〉

∣∣∣ = ∣∣∣∑
i∈B

Γiδi〈xi, Δ〉
∣∣∣ = ∣∣∣∑

i∈B

Γiδi

q∑
j=1

〈[xi]Sj , [Δ]Sj 〉
∣∣∣

≤
∑
j

∣∣∣∑
i∈B

Γiδi〈[xi]Sj , [Δ]Sj 〉
∣∣∣ ≤ ∑

j

√∑
i∈BΓ

2
i δ

2
i

√∑
i∈B〈[xi]Sj , [Δ]Sj 〉2

≤
√∑

i∈BΓ
2
i δ

2
i

(
max

j
|||XB

Sj
|||2

) ∑
j

‖[Δ]Sj‖2

≤
√
|B|

(
max
i∈B

∣∣Γiδi
∣∣) (

max
j

|||XB
Sj
|||2

) ∑
j

‖[Δ]Sj‖2

≤
√
|B|max

i∈B
|δi|

(
max

j
|||XB

Sj
|||2︸ ︷︷ ︸

(I)

) (∑
j‖[Δ]Sj‖2

)
︸ ︷︷ ︸

(II)

where we use the fact that Γi = 0 if i ∈ G and the Cauchy-Schwarz inequalities,
and XB

Sj
denotes |B| × |Sj | sub-matrix of XB ∈ R

|B|×p corresponding only to
indices Sj .

(I): Provided |B| ≥ exp(1),
(

p
|B|

)
≤

( exp(1)p
|B|

)|B| ≤ p|B|. As discussed in

Vershynin [45], Nguyen and Tran [31], for every t > 0,

1√
|B|

max
j

|||XB
Sj
|||2 ≤

√
|||ΣB|||2 (2 + t)

with probability at least 1−2
(

p
|B|

)
exp(−t2|B|/2)≥ 1−2 exp(−t2|B|/2+|B| log p

)
.

Setting t = 2
√
log p, we have

max
j

|||XB
Sj
|||2 ≤ 2(1 +

√
log p)

√
|||ΣB|||2

√
|B|

with probability 1 − p−|B|. In the proof of Corollary 2, maxj |||XB
Sj
|||2 ≤ f(XB)√

|B| log p by assumption (LTS5), and the remaining proof would be exactly
the same.

(II): by the standard bound in Candès et al. [11], we obtain

∑
j

‖[Δ]Sj‖2 = ‖[Δ]S1‖2 +
q∑

j=2

‖[Δ]Sj‖2 ≤ ‖[Δ]S1‖2 +
1√
|B|

q∑
j=2

‖[Δ]Sj‖1
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≤ ‖Δ‖2 +
1√
|B|

‖Δ‖1 .

Combining all pieces together yields

1

h

n∑
i=1

Γi

(
〈xi, θ

∗ +Δ〉 − yi
)
〈xi, Δ〉 ≥ − 1

h

n∑
i=1

Γi

(
εi + δi

)
〈xi, Δ〉

≥ − 4
√
log p

√
|||ΣB|||2 max

i∈B
|δi|

|B|
h

(
‖Δ‖2 +

1√
|B|

‖Δ‖1
)
,

hence, we can guarantee (16) with functions

τ2(n, p) = 4
√

|||ΣB|||2 max
i∈B

|δi|
√
log p

|B|
h

,

τ3(n, p) = 4
√

|||ΣB|||2 max
i∈B

|δi|
√
log p

√
|B|
h

.

To complete the proof, we need to specify the quantity
∥∥ 1
h

∑n
i=1 w

∗
i

(
〈xi, θ

∗〉−
yi
)
xi

∥∥
∞ =

∥∥ 1
h

∑
i∈G w∗

i εixi

∥∥
∞ for the appropriate choice of λ as stated in The-

orem 1. By the sub-Gaussian property of noise vector ε in (LTS2): for any fixed
vector v such that ‖v‖2 = 1,

P

[
|〈v, ε〉| ≥ t

]
≤ 2 exp

(
− t2

2σ2

)
for all t > 0 .

Given vector xi, let xj
i be the j-th element of vector xi. Using the column

normalization condition (LTS3) with 0 ≤ w∗ ≤ 1, we have for all j = 1, . . . , p

P

[∣∣∣ 1
h

∑
i∈G

w∗
i x

j
i εi

∣∣∣ ≥ t

]
≤ 2 exp

(
− ht2

2σ2

)
for all t > 0 ,

and consequently by the union bound over,

P

[∥∥∥ 1
h

∑
i∈G

w∗
i x

j
i εi

∥∥∥
∞

≥ t

]
≤ 2 exp

(
− ht2

2σ2
+ log p

)
for all t > 0 .

Setting t2 = 4σ2 log p
h , we obtain

∥∥ 1
h

∑
i∈G w∗

i εixi

∥∥
∞ ≤

√
4σ2 log p

h with probabil-

ity at least 1− c exp(−c′hλ2).
Now, we have all pieces to utilize Theorem 1. The assumption on choosing λ

in the statement is satisfied as follows:

2ρτ1(n, p) + τ3(n, p) = 2ρ
κ2(2h− n) log p

2h2
+ 4

√
|||ΣB|||2 max

i∈B
|δi|

√
log p

√
|B|
h

≤C1

√
h

log p

κ2(2h− n) log p

2h2
+ 4

√
|||ΣB|||2C2

√
h

|B|
√
log p

√
|B|
h
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≤
(1
2
C1κ2 + 4C2

√
|||ΣB|||2

)√ log p

h

where C2 is some constant satisfying C2
2 ≥ (maxi δ

2
i )|B|

h , and we use the condition
(LTS4). Finally, the RSC constant in (18) can be simply lower bounded with
the assumption (C-h):

κ1(2h− n)2

4h2
≥ κ1

α2

4
,

hence we can have the bounds as stated.

Appendix C: Results for trimmed graphical Lasso

C.1. Useful lemma(s)

Lemma 1 (Lemma 1 of Ravikumar et al. [35]). Suppose that {X(i)}ni=1 are iid
samples from N(0,Σ) with n ≥ 40maxi Σii. Let A be the event that∥∥∥∥ 1n

n∑
i=1

X(i)(X(i))� − Σ

∥∥∥∥
∞

≤ 8(max
i

Σii)

√
10τ log p

n

where τ is any constant greater than 2. Then, the probability of event A occurring
is at least 1− 4/pτ−2.

Lemma 2 (Section B.4 of Loh and Wainwright [26]). For any Δ ∈ R
p×p such

that ‖Δ‖F ≤ 1,〈〈(
Θ∗)−1 −

(
Θ∗ +Δ

)−1
, Δ

〉〉
≥

(
|||Θ∗|||2 + 1

)−2‖Δ‖2F .

C.2. Proof of Corollary 3

Although Theorem 1 can be seamlessly applied for the Trimmed Graphical
Lasso as well, we need to restrict our attention to the case of ‖Δ‖F ≤ 1 in
order to guarantee the (vanilla) restricted strong convex in Lemma 2 (which is
the standard technique even for the case without outliers as developed in Loh
and Wainwright [26]). Toward this, we first show that ‖Δ‖F ≤ 1 actually holds
under the conditions:

Lemma 3. Suppose that the condition (C-2) holds. Moreover, 4max
{
‖ 1
h

∑n
i=1

w∗
iX

(i)(X(i))� − (Θ∗)−1‖∞, τ3(n, p)
}

≤ λ ≤ κl−τ2(n,p)
3R . Then, for (Θ̃, w̃),

‖Δ̃‖F ≤ 1.

Proof. The Lemma 3 can be proved by the fact − log detΘ is a convex function.
Hence, the function f : [0, 1] → R given by f(t; Θ∗, Δ̃) := − log det

(
Θ∗ + tΔ̃

)
is

also convex in t, and
〈〈
− (Θ∗+Δ̃)−1, Δ̃

〉〉
≥

〈〈
− (Θ∗+ tΔ̃)−1, Δ̃

〉〉
for t ∈ [0, 1]

(see Loh and Wainwright [26] for details).
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Now, suppose that ‖Δ̃‖F ≥ 1. Then, we have〈〈(
Θ∗)−1 −

(
Θ∗ + Δ̃

)−1
, Δ̃

〉〉
≥

〈〈(
Θ∗)−1 −

(
Θ∗ + tΔ̃

)−1
, Δ̃

〉〉
=

1

t

〈〈(
Θ∗)−1 −

(
Θ∗ + tΔ̃

)−1
, tΔ̃

〉〉
. (19)

Since ‖Δ̃‖F ≥ 1, we can set t = 1

‖Δ̃‖F
≤ 1 so that ‖tΔ̃‖F = 1. Hence, by applying

Lemma 2 for tΔ̃, we obtain〈〈(
Θ∗)−1 −

(
Θ∗ + tΔ̃

)−1
, tΔ̃

〉〉
≥ κl‖tΔ̃‖2F = κl .

Combining with (19) yields〈〈(
Θ∗)−1 −

(
Θ∗ + Δ̃

)−1
, Δ̃

〉〉
≥ κl‖Δ̃‖F . (20)

Now, from (12) and (20) followed by the condition (C-2) and Hölder’s in-
equity, we can obtain

κl‖Δ̃‖F ≤
〈〈
(Θ∗)−1 − 1

h

n∑
i=1

w̃iX
(i)(X(i))�, Δ̃

〉〉
+ λ(‖Δ̃S‖1,off − ‖Δ̃Sc‖1,off)

≤
〈〈
(Θ∗)−1 − 1

h

n∑
i=1

w̃iX
(i)(X(i))�, Δ̃

〉〉
+ λ‖Δ̃‖1,off

≤
〈〈
(Θ∗)−1 − 1

h

n∑
i=1

w∗
iX

(i)(X(i))� +
1

h

n∑
i=1

w∗
iX

(i)(X(i))�

− 1

h

n∑
i=1

w̃iX
(i)(X(i))�, Δ̃

〉〉
+ λ‖Δ̃‖1,off

≤
∥∥∥ 1
h

n∑
i=1

w∗
iX

(i)(X(i))� − (Θ∗)−1
∥∥∥
∞

· ‖Δ̃‖1 + τ2(n, p)‖Δ̃‖F

+ τ3(n, p)‖Δ̃‖1 + λ‖Δ̃‖1,off .

By the choice of λ in the assumption of the statement and by the fact that
‖Δ̃‖1,off ≤ ‖Δ̃‖1 and ‖Δ̃‖1 ≤ ‖Θ̃‖1 + ‖Θ∗‖1 ≤ 2R, we can rearrange the above
inequality into

‖Δ̃‖F ≤ 3λ

2
(
κl − τ2(n, p)

)‖Δ̃‖1 ≤ 3λR(
κl − τ2(n, p)

) ≤ 1 ,

which conflicts with the assumption in the beginning of this proof. Hence, by
contradiction, we can conclude ‖Δ̃‖F ≤ 1 under conditions in the statement.

Since for this particular example, the modified restricted strong convexity
condition in (C-1) is identical as the vanilla case (which is already proved in
Lemma 2), the only remaining to utilize Theorem 1 is to specify the quantity
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τ2(n, p) and τ3(n, p) in (C-2). Toward this, we follow similar strategy as in
Nguyen and Tran [31]: given Δ, we divide the index of Δ into the disjoint
exhaustive subsets S1, S2, . . . , Sq of size |B| such that S1 contains |B| largest
absolute elements in Δ, and so on. Then, we have∣∣∣〈〈 n∑

i=1

Γ̃iX
(i)(X(i))�, Δ̃

〉〉∣∣∣ = ∣∣∣〈〈∑
i∈B

Γ̃iX
(i)(X(i))�, Δ̃

〉〉∣∣∣
=

∣∣∣∣ q∑
j=1

〈〈∑
i∈B

Γ̃i

[
X(i)(X(i))�

]
Sj
,
[
Δ̃
]
Sj

〉〉∣∣∣∣
≤

q∑
j=1

∣∣∣〈〈∑
i∈B

Γ̃i

[
X(i)(X(i))�

]
Sj
,
[
Δ̃
]
Sj

〉〉∣∣∣ .
Let DΓ̃ be a |B|× |B| diagonal matrix whose i-th diagonal entry is [DΓ̃]ii := Γ̃i.
Let also XB is a |B| × p design matrix for samples in the set B. Finally XB

Sj

denotes a |B| × |Sj | sub-matrix of XB whose columns are indexed by Sj . Then,

q∑
j=1

∣∣∣〈〈∑
i∈B

Γ̃i

[
X(i)(X(i))�

]
Sj
,
[
Δ̃
]
Sj

〉〉∣∣∣ = q∑
j=1

∣∣∣Trace([Δ̃]�
Sj
[XB

Sj
]�DΓ̃X

B
Sj

)∣∣∣
=

q∑
j=1

∣∣∣〈〈XB
Sj

[
Δ̃
]
Sj
, DΓ̃X

B
Sj

〉〉∣∣∣ ≤ q∑
j=1

∥∥XB
Sj

[
Δ̃
]
Sj

∥∥
F

∥∥DΓ̃X
B
Sj

∥∥
F

≤
√
|B|

(
max

j
|||XB

Sj
|||2

)2 (∑
j‖[Δ̃]Sj‖F

)
︸ ︷︷ ︸

(I)

.

(I): by the standard bound in Candès et al. [11], we obtain

∑
j

‖[Δ̃]Sj‖F = ‖[Δ̃]S1‖F +

q∑
j=2

‖[Δ̃]Sj‖1 ≤ ‖[Δ̃]S1‖F +
1√
|B|

q∑
j=2

‖[Δ̃]Sj‖1

≤ ‖Δ̃‖F +
1√
|B|

‖Δ̃‖1 .

Combining all pieces together yields∣∣∣〈〈 1

h

n∑
i=1

Γ̃iX
(i)(X(i))�, Δ̃

〉〉∣∣∣ ≤ √
|B|
h

(
max

j
|||XB

Sj
|||2

)2
(
‖Δ̃‖F +

1√
|B|

‖Δ̃‖1
)
,

hence, we can guarantee the condition (C-2) with functions

τ2(n, p) = f(XB)

√
|B| log p

h
and

τ3(n, p) = f(XB)

√
log p

h
.
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To complete the proof, we also need to specify the quantity
∥∥ 1
h

∑n
i=1 w

∗
i ×

X(i)(X(i))�− (Θ∗)−1
∥∥
∞ =

∥∥ 1
h

∑
i∈G w∗

iX
(i)(X(i))�− (Θ∗)−1

∥∥
∞ for the appro-

priate choice of λ as stated in Theorem 1. Recall that we constructed w∗ as
follows: w∗

i is simply set to w̃i if i ∈ G, and w∗
i = 0 for i ∈ B. Let G be the

subset of G such that w∗
i = 1 and Gc be the subset such that w∗

i = 0. Then, we
have h ≥ |G| ≥ h − |B|, and hence h − |G| ≤ |B|. Now, by Lemma 1, we can
obtain the following bound:∥∥∥ 1

h

n∑
i=1

w∗
iX

(i)(X(i))� − (Θ∗)−1
∥∥∥
∞

=

∥∥∥∥ |Ḡ|
h

1

|G|
∑
i∈G

X(i)(X(i))� − (Θ∗)−1

∥∥∥∥
∞

=

∥∥∥∥ |G|
h

( 1

|G|
∑
i∈Ḡ

X(i)(X(i))� − (Θ∗)−1
)
−

(h− |G|
h

)
(Θ∗)−1

∥∥∥∥
∞

≤
∥∥∥∥ |G|

h

( 1

|G|
∑
i∈Ḡ

X(i)(X(i))� − (Θ∗)−1
)∥∥∥∥

∞
+

∥∥∥∥(h− |G|
h

)
(Θ∗)−1

∥∥∥∥
∞

≤
∥∥∥∥ 1

|G|
∑
i∈Ḡ

X(i)(X(i))� − (Θ∗)−1

∥∥∥∥
∞

+
|B|
h

‖Σ∗‖∞

≤ 8(max
i

Σ∗
ii)

√
10τ log p

G
+

|B|
h

‖Σ∗‖∞ ≤ 8(max
i

Σ∗
ii)

√
10τ log p

h− |B| +
|B|
h

‖Σ∗‖∞

with probability at least 1− 4/pτ−2 for any τ > 2.

C.3. Proof of Corollary 4

Under (TGL2), h− |B| ≥ (n− a
√
n)− a

√
n. Hence, if n ≥ 16a2, then h− |B| ≥

(n− a
√
n)− a

√
n ≥ n

2 . Moreover, |B|
h ≤ a

√
n

n/2 ≤ 2a√
n
. Therefore, from the Corol-

lary 3, the selection of λ in the statement satisfies λ ≥ 4max
{
‖ 1
h

∑n
i=1 w

∗
i ×

X(i)(X(i))� − (Θ∗)−1‖∞ , τ3(n, p)
}
.

Furthermore, as long as n ≥
(
|||Θ∗|||2 + 1

)4(
3Rc+ f(XB)

√
2|B|

)2
(log p),

λ = c

√
log p

n
≤

(
|||Θ∗|||2 + 1

)−2 − f(XB)
√

2|B| log p
n

3R
,

and therefore we have λ ≤ κl−f(XB)

√
|B| log p

h

3R where c is defined as 4max
{
16

(maxi Σ
∗
ii)

√
5τ + 2a‖Σ∗‖∞√

log p
,
√
2f(XB)

}
, as stated.

C.4. Proof of Corollary 5

In this proof, we simply need to specify the quantity f(XB) under the condition
(TGL2) and (TGL3), and then we can appeal to the result in Corollary 4.

Provided |B| ≥ exp(1),
(

p
|B|

)
≤

( exp(1)p
|B|

)|B| ≤ p|B|. As discussed in Vershynin

[45], Nguyen and Tran [31], if (TGL3) holds, for every t > 0, we have
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1√
|B|

max
j

|||XB
Sj
|||2 ≤

√
|||ΣB|||2 (2 + t)

with probability at least 1−2
(

p
|B|

)
exp(−t2|B|/2)≥ 1−2 exp(−t2|B|/2+|B| log p

)
.

Setting t = 2
√
log p, we obtain

max
j

|||XB
Sj
|||2 ≤ 2(1 +

√
log p)

√
|||ΣB|||2

√
|B|

with probability 1− p−|B|. Therefore, under (TGL2),(
max

j
|||XB

Sj
|||2

)2

≤ 4
(
1 +

√
log p

)2|||ΣB|||2|B| ≤ 4a
(
1 +

√
log p

)2|||ΣB|||2
√
n

=
4a

(
1 +

√
log p

)2|||ΣB|||2
√
n√

h log p

√
h log p ≤

4
√
2a

(
1 +

√
log p

)2|||ΣB|||2√
log p

√
h log p ,

as specified in the statement.

Appendix D: Proof of Proposition 1

We assume that the initial algorithm A is monotone, so the objective is non-
increasing in each iteration. Therefore for any w we know

f(θ(t+1);w)− f(θ(t);w) ≤ 0 .

Setting w = w(t) above, we have

f(θ(t+1);w(t)) ≤ f(θ(t);w(t)) . (21)

Since w(t+1) is computed to minimize minw f(θ(t+1);w), we also know

f(θ(t+1);w(t+1)) ≤ f(θ(t+1);w(t)) . (22)

By combining (21) and (22), we obtain

f(θ(t+1);w(t+1)) ≤ f(θ(t);w(t)) for all t, (23)

establishing monotonic decrease of function values. Since the domain of F is
compact, we know a limit point exists.

Next, we can take each w(t) to be a vertex of the capped simplex, since
the subproblem for w is a linear program (indeed, our implementation only
chooses vertex solutions w(t)). Therefore, along a subsequence tk that converges
to any limit point (v, θ), the weights wtk converge to v after finitely many steps
(since all vertices are separated by some positive distance). Once w(tk) have
converged v, iterates in the extended framework are identical to those generated
by the original algorithm A for the associated data selection, and therefore θ is
a stationary point for the associated M -estimator. Then (v, θ) is a stationary
point for the overall problem.
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Suppose now that two limit points correspond to two different vertices v1 and
v2. Each vertex of the capped simplex corresponds to a selection of data points,
which we call D1 and D2. Consider subsequences tk1 and tk2 which converge
to v1 and v2, respectively. Along each subsequence, w(tki

) converge to vi after
finitely many steps as discussed above, and again the iterates of the extended
algorithm are identical to those generated by A for the M-estimators defined
over D1 and D2.

In order to make a stronger statement, we need to make stronger assumptions.
Suppose that

1. the original M-estimator is convex, and
2. the optimization problems over each vertex vk (corresponding to data

selection Dk) have different optimal values.

Then there exists an ε > 0 so that without loss of generality, f(θ∗1 ; v1) + ε ≤
f(θ∗1 ; v2). Now, since each problem is convex over its respective dataset, we
can guarantee that after k ≥ T steps of A along the subsequence tk1 , we have
f(θtk1 ; v1) < f(θ∗1 ; v1) +

ε
2 < f(θ∗1 ; v2), and it is impossible for the algorithm to

return to v2 by the already established descent property (23). The number of
iterations can be precisely quantified, see e.g. Nesterov [30].

The contradiction ensures that the weights converge after finitely many steps
to a single vertex v. Once the weights converge to v, we know that all iterates
of the extended algorithm are identical to those of A for the convex problem
defined over selection D associated to v, and the extended algorithm converges
to a stationary point of the problem.
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