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Abstract: This paper aims at formulating the issue of ranking multivari-
ate unlabeled observations depending on their degree of abnormality as an
unsupervised statistical learning task. In the 1-d situation, this problem
is usually tackled by means of tail estimation techniques: univariate ob-
servations are viewed as all the more ‘abnormal’ as they are located far
in the tail(s) of the underlying probability distribution. It would be de-
sirable as well to dispose of a scalar valued ‘scoring’ function allowing for
comparing the degree of abnormality of multivariate observations. Here
we formulate the issue of scoring anomalies as a M-estimation problem by
means of a novel functional performance criterion, referred to as the Mass
Volume curve (MV curve in short), whose optimal elements are strictly
increasing transforms of the density almost everywhere on the support of
the density. We first study the statistical estimation of the MV curve of a
given scoring function and we provide a strategy to build confidence regions
using a smoothed bootstrap approach. Optimization of this functional cri-
terion over the set of piecewise constant scoring functions is next tackled.
This boils down to estimating a sequence of empirical minimum volume
sets whose levels are chosen adaptively from the data, so as to adjust to
the variations of the optimal MV curve, while controlling the bias of its
approximation by a stepwise curve. Generalization bounds are then estab-
lished for the difference in sup norm between the MV curve of the empirical
scoring function thus obtained and the optimal MV curve.

Keywords and phrases: Anomaly ranking, unsupervised learning, boot-
strap, M-estimation.
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1. Introduction

In a wide variety of applications, ranging from the monitoring of aircraft en-
gines in aeronautics to non destructive control quality in the industry through
fraud detection, network intrusion surveillance or system management in data
centers (see for instance (Viswanathan et al., 2012)), anomaly detection is of
crucial importance. In most common situations, anomalies correspond to ‘rare’
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observations and must be automatically detected based on an unlabeled dataset.
In practice, the very purpose of anomaly detection techniques is to rank obser-
vations by degree of abnormality/novelty, rather than simply assigning them
a binary label, ‘abnormal’ vs ‘normal’. In the case of univariate observations,
abnormal values are generally those which are extremes, i.e. ‘too large’ or ‘too
small’ in regard to central quantities such as the mean or the median, and
anomaly detection may then derive from standard tail distribution analysis: the
farther in the tail the observation lies, the more ‘abnormal’ it is considered. In
contrast, it is far from easy to formulate the issue in a multivariate context. In
the present paper, motivated by applications such as those aforementioned, we
place ourselves in the situation where (unlabeled) observations take their values
in a possibly very high-dimensional space, X ⊂ Rd with d ≥ 1 say, making
approaches based on nonparametric density estimation or multivariate (heavy-)
tail modeling hardly feasible, if not unfeasible, due to the curse of dimensionality.
In this framework, a variety of statistical techniques, relying on the concept of
minimum volume set investigated in the seminal contributions of Einmahl and
Mason (1992) and Polonik (1997) (see Section 2), have been developed in order
to split the feature space X into two halves and decide whether observations
should be considered as ‘normal’ (namely when lying in the minimum volume
set Ωα ⊂ X estimated on the basis of the dataset available) or not (when lying
in the complementary set X \ Ωα) with a given confidence level 1 − α ∈ (0, 1).
One may also refer to (Scott and Nowak, 2006) and to (Koltchinskii, 1997)
for closely related notions. The problem considered here is of different nature,
the goal pursued is not to assign to all possible observations a label ‘normal’
vs ‘abnormal’, but to rank them according to their level of ‘abnormality’. The
most natural way to define a preorder on the feature space X is to transport
the natural order on the real line through some (measurable) scoring function
s : X → R+: the ‘smaller’ the score s(x), the more likely the observation x is
viewed as ‘abnormal’. This problem shall be here referred to as anomaly scor-
ing. It can be somehow related to the literature dedicated to statistical depth
functions in nonparametric statistics and operations research, see (Zuo and Ser-
fling, 2000) and the references therein. Such parametric functions are generally
proposed ad hoc in order to define a ‘center’ for the probability distribution of
interest and a notion of distance to the latter, e.g. the concept of ‘center-outward
ordering’ induced by halfspace depth in (Tukey, 1975) or (Donoho and Gasko,
1992). The angle embraced in this paper is quite different, its objective is indeed
twofold: 1) propose a performance criterion for the anomaly scoring problem so
as to formulate it in terms ofM -estimation 2) investigate the accuracy of scoring
rules which optimize empirical estimates of the criterion thus tailored.

Due to the global nature of the ranking problem, the criterion we promote is
functional, just like the Receiver Operating Characteristic (ROC) and Precision-
Recall curves in the supervised ranking setup (i.e. when a binary label, e.g.
‘normal’ vs ‘abnormal’, is assigned to the sampling data), and shall be referred to
as the Mass Volume curve (MV curve in abbreviated form). The latter induces
a partial preorder on the set of scoring functions: the collection of optimal
elements is defined as the set of scoring functions whose MV curve is minimum
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everywhere. Such optimal scoring functions are proved to coincide to strictly
increasing transforms of the underlying probability density almost everywhere
on the support of this underlying probability density (see Section 3 for the exact
definition). In the unsupervised setting, MV curve analysis is shown to play a
role quite comparable to that of ROC curve analysis for supervised anomaly
detection. The issue of estimating the MV curve of a given scoring function
based on sampling data is then tackled and a smooth bootstrap method for
constructing confidence regions is analyzed. A statistical methodology to build
a nearly optimal scoring function is next described, which works as follows:
first, a piecewise constant approximant of the optimal MV curve is estimated
by solving a few minimum volume set estimation problems where confidence
levels are chosen adaptively from the data to adjust to the variations of the
optimal MV curve; second, a piecewise constant scoring function is built based
on the sequence of estimated minimum volume sets. The MV curve of the scoring
rule thus produced can be related to a stepwise approximant of the (unknown)
optimal MV curve, which permits to establish the generalization ability of the
algorithm through rate bounds in terms of sup norm in the MV space.

The rest of the article is structured as follows. Section 2 describes the math-
ematical framework, sets out the main notations and recalls the crucial notions
related to anomaly/novelty detection on which the analysis carried out in the
paper relies. Section 3 first provides an informal description of the anomaly
scoring problem and then introduces the MV curve criterion, dedicated to eval-
uate the performance of any scoring function. The set of optimal elements is
described and statistical results related to the estimation of the MV curve of a
given scoring function are stated in Section 4. Statistical learning of an anomaly
scoring function is then formulated as a functional M -estimation problem in
Section 5, while Section 6 is devoted to the study of a specific algorithm for
the design of nearly optimal anomaly scoring functions. Technical proofs are
deferred to the Appendix section.

We finally point out that a very preliminary version of this work has been
presented in the conference AISTATS 2013 (see (Clémençon and Jakubowicz,
2013)). The present article gives a better characterization of the optimal scoring
functions and investigates much deeper the statistical assessment of the perfor-
mance of a given scoring function. In particular, it shows how to construct
confidence regions for the MV curve of a scoring function in a computationally
feasible fashion, using the (smooth) bootstrap methodology for which we state
a consistency result. This consistency result gives a rate of convergence which
promotes the use of a smooth bootstrap approach, rather than a naive boot-
strap technique. Additionally, in Section 6, the confidence levels of the minimum
volume sets to be estimated are chosen in a data-driven way (instead of con-
sidering a regular subdivision of the interval [0, 1] fixed in advance), giving to
the statistical estimation and learning procedures proposed in this paper crucial
adaptivity properties, with respect to the (unknown) shape of the optimal MV
curve. Eventually, we give an example showing that the nature of the prob-
lem tackled here is very different than that of density estimation and we also
give a simpler formula of the derivative of the optimal MV curve (that of the
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underlying density) compared to the one originally given in (Clémençon and
Jakubowicz, 2013).

2. Background and preliminaries

As a first go, we start off with describing the mathematical setup and recalling
key concepts in anomaly detection involved in the subsequent analysis.

2.1. Framework and notations

Here and throughout, we suppose that we observe independent and identically
distributed realizations X1, . . . , Xn of an unknown continuous probability dis-
tribution F (dx), copies of a generic random variable X, taking their values in a
(possibly very high dimensional) feature space X ⊂ Rd, with d ≥ 1. The density
of the random variable X with respect to λ(dx), the Lebesgue measure on Rd, is
denoted by f , its support {x ∈ X , f(x) > 0} by supp(f) and the indicator func-
tion of any event E by I{E}. For any set Z ⊂ X , its complementary is denoted
by Z = X \Z. The sup norm of any real valued function g : Rd → R is denoted
by ‖g‖∞ and the Dirac mass at any point a by δa. The notation OP(1) is used to
mean boundedness in probability. The quantile function H† of any real valued
random variable Z with cumulative distribution function H(·) = P(Z ≤ ·) is
defined by H†(α) = inf{t ∈ R : H(t) ≥ α} for all α ∈ (0, 1). For any real val-
ued random variable Z, the generalized inverse G−1 of the decreasing function
G(·) = P(Z ≥ ·) is defined by G−1(α) = inf{t ∈ R : G(t) ≤ α} for all α ∈ (0, 1).
For any function s : X → R, Fs denotes the cumulative distribution function of
the random variable s(X). In addition, for any α ∈ (0, 1), Q(s, α) = F †

s (1− α)
denotes the quantile at level 1 − α of the distribution of s(X). We also set
Q∗(α) = Q(f, α) for all α ∈ (0, 1). Finally, constants in inequalities are denoted
by either C or c and may vary at each occurrence.

A natural way of defining preorders on X is to map its elements onto R+ and
use the natural order on the real half-line.

Definition 1. (Scoring function) A scoring function is any measurable
function s : X → R+ that is integrable with respect to the Lebesgue measure.

The set of all scoring functions is denoted by S and we denote the level sets
of any scoring function s ∈ S by:

Ωs,t = {x ∈ X : s(x) ≥ t}, t ∈ [−∞, +∞] .

Observe that the family is decreasing (for the inclusion, as t increases from −∞
to +∞):

∀(t, t′) ∈ R2, t ≥ t′ ⇒ Ωs,t ⊂ Ωs,t′

and that limt→+∞ Ωs,t = ∅ and limt→−∞ Ωs,t = X 1.

1Recall that a sequence (An)n≥1 of subsets of an ensemble E is said to converge if and
only if lim supAn = lim inf An. In such a case, one defines its limit, denoted by limAn as
lim supAn = lim inf An.
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The following quantities shall also be used in the sequel. For any scoring
function s and threshold level t ≥ 0, define:

αs(t) = P{s(X) ≥ t} and λs(t) = λ ({x ∈ X : s(x) ≥ t}) .

The quantity αs(t) is referred to as the mass of the level set Ωs,t, while λs(t) is
generally termed the volume (with respect to the Lebesgue measure).

Remark 1. The integrability of a scoring function (see Definition 1) implies
that the volumes are finite on R∗

+: for any s ∈ S,

∀t > 0, λs(t) =

∫
X
I{x, s(x) ≥ t}dx ≤

∫
X

s(x)

t
dx < +∞ .

Incidentally, we point out that, in the specific case s = f , the set Ωf,t = {x ∈
X , f(x) ≥ t} is the density contour cluster of the density function f at level t,
see (Polonik, 1995) for instance. Such a set is also referred to as a density level
set. Observe in addition that, using the terminology introduced in (Liu, Parelius
and Singh, 1999), Ωs,t is the region enclosed by the contour of depth t when s
is a depth function.

2.2. Minimum volume sets

The notion of minimum volume sets has been introduced and investigated in the
seminal contributions of Einmahl and Mason (1992) and Polonik (1997) in order
to describe regions where a multivariate random variable X takes its values with
highest/smallest probability. Let α ∈ (0, 1), a minimum volume set Ω∗

α of mass
at least α is any solution of the constrained minimization problem

min
Ω

λ(Ω) subject to P{X ∈ Ω} ≥ α , (1)

where the minimum is taken over all measurable subsets Ω of X . Application of
this concept includes in particular novelty/anomaly detection: for large values of
α, abnormal observations (outliers) are those which belong to the complemen-
tary set X \ Ω∗

α. In the continuous setting, it can be shown that there exists a
threshold value equal toQ∗(α) such that the level set Ωf,Q∗(α) is a solution of the
constrained optimization problem above. The (generalized) quantile function is
then defined by:

∀α ∈ (0, 1), λ∗(α)
def
= λ(Ω∗

α) .

The definition of λ∗ can be extended to the interval [0, 1] by setting λ∗(0) = 0
and λ∗(1) = λ(supp(f)) ≤ ∞. The following assumptions shall be used in the
subsequent analysis.

(A1) The density f is bounded: ‖f‖∞ < +∞.
(A2) The density f has no flat parts, i.e. for any t > 0,

P{f(X) = t} = 0 .
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Under the assumptions above, for any α ∈ (0, 1), there exists a unique mini-
mum volume set Ω∗

α (equal to Ωf,Q∗(α) up to subsets of null λ-measure), whose
mass is equal to α exactly. Additionally, the mapping λ∗ is continuous on (0, 1)
and uniformly continuous on [0, 1 − ε] for all ε ∈ (0, 1) (when the support of
F (dx) is compact, uniform continuity holds on the whole interval [0, 1]).

From a statistical perspective, estimates Ω̂α of minimum volume sets are built
by replacing the unknown probability distribution F by its empirical version
F̂ = (1/n)

∑n
i=1 δXi and restricting optimization to a collection A of borelian

subsets of X , supposed rich enough to include all density level sets (or reason-
able approximations of the latter). In (Polonik, 1997), functional limit results

are derived for the generalized empirical quantile process {λ(Ω̂∗
α)− λ∗(α)} un-

der certain assumptions for the class A (stipulating in particular that A is a
Glivenko-Cantelli class for F (dx)). In (Scott and Nowak, 2006), it is proposed to
replace the level α by α−φn where φn plays the role of tolerance parameter. The
latter should be chosen of the same order as the supremum supΩ∈A |F̂ (Ω)−F (Ω)|
roughly, complexity of the class A being controlled by the VC dimension or by
means of the concept of Rademacher averages, so as to establish rate bounds at
n < +∞ fixed.

Alternatively, so-termed plug-in techniques, consisting in computing first an
estimate f̂ of the density f and considering next level sets Ωf̂ ,t of the result-

ing estimator have been investigated in several papers, among which (Cavalier,
1997; Tsybakov, 1997; Rigollet and Vert, 2009; Cadre, 2006; Cadre, Pelletier
and Pudlo, 2013). Such an approach however yields significant computational
issues even for moderate values of the dimension, inherent to the curse of di-
mensionality phenomenon.

3. Ranking anomalies

In this section, the issue of scoring observations depending on their level of
novelty/abnormality is first described in an informal manner and next formu-
lated quantitatively, as a functional optimization problem, by means of a novel
concept, termed the Mass Volume curve.

3.1. Overall objective

The problem considered in this article is to learn a scoring function s, based on
training data X1, . . . , Xn, so as to describe the extremal behavior of the (high-
dimensional) random vector X by that of the univariate variable s(X), which
can be summarized by its tail behavior near 0: hopefully, the smaller the score
s(x), the more abnormal/rare the observation x should be considered. Hence,
an optimal scoring function should naturally permit to rank observations x by
increasing order of magnitude of f(x) (see Section 3.2 for the precise definition
of the set of optimal scoring functions). The preorder on X induced by such
an optimal scoring function could then be used to rank observations by their
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degree of abnormality: for any optimal scoring function s, an observation x′ is
more abnormal than an observation x if and only if s(x′) < s(x).

3.2. A functional criterion: The mass volume curve

We now introduce the concept of Mass Volume curve and shows that it is a
natural criterion to evaluate the accuracy of decision rules in regard to anomaly
scoring.

Definition 2. (True Mass Volume curve) Let s ∈ S. Its Mass Volume
curve (MV curve in abbreviated form) with respect to the probability distribution
of the random variable X is the plot of the function

MVs : α ∈ (0, 1) �→ MVs(α)
def
= λs ◦ α−1

s (α) .

If the scoring function s is upper bounded, α−1
s (0) exists and MVs is defined on

[0, 1).

Remark 2. (Parametric Mass Volume Curve) If αs is invertible, and
therefore α−1

s is the ordinary inverse of αs, the Mass Volume curve of the scoring
function s can also be defined as the parametric curve:

t ∈ R+ �→ (αs(t), λs(t)) ∈ [0, 1)× [0,+∞) .

Fig 1. Scoring functions and their associated Mass Volume curves when considering a trun-
cated Gaussian distribution with density f .

Remark 3. (Connections to ROC/concentration analysis) We point
out that the curve α ∈ (0, 1) �→ 1 − λs ◦ α−1

s (1 − α) resembles a receiver oper-
ating characteristic (ROC) curve of the test/diagnostic function s (see (Egan,
1975)), except that the distribution under the alternative hypothesis is not a
probability measure but the image of Lebesgue measure on X by the function
s, while the distribution under the null hypothesis is the probability distribution
of the random variable s(X). Hence, the curvature of the MV graph somehow
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measures the extent to which the spread of the distribution of s(X) differs from
that of a uniform distribution. Observe also that, in the case where the support
of F (dx) coincides with the unit square [0, 1]d, the MV curve of any scoring
function s ∈ S corresponds to the concentration function (GF−1)CS introduced
in (Polonik, 1999), where G(dx) is the uniform probability distribution on [0, 1]d

and CS = {Ωs,t : t ≥ 0}, to compare the concentration of F (dx) with that of
G(dx) with respect to the class of sublevel sets of the function s. Notice finally
that, when s is a depth function, MVs is a scale curve, as defined in (Liu,
Parelius and Singh, 1999).

This functional criterion induces a partial order over the set of all scoring
functions. Let s1 and s2 be two scoring functions on X , the ordering provided
by s1 is better than that induced by s2 when

∀α ∈ (0, 1), MVs1(α) ≤ MVs2(α) .

Typical MV curves are illustrated in Fig. 1. A desirable MV curve increases
slowly and rises near 1, just like the lowest curve of Fig. 1. This corresponds to
the situation where the distribution of the random variable X is much concen-
trated around its modes and the highest values (respectively, the lowest values)
taken by s are located near the modes of F (dx) (respectively, in the tail region
of F (dx)). The MV curve of the scoring function s is then close to the right
lower corner of the Mass Volume space. We point out that, in certain situations,
some parts of the MV curve may be of interest solely, corresponding to large
values of α when focus is on extremal observations (the tail region of the random
variable X) and to small values of α when modes of the underlying distribution
are investigated.

We define the set of optimal scoring functions S∗ as follows. We recall here
that for any set Z ⊂ X , its complementary is denoted by Z = X \ Z.

Definition 3. The set of optimal scoring functions S∗ is the set of scoring
functions s ∈ S such that there exist Z ⊂ X and a function T : Imf → R+

such that

(i) λ(Z ∩ supp(f)) = 0,
(ii) For all x ∈ Z ∩ supp(f), s(x) = T ◦ f(x),
(iii) T|f(Z∩supp(f)) is strictly increasing,

(iv) For λ-almost all x ∈ supp(f), Fs(s(x)) = 0.

One can note that, as expected, the density f and strictly increasing trans-
forms of the density belong to S∗. More generally and roughly speaking, an
optimal scoring function s ∈ S∗ is a strictly increasing transform of the density
λ-almost everywhere on the support of the density. Note also that on the one
hand, if as = sup{t, Fs(t) = 0}, thanks to (i), (ii) and (iii), we have Fs(s(x)) =
Ff (f(x)) > 0 for almost all x ∈ supp(f) (because supp(f) = {x, Ff (f(x)) > 0}
up to subsets of null λ measure as shown in Lemma 1). Therefore s ≥ as λ-
almost everywhere on supp(f). On the other hand, thanks to (iv), Fs(s(x)) = 0
for almost all x ∈ supp(f) and therefore s ≤ as λ-almost everywhere on supp(f).
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Thus the values of s on supp(f) are λ-almost everywhere lower than the values
of s on supp(f), where s is almost everywhere a strictly increasing transform of
the density f .

The result below shows that optimal scoring functions are those whose MV
curves are minimum everywhere.

Proposition 1. (Optimal MV curve) Let assumptions (A1) and (A2) be
fulfilled. The elements of the class S∗ have the same MV curve, equal to MVf ,
and provide the best possible ordering of X ’s elements in regard to the MV curve
criterion:

s∗ ∈ S∗ ⇐⇒ ∀s ∈ S and ∀α ∈ (0, 1), MVs∗(α) ≤ MVs(α) . (2)

In addition, we have: ∀s ∈ S and ∀α ∈ (0, 1),

MVs(α)−MV∗(α) ≤ λ
(
Ω∗

αΔΩs,Q(s,α)

)
, (3)

where MV∗(α) = MVf (α) for all α ∈ (0, 1) and where Δ denotes the symmetric
difference.

From now on we will thus use MV∗ = MVf to denote the MV curve of
elements of S∗. The proof of Proposition 1 can be found in Appendix A. In-
cidentally, notice that, equipped with the notations introduced in 2.2, we have
λ∗(α) = MV∗(α) for all α ∈ (0, 1). We also point out that bound (3) reveals that
the pointwise difference between the optimal MV curve and that of a scoring
function candidate s is controlled by the error made in recovering the specific
minimum volume set Ω∗

α through Ωs,Q(s,α).

Remark 4. In the framework we develop, anomaly scoring boils down to re-
covering the decreasing collection of all level sets of the density function f ,
{Ω∗

α : α ∈ (0, 1)}, without necessarily disposing of the corresponding levels.
Indeed, one may check that any scoring function of the form

s∗(x) =

∫ 1

0

I{x ∈ Ω∗
α}dμ(α) , (4)

where μ(dα) is an arbitrary finite positive measure dominating the Lebesgue
measure on (0, 1), belongs to S∗. Observe that Ff ◦ f corresponds to the case
where μ is chosen to be the Lebesgue measure on (0, 1) in Eq. (4). The anomaly
scoring problem can be thus cast as an overlaid collection of minimum volume
set estimation problems. This observation shall turn out to be very useful when
designing practical statistical learning strategies in Section 6.

We point out that the optimal MV curve provides a measure of the mass
concentration of the random variable X: the lower the curve MV∗, the more
concentrated the distribution f(x)λ(dx). Indeed, the excess mass functional in-
troduced in (Muller and Sawitzki, 1991) can be expressed as t ≥ 0 �→ E(t) =
αf (t)− tλf (t). Hence, we have E(Q∗(α)) = α−Q∗(α)MV ∗(α) for all α ∈ (0, 1).
One may refer to (Polonik, 1995) for results related to the statistical estimation
of density contour clusters and applications to multimodality testing using the
excess mass functional.
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Example 1. (Univariate Gaussian distribution) Let X be random vari-
able with Gaussian distribution N (0, 1), we have MV∗(α) = 2Φ−1((1 + α)/2),
where Φ is the cumulative distribution function of X.

Example 2. (Multivariate Gaussian distribution) Let X ∈ Rd be a mul-
tivariate random variable with Gaussian distribution N (0,Σ). We assume that
Σ is a diagonal matrix and we denote by a1, . . . , ad ∈ R+∗ its diagonal coeffi-
cients. The density level set {x, f(x) ≥ t} is exactly the set {x, xTΣ−1x ≤ ct}
with ct > 0. It is well known that XTΣ−1X ∼ χ2

d, the χ2 distribution with d
degrees of freedom. Thus α−1

f (α) = ct = χ2
d(α), χ

2
d(α) denoting the quantile of

order α of the χ2
d distribution. The set {x, xTΣ−1x ≤ χ2

d(α)} is exactly the ellip-

soid with semi-principal axes of length a1
√

χ2
d(α), . . . , ad

√
χ2
d(α). The formula

of the volume of an ellipsoid gives MV∗(α) = πd/2/Γ(d/2+1)(χ2
d(α))

d/2
∏d

i=1 ai
where Γ is the gamma function.

The following result reveals that the optimal MV curve is convex and provides
a closed analytical form for its derivative. The proof is given in Appendix A.

Proposition 2. (Convexity and derivative) Suppose that assumptions
(A1) and (A2) are satisfied. Then, as f is bounded, the optimal curve MV∗ is
defined on [0, 1). Furthermore,

(i) α ∈ [0, 1) �→ MV∗(α) is convex.
(ii) Let Ff be the cumulative distribution function of the random variable f(X)

and let a = limα→0+ F †
f (α) = sup{t, Ff (t) = 0} ≥ −∞. If Ff is invertible

on (a, F †
f (1)] then MV∗ is differentiable on [0, 1) and

∀α ∈ [0, 1), MV∗′(α) =
1

Q∗(α)
.

The convexity of MV∗ might be explained as follows: when considering den-
sity level sets with increasing probabilities α, their volumes λ(Ω∗

α) increase as
well, but they increase more and more quickly since the mass of the distribution
becomes less and less concentrated.

Elementary properties of MV curves are summarized in the following propo-
sition.

Proposition 3. (Properties of MV curves) For any s ∈ S, the following
assertions hold true.

(i) Invariance. For any strictly increasing function ψ : R+ → R+, we have
MVs = MVψ◦s.

(ii) Monotonicity. The mapping α ∈ (0, 1) �→ MVs(α) is increasing.

Assertion (i) may be proved using the following property of the quantile func-
tion (see e.g. Property 2.3 in (Embrechts and Hofert, 2013)): for any cumulative
distribution function H, any z ∈ R and any α ∈ (0, 1), z ≥ H†(α) if and only if
H(z) ≥ α. Assertion (ii) derives from the fact that the quantile function F †

s is
increasing. Details are left to the reader.
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4. Statistical estimation

In practice, MV curves are unknown, just like the probability distribution of
the random variable X, and must be estimated based on the observed sample
X1, . . . , Xn. Replacing the mass of each level set by its statistical counterpart
in Definition 2 leads to define the notion of empirical MV curve. We set, for all
t ≥ 0,

α̂s(t)
def
=

1

n

n∑
i=1

I{s(Xi) ≥ t} =

∫
X
I{u ≥ t}F̂s(du) , (5)

where F̂s =(1/n)
∑

i≤n δs(Xi) denotes the empirical distribution of the s(Xi), 1≤
i ≤ n. Notice that α̂s takes its values in the set {k/n : k = 0, . . . , n}.

Definition 4. (Empirical MV curve) Let s ∈ S. By definition, the empirical
MV curve of s is the graph of the (piecewise constant) function

M̂Vs : α ∈ [0, 1) �→ λs ◦ α̂−1
s (α) .

Remark 5. (On volume estimation). Except for very specific choices of
the scoring function s (e.g. when s is piecewise constant and the volumes of
the subsets of X on which s is constant can be explicitly computed), no closed
analytic form for the volume λs(t) is available in general and Monte-Carlo pro-
cedures should be used to estimate it (which may be practically challenging in
a high-dimensional setting). Computation of volumes in high dimensions is an
active topic of research (Lovász and Vempala, 2006) and for simplicity, this is
not taken into account in the subsequent analysis.

In order to obtain a smoothed version α̃s(t), a typical strategy consists in

replacing the empirical distribution estimate F̂s involved in (5) by the con-

tinuous distribution F̃s with density f̃s(t) = (1/n)
∑n

i=1 Kh(s(Xi) − t), with
Kh(t) = h−1K(t/h) where K ≥ 0 is a regularizing Parzen-Rosenblatt kernel
(i.e. a bounded square integrable function such that

∫
K(v)dv = 1) and h > 0

is the smoothing bandwidth (see for instance (Wand and Jones, 1994)).

4.1. Consistency and asymptotic normality

The theorem below reveals that, under mild assumptions, the empirical MV
curve is a consistent and asymptotically Gaussian estimate of the MV curve,
uniformly over any subinterval of [0, 1). It involves the assumptions listed below.

(A3) The scoring function s is bounded: ‖s‖∞ < +∞.
(A4) The random variable s(X) has a continuous cumulative distribution func-

tion Fs. Let a = sup{t ∈ R, Fs(t) = 0} ≥ −∞ and b = inf{t ∈ R, Fs(t) =
1} ≤ +∞. The distribution function Fs is twice differentiable on (a, b) and

∀t ∈ (a, b), F ′
s(t) = fs(t) > 0 . (6)
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(A5) There exists c > 0 such that

sup
t∈(a,b)

Fs(t)(1− Fs(t))
∣∣∣ f ′

s(t)

f2
s (t)

∣∣∣ ≤ c < +∞ .

(A6) fs has a limit A > 0 when t tends towards b from the left:

lim
t→b−

fs(t) = A < ∞ .

(A7) The mapping λs is of class C2.

Assumption (A3) implies that F †
s (1) exists and F †

s (1) = b. Note also that
if s is not bounded, one can always consider s′ = arctan ◦s. Indeed s′ takes
its values in [0, π/2) and as arctan is strictly increasing MVs = MVs′ thanks
to Proposition 3. Assumptions (A4) and (A5) are common assumptions for
the strong approximation of the quantile process (see for instance (Csörgő and
Révész, 1978)). Condition (6) and assumption (A5) are respectively equivalent
to fs(F

†
s (α)) > 0 for all α ∈ (0, 1) and

sup
α∈(0,1)

α(1− α)
∣∣∣ f ′

s(F
†
s (α))

f2
s (F

†
s (α))

∣∣∣ ≤ c < +∞ .

Eventually, assumption (A6) is equivalent to: fs has a limit A > 0 when x
tends towards b. The density fs can therefore be extended by continuity to the
interval (a, b]. As A > 0, (6) can then be replaced by fs(t) > 0 for all t ∈ (a, b]
which also gives fs(F

†
s (α)) > 0 for all α ∈ (0, 1]. One can also note that Fs is

thus invertible on (a, b] with inverse F †
s .

In order to state part (ii) of the following theorem, we assume that the prob-
ability space is rich enough in the sense that an infinite sequence of Brownian
bridges can be defined on it.

Theorem 1. Let ε ∈ (0, 1] and s ∈ S. Assume that assumptions (A3)–(A7)
are fulfilled. The following assertions hold true.

(i) (Consistency) With probability one, we have uniformly over [0, 1− ε]:

lim
n→+∞

M̂Vs(α) = MVs(α) .

(ii) (Strong approximation) There exists a sequence of Brownian bridges
{Bn(α), α ∈ [0, 1]}n≥1 such that we almost surely have, uniformly over the
compact interval [0, 1− ε]: as n → ∞,

√
n
(
M̂Vs(α)−MVs(α)

)
= Zn(α) +O(n−1/2 logn) ,

where

Zn(α) =
λ′
s(α

−1
s (α))

fs(α
−1
s (α))

Bn(α), for α ∈ [0, 1− ε] .
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The technical proof is given in Appendix A. One can note from the proof of
assertion (i) that this assertion does not require assumption (A5) to be satisfied.
The proof of assertion (ii) relies on standard strong approximation results for
the quantile process (Csörgő and Révész, 1978, 1981; Csörgő, 1983). Assertion

(ii) means that the fluctuation process {√n(M̂Vs(α)−MVs(α)), α ∈ [0, 1− ε]}
converges in the space of càd-làg functions on [0, 1 − ε] equipped with the sup
norm, to the law of a Gaussian stochastic process {Z1(α), α ∈ [0, 1− ε]}.

Remark 6. Assumption (A6) is required in order to state the results of asser-
tions (i) and (ii) on the interval [0, 1−ε]. However this assumption is restrictive
as it implies that fs is discontinuous at b since A > 0 whereas fs(t) = 0 for
all t > b. Instead of assumption (A6), if one assumes that fs is decreasing
on an interval to the left of b, then the result of assertion (ii) can be obtained
on the interval (0, 1 − ε] with the same rate of convergence if c < 2 and with
the same rate of convergence up to logn and log logn factors if c ≥ 2. In this
case, assertion (i) also holds on (0, 1− ε] (see for instance (Csörgő and Révész,
1978)).

Remark 7. (Asymptotic normality) It results from assertion (ii) in The-

orem 1 that, for any α ∈ (0, 1), the pointwise estimator M̂Vs(α) is asymptoti-

cally Gaussian under assumptions (A3)–(A7). For all α ∈ (0, 1)
√
n(M̂Vs(α)−

MVs(α)) converges in distribution towards N (0, σ2
s), as n → +∞, with σ2

s =
α(1− α)(λ′

s(α
−1
s (α))/fs(α

−1
s (α)))2.

4.2. Confidence regions in the mass volume space

The true MV curve of a given scoring function is unknown in practice and
its performance must be statistically assessed based on a data sample. Beyond
consistency of the empirical curve in sup norm and the asymptotic normality of
the fluctuation process, we now tackle the question of constructing confidence
bands in the MV space.

Definition 5. Based on a sample Dn = (X1, . . . , Xn), a (random) confidence
region for the MV curve of a given scoring function s ∈ S at confidence level η ∈
(0, 1) is any borelian set Rη ⊂ [0, 1]× R+ of the MV space (possibly depending
on Dn) that covers the curve MVs with probability larger than 1− η:

P{MVs ∈ Rη} ≥ 1− η .

In practice, confidence regions shall be of the form of balls in the Skorohod’s
space D([0, 1− ε]) of càd-làg functions on [0, 1− ε] with respect to the sup norm

and with the estimate M̂Vs introduced in Definition 4 as center for some fixed
ε ∈ (0, 1):

B(M̂Vs, ν) =

{
g ∈ D([0, 1− ε]) : sup

α∈[0,1−ε]

|g(α)− M̂Vs(α)| ≤ ν

}
.
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Constructing confidence regions based on the approximation stated in Theorem
1 would require to know the density fs. Hence a bootstrap approach (Efron,
1979) should be preferred. Following in the footsteps of Silverman and Young
(1987), it is recommended to implement a smoothed bootstrap procedure. The
asymptotic validity of such a resampling method derives from a strong approxi-
mation result similar to the one of Theorem 1. Let rn be the fluctuation process
defined for all α ∈ [0, 1− ε] by

rn(α) =
√
n(M̂Vs(α)−MVs(α)) .

The bootstrap approach suggests to consider, as an estimate of the law of the
fluctuation process rn, the conditional law given the original sample Dn =
(X1, . . . , Xn) of the naive bootstrapped fluctuation process

rBoot
n = {

√
n(M̂V

Boot

s (α)− M̂Vs(α))}α∈[0,1) , (7)

where, given Dn, M̂V
Boot

s is the empirical MV curve of the scoring function
s based on a sample of i.i.d. random variables with distribution the empirical
distribution F̂s = (1/n)

∑
i≤n δs(Xi). The difficulty is twofold. First, the target

is a distribution on a path space, namely a subspace of the Skorohod’s space
D([0, 1−ε]) equipped with the sup norm. Second, rn is a functional of the quan-

tile process {F̂ †
s (α)}α∈[ε,1]. The naive bootstrap, which consists in resampling

from the raw empirical distribution F̂s, generally provides bad approximations
of the distribution of empirical quantiles: the rate of convergence for a given
quantile is indeed of order OP(n

−1/4) (Falk and Reiss, 1989) whereas the rate
of the Gaussian approximation is O(n−1/2 logn) (see (25) in Appendix A). The
same phenomenon may be naturally observed for MV curves. In a similar man-
ner to what is usually recommended for empirical quantiles, a smoothed version
of the bootstrap algorithm shall be implemented in order to improve the ap-
proximation rate of the distribution of supα∈[0,1−ε] |rn(α)|, namely, to resample

the data from a smoothed version F̃s of the empirical distribution F̂s. We thus
consider the smooth boostrapped fluctuation process

r∗n = {
√
n(MVBoot

s (α)− M̃Vs(α))}α∈[0,1) , (8)

where, given Dn, MVBoot
s = λs ◦ (αBoot

s )−1 is the empirical MV curve of the
scoring function s based on a sample of i.i.d. random variables with distribution
F̃s and where M̃Vs = λs ◦ α̃−1

s is the smooth version of the empirical MV curve,
α̃−1
s being the generalized inverse of α̃s. The algorithm for building a confidence

band at level 1 − η in the MV space from sampling data Dn = {Xi : i =
1, . . . , n} is described in Algorithm 1.

Before turning to the theoretical analysis of this algorithm, its description
calls a few comments. From a computational perspective, the smoothed boot-
strap distribution P∗(supα∈[ε,1−ε] |r∗n(α)| ≤ ·) must be approximated in its turn,
by means of a Monte-Carlo approximation scheme. Based on the N bootstrap

fluctuation processes obtained, r
∗(j)
n with j = 1, . . . , N , the radius νη then
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Algorithm 1 Smoothed MV curve bootstrap

1: Based on the sample Dn, compute the smoothed version {α̃−1
s (α), α ∈

[0, 1)} = {F̃ †
s (1 − α), α ∈ [0, 1)} of the empirical estimate {α̂−1

s (α), α ∈
[0, 1)}.

2: Plot the smooth MV curve estimate, i.e., the graph of the mapping

α ∈ [0, 1) �→ M̃Vs(α) = λs ◦ α̃−1
s (α) .

3: Draw a bootstrap sample DBoot
n ∼ F̃s | Dn.

4: Based on DBoot
n , compute the smoothed bootstrap version

{(αBoot
s )−1(α), α ∈ [0, 1)} of the empirical estimate {α̂−1

s (α), α ∈ [0, 1)}.
5: Plot the bootstrap MV curve, i.e. the graph of the mapping

α ∈ [0, 1) �→ MVBoot
s (α) = λs ◦ (αBoot

s )−1(α) .

6: Get the bootstrap confidence bands at level 1−η defined by the ball of center
M̂Vs and radius νη/

√
n in D([ε, 1− ε]), where νη is defined by

P∗( sup
α∈[ε,1−ε]

|r∗n(α)| ≤ νη) = 1− η ,

denoting by P∗(.) the conditional probability given the original data Dn.

coincides with the empirical quantile at level 1− η of the statistical population

{supα∈[ε,1−ε] |r
∗(j)
n (α)| : j = 1, . . . , N}. Concerning the number of bootstrap

replications, picking N = n does not modify the rate of convergence. However,
choosing N of magnitude comparable to n so that (1 +N)(1− η) is an integer
may be more appropriate: the (1 − η)-quantile of the approximate bootstrap
distribution is then uniquely defined and this does not impact the rate of con-
vergence neither (Hall, 1986).

4.2.1. Bootstrap consistency

The next theorem reveals the asymptotic validity of the bootstrap estimate pro-
posed above where we assume that the smoothed version F̃s of the distribution
function F̂s is computed at step 1 of Algorithm 1 using a kernel Khn . It requires
the following assumptions.

(B1) The density fs is bounded and of class C3.
(B2) The bandwidth hn decreases towards 0 as n → +∞ in a way that nhn →

+∞, nhn/ log(h
−1
n ) → +∞ and log(h−1

n )/ log logn → +∞.
(B3) The kernel K has finite support and satisfies the following conditions:∫

K(y)dy = 1,
∫
yK(y)dy = 0 and

∫
y2K(y)dy < +∞.

(B4) The kernel K is such that ‖K‖2 < +∞ and is of the form K(y) =
Φ1(P1(y)), P1 being a polynomial and Φ1 a bounded real function of
bounded variation.
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(B5) The kernel K is differentiable with derivative K ′ such that ‖K ′‖2 < +∞
and of the form K ′(y) = Φ2(P2(y)), P2 being a polynomial and Φ2 a
bounded real function of bounded variation.

(B6) The bandwidth hn is such that log(h−1
n )/(nh3

n) tends to 0 as n → +∞.

Assumptions (B1) and (B3) are needed to control the biases supR |E[f̃s]−fs|
and supR |E[f̃s

′
]− f ′

s|. Assumption (B2) on the bandwidth hn and assumption

(B4) (respectively assumption (B5)) are needed to control supR |f̃s − E[f̃s]|
(respectively supR |f̃s

′
−E[f̃ ′

s]|) thanks to the result of Giné and Guillou (2002).

Assumption (B6) ensures that supR |f̃s
′
− f ′

s| tends to 0 almost surely as n →
∞. Assumptions (B3)–(B5) are fulfilled, for instance, by the biweight kernel
defined for all t ∈ R by:

K(t) =
15

16
(1− t2)2 · I{|t| ≤ 1} . (9)

Theorem 2. (Asymptotic validity) Let ε ∈ (0, 1) and let P∗(.) denote
the conditional probability given the original data Dn. Suppose that assumptions
(A3)–(A5), (A7) and (B1)–(B6) are fulfilled. Then, the distribution estimate
P∗(supα∈[ε,1−ε] |r∗n(α)| ≤ ·) given by Algorithm 1 is such that we almost surely
have

sup
t∈R

∣∣∣∣∣P∗

(
sup

α∈[ε,1−ε]

|r∗n(α)| ≤ t

)
− P

(
sup

α∈[ε,1−ε]

|rn(α)| ≤ t

)∣∣∣∣∣ = O(wn).

where wn =
√
log(h−1

n )/nhn + h2
n.

The proof is given in Appendix A. Note that under assumption (B2) wn

tends to 0 as n → +∞. The primary tuning parameters of Algorithm 1 concern
the bandwidth hn. The optimal bandwidth is obtained by minimizing the term
wn with respect to hn. This leads to hn ∼ (log n/n)1/5 and an approximation
error of order O((log n/n)2/5) for the bootstrap estimate (see (Stute, 1982) for
details on the derivation of the optimal bandwidth). Notice that assumptions
(B2) and (B6) are fulfilled by such a bandwidth.

Although the rate of the bootstrap estimate is slower than that of the Gaussian
approximation, the smoothed bootstrap method remains very appealing from a
computational perspective: it is indeed very difficult to build confidence bands
from simulated Brownian bridges in practice. Finally, as said above, it should
be noticed that a non smoothed bootstrap of the MV curve would lead to worse
approximation rates, of the order OP(n

−1/4) namely, see (Falk and Reiss, 1989).

Remark 8. In the result of Theorem 2 we consider the supremum over α ∈
[ε, 1− ε] instead of the supremum over α ∈ [0, 1− ε] for several reasons. One of
the reasons is that to obtain a rate of convergence for the bootstrap approximation
we need to have the boundedness of the density of the supremum of the absolute
value of the Gaussian process Z1. This is almost immediate from the result of
Pitt and Tran (1979) if the supremum is over [ε, 1−ε] (see the proof of Theorem
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2 in Appendix A for more details). This is more complicated if the supremum is
over [0, 1− ε]. Using the result of Lifshits (1987), a closer look at the Gaussian
process Z1 might lead to the boundedness of the density of the supremum of |Z1|
over [0, 1−ε]. Another reason is that several arguments in the proof also use the
fact that inf [ε,1−ε] fs ◦ α−1

s > 0. However we do not have inf [0,1−ε] fs ◦ α−1
s > 0

as under the assumptions of Theorem 2 fs is continuous on R and therefore
fs(α

−1
s (0)) = 0.

4.2.2. Illustrative numerical experiments

Let x ∈ R �→ N (μ,Σ)(x) ∈ R denote the density of a Gaussian distribution with
mean μ and covariance Σ. We consider a two-dimensional Gaussian mixture
whose density is given by:

∀x ∈ R, f(x) = 0.5N (μ1,Σ1)(x) + 0.5N (μ2,Σ2)(x) (10)

where μ1 = (0, 0), μ2 = (−1,−1),

Σ1 =

(
2 2
2 4

)
and Σ2 =

(
2 0
0 2

)
.

Density level sets of such a distribution are shown in Fig. 3(a). We draw a sample

of size n = 500 from this two-dimensional Gaussian mixture and compute M̂Vf .
We then apply Algorithm 1 using the biweight kernel defined in (9) with a
bandwidth h = 0.005 to obtain a 90% confidence band. We take ε = 0.05
and N = n bootstrap replications to approximate P∗(supα∈[ε,1−ε] |r∗n(α)| ≤
·). All the volumes required to compute the MV curves are estimated using
Monte-Carlo integration, drawing uniformly 1,000,000 samples in the hypercube
enclosing the data. Fig. 2 shows the 90% confidence curves.

In this section, statistical estimation of the true MV curve of a given scoring
function s has been investigated, as well as the problem of building confidence
regions in the Mass Volume space. In all the rest of the paper, focus is on
statistical learning of a nearly optimal scoring function s based on a training
sample X1, . . . , Xn with respect to the MV curve criterion.

5. A M-estimation approach to anomaly scoring

Now we are are equipped with the concept of Mass Volume curve, the anomaly
scoring task can be formulated as the building of a scoring function s, based
on the training set X1, . . . , Xn, such that MVs is as close as possible to the
optimum MV∗. Due to the functional nature of the criterion performance, there
are many ways of measuring how close the MV curve of a scoring function
candidate and the optimal one are. The Lp-distances, for 1 ≤ p ≤ +∞, provide
a relevant collection of risk measures. Let ε ∈ (0, 1) be fixed (take ε = 0 if
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Fig 2. Empirical MV curve and 90% confidence interval curves obtained with the smooth
bootstrap approach. Note that it seems that the 90% confidence interval curves get closer to
the empirical MV curve as α increases but this is just an optical illusion.

λ(supp(f)) < +∞) and consider the losses related to the L1-distance and that
related to the sup norm:

d1(s, f) =

∫ 1−ε

0

|MVs(α)−MV∗(α)|dα ,

d∞(s, f) = sup
α∈[0,1−ε]

{MVs(α)−MV∗(α)} .

Observe that, by virtue of Proposition 1, the ‘excess-risk’ decomposition applies
in the L1 case and the learning problem can be directly tackled through standard
M -estimation arguments:

d1(s, f) =

∫ 1−ε

0

MVs(α)dα−
∫ 1−ε

0

MV∗(α)dα .

Hence, possible learning techniques could be based on the minimization, over a
set S0 ⊂ S of candidates, of empirical counterparts of the area under the MV

curve, such as
∫ 1−ε

0
M̂Vs(α)dα. In contrast, the approach cannot be straightfor-

wardly extended to the sup norm situation. A possible strategy is to combine
M -estimation with approximation methods so as to ‘discretize’ the functional
optimization task. This strategy can be implemented as follows. First, we replace
the unknown target curve MV∗ by an approximation that can be described by a
finite number of scalar parameters, by a piecewise constant approximant MV∗

σ

whose breakpoints are given by a subdivision σ : 0 < α1 < · · · < αK = 1 − ε
precisely, and that is itself a MV curve, namely the MV curve of the piecewise
constant scoring function

s∗σ(x) =
K∑

k=1

(K − k + 1) · I{x ∈ Ω∗
αk

\ Ω∗
αk−1

} (11)
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which is indeed a piecewise constant approximant of MV∗ related to the mesh-
grid σ (see (12)). Then, the L∞-risk can be decomposed as the sum of two
terms

d∞(s, f) ≤ sup
α∈[0,1−ε]

|MVs(α)−MV∗
σ(α)|+ sup

α∈[0,1−ε]

{MV∗
σ(α)−MV∗(α)} ,

the second term on the right-hand side being viewed as the bias of the statistical
method. Restricting optimization to the first term on the right-hand side of the
L∞-risk decomposition, the problem thus boils down to recovering the bilevel
sets R∗

k = Ω∗
αk

\ Ω∗
αk−1

for k = 1, . . . ,K as we obviously have

s∗σ ∈ argmin
s∈S

sup
α∈[0,1−ε]

|MVs(α)−MV∗
σ(α)| .

This simple observation paves the way for designing scoring strategies relying
on the estimation of a finite number of minimum volume sets.

In the next section, we describe a learning algorithm for anomaly ranking,
that can be viewed to a certain extent as a statistical version of an adaptive
approximation method by piecewise constants introduced in (DeVore, 1987) (see
also Section 3.3 in (DeVore, 1998)), to build a piecewise constant estimate of the
optimal curve MV∗ and a nearly optimal piecewise constant scoring function,
mimicking s∗σ. The subdivision σ is entirely learnt from the data, in order to
produce accurate estimates of MV∗ in an adaptive fashion: looking at Fig. 1, an
ideal meshgrid should be loose where MV∗ is nearly flat or grows very slowly
(‘near’ 0) and refined when it exhibits high degrees of variability (as one gets
closer to 1).

Before describing and analyzing a prototypal approach to MV curve opti-
mization, a few remarks are in order.

Remark 9. (Connections with supervised ranking) Based on the ob-
servation made in Remark 3, one may see that, in the specific case where the
support of F (dx) coincides with the unit square [0, 1]d, the MV curve of any
scoring function s(x) corresponds to the reflection about the first diagonal of the
ROC curve of s(x) when the ‘negative distribution’ is the uniform distribution
on [0, 1]d and the ‘positive distribution’ is F (dx). As shown in (Clémençon and
Robbiano, 2014), this permits to turn unsupervised ranking into supervised rank-
ing in the compact support situation and to exploit supervised ranking algorithms
combined with random sampling to solve the MV curve minimization problem.
A similar idea had been proposed in (Steinwart, Hush and Scovel, 2005) to turn
anomaly detection into supervised binary classification.

Remark 10. (Plug-in) As the density f is an optimal scoring function, a
natural strategy would be to estimate first the unknown density function f by
means of (non-) parametric techniques and next use the resulting estimator as a
scoring function. Beyond the computational difficulties one would be confronted
to for large or even moderate values of the dimension, we point out that the goal
pursued in this paper is by nature very different from density estimation: the
local properties of the density function are useless here, only the ordering of the
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possible observations x ∈ X it induces is of importance (see Proposition 1). One
may also show that a candidate f1 can be a better approximation of the density
f than a candidate f2 for the Lq loss say, but a worse approximation for the
MV curve criterion (see Example 3).

Example 3. Let f be the density of the truncated normal distribution with
support [0, 1], mean equal to 0.5 and variance equal to 0.0225. Let’s consider
f1 : x ∈ R �→ f(x− 0.05) ∈ R and f2 defined for all x ∈ R as

f2(x) =

{
f(x) + ‖f1 − f‖L2 + 2 if x ∈ [0, 1]

0 otherwise .

We thus have ‖f2−f‖L2 = ‖f1−f‖L2 +2 > ‖f1−f‖L2 . Hence f1 is a better
approximation of f with respect to the L2 distance. However MVf2 < MVf1 and
f2 is a better scoring function than f1 with respect to the MV curve criterion.
Indeed one can first show that MVf2 = MVf . This thus gives MVf2 = MV∗ ≤
MVf1 . Now let α ∈ (0, 1), Ωf1,Q(f1,α) = {x, f1(x) ≥ Q(f1, α)} is of the form
[0.05−xα, 0.05+xα] with xα > 0 and F (Ωs,Q(f1,α)) ≥ α. The set Ωf,Q∗(α) is of
the form [−x∗

α, x
∗
α] with x∗

α > 0 and F (Ωf,Q∗(α)) = α. If MVf1(α) = MV∗(α),
i.e., λ(Ωf1,Q(f1,α)) = λ(Ωf,Q∗(α)), then on the one hand xα = x∗

α and on the
other hand Ωf1,Q(f1,α) = Ωf,Q∗(α) λ almost everywhere by the uniqueness of the
solution of (1) which is impossible. Eventually, MVf2 < MVf1 . One can also
observe that in contrary to f1, f2 preserves the order induced by f .

6. The A-Rank algorithm

Now that the anomaly scoring problem has been rigorously formulated, we pro-
pose a statistical method to solve it and establish learning rates for the sup
norm loss.

6.1. Piecewise constant scoring functions

We focus on scoring functions of the simplest form, piecewise constant functions.
Let K ≥ 1 and consider a partition W of the feature space X in K pairwise
disjoint subsets of finite Lebesgue measure: C1, . . . , CK and the subset X\∪K

k=1Ck.
When λ(supp(f)) is finite, one may suppose X \ ∪K

k=1Ck of finite Lebesgue
measure. Then, define the piecewise constant scoring function given by:

∀x ∈ X , sW(x) =

K∑
k=1

(K − k + 1) · I{x ∈ Ck} .

Its piecewise constant MV curve is given by: ∀α ∈ [0, F (∪K
k=1Ck)),

MVsW (α) =
K−1∑
k=0

λk+1 · I{α ∈ [αk, αk+1)} , (12)

where α0 = 0, αk = F (∪k
j=1Cj) and λk = λ(∪k

j=1Cj) for all k ∈ {1, . . . ,K}. If
λ(supp(f)) is finite, MVsW can be defined on the whole interval [0, 1].
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6.2. Adaptive approximation of the optimal MV curve

Using ideas developed in (DeVore, 1987) (see also Section 3.3 in (DeVore, 1998)),
we propose to design an adaptive approximation scheme instead of a subdivision
fixed in advance. In such a procedure, the subdivision is progressively refined by
adding new breakpoints, as further information about the local variation of the
target MV∗ is gained: the subdivision will be coarse where the optimal MV∗ is
almost flat and fine where it grows rapidly.

We restrict ourselves only to dyadic subdivisions with breakpoints αj,k =
k(1 − ε)/2j , with j ∈ N and k ∈ {0, . . . , 2j} and to partitions of the interval
[0, 1−ε] produced by recursive dyadic partitioning: any dyadic subinterval Ij,k =
[αj,k, αj,k+1) is possibly split into two halves, producing two siblings Ij+1,2k and
Ij+1,2k+1, depending on the local properties of the target MV∗. This adaptive
estimation algorithm can be viewed as a top-down search strategy through a
binary tree structure.

A binary tree T is a tree where all internal nodes have exactly two children.
The root of the tree T represents the interval [0, 1− ε] and each node of depth
j a subinterval Ij,k. The two children resulting of a split of the node Ij,k are
the nodes Ij+1,2k and Ij+1,2k+1. A terminal node or a leaf is a node without
children. In the sequel, Ij,k will denote interchangeably the interval and the
related node. Equipped with this flexible tree structure, T define a possibly
very heterogeneous subdivision σT of [0, 1− ε]

The approximant associated with the the binary tree T is given by: ∀α ∈
[0, 1− ε],

MVσT (α) =
∑
j,k

Ij,k leaf

MV∗(αj,k+1) · I{α ∈ Ij,k}

where the sum is over all the j, k such that Ij,k is a leaf. In order to decide
whether a subinterval I = [α1, α2] ⊂ [0, 1− ε] should be split or not, we use the
local error on the subinterval I defined by

E(I) = MV∗(α2)−MV∗(α1) .

The local error E(I) provides a simple way of estimating the variability of
the nondecreasing function MV∗ on the interval I. This measure is nonnegative
and additive: for any siblings I1 and I2 of the same subinterval I,

E(I) = E(I1) + E(I2) .

From (DeVore, 1987), we know that E controls the approximation rate of MV∗

by a constant on any interval I in the sense that:

inf
c∈[0,∞)

‖MV∗(.)− c‖I ≤ E(I) ,

where for any function g : R → R, ‖g‖I denotes the sup norm over the interval I.
Given a tolerance τ > 0, the general concept of the algorithm generating a

binary tree T and leading to its associated approximant is as follows: if E(I) > τ ,
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the interval I is split in two siblings, otherwise I is not split and becomes a leaf.
If the algorithm ends we thus have:

sup
α∈[0,1−ε]

{MV∗
σT (α)−MV∗(α)} ≤ τ.

An illustration is given in Fig. 3: Fig. 3(a) shows the piecewise constant
approximant of MV∗ as well as the corresponding piecewise scoring function
sT (x) and Fig. 3(b) shows the related binary tree.

6.3. Empirical adaptive estimation of the optimal MV curve

The adaptive approximation procedure described above can be turned itself into
an adaptive estimation technique. As the optimal curve MV∗ is unknown, the
local error E(I) on a subinterval I is estimated by its empirical counterpart

Ê(I) = λ(Ω̂α2)− λ(Ω̂α1) ,

where Ω̂α is an estimation of the minimum volume set Ω∗
α. Let G be a class

of measurable subsets of the feature space X of finite Lebesgue measure and
α ∈ (0, 1). The empirical minimum volume set Ω̂α related to the class G and
level α is the solution of the optimization problem:

inf
Ω∈G

λ(Ω) subject to F̂ (Ω) ≥ α− φ , (13)

where φ is a penalty term related to the complexity of the class, referred to as
the penalty parameter. The accuracy of the solution depends on the choices for
the class G and for the penalty parameter (see (Scott and Nowak, 2006)). In
this paper, we do not address the issue of designing algorithms for empirical
minimum volume set estimation, we refer to Section 7 of (Scott and Nowak,
2006) for a description of off-the-shelf methods documented in the literature,
including partition-based techniques.

As E(I), the empirical local error Ê(I) is nonnegative and additive:

Ê(I) = Ê(I1) + Ê(I2)

for any siblings I1 and I2 of the same subinterval.

Splitting criterion The empirical local error Ê will serve as a splitting cri-
terion. Given a tolerance τ > 0, if Ê(I) > τ , the interval I is split in two

subintervals I1 and I2. If Ê(I) ≤ τ , the interval I is not split and is a leaf of the
tree T .

Stopping criterion One can observe that the estimation algorithm does not
necessarily terminate for any given tolerance τ > 0. Indeed, as F̂ (Ω) ∈ {k/n :

k = 0, . . . , n} for any Ω ∈ G, the function λ̂ : α ∈ [0, 1) �→ λ(Ω̂α) ∈ R is a
piecewise constant function with breakpoints {k/n+ φ : k = 0, . . . , n− 1}. This
follows by observing that, for any α ∈ (k/n+ φ, (k + 1)/n+ φ], 0 ≤ k ≤ n− 1,
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Fig 3. Illustration of the output of the adaptive approximation by piecewise constants of MV∗

for a tolerance τ = 20 and where MV∗ = MVf , f being the density given in (10). Note that
this algorithm is run assuming that we know f and therefore that we have access to MV∗ and
the minimum volume sets {Ω∗

α, α ∈ (0, 1)}.

the solution of the empirical optimization problem (13) is Ω̂(k+1)/n+φ. Therefore
if τ is strictly lower than the minimum of the amplitude of the jumps of the
piecewise constant function λ̂, the algorithm does not stop.
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However, the fact that the function λ̂ is a piecewise constant function tells us
that the estimation algorithm should stop when the level jmax = �logn/ log 2�+1
is reached, where �·� denotes the floor part function. Indeed if j = jmax, the
interval Ij,k = [α1, α2] is such that α2 − α1 < 1/n. This either means that
α1 and α2 belong to the same interval (k/n + φ, (k + 1)/n + φ] or that α1 ∈
(k/n+ φ, (k + 1)/n+ φ] and α2 ∈ ((k + 1)/n+ φ, (k + 2)/n+ φ]. In the former

case λ(Ω̂α2) = λ(Ω̂α1) and Ê(Ij,k) = 0 ≤ τ . In the latter case, Ê(Ij,k) is equal to
the amplitude of the jump of λ̂ at (k+1)/n+φ. If this amplitude is lower than
τ , Ij,k is a leaf. If this amplitude is strictly greater than τ , we should normally

split Ij,k. However this split will not improve the error Ê as Ê cannot be lower

than the amplitude of the jump of λ̂. We therefore add a condition j < jmax to
the algorithm. This ensures that the algorithm terminates while not changing
the output when τ is greater that the maximum of the amplitudes of the jumps
of λ̂. Note however that we do not necessarily have Ê(Ij,k) ≤ τ for all j, k such
that Ij,k is a leaf.

Algorithm 2 Adaptive estimation of the optimal curve MV∗

1: Inputs: training set, penalty φ, tolerance τ
2: Create a binary tree T with root node I0,0 = [0, 1− ε]
3: Create an empty list of nodes L
4: Add the node I0,0 to the list L
5: while L is not empty do
6: Get first element of S: node Ij,k = [α1, α2]
7: if j < jmax then
8: Compute Ê(Ij,k) = λ(Ω̂α2)− λ(Ω̂α1) where Ω̂α is the solution of (13)

9: if Ê(Ij,k) > τ then
10: Split Ij,k in two siblings Ij+1,2k and Ij+1,2k+1

11: Add the node Ij+1,2k to L
12: Add the node Ij+1,2k+1 to L
13: end if
14: end if
15: end while
16: Output: Let σ̂τ denote the collection of the dyadic levels αj,k corresponding

to the leafs of the tree Ij,k.

M̂V∗(α) =
∑
j,k

Ij,k leaf

λ(Ω̂αj,k+1
) · I{α ∈ Ij,k} =

∑
j,k

αj,k∈σ̂τ

λ(Ω̂αj,k+1
) · I{α ∈ Ij,k} .

The adaptive estimation method is summarized in Algorithm 2. We denote
by σ̂τ : 0 = α0 < · · · < αK̂ = 1 − ε the subdivision output by the algorithm
such that the empirical piecewise constant estimator of MV∗ (and of MV∗

σ̂τ
) is
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given by

∀α ∈ [0, 1− ε], M̂V∗(α) =
K̂−1∑
k=0

λ(Ω̂αk+1
) · I{α ∈ [αk, αk+1)} .

Its bias incorporates in particular that caused by the approximation/discretiza-
tion stage inherent to the method.

6.4. The anomaly ranking algorithm A-Rank

The goal pursued is actually to build a scoring function ŝ(x) whose MV curve is

asymptotically close to the empirical estimate M̂V∗. In this respect, one should

pay attention to the fact that M̂V∗ is not a MV curve in general. Indeed, the
sequence of estimated minimum volume sets Ω̂αk

, k ∈ {0, . . . , K̂} sorted by
increasing order of their mass αk, is not necessarily increasing (for the inclusion),
in contrast to the true minimum level sets Ω∗

αk
. This explains the monotonicity

step of the following algorithm.
The A-Rank algorithm is implemented in two stages. Stage 1 consists in

running Algorithm 2 to find the breakpoints α0 = 0 < α1 < · · · < αK̂ = 1− ε <

1 and the corresponding empirical minimum volume sets Ω̂α0 , . . . , Ω̂α
K̂
. Stage

2 consists in the monotonicity step before overlaying the estimated sets. The
statistical learning method is described at length in Algorithm 3.

Before analyzing the statistical performance of the A-rank algorithm, a few
remarks are in order.

Notice first that we could alternatively build a monotone sequence of subsets
(Ω̃k)0≤k≤K̂ , recursively through: Ω̃K̂ = Ω̂K̂ and Ω̃k = Ω̂k ∩ Ω̃k+1 for k ∈ {K̂ −
1, . . . , 0}. The results established in the sequel straightforwardly extend to this
construction.

One obtains as a byproduct of the algorithm a rough piecewise constant
estimator of the (optimal scoring) function (Ff ◦ f)(x), namely

∑K
k=1(αk+1 −

αk) · I{x ∈ Ω̃k}, the Riemann sum approximating the integral (4) when μ is the
Lebesgue measure.

6.5. Performance bounds for the A-Rank algorithm

We now prove a result describing the performance of the scoring function pro-
duced by the algorithm proposed in the previous section to solve the anomaly
scoring problem, as formulated in Section 5. The following assumptions are re-
quired.

(C1) ∀α ∈ [0, 1− ε], Ω∗
α ∈ G.

(C2) Let (εi)i≥1 be a Rademacher chaos independent from the Xi’s. The
Rademacher average given by

Rn = E

[
sup
Ω∈G

1

n

∣∣∣∣∣
n∑

i=1

εi · I{Xi ∈ Ω}
∣∣∣∣∣
]
, (14)
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Algorithm 3 A-Rank

1: Inputs: training set, penalty Φ, tolerance τ
2: Get (αk, Ω̂αk

)0≤k≤K̂ from Algorithm 2

3: Monotonicity step: Ω̃α0 = Ω̂α0

4: for k ∈ {1, . . . , K̂} do

Ω̃αk
= Ω̂αk

∪ Ω̃αk−1

5: end for
6: Output:

ŝ(x) =

K̂∑
k=0

(K̂ − k + 1) · I{x ∈ Ω̃αk
\ Ω̃αk−1

}

where the expectation is over all the random variables, is such that for all
n ≥ 1, Rn ≤ Cn−1/2, where C > 0 is a constant.

Assumption (C2) is very general, it is satisfied in particular when the class
G is of finite VC dimension, see (Koltchinskii, 2006). We recall here that for
δ ∈ (0, 1) we have (Scott and Nowak, 2006):

F
({

sup
Ω∈G

|F̂ (Ω)− F (Ω)| > φn(δ)
})

≤ δ (15)

with ∀n ≥ 1,

φn(δ) = 2Rn +

√
log(1/δ)

2n
. (16)

Therefore assumption (C2) says that the rate of uniform convergence of true
to empirical probabilities is of the order OP(n

−1/2). Assumption (C1) is in
contrast very restrictive, it could be however relaxed at the price of a much
more technical analysis, involving the study of the bias in empirical minimum
volume set estimation under adequate assumptions on the smoothness of the
boundaries of the Ω∗

α’s, like in Tsybakov (1997) for instance (see Remark 11
below).

We state a rate of convergence for Algorithm 2. The following assumption
shall be required.

(C3) The function MV∗ is differentiable on [0, 1) with derivative MV∗′(α) =
1/Q∗(α) for all α ∈ [0, 1). Futhermore the derivative MV∗′ belongs to the
space L logL of Borel functions g : (0, 1) → R such that:

‖g‖L logL
def
=

∫ 1

0

(1 + log |g(α)|)|g(α)|dα < +∞ .

As explained in (DeVore, 1987), the space L logL contains all spaces Lp,
p > 1 but is strictly contained in L1.
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Theorem 3. Let δ ∈ (0, 1). Suppose that assumptions (A1),(A2) and (C1)–
(C3) hold true. Take τ = 5φn(δ)/Q

∗(1 − ε) with φn(δ) as in (16). Then we
have with probability at least 1− δ:

∀n ≥ 1, sup
α∈[0,1−ε]

{
M̂V∗(α)−MV∗(α)

}
≤ 1

Q∗(1− ε)

(
11φn(δ) +

1

n

)
.

In addition, there exists a constant C > 0 such that with probability at least 1−δ
the number of terminal nodes card(σ̂τ ) output by Algorithm 2 is such that

card(σ̂τ ) ≤ CQ∗(1− ε)
‖MV∗′‖L logL

φn(δ)
.

The proof of this result can be found in Appendix A. Its argument essentially
combines the analysis of the approximation scheme described in Section 6.2 and
the generalization bounds for empirical minimum volume sets established in in
(Scott and Nowak, 2006), see Theorem 3 and Lemma 19 therein. Here, the rate
obtained is not proved to be optimal in the minimax sense, lower bounds will
be investigated in a future work.

Corollary 1. Suppose that assumptions of Theorem 3 are satisfied. Given as-
sumption (C2), we have with probability at least 1− δ, ∀n ≥ 1,

sup
α∈[0,1−ε]

{
M̂V∗(α)−MV∗(α)

}
≤ 1

Q∗(1− ε)

(
11 ·

(
2C√
n
+

√
log(1/δ)

2n

)
+

1

n

)
.

To derive the rate of convergence of the MV curve of the estimated scoring
function ŝ towards MV∗ we need the following assumption on the density f :

(C4) There exist constants γ ≥ 0 and C > 0 such that for all t > 0 sufficiently
small

sup
q>0

λ({x, |f(x)− q| � t}) � Ctγ .

This condition (stated with P instead of λ) was first introduced in (Polonik,

1995) and used in (Polonik, 1997) to derive rates of convergence of F (Ω̂αΔΩ∗
α).

It is also used in (Rigollet and Vert, 2009) to obtain fast rates for plug-in esti-
mators of density level sets. The exponent γ controls the slope of the function
f around any level q > 0. It is related to Tsybakov’s margin assumption stated
for the binary classification framework. The relation between Tsybakov’s mar-
gin assumption and the γ-exponent assumption is given in (Steinwart, Hush and
Scovel, 2005).

Theorem 4. Let δ ∈ (0, 1). Suppose that assumptions (A1),(A2) and (C1)–
(C4) hold true. Then, with probability at least 1− δ,

sup
α∈[0,1−ε]

{
MVŝ(α)−MV∗(α)

}
= O

(
n− γ

4(1+γ)

)
.
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Notice that the convergence rate is always slower than n−1/4. Furthermore,
because of assumption (C1), the convergence rate only depends on the dimen-
sion through the parameter γ (refer to (Polonik, 1995) for examples of this
parameter). However, assumption (C1), made here for simplicity’s sake, is very
restrictive and relaxing this assumption is discussed in Remark 11.

Remark 11. (Bias analysis) Whereas the bias resulting from the discretiza-
tion of the anomaly ranking problem discussed in Section 6.2 is taken into ac-
count in the present rate bound analysis, that related to the approximation of the
minimum volume sets Ω∗

α has been neglected here for simplicity’s sake (assump-
tion (C1)). We point out that, under smoothness assumptions on the density
sublevel sets, it is possible to control such a bias term. Indeed, consider for in-
stance the case where the boundary ∂Ω∗

α is of finite perimeter per(∂Ω∗
α) < ∞

(note that this is the case as soon as f(x) is of bounded variation, the boundary
being then ∂Ω∗

α = {x ∈ X : f(x) = t∗α} by virtue of f ’s continuity). In this
case, if G = Gj is the collection of all subsets of Rd obtained by binding together
an arbitrary number of hypercubes of side length 2−j, cartesian products of in-
tervals of the form [k/2j , (k + 1)/2j) for k ∈ Z, the bias term inherent to the
estimation of the minimum volume set Ω∗

α is bounded by per(∂Ω∗
α)2

−jd, up to a
multiplicative constant (see Proposition 9.7 in (Mallat, 1990)). Smaller bounds
can be naturally established under more restrictive assumptions involving a reg-
ularity parameter θ of ∂Ω∗

α, such as its box dimension. Although the optimal
choice for j would then depend on θ, a standard fashion of nearly achieving the
optimal rate of convergence is to perform model selection (see Section 4 in (Scott
and Nowak, 2006)).

The general approach described above can be extended in various ways. The
class G over which minimum volume set estimation is performed (and the penalty
parameter as well) could vary depending on the mass target α. Additionally
assumption (C1) could be relaxed as discussed in Remark 11. In such a case, if
ΩG

α denotes the solution of the minimum volume set optimization problem (1)

over the class G, the error term λ(Ω̂α) − λ(Ω∗
α) could be decomposed into the

sum of a stochastic error and an approximation error:(
λ(Ω̂α)− λ(ΩG

α)
)
+
(
λ(ΩG

α)− λ(Ω∗
α)
)
.

The choice of the class G should then balanced the two errors. On the one hand,
if the class G is small, e.g. of finite VC dimension, then the stochastic error
can be controlled thanks to assumption (C2) but the approximation error may
be very large for some distributions. On the other hand, if the class G is large,
e.g. of infinite VC dimension, then the stochastic error will be very large for
some distributions. A model selection approach could thus be incorporated, so
as to select an adequate class G (refer to Section 4 in (Scott and Nowak, 2006)).

In the present analysis, we have restricted our attention to a truncated part
of the MV space, corresponding to mass levels in the interval [0, 1 − ε] and
avoiding thus out-of-sample tail regions (in the case where supp(f) is of infinite
Lebesgue measure). An interesting direction for further research could consist
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in investigating the accuracy of anomaly scoring algorithms when letting ε = εn
slowly decay to zero as n → +∞, under adequate assumptions on the asymptotic
behavior of MV∗.

Finally, we emphasize that the A-Rank algorithm is prototypal, the essen-
tial objective of its description/analysis in this paper is to provide an insight
into the nature of the anomaly scoring issue, viewed here as a continuum of
minimum volume set estimation problems. Beyond the possible improvements
mentioned above (e.g. target mass level dependent classes G), the main lim-
itation for the practical implementation of such an approach arises from the
apparent lack of minimum volume set estimation techniques that can be scaled
to high-dimensional settings documented in the literature (except the dyadic
recursive partitioning method considered in (Scott and Nowak, 2006), see Sec-
tion 6.3 therein). However, as observed in (Steinwart, Hush and Scovel, 2005)
(see also (Clémençon and Robbiano, 2014)), supervised methods combined with
sampling procedures can be used for this purpose in moderate dimensions. Refer
also to Remark 9.

7. Conclusion

Motivated by a wide variety of applications including health monitoring of com-
plex infrastructures or fraud detection for instance, we have formulated the issue
of learning how to rank observations in the same order as that induced by the
density function, which we called anomaly scoring here. For this problem, much
less ambitious than estimation of the local values taken by the density, a func-
tional performance criterion, the Mass Volume curve namely, is proposed. What
MV curve analysis achieves for unsupervised anomaly detection is quite akin to
what ROC curve analysis accomplishes in the supervised setting.

The statistical estimation of MV curves has been investigated from an asymp-
totic perspective and we have provided a strategy, where the feature space is
overlaid with a few well-chosen empirical minimum volume sets, to build a scor-
ing function with statistical guarantees in terms of rate of convergence for the
sup norm in the MV space.
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Appendix A: Proofs

A.1. Properties of the MV curve

To prove Proposition 1 we need the following lemma.
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Lemma 1. The support of the density supp(f) = {x, f(x) > 0} is equal to the
set Zf = {x, Ff (f(x)) > 0} up to subsets of null λ measure, i.e.

λ(supp(f)ΔZf ) = 0 .

The proof is deferred to Appendix B.

Proof of Proposition 1. We start by proving that all elements of S∗ have the
same MV curve equal to MVf . One can first show that for all s ∈ S and all
α ∈ (0, 1), α−1

s (α) = F †
s (1− α) = Q(s, α). Let s∗ ∈ S∗ and let α ∈ (0, 1),

MVs∗(α) = λ{x, s∗(x) ≥ F †
s∗(1− α)} = λ{x, Fs∗(s

∗(x)) ≥ 1− α}
= λ{x ∈ supp(f), Fs∗(s

∗(x)) ≥ 1− α}
+ λ{x ∈ supp(f), Fs∗(s

∗(x)) ≥ 1− α}

where the second equality holds because for any x and any α ∈ (0, 1), s∗(x) ≥
F †
s∗(1−α) if and only if Fs∗(s

∗(x)) ≥ 1−α (see e.g. Property 2.3 in (Embrechts
and Hofert, 2013)). Thanks to assertion (iv) in the definition of S∗, for x ∈
supp(f), Fs∗(s

∗(x)) = 0 and as 1 − α > 0, the term of the last line of the
previous equation is equal to 0. Using the notations introduced in the definition
of S∗, the term λ{x ∈ supp(f), Fs∗(s

∗(x)) ≥ 1 − α} can be decomposed as
follows:

λ{x ∈ supp(f)∩Z, Fs∗(s
∗(x)) ≥ 1−α}+λ{x ∈ supp(f)∩Z, Fs∗(s

∗(x)) ≥ 1−α} .

The first term is lower than λ(supp(f) ∩ Z) = 0 (thanks to assertion (i) in the
definition of S∗) and is therefore equal to 0. We deal with the second term as
follows. Let x ∈ supp(f) ∩ Z,

Fs∗(s
∗(x)) = P(s∗(X) ≤ s∗(x))

= P(X ∈ supp(f), s∗(X)≤ s∗(x))+P(X ∈ supp(f), s∗(X) ≤ s∗(x)) .

The second term is lower than P(X ∈ supp(f)) = 0 and is therefore equal to 0.
Thanks again to assertion (i), the first term is equal to

P(X ∈ supp(f) ∩ Z, s∗(X) ≤ s∗(x)) = P(X ∈ supp(f) ∩ Z, f(X) ≤ f(x))

where we also used assertions (ii) and (iii). As done above for s∗, this last term
can be shown to be equal to Ff (f(x)). Therefore,

λ{x ∈ supp(f)∩Z, Fs∗(s
∗(x)) ≥ 1−α} = λ{x ∈ supp(f)∩Z, Ff (f(x)) ≥ 1−α}

and as done above for s∗, this can be shown to be equal to MVf (α).
We now show (3) and =⇒ in (2). Let s ∈ S, α ∈ (0, 1). We have,

MVs(α)−MV∗(α) = λ(Ωs,Q(s,α))− λ(Ω∗
α) ≤ λ(Ω∗

αΔΩs,Q(s,α)) .

Now let s∗ ∈ S∗. As shown above, we have MVs∗ = MVf = MV∗. Furthermore,
F (Ωs,Q(s,α)) = P(s(X) ≥ F †

s (1−α)) = 1−P(s(X) < F †
s (1−α)) and one can show
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that P(s(X) < F †
s (1− α)) ≤ 1− α. We therefore have P(Ωs,Q(s,α)) ≥ α. As Ω∗

α

minimizes λ over all sets with mass at least α, we have MVs(α)−MV∗(α) ≥ 0.
Finally we prove ⇐= in (2). On the one hand, for s = f we have MVs∗ ≤

MVf . On the other hand, as f ∈ S∗, thanks to =⇒ in (2) (which has been
proven above), for all scoring function s, MVf ≤ MVs. Therefore MVf ≤ MVs∗ .
We thus have MVf = MVs∗ on (0, 1). From now on, we replace s∗ by s for the
sake of clarity. We thus want to prove that MVf = MVs on (0, 1) implies s ∈ S∗.
The proof is decomposed in three steps.

First step We first show that for λ-almost all x ∈ X ,

I{x ∈ Ω∗
α} = I{x ∈ Ωs,Q(s,α)} for all α ∈ (0, 1)

and
Ff (f(x)) = Fs(s(x)) .

Let α ∈ (0, 1) be fixed. We have λ(Ω∗
α) = λ(Ωs,Q(s,α)). Since

P(X ∈ Ωs,Q(s,α)) ≥ α, by uniqueness of the solution of the minimum volume
set optimization problem up to subsets of null λ measure, we have
λ(Ω∗

αΔΩs,Q(s,α)) = 0 which is equivalent to: for λ-almost all x ∈ X

I{x ∈ Ω∗
α} = I{x ∈ Ωs,Q(s,α)}

i.e. there exists Zα ⊂ X such that λ(Zα) = 0 and for all x ∈ Zα, I{x ∈ Ω∗
α} =

I{x ∈ Ωs,Q(s,α)}. Note that Zα depends on α and we cannot consider to take

the union over all α ∈ (0, 1) of the Zα because this union would not necessarily
be of null λ measure (as we have uncountably many α). However considering
the union over the rationals of (0, 1) is sufficient. Indeed, let ZQ denote such a
union:

ZQ =
⋃

α∈(0,1)∩Q

Zα .

As it is a union over a countable set of α, λ(ZQ) = 0 and for all x ∈ ZQ =
∩α∈(0,1)∩QZα and all α ∈ (0, 1) ∩Q,

I{x ∈ Ω∗
α} = I{x ∈ Ωs,Q(s,α)} .

Let x ∈ ZQ and let α ∈ (0, 1)∩R\Q. We know that there exists a decreasing
sequence (αm)m≥0 of elements of (0, 1) ∩ Q such that αm converges towards α
when m tends to infinity. Now, thanks to a property of the quantile function
(see e.g. assertion (5) of Property 2.3 in (Embrechts, 2013)), we have, for all
α′ ∈ (0, 1),

Ω∗
α′ = {x′, f(x′) ≥ F †

f (1− α′)} = {x′, Ff (f(x
′)) ≥ 1− α′} .

Thus the sequence (Ω∗
αm

)m≥0 is decreasing (with respect to set inclusion) and

lim
m→+∞

I{x ∈ Ω∗
αm

} = I{x ∈
⋂
m≥0

Ω∗
αm

} = I{x ∈ Ω∗
α}
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as one can show that ⋂
m≥0

Ω∗
αm

= Ω∗
α .

Similarly,
lim

m→+∞
I{x ∈ ΩQ(s,αm)} = I{x ∈ ΩQ(s,α)} .

For all m ≥ 0, I{x ∈ Ω∗
αm

} = I{x ∈ ΩQ(s,αm)} (because αm ∈ (0, 1) ∩ Q) and
thus the two limits are equal. Hence the first result.

Now this also implies that for x ∈ ZQ,∫ 1

0

I{x ∈ Ω∗
α}dα =

∫ 1

0

I{x ∈ Ωs,Q(s,α)}dα .

If U denotes a random variable with uniform distribution on (0, 1), the left-hand
side can be rewritten as

EU [I{f(x) ≥ F †
f (1− U)}] = EX [I{f(x) ≥ f(X)}] = Ff (f(x)) .

Similarly, the right-hand side is equal to Fs(s(x)) and therefore for all x ∈ ZQ,
Ff (f(x)) = Fs(s(x)).

Second step We can now prove assertions (i), (ii), (iii) and (iv). We will
first show that for almost all x ∈ supp(f), there exists α′ ∈ (0, 1] such that

f(x) = F †
f (α

′).

One may first observe that λ(Zf ∩ supp(f)) = 0 where Zf = {x, Ff (f(x)) >
0}. Indeed, Zf ⊂ supp(f) (if f(x) = 0 then Ff (f(x)) = 0) and therefore λ(Zf ∩
supp(f)) = λ(supp(f) \ Zf ) which is equal to 0 since, thanks to Lemma 1,
λ(supp(f)ΔZf ) = 0.

Let x ∈ supp(f) ∩ Zf . If F
†
f is continuous at α′ = Ff (f(x)) ∈ (0, 1] then

F †
f (α

′) = F †
f (Ff (f(x))) = f(x). Now, since F †

f is increasing, F †
f has at most

countably many discontinuities and each discontinuity m corresponds to a jump
of F †

f between two values tm1 and tm2 . We also know that this jump of F †
f cor-

responds to a flat part of Ff between tm1 and tm2 . However if Ff has a flat part
between tm1 and tm2 then P(tm1 ≤ f(X) ≤ tm2 ) = Ff (t

m
2 ) − Ff (t

m
1 ) = 0 (recall

that Ff is continuous as f has no flat parts). This gives∫
{u,tm1 ≤f(u)≤tm2 }

f(u)du = 0 .

Thus f = 0 λ-almost everywhere on {u, tm1 ≤ f(u) ≤ tm2 }. This implies that
λ({x, tm1 ≤ f(x) ≤ tm2 } ∩ supp(f)) = 0. Let Z0 be the union of such sets over
m ≥ 0:

Z0 =
⋃
m≥0

{x, tm1 ≤ f(x) ≤ tm2 }

and let Z1 = Z0∩Zf . We have λ(Z1∩supp(f)) = 0 and for all x ∈ Z1∩supp(f),
there exists α′ ∈ (0, 1] such that f(x) = F †

f (α
′) because F †

f is continuous at α′ =
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Ff (f(x)) (otherwise this would imply that x belongs to a region corresponding
to a flat part of Ff , i.e. one of the sets {x, tm1 ≤ f(x) ≤ tm2 }).

Similarly, we can show that there exists a set Z2 such that λ(Z2∩supp(f)) = 0
and for all x ∈ Z2∩supp(f), there exists α′ ∈ (0, 1] such that s(x) = F †

s (α
′). The

only difference with f is that we here have to consider ZQ so that Fs(s(x)) =
Ff (f(x)).

Let Z = ZQ∩Z1∩Z2. We have λ(Z∩supp(f)) = 0. Let x1, x2 ∈ Z∩supp(f)
such that f(x1) > f(x2) and let Ω1 = {x ∈ Z, f(x) ≥ f(x1)}. There exists

α1 ∈ [0, 1) such that F †
f (1 − α1) = f(x1). Let’s first consider the case where

α1 ∈ (0, 1). We have

Ω1 = {x ∈ Z, f(x) ≥ F †
f (1− α1)} = {x ∈ Z, s(x) ≥ F †

s (1− α1)} . (17)

As x1 ∈ Ω1, x1 ∈ {x ∈ Z, s(x) ≥ F †
s (1 − α1)} and s(x1) ≥ F †

s (1 − α1).
Analogously, as x2 /∈ Ω1, x2 /∈ {x ∈ Z, s(x) ≥ F †

s (1 − α1)} and s(x2) <
F †
s (1 − α1). Thus s(x1) > s(x2). Let’s now consider the case α1 = 0. We do

not know that (17) still holds. However we can always assume without loss of
generality that s is bounded. Indeed, if s is not bounded, consider the function
s′ = arctan ◦s. As arctan is strictly increasing, thanks to Proposition 3, MVs =
MVs′ . Besides, as s takes its values in R+, s′ takes its values in [0, π/2) and is
bounded. Finally, if we show that s′ = T ◦ f with T strictly increasing then we
also have that s is a strictly increasing transform of f . Then as s is bounded,
F †
s (1 − α1) is defined at α1 = 0 and we can replace MVs = MV∗ on (0, 1) by

MVs = MV∗ on [0, 1) in the proposition. We can then show that (17) holds for
α1 = 0.

Similarly, s(x1) > s(x2) implies f(x1) > f(x2). Therefore for all x1, x2 ∈
Z ∩ supp(f),

s(x1) > s(x2) ⇐⇒ f(x1) > f(x2) .

and hence the existence of T . One can for instance take T : f(x) ∈ f(Z ∩
supp(f)) �→ s(x) ∈ s(Z ∩ supp(f)).

Third step Finally, assertion (iv) derives from the fact that for x ∈ ZQ ∩
supp(f) we have Fs(s(x)) = Ff (f(x)) = 0.

Proof of Proposition 2. To prove the convexity of MV∗ we show that the slopes
are increasing. Let α1 < α2 < α3 be in [0, 1),

MV∗(α2)−MV∗(α1) = λ(Ω∗
α2
)− λ(Ω∗

α1
)

= λ{f ≥ F †
f (1− α2)} − λ{f ≥ F †

f (1− α1)}
= λ{x, Ff (f(x)) ≥ 1− α2} − λ{x, Ff (f(x)) ≥ 1− α1}
= λ{x, 1− α2 ≤ Ff (f(x)) < 1− α1}

=

∫
X
I{x, 1− α2 ≤ Ff (f(x)) < 1− α1}dx

=

∫
X
I{x, 1− α2 ≤ Ff (f(x)) < 1− α1}

1

f(x)
f(x)dx
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where the third equality holds because for any x and any α ∈ [0, 1), f(x) ≥
F †
f (1− α) if and only if Ff (f(x)) ≥ 1− α (see e.g. Property 2.3 in (Embrechts

and Hofert, 2013)). Now as x ∈ {x, F †
f (1−α2) ≤ f(x) < F †

f (1−α1)}, we obtain

MV∗(α2)−MV∗(α1) ≤
1

F †
f (1− α2)

P(Ff (f(X)) ∈ [1− α2, 1− α1))

=
α2 − α1

F †
f (1− α2)

because the distribution of Ff (f(X)) is the uniform distribution on (0, 1) (as Ff

is continuous since f has no flat parts). Similarly, one can show that MV∗(α3)−
MV∗(α2) ≥ (α3 − α2)/F

†
f (1− α2). Hence, we finally have

MV∗(α2)−MV∗(α1)

α2 − α1
≤ 1

F †
f (1− α2)

≤ MV∗(α3)−MV∗(α2)

α3 − α2
.

We now prove the differentiability of MV∗ and the formula of its derivative.
First as Ff is invertible on (a, F †

f (1)], F
†
f is the ordinary inverse of Ff on (0, 1].

Let α ∈ (0, 1) and h > 0. Proceeding similarly as above we can show that

1

F †
f (1− α)

≤ MV∗(α+ h)−MV∗(α)

h
≤ 1

F †
f (1− (α+ h))

.

Therefore as F †
f is continuous (because F †

f is the ordinary inverse of Ff ),

lim
h→0+

MV∗(α+ h)−MV∗(α)

h
=

1

F †
f (1− α)

.

Analogously, we also have

lim
h→0+

MV∗(α− h)−MV∗(α)

−h
=

1

F †
f (1− α)

which implies that MV′∗(α) = 1/F †
f (1 − α). For α = 0, we have MV∗(0) = 0

and proceeding as for α ∈ (0, 1), if h > 0,

MV∗(h) =

∫
X
I{x, Ff (f(x)) ≥ 1− h} 1

f(x)
f(x)dx

and
h

F †
f (1)

≤ MV∗(h) ≤ h

F †
f (1− α)

.

Therefore limh→0+ MV∗(h)/h = 1/F †
f (1). Thus, as Q∗(α) = F †

f (1 − α) for all
α ∈ [0, 1) we obtain the formula of the derivative of MV∗.
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A.2. Statistical estimation of the MV curve

A.2.1. Strong approximation: Proof of Theorem 1

To prove Theorem 1 we need the following lemma.

Lemma 2. Under assumptions (A3)–(A4) and (A6) there exists a constant
C > 0 such that we almost surely have for n large enough,

sup
α′∈[ε,1]

|F̂ †
s (α

′)− F †
s (α

′)|2 ≤ C
logn

n
.

Proof of Lemma 2. Let Ui = Fs(s(Xi)) for all i ∈ {1, . . . , n}. As Fs is con-
tinuous, the random variables U1, . . . , Un are i.i.d. with uniform distribution
on (0, 1). Their empirical cumulative distribution function is given by Û(α) =
1/n

∑n
i=1 I{Ui ≤ α} for all α ∈ [0, 1]. Furthermore we have for all α ∈ (0, 1],

Fs(F̂
†
s (α)) = Û†(α). We also define Û†(0) = 0. Let Un denote the uniform

empirical process defined for all α ∈ [0, 1] by Un(α) =
√
n(Û(α) − α) and

un denote the uniform empirical quantile process defined for all α ∈ [0, 1] by

un(α) =
√
n(Û†(α)− α). Applying the Dvoretzky-Kiefer-Wolfowitz (DKW) in-

equality (Massart, 1990) gives for all z > 0 and all n ≥ 1,

P( sup
α∈[0,1]

|Un(α)| ≥ z) ≤ 2 exp(−2z2) . (18)

As sup0≤α≤1 |Un(α)| = sup0≤α≤1 |un(α)| for all ω in the sample space (see
equation (1.4.5) in (Csörgő, 1983)), the DKW inequality (18) holds when re-
placing Un by un. Taking z =

√
logn, we obtain for all n ≥ 1,

P
(

sup
α∈[0,1]

∣∣Û†(α)− α
∣∣2 ≥ logn

n

)
≤ 2

n2
. (19)

As
∑∞

n=1 1/n
2 < ∞, by the Borel-Cantelli lemma, we almost surely have for n

large enough,

sup
α∈[0,1]

∣∣Û†(α)− α
∣∣2 ≤ logn

n
. (20)

Using the mean value theorem we can write for α′ ∈ [ε, 1],

|F̂ †
s (α

′)− F †
s (α

′)| = |F †
s (Û

†(α′)))− F †
s (α

′)|

=

∣∣∣∣∣ 1

fs(F
†
s (ξ))

∣∣∣∣∣ · |Û†(α′)− α′|

where ξ is between α′ and Û†(α′). As Û† is increasing we have for all α′ ∈ [ε, 1],

Û†(ε) ≤ Û†(α′) ≤ 1. From (20) we know that there exists a constant c1 > 0 such

that we almost surely have for n large enough, Û†(ε) ≥ ε − c1 > 0. Therefore,
almost surely and for n large enough,

fs(F
†
s (ξ)) ≥ inf

y′∈[ε−c1,1]
fs(F

†
s (y

′)) = inf
y∈[0,1−ε+c1]

fs(α
−1
s (y)) > 0 .
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Note that the last infimum is strictly positive because as fs ◦α−1
s is continuous,

the infimum is reached at a point y0 ∈ [0, 1− ε+ c1] ⊂ [0, 1) and as fs ◦α−1
s > 0

on [0, 1) (assumptions (A4) and (A6)), fs(α
−1
s (y0)) > 0.

This eventually leads to: almost surely and for n large enough,

sup
α′∈[ε,1]

|F̂ †
s (α

′)− F †
s (α

′)|2 ≤ 1(
inf [0,1−ε+c1] fs ◦ α−1

s

)2 log nn .

Proof of assertion (i) of Theorem 1.

Proof. Assume that assumptions (A3)–(A4) and (A6)–(A7) are fulfilled. Us-
ing the mean value theorem we can write for all α ∈ [0, 1− ε]

M̂Vs(α)−MVs(α) = λs(α̂
−1
s (α))− λs(α

−1
s (α)) = λ′

s(ξ)(α̂
−1
s (α)− α−1

s (α))

where ξ is between α̂−1
s (α) and α−1

s (α). Therefore,

sup
α∈[0,1−ε]

|M̂Vs(α)−MVs(α)| = sup
α∈[0,1−ε]

|λ′
s(ξ)| · |α̂−1

s (α)− α−1
s (α)| .

Now for all α ∈ [0, 1 − ε], α−1
s (α) and α̂−1

s (α) belong to the support of fs,
i.e., [0, ‖s‖∞]. This is true for α̂−1

s (α) because it is equal to one of the s(Xi),
1 ≤ i ≤ n. Thus ξ ∈ [0, ‖s‖∞]. As λ′

s is continuous, we have

sup
α∈[0,1−ε]

|λ′
s(ξ)| ≤ sup

[0,‖s‖∞]

|λ′
s| < +∞

and

sup
α∈[0,1−ε]

|M̂Vs(α)−MVs(α)| ≤ sup
[0,‖s‖∞]

|λ′
s| · sup

α∈[0,1−ε]

|α̂−1
s (α)− α−1

s (α)|

= sup
[0,‖s‖∞]

|λ′
s| · sup

α′∈[ε,1]

|F̂ †
s (α

′)− F †
s (α

′)| .

From Lemma 2 we know that there exists a constant C > 0 such that we
almost surely have for n large enough,

sup
α′∈[ε,1]

|F̂ †
s (α

′)− F †
s (α

′)| ≤
√

C
log n

n
.

Therefore supα′∈[ε,1] |F̂ †
s (α

′) − F †
s (α

′)| converges almost surely to 0 and so is

supα∈[0,1−ε] |M̂Vs(α)−MVs(α)|.
Proof of assertion (ii) of Theorem 1.

Proof. For all n ≥ 1, let vn = n−1/2 logn. Assume that assumptions (A3)–
(A7) are fulfilled. By virtue of Theorem 3.1.2 in (Csörgő, 1983), there exists a
sequence of Brownian bridges {B1

n(α), α ∈ [0, 1]}n≥1 such that, we almost surely
have:

sup
0≤α′≤1

|un(α
′)−B1

n(α
′)| = O(vn) (21)
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where un is the uniform quantile process as defined in the proof of Lemma 2.
From (3.3) of Theorem 3 in (Csörgő and Révész, 1978), we also have almost
surely, for n large enough,

sup
an≤α′≤1−an

|fs
(
F †
s (α

′)
)√

n
(
F̂ †
s (α

′)− F †
s (α

′)
)
− un(α

′)| ≤ C1n
−1/2 log logn

where C1 = 40c10c and an = 25n−1 log logn. Hence for n large enough we have
an ≤ ε and therefore we almost surely have

sup
ε≤α′≤1−an

|fs
(
F †
s (α

′)
)√

n
(
F̂ †
s (α

′)−F †
s (α

′)
)
−un(α

′)| = O(n−1/2 log logn) (22)

Now from the proof of theorem 3.2.1 in (Csörgő, 1983), we also almost surely
have,

sup
1−an≤α′≤1

|fs
(
F †
s (α

′)
)√

n
(
F̂ †
s (α

′)− F †
s (α

′)
)
− un(α

′)| = O(n−1/2 log log n) .

(23)
Combining (21), (22) and (23), we almost surely have:

sup
ε≤α′≤1

|fs
(
F †
s (α

′)
)√

n
(
F̂ †
s (α

′)− F †
s (α

′)
)
−B1

n(α
′)| = O(vn) .

As one can show that F †
s (α) = α−1

s (1 − α) and F̂ †
s (α) = α̂−1

s (1 − α) for all
α ∈ (0, 1] we almost surely have

sup
ε≤α′≤1

|fs
(
α−1
s (1− α′)

)√
n
(
α̂−1
s (1− α′)− α−1

s (1− α′)
)
−B1

n(α
′)| = O(vn) .

With the change of variable α = 1− α′ this leads to

sup
0≤α≤1−ε

|fs
(
α−1
s (α)

)√
n
(
α̂−1
s (α)− α−1

s (α)
)
−Bn(α)| = O(vn)

where {Bn(α), α ∈ [0, 1]}n≥1 is the sequence of stochastic processes defined by
{Bn(α), α ∈ [0, 1]}n≥1 = {B1

n(1 − α), α ∈ [0, 1]}n≥1. Notice that for all n ≥ 1,
Bn is a Brownian Bridge as it has the same distribution as B1

n. Thus there exists
a constant C2 independent of α such that almost surely for n large enough and
for all α ∈ [0, 1− ε],

|fs
(
α−1
s (α)

)√
n
(
α̂−1
s (α)− α−1

s (α)
)
−Bn(α)| ≤ C2vn

Hence, dividing by fs
(
α−1
s (α)

)
which is strictly positive for all α ∈ [0, 1 − ε]

(assumptions (A4) and (A6)), we almost surely have, for n large enough and
for all α ∈ [0, 1− ε],∣∣∣√n

(
α̂−1
s (α)− α−1

s (α)
)
− Bn(α)

fs
(
α−1
s (α)

) ∣∣∣ ≤ C2

inf [0,1−ε] fs ◦ α−1
s

vn (24)
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where inf0≤α≤1−ε fs(α
−1
s (α)) is strictly positive by the same argument as the

one given in the proof of Lemma 2. Now using a Taylor expansion of λs which
is of class C2 (assumption (A7)) we can write for all α ∈ [0, 1− ε]:

λs(α̂
−1
s (α)) = λs(α

−1
s (α)) + λ′

s(α
−1
s (α))(α̂−1

s (α)− α−1
s (α)) +R2(α)

where R2(α) = λ
′′

s (ξ)(α̂
−1
s (α) − α−1

s (α))2/2 is the remainder of the Taylor ex-
pansion, ξ being between α−1

s (α) and α̂−1
s (α). We thus have

√
n(M̂Vs(α)−MVs(α))−

λ′
s(α

−1
s (α))

fs
(
α−1
s (α)

)Bn(α)

= λ′
s(α

−1
s (α))

(
√
n(α̂−1

s (α)− α−1
s (α))− Bn(α)

fs
(
α−1
s (α)

))+
√
nR2(α)

= Cn(α) +Dn(α)

For the first term we almost surely have, for all α ∈ [0, 1 − ε] and for n large
enough,

|Cn(α)| ≤ |λ′
s(α

−1
s (α))| C2

inf [0,1−ε] fs ◦ α−1
s

vn .

For all α ∈ [0, 1 − ε], α−1
s (α) ∈ [0, ‖s‖∞]. As λ′

s is continuous, |λ′
s(α

−1
s (α))| is

bounded by sup[0,‖s‖∞] |λ′
s|.

We treat the second term as follows. For all α ∈ [0, 1 − ε], α−1
s (α) and

α̂−1
s (α) are in [0, ‖s‖∞]. Therefore ξ ∈ [0, ‖s‖∞] and as λ′′

s is continuous, |λ′′
s (ξ)|

is bounded by sup[0,‖s‖∞] |λ′′
s |. Thus,

sup
α∈[0,1−ε]

|Dn(α)| ≤ sup
[0,‖s‖∞]

|λ′′
s |
√
n

2
sup

α∈[0,1−ε]

|α̂−1
s (α)− α−1

s (α)|2

≤ sup
[0,‖s‖∞]

|λ′′
s |
C

2

logn√
n

(thanks to Lemma 2)

where the last inequality holds almost surely and for n large enough and where
C > 0 is the constant of Lemma 2.

Eventually, combining the bounds on sup[0,1−ε] |Cn| and sup[0,1−ε] |Dn| we
almost surely have

sup
α∈[0,1−ε]

∣∣∣∣∣√n(M̂Vs(α)−MVs(α))−
λ′
s(α

−1
s (α))

fs
(
α−1
s (α)

)Bn(α)

∣∣∣∣∣ = O(vn) .

This concludes the proof.

A.2.2. Bootstrap consistency: Proof of Theorem 2

Recall that for all n ≥ 1, vn = n−1/2 logn and wn =
√
log(h−1

n )/(nhn) + h2
n.

Let ys(α) and ỹs(α) be respectively defined for all α ∈ [ε, 1 − ε] as ys(α) =

λ′
s(α

−1
s (α))/fs(α

−1
s (α)) and ỹs(α) = λ′

s(α̃
−1
s (α))/f̃s(α̃

−1
s (α)).
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Sketch of proof The argument is based on a strong approximation type
inequality for rn (see Lemma 3) and r∗n (see Lemma 4). These inequalities can
then be used to obtain a result on the rate of convergence of the cumulative
distribution function of sup[ε,1−ε] |rn| (respectively, the conditional cumulative
distribution function of sup[ε,1−ε] |r∗n|) towards the supremum of a Gaussian
process which depends on ys (respectively the smoothed empirical version ỹs of
ys). We finally obtain the result using the rate of the strong uniform convergence
of ỹs/ys towards 1 on [ε, 1− ε] (see Lemma 5). The technical proofs of Lemma
3, Lemma 4 and Lemma 5 are deferred to Appendix B for the sake of clarity of
the proof of the main result.

We first need the following strong approximation result.

Lemma 3. Let ε ∈ (0, 1). There exists a positive constant C such that

P

(
sup

α∈[ε,1−ε]

|rn(α)− Zn(α)| > Cvn

)
= O(vn)

We also need the counterpart of Lemma 3 conditionally on the data set Dn.

Lemma 4. Let ε ∈ (0, 1). Under assumptions (A3)–(A5), (A7) and (B1)–
(B6), there exists a constant C such that we P-almost surely have,

P∗

(
sup

α∈[ε,1−ε]

|r∗n(α)− Z∗
n(α)| > Cvn

)
= O(vn)

where

∀α ∈ [ε, 1− ε], Z∗
n(α) =

λ′
s(α̃

−1
s (α))

f̃s(α̃
−1
s (α))

B∗
n(α)

and where for each n ≥ 1 the distribution of B∗
n conditionally to Dn is the one

of a Brownian bridge.

Eventually, to control the distance between the distribution of sup[ε,1−ε] |Zn|
and the conditional distribution of sup[ε,1−ε] |Z∗

n| we need the following lemma.

Lemma 5. Under assumptions (A3) and (B1)–(B4) there exists a constant
C > 0 such that we almost surely have, for n large enough,

sup
α∈[ε,1−ε]

∣∣∣∣ ỹs(α)ys(α)
− 1

∣∣∣∣ ≤ Cwn .

We can now proof the main result.

Proof of Theorem 2. Let ε ∈ (0, 1). Let C > 0 be the constant of Lemma 3. If
supα∈[ε,1−ε] |rn(α)− Zn(α)| ≤ Cvn then∣∣∣ sup

α∈[ε,1−ε]

|rn(α)| − sup
α∈[0,1−ε]

|Zn(α)|
∣∣∣ ≤ Cvn .
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Thus thanks to the result of Lemma 3

P

(∣∣∣ sup
[ε,1−ε]

|rn| − sup
[ε,1−ε]

|Zn|
∣∣∣ > Cvn

)
≤ P

(
sup

[ε,1−ε]

|rn − Zn| > Cvn

)
= O(vn) .

Therefore using a result of Sargan and Mikhail (1971), we have for all t ∈ R,∣∣∣P( sup
[ε,1−ε]

|rn| ≤ t
)
− P

(
sup

[ε,1−ε]

|Zn| ≤ t
)∣∣∣

≤ P
(∣∣∣ sup

[ε,1−ε]

|rn| − sup
[ε,1−ε]

|Zn|
∣∣∣ > Cvn

)
+ P

(∣∣∣ sup
[ε,1−ε]

|Zn| − t
∣∣∣ < Cvn

)
= P

(∣∣∣ sup
[ε,1−ε]

|Zn| − t
∣∣∣ < Cvn

)
+O(vn)

and

P
(∣∣∣ sup

[ε,1−ε]

|Zn| − t
∣∣∣ < Cvn

)
= P

(
t− Cvn < sup

[ε,1−ε]

|Z1| < t+ Cvn

)
=

∫ t+Cvn

t−Cvn

φZ̄(x)dx ≤ 2DCvn

where φZ̄ denotes the density of sup[ε,1−ε] |Z1| and where for the first equality we
use the fact that for all n ≥ 1 the random variable Zn(α) is equal in distribution
to Z1(α) and for the last inequality the result from (Pitt and Tran, 1979) stating
that supα∈[ε,1−ε] |Z1(α)| has a density bounded by a constant D > 0 as the
supremum of a Gaussian process {Z1(α), ε ≤ α ≤ 1 − ε} such that for all
α ∈ [ε, 1 − ε], infα∈[ε,1−ε] Var[Z1(α)] > 0 and P(supα∈[ε,1−ε] |Z1(α)| < ∞) = 1.
Indeed, as B1 is a Brownian bridge it is almost surely continuous on [0, 1] and
as ys is continuous on [ε, 1− ε], Z1 is almost surely continuous on [ε, 1− ε] and
therefore almost surely supα∈[ε,1−ε] |Z1(α)| < ∞. Furthermore, α ∈ [ε, 1− ε] �→
Var[Z1(α)] = α(1 − α)y2s(α) is continuous and thanks to Lemma 10, for all
α ∈ [ε, 1− ε], Var[Z1(α)] > 0. Therefore infα∈[ε,1−ε] Var[Z1(α)] is attained and
is strictly positive.

Therefore,

sup
t∈R

∣∣∣P( sup
α∈[ε,1−ε]

|rn(α)| ≤ t
)
− P

(
sup

α∈[ε,1−ε]

|Z1(α)| ≤ t
)∣∣∣ = O(vn) (25)

Reasoning similarly as above, thanks to the result of Lemma 4, there exists
a constant C1 such that, P-almost surely, as n → ∞,

P∗

(∣∣∣ sup
α∈[ε,1−ε]

|r∗n(α)| − sup
α∈[0,1−ε]

|Z∗
n(α)|

∣∣∣ > C1vn

)
= O(vn) .

Therefore using the result of (Sargan and Mikhail, 1971), we P-almost surely
have, for all t ∈ R,∣∣∣P∗

(
sup

[ε,1−ε]

|r∗n| ≤ t
)
−P∗

(
sup

[ε,1−ε]

|Z∗
n| ≤ t

)∣∣∣
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= P∗
(
t− C1vn < sup

[ε,1−ε]

|Z∗
1 | < t+ C1vn

)
+O(vn)

= P∗
(

sup
[ε,1−ε]

|Z∗
1 | < t+ C1vn

)
− P

(
sup

[ε,1−ε]

|Z1| < t+ C1vn

)
+ P

(
sup

[ε,1−ε]

|Z1| < t+ C1vn

)
− P

(
sup

[ε,1−ε]

|Z1| < t− C1vn

)
+ P

(
sup

[ε,1−ε]

|Z1| < t− C1vn

)
− P∗

(
sup

[ε,1−ε]

|Z∗
1 | < t− C1vn

)
+O(vn)

≤ 2 sup
t∈R

∣∣∣P∗
(

sup
[ε,1−ε]

|Z∗
1 | ≤ t

)
− P

(
sup

[ε,1−ε]

|Z1| ≤ t
)∣∣∣

+ P
(
t− C1vn < sup

[ε,1−ε]

|Z1| < t+ C1vn

)
+O(vn)

≤ 2 sup
t∈R

∣∣∣P∗
(

sup
[ε,1−ε]

|Z∗
1 | ≤ t

)
− P

(
sup

[ε,1−ε]

|Z1| ≤ t
)∣∣∣+ 2DC1vn +O(vn) .

We now need the following result.

Lemma 6. The exists a constant C2 > 0 such that we P-almost surely have for
n large enough,

sup
t∈R

∣∣∣P∗
(

sup
α∈[ε,1−ε]

|Z∗
1 (α)| ≤ t

)
− P

(
sup

α∈[ε,1−ε]

|Z1(α)| ≤ t
)∣∣∣ ≤ C2wn

Proof of Lemma 6. Let t ∈ R. If t < 0 both probabilities are equal to 0 as the
two random variables involved are positive. Hence we have (for all ω in the
sample space)

sup
t<0

∣∣∣P∗
(

sup
α∈[ε,1−ε]

|Z∗
1 (α)| ≤ t

)
− P

(
sup

α∈[ε,1−ε]

|Z1(α)| ≤ t
)∣∣∣ = 0 ≤ C2wn (26)

Let t ≥ 0. Thanks to Lemma 5 there exists a constant C3 > 0 independent of α
such that we almost surely have for n large enough:

∀α ∈ [ε, 1− ε], 1− C3wn ≤
∣∣∣∣ ỹs(α)ys(α)

∣∣∣∣ ≤ 1 + C3wn . (27)

Furthermore, we can assume, given n large enough, that there exists a con-
stant C4 > 0 such that 1− C3wn > C4 as wn tends towards 0. Observe that

P∗
(

sup
α∈[ε,1−ε]

|Z∗
1 (α)| ≤ t

)
= P∗

(
sup

α∈[ε,1−ε]

∣∣∣∣ ỹs(α)ys(α)
ys(α)B

∗
1(α)

∣∣∣∣ ≤ t
)

= P∗
(
∀α ∈ [ε, 1− ε],

∣∣∣∣ ỹs(α)ys(α)

∣∣∣∣ |ys(α)B∗
1(α)| ≤ t

)
.

and decompose the last term as follows

P∗
({

∀α ∈ [ε, 1− ε],

∣∣∣∣ ỹs(α)ys(α)

∣∣∣∣ |ys(α)B∗
1(α)| ≤ t

}
,Z
)

+ P∗
({

∀α ∈ [ε, 1− ε],

∣∣∣∣ ỹs(α)ys(α)

∣∣∣∣ |ys(α)B∗
1(α)| ≤ t

}
,Z
)

.

(28)
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where the event Z is defined as

Z =

{
∀α ∈ [ε, 1− ε],

∣∣∣∣ ỹs(α)ys(α)

∣∣∣∣ ≥ 1− C3wn

}
and its complementary is given by

Z =

{
∃α ∈ [ε, 1− ε],

∣∣∣∣ ỹs(α)ys(α)

∣∣∣∣ < 1− C3wn

}
.

The first term of (28) is lower than

P∗

(
(1− C3wn) sup

[ε,1−ε]

|ysB∗
1 | ≤ t

)
= P

(
sup

[ε,1−ε]

|ysB1| ≤
t

1− C3wn

)
where the last equality stands from the fact that the law of B∗

1 conditionally on
Dn is equal to the law of B1. The second term of (28) is lower than

P∗ (∃α ∈ [ε, 1− ε], |ỹs(α)/ys(α)| < 1− C3wn)

which is P-almost surely equal to 0 thanks to (27). Note that the fact that this
holds P-almost surely is independent of t. Therefore we P-almost surely have:
for all t ≥ 0,

P∗
(

sup
α∈[ε,1−ε]

|Z∗
1 (α)| ≤ t

)
≤ P

(
sup

α∈[ε,1−ε]

|ys(α)B1(α)| ≤
t

1− C3wn

)

= P

(
sup

α∈[ε,1−ε]

|Z1(α)| ≤ t

)
+ φZ̄(ξ)t

C3wn

1− C3wn

where we use a Taylor expansion and where ξ is between t and t/(1− C3wn).
For n large enough, we have 1 > 1 − C3wn > C4 > 0. On the one hand

this gives 1 < 1/(1 − C3wn) and, as t ≥ 0, t < t/(1 − C3wn). Therefore, as ξ
is between t and t/(1 − C3wn), we have in fact, t < ξ < t/(1 − C3wn). Thus
φZ̄(ξ)t ≤ φZ̄(ξ)ξ. On the other hand, we also have 1/(1− C3wn) < 1/C4. This
eventually gives P-almost surely, for all t ≥ 0,

P∗

(
sup

[ε,1−ε]

|Z∗
1 | ≤ t

)
≤ P

(
sup

[ε,1−ε]

|Z1| ≤ t

)
+ sup

x∈R+

|φZ̄(x)x|
C3wn

C4
. (29)

A lower bound can be obtained in a similar fashion: P-almost surely, for all
t ≥ 0,

P

(
sup

[ε,1−ε]

|Z1| ≤ t

)
≤ P∗

(
sup

[ε,1−ε]

|Z∗
1 | ≤ t

)
+ 2 sup

x∈R+

|xφZ̄(x)|C3wn . (30)

Combining the two inequalities (29) and (30) we obtain that there exists a
constant C5 > 0 such that we P-almost surely have

sup
t≥0

∣∣∣∣∣P∗

(
sup

[ε,1−ε]

|Z∗
1 | ≤ t

)
− P

(
sup

[ε,1−ε]

|Z1| ≤ t

)∣∣∣∣∣ ≤ C5 sup
x∈R+

|xφZ̄(x)|wn .
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Let ϕ be the density of the Gaussian distribution N (0, 1). Using a remark
in the paper of (Tsirel’son, 1976, p. 854), there exists M > 0 such that for all
x ≥ M ,

xφZ̄(x) ≤
x

v1
ϕ

(
x− a− b

v1

)
, (31)

where v1 is such that v21 = supα∈[ε,1−ε] Var[|Z1(α)|], a > 0 is arbitrary and b ≥ 0
only depends on v1, φZ̄ and the cumulative distribution function of the Gaussian
distribution N (0, 1). Now the function x ∈ R+ �→ x/v1 · ϕ((x − a − b)/v1) is
bounded on R+ as it is continuous and tends towards 0 when x tends to +∞.
Therefore from (31) we have that supx≥M |xφZ̄(x)| < +∞. And as from (Pitt
and Tran, 1979) φZ̄ is bounded on R, so is x �→ xφZ̄(x) on [0,M ]. Eventually,
supx∈R+ |xφZ̄(x)| < +∞ and there exists a constant C2 > 0 such that P-almost
surely,

sup
t≥0

∣∣∣∣∣P∗

(
sup

α∈[ε,1−ε]

|Z∗
1 (α)| ≤ t

)
− P

(
sup

α∈[ε,1−ε]

|Z1(α)| ≤ t

)∣∣∣∣∣ ≤ C2wn (32)

Combining (26) and (32) we obtain the result of the Lemma.

From Lemma 6, we P-almost surely have

sup
t∈R

∣∣∣P∗
(

sup
α∈[ε,1−ε]

|r∗n(α)| ≤ t
)
−P∗

(
sup

α∈[ε,1−ε]

|Z∗
n(α)| ≤ t

)∣∣∣ = O(wn)

and thus

sup
t∈R

∣∣∣P∗
(

sup
α∈[ε,1−ε]

|r∗n(α)| ≤ t
)
−P
(

sup
α∈[ε,1−ε]

|Z1(α)| ≤ t
)∣∣∣

≤ sup
t∈R

∣∣∣P∗
(

sup
α∈[ε,1−ε]

|r∗n(α)| ≤ t
)
−P∗

(
sup

α∈[ε,1−ε]

|Z∗
n(α)| ≤ t

)∣∣∣
+ sup

t∈R

∣∣∣P∗
(

sup
α∈[ε,1−ε]

|Z∗
n(α)| ≤ t

)
−P
(

sup
α∈[ε,1−ε]

|Z1(α)| ≤ t
)∣∣∣

= O(wn)

Finally combining this last inequality with (25) we obtain the result of the
theorem.

A.3. A-Rank algorithm

A.3.1. Proof of Theorem 3

The proof follows closely the one of theorem 2 in (Clémençon and Vayatis, 2009).
For clarity, we start off with recalling the following result.
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Proposition 4. (Scott and Nowak (2006)) Suppose that the assumptions of

Theorem 3 are fulfilled. For any α ∈ (0, 1), let Ω̂α ∈ G be a solution of the
constrained optimization problem:

min
Ω∈G

λ(Ω) subject to F̂ (Ω) ≥ α− φn(δ).

Let δ ∈ (0, 1). With probability at least 1− δ: ∀α ∈ (0, 1), ∀n ≥ 1,

α− 2φn(δ) ≤ F (Ω̂α) ≤ α and MV∗(α)− 2φn(δ)

Q∗(α)
≤ λ(Ω̂α) ≤ MV∗(α). (33)

The major part of this result is given by Theorem 3 and Lemma 19 in (Scott
and Nowak, 2006). Although they prove the result for a given α, it can be

extended to all α ∈ (0, 1). The upper bound on F (Ω̂α) can be obtained with

the following reasoning. Suppose that we have F (Ω̂α) > α, then F (Ω̂α) ≥ α

and λ(Ω∗
α) ≤ λ(Ω̂α) because Ω∗

α minimizes λ over all measurable sets Ω such

that F (Ω) ≥ α. The upper bound on the volume gives λ(Ω̂α) ≤ λ(Ω∗
α), thus

λ(Ω̂α) = λ(Ω∗
α). Hence Ω̂ also minimizes λ over all measurable sets Ω such that

F (Ω) ≥ α and by uniqueness of the solution under assumptions (A1) and (A2),

we have F (Ω̂α) = F (Ω∗
α) = α which contradicts F (Ω̂α) > α.

We now prove the following lemma quantifying the uniform deviation of the
empirical local error from the true local error over all dyadic scales.

Lemma 7. Suppose that assumptions (C1) and (C2) are satisfied. Let δ ∈
(0, 1). With probability at least 1− δ, we have: ∀n ≥ 1,

sup
0≤j≤jmax

0≤k≤2j

|Ê(Ij,k)− E(Ij,k)| ≤
4φn(δ)

Q∗(1− ε)
.

Proof. Let 0 ≤ j ≤ jmax, 0 ≤ k ≤ 2j − 1,

|Ê(Ij,k)− E(Ij,k)| ≤ |λ(Ω̂αj,k+1
)− λ(Ω∗

αj,k+1
)|+ |λ(Ω̂αj,k

)− λ(Ω∗
αj,k

)|

≤ 2 sup
0≤j≤jmax

0≤k≤2j

|λ(Ω̂αj,k
)− λ(Ω∗

αj,k
)| .

From proposition 4, with probability at least 1 − δ we have: for all 0 ≤ j ≤
jmax, 0 ≤ k ≤ 2j ,

|λ(Ω̂αj,k
)− λ(Ω∗

αj,k
)| ≤ 2

φn(δ)

Q∗(αj,k)
≤ 2φn(δ)

Q∗(1− ε)
,

therefore with probability at least 1− δ, for all 0 ≤ j ≤ jmax, 0 ≤ k ≤ 2j − 1,

|Ê(Ij,k)− E(Ij,k)| ≤
4φn(δ)

Q∗(1− ε)

and the result follows.
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From Lemma 7, with probability at least 1− δ, for all 0 ≤ j ≤ jmax, 0 ≤ k ≤
2j − 1,

E(Ij,k)−
4φn(δ)

Q∗(1− ε)
≤ Ê(Ij,k) ≤ E(Ij,k) +

4φn(δ)

Q∗(1− ε)
. (34)

Let Eστ (MV∗) be the piecewise constant approximant of the optimal MV
curve built from the same recursive strategy as the one implemented in Algo-
rithm 2 but based on the true local error E and without the condition j < jmax,
denoting στ the associated meshgrid. We thus have, for every α ∈ [0, 1− ε]:

Eστ (MV∗)(α) =
∑
j,k

αj,k∈στ

λ(Ω∗
αj,k+1

) · I{α ∈ Ij,k} .

We also use the notation Eσ̂τ
to denote the function defined for all α ∈

[0, 1− ε] as

Eσ̂τ
(MV∗)(α) =

∑
j,k

αj,k∈σ̂τ

λ(Ω∗
αj,k+1

) · I{α ∈ Ij,k}

where we recall that σ̂τ is the meshgrid obtained in Algorithm 2 implemented
with the empirical error estimate Ê .

Choosing τ = 5φn(δ)/Q
∗(1 − ε), we obtain that with probability at least

1−δ, the meshgrid σ̂τ is finer than στ̃1 where τ̃1 = τ+(4φn(δ)+1/n)/Q∗(1−ε),
and coarser than στ̃0 where τ̃0 = τ − 4φn(δ)/Q

∗(1− ε). Indeed, thanks to (34),

E(Ij,k) > τ̃1 implies that with probability 1−δ, Ê(Ij,k) > τ̃1−4φn/Q
∗(1−ε) > τ .

It also implies that j < jmax. Indeed, if j ≥ jmax, then Ij,k = [α1, α2] is such that
α2 − α1 < 1/n which gives, using the mean value theorem, E(Ij,k) = λ(Ωα2) −
λ(Ωα1) < 1/(Q∗(1 − ε)n) which contradicts E(Ij,k) > τ̃1 > 1/(Q∗(1 − ε)n.
Therefore with probability at least 1 − δ, splitting Ij,k for the true local error

and a tolerance τ̃1 implies splitting Ij,k in Algorithm 2. Analogously, Ê(Ij,k) >
τ implies, thanks to (34), that with probability at least 1 − δ, E(Ij,k) > τ̃0.
Therefore with probability at least 1 − δ, splitting Ij,k in Algorithm 2 implies
splitting Ij,k for the true local error and a tolerance τ̃0.

We now use the following bound

sup
α∈[0,1−ε]

|M̂V∗(α)−MV∗(α)| ≤ sup
α∈[0,1−ε]

|M̂V∗(α)− Eσ̂τ
(MV∗)(α)|

+ sup
α∈[0,1−ε]

|Eσ̂τ
(MV∗)(α)−MV∗(α)| .

The second term is bounded by τ̃1 with probability at least 1 − δ because
with probability at least 1− δ the meshgrid σ̂τ is finer than στ̃1 and therefore

sup
α∈[0,1−ε]

|Eσ̂τ
(MV∗)(α)−MV∗(α)| ≤ sup

α∈[0,1−ε]

|Eστ̃1
(MV∗)(α)−MV∗(α)|

= sup
α∈I

I interval of στ̃1

|Eστ̃1
(MV∗)(α)−MV∗(α)|

≤ sup
α∈I

I interval of στ̃1

E(I) ≤ τ̃1 .
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On the same event, for the first term we have,

sup
α∈[0,1−ε]

|M̂V∗(α)− Eσ̂τ
(MV∗)(α)| ≤ sup

0≤j≤jmax

0≤k≤2j

|λ(Ω∗
αj,k+1

)− λ(Ω̂αj,k+1
) |

≤ 2φn(δ)

Q∗(1− ε)
.

Thus we finally have

sup
α∈[0,1−ε]

|M̂V∗(α)−MV∗(α)| ≤ τ̃1 +
2φn(δ)

Q∗(1− ε)
≤ 1

Q∗(1− ε)

(
11φn(δ) +

1

n

)
.

For the second part of the theorem on the cardinality of the meshgrid σ̂τ ob-
tained with Algorithm 2 we use the following lemma (DeVore, 1998).

Lemma 8. Let card(στ ) be the number of terminal nodes obtained when the al-
gorithm is implemented with the true local error E(I). Suppose that assumptions
(A1), (A2) and (C3) are fulfilled. There exists a universal constant C > 0 such
that, for all τ > 0:

card(στ ) ≤
C

τ
‖MV∗′

‖L logL .

Applying this lemma to τ̃0 = φn(δ)/Q
∗(1− ε) we obtain that the number of

terminal nodes card(στ̃0) of στ̃0 is such that

card(στ̃0) ≤ CQ∗(1− ε)
‖MV∗′

‖L logL

φn(δ)
.

As σ̂τ is coarser than στ̃0 with probability at least 1− δ, the number of terminal
nodes of the former is bounded by the number of terminal nodes of the latter
with probability at least 1− δ.

A.3.2. Proof of Theorem 4

We use the following notation: α̃k = F (Ω̃αk
). We first prove a lemma quantifying

the loss coming from the monotonicity step of Algorithm 3.

Lemma 9. Suppose that the assumptions of Theorem 4 are satisfied. Let δ ∈
(0, 1). For all n ≥ 1, with probability at least 1− δ, we have: ∀k ∈ {1, . . . , K̂},

|α̃k − αk| ≤ max(kC1φn(δ)
γ

γ+1 , 2φn(δ)) (35)

and

|λ(Ω̃αk
)−MV∗(αk)| ≤ max(kC2φn(δ)

γ
γ+1 , 2φn(δ)/Q

∗(1− ε)) . (36)

where C1 > 0 and C2 > 0 are constants depending only on γ, ‖f‖∞ and the
constant C of assumption (C4).
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Proof. First, from proposition 4, we have with probability at least 1 − δ, ∀k ∈
{0, . . . , K̂},

|αk − F (Ω̂αk
)| ≤ 2φn(δ) and |λ(Ω̂αk

)− λ(Ω∗
αk

)| ≤ 2φn(δ)

Q∗(1− ε)
. (37)

For k = 0, we have α0 = 0 and thus Ω̃α0 = Ω̂α0 = ∅ and the inequalities of the

Lemma are trivially satisfied. For k = 1, we have Ω̃α1 = Ω̂α1 and with (37) the

inequalities of the Lemma are satisfied. For all k ∈ {0, . . . , K̂},

F (Ω̃αk
) = F

( k⋃
j=0

Ω̂αj

)
≥ F (Ω̂αk

) ≥ αk − 2φn(δ)

and α̃k − αk ≥ −2φn(δ). The same argument gives

λ(Ω̃αk
)− λ(Ω∗

αk
) ≥ − 2φn(δ)

Q∗(1− ε)
.

We show how to obtain the upper bound for the case k = 2. We have Ω̃α2 =

Ω̂α1 ∪ Ω̂α2 and

F (Ω̃α2)− α2 = F (Ω̃α2)− F (Ω∗
α2
) ≤ F (Ω̃α2)− F (Ω∗

α2
∩ Ω̃α2) = F (Ω̃α2 \ Ω∗

α2
) .

Now,

Ω̃α2 \ Ω∗
α2

= {Ω̂α1 \ Ω∗
α2
} ∪ {Ω̂α2 \ Ω∗

α2
} ⊂ {Ω̂α1 \ Ω∗

α1
} ∪ {Ω̂α2 \ Ω∗

α2
}

where the last inclusion comes from the fact that Ω∗
α1

⊂ Ω∗
α2
. Hence,

F (Ω̃α2)− α2 ≤ F (Ω̂α1 \ Ω∗
α1
) + F (Ω̂α2 \ Ω∗

α2
)

and thus
F (Ω̃α2)− α2 ≤ F (Ω̂α1ΔΩ∗

α1
) + F (Ω̂α2ΔΩ∗

α2
) .

Using assumption (C4), for any α ∈ (0, 1), if Ω̂α denotes the solution of the
optimization problem (13), we can as in Polonik (1997) (see proof of Lemma

3.2) bound F (Ω̂αΔΩ∗
α): with probability at least 1− δ,

F (Ω∗
αΔΩ̂α) ≤ ‖f‖∞Ctγ + 2

‖f‖∞
t

φn(δ)

Minimizing the right-hand side with respect to t gives

F (Ω̂ΔΩ∗
α) ≤ C1φn(δ)

γ
γ+1 ,

where C1 > 0 is a constant depending only on γ, C and ‖f‖∞. We thus finally
have, with probability at least 1− δ,

α̃2 − α2 ≤ 2C1φn(δ)
γ

γ+1
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and therefore,

|α̃2 − α2| ≤ max(2C1φn(δ)
γ

γ+1 , 2φn(δ)) .

For k ≥ 2, we can obtain in a similar fashion,

F (Ω̃αk
)− αk ≤

k∑
j=1

F (Ω̂αj \ Ω∗
αj
) ≤

k∑
j=1

F (Ω̂αjΔΩ∗
αj
)

and derive the following result: with probability at least 1− δ, for all k ≥ 2,

|α̃k − αk| ≤ max(kC1φn(δ)
γ

γ+1 , 2φn(δ)) .

For (36), first note that for all α ∈ [0, 1−ε], λ(Ω∗
αΔΩ̂α) ≤ C2φn(δ)

γ
γ+1 where

C2 > 0 depends only on γ and C. Therefore the same procedure leads to: with
probability 1− δ, for all k ≥ 0,

|λ(Ω̃αk
)−MV∗(αk)| ≤ max(kC2φn(δ)

γ
γ+1 , 2φn(δ)/Q

∗(1− ε)) .

We can now prove Theorem 4. We first write

sup
α∈[0,1−ε]

{
MVŝ(α)−MV∗(α)

}
≤ sup

α∈[0,1−ε]

{
MVŝ(α)− Eσ̂τ

(MV∗)(α)
}

+ sup
α∈[0,1−ε]

{
Eσ̂τ

(MV∗)(α)−MV∗(α)
}
.

Taking τ = 4φn(δ)/Q
∗(1 − ε) + cn, cn > 0 and using the same argument as

in the proof of Theorem 3, the second term of the right-hand side is bounded
by τ̃1 = τ + (4φn(δ) + 1/n)/Q∗(1 − ε). We now deal with the first term. Let
α ∈ [0, 1− ε],

MVŝ(α)− Eσ̂τ
(MV∗)(α) =

K̂−1∑
k=0

λ(Ω̃αk+1
) · I{α ∈ [α̃k, α̃k+1)} − Eσ̂τ

(MV∗)(α) .

But one can observe that

Eσ̂τ
(MV∗)(α) =

K̂−1∑
k=0

Eσ̂τ
(MV∗)(α) · I{α ∈ [α̃k, α̃k+1)}

to obtain

MVŝ(α)−Eσ̂τ
(MV∗)(α) =

K̂−1∑
k=0

λ(Ω̃αk+1
) · I{α ∈ [α̃k, α̃k+1)} − Eσ̂τ

(MV∗)(α)

=

K̂−1∑
k=0

(λ(Ω̃αk+1
)−Eσ̂τ

(MV∗)(α)) · I{α ∈ [α̃k, α̃k+1)} .
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Now α �→ Eσ̂τ
(MV∗)(α) is increasing, therefore on [α̃k, α̃k+1), Eσ̂τ

(MV∗)(α) ≥
Eσ̂τ

(MV∗)(α̃k) and

MVŝ(α)−Eσ̂τ
(MV∗)(α) ≤

K̂−1∑
k=0

(λ(Ω̃αk+1
)− Eσ̂τ

(MV∗)(α̃k)) · I{α ∈ [α̃k, α̃k+1)}

≤ max
0≤k≤K̂−1

|λ(Ω̃αk+1
)− Eσ̂τ

(MV∗)(α̃k)|
K̂−1∑
k=0

I{α ∈ [α̃k, α̃k+1)}

= max
0≤k≤K̂−1

|λ(Ω̃αk+1
)− Eσ̂τ

(MV∗)(α̃k)| .

We thus have

sup
[0,1−ε]

{
MVŝ − Eσ̂τ

(MV∗)
}
≤ max

0≤k≤K̂−1
|λ(Ω̃αk+1

)− Eσ̂τ
(MV∗)(α̃k)|

≤ max
0≤k≤K̂−1

|λ(Ω̃αk+1
)− Eσ̂τ

(MV∗)(αk)|

+ max
0≤k≤K̂−1

|Eσ̂τ
(MV∗)(αk)− Eσ̂τ

(MV∗)(α̃k)| .

The first term is equal to max0≤k≤K̂−1 |λ(Ω̃αk+1
)−MV∗(αk+1)| and thanks to

Lemma 9 we have with probability at least 1− δ

max
0≤k≤K̂−1

|λ(Ω̃αk+1
)−MV∗(αk+1)| ≤ max(K̂C2φn(δ)

γ
γ+1 , 2φn(δ)/Q

∗(1− ε)) .

(38)
For the second term we write∣∣∣Eσ̂τ

(MV∗)(αk)− Eσ̂τ
(MV∗)(α̃k)

∣∣∣
=
∣∣∣MV∗(αk+1)−

K̂−1∑
j=0

MV∗(αj+1) · I{α̃k ∈ [αj , αj+1)}
∣∣∣

=
∣∣∣MV∗(αk+1)−MV∗(αj0+1)

∣∣∣ ,
where j0 ∈{0, . . . , K̂−1 } is such that α̃k ∈ [αj0 , αj0+1). We bound |MV∗(αk+1)−
MV∗(αj0+1)| by∣∣∣MV∗(αk+1)−MV∗(αk)

∣∣∣+ ∣∣∣MV∗(αk)−MV∗(α̃k)
∣∣∣+ ∣∣∣MV∗(α̃k)−MV∗(αj0+1)

∣∣∣ .
We bound the first term as follows. Let I = [αk, αk+1]. If the depth jmax has
been reached, αk+1 − αk < 1/n. Therefore the mean value theorem gives:

|MV∗(αk+1)−MV∗(αk)| ≤
1

nQ∗(1− ε)
.

Otherwise, this means that Ê(I) ≤ τ and we decompose |MV∗(αk+1) −
MV∗(αk)| = E(I) into

E(I) =
(
E(I)− Ê(I)

)
+ Ê(I).
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Using Lemma 9, the right-hand side is bounded by 4φn(δ)/Q
∗(1− ε)+ τ . Even-

tually,

|MV∗(αk+1)−MV∗(αk)| ≤ max

(
4φn(δ)

Q∗(1− ε)
+ τ,

1

nQ∗(1− ε)

)
Using the mean value theorem and Lemma 9, the second term can be bounded

by
1

Q∗(1− ε)
|αk − α̃k| ≤

1

Q∗(1− ε)
max(K̂C1φn(δ)

γ
γ+1 , 2φn(δ)) .

As α̃k ∈ [αj0 , αj0+1) and as MV∗ is increasing, the third term is bounded by
|λ(Ω∗

αj0+1
) − λ(Ω∗

αj0
)| which is also bounded as the first term by max(4φn(δ)/

Q∗(1− ε) + τ, 1/(nQ∗(1− ε))). We thus obtain∣∣∣Eσ̂τ
(MV∗)(αk)− Eσ̂τ

(MV∗)(α̃k)
∣∣∣ ≤ 2max

(
4φn(δ)

Q∗(1− ε)
+ τ,

1

nQ∗(1− ε)

)
+

max(K̂C1φn(δ)
γ

γ+1 , 2φn(δ))

Q∗(1− ε)
.

and combining this inequality with (38), we have

sup
α∈[0,1−ε]

{
MVŝ(α)− Eσ̂τ

(MV∗)(α)
}
≤ max(K̂C2φn(δ)

γ
γ+1 , 2φn(δ)/Q

∗(1− ε))

+ 2max

(
4φn(δ)

Q∗(1− ε)
+ τ,

1

nQ∗(1− ε)

)
+

max(K̂C1φn(δ)
γ

γ+1 , 2φn(δ))

Q∗(1− ε)
.

Eventually, with probability at least 1− δ,

sup
α∈[0,1−ε]

{
MVŝ(α)−MV∗(α)

}
≤ max(K̂C2φn(δ)

γ
γ+1 , 2φn(δ)/Q

∗(1− ε))

+ 2max

(
4φn(δ)

Q∗(1− ε)
+ τ,

1

nQ∗(1− ε)

)
+ τ +

4φn(δ)

Q∗(1− ε)
+

1

nQ∗(1− ε)

+
max(K̂C1φn(δ)

γ
γ+1 , 2φn(δ))

Q∗(1− ε)
.

(39)

Using the same argument as in the proof of Theorem 3, on the same event,
which holds with probability at least 1 − δ, σ̂τ is coarser than στ̃0 where τ̃0 =

τ−4φn(δ)/Q
∗(1−ε) = cn and therefore K̂ is of the order of cn. Using assumption

(C2), for n large enough, φn(δ) ≤ φn(δ)
γ/(γ+1). Therefore the right-hand side

of (39) is of the order of:

1

cn

(
1

n

) γ
2(γ+1)

+ cn .
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Choosing cn = (1/n)γ/(4(1+γ)) to balance the two terms of this expression,
we finally obtain that with probability at least 1− δ,

sup
α∈[0,1−ε]

{
MVŝ(α)−MV∗(α)

}
= O

(
n− γ

4(1+γ)

)
.

Appendix B: Technical results

This section contains the proofs of technical results that have been postponed
for the sake of clarity.

B.1. Proof of Lemma 1

Proof. We recall here that Zf = {x, Ff (f(x)) > 0} and supp(f) = {x, f(x) >
0}. If f(x) = 0 then Ff (f(x)) = 0 thus supp(f) ⊂ Zf and ZfΔsupp(f) = Zf \
supp(f) = Zf ∩ supp(f). Therefore we have to prove λ(Zf ∩ supp(f)) = 0. Let’s
assume λ(Zf ∩supp(f)) > 0 and let f∗ = supu∈Zf∩supp(f) f(u). The intersection

Zf ∩ supp(f) is not empty. Otherwise we would have λ(Zf ∩ supp(f)) = 0.
Therefore there exists u ∈ Zf ∩ supp(f) and we have f∗ ≥ f(u) > 0 as u ∈
supp(f). We also have Ff (f

∗) = 0. Indeed, f∗ is in the closure of {f(u), u ∈
Zf ∩ supp(f)} and therefore there exists a sequence (fm)m≥0 of elements of
{f(u), u ∈ Zf ∩ supp(f)} which converges towards f∗ as m tends to infinity.
Thus Ff (fm) = 0 for all m ≥ 0 and as Ff is continuous, Ff (f

∗) = 0, i.e.∫
{u,0≤f(u)≤f∗}

f(u)du = 0 .

This implies that f is equal to 0 λ-almost everywhere on {u, 0 ≤ f(u) ≤ f∗}.
However, if u ∈ Zf ∩ supp(f) then, by definition of f∗, f(u) ≤ f∗. Therefore
Zf ∩ supp(f) ⊂ {u, 0 ≤ f(u) ≤ f∗} and as λ(Zf ∩ supp(f)) > 0 and f > 0
on supp(f), {u, 0 ≤ f(u) ≤ f∗} contains a subset of non null λ-measure on
which f > 0. This is a contradiction with the fact that f is equal to 0 λ-almost
everywhere on {u, 0 ≤ f(u) ≤ f∗} and thus λ(ZfΔsupp(f)) = 0, which is
equivalent to λ(ZfΔsupp(f)) = 0.

B.2. Proof of Lemma 3

Proof of Lemma 3. The proof is based on Remark 3.2.4 in (Csörgő, 1983). Let
qn denote the quantile process defined for all α ∈ [ε, 1− ε] by

qn(α) =
√
nfs(F

†
s (α))(F̂

†
s (α)− F †

s (α)) .

Using the mean value theorem we can write for all α ∈ [ε, 1− ε],

qn(α) =
√
nfs(F

†
s (α))

(
F †
s (Û

†(α))− F †
s (α)

)
=

fs(F
†
s (α))

fs(F
†
s (ξ))

√
n(Û†(α)− α)
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where ξ is between Û†(α) and α and where Û†(α) is defined as in the proof of
Lemma 2. Let un be the uniform quantile process defined in Lemma 2. For all
α ∈ [ε, 1− ε], qn(α) = un(α)fs(F

†
s (α))/fs(F

†
s (ξ)).

Now we know from Theorem 1 in (Csörgő and Révész, 1978) that for all z1
and for all n,

P
(

sup
α∈[0,1]

|un(α)−B1
n(α)| >

C1 logn+ z1√
n

)
≤ C2 exp(−C3z1) (40)

where C1, C2 and C3 are positive absolute constants and where {B1
n(α), α ∈

[0, 1]}n≥1 is the same sequence of Brownian Bridges as the one of the proof of
assertion (ii) of Theorem 1. For all α ∈ [ε, 1− ε], we can write

qn(α)−B1
n(α) =

(
un(α)−B1

n(α)
)
+ un(α)

(
fs(F

†
s (α))

fs(F
†
s (ξ))

− 1

)
. (41)

Using a Taylor expansion of λs as in the proof of part (ii) of Theorem 1 we have
for all α ∈ [ε, 1− ε],

rn(α)− Zn(α) =
λ′
s(α

−1
s (α))

fs(α
−1
s (α))

(√
nfs(α

−1
s (α))(α̂−1

s (α)− α−1
s (α))−B1

n(1− α)
)

+
√
n
λ′′
s (ξ1)

2
(α̂−1

s (α)− α−1
s (α))2

where ξ1 is between α̂−1
s (α) and α−1

s (α). With the change of variable α′ = 1−α,

we obtain for all α′ ∈ [ε, 1− ε] that ξ1 is between F̂ †
s (α

′) and F †
s (α

′) and that

rn(α
′)−Zn(α

′) =
λ′
s(F

†
s (α

′))

fs(F
†
s (α′))

(qn(α
′)−B1

n(α
′))+

√
n
λ′′
s (ξ1)

2
(F̂ †

s (α
′)−F †

s (α
′))2 .

and therefore

|rn(α′)−Zn(α
′)| ≤ |λ′

s(F
†
s (α

′))|
fs(F

†
s (α′))

|qn(α′)−B1
n(α

′)|+
√
n
|λ′′

s (ξ1)|
2

|F̂ †
s (α

′)−F †
s (α

′)|2 .

(42)
To bound the right-hand side of the previous inequality we need the following
results. From the DKW inequality (see proof of Lemma 2) we have for all z2 > 0
and for all n,

P( sup
α∈[0,1]

|un(α)| ≥ z2) ≤ 2 exp(−2z22) . (43)

From Theorem 1.5.1 in (Csörgő, 1983) we have for all z3 > 0 and for all n,

P

(
sup

α∈[ε,1−ε]

∣∣∣∣∣fs(F †
s (α))

fs(F
†
s (ξ))

− 1

∣∣∣∣∣ > z3

)
≤ 4(�c�+ 1)

(
e−nεh

(
(1+z3)

1/2(�c�+1)
)

+ e−nεh
(
(1+z3)

−1/2(�c�+1)
)) (44)
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where for all z > 0, h(z) = z + log(1/z) − 1 and where x �→ �x� denotes the
floor part function. Finally from the proof of Theorem 1.4.3 in (Csörgő, 1983)
we have for all z4 ≥ 1 and for all n,

P

(
sup

α∈[ε,1−ε]

∣∣∣∣∣fs(F †
s (α))

fs(F
†
s (ξ))

∣∣∣∣∣ > z4

)
≤ 2(�c�+ 1)

(
e−nεh

(
z
1/2(�c�+1)
4

)
+ e−nεh

(
z
−1/2(�c�+1)
4

))
.

(45)

Let z1, z2 and z3 be positive and let z4 ≥ 1. We consider the four following
events:

Z1 =

{
sup

α∈[0,1]

|un(α)−B1
n(α)| > (C1 logn+ z1)/

√
n

}
,

Z2 =

{
sup

α∈[0,1]

|un(α)| ≥ z2

}
,

Z3 =

{
sup

α∈[ε,1−ε]

∣∣fs(F †
s (α))/fs(F

†
s (ξ))− 1

∣∣ > z3

}
and

Z4 =

{
sup

α∈[ε,1−ε]

∣∣fs(F †
s (α))/fs(F

†
s (ξ))

∣∣ > z4

}
.

Let ω ∈ Z1 ∩ Z2 ∩ Z3 ∩ Z4 where Z denotes the complement of a set Z. We
first deal with the first term of the right-hand side of (42). From (41) we have
for all α′ ∈ [ε, 1− ε],

|qn(α′)−B1
n(α

′)| ≤ |un(α
′)−B1

n(α
′)|+ |un(α

′)|
∣∣∣∣∣fs(F †

s (α
′))

fs(F
†
s (ξ))

− 1

∣∣∣∣∣
≤ C1 logn+ z1√

n
+ z2z3

where the second inequality holds because ω ∈ Z1 ∩ Z2 ∩ Z3. Now for all α′ ∈
[ε, 1−ε], F †

s (α
′) ∈ [0, ‖s‖∞]. As λ′

s is continuous |λ′
s(F

†
s (α

′))| ≤ sup[0,‖s‖∞] |λ′
s| <

∞. Furthermore, for all α′ ∈ [ε, 1−ε], fs(F
†
s (α

′)) ≥ infα∈[ε,1−ε] fs(F
†
s (α

′)) where
the infimum is strictly positive. Therefore for all α′ ∈ [ε, 1− ε],

|λ′
s(F

†
s (α

′))|
fs(F

†
s (α′))

|qn(α′)−B1
n(α

′)| ≤
sup[0,‖s‖∞] |λ′

s|
inf [ε,1−ε] fs ◦ F †

s

(
C1 logn+ z1√

n
+ z2z3

)

We now deal with the second term of the right-hand side of (42). For all
α ∈ [ε, 1− ε], α−1

s (α) and α̂−1
s (α) are in [0, ‖s‖∞]. Therefore ξ1 ∈ [0, ‖s‖∞] and

as λ′′
s is continuous, |λ′′

s (ξ1)| ≤ sup[0,‖s‖∞] |λ′′
s |. Now, as in the proof of Lemma
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2, using the mean value theorem we can write for α′ ∈ [ε, 1],

|F̂ †
s (α

′)− F †
s (α

′)| = 1

fs(F
†
s (ξ))

· |Û†(α′)− α′|

=
1

fs(F
†
s (α′))

∣∣∣∣∣fs(F †
s (α

′))

fs(F
†
s (ξ))

∣∣∣∣∣ · |un(α
′)|n−1/2

where ξ is the one of (41). As ω ∈ Z2 ∩ Z4 and bounding 1/fs(F
†
s (α

′)) by
1/ inf [ε,1−ε] fs ◦ F †

s as previously we obtain

√
n
λ′′
s (ξ1)

2
|F̂ †

s (α
′)− F †

s (α
′)|2 ≤ sup

[0,‖s‖∞]

|λ′′
s |

z22z
2
4

2
√
n(inf [ε,1−ε] fs ◦ F †

s )2
.

We eventually have

sup
α∈[ε,1−ε]

|rn(α)− Zn(α)| ≤
sup[0,‖s‖∞] |λ′

s|
inf [ε,1−ε] fs ◦ F †

s

(
C1 logn+ z1√

n
+ z2z3

)
+ sup

[0,‖s‖∞]

|λ′′
s |

z22z
2
4

2
√
n(inf [ε,1−ε] fs ◦ F †

s )2
.

Choosing, z1 = c1 log n with c1 > 0 arbitrary, z2 =
√
log n, z3 = c3

√
logn/n

with c3 > 0 arbitrary, and z4 = 2 we obtain that,

sup
α∈[ε,1−ε]

|rn(α)− Zn(α)| ≤
sup[0,‖s‖∞] |λ′

s|
inf [ε,1−ε] fs ◦ F †

s

(C1 + c1 + c3)
log n√

n

+ 2 sup
[0,‖s‖∞]

|λ′′
s |

logn
√
n(inf [ε,1−ε] fs ◦ F †

s )2

= c4vn

where the constant c4 is given by

c4 =
sup[0,‖s‖∞] |λ′

s|
inf [ε,1−ε] fs ◦ F †

s

(C1 + c1 + c3) +
2 sup[0,‖s‖∞] |λ′′

s |
(inf [ε,1−ε] fs ◦ F †

s )2
.

Let Z5 be the event defined by

Z5 =

{
sup

α∈[ε,1−ε]

|rn(α)− Zn(α)| > c4vn

}
.

We have shown that ω ∈ Z5 therefore

P(Z5) ≤ P(Z1) + P(Z2) + P(Z3) + P(Z4)

≤ C2

nC3c1
+

2

n2
+ 4(�c�+ 1)

(
e−nεh

(
(1+c3

√
logn/n)1/2(�c�+1)

)
+ e−nεh

(
(1+c3

√
log n/n)−1/2(�c�+1)

))
+ 2(�c�+ 1)

(
e−nεh

(
21/2(�c�+1)

)
+ e−nεh

(
2−1/2(�c�+1)

))
.
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We can choose c1 such that n−C3c1 = O(vn). Studying the function h we can
also show that h(21/2(�c
+1)) and h(2−1/2(�c
+1)) are strictly positive and if
a = 1/2(�c�+ 1), as n → ∞,

exp(−nεh((1 + c3
√
log n/n)a)) = exp

(
−εc23a

2 logn/2 +O((log n)3/2/
√
n)
)
.

Similarly we can show that

exp(−nεh((1 + c3
√

logn/n)−a)) = exp
(
−εc23a

2 logn/2 +O((log n)3/2/
√
n)
)

and we can choose c3 such that the right-hand sides of the two previous equations
are of order O(vn). This finally gives the result of the lemma.

B.3. Proof of Lemma 4

Proof of Lemma 4. To prove this lemma we carefully follow the proof of Lemma
3. From Lemma 11, Lemma 12 and Lemma 14 we know that there exist constants
C1 and C2 both strictly positive such that for P-almost all Dn, for n large

enough, supt∈R |f̃s(t) − fs(t)| ≤ C1wn, supα∈[ε,1−ε] |F̃s

†
(α) − F †

s (α)| ≤ C2wn

and supt∈R |f̃s
′
(t)− f ′

s(t)| converges to 0 as n tends to ∞. Let Dn be such that
these assertions are fulfilled. We denote by q∗n the quantile process given for all
α′ ∈ (0, 1) by

q∗n(α
′) = f̃s(F̃

†
s (α

′))
√
n
(
(FBoot

s )†(α′)− F̃ †
s (α

′)
)

where (FBoot
s )† is defined on (0, 1) as the generalized inverse of the empirical

cumulative distribution function FBoot
s which is based on a bootstrap sample

S∗
1 , . . . , S

∗
n which are i.i.d. random variables with distribution F̃s.

We have for all α ∈ [ε, 1− ε],

q∗n(α) = f̃s(F̃
†
s (α))

√
n
(
F̃ †
s (Ũ

†(α))− F̃ †
s (α)

)
where Ũ†(α) = F̃s((F

Boot
s )†(α)) for all α ∈ (0, 1). Let u∗

n be the associated

uniform quantile process defined for all α ∈ (0, 1) by u∗
n(α) =

√
n
(
Ũ†(α)− α

)
.

Let ε′ ∈ (0, 1). We first prove the differentiability of F̃ †
s on [ε′, 1 − ε′] for

n large enough. Given assumption (B5) the kernel K is differentiable on R.

Therefore f̃s is differentiable on R. For n large enough and for all α ∈ [ε′, 1−ε′],

f̃s(F̃
†
s (α)) = f̃s(α̃

−1
s (1− α)) > 0. Indeed, we can write

inf
α∈[ε′,1−ε′]

f̃s(α̃s
−1

(α)) ≥ inf
t∈[α̃s

−1(1−ε′),α̃s
−1(ε′)]

f̃s(t) .

As supα∈[ε′,1−ε′] |F̃s

†
(α)− F †

s (α)| converges to 0, α̃−1
s (ε′) and α̃−1

s (1− ε′) con-

verge respectively towards α−1
s (ε′) and α−1

s (1 − ε′). Therefore there exists a
constant c1 > 0, depending only on α−1

s (1 − ε′) and α−1
s (ε′), such that for n
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large enough, α̃s
−1

(1−ε′) ≥ α−1
s (1−ε′)−c1 > a and α̃s

−1
(ε′) < α−1

s (ε′)+c1 < b,

i.e., [α̃s
−1

(1 − ε′), α̃s
−1

(ε′)] ⊂ [α−1
s (1 − ε′) − c1, α

−1
s (ε′) + c1]. Therefore for n

large enough,

inf
t∈[α̃s

−1(1−ε′),α̃s
−1(ε′)]

f̃s(t) ≥ inf
t∈[α−1

s (1−ε′)−c1,α
−1
s (ε′)+c1]

f̃s(t)

and as f̃s converges uniformly towards fs, there exists a constant c2 > 0 such
that for n large enough,

inf
t∈[α−1

s (1−ε′)−c1,α
−1
s (ε′)+c1]

f̃s(t) ≥ inf
t∈[α−1

s (1−ε′)−c1,α
−1
s (ε′)+c1]

fs(t)− c2 > 0 .

Note that c2 can be chosen such that the strict positivity holds because the infi-
mum of fs on [α−1

s (1−ε′)−c1, α
−1
s (ε′)+c1] is attained and thus strictly positive

(assumption (A4)). Eventually, combining the three previous inequalities, for

n large enough we have: for all α ∈ [ε′, 1− ε′], f̃s(α̃
−1
s (α)) > 0.

Therefore, F̃s is differentiable on [α̃−1
s (1− ε′), α̃−1

s (ε′)] with strictly positive

derivative. This gives that F̃ †
s : [ε′, 1 − ε′] → [α̃−1

s (1 − ε′), α̃−1
s (ε′)] is equal to

the ordinary inverse of F̃s on [ε′, 1− ε′] and F̃ †
s is differentiable on [ε′, 1− ε′].

We now need to invoke the same argument as in the beginning of the proof of
Lemma 16. This argument says that there exists a constant c3 such that for n
large enough, if Z0 denotes the event Z0 = {[Ũ†(ε), Ũ†(1−ε)] �⊂ [ε−c3, 1−ε+c3]}
then P∗(Z0) ≤ 2/n2 (refer to the proof of Lemma 16 for details). Let ω ∈ Z0.

Assuming n large enough, for all α ∈ [ε, 1 − ε], Ũ†(α) ∈ [ε − c3, 1 − ε + c3].

Furthermore for n large enough, we proved that F̃ †
s is differentiable on [ε′, 1−ε′]

for all ε′ ∈ (0, 1). Therefore we can apply the mean value theorem to write for
all α ∈ [ε, 1− ε],

q∗n(α) =
f̃s(F̃

†
s (α))

f̃s(F̃
†
s (ξ))

√
n(Ũ†(α)− α) =

f̃s(F̃
†
s (α))

f̃s(F̃
†
s (ξ))

u∗
n(α)

where ξ is between Ũ†(α′) and α′.
Applying Theorem 1 in (Csörgő and Révész, 1978) conditionally on Dn, there

exists a sequence of Brownian Bridges {B∗1
n (α), α ∈ [0, 1]}n≥1 such that for all

z1 and for all n,

P∗
(

sup
α∈[0,1]

|u∗
n(α)−B∗1

n (α)| > C3 logn+ z1√
n

)
≤ C4 exp(−C5z1) (46)

where C3, C4 and C5 are positive absolute constants. Let B∗
n(α) = B∗1

n (1 − α)
for all α ∈ [0, 1]. Reasoning similarly as in the proof of Lemma 3, we have for
all α′ ∈ [ε, 1− ε],

|r∗n(α′)− Z∗
n(α

′)| ≤ |λ′
s(F̃

†
s (α

′))|
f̃s(F̃

†
s (α′))

|q∗n(α′)−B∗1
n (α′)|

+
√
n
|λ′′

s (ξ1)|
2

|(FBoot
s )†(α′)− F̃ †

s (α
′)|2

(47)

where ξ1 is between (FBoot
s )†(α′) and F̃ †

s (α
′).
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Still following the proof of Lemma 3 we need the following results. Condi-
tionally on Dn, the DKW inequality gives for all z2 > 0 and for all n,

P∗( sup
α∈[0,1]

|u∗
n(α)| ≥ z2) ≤ 2 exp(−2z22) . (48)

Using the result of Lemma 16 there exists a constant c∗ > 0 such that we have,
conditionally on Dn, for all z4 ≥ 1 and for n large enough,

P∗

(
sup

α∈[ε,1−ε]

∣∣∣∣∣ f̃s(F̃ †
s (α))

f̃s(F̃
†
s (ξ))

∣∣∣∣∣ > z4

)

≤ 2

n2
+ 2(�c∗�+ 1)

(
e−nεh

(
z
1/2(�c∗�+1)
4

)
+ e−nεh

(
z
−1/2(�c∗�+1)
4

)) (49)

where we recall that for all z > 0, h(z) = z + log(1/z)− 1. Following the proof
of Lemma 16 and with calculations similar as the ones used in the proof of
Theorem 1.4.3 in (Csörgő, 1983) it can also be shown that conditionally on Dn

we have for all z3 > 0 and for n large enough,

P∗

(
sup

α∈[ε,1−ε]

∣∣∣∣∣ f̃s(F̃ †
s (α))

f̃s(F̃
†
s (ξ))

− 1

∣∣∣∣∣ > z3

)

≤ 4(�c∗�+ 1)
(
e−nεh

(
(1+z3)

1/2(�c∗�+1)
)
+ e−nεh

(
(1+z3)

−1/2(�c∗�+1)
))

+
2

n2
.

(50)

Now as for all α′ ∈ [ε, 1− ε], F̃ †
s (α

′) is in the support of f̃s which has shown
in the proof of Lemma 13, is included in an interval of the form [−c4, c4+‖s‖∞]
where c4 is a strictly positive constant that depends only on the kernel K.
As λ′

s is continuous, |λ′
s(F̃

†
s (α

′))| ≤ sup[−c4,c4+‖s‖∞] |λ′
s| < ∞. Furthermore, as

proved above, there exist constants c5 and c6 both strictly positive such that
[F †

s (ε)− c5, F
†
s (1− ε) + c5] ⊂ (a, b) and such that for n large enough,

inf
α′∈[ε,1−ε]

f̃s(F̃
†
s (α

′)) ≥ inf
t∈[F †

s (ε)−c5,F
†
s (1−ε)+c5]

fs(t)− c6 > 0 .

For all α ∈ [ε, 1 − ε], (FBoot
s )†(α) and F̃ †

s (α) are in the support of f̃s which
is included in [−c4, c4 + ‖s‖∞]. Therefore ξ1 ∈ [−c4, c4 + ‖s‖∞] and as λ′′

s is
continuous, |λ′′

s (ξ1)| ≤ sup[−c4,c4+‖s‖∞] |λ′′
s | < +∞. Thus following the steps of

the proof of Lemma 3 we have for n large enough,

P∗

(
sup

α∈[ε,1−ε]

|r∗n(α)− Z∗
n(α)| > Cvn

)

≤ C4

nC5c7
+

8

n2
+ 4(�c∗�+ 1)

(
exp

(
−nεh

(
(1 + c8

√
logn/n)1/2(�c

∗
+1)
))

+ exp
(
−nεh

(
(1 + c8

√
logn/n)−1/2(�c∗
+1)

)))
+ 2(�c∗�+ 1)

(
exp

(
−nεh

(
21/2(�c

∗
+1)
))

+ exp
(
−nεh

(
2−1/2(�c∗
+1)

)))
.
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where

C =
sup[−c4,c4+‖s‖∞] |λ′

s|
inf [F †

s (ε)−c5,F
†
s (1−ε)+c5]

fs − c6
(C4 + c7 + c8)

+
2 sup[−c4,c4+‖s‖∞] |λ′′

s |
(inf [F †

s (ε)−c5,F
†
s (1−ε)+c5]

fs − c6)2
.

Proceeding analogously as in Lemma 3, we can choose c7 and c8 such that the
right-hand side of the previous inequality is of order O(vn). This finally gives
the result of the lemma.

B.4. Proof of Lemma 5

Proof of Lemma 5. Notice first that thanks to Lemma 10 ys(α) �= 0 for all
α ∈ (0, 1). Let α ∈ [ε, 1− ε],

ỹs(α)

ys(α)
− 1 =

ỹs(α)− ys(α)

ys(α)
.

As the function |1/ys(·)| is continuous and therefore bounded over [ε, 1− ε],
we only need to control supα∈[ε,1−ε] |ỹs(α) − ys(α)| which can be bounded by
the following decomposition

|ys(α)− ỹs(α)| ≤
∣∣∣∣λ′

s(α
−1
s (α))

fs(α
−1
s (α))

− λ′
s(α̃

−1
s (α))

fs(α̃
−1
s (α))

∣∣∣∣+
∣∣∣∣∣λ′

s(α̃
−1
s (α))

fs(α̃
−1
s (α))

− λ′
s(α̃

−1
s (α)

f̃s(α̃
−1
s (α))

∣∣∣∣∣ .
(51)

As λs is of class C2 and fs is of class C1 and strictly positive on (a, b), λ′
s/fs

is of class C1 on (a, b). Thus using the mean value theorem, we can write, for all
α ∈ [ε, 1− ε],∣∣∣∣λ′

s(α
−1
s (α))

fs(α
−1
s (α))

− λ′
s(α̃

−1
s (α))

fs(α̃
−1
s (α))

∣∣∣∣ ≤
∣∣∣∣∣
(
λ′
s

fs

)′
(ξ)

∣∣∣∣∣ · |α−1
s (α)− α̃−1

s (α)|

where ξ is between α−1
s (α) and α̃−1

s (α). From Lemma 14 we know that there
exists a constant c1 > 0 such that almost surely, for n large enough, α̃−1

s (α) ∈
[α−1

s (1−ε)−c1, α
−1
s (ε)+c1] ⊂ (a, b). Therefore, as (λ′

s/fs)
′ is continuous, almost

surely and for n large enough,∣∣∣∣∣
(
λ′
s

fs

)′
(ξ)

∣∣∣∣∣ ≤ sup
t∈[α−1

s (1−ε)−c1,α
−1
s (ε)+c1]

∣∣∣∣∣
(
λ′
s

fs

)′
(t)

∣∣∣∣∣ < +∞ .

Furthermore,

sup
α∈[ε,1−ε]

|α−1
s (α)− α̃−1

s (α)| = sup
α′∈[ε,1−ε]

|F †
s (α

′)− F̃ †
s (α

′)| .
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Therefore, using Lemma 14, there exists a constant C1 > 0 such that we almost
surely have, for n large enough,∣∣∣∣λ′

s(α
−1
s (α))

fs(α
−1
s (α))

− λ′
s(α̃

−1
s (α))

fs(α̃
−1
s (α))

∣∣∣∣ ≤ C1wn . (52)

For the second term of (51) we write∣∣∣∣∣λ′
s(α̃

−1
s (α))

fs(α̃
−1
s (α))

− λ′
s(α̃

−1
s (α))

f̃s(α̃
−1
s (α))

∣∣∣∣∣ = |λ′
s(α̃

−1
s (α))|

∣∣∣∣∣ 1

fs(α̃
−1
s (α))

− 1

f̃s(α̃
−1
s (α))

∣∣∣∣∣
and as shown in the proof of Lemma 13, F̃s has a finite support included in an
interval of the form [−c2, c2 + ‖s‖∞]. Therefore α̃−1

s (α) ∈ [−c2, c2 + ‖s‖∞] and
as λ′

s is continuous, it is bounded on this interval. Therefore there exists C2 > 0
such that for all α ∈ [ε, 1− ε], |λ′

s(α̃
−1
s (α))| ≤ C2 and∣∣∣∣∣λ′

s(α̃
−1
s (α))

fs(α̃
−1
s (α))

− λ′
s(α̃

−1
s (α))

f̃s(α̃
−1
s (α))

∣∣∣∣∣ ≤ C2
supx∈R |f̃s(x)− fs(x)|
f̃s(α̃

−1
s (α))fs(α̃

−1
s (α))

. (53)

We can proceed as in the proof of Lemma 4 to show that there exists constants
c3 and c4 both strictly positive such that [α−1

s (1− ε)− c3, α
−1
s (ε) + c3] ⊂ (a, b)

and such that almost surely, for n large enough, for all α ∈ [ε, 1− ε],

f̃s(α̃
−1
s (α)) ≥ inf

t∈[α−1
s (1−ε)−c3,α

−1
s (ε)+c3]

fs(t)− c4 > 0 .

We also almost surely have, for n large enough and for all α ∈ [ε, 1− ε],

fs(α̃
−1
s (α)) ≥ inf

α′∈[ε,1−ε]
fs(α̃

−1
s (α′)) = inf

t∈[α̃−1
s (1−ε),α̃−1

s (ε)]
fs(t)

≥ inf
t∈[α−1

s (1−ε)−c3,α
−1
s (ε)+c3]

fs(t) > 0 .

Let Aε = [α−1
s (1 − ε) − c3, α

−1
s (ε) + c3]. We almost surely have, for n large

enough,

∣∣∣λ′
s(α̃

−1
s (α))

fs(α̃
−1
s (α))

− λ′
s(α̃

−1
s (α))

f̃s(α̃
−1
s (α))

∣∣∣ ≤ C2
supt∈R |f̃s(t)− fs(t)|

inft∈Aε fs(t) · (inft∈Aε fs(t)− c4)
.

Thanks to Lemma 11 and combining the last inequality with (52), we obtain
the result of the lemma.

B.5. Other technical results

Lemma 10. For all α ∈ (0, 1), ys(α) �= 0.
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Proof of Lemma 10. First notice that as λs is of class C2 and F ′
s = fs > 0 on

(a, b), MVs = λs ◦ α−1
s is differentiable on (0, 1) and for all α ∈ (0, 1),

MV′
s(α) = −λs(α

−1
s (α))

fs(α
−1
s (α))

= −ys(α) . (54)

Now, following the steps of the proof of the formula of the derivative of MV∗

we also have, for all α ∈ (0, 1) and h > 0,

MVs(α+ h)−MVs(α)

h
=

1

h
(λ{s ≥ F−1

s (1− (α+ h))} − λ{s ≥ F−1
s (1− α)})

=
1

h
λ{F−1

s (1− (α+ h)) ≤ s ≤ F−1
s (1− α)}

=
1

h
λ{1− (α+ h) ≤ Fs ◦ s ≤ 1− α}

=
1

h

∫
X
I{x, 1− (α+ h) ≤ Fs(s(x)) ≤ 1− α}f(x)

f(x)
dx

≥ 1

h‖f‖∞
P(Fs(s(X)) ∈ [1− (α+ h), 1− α])

=
1

‖f‖∞
.

where we used the fact that the distribution of Fs(s(X)) is the uniform distri-
bution on (0, 1). Similarly,

∀α ∈ (0, 1),
MVs(α− h)−MVs(α)

−h
≥ 1

‖f‖∞
.

Therefore, for all α ∈ (0, 1), MV′
s(α) ≥ 1/‖f‖∞ > 0. Using (54), this implies

that ys(α) �= 0 for all α ∈ (0, 1).

Lemma 11. Under assumptions (A3) and (B1)–(B4) there exists a constant
C > 0, depending only on fs and the kernel K such that we almost surely have,
for n large enough,

sup
t∈R

∣∣∣f̃s(t)− fs(t)
∣∣∣ ≤ Cwn .

Note that this result does not require K to have a finite support.

Proof of Lemma 11. We first bound supt∈R |f̃s(t)−fs(t)| by the sum of a stochas-
tic term and a deterministic term:

sup
t∈R

∣∣∣f̃s(t)− fs(t)
∣∣∣ ≤ sup

t∈R

∣∣∣f̃s(t)− E[f̃s(t)]
∣∣∣+ sup

t∈R

∣∣∣E[f̃s(t)]− fs(t)
∣∣∣ .

Under the stipulated conditions, the first term is controlled thanks to Theorem
2.3 in (Giné and Guillou, 2002): we almost surely have, for n large enough,

sup
t∈R

∣∣∣f̃s(t)− E[f̃s(t)]
∣∣∣ ≤ M2‖fs‖∞‖K‖22

√
log h−1

n

nhn

where M is a constant that depends on the VC characteristics of K.
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It can then be shown with classical calculations that the second term is
bounded by

sup
t∈R

∣∣∣E[f̃s(t)]− fs(t)
∣∣∣ ≤ h2

n

2
‖f ′′

s ‖∞
∫ +∞

−∞
y2K(y) .

Combining this last inequality with the one on the first term we obtain the
result of the lemma.

Lemma 12. Under assumptions (A3), (B1)–(B3) and (B5) there exists a
constant C > 0, depending only on fs and the kernel K such that we almost
surely have, for n large enough,

sup
t∈R

∣∣∣f̃s′(t)− f ′
s(t)

∣∣∣ ≤ C

⎛⎝√ log h−1
n

nh3
n

+ h2
n

⎞⎠ .

Therefore, as hn → 0, if assumption (B6) is also fulfilled then we almost surely
have,

sup
t∈R

∣∣∣f̃s′(t)− f ′
s(t)

∣∣∣ −→
n→∞

0 .

Note that this result does not require K to have a finite support.

Proof of Lemma 12. We proceed as in the proof of Lemma 11. We first bound

supt∈R |f̃s
′
(t)− f ′

s(t)| by the sum of a stochastic term and a deterministic term:

sup
t∈R

∣∣∣f̃s′(t)− f ′
s(t)

∣∣∣ ≤ sup
t∈R

∣∣∣f̃s′(t)− E[f̃s
′
(t)]
∣∣∣+ sup

t∈R

∣∣∣E[f̃s′(t)]− f ′
s(t)

∣∣∣ .
We first deal with the first term. Let t ∈ R,

f̃s
′
(t)− E[f̃ ′

s(t)]

=
1

hn

(
1

nhn

n∑
i=1

K ′
(
t− s(Xi)

hn

)
− E

[
1

nhn

n∑
i=1

K ′
(
t− s(Xi)

hn

)])
.

Therefore K ′ satisfying the conditions required for the result of (Giné and Guil-
lou, 2002) we almost surely have, for n large enough,

sup
t∈R

∣∣∣f̃s′(t)− E[f̃ ′
s(t)]

∣∣∣ ≤ M ′2‖fs‖∞‖K ′‖22

√
log h−1

n

nh3
n

where M ′ is a constant that depends on the VC characteristics of K ′.
We now deal with the second term as follows. Let t ∈ R,

E[f̃s
′
(t)] =

1

nh2
n

n∑
i=1

E

[
K ′
(
t− s(Xi)

hn

)]
=

1

h2
n

E

[
K ′
(
t− s(X1)

hn

)]
=

1

hn

∫ +∞

−∞

1

hn
K ′
(
t− u

hn

)
fs(u)du .
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With an integration by parts we obtain,

E[f̃s
′
(t)]− f ′

s(t) =
1

hn

∫ +∞

−∞
K

(
t− u

hn

)
f ′
s(u)du− f ′

s(t)

and we can deal with this term as we dealt with E[f̃s(t)]− fs(t) in the proof of
Lemma 11, to obtain

sup
t∈R

∣∣∣E[f̃s′(t)]− f ′
s(t)

∣∣∣ ≤ h2
n

2
‖f ′′′

s ‖∞
∫ +∞

−∞
y2K(y) .

Combining this last inequality with the one on the first term we obtain the
result of the lemma.

Lemma 13. Under the conditions of Lemma 11 there exists a constant C > 0
such that we almost surely have for n large enough,

sup
t∈R

∣∣∣F̃s(t)− Fs(t)
∣∣∣ ≤ Cwn .

Proof of Lemma 13. Let t ∈ R,∣∣∣Fs(t)− F̃s(t)
∣∣∣ = ∣∣∣∣∫ t

−∞
fs(u)du−

∫ t

−∞
f̃s(u)du

∣∣∣∣ ≤ ∫ t

−∞
|fs(u)− f̃s(u)|du .

As fs has a support included in [0, ‖s‖∞], as K has a finite support and as the

sequence (hn)n≥1 decreases towards 0, f̃s also has a finite support included in
an interval of the form [−c1, ‖s‖∞ + c1] where c1 > 0. Thus,∫ t

−∞
|fs(u)− f̃s(u)|du ≤ (2c1 + ‖s‖∞) sup

t∈R

∣∣∣fs(t)− f̃s(t)
∣∣∣ .

Thanks to Lemma 11, we finally obtain the result.

Lemma 14. Let ε ∈ (0, 1). Under the conditions of Lemma 11, there exists a
constant C > 0 such that we almost surely have for n large enough,

sup
y∈[ε,1−ε]

∣∣∣F̃ †
s (y)− F †

s (y)
∣∣∣ ≤ Cwn .

This lemma only requires F̃s to be continuous.

Proof of Lemma 14. First we recall that F̃s being continuous, for all y ∈ (0, 1),
Fs(F

†
s (y)) = y. Let y ∈ [ε, 1− ε],

|F̃s(F̃
†
s (y))− Fs(F̃

†
s (y))| = |y − Fs(F̃

†
s (y))| = |Fs(F

†
s (y))− Fs(F̃

†
s (y))|

= |fs(ξ)| · |F †
s (y)− F̃ †

s (y)|

with ξ between F †
s (y) and F̃ †

s (y). As F †
s and F̃ †

s are increasing, F †
s (ε) ≤ F †

s (y) ≤
F †
s (1− ε) and F̃ †

s (ε) ≤ F̃ †
s (y) ≤ F̃ †

s (1− ε). Now
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|ε− Fs(F̃
†
s (ε))| = |F̃s(F̃

†
s (ε))− Fs(F̃

†
s (ε))| ≤ sup

t∈R

|F̃s(t)− Fs(t)| .

Therefore from Lemma 13 as wn → 0 when n tends to +∞, Fs(F̃
†
s (ε)) con-

verges almost surely to ε. And as F †
s is continuous, we almost surely have,

F †
s (Fs(F̃

†
s (ε))) −→

n→∞
F †
s (ε), i.e., F̃

†
s (ε) −→

n→∞
F †
s (ε). Similarly, we almost surely

have F̃ †
s (1−ε) −→

n→∞
F †
s (1−ε). Therefore there exists a constant c1 > 0 such that

we almost surely have, for n large enough, F̃ †
s (y) ∈ [F †

s (ε)−c1, F
†
s (1−ε)+c1] ⊂

(a, b). This implies that ξ is between F †
s (ε)− c1 > a and F †

s (1− ε) + c1 < b and
thus,

fs(ξ) ≥ inf
t∈[F †

s (ε)−c1,F
†
s (1−ε)+c1]

fs(t) .

We thus almost surely have, for n large enough,

|F̃s(F̃
†
s (y))− Fs(F̃

†
s (y))| ≥ |F †

s (y)− F̃ †
s (y)| inf

t∈[F †
s (ε)−c1,F

†
s (1−ε)+c1]

fs(t)

Now as fs is strictly positive on (a, b) and continuous, the infimum of the right-
hand side is strictly positive. We can thus write almost surely and for n large
enough,

|F †
s (y)− F̃ †

s (y)| ≤
1

inft∈[F †
s (ε)−c1,F

†
s (1−ε)+c1]

fs(t)
|F̃s(F̃

†
s (y))− Fs(F̃

†
s (y))|

≤ C

inft∈[F †
s (ε)−c1,F

†
s (1−ε)+c1]

fs(t)
wn

where we used Lemma 13 for the last inequality. This concludes the proof.

Lemma 15. Let a′, b′ ∈ R with a < a′ < b′ < b. Under assumptions (A3)–
(A4) and (B1)–(B6),

sup
t∈[a′,b′]

∣∣∣∣∣F̃s(t)(1− F̃s(t))
|f̃s

′
(t)|

f̃s
2
(t)

− Fs(t)(1− Fs(t))
|f ′

s(t)|
f2
s (t)

∣∣∣∣∣ −→
n→+∞

0

Proof of Lemma 15. We have for all t ∈ [a′, b′],∣∣∣F̃s(t)(1− F̃s(t))
|f̃s

′
(t)|

f̃s
2
(t)

− Fs(t)(1− Fs(t))
|f ′

s(t)|
f2
s (t)

∣∣∣
≤ |F̃s(t)(1− F̃s(t))|

∣∣∣∣∣ |f̃s
′
(t)|

f̃s
2
(t)

− |f ′
s(t)|

f2
s (t)

∣∣∣∣∣
+

∣∣∣∣∣ f̃s
′
(t)

f̃s
2
(t)

∣∣∣∣∣ |F̃s(t)(1− F̃s(t))− Fs(t)(1− Fs(t))|

≤
∣∣∣∣∣ |f̃s

′
(t)|

f̃s
2
(t)

− |f ′
s(t)|

f2
s (t)

∣∣∣∣∣+
∣∣∣∣∣ f̃s

′
(t)

f̃s
2
(t)

∣∣∣∣∣ |F̃s(t)(1− F̃s(t))− Fs(t)(1− Fs(t))|
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where the third inequality holds because for all t, F̃s(t) ∈ [0, 1]. The result can
then be derived thanks to Lemma 11, Lemma 12 and Lemma 13.

Lemma 16. Let Dn be such that supt∈R |f̃s(t) − fs(t)| ≤ C1wn,

supα∈[ε,1−ε] |F̃s

†
(α) − F †

s (α)| ≤ C2wn and supt∈R |f̃s
′
(t) − f ′

s(t)| converges to
0 as n tends to ∞. There exists a constant c∗ > 0 such that at Dn fixed, for all
z4 ≥ 1 and for n large enough,

P∗

(
sup

α∈[ε,1−ε]

∣∣∣∣∣ f̃s(F̃ †
s (α))

f̃s(F̃
†
s (ξ))

∣∣∣∣∣ > z4

)
≤ 2

n2
+ 2(�c∗�+ 1)

(
exp

(
−nεh

(
z
1/2(�c∗
+1)
4

))
+ exp

(
−nεh

(
z
−1/2(�c∗
+1)
4

)))
.

where ξ is between Ũ†(α) and α with α ∈ [ε, 1− ε].

Proof of Lemma 16. From the DKW inequality (see proof of Lemma 2), we have
for all n,

P∗

(
sup

α∈[0,1]

|Ũ†(α)− α| ≥
√

logn

n

)
≤ 2

n2
.

Therefore, if ω′ ∈ {supα∈[0,1] |Ũ†(α)− α| <
√

logn/n}, we have,

|Ũ†(ε)− ε| ≤ sup
α∈[0,1]

|Ũ†(α)− α| <
√

logn/n

and similarly,

|Ũ†(1− ε)− (1− ε)| ≤ sup
α∈[0,1]

|Ũ†(α)− α| <
√
logn/n .

Thus there exists a constant c1 such that for n large enough (independent of

ω′), Ũ†(ε) ≥ ε−c1 > 0 and Ũ†(1−ε) ≤ 1−ε+c1 < 1. Now as α ∈ [ε, 1−ε], this
implies that for n large enough, ξ ∈ [ε − c1, 1 − ε + c1]. Eventually, for n large
enough, ω′ ∈ {ξ ∈ [ε − c1, 1 − ε + c1]}. Let Z1 = {ξ /∈ [ε − c1, 1 − ε + c1]}. We
thus have for n large enough, P∗(Z1) ≤ P∗(supα∈[0,1] |u∗

n(α)| ≥
√
logn) ≤ 2/n2.

Now, from Lemma 14 and Lemma 15 there exist positive constants c2 and
C3 such that for n high enough,

sup
α∈[ε−c1,1−ε+c1]

α(1− α)
|f̃s

′
(F̃ †

s (α))

f̃2
s (F̃

†
s (α))

≤ sup
t∈[F †

s (ε−c1)−c2,F
†
s (1−ε+c1)+c2]

Fs(t)(1− Fs(t))
|f ′

s(t)|
f2
s (t)

+ C3

≤ c+ C3

where c2 is such that

[F̃ †
s (ε− c1), F̃

†
s (1− ε+ c1)] ⊂ [F †

s (ε− c1)− c2, F
†
s (1− ε+ c1) + c2] ⊂ (0, ‖s‖∞) .
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Let c∗ = c + C3 and let α1, α2 ∈ [ε − c1, 1 − ε + c1]. Following the proof of
Lemma 1.4.1 in (Csörgő, 1983), we have for n high enough,

f̃s(F̃
†
s (α1))

f̃s(F̃
†
s (α2))

≤
(
max(α1, α2)

min(α1, α2)

1−min(α1, α2)

1−max(α1, α2)

)c∗

.

Let z4 ≥ 1 et let Z2 be the following event

Z2 =

⎧⎨⎩ sup
α∈[ε,1−ε]

(
max(Ũ†(α), α)

min(Ũ†(α), α)

1−min(Ũ†(α), α)

1−max(Ũ†(α), α)

)c∗

≥ z4

⎫⎬⎭ .

Let ω′ ∈ Z1 ∩ Z2. We therefore have

sup
α∈[ε,1−ε]

f̃s(F̃
†
s (α))

f̃s(F̃
†
s (ξ))

≤ sup
α∈[ε,1−ε]

(
max(Ũ†(α), α)

min(Ũ†(α), α)

1−min(Ũ†(α), α)

1−max(Ũ†(α), α)

)c∗

≤ z4 .

Therefore ω′ ∈ Z3 defined as the complement of

Z3 =

{
sup

α∈[ε,1−ε]

f̃s(F̃
†
s (α))

f̃s(F̃
†
s (ξ))

≥ z4

}
.

Thus P∗(Z1 ∩ Z2) ≤ P∗(Z3) which implies that for n large enough,

P∗

(
sup

α∈[ε,1−ε]

f̃s(F̃
†
s (α))

f̃s(F̃
†
s (ξ))

≥ z4

)
= P∗(Z3) ≤ P∗(Z1) + P∗(Z2) ≤

2

n2
+ P∗(Z2) .

Now from the proof of Theorem 1.4.3 in (Csörgő, 1983) we can bound P∗(S2)
and obtain the result of the lemma.
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Clémençon, S. and Robbiano, S. (2014). Anomaly ranking as supervised bi-
partite ranking. In Proceedings of the 31th International Conference on Ma-
chine Learning, ICML 2014, Beijing, China 343–351.

http://www.ams.org/mathscinet-getitem?mr=2256570
http://www.ams.org/mathscinet-getitem?mr=3039981
http://www.ams.org/mathscinet-getitem?mr=1484386


Mass volume curves and anomaly ranking 2871

Clémençon, S. and Vayatis, N. (2009). Adaptive Estimation of the Optimal
ROC Curve and a Bipartite Ranking Algorithm. In Algorithmic Learning
Theory. Lecture Notes in Computer Science 5809 216–231. Springer Berlin
Heidelberg. MR2564229
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