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Abstract: A statistical model is said to be un-normalised when its like-
lihood function involves an intractable normalising constant. Two popular
methods for parameter inference for these models are MC-MLE (Monte
Carlo maximum likelihood estimation), and NCE (noise contrastive esti-
mation); both methods rely on simulating artificial data-points to approx-
imate the normalising constant. While the asymptotics of MC-MLE have
been established under general hypotheses (Geyer, 1994), this is not so for
NCE. We establish consistency and asymptotic normality of NCE estima-
tors under mild assumptions. We compare NCE and MC-MLE under several
asymptotic regimes. In particular, we show that, when m → ∞ while n is
fixed (m and n being respectively the number of artificial data-points, and
actual data-points), the two estimators are asymptotically equivalent. Con-
versely, we prove that, when the artificial data-points are IID, and when
n → ∞ while m/n converges to a positive constant, the asymptotic vari-
ance of a NCE estimator is always smaller than the asymptotic variance of
the corresponding MC-MLE estimator. We illustrate the variance reduction
brought by NCE through a numerical study.
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1. Introduction

Consider a set of probability densities {fθ : θ ∈ Θ} with respect to some measure
μ, defined on a space X , such that:

fθ(x) =
hθ(x)

Z(θ)

where hθ is non-negative, and Z(θ) is a normalising constant, Z(θ) =∫
X hθ(x)μ(dx). A model based on such a family of densities is said to be un-
normalised if function hθ may be computed point-wise, but Z(θ) is not available
(i.e. it may not be computed in a reasonable CPU time).

Un-normalised models arise in several areas of machine learning and Statis-
tics, such as deep learning (Salakhutdinov and Hinton, 2009), computer vision
(Wang et al., 2013), image segmentation (Gu and Zhu, 2001), social network
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modelling (Caimo and Friel, 2011), directional data modelling (Walker, 2011),
among others. In most applications, data-points are assumed to be IID (inde-
pendent and identically distributed); see however e.g. Mnih and Teh (2012) or
Barthelmé and Chopin (2015) for applications of non-IID un-normalised models.
In that spirit, we consider an un-normalised model of IID variables Y1, . . . , Yn,
with log-likelihood (divided by n):

�n(θ) =
1

n

n∑
i=1

log hθ(yi)− logZ(θ). (1)

The fact that Z(θ) is intractable precludes standard maximum likelihood esti-
mation.

Geyer (1994) wrote a seminal paper on un-normalised models, in which he
proposed to estimate θ by maximising function

�ISn,m(θ) =
1

n

n∑
i=1

log
hθ(yi)

hψ(yi)
− log

⎧⎨⎩ 1

m

m∑
j=1

hθ(xj)

hψ(xj)

⎫⎬⎭ (2)

where the xj ’s are m artificial data-points generated from a user-chosen dis-
tribution Pψ with density fψ(x) = hψ(x)/Z(ψ). The empirical average inside
the second log is a consistent (as m → ∞) importance sampling estimate of
Z(θ)/Z(ψ). Function �ISn,m is thus an approximation of the log-likelihood ratio
�n(θ)− �n(ψ), whose maximiser is the MLE.

In many applications, the easiest way to sample from Pψ is to use MCMC
(Markov chain Monte Carlo). Geyer (1994) established the asymptotic proper-
ties of the MC-MLE estimates under general conditions; in particular that the
xj ’s are realisations of an ergodic process. This is remarkable, given that most of
the theory on M-estimation (i.e. estimation obtained by maximising functions)
is restricted to IID data.

More recently, Gutmann and Hyvärinen (2012) proposed an alternative ap-
proach to parameter estimation of un-normalised models, called noise con-
trastive estimation (NCE). It also relies on simulating artificial data-points
x1, . . . , xm from distribution Pψ. The method consists in maximising the like-
lihood of a logistic classifier, where actual (resp. artificial) data-points are as-
signed label 1 (resp. 0). With symbols, the log-likelihood divided by n rewrites:

�NCE
n,m (θ, ν) =

1

n

n∑
i=1

log qθ,ν(yi) +
1

m

m∑
i=1

log
{
(1− qθ,ν(xi))

m/n
}

(3)

where qθ,ν(x), the probability of label 1 for a value x, is defined through odd-
ratio function:

log

{
qθ,ν(x)

1− qθ,ν(x)

}
= log

{
hθ(x)

hψ(x)

}
+ ν + log

( n

m

)
.

The NCE estimator of θ is obtained by maximising function �NCE
n,m (θ, ν) with

respect to both θ ∈ Θ and ν ∈ R. In particular, when the considered model
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is exponential, i.e. when hθ(x) = exp
{
θTS(x)

}
, for some statistic S, �NCE

n,m is
the log-likelihood of a standard logistic regression, with covariate S(x). In that
case, implementing NCE is particularly straightforward.

This paper has two objectives: first, to establish the asymptotic properties
of NCE when the artificial data-points are generated from an ergodic process
(typically a MCMC sampler) in order to show that NCE is as widely applicable
as MC-MLE; second, to compare the statistical efficiency of both methods.

As a preliminary step, we replace the original log-likelihood by a function
defined on the extended space Θ× R, called Poisson transform:

�n(θ, ν) =
1

n

n∑
i=1

log

{
hθ(yi)

hψ(yi)

}
+ ν − eν × Z(θ)

Z(ψ)
. (4)

This function is so called as it corresponds to the log-likelihood (up to a linear
transformation) of a Poisson process with intensity hθ(y) + ν, see Barthelmé
and Chopin (2015) for details. The main property of this transformation is that

it produces exactly the same MLE as the original likelihood: (θ̂n, ν̂n) maximises

(4) if and only if θ̂n maximises (1) and ν̂n = log
{
Z(ψ)/Z(θ̂n)

}
.

In the same way, we replace the MC-MLE log-likelihood by function

�ISn,m(θ, ν) =
1

n

n∑
i=1

log

{
hθ(yi)

hψ(yi)

}
+ ν − eν

m

m∑
j=1

hθ(xj)

hψ(xj)
(5)

which has the same maximiser (with respect to θ) as function (2). We thus
obtain three objective functions defined with respect to the same parameter
space, Θ× R. This will greatly facilitate our analysis.

The paper is organised as follows. In Section 2, we introduce the set up and
notations. In Section 3, we study the behaviour of the NCE estimator as m → ∞
(while n is kept fixed). We prove that the NCE estimator converges to the MLE
at the same m−1/2 rate as the MC-MLE estimator, and the difference between
the two estimators converges faster, at rate m−1. In Section 4, we let both m
and n go to infinity while m/n → τ > 0. We obtain asymptotic variances for
both estimators, which admit a simple and interpretable decomposition. Using
this decomposition, we are able to establish that when the artificial data-points
are IID, the asymptotic variance of NCE is always smaller than the asymptotic
variance of MC-MLE (for the same computational budget). Section 5 assesses
this variance reduction in a numerical example. Section 6 discusses the practical
implications of our results. All proofs are delegated to the appendix.

2. Set-up and notations

Unless explicitly stated, we will consider Θ to be an open subset of Rd, with
natural topology associated to the Euclidean norm. We consider a parametric
statistical model {P⊗n

θ : θ ∈ Θ}, corresponding to n IID data-points lying in
space X ⊂ Rk, associated with the corresponding Borel σ-Field. We assume
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that the model is identifiable, and equipped with some dominating measure
μ, inducing the log-likelihood (1). From now on, we work directly with the
“extended” version of approximate and exact log-likelihoods, i.e. functions (3),
(4) and (5), which are functions of extended parameter ξ = (θ, ν), with ξ ∈ Ξ =
Θ × R. When convenient, we also write �n(ξ) for �n(θ, ν) and so on. An open
ball in Ξ, centered on ξ and of radius ε, is denoted B(ξ, ε). We may also use this
notation for balls in Θ.

The point of this paper is to study and compare point estimates ξ̂ISn,m and

ξ̂NCE
n,m , which maximise functions (5) and (3). For the sake of generality, we allow

these estimators to be approximate maximisers; i.e. we will refer to ξ̂ISn,m as an
approximate MC-MLE if

�ISn,m(ξ̂ISn,m) ≥ sup
ξ∈Ξ

�ISn,m(ξ)− o(1) a.s. (6)

and with a similar definition for ξ̂NCE
n,m . The meaning of symbol o(1) in (6) de-

pends on the asymptotic regime: in Section 3, n is kept fixed, while m → ∞,
hence o(1) means “converges to zero as m → ∞”. In Section 4, both m and n
go to infinity, and the meaning of o(1) must be adapted accordingly.

In both asymptotic regimes, the main assumption regarding the sampling
process is as follows.

(X1) The artificial data-points are realisations of a Pψ-ergodic process (Xj)j≥1.

By Pψ-ergodicity, we mean that the following law of large number holds:

1

m

m∑
j=1

ϕ(Xj) →
m→∞

Eψ [ϕ(X)] =

∫
X
ϕ(x)fψ(x)μ(dx) a.s.

for any measurable, real-valued function ϕ such that Eψ [|ϕ(X)|] < +∞.
Assumption (X1) is mild. For instance, if the Xj ’s are generated by a MCMC

algorithm, this is equivalent to assuming that the simulated chain is aperi-
odic and φ-irreducible, which is true for all practical MCMC samplers; see e.g.
Roberts and Rosenthal (2004).

Finally, note that, although notation Pψ suggests that the distribution of the
artificial data-points belongs to the considered parametric model, this is not
compulsory. All our results hold provided that the model is dominated by Pψ

(i.e. Pθ � Pψ for every θ ∈ Θ).

3. Asymptotics of the Monte Carlo error

In this section, the analysis is conditional on the observed data: n and y1, ..., yn
are fixed. The only source of randomness is the Monte Carlo error, and the
quantity we seek to estimate is the (intractable) MLE. This regime was first
studied for MC-MLE by Geyer (1994). For convenience, we suppose that the

MLE exists and is unique; or equivalently that ξ̂n = (θ̂n, ν̂n) is the unique
maximiser of �n.
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3.1. Consistency

We are able to prove NCE consistency (towards the MLE) using the same ap-
proach as Geyer (1994) for MC-MLE. Our consistency result relies on the fol-
lowing assumptions:

(C1) The random sequence
(
ξ̂NCE
n,m

)
m≥1

is an approximate NCE estimator,

which belongs to a compact set almost surely.
(H1) The maps θ �→ hθ(x) are:

1. lower semi-continuous at each θ ∈ Θ, except for x in a Pψ-null set
that may depend on θ;

2. upper semi-continuous, for any x not in a Pψ-null set (that does not
depend on θ), and for all x = yi, i = 1, . . . , n.

Theorem 1. Under assumptions (X1), (C1) and (H1), almost surely:

ξ̂NCE
n,m →

m→∞
ξ̂n.

This result is strongly linked to Theorems 1 and 4 of Geyer (1994), which

state that θ̂ISn,m → θ̂n as m → ∞ under essentially the same assumptions.
These assumptions are very mild: they basically require continuity of the maps
θ �→ hθ(x), without any integrability condition.

Remark 1. As noticed by Geyer (1994), the proof does not require Θ to be a
subset of Rd, consistency of MC-MLE as well as Theorem 1 hold more generally
as soon as Θ is a separable metric space.

3.2. Asymptotic normality, comparison with MC-MLE

In order to compare the Monte Carlo error of MC-MLE and NCE estimators,
we make the following extra assumptions:

(H2) The maps θ �→ hθ(x) are twice continuously differentiable in a neighbor-

hood of θ̂n for Pψ-almost every x, and for x = yi, i = 1, . . . , n. The Hessian

matrix H = ∇2�n(θ̂n) is invertible. Moreover, for some ε > 0∫
X
aε(x) sup

θ∈B(θ̂n,ε)

hθ(x)μ(dx) < +∞

where aε(x) = 1 + sup
θ∈B(θ̂n,ε)

‖∇θ log hθ(x)‖2 + sup
θ∈B(θ̂n,ε)

‖∇2
θ log hθ(x)‖.

(G1) Estimators ξ̂ISn,m and ξ̂NCE
n,m converge to ξ̂n almost surely, and are such that

∇�ISn,m(ξ̂ISn,m) = o
(
m−1

)
, ∇�NCE

n,m (ξ̂NCE
n,m ) = o

(
m−1

)
.

(I1) For some ε > 0 the following integrability condition holds:

Eψ

[
bε(X) sup

θ∈B(θ̂n,ε)

(
hθ(X)

hψ(X)

)2
]
< +∞
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where bε(x) = 1 + sup
θ∈B(θ̂n,ε)

‖∇θ log hθ(x)‖.

Measurability of the suprema in (H2) and (I1) is ensured by the lower semi-

continuity of the two first differentials in a neighbourhood of θ̂n. Assumption
(H2) is a regularity condition that ensures in particular that the partition func-
tion θ �→ Z(θ) =

∫
X hθ(x)μ(dx) is twice differentiable under the integral sign, in

a neighbourhood of θ̂n. Following Theorem 1, Assumption (G1) is trivial as soon

as Assumptions (C1) and (H1) hold and ξ̂ISn,m and ξ̂NCE
n,m are exact maximisers;

in that case the gradients are zero. Integrability Assumption (I1) is the critical
assumption. It is essentially a (locally uniform) second moment condition on the
importance weights, with Pθ̂n

as the target distribution.

Theorem 2. Under assumptions (X1), (H2), (G1) and (I1):

m
(
ξ̂NCE
n,m − ξ̂ISn,m

)
→

m→∞
n
(
−H(ξ̂n)

)−1

v(ξ̂n) a.s. (7)

where H(ξ) = ∇2
ξ�n(ξ), and v(ξ) is defined as follows: let gξ(x) = log hθ(x) + ν,

then

v(ξ) =
1

n

n∑
i=1

∇ξgξ(yi)

(
exp{gξ(yi)}

hψ(yi)

)
− Eψ

[
∇ξgξ(X)

(
exp{gξ(X)}

hψ(X)

)2
]
.

Before discussing the implications of Theorem 2, it is important to consider
Geyer (1994)’s result about asymptotic normality of MC-MLE, which relies on
the following assumption:

(N) For some covariance matrix A we have:

√
m∇�ISn,m(θ̂n)

D→
m→∞

Nd (0d,A)

As noticed by Geyer (1994), asymptotics of MC-MLE are quite similar to the
asymptotics of maximum likelihood, and it can be shown that under assumptions
(X1), (H2), (G1) and (N),

√
m
(
θ̂ISn,m − θ̂n

)
D→

m→∞
Nd

(
0d,H

−1AH−1
)
.

Theorem 2 shows that the difference between the two point estimates is
O(m−1), which is negligible relative to the OP(m

−1/2) rate of convergence to

θ̂n. This proves that, when n is fixed, both approaches are asymptotically equiv-
alent when it comes to approximate the MLE. In particular, Slutsky’s lemma
implies asymptotic normality of the NCE estimator with the same asymptotic
variance as for MC-MLE.

Assumptions (H2) and (I1) admit a much simpler formulation when the model
belongs to an exponential family. This is the point of the following Proposition.

Proposition 1. If the parametric model is exponential, i.e. if hθ(x) =
exp
{
θTS(x)

}
for some statistic S, then assumptions (H2) and (I1) are equiva-

lent to the following assumptions (H2-exp) and (I1-exp):
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(H2-exp) The Hessian matrix of the log-likelihood H = ∇2�n(θ̂n) is invertible.

(I1-exp) The MLE θ̂n lies in the interior of Θψ =
{
θ ∈ Θ : Eψ

[( hθ(X)
hψ(X)

)2]
<

+∞
}
.

The set Θψ is convex whenever Θ is. In particular, this is true when Θ

coincides with the natural space of parameters, defined as Θ̃ = {θ ∈ Rd :∫
X exp

{
θTS(x)

}
μ(dx) < +∞}. If Pψ ∈ {Pθ : θ ∈ Θ}, then (I1-exp) holds as

soon as 2θ̂n − ψ lies in the interior of Θ̃.

Remark 2. Condition (N) requires a
√
m-CLT (central limit theorem) for the

function ϕ : x �→
(
∇θ log hθ

)
(hθ/hψ)(x) at θ = θ̂n. There has been an extensive

literature on CLT’s for Markov Chains, see e.g. Roberts and Rosenthal (2004)
for a review. In particular, if (Xj)j≥1 is a geometrically ergodic Markov Chain
with stationary distribution Pψ, then assumption (N) holds if for some δ > 0,
ϕ ∈ L2+δ(Pψ). This assumption is very similar to assumption (I1), especially
when the model is exponential.

In practice, implications of Theorem 2 must be considered cautiously, as
the Euclidean norm of the limit in (7) will typically increase with n. For sev-
eral well-known un-normalised models (e.g. Ising models, Exponential Random
Graph Models), n is equal to one, in which case NCE and MC-MLE will always
produce very close estimates. For other models however, it is known that the
two estimators may behave differently, especially when the number of actual
data-points is big and when simulations have a high computational cost (see
Gutmann and Hyvärinen (2012)).

To investigate to which extent both approaches provide a good approximation
of the true parameter value in these models, we will require both m and n to go
to infinity. As it turns out, this will also make it possible to do finer comparison
between ξ̂ISn,m and ξ̂NCE

n,m (and thus between θ̂NCE
n,m and θ̂ISn,m). This is the point of

the next section.

4. Asymptotics of the overall error

We now assume that observations yi are realisations of IID random variables
Yi, with probability density fθ� , for some true parameter θ� ∈ Θ, while the
artificial data-points (Xj)j≥1 remain generated from a Pψ-ergodic process. We
also assume that (Yi)i≥1 and (Xj)j≥1 are independent sequences; this regime
was first studied for NCE by Gutmann and Hyvärinen (2012), although the Xj ’s
were assumed IID in that paper.

This asymptotic regime has some drawbacks: it assumes that the model is
well specified, and that Pψ is chosen independently from the data. This is rarely
true in practice, as the user will generally try to choose Pψ as close as possible
to the data distribution to reduce the mean square error (see Section 5). Nev-
ertheless, allowing both m and n to go to infinity turns out to provide a better
understanding of the asymptotic behaviours of NCE and MC-MLE, at least for
situations where the number of actual data-points may be large.
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We assume implicitly that m = mn is a non-decreasing sequence of positive
integers going to infinity when n does, while mn/n → τ ∈ (0,+∞). Every limit
when n goes to infinity should be understood accordingly. Finally, ξ� = (θ�, ν�)
stands for the true extended parameter, where ν� = log {Z(ψ)/Z(θ�)}.

4.1. Consistency

Our results concerning the overall consistency (to ξ�, as both m and n → ∞)
of MC-MLE and NCE rely on the following assumptions:

(C2) The random sequences
(
ξ̂ISn,m

)
n≥1

and
(
ξ̂NCE
n,m

)
n≥1

are approximate MC-

MLE and NCE estimators, and belong to a compact set almost surely.
(H3) The maps θ �→ hθ(x) are continuous for Pψ-almost every x, and for any

θ ∈ Θ there is some ε > 0 such that∫
X

sup
φ∈B(θ,ε)

(
log

hφ(x)

hθ�(x)

)
+

hθ�(x)μ(dx) < +∞.

Theorem 3. Under assumptions (X1), (C2) and (H3), both estimators ξ̂ISn,m
and ξ̂NCE

n,m converge almost surely to ξ� as n,m → ∞, while m/n → τ .

Our proofs of NCE and MC-MLE consistency are mainly inspired from Wald
(1949)’s famous proof of MLE consistency, for which the same integrability con-
dition (H3) is required. It is noteworthy that, under this regime, MC-MLE and
NCE consistency essentially rely on the same assumptions as MLE consistency.

Remark 3. As noticed by Wald (1949), the proof does not require Θ to be a
subset of Rd. Theorem 3 holds as soon as Θ is a metric space.

Proposition 2. If the parametric model is exponential, i.e. if hθ(x) =
exp
{
θTS(x)

}
for some measurable statistic S, then assumption (H3) always

holds.

4.2. Asymptotic normality

To ensure the asymptotic normality of both NCE and MC-MLE estimates, we
make the following assumption.

(X2) The sequence (Xj)j≥1 is a Harris ergodic Markov chain (that is, aperiodic,
φ-irreducible and positive Harris recurrent; for definitions see Meyn and
Tweedie (2012)), with stationary distribution Pψ.
The Markov kernel associated with the chain (Xj)j≥1, noted P (x, dy), is
reversible (satisfies detailed balance) with respect to Pψ, that is

Pψ(dx)P (x, dy) = Pψ(dy)P (y, dx). (8)

Moreover, the chain (Xj)j≥1 is geometrically ergodic, i.e. there is some
ρ ∈ [0, 1) and a positive measurable function M such that for Pψ-almost
every x

‖Pn(x, .)− Pψ(.)‖TV ≤ M(x)ρn (9)
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where Pn(x; dy) denote the n-step Markov transition kernel corresponding
to P , and ‖.‖TV stands for the total variation norm.

Under (X2), for any measurable, real-valued function ϕ such that Eψ[ϕ
2] < ∞,

then a
√
m-CLT holds, i.e.

√
m

⎛⎝ 1

m

m∑
j=1

ϕ(Xj)− Eψ [ϕ(X)]

⎞⎠ D→ N (0, σ2
ϕ) (10)

where

σ2
ϕ = Vψ(ϕ(X)) + 2

∞∑
i=1

Cov(ϕ(X0), ϕ(Xi)).

In the equation above, Cov(ϕ(X0), ϕ(Xi)) stands for the i-th lag autocovariance
of the chain at stationarity; that is with respect to the distribution defined
by X0 ∼ Pψ and Xi+1|Xi ∼ P (Xi, .). The sequence of artificial data-points
(Xj)j≥1 is not assumed stationary. Since the chain is Harris recurrent, (10)
holds whenever X1 = x for any x ∈ X (see e.g. Roberts and Rosenthal (2004),
especially Theorem 4 and Proposition 29).

For convenience, we choose to assume that the kernel is reversible (which is
true for any Metropolis-Hastings algorithm), but the reversibility assumption
(8) is not compulsory, and may be replaced by slightly stronger integrability as-
sumptions (see e.g. Roberts and Rosenthal (2004)); in particular, if reversibility
is not assumed then (10) holds whenever ϕ ∈ L2+δ(Pψ). The critical assumption
is geometric ergodicity.

Geometric ergodicity is obviously stronger than assumption (X1) which only
requires a law of large numbers to hold. Nevertheless, geometric ergodicity re-
mains a state of the art condition to ensure CLT’s for Markov chains (see e.g.
Roberts and Rosenthal (2004) and Bradley et al. (2005)), while it can often be
checked for practical MCMC samplers. We present assumption (X2) as a prac-
tical condition for ensuring CLT’s when the artificial data-points are generated
from a MCMC sampler, while it also covers the IID case without loss of gen-
erality. Note though that CLT’s can hold under more general conditions, e.g.
when the Markov chain satisfies polynomial ergodicity (Jones, 2004).

Our asymptotic normality results rely on the following assumptions:

(H4) The maps θ �→ hθ(x) are twice continuously differentiable in a neigh-
borhood of θ� for Pψ-almost every x; the Fisher Information I(θ) =
Vθ

(
∇θ log hθ(Y )

)
is invertible at θ = θ�; and for some ε > 0∫

X
cε(x) sup

θ∈B(θ�,ε)

hθ(x)μ(dx) < ∞

where cε(x) = 1 + sup
θ∈B(θ�,ε)

‖∇θ log hθ(x)‖2 + sup
θ∈B(θ�,ε)

‖∇2
θ log hθ(x)‖.

(G2) Estimators ξ̂ISn,m and ξ̂NCE
n,m converge in probability to ξ�, and are such

that

∇�ISn,m(ξ̂ISn,m) = oP

(
n−1/2

)
, ∇�NCE

n,m (ξ̂NCE
n,m ) = oP

(
n−1/2

)
.
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(I3) At θ = θ�, the following integrability condition holds:

Eψ

[
dθ(X)

(
hθ(X)

hψ(X)

)2
]
< ∞

where dθ(x) = 1 + ‖∇θ log hθ(x)‖2.

Theorem 4. Under assumptions (X2), (H4) and (G2), we have

√
n
(
ξ̂NCE
n,m − ξ�

)
D→ Nd+1

(
0,VNCE

τ (ξ�)
)

where

VNCE
τ (ξ) = Jτ (ξ)

−1
{
Στ (ξ) + τ−1Γτ (ξ)

}
Jτ (ξ)

−1,

Jτ (ξ) = Eθ

[
(∇ξ∇T

ξ gξ)

(
τfψ

τfψ + fθ

)
(Y )

]
,

Στ (ξ) = Vθ

(
(∇ξgξ)

(
τfψ

τfψ + fθ

)
(Y )

)
,

Γτ (ξ) = Vψ

(
ϕNCE
ξ (X)

)
+ 2

+∞∑
i=1

Cov
(
ϕNCE
ξ (X0), ϕ

NCE
ξ (Xi)

)
,

ϕNCE
ξ (x) = (∇ξgξ)

fθ
fψ

(
τfψ

τfψ + fθ

)
(x).

Moreover, under assumptions (X2), (H4), (G2) and (I3), we have

√
n
(
ξ̂ISn,m − ξ�

)
D→ Nd+1

(
0,VIS

τ (ξ�)
)

where

VIS
τ (ξ) = J(ξ)−1

{
Σ(ξ) + τ−1Γ(ξ)

}
J(ξ)−1,

J(ξ) = Eθ

[
∇ξ∇T

ξ gξ(Y )
]
,

Σ(ξ) = Vθ

(
∇ξgξ(Y )

)
,

Γ(ξ) = Vψ

(
ϕIS
ξ (X)

)
+ 2

+∞∑
i=1

Cov
(
ϕIS
ξ (X0), ϕ

IS
ξ (Xi)

)
,

ϕIS
ξ (x) = (∇ξgξ)

fθ
fψ

(x).

Remark 4. Second moment condition (I3) is critical. It basically forbids Pψ

to be chosen as a too thin tail distribution compared to Pθ∗ . Assumption (I3)
is needed for establishing MC-MLE asymptotic normality, but not for NCE (in-
equality 21 shows that condition (H4) is enough). This already shows that, under
the considered regime, NCE is more robust (to Pψ) than MC-MLE.
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Assumptions (H4) and (I3) admit a simpler formulation when the model is
exponential, as shown by the following proposition.

Proposition 3. If the parametric model is exponential, i.e. if hθ(x) =
exp
{
θTS(x)

}
for some statistic S, then assumptions (H4) and (I3) are equiva-

lent to the following assumptions (H4-exp) and (I3-exp):

(H4-exp) Fisher Information I(θ) = Vθ

(
∇θ log hθ(Y )

)
is invertible at θ = θ�.

(I3-exp) Parameter θ� belongs to the interior of Θψ =
{
θ : Eψ

[( hθ(X)
hψ(X)

)2]
<

∞
}
.

In particular, if Pψ ∈ {Pθ}θ∈Θ, then (I3-exp) holds as soon as 2θ�−ψ belongs

to the interior of Θ̃ =
{
θ ∈ Rd :

∫
X exp

{
θTS(x)

}
μ(dx) < ∞

}
.

4.3. Comparison of asymptotic variances

Theorem 5. If the artificial data-points (Xj)j≥1 are IID, then under assump-
tions (H4) and (I3), VIS

τ (ξ�) � VNCE
τ (ξ�), i.e. VIS

τ (ξ�)−VNCE
τ (ξ�) is a positive

semi-definite matrix.

Theorem 5 shows that, asymptotically, when m/n → τ > 0, and when the
artificial data-points are IID, the variance of a NCE estimator is always lower
than the variance of the corresponding MC-MLE estimator. This inequality
is with respect to the Loewner partial order on symmetric matrices. To our
knowledge, this is the first theoretical result proving that NCE dominates MC-
MLE in terms of mean square error. We failed however to extend this result to
correlated Markov chains.

This inequality holds for any fixed ratio τ ∈ (0,+∞), and any given sampling
distribution Pψ, but the sharpness of the bound remains unknown. Typically,
the bigger is τ , the closer the two variances will be, as the ratio τfψ/τfψ + fθ�

gets closer to one. It is also the case when the sampling distribution Pψ is close
to the true data distribution Pθ� . Geyer (1994) noticed that MC-MLE performs
better when Pψ is close to Pθ� . Next proposition shows that when Pψ = Pθ� ,
both variances can be related to the variance of the MLE.

Proposition 4. If the artificial data-points are IID sampled from Pψ = Pθ� ,
then under assumptions (H4) and (I3) we have

VNCE
τ (ξ�) = VIS

τ (ξ�) = (1 + τ−1)VMLE(ξ�)

where VMLE(ξ) = J(ξ)−1Σ(ξ)J(ξ)−1.

It is straightforward to check that, under the usual conditions ensuring asymp-
totic normality of the MLE, the extended maximiser of the Poisson Transform �n
is also asymptotically normal with variance VMLE(ξ�). This proposition shows
what we can expect from NCE and MC-MLE in a ideal scenario where the
sampling distribution is the same as the true data distribution.
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5. Numerical example

This section presents a numerical example that illustrates how the variance
reduction brought by NCE may vary according to the sampling distribution Pψ

and the ratio τ .
We consider observations IID distributed from the multivariate Gaussian dis-

tribution Np(μ,Σ) truncated to (0,+∞)p; that is Y1, ..., Yn are IID with the
following probability density with respect to Lebesgue’s measure:

fμ,Σ(x) =
1

Z(μ,Σ)
exp

{
−1

2
(x− μ)TΣ−1(x− μ)

}
1(0,+∞)p(x)

where

Z(μ,Σ) = (2π)p/2|Σ|1/2P (W ∈ (0,+∞)p) , W ∼ Np(μ,Σ).

The probability P (W ∈ (0,+∞)p) is intractable for almost every (μ,Σ). Nu-
merical approximations of such probabilities quickly become inefficient when p
increases.

It is well known that (truncated) Gaussian densities form an exponential fam-
ily under the following parametrisation: for a given μ ∈ Rp and Σ ∈ S++

p (the set
of positive definite matrices of size p), define θ = (Σ−1μ, triu(−(1/2)Σ−1)), and
S(x) = (x, triu(xxT )), where triu(.) is the upper triangular part. This parametri-
sation is minimal and the natural parameter space is a convex open subset of Rq

where q = p + p(p + 1)/2. Indeed, under the exponential formulation, we have
Θ = Θ1 ×Θ2 where Θ1 = Rp and Θ2 is on open cone of Rp(p+1)/2, in bijection
with S++

p through the function triu(.).
The observations are generated IID from Pθ (using rejection) for some true

parameter θ = θ�, corresponding to

μ� =

⎛⎝ 1
−1
0.5

⎞⎠ , Σ� =

⎛⎝ 1 0.5 1
0.5 1.5 0.3
1 0.3 2

⎞⎠ ,

in the usual Gaussian parametrisation. The artificial data-points are sampled
IID from the distribution Pψ associated with density fμ,Σ with μ = 0p and
Σ = λIp for some λ > 0. (Since Σ is diagonal, we may sample the components
independently; and since μ = 0p, we may sample each component by taking
the absolute value of a Gaussian variate.) The sample size is fixed to n = 1000,
while m is chosen such that the ratio m/n is equal to τ ∈ {1, 5, 20, 100}. The
distribution Pψ is chosen as stated above for λ ∈ [1.5, 20].

Figure 1 plots estimates and confidence intervals of the mean square error
ratio (mean Euclidean norm square error of the estimator divided by the asymp-
totic variance of the MLE) of both estimators (NCE and MC-MLE), based on
1000 independent replications. (Regarding the denominator of this ratio, note
that the variance of the MLE may be estimated by performing noise contrastive
estimation with Pψ = Pθ∗ , see Proposition 4.)
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Fig 1. Estimates and confidence intervals of the Mean Square Error ratios of MC-MLE (left)
and NCE (right), compared to the MLE. The MSE ratio depends both on the variance of the
proposal distribution λ and the number of artificial data-points m = τ × n (n = 1000). A
log-scale is used for both axes.

Fig 2. Estimates and confidence intervals of the Mean Square Error ratios of MC-MLE,
compared to the NCE. The MSE ratio depends both on the variance of the proposal distribution
λ and the number of artificial data-points m = τ × n (n = 1000). A log-scale is used for both
axes.

To facilitate the direct comparison between NCE and MC-MLE, we also plot
in Figure 2 estimates and confidence intervals of the MSE ratio of MC-MCLE
over NCE. As expected from Theorem 5, this ratio is always higher than one; it
becomes larger and larger as τ decreases, or as λ moves away from its optimal
value (around 4). This suggests that NCE is more robust than MC-MLE to a
poor choice for the reference distribution (especially thin tails distributions, i.e.
when λ goes to zero).

Finally, we discuss a technical difficulty related to the constrained nature of
the parameter space Θ. In principle, both the NCE and the MC-MLE estimators
should be obtained through constrained optimisation (i.e. as maximisers of their
respective objective functions over Θ). However, it is much easier (here, and in
many cases) to perform an unconstrained optimisation (over Rq). We must check
then that the so obtained solution fulfils the constraint that defines Θ (here, that
the solution corresponds to a matrix Σ which is definite positive). Figure 3 plots
estimates and confidence intervals of the probability that both estimators belong
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Fig 3. Estimates and confidence intervals of the probability of existence of MC-MLE (left)
and NCE (right) estimators. For a fixed n = 1000, the probability of belonging to Θ is lower
for MC-MLE, especially for small values of the variance of the proposal distribution λ and
the number of artificial data-points m = τ × n. A log-scale is used for both axes.

to Θ. We see that NCE (when implemented without constraints) is much more
likely to produce estimates that belong to Θ.

Note also that when the considered model is an exponential family (as in
this case), both functions �ISn,m and �NCE

n,m are convex. This implies that, when
the unconstrained maximiser of these functions do not fulfil the constraint that
defines Θ, then the constrained maximiser does not exist. (Any solution of the
constrained optimisation program lies on the boundary of the constrained set.)

6. Conclusion

The three practical conclusions we draw from our results are that: (a) NCE is
as widely applicable as MC-MLE (including when the X ′

js are generated using
MCMC); (b) NCE and MC-MLE are asymptotically equivalent (as m → ∞)
when n is fixed; (c) NCE may provide lower-variance estimates than MC-MLE
when n is large (provided that m = O(n)). The variance reduction seems to
be more important when the ratio τ = m/n is small, or when the reference
distribution (for generating the Xj ’s) is poorly chosen. Note that we proved (c)
under the assumption that theXj ’s are IID, but we conjecture it also holds when
they are generated using MCMC. Proving this conjecture may be an interesting
avenue for future research.

As mentioned in the introduction, another advantage of NCE is its ease of
implementation. In particular, when the considered model is exponential, NCE
boils down to performing a standard logistic regression. For all these reasons,
it seems reasonable to recommend NCE over MC-MLE to perform inference for
un-normalised models.

Acknowledgements

The research of the first author is funded by a GENES doctoral scholarship.
The research of the second author is partially supported by a grant from the



3488 Lionel Riou-Durand and Nicolas Chopin

French National Research Agency (ANR) as part of the Investissements d’Avenir
program (ANR-11-LABEX-0047). We are grateful to Bernard Delyon for letting
us include in the supplement an English translation of some technical results
(and their proofs) on ergodic processes that he derived in lecture notes (available
in French at https://perso.univ-rennes1.fr/bernard.delyon/param.pdf).

Appendix A: Main Proofs

A.1. Technical lemmas

The following lemmas are prerequisites for the proofs of our main theorems.
Most of them are ‘classical’ results, but for the sake of completeness, we provide
the proofs of these lemmas in the supplement (Appendix B).

All these lemma apply to a Pψ-ergodic sequence of random variables, (Xj)j≥1.
First lemma is a slightly disguised version of the law of large numbers, com-

bined with the monotone convergence of a sequence of test functions.

Lemma 1. Let (fm)m≥1 be a non-decreasing sequence of measurable, non neg-
ative real-valued functions converging pointwise towards f . Then we have:

1

m

m∑
j=1

fm(Xj)
a.s.−→

m→+∞
Eψ[f(X)].

This result holds whether the expectation is finite or infinite.

Second lemma is a natural generalisation of Lemma 1 to dominated conver-
gence.

Lemma 2. Let (fm)m≥1, f and g be measurable, real-valued functions, such
that (fm)m≥1 converges pointwise towards f ; for any m ≥ 1, |fm| ≤ g; and
Eψ[g(X)] < +∞. Then we have:

1

m

m∑
j=1

fm(Xj)
a.s.−→

m→+∞
Eψ[f(X)].

Third lemma is a generalisation of Lemma 1 to the degenerate case where
the expectation is infinite. In that case, Lemma 3 shows that the monotonicity
assumption is unnecessary.

Lemma 3. Let (fm)m≥1, f and g be measurable, real-valued functions, such that
(fm)m≥1 converges pointwise towards f ; g is non negative, Eψ[g(X)] < +∞; for
any m ≥ 1, fm ≤ g; and Eψ[f(X)−] = +∞ where f− stands for the negative
part of f . Then we have:

1

m

m∑
j=1

fm(Xj)
a.s.−→

m→+∞
−∞.

Fourth lemma is a uniform law of large numbers. It is well known in the
IID case. This result does not actually require the independence assumption.

https://perso.univ-rennes1.fr/bernard.delyon/param.pdf
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We present a generalisation of this result to ergodic processes. The proof is
due to Bernard Delyon, who made it available in an unpublished course in
French (Delyon (2018)). We present an English translation of the proof in the
supplement (Appendix B).

Lemma 4. Let K a compact subset of Rd; (θ, x) �→ ϕ(θ, x) a measurable func-
tion defined on K × X whose values lie on Rp; and suppose that the maps
θ �→ ϕ(θ, x) are continuous for Pψ-almost every x. Moreover, suppose that

Eψ

[
sup
θ∈K

‖ϕ(θ,X)‖
]
< +∞.

Then the function θ �→ Eψ

[
ϕ(θ,X)

]
defined on K is continuous, and we have

sup
θ∈K

∥∥∥∥∥∥ 1

m

m∑
j=1

ϕ(θ,Xj)− Eψ [ϕ(θ,X)]

∥∥∥∥∥∥ a.s.−→
m→+∞

0.

Consequently, if there is a random sequence (θ̃m)m≥1 converging almost surely

to some parameter θ̃ ∈ Θ. Then we have∥∥∥∥∥∥ 1

m

m∑
j=1

ϕ(θ̃m, Xj)− Eψ

[
ϕ(θ̃, X)

]∥∥∥∥∥∥ →
m→∞

0 a.s.

Fifth lemma is also a well known result. It is often used to prove the weak
convergence (usually asymptotic normality) of Z-estimators.

Lemma 5. Define any probability space (Ω,F ,P), and let (�n(θ, ω))n≥1 be mea-
surable real-valued functions defined on Rd × Ω. Let θ� ∈ Rd and ε > 0 such
that for any n ≥ 1 and for P-almost every ω ∈ Ω the map θ �→ �n(θ, ω) is C2

on B(θ�, ε). Let (θ̂n)n≥1 be a random sequence converging in probability to θ�.
Suppose also that:

(a) {∇θ�n(θ)}|
θ=θ̂n

= oP(n
−1/2),

(b) sup
θ∈B(θ�,ε)

‖∇2
θ�n(θ)−H(θ)‖ P−→ 0, for some Rd×d valued function H contin-

uous at θ�, such that H(θ�) is full rank,

(c)
√
n{∇θ�n(θ)}|θ=θ�

D→ Z, for some random vector Z.

Then √
n(θ̂n − θ�) +H(θ�)−1

√
n{∇θ�n(θ)}|θ=θ�

P−→ 0Rd ,

and, consequently √
n(θ̂n − θ�)

D→ −H(θ�)−1Z.

Sixth lemma is a technical tool required for proving asymptotic normality of
NCE. It is particularly straightforward to prove in the IID case. We present a
generalisation of this result to reversible, geometrically ergodic Markov chains.
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Lemma 6. Assume that (X2) holds. Let (fn)n≥1, f and g be measurable, real-
valued functions, such that (fn)n≥1 converges pointwise towards f ; for any n ≥
1, |fn| ≤ g; and Eψ[g(X)2] < ∞. Then we have

√
n

(
1

n

n∑
i=1

{
fn(Xi)− f(Xi)

}
− E
[
fn(X)− f(X)

]) P−→ 0,

and, consequently

√
n

(
1

n

n∑
i=1

fn(Xi)− E[fn(X)]

)
D→ N

(
0, σ2

f ),

where σ2
f = Vψ(f(X)) + 2

∑+∞
i=1 Cov(f(X0), f(Xi)) < +∞.

A.2. Proof of Theorem 1

A standard approach to establish consistency of M-estimators is to prove some
Glivenko-Cantelli result (uniform convergence), but, to the best of our knowl-
edge, no such result exists under the general assumption that the underlying
random variables (the Xj ’s in our case) are generated from an ergodic process.
Instead, we follow Geyer (1994)’s approach, which relies on establishing that
function −�NCE

n,m epiconverges to −�n. Epiconvergence is essentially a one sided
locally uniform convergence, that ensures the convergence of minimisers; for a
succint introduction to epiconvergence, see Appendix A of Geyer (1994) and
Chapter 7 of Rockafellar and Wets (2009).

We follow closely Geyer (1994). In particular, Theorem 4 of Geyer (1994)
shows that: if a sequence of functions �n,m hypoconverges to some function �n
which has a unique maximiser θ̂n and if a random sequence (θ̂n,m)m≥1 is an
approximate maximiser of �n,m which belongs to a compact set almost surely,

then θ̂n,m converges to θ̂n almost surely. Consequently, to prove Theorem 1, we
only have to prove that �NCE

n,m hypoconverges to �n (i.e. that −�NCE
n,m epiconverges

to −�n); that is

�n(θ, ν) ≤ inf
B∈N (θ,ν)

lim inf
m→+∞

sup
(φ,μ)∈B

{
�NCE
n,m (φ, μ)

}
(11)

�n(θ, ν) ≥ inf
B∈N (θ,ν)

lim sup
m→+∞

sup
(φ,μ)∈B

{
�NCE
n,m (φ, μ)

}
(12)

where N (θ, ν) denotes the set of neighborhoods of the point (θ, ν).
Since Ξ = Θ×R is a separable metric space, there exists a countable base B =

{B1, B2, ...} for the considered topology. For any point (θ, ν) define the countable
base of neighborhoods Nc(θ, ν) = B ∩ N (θ, ν) which can replace N (θ, ν) in the
infima of the preceding inequalities. Choose a countable dense subset Γc =
{(θ1, ν1), (θ2, ν2), ...} as follows. For each k let (θk, νk) be a point of Bk such
that:

�n(θk, νk) ≥ sup
(φ,μ)∈Bk

{�n(φ, μ)} −
1

k
.
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The proof is very similar to Theorem 1 of Geyer (1994). However, in this
slightly different proof, we will need

lim
m→+∞

⎡⎣ 1

m

m∑
j=1

log

{(
1 + eν

nhθ(Xj)

mhψ(Xj)

)m
n

}⎤⎦ = Eψ

[
eν

hθ(X)

hψ(X)

]
= eν

Z(θ)

Z(ψ)

(13)
and

lim
m→+∞

1

m

m∑
j=1

log

(
1 +

n

m
inf

(φ,μ)∈B

[
eμ

hφ(Xj)

hψ(Xj)

])m
n

= Eψ

[
inf

(φ,μ)∈B

{
eμ

hφ(X)

hψ(X)

}]
(14)

to hold simultaneously with probability one for any (θ, ν) ∈ Γc and any B ∈ B.
For any fixed (θ, ν), Lemma 1 applies to the maps x �→ (1+ x

m )m, and since any
countable union of null sets is still a null set, convergence holds simultaneously
for every element of Γc and B with probability one. One may note that infima
in the last equation are measurable under (H1) (in that case, an infima over any
set B ∈ B can be replaced by an infima over the countable dense subset B∩Γc).

Proving inequality (11) is straightforward:

∀B ∈ B, ∀(θ, ν) ∈ B ∩ Γc,

�n(θ, ν) = lim
m→+∞

�NCE
n,m (θ, ν) ≤ lim inf

m→+∞
sup

(φ,μ)∈B

{
�NCE
n,m (φ, μ)

}
and thus

inf
B∈Nc(θ,ν)

sup
(φ,μ)∈B∩Γc

{�n(φ, μ)} ≤ inf
B∈Nc(θ,ν)

lim inf
m→+∞

sup
(φ,μ)∈B

{
�NCE
n,m (φ, μ)

}
.

(Geyer, 1994) proved that θ �→ Z(θ) is lower semi-continuous (cf Theorem 1).
This result directly implies that (θ, ν) �→ �n(θ, ν) is upper semi-continuous as
a sum of upper semi-continuous functions. Thus the left hand side is equal to
l(θ, ν) by construction of Γc.

The proof of the second inequality also follows closely Geyer (1994):

inf
B∈N (θ,ν)

lim sup
m→+∞

sup
(φ,μ)∈B

{
�NCE
n,m (φ, μ)

}
≤ inf

B∈N (θ,ν)

{
sup

(φ,μ)∈B

[
1

n

n∑
i=1

log

{
hφ(yi)

hψ(yi)

}
+ μ

]

− lim inf
m→+∞

inf
(φ,μ)∈B

[
1

n

n∑
i=1

log

{
1 +

n

m
eμ

hφ(yi)

hψ(yi)

}]

− lim inf
m→+∞

1

m

m∑
j=1

log

(
1 +

n

m
inf

(φ,μ)∈B

[
eμ

hφ(Xj)

hψ(Xj)

])m
n

}

=
1

n

n∑
i=1

log

{
hθ(yi)

hψ(yi)

}
+ ν − sup

B∈N (θ,ν)

Eψ

[
inf

(φ,μ)∈B

{
eμ

hφ(X)

hψ(X)

}]
.
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The inequality follows directly from superadditivity of the supremum (and sub-
additivity of the infimum) and the continuity and monotonicity of the maps
x �→ log(1 + n

mx)
m
n . The last equality holds because the infimum over N (θ, ν)

can be replaced by the infimum over the countable set Ac(θ, ν): the set of open
balls centered on (θ, ν) of radius k−1, k ≥ 1, which means the infimum is also
the limit of a decreasing sequence, which can be splitted into three terms. The
second term converges deterministically to zero, while convergences (13) and
(14) apply for the first and third terms.

To conclude, apply the monotone convergence theorem to the remaining term:

sup
B∈Ac(θ,ν)

Eψ

[
inf

(φ,μ)∈B

{
eμ

hφ(X)

hψ(X)

}]
= Eψ

[
sup

B∈Ac(θ,ν)

inf
(φ,μ)∈B

{
eμ

hφ(X)

hψ(X)

}]
= Eψ

[
eν

hθ(X)

hψ(X)

]
= eν

Z(θ)

Z(ψ)
.

A.3. Proof of Theorem 2

Define gξ(x) = log hθ(x) + ν, and the following gradients (dropping n and m in
the notation for convenience):

ΨNCE(ξ) = ∇�NCE
n,m (ξ) =

1

n

n∑
i=1

∇ξgξ(yi)

(
mhψ(yi)

mhψ(Xj) + n exp{gξ(yi)}

)

− 1

m

m∑
j=1

∇ξgξ(Xj)

(
m exp{gξ(Xj)}

mhψ(Xj) + n exp{gξ(Xj)}

)
,

ΨIS(ξ) = ∇�ISn,m(ξ) =
1

n

n∑
i=1

∇ξgξ(yi)−
1

m

m∑
j=1

∇ξgξ(Xj)

(
exp{gξ(Xj)}

hψ(Xj)

)
.

By Taylor-Lagrange, for any component k, 1 ≤ k ≤ d + 1, there exists (a

random variable) ξ
(k)
m ∈ [ξ̂ISn,m; ξ̂NCE

n,m ] such that

ΨIS
k (ξ̂ISn,m) = ΨIS

k (ξ̂NCE
n,m ) +

{
∇ΨIS

k (ξ(k)m )
}T (

ξ̂ISn,m − ξ̂NCE
n,m

)
where ΨIS

k (ξ) denotes the k-th component of ΨIS(ξ), and [ξ̂ISn,m; ξ̂NCE
n,m ] denotes

the line segment in Rd+1 which joins ξ̂ISn,m and ξ̂NCE
n,m .

By assumption (G1), the left hand side is oP(m
−1). The matrix form yields:

oP
(
m−1

)
= ΨIS(ξ̂NCE

n,m ) +HIS
m

(
ξ̂ISn,m − ξ̂NCE

n,m

)
,

HIS
m =

⎛⎜⎜⎜⎜⎝
{
∇ΨIS

1 (ξ
(1)
m )
}T

...{
∇ΨIS

d+1(ξ
(d+1)
m )

}T

⎞⎟⎟⎟⎟⎠ .
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Let us prove first the convergence of the Hessian matrix. Lemma 4 can be
applied to each row component of the following matrix-valued function, the
uniform norm of which is Pψ-integrable under (H2):

ϕh : (ξ, x) �→
(
1

n

n∑
i=1

∇2
ξgξ(yi)

)
−
(
∇2

ξgξ(x) +∇ξgξ(x) {∇ξgξ(x)} T

)(
exp{gξ(x)}

hψ(x)

)
.

Convergences of the d + 1 rows of HIS
m can be combined to get the following

result: ∥∥∥HIS
m −H(ξ̂n)

∥∥∥ →
m→∞

0 a.s.

where
H(ξ) = Eψ

[
ϕh(ξ,X)

]
= ∇2

ξ�n(ξ).

It turns out that H(ξ̂n) is invertible as soon as (H2) holds. This is the point of
the following lemma. This implies in particular that HIS

m is eventually invertible
with probability one.

Lemma 7. Assume (H2) holds. At the point ξ = ξ̂n, the Hessian matrix of the
Poisson Transform ∇2

ξln(ξ) is negative definite if and only if the Hessian of the

log-likelihood ∇2
θln(θ) is definite negative.

The proof of Lemma 7 follows from a direct block matrix computation (using
Schur’s complement). For the sake of completeness, we present a proof in the
supplement (Appendix B).

Now, let us prove the convergence of the gradient. By assumption (G1), we

can write ΨIS(ξ̂NCE
n,m ) = Δm + o

(
m−1

)
, where:

Δm = ΨIS(ξ̂NCE
n,m )−ΨNCE(ξ̂NCE

n,m )

=

{
1

n

n∑
i=1

∇ξgξ(yi)
( n exp{gξ(yi)}
mhψ(yi) + n exp{gξ(yi)}

)
− 1

m

m∑
j=1

∇ξgξ(Xj)
(exp{gξ(Xj)}

hψ(Xj)

)( n exp{gξ(Xj)}
mhψ(Xj)+n exp{gξ(Xj)}

)}∣∣
ξ=ξ̂NCE

n,m

hence

m

n
Δm =

{
1

n

n∑
i=1

∇ξgξ(yi)
(exp{gξ(yi)}

hψ(yi)

)(
1− n exp{gξ(yi)}

mhψ(yi) + n exp{gξ(yi)}
)

− 1

m

m∑
j=1

∇ξgξ(Xj)
(exp{gξ(Xj)}

hψ(Xj)

)2
×
(
1− n exp{gξ(Xj)}

mhψ(Xj) + n exp{gξ(Xj)}
)}∣∣

ξ=ξ̂NCE
n,m
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=

{
1

n

n∑
i=1

∇ξgξ(yi)
(exp{gξ(yi)}

hψ(yi)

)
− 1

m

m∑
j=1

∇ξgξ(Xj)
(exp{gξ(Xj)}

hψ(Xj)

)2
− 1

n

n∑
i=1

∇ξgξ(yi)
(exp{gξ(yi)}

hψ(yi)

)( n exp{gξ(yi)}
mhψ(yi) + n exp{gξ(yi)}

)
+

1

m

m∑
j=1

∇ξgξ(Xj)
(exp{gξ(Xj)}

hψ(Xj)

)2
×
( n exp{gξ(Xj)}
mhψ(Xj) + n exp{gξ(Xj)}

)}∣∣
ξ=ξ̂NCE

n,m

.

The two last terms of the right hand side are residuals for which we want
to bound the uniform norm over the ball B(θ̂n, ε). The sup norm of the second
term is eventually bounded by:

1

m
sup

ξ∈B(ξ̂n,ε)

n∑
i=1

‖∇ξgξ(yi)‖
(
exp{gξ(yi)}

hψ(yi)

)2

→
m→∞

0.

The sup norm of the third term is eventually bounded by 1
m

∑m
j=1 fm(Xj)

where

fm(x) = sup
ξ∈B(ξ̂n,ε)

‖∇ξgξ(x)‖
(
exp{gξ(x)}

hψ(x)

)2(
n exp{gξ(x)}

mhψ(x) + n exp{gξ(x)}

)
and Lemma 2 applies under (I1) to the sequence (fm)m≥1 converging pointwise
towards 0, and dominated by the integrable function g(x)= sup

ξ∈B(ξ̂n,ε)

‖∇ξgξ(x)‖×( exp{gξ(x)}
hψ(x)

)2
.

The limit of (m/n)Δm is thus dictated by the behaviour of the first term. We
apply Lemma 4 to the following vector-valued function, whose uniform norm is
integrable under (I1) and under the continuity of the deterministic part assumed
in (H2):

ϕg : (ξ, x) �→
(
1

n

n∑
i=1

∇ξgξ(yi)
exp{gξ(yi)}

hψ(yi)

)
−∇ξgξ(x)

(
exp{gξ(x)}

hψ(x)

)2

.

Lemma 4 yields (m/n)Δm −→
m→+∞

v(ξ̂n) a.s. where

v(ξ) =
1

n

n∑
i=1

∇ξgξ(yi)

(
exp{gξ(yi)}

hψ(yi)

)
− Eψ

[
∇ξgξ(X)

(
exp{gξ(X)}

hψ(X)

)2
]
.

Combination of these facts ensure that on a set of probability one, we have
eventually:

m

n

(
ξ̂ISn,m − ξ̂NCE

n,m

)
= o(1)+

(
−HIS

m

)−1
(m
n
Δm + o(1)

)
→

m→∞

(
−H(ξ̂n)

)−1

v(ξ̂n).
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A.4. Proof of Theorem 3

The proof of MC-MLE consistency under the considered regime is a very straight-
forward adaptation of Wald’s proof of consistency for the MLE. We thus choose
to present in appendix only the proof of NCE consistency, which is slightly more
technical, although the sketch is similar. For the sake of completeness, a proof
of MC-MLE consistency is presented in the supplement (Appendix B).

A.4.1. NCE consistency

For convenience, we choose to analyse a slightly different objective function
(sharing the same maximiser with �NCE

n,m ), defined as:

MNCE
n (θ, ν) =

1

n

n∑
i=1

{
ϕ(θ,ν)(Yi)−ζ

(n)
(θ,ν)(Yi)

}
−
(mn

n

)
× 1

mn

mn∑
j=1

ζ
(n)
(θ,ν)(Xj) (15)

where ϕ(θ,ν)(x) = log
{

eνhθ(x)
eν�hθ� (x)

}
and ζ

(n)
(θ,ν)(x) = log

{ mn
n hψ(x)+eνhθ(x)

mn
n hψ(x)+eν�hθ� (x)

}
.

We begin our proof with the following lemma.

Lemma 8. For any fixed (θ, ν), almost surely, MNCE
n (θ, ν) →

n→∞
MNCE

τ (θ, ν),

where:

MNCE
τ (θ, ν) = Eθ�

[
log

{
eνhθ

eν�hθ�

}
− log

{
τhψ + eνhθ

τhψ + eν�hθ�

}]

− τEψ

[
log

{
τhψ + eνhθ

τhψ + eν�hθ�

}]

Moreover, (θ�, ν�) is the unique maximiser of MNCE
τ (θ, ν).

Proof. For any fixed (θ, ν), the sequence ζ
(n)
(θ,ν) is eventually dominated (by a

Pψ-integrable function), since for any c > 0 (in particular for c = τ ±ε) we have
by Jensen’s inequality:

Eψ

[
log

{
chψ + eνhθ

chψ + eν�hθ�

}]
≥ Eψ

[
log

{
fψ

fψ + 1
cfθ�

}]
≥ − log

(
1 +

1

c

)
(16)

Eψ

[
log

{
chψ + eνhθ

chψ + eν�hθ�

}]
≤ Eψ

[
log

{
fψ + eνZ(θ)

cZ(ψ) fθ

fψ

}]
≤ log

(
1 +

eνZ(θ)

cZ(ψ)

)
(17)

Moreover, ζ
(n)
(θ,ν) converges pointwise to ζ∞(θ,ν)(x) = log

{
τhψ(x)+eνhθ(x)

τhψ(x)+eν�hθ� (x)

}
,

thus Lemma 2 applies: the second empirical average in (15) converges almost
surely to Eψ

[
ζ∞(θ,ν)(X)

]
.

Now, the sequence
{
ϕ(θ,ν) − ζ

(n)
(θ,ν)

}
is upper bounded by the positive part of

ϕ(θ,ν) which is Pθ� -integrable. In particular, if Eθ�

[(
ϕ(θ,ν) − ζ∞(θ,ν)

)
−
]
= +∞,
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then Lemma 3 applies and the first empirical average in (15) converges towards
−∞.

Conversely, suppose that Eθ�

[(
ϕ(θ,ν) − ζ∞(θ,ν)

)
−
]
< ∞. The law of large num-

bers would apply directly if the sequence mn/n was exactly equal to τ . To
handle this technical issue, we can consider the two following inequalities. Note
that for any a ≥ b > 0:

log

{
ahψ(x) + eνhθ(x)

ahψ(x) + eν�hθ�(x)

}
≤ log

{ a
b bhψ(x) +

a
b e

νhθ(x)

bhψ(x) + eν�hθ�(x)

}
log

{
bhψ(x) + eνhθ(x)

bhψ(x) + eν�hθ�(x)

}
≤ log

{
ahψ(x) + eνhθ(x)

b
aahψ(x) +

b
ae

ν�hθ�(x)

}
This yields a useful uniform bound for any a, b > 0:∣∣∣∣ log{ ahψ(x) + eνhθ(x)

ahψ(x) + eν�hθ�(x)

}
−log

{
bhψ(x) + eνhθ(x)

bhψ(x) + eν�hθ�(x)

}∣∣∣∣ ≤ ∣∣∣ log a−log b
∣∣∣ (18)

Thus, if Eθ�

[(
ϕ(θ,ν) − ζ∞(θ,ν)

)
−

]
< +∞, then the uniform bound (18) also

ensures that:

Eθ�

[(
ϕ(θ,ν) − log

{
chψ + eνhθ

chψ + eν�hθ�

})
−

]
< +∞

for any positive c > 0. The sequence can now be easily dominated and Lemma 2
applies; the first empirical average in (15) converges to Eθ�

[
ϕ(θ,ν)(Y )−ζ∞(θ,ν)(Y )

]
.

Finally, let us prove that (θ�, ν�) is the unique maximiser of MNCE
τ . We have:

MNCE
τ (θ, ν) =

1

Z(ψ)

[∫
X
− log

{
eν

�

hθ�(x)

eνhθ(x)

}
eν

�

hθ�(x)

+ log

{
τhψ(x) + eν

�

hθ�(x)

τhψ(x) + eνhθ(x)

}(
τhψ(x) + eν

�

hθ�(x)
)
λ(dx)

]

≤ 1

Z(ψ)

[∫
X
− log

{
eν

�

hθ�(x)

eνhθ(x)

}
eν

�

hθ�(x)

+ log

{
τhψ(x)

τhψ(x)

}
τhψ(x) + log

{
eν

�

hθ�(x)

eνhθ(x)

}
eν

�

hθ�(x)λ(dx)

]
= 0

by the log-sum inequality, which applies with equality if and only if eνhθ(x) =
eν

�

hθ�(x) for Pθ� almost every x. This occurs if and only if ν and θ are chosen
such that fθ�(x) = eν

Z(ψ)hθ(x). The model being identifiable, there is only one

choice for both the unnormalized density and the normalizing constant; θ = θ�

and ν = ν�.

We now prove that the NCE estimator converges almost surely to this unique
maximiser. Let η > 0, and define Kη = {ξ ∈ K : d(ξ, ξ�) ≥ η} where K is the
compact set defined in (C2).
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Under (H3), monotone convergence ensures that for any ξ ∈ Kη:

lim
ε↓0

Eθ�

[
sup

β∈B(ξ,ε)

(
ϕβ(Y )− ζ∞β (Y )

)]
= Eθ�

[
ϕξ(Y )− ζ∞ξ (Y )

]
and

lim
ε↓0

Eψ

[
inf

β∈B(ξ,ε)
ζ∞β (X)

]
= Eψ

[
ζ∞ξ (X)

]
.

Indeed, since maps θ �→ hθ(x) are continuous, the two previous expectations
(on the left hand side) are respectively bounded from above for ε small enough,
and bounded from below for any ε.

Thus, for any ξ ∈ Kη and any γ > 0 we can find εξ > 0 such that simultane-
ously:

Eθ�

[
sup

β∈B(ξ,εξ)

(
ϕβ(Y )− ζ∞β (Y )

)]
≤ Eθ�

[
ϕξ(Y )− ζ∞ξ (Y )

]
+

γ

2

Eψ

[
inf

β∈B(ξ,εξ)
ζ∞β (X)

]
≥ Eψ

[
ζ∞ξ (X)

]
− γ

2τ
.

The compactness assumption ensures that there is a finite set {ξ1, ..., ξp} ⊂ Kη

such that Kη ⊂
⋃p

k=1 B(ξk, εξk). This yields the following inequality:

sup
ξ∈Kη

MNCE
n (ξ) ≤ max

k=1,...,p

{
1

n

n∑
i=1

sup
q≥n

sup
β∈B(ξk,εξk )

(
ϕβ(Yi)− ζ

(q)
β (Yi)

)
−
(mn

n

)
× 1

mn

mn∑
j=1

inf
β∈B(ξk,εξk )

ζ
(n)
β (Xj)

}

Choose any x for which the map θ �→ hθ(x) is continuous, and any ξ ∈ Kη.

From the definition of ζ
(n)
β , the following convergence is trivial:

inf
β∈B(ξ,εξ)

(
ζ
(n)
β (x)

)
−→

n→+∞
inf

β∈B(ξ,εξ)

(
ζ∞β (x)

)
.

Moreover, using inequalities (16) et (17), one can easily show that the sequence{
inf

β∈B(ξ,εξ)
ζ
(n)
β

}
is dominated (by a Pψ-integrable function). Lemma 2 applies:

1

mn

mn∑
j=1

inf
β∈B(ξk,εξk )

ζ
(n)
β (Xj) −→

n→+∞
Eψ

[
inf

β∈B(ξ,εξ)
ζ∞β (X)

]
a.s.

Now, subadditivity of the supremum and inequality (18) yield∣∣∣∣ sup
β∈B(ξ,εξ)

(
ϕβ(x)− ζ

(n)
β (x)

)
− sup

β∈B(ξ,εξ)

(
ϕβ(x)− ζ

(∞)
β (x)

)∣∣∣∣
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≤ sup
β∈B(ξ,εξ)

∣∣∣ζ(n)β (x)− ζ∞β (x)
∣∣∣ ≤ ∣∣∣ log mn

n
− log τ

∣∣∣ −→
n→+∞

0

while monotonicity ensures that

sup
β∈B(ξ,εξ)

(
ϕβ − ζ∞β

)
≤ sup

q≥n
sup

β∈B(ξ,εξ)

(
ϕβ − ζ

(q)
β

)
≤ sup

β∈B(ξ,εξ)

(
ϕβ

)
+
.

In the last inequality, the right hand side is Pθ� -integrable under (H3), and the
sequence (in the middle) converges pointwise towards its lower bound whose neg-
ative part has either finite or infinite expectation. In both cases, either Lemma
2 or Lemma 3 can be applied and ensures that, almost surely:

1

n

n∑
i=1

sup
q≥n

sup
β∈B(ξk,εξk )

(
ϕβ(Yi)−ζ

(q)
β (Yi)

)
−→

n→+∞
Eθ�

[
sup

β∈B(ξ,εξ)

(
ϕβ(Y )−ζ∞β (Y )

)]
Combining these convergences simultaneously on a finite set, we get almost
surely:

lim sup
n→+∞

sup
ξ∈Kη

MNCE
n (ξ) ≤ max

k=1,...,p

{
Eθ�

[
sup

β∈B(ξk,εξk )

(
ϕβ(Y )− ζ∞β (Y )

)]

− τEψ

[
inf

β∈B(ξk,εξk )
ζ∞β (X)

]}
≤ sup

ξ∈Kη

MNCE
τ (ξ) + γ

This leads to the following inequality since γ is arbitrary small:

lim sup
n→+∞

sup
ξ∈Kη

MNCE
n (ξ) ≤ sup

ξ∈Kη

MNCE
τ (ξ) a.s. (19)

This last inequality is the heart of the proof. To conclude, we need only to
show that the right hand side is negative, this is the aim of the following lemma.

Lemma 9. Under (H3), the map ξ �→ MNCE
τ (ξ) is upper semi continuous.

The proof of Lemma 9 is straightforward. For the sake of completeness, we
present a proof in the supplement (Appendix B).

Since an upper semi continuous function achieves its maximum on any com-
pact set, this lemma proves in particular that sup

ξ∈Kη

MNCE
τ (ξ) < 0.

Thus inequality (19) implies that we can always find some α < 0 such

that eventually sup
ξ∈Kη

MNCE
n (ξ) < α, while (C2) implies that MNCE

n (ξ̂ISn,m) ≥

sup
ξ∈Ξ

MNCE
n (ξ)− δn where δn → 0, and where

sup
ξ∈Ξ

MNCE
n (ξ) ≥ MNCE

n (ξ�)
a.s.−→

n→+∞
MNCE(ξ�) = 0.
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Combination of these facts show that with probability one we have eventually:

MNCE
n (ξ̂ISn,m) > α > sup

ξ∈Kη

MNCE
n (ξ).

This is enough to prove strong consistency. Indeed, with probability one, ξ̂NCE
n,m

eventually escapes from Kη (otherwise there would be a contradiction with the
inequality above). Since the sequence belongs to K by assumption, the sequence
has no choice but to stay eventually in the ball of radius η. Thus with probability
one, for any η > 0, we have eventually d(ξ̂NCE

n,m , ξ�) < η. This is the definition of
almost sure convergence.

A.5. Proof of Theorem 4

The proof of MC-MLE asymptotic normality is entirely classical. We choose to
present in appendix only the proof of NCE asymptotic normality, which follows
the same sketch but is slightly more technical. For the sake of completeness, a
proof of MC-MLE asymptotic normality is presented in the supplement (Ap-
pendix B).

A.5.1. NCE asymptotic normality

Let GNCE
n (ξ) = ∇ξ�

NCE
n,m (ξ) and HNCE

n (ξ) = ∇2
ξ�

NCE
n,m (ξ). We have:

GNCE
n (ξ) =

1

n

n∑
i=1

∇ξgξ(Yi)

(
mnhψ

mnhψ + n exp{gξ}

)
(Yi)

− 1

mn

mn∑
j=1

∇ξgξ(Xj)
exp{gξ(Xj)}

hψ(Xj)

(
mnhψ

mnhψ + n exp{gξ}

)
(Xj)

HNCE
n (ξ) =

1

n

n∑
i=1

∇2
ξgξ(Yi)

(
mnhψ

mnhψ + n exp{gξ}

)
(Yi)

− 1

n

n∑
i=1

∇ξ∇T
ξ gξ(Yi)

(
mnhψn exp{gξ}

(mnhψ + n exp{gξ})2
)
(Yi)

− 1

mn

mn∑
j=1

{
(∇2

ξ +∇ξ∇T
ξ )gξ(Xj)

}
× exp{gξ(Xj)}

hψ(Xj)

(
mnhψ

mnhψ + n exp{gξ}

)
(Xj)

+
1

mn

mn∑
j=1

∇ξ∇T
ξ gξ(Xj)

exp{gξ(Xj)}
hψ(Xj)

(
mnhψn exp{gξ}

(mnhψ + n exp{gξ})2
)
(Xj)

We firstly show that the study can be reduced to the following random se-
quences:
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Gτ
n(ξ) =

1

n

n∑
i=1

∇ξgξ(Yi)

(
τhψ

τhψ + exp{gξ}

)
(Yi)

− 1

mn

mn∑
j=1

∇ξgξ(Xj)
exp{gξ(Xj)}

hψ(Xj)

(
τhψ

τhψ + exp{gξ}

)
(Xj)

Hτ
n(ξ) =

1

n

n∑
i=1

∇2
ξgξ(Yi)

(
τhψ

τhψ + exp{gξ}

)
(Yi)

− 1

n

n∑
i=1

∇ξ∇T
ξ gξ(Yi)

(
τhψ exp{gξ}

(τhψ + exp{gξ})2
)
(Yi)

− 1

mn

mn∑
j=1

{
(∇2

ξ +∇ξ∇T
ξ )gξ(Xj)

}exp{gξ(Xj)}
hψ(Xj)

(
τhψ

τhψ + exp{gξ}

)
(Xj)

+
1

mn

mn∑
j=1

∇ξ∇T
ξ gξ(Xj)

exp{gξ(Xj)}
hψ(Xj)

(
τhψ exp{gξ}

(τhψ + exp{gξ})2
)
(Xj)

To do so, we show that almost surely sup
ξ∈B(ξ�,ε)

‖HNCE
n (ξ)−Hτ

n(ξ)‖ →
n→∞

0.

Splitting the uniform norm into four parts yields:

sup
ξ∈B(ξ�,ε)

∥∥∥HNCE
n (ξ)−Hτ

n(ξ)
∥∥∥

≤ 1

n

n∑
i=1

sup
ξ∈B(ξ�,ε)

∥∥∥∇2
ξgξ(Yi)

∥∥∥ητn(Yi)

+
1

n

n∑
i=1

sup
ξ∈B(ξ�,ε)

∥∥∥∇ξ∇T
ξ gξ(Yi)

∥∥∥Γτ
n(Yi)

+
1

mn

mn∑
j=1

sup
ξ∈B(ξ�,ε)

∥∥∥(∇2
ξ +∇ξ∇T

ξ )gξ(Xj)
∥∥∥exp{gξ(Xj)}

hψ(Xj)
ητn(Xj)

+
1

mn

mn∑
j=1

sup
ξ∈B(ξ�,ε)

∥∥∥∇ξ∇T
ξ gξ(Xj)

∥∥∥exp{gξ(Xj)}
hψ(Xj)

γτ
n(Xj) (20)

where the sequences of functions

ητn = sup
ξ∈B(ξ�,ε)

∣∣∣ mnhψ

mnhψ + n exp{gξ}
− τhψ

τhψ + exp{gξ}

∣∣∣
and

γτ
n = sup

ξ∈B(ξ�,ε)

∣∣∣ mnhψn exp{gξ}
(mnhψ + n exp{gξ})2

− τhψ exp{gξ}
(τhψ + exp{gξ})2

∣∣∣
are both upper bounded by 1 and converge pointwise (for any x ∈ X ) to 0 (use
the continuity of ξ �→ gξ(x)).

Lemma 2 applies to each empirical average in (20) (every integrability con-
dition holds under (H4)). The sum converges to 0 almost surely.
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Now, we prove that ∀a ∈ Rd+1 aT
√
n
(
GNCE

n (ξ�)−Gτ
n(ξ

�)
) P−→ 0.

Define η
(n)
θ,τ =

mnfψ
mnfψ+nfθ

− τfψ
τfψ+fθ

. At the point ξ = ξ� we have:

√
n
(
GNCE

n (ξ�)−Gτ
n(ξ

�)
)

=
√
n

{
1

n

n∑
i=1

(
∇ξgξ

)
η
(n)
θ,τ (Yi)− Eθ

[(
∇ξgξ

)
η
(n)
θ,τ (Y )

]}
|ξ=ξ�

−
√

n

mn
×√

mn

{
1

mn

mn∑
j=1

(
∇ξgξ

) fθ
fψ

η
(n)
θ,τ (Xj)− Eθ

[(
∇ξgξ

)
η
(n)
θ,τ (Y )

]}
|ξ=ξ�

The sequence
∣∣η(n)θ,τ

∣∣ is upper bounded by 1 and converges pointwise towards 0.

Moreover, for any c > τ , the sequence
∣∣η(n)θ,τ

∣∣ is also eventually upper bounded

by 2
cfψ

cfψ+fθ
. This ensures that both second moment conditions required holds

under (H4) since:∫
X
‖∇ξgξ‖2

(
fθ
fψ

)2(
cfψ

cfψ + fθ

)2

fψdμ

= c

∫
X
‖∇ξgξ‖2

(
cfψ

cfψ + fθ

)(
fθ

cfψ + fθ

)
fθdμ

≤ c× Eθ

[
‖∇ξgξ‖2

]
< +∞ (21)

We can thus apply Lemma 6:

√
n

{
1

n

n∑
i=1

(
aT∇ξgξ

)
η
(n)
θ,τ (Yi)− Eθ

[(
aT∇ξgξ

)
η
(n)
θ,τ (Y )

]}
|ξ=ξ�

P−→ 0

√
mn

{
1

mn

mn∑
j=1

(
aT∇ξgξ

) fθ
fψ

η
(n)
θ,τ (Xj)− Eθ

[(
aT∇ξgξ

)
η
(n)
θ,τ (Y )

]}
|ξ=ξ�

P−→ 0

Finally, Cramér-Wold’s device applies:
√
n
(
GNCE

n (ξ�)−Gτ
n(ξ

�)
)

P−→ 0Rd+1 .

Now, we can work directly with Gτ
n and Hτ

n, which is much easier. Indeed,
Lemma 4 yields sup

ξ∈B(ξ�,ε)

‖Hτ
n(ξ)−Hτ (ξ)‖ →

n→∞
0 almost surely, where:

Hτ (ξ) = Eθ�

[
∇2

ξgξ(Y )

(
τhψ

τhψ + exp{gξ}

)
(Y )

]
− Eθ�

[
∇ξ∇T

ξ gξ(Y )

(
τhψ exp{gξ}

(τhψ + exp{gξ})2
)
(Y )

]
− Eψ

[{
(∇2

ξ +∇ξ∇T
ξ )gξ(X)

}exp{gξ(X)}
hψ(X)

(
τhψ

τhψ + exp{gξ}

)
(X)

]
+ Eψ

[
∇ξ∇T

ξ gξ(X)
exp{gξ(X)}

hψ(X)

(
τhψ exp{gξ}

(τhψ + exp{gξ})2
)
(X)

]
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The only condition required is that the supremum norm of each integrand is
integrable, which is satisfied under (H4) (bound the ratios by one).

Note also that, at the point ξ = ξ�, functions Hτ and −Jτ coincide, where:

Jτ (ξ) = Eθ

[
(∇ξ∇T

ξ gξ)
( τfψ
τfψ + fθ

)
(Y )

]
A quick block matrix calculation shows that Schur’s complement in −Jτ (ξ) is
proportional to:

Iτ (θ) = VX∼Qτ

(
∇θ log hθ(X)

)
where Qτ refers to the probability measure whose density with respect to μ

is defined as qτ (x) ∝ τfψ(x)fθ(x)
τfψ(x)+fθ(x)

. Note that Pθ � Qτ since the model is

dominated by Pψ.
In particular, Jτ (ξ

�) is invertible if and only if Iτ (θ
�) is invertible. Since

Iτ (θ) is a covariance matrix, if it is not full rank, then ∇θ log hθ(X) belongs
to a hyperplane Qτ -almost surely (and thus Pθ-almost surely). This contradicts
assumption (H4) since the Fisher Information is full rank. Thus Iτ (θ

�) and
Jτ (ξ

�) are both invertible.
Now, we prove the weak convergence of the gradient:

√
nGτ

n(ξ
�)

=
√
n

(
1

n

n∑
i=1

(∇ξgξ)
( τfψ
τfψ + fθ

)
(Yi)− Eθ

[
(∇ξgξ)

( τfψ
τfψ + fθ

)
(Y )

])
|ξ=ξ�

−
√

n

mn

√
mn

(
1

mn

mn∑
j=1

(∇ξgξ)
fθ
fψ

( τfψ
τfψ + fθ

)
(Xj)

− Eθ

[
(∇ξgξ)

( τfψ
τfψ + fθ

)
(Y )

])
|ξ=ξ�

Slutsky’s lemma applies as follows. It is noteworthy that second moment con-
ditions hold under (H4) only (use inequality (21)), whereas assumption (I3) is
necessary for proving MC-MLE asymptotic normality (see B.3.2).

√
nGτ

n(ξ
�)

D→ N
(
0Rd+1 ,Στ (ξ

�) + τ−1Γτ (ξ
�)
)

where

Στ (ξ) = Vθ

(
(∇ξgξ)

( τfψ
τfψ + fθ

)
(Y )

)
,

Γτ (ξ) = Vψ

(
ϕNCE
ξ (X)

)
+ 2

+∞∑
i=1

Cov
(
ϕNCE
ξ (X0), ϕ

NCE
ξ (Xi)

)
,

ϕNCE
ξ = (∇ξgξ)

fθ
fψ

( τfψ
τfψ + fθ

)
.
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Finally, Lemma 5 applies:

√
n
(
ξ̂NCE
n,m − ξ�

)
D→ Nd+1

(
0,VNCE

τ (ξ�)
)

where VNCE
τ (ξ) = Jτ (ξ)

−1
{
Στ (ξ) + τ−1Γτ (ξ)

}
Jτ (ξ)

−1.

A.6. Proof of Theorem 5

For convenience, we will use some shorthand notations. Define the real-valued
measurable functions Q = fθ/fψ and R = τfψ/(τfψ + fθ). Note that we have
the relationship QR = τ(1 − R). In the following, assume that ξ = ξ�, and
for any measurable function ϕ, note that Eθ[ϕ] stands for the expectation of
ϕ(X) where X ∼ Pθ, and that ∇∇T gξ stands for the measurable matrix-valued
function x �→ ∇ξgξ(x)(∇ξgξ(x))

T . We begin with the following computations:

J(ξ) = Eθ

[
∇∇T gξ

]
,

Σ(ξ) = Eθ

[
∇∇T gξ

]
− Eθ

[
∇gξ

]
Eθ

[
∇T gξ

]
,

Γ(ξ) = Eψ

[
∇∇T gξQ

2
]
− Eψ

[
∇gξQ

]
Eψ

[
∇T gξQ

]
= Eθ

[
∇∇T gξ(R

−1 − 1)
]
× τ − Eθ

[
∇gξ

]
Eθ

[
∇T gξ

]
,

Jτ (ξ) = Eθ

[
∇∇T gξR

]
,

Στ (ξ) = Eθ

[
∇∇T gξR

2
]
− Eθ

[
∇gξR

]
Eθ

[
∇T gξR

]
,

Γτ (ξ) = Eψ

[
∇∇T gξQ

2R2
]
− Eψ

[
∇gξQR

]
Eψ

[
∇T gξQR

]
= Eθ

[
∇∇T gξR(1−R)

]
× τ − Eθ

[
∇gξR

]
Eθ

[
∇T gξR

]
.

Fortunately, the expression of the asymptotic variances simplify, as shown by
the following lemma.

Lemma 10. Let Z be any real-valued, non-negative measurable function such
that Eθ

[
∇∇T gξZ

]
is finite and invertible. Then:

M := Eθ

[
∇∇T gξZ

]−1
Eθ

[
∇gξZ

]
Eθ

[
∇T gξZ

]
Eθ

[
∇∇T gξZ

]−1
=

(
0Rd×d 0Rd

0T
Rd 1

)
.

The proof of Lemma 10 follows from a direct block matrix computation. For
the sake of completeness, we present a proof in the supplement (Appendix B).

Let M be defined as in Lemma 10, matrix calculations yield

J(ξ)−1Σ(ξ)J(ξ)−1 = Eθ

[
∇∇T gξ

]−1

−M,

Jτ (ξ)
−1Στ (ξ)Jτ (ξ)

−1 = Eθ

[
∇∇T gξR

]−1

Eθ

[
∇∇T gξR

2
]
Eθ

[
∇∇T gξR

]−1

−M,
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J(ξ)−1Γ(ξ)J(ξ)−1 = τEθ

[
∇∇T gξ

]−1

Eθ

[
∇∇T gξ(R

−1 − 1)
]

× Eθ

[
∇∇T gξ

]−1

−M,

Jτ (ξ)
−1Γτ (ξ)Jτ (ξ)

−1 = τEθ

[
∇∇T gξR

]−1

Eθ

[
∇∇T gξR(1−R)

]
× Eθ

[
∇∇T gξR

]−1

−M.

Summing up these expressions we finally get

VIS
τ (ξ) = Eθ

[
∇∇T gξ

]−1

Eθ

[
∇∇T gξR

−1
]
Eθ

[
∇∇T gξ

]−1

− (1 + τ−1)M,

VNCE
τ (ξ) = Eθ

[
∇∇T gξR

]−1

− (1 + τ−1)M.

Now, to compare these variances, the idea is the following: (x, y) �→ x2/y
is a convex function on R2, which means Jensen’s inequality ensures that for
any random variables X,Y such that the following expectations exist we have
E[X2/Y ] ≥ E[X]2/E[Y ]. Here the variances are matrices, but it turns out that
it is possible to use a generalization of Jensen’s inequality to the Loewner partial
order on matrices. We introduce the following notations:

Mn,m is the set of n×m matrices,

Sn is the set of n× n symmetric matrices,

S+n is the set of (n× n symmetric) positive semi-definite matrices,

S++
n is the set of (n× n symmetric) positive definite matrices,

R(A) is the range of A,

Δn,m =
{
(A,B) ∈ S+n ×Mn,m : R(B) ⊂ R(A)

}
,

A† denotes the Moore-Penrose pseudo-inverse of A,

� denotes the Loewner partial order (A1 � A2 iff A1 −A2 ∈ S+n ).

Lemma 11. Let A,B be random matrices such that (A,B) ∈ Δn,m with prob-
ability one for some positive integers n,m. Let ϕ : (A,B) �→ BTA†B defined
on Δn,m. Then E[ϕ(A,B)] � ϕ(E[A],E[B]) provided that the three expectations
exist.

Proof. We just have to prove that f is convex with respect to �, i.e. that for
any λ ∈ [0, 1], and any (A1, B1), (A2, B2) ∈ Δn,m we have λϕ(A1, B1) + (1 −
λ)ϕ(A2, B2) � ϕ(λ(A1, B1)+(1−λ)(A2, B2)). Indeed, if this convex relationship
on matrices is satisfied then for any x ∈ Rm, the real-valued map q : (A,B) �→
xTϕ(A,B)x is necessarily convex on Δn,m. Consequently, Jensen’s inequality
applies, i.e. for any random (A,B) ∈ Δn,m a.s. and any x ∈ Rm we have

xTE[ϕ(A,B)]x = E[q(A,B)] ≥ q(E[A],E[B]) = xTϕ(E[A],E[B])x

which is the claim of the lemma.
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Now, to prove that ϕ is convex with respect to �, we use a property of the
generalized Schur’s complement in positive semi-definite matrices (see Boyd and
Vandenberghe (2004) p.651): let A ∈ Sn, B ∈ Mn,m, C ∈ Sm, and consider the
block symmetric matrix

D =

(
A B
BT C

)
.

Then we have

D � 0 ⇔ A � 0 , R(B) ⊂ R(A) , C −BTA†B � 0.

This leads to a straightforward proof of the convexity of ϕ. To our knowledge,
the following trick is due to Ando (1979), whose original proof was restricted to
positive definite matrices. We use the generalized Schur’s complement to extend
this result to any (A,B) ∈ Δn,m: let λ ∈ [0, 1], and (A1, B1), (A2, B2) ∈ Δn,m.
The sum of two positive semi definite matrices is positive semi-definite thus we
have

λ

(
A1 B1

BT
1 BT

1 A
†
1B1

)
+ (1− λ)

(
A2 B2

BT
2 BT

2 A
†
2B2

)
� 0

which is the same as(
λA1 + (1− λ)A2 λB1 + (1− λ)B2

λBT
1 + (1− λ)BT

2 λBT
1 A

†
1B1 + (1− λ)BT

2 A
†
2B2

)
� 0.

Consequently, the generalised Schur’s complement in this last block matrix is
also positive semi-definite, i.e.

λBT
1 A

†
1B1 + (1− λ)BT

2 A
†
2B2

�
(
λB1 + (1− λ)B2

)T [
λA1 + (1− λ)A2

]†(
λB1 + (1− λ)B2

)
which proves the convexity of ϕ with respect to �, and thus the claim of the
lemma.

Finally, we compare the asymptotic variances of the two estimators. Note
that for any (A,B) ∈ Sn × S++

n , and for every x ∈ Rn, we have

xTAx ≥ 0 ⇔ xTBABx ≥ 0.

Indeed, if A is semi definite positive then for some integer k we can find P ∈
Mk,n such that A = PTP , moreover, B being symmetric we have xTBABx =
‖PBx‖2 ≥ 0. The direct implication is enough since B−1 ∈ S++

n .
Consequently, the relation VIS

τ (ξ) � VNCE
τ (ξ) is equivalent to the relation

Eθ

[
∇∇T gξR

−1
]

� Eθ

[
∇∇T gξ

]
Eθ

[
∇∇T gξR

]−1

Eθ

[
∇∇T gξ

]
. (22)

Inequality (22) is a direct application of Lemma 11 (let B = ∇∇T gξ, A = BR;
note that (A,B) ∈ Δd+1,d+1 almost surely; and use basic properties of the
pseudo-inverse).
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Appendix B: Supplementary Proofs

B.1. Proofs of technical lemmas

B.1.1. Proof of Lemma 1

For all k ∈ N, eventually (for any m ≥ k) we have

1

m

m∑
j=1

fk(Xj) ≤
1

m

m∑
j=1

fm(Xj) ≤
1

m

m∑
j=1

f(Xj).

Moreover, since (Xj)j≥1 is Pψ-ergodic, the law of large numbers applies (even
if the expectations are infinite, since fk and f are non-negative):

1

m

m∑
j=1

fk(Xj)
a.s.−→

m→+∞
Eψ[fk(X)] and

1

m

m∑
j=1

f(Xj)
a.s.−→

m→+∞
Eψ[f(X)].

Thus, there is a set of probability one on which for every k ∈ N,

Eψ[fk(X)] ≤ lim inf
m→+∞

1

m

m∑
j=1

fm(Xj) ≤ lim sup
m→+∞

1

m

m∑
j=1

fm(Xj) ≤ Eψ[f(X)].

Since the inequality holds for any k ∈ N, it also holds for the supremum over k:

sup
k∈N

Eψ[fk(X)] ≤ lim inf
m→+∞

1

m

m∑
j=1

fm(Xj) ≤ lim sup
m→+∞

1

m

m∑
j=1

fm(Xj) ≤ Eψ[f(X)].

Finally, the monotone convergence theorem yields

sup
k∈N

Eψ[fk(X)] = lim
k→+∞

Eψ[fk(X)] = Eψ

[
lim

k→+∞
fk(X)

]
= Eψ[f(X)].

Consequently, the lower and upper limits are both equal to Eψ[f(X)] almost
surely.

B.1.2. Proof of Lemma 2

Since (Xj)j≥1 is Pψ-ergodic and f is dominated by the integrable function g,
the law of large numbers applies to function f . Thus, we just need to prove that∣∣∣∣∣∣ 1m

m∑
j=1

{fm(Xj)− f(Xj)}

∣∣∣∣∣∣ a.s.−→
m→+∞

0.

To do so, use the fact that∣∣∣∣∣∣ 1m
m∑
j=1

{fm(Xj)− f(Xj)}

∣∣∣∣∣∣ ≤ 1

m

m∑
j=1

|fm(Xj)− f(Xj)|
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≤ 1

m

m∑
j=1

sup
k≥m

∣∣fk(Xj)− f(Xj)
∣∣.

Define hm = 2g − sup
k≥m

|fk − f | and note that (hm)m≥1 is a non-decreasing

sequence of non negative functions converging pointwise towards 2g. Lemma 1
yields

1

m

m∑
j=1

hm(Xj)
a.s.−→

m→+∞
Eψ[2g(X)].

Finally g is integrable, thus the remainder converges almost surely towards zero:

1

m

m∑
j=1

sup
k≥m

∣∣fk(Xj)− f(Xj)
∣∣ = 2

m

m∑
j=1

g(Xj)−
1

m

m∑
j=1

hm(Xj)
a.s.−→

m→+∞
0.

B.1.3. Proof of Lemma 3

Since g is integrable and (Xj)j≥1 is Pψ-ergodic we have

1

m

m∑
j=1

g(Xj)
a.s.−→

m→+∞
Eψ

[
g(X)

]
< +∞.

Thus we only need to show that

1

m

m∑
j=1

{g(Xj)− fm(Xj)} a.s.−→
m→+∞

+∞.

Define hm = g − sup
k≥m

fk, an increasing sequence of non negative functions con-

verging pointwise to g − f . Lemma 1 applies whether g − f is integrable or
not:

1

m

m∑
j=1

(g(Xj)− fm(Xj)) ≥
1

m

m∑
j=1

hm(Xj)
a.s.−→

m→+∞
Eψ

[
g(X)− f(X)

]
.

The following inequality shows that the expectation is indeed infinite:

Eψ

[
g(X)− f(X)

]
= Eψ

[(
g(X)− f(X)+

)
+ f(X)−

]
≥ Eψ

[
f(X)−

]
= +∞.

B.1.4. Proof of Lemma 4

To begin, note that measurability of the supremum is ensured by the lower
semi-continuity of the maps θ �→ ϕ(θ, x) on a set of probability one that does
not depend on θ.
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For every θ ∈ K, consider the following function:

fθ(η) = Eψ

[
sup

φ∈B(θ,η)

‖ϕ(φ,X)− ϕ(θ,X)‖
]
.

Dominated convergence implies that fθ(η) converges to zero when η goes to zero.
This is enough to ensure the continuity of the map θ �→ Eψ

[
ϕ(θ,X)

]
because of

the following inequality:

sup
φ∈B(θ,η)

‖Eψ

[
ϕ(φ,X)− ϕ(θ,X)

]
‖ ≤ fθ(η).

Let ε > 0. For every θ ∈ K, we can always find η(θ,ε) > 0 small enough such
that fθ(η(θ,ε)) < ε. Note that the open balls centered on θ ∈ K of radius η(θ,ε),
form an open cover of K, from which we can extract a finite subcover thanks
to the compactness assumption. Thus we can build a finite set {φ1, ..., φI} ⊂ K
(centers of the balls) such that

K ⊂
I⋃

i=1

Bi, Bi = B(φi, η(φi,ε)).

Now, for any θ ∈ K define iθ as the smallest integer i ∈ {1, ..., I} such that
θ ∈ Bi, and consider the following equality:

1

m

m∑
j=1

ϕ(θ,Xj)− Eψ

[
ϕ(θ,X)

]
=

1

m

m∑
j=1

{
ϕ(θ,Xj)− ϕ(φiθ , Xj)

}
+

1

m

m∑
j=1

ϕ(φiθ , Xj)− Eψ

[
ϕ(φiθ , X)

]
+ Eψ

[
ϕ(φiθ , X)

]
− Eψ

[
ϕ(θ,X)

]
The three last terms are functions of θ for which we want to bound the

uniform norm.

The uniform norm of the third term is lower than ε since ∀θ ∈ K, d(θ, φiθ ) ≤
η(φiθ

,ε). The second term converges to zero by the law of large number since

{φ1, ..., φJ} is finite. Finally, the uniform norm of the second term can be
bounded by

Um = max
1≤i≤I

{
1

m

m∑
j=1

sup
θ∈Bi

‖ϕ(θ,Xj)− ϕ(φi, Xj)‖
}
.

The supremum are integrable by assumption, thus the law of large numbers
applies:

Um
a.s.−→

m→+∞
max
1≤i≤I

fφi(η(φi,ε)) < ε.
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To sum up, we have just proven that for any ε > 0, almost surely,

lim sup
m→+∞

⎧⎨⎩sup
θ∈K

∥∥∥∥∥∥ 1

m

m∑
j=1

ϕ(θ,Xj)− Eψ

[
ϕ(θ,X)

]∥∥∥∥∥∥
⎫⎬⎭ < 2ε.

Since ε is arbitrary small, we get the first claim of the lemma.
Now, if θ̃m → θ̃, we have eventually ‖θ̃m − θ̃‖ ≤ ε with probability one. This

yields the following inequality for m large enough:∥∥∥∥∥∥ 1

m

m∑
j=1

ϕ(θ̃m, Xj)− Eψ

[
ϕ(θ̃, X)

]∥∥∥∥∥∥
≤ sup

θ∈B(θ̃m,ε)

∥∥∥∥∥∥ 1

m

m∑
j=1

ϕ(θ,Xj)− Eψ

[
ϕ(θ,X)

]∥∥∥∥∥∥
+
∥∥∥Eψ

[
ϕ(θ̃m, X)

]
− Eψ

[
ϕ(θ̃, X)

]∥∥∥ .
The first term converges to zero since the first claim of the lemma applies

to the compact closure of B(θ̃, ε). The continuity of the map θ �→ Eψ

[
ϕ(θ,X)

]
ensures that the second term also goes to zero, proving the second claim of the
Lemma.

B.1.5. Proof of Lemma 5

Let ε > 0, and Gn(θ, ω) = ∇θ�n(θ, ω) defined on B(θ�, ε). Define also g
(n)
k (θ) as

the k-th component of Gn(θ). By assumption, for any δ > 0,{
ω ∈ Ω : max

(
‖θ̂n − θ�‖ , ‖

√
nGn(θ̂n)‖ , sup

θ∈B(θ�,ε)

‖∇2
θ�n(θ)−H(θ)‖

)
≤ δ

}

defines a sequence of sets whose probability goes to one.
On any of these sets (for a fixed ω), Taylor Lagrange’s theorem ensures that

we can find (θ̃
(n)
j )j=1,...,d on the segment line [θ�, θ̂n] such that

Gn(θ̂n) = Gn(θ
�) +Hn(θ̂n − θ�), Hn =

⎛⎜⎜⎝
(
∇θg

(n)
1 (θ̃

(n)
1 )
)T

...(
∇θg

(n)
d (θ̃

(n)
d )
)T
⎞⎟⎟⎠ .

In particular, for any δ ∈]0, ε[,

‖Hn −H(θ�)‖ ≤ d sup
θ∈B(θ�,ε)

‖∇2
θ�n(θ)−H(θ)‖+

d∑
j=1

‖H(θ̃
(n)
j )−H(θ�)‖.
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For any j = 1, ..., d, the distance between θ̃
(n)
j and θ� is at most δ, and H is

continuous, thus δ can always be chosen small enough such that Hn is invertible.
We thus have:

θ̂n − θ� = H−1
n

{
Gn(θ̂n)−Gn(θ

�)
}

√
n(θ̂n−θ�)+H(θ�)−1

√
nGn(θ

�)=H−1
n

√
nGn(θ̂n)−

{
H−1

n −H(θ�)−1
}√

nGn(θ
�)

The right hand side converges in probability to zero because Gn(θ̂n) = oP(n
−1/2)

by assumption, and because
√
nGn(θ

�) converges in distribution and is thus
bounded in probability. The last equality being true on a sequence of sets whose
probability goes to one, this implies that the left hand side must also converge
to zero in probability.

The last conclusion follows from Slutsky’s lemma.

B.1.6. Proof of Lemma 6

Before proving the lemma, we recall a powerful result from Jones (2004). Under
(X2), the chain (Xj)j≥1 is asymptotically uncorrelated with exponential decay,
i.e. there is some γ > 0 such that

ρ(n) = sup
{
Corr(U, V ) , U ∈ L2(Fk

1 ) , V ∈ L2(F∞
k+n) , k ≥ 1

}
= O(e−γn)

where Fm
k is the sigma-algebra generated by Xk, ..., Xm.

Let hn = fn − f , and note that Vψ(hn(X0)) ≤ Eψ

[
(hn(X0))

2
]
→

n→∞
0 by

dominated convergence. Combined with the previous result, this implies that

1

n
V

(
n∑

i=1

hn(Xi)

)
= Vψ(hn(X0))

×
{
1 + 2

n∑
i=1

n− i

n
Corr(hn(X0), hn(Xi))

}
→

n→∞
0

since ∣∣∣∣∣
n∑

i=1

n− i

n
Corr(hn(X0), hn(Xi))

∣∣∣∣∣ ≤
+∞∑
i=1

ρ(i) < +∞.

The first claim of the lemma follows from Chebyshev’s inequality, since for
any ε > 0

P

(
1

n

n∑
i=1

hn(Xi)− E
[
hn(X)

]
≥ ε√

n

)
≤ 1

nε2
V

(
n∑

i=1

hn(Xi)

)
→

n→∞
0.

Finally, under (X2) a
√
n-CLT holds for f dominated by g

√
n

(
1

n

n∑
i=1

f(Xi)− E[f(X)]

)
D→ N

(
0, σ2

f

)
.

An application of Slutsky’s lemma yields the second claim of the lemma.
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B.2. Proofs of the remaining lemmas

B.2.1. Proof of Lemma 7

Assumption (H2) ensures in particular that the partition function θ �→ Z(θ) is

differentiable in a neighborhood of θ̂n. Write the Hessian of the Poisson Trans-
form as the following block matrix:

∇2
(θ,ν)�n(θ, ν) =

(
A b
bT c

)
where

A = ∇2
θ�n(θ, ν) =

1

n

n∑
i=1

∇2
θ log hθ(yi)− eν

Z(θ)

Z(ψ)

∇2
θZ(θ)

Z(θ)
,

b = ∇θ
∂

∂ν
�n(θ, ν) = −eν

Z(θ)

Z(ψ)

∇θZ(θ)

Z(θ)
,

c =
∂2

∂ν2
�n(θ, ν) = −eν

Z(θ)

Z(ψ)
< 0.

The Hessian of the Poisson transform is negative definite if and only if Schur’s
complement of c in the Hessian also is. Use the following equality to compute
it:

∇2
θ logZ(θ) =

∇2
θZ(θ)

Z(θ)
−

∇θZ(θ)
(
∇θZ(θ)

)T
Z(θ)2

,

A− bc−1bT =
1

n

n∑
i=1

∇2
θ log hθ(yi)− eν

Z(θ)

Z(ψ)
∇2

θ logZ(θ).

At the point ξ = ξ̂n, Schur’s complement of c is also the Hessian of the log
likelihood:

∇2
θ�n(θ) =

1

n

n∑
i=1

∇2
θ log hθ(yi)−∇2

θ logZ(θ),
{
eν

Z(θ)

Z(ψ)

}∣∣
ξ=ξ̂n

= 1.

B.2.2. Proof of Lemma 9

Let ξn → ξ, we have

lim
n→+∞

sup
k≥n

MNCE
τ (ξk) ≤

1

Z(ψ)
lim

n→+∞

{∫
X
sup
k≥n

ϕk(x)μ(dx)

}
,

where

ϕk(x) = log

{
eνkhθk(x)

eν�hθ�(x)

}
eν

�

hθ�(x)

+ log

{
τhψ(x) + eν

�

hθ�(x)

τhψ(x) + eνkhθk(x)

}(
τhψ(x) + eν

�

hθ�(x)
)
.
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The sequence
{
supk≥n ϕk

}
is a decreasing sequence converging pointwise. It

may be bounded from above thanks to the log-sum inequality, since for any k
we have

ϕk ≤ log

{
eνkhθk

eν�hθ�

}
eν

�

hθ� + log

{
τhψ

τhψ

}
τhψ + log

{
eν

�

hθ�

eνkhθk

}
eν

�

hθ� = 0.

Monotone convergence theorem applies:

lim
n→+∞

sup
k≥n

MNCE
τ (ξk) ≤

1

Z(ψ)

∫
X

lim
n→+∞

ϕn(x)μ(dx) = MNCE
τ (ξ).

B.2.3. Proof of Lemma 10

Without loss of generality, we may suppose that Eθ[Z] = 1. Recall the following
expressions:

∇gξ =

(
∇gθ
1

)
∇∇T gξ =

(
∇∇T gθ ∇gθ
∇T gθ 1

)
.

We thus have

Eθ

[
∇gξZ

]
Eθ

[
∇T gξZ

]
=

(
Eθ[∇gθZ]Eθ[∇T gθZ] Eθ[∇gθZ]

Eθ[∇T gθZ] 1

)
,

Eθ

[
∇∇T gξZ

]
=

(
Eθ[∇∇T gθZ] Eθ[∇gθZ]
Eθ[∇T gθZ] 1

)
.

We use the following decomposition

Eθ

[
∇gξZ

]
Eθ

[
∇T gξZ

]
= Eθ

[
∇∇T gξZ

]
−
(

AZ 0
0 0

)
where Schur’s complement AZ = Eθ[∇∇T gθZ]−Eθ[∇gθZ]Eθ[∇T gθZ] is definite
positive.

So we can re-write the matrix M as:

M = Eθ

[
∇∇T gξZ

]−1 − Eθ

[
∇∇T gξZ

]−1
(

AZ 0
0 0

)
Eθ

[
∇∇T gξZ

]−1
.

Now, on the one hand, an inverse block matrix calculation yields

Eθ

[
∇∇T gξZ

]−1
=

(
A−1

Z −A−1
Z Eθ[∇gθZ]

−Eθ[∇T gθZ]A−1
Z 1 + Eθ[∇T gθZ]A−1

Z Eθ[∇gθZ]

)
,

while, on the other hand, a direct computation yields

Eθ

[
∇∇T gξZ

]−1
(

AZ 0
0 0

)
Eθ

[
∇∇T gξZ

]−1

=

(
A−1

Z −A−1
Z Eθ[∇gθZ]

−Eθ[∇T gθZ]A−1
Z Eθ[∇T gθZ]A−1

Z Eθ[∇gθZ]

)
.

The matrix M being the difference between these two quantities, we get the
claim of the lemma.
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B.3. Proofs of MC-MLE consistency and asymptotic normality

B.3.1. MC-MLE consistency

The following proof is a straightforward adaptation of Wald’s proof of consis-
tency for the MLE (Wald (1949)). The sketch of proof is mainly inspired from
Geyer (2012), which has the merit of giving a very accessible presentation of
this technical proof.

To begin, define the opposite of the Kullback-Leibler divergence:

λ(θ) = Eθ�

[
log

fθ(Y )

fθ�(Y )

]
≤ 0.

Since the model is identifiable, λ has a unique maximizer achieved at θ�.
It may be −∞ for some values of θ, but this does not pose problems in the
following proof.

For convenience, we choose to analyse the MC-MLE objective function
through the following translational motion (sharing the same maximiser with
�ISn,m):

M IS
n (θ, ν) =

1

n

n∑
i=1

log
{ eνhθ(Yi)

eν�hθ�(Yi)

}
+ 1− eν

1

rn

rn∑
j=1

hθ(Xj)

hψ(Xj)
.

For any ξ ∈ Ξ = Θ×R, the law of large numbers yields M IS
n (ξ)

a.s.−→
n→+∞

MIS(ξ)

where

MIS(θ, ν) = λ(θ) + ν + log
Z(θ)

Z(ψ)
+ 1− eν

Z(θ)

Z(ψ)
≤ 0.

Note that by construction MIS also has a unique maximiser at ξ� = (θ�, ν�).
Let η > 0. Define Kη = {ξ ∈ K : d(ξ, ξ�) ≥ η} where K is the compact set

defined in (C2). Under (H3), continuity of the maps θ �→ hθ(x) and monotone
convergence ensure that for any ξ ∈ Kη,

lim
ε↓0

Eθ�

[
sup

(φ,μ)∈B(ξ,ε)

log
eμhφ(Y )

eν�hθ�(Y )

]
= Eθ�

[
log

eνhθ(Y )

eν�hθ�(Y )

]
,

while dominated convergence ensures that

lim
ε↓0

Eψ

[
inf

(φ,μ)∈B(ξ,ε)
eμ

hφ(X)

hψ(X)

]
= eν

Z(θ)

Z(ψ)
.

Thus for any ξ ∈ Kη and γ > 0, we can always find εξ > 0 such that simultane-
ously:

Eθ�

[
sup

(φ,μ)∈B(ξ,εξ)

log
eμhφ(Y )

eν�hθ�(Y )

]
≤ Eθ�

[
log

eνhθ(Y )

eν�hθ�(Y )

]
+

γ

2
,
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and

Eψ

[
inf

(φ,μ)∈B(ξ,εξ)
eμ

hφ(X)

hψ(X)

]
≥ eν

Z(θ)

Z(ψ)
− γ

2
.

The set of open balls {B(ξ, εξ) : ξ ∈ K} form an open cover of Kη from
which we can extract a finite subcover by compactness, i.e. we can build a finite
set {ξ1, ..., ξp} ⊂ Kη such that Kη ⊂

⋃p
k=1 B(ξk, εξk). This yields the following

inequality:

sup
ξ∈Kη

M IS
n (ξ) ≤ max

k=1,...,p

{
1

n

n∑
i=1

sup
(φ,μ)∈B(ξk,εξk )

(
log

eμhφ(Yi)

eν�hθ�(Yi)

)

+ 1− 1

rn

rn∑
j=1

inf
(φ,μ)∈B(ξk,εξk )

(
eμ

hφ(Xj)

hψ(Xj)

)}
.

The right hand side converges almost surely as the law of large numbers applies
simultaneously on a finite set. We can thus bound the upper limit:

lim sup
n→+∞

sup
ξ∈Kη

M IS
n (ξ) ≤ max

k=1,...,p

{
Eθ�

[
sup

(φ,μ)∈B(ξk,εξk )

(
log

eμhφ(Y )

eν�hθ�(Y )

)]

+ 1− Eψ

[
inf

(φ,μ)∈B(ξk,εξk )

(
eμ

hφ(X)

hψ(X)

)]}
,

lim sup
n→+∞

sup
ξ∈Kη

M IS
n (ξ) ≤ max

k=1,...,p
MIS(ξk) + γ ≤ sup

ξ∈Kη

MIS(ξ) + γ.

Moreover γ is arbitrary small, thus the inequality still holds when γ is zero:

lim sup
n→+∞

sup
ξ∈Kη

M IS
n (ξ) ≤ sup

ξ∈Kη

MIS(ξ) a.s. (23)

To conclude, let us prove that the right hand side is negative. Indeed, subaddi-
tivity of the supremum yields

sup
ξ∈Kη

MIS(θ, ν) ≤ sup
ξ∈Kη

λ(θ) + sup
ξ∈Kη

(
ν + log

Z(θ)

Z(ψ)
+ 1− eν

Z(θ)

Z(ψ)

)
where the second term is non positive by construction. Under (H3), it is easy to
check that λ is upper semi continuous, which implies in particular that λ achieves
its maximum on any compact set. Consequently: sup

ξ∈Kη

MIS(ξ) ≤ sup
ξ∈Kη

λ(θ) < 0.

The last part of the proof is the same as for NCE consistency (see the ap-
pendix).

B.3.2. MC-MLE asymptotic normality

For convenience, for any ξ = (θ, ν), we note gξ(x) = ν + log hθ(x).
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Let GIS
n (ξ) = ∇ξ�

IS
n,m(ξ) and HIS

n (ξ) = ∇2
ξ�

IS
n,m(ξ). We have

GIS
n (ξ) =

1

n

n∑
i=1

∇ξgξ(Yi)−
1

mn

mn∑
j=1

∇ξgξ(Xj)
exp{gξ(Xj)}

hψ(Xj)
,

HIS
n (ξ) =

1

n

n∑
i=1

∇2
ξgξ(Yi)−

1

mn

mn∑
j=1

{
(∇2

ξ +∇ξ∇T
ξ )gξ(Xj)

}exp{gξ(Xj)}
hψ(Xj)

. (24)

We start by proving that, almost surely,

sup
ξ∈B(ξ�,ε)

‖HIS
n (ξ)−H(ξ)‖ →

n→∞
0, (25)

where

H(ξ) = Eθ�

[
∇2

ξgξ(Y )

]
− Eψ

[{
(∇2

ξ +∇ξ∇T
ξ )gξ(X)

}exp{gξ(X)}
hψ(X)

]
.

To prove (25), split the supremum norm in two and apply Lemma 4 to both
empirical averages in definition (24). Both supremum norms are integrable under
(H4), this is proven in the following.

∇2
ξgξ(x) =

(
∇2

θ log hθ(x) 0
0 0

)
∇ξ∇T

ξ gξ(x) =

(
∇θ∇T

θ log hθ(x) ∇θ log hθ(x)
∇T

θ log hθ(x) 1

)
First supremum norm is integrable under (H4), since∫

X
sup

ξ∈B(ξ�,ε)

‖∇2
ξgξ(x)‖hθ�μ(dx)

≤
∫
X

sup
θ∈B(θ�,ε)

‖∇2
θ log hθ(Y )‖ sup

θ∈B(θ�,ε)

hθ(x)μ(dx) < +∞.

For the second one, use the following decomposition:

‖(∇2
ξ +∇ξ∇T

ξ )gξ(x)‖1 = ‖(∇2
θ +∇θ∇T

θ ) log hθ(x)‖1 + 2‖∇θ log hθ(x)‖1 + 1,

‖(∇2
θ +∇θ∇T

θ ) log hθ(x)‖1 ≤ ‖∇2
θ log hθ(x)‖1 + ‖∇θ log hθ(x)‖21,

‖∇θ log hθ(x)‖1 ≤ 1 + ‖∇θ log hθ(x)‖21.
This yields a finite upper bound under (H4), since∫

X
sup

ξ∈B(ξ�,ε)

‖(∇2
ξ +∇ξ∇T

ξ )gξ(x)‖1 exp{gξ(x)}μ(dx)

≤ eν
�+ε

∫
X

sup
θ∈B(θ�,ε)

(
‖∇2

θ log hθ(x)‖1 + 3‖∇θ log hθ(x)‖21 + 3
)

× sup
θ∈B(θ�,ε)

hθ(x)μ(dx) < +∞.
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Note also that, at the point ξ = ξ�, functions H and −J coincide, where

J(ξ) = Eθ

[
∇ξ∇T

ξ gξ(Y )
]
=

⎛⎝ Eθ

[
∇θ∇T

θ log hθ(Y )
]

Eθ

[
∇θ log hθ(Y )

]
Eθ

[
∇T

θ log hθ(Y )
]

1

⎞⎠ .

In particular, the matrix J(ξ�) is definite positive, since Schur’s complement is
also the Fisher Information, definite positive by assumption:

Eθ

[
∇θ∇T

θ gθ(Y )
]
− Eθ

[
∇θgθ(Y )

]
Eθ

[
∇T

θ gθ(Y )
]
= Vθ

(
∇θ log hθ(Y )

)
= I(θ).

Now we establish the weak convergence of the gradient. We have

√
nGIS

n (ξ�) =
√
n

(
1

n

n∑
i=1

∇ξgξ(Yi)− Eθ

[
∇ξgξ(Y )

])
|ξ=ξ�

−
√

n

mn

√
mn

⎛⎝ 1

mn

mn∑
j=1

∇ξgξ(Xj)
fθ(Xj)

fψ(Xj)
− Eθ

[
∇ξgξ(Y )

]⎞⎠
|ξ=ξ�

.

Simulations and observations are assumed independent, thus Slutsky’s lemma
yields the following. Second moment conditions hold under (I3).

√
nGIS

n (ξ�)
D→ Nd+1

(
0,Σ(ξ�) + τ−1Γ(ξ�)

)
,

where

Σ(ξ) = Vθ

(
∇ξgξ(Y )

)
=

(
I(θ) 0
0 0

)
,

and

Γ(ξ) = Vψ

(
ϕIS
ξ (X)

)
+ 2

+∞∑
i=1

Cov
(
ϕIS
ξ (X0), ϕ

IS
ξ (Xi)

)
, ϕIS

ξ = (∇ξgξ)
fθ
fψ

.

Finally, Lemma 5 applies:

√
n
(
ξ̂ISn,m − ξ�

)
D→ N

(
0Rd+1 ,VIS

τ (ξ�)
)

where VIS
τ (ξ) = J(ξ)−1

{
Σ(ξ) + τ−1Γ(ξ)

}
J(ξ)−1.

B.4. Proofs related to exponential families

The following calculations are entirely classical. For the sake of completeness,
we present the few tricks required for proving Propositions 1, 2 and 3.

To begin, define b(x) = sgn(S(x)), the vector composed by the signs of each
component of S(x). Note that for any θ ∈ Θ, the following supremum is nec-
essarily achieved on the boundary of the 1-ball, in the direction of the sign
vector:

sup
‖φ−θ‖1≤ε

exp
{
φTS(x)

}
= exp

{
(θ + εb(x))TS(x)

}
. (26)
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Since ‖S(x)‖1 = b(x)TS(x), we have (for the 1-norm for instance):

sup
φ∈B(θ,ε)

(
log

hφ(x)

hθ�(x)

)
= (θ − θ�)TS(x) + ε‖S(x)‖ ≤ (‖θ − θ�‖+ ε)‖S(x)‖,

which proves the claim of Proposition 2, since∫
X

sup
φ∈B(θ,ε)

(
log

hφ(x)

hθ�(x)

)
+

hθ�(x)μ(dx)

≤ (‖θ − θ�‖+ ε)

∫
X
‖S(x)‖hθ�(x)μ(dx) < +∞.

For Propositions 1 and 3, use also the fact that ‖S(x)‖1 = b(x)TS(x) and
that y ≤ ey for any y ∈ R. We have

‖S(x)‖21 ≤ ε−2 exp
{
2εb(x)TS(x)

}
. (27)

Equations (26) and (27) can be combined as follows:∫
X
(1 + ‖S(x)‖2) sup

φ∈B(θ,ε)

hφ(x)μ(dx) ≤
∑

b∈{−1,1}d

∫
X
exp
{
(θ + bε)TS(x)

}
μ(dx)

+ ε−2
∑

b∈{−1,1}d

∫
X
exp
{
(θ + 3bε)TS(x)

}
μ(dx),

and

Eψ

[
(1 + ‖S(X)‖2) sup

φ∈B(θ,ε)

(
hφ(X)

hψ(X)

)2
]

≤
∑

b∈{−1,1}d

Eψ

⎡⎣(exp
{
(θ + bε)TS(X)

}
hψ(X)

)2
⎤⎦

+ ε−2
∑

b∈{−1,1}d

Eψ

⎡⎣(exp
{
(θ + 2bε)TS(X)

}
hψ(X)

)2
⎤⎦ .

Choosing θ = θ̂n in the preceding inequalities yields Proposition 1, while choos-
ing θ = θ� yields Proposition 3.
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