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1. Introduction

Consider the nonparametric regression model:

Y = m(Z) + ε, (1.1)

where Y is a scale dependent variable with the covariates Z = (X�,W�)�,
X = (X1, · · · , Xp1)

� ∈ R
p1 , W = (W1, · · · ,Wp2)

� ∈ R
p2 and p1 + p2 = d, the

regression function m(·) : Rd → R is unknown in its form and ε is the error
term with zero conditional expectation when Z is given: E(ε|Z) = 0. As well
known, the success of any further statistical analysis hinges on the correction
of the working model. Note that part of the covariates are often redundant in
regression models. The subset of the covariates W is said to be insignificant for
the response variable Y given X if

E(Y |X,W ) = E(Y |X). (1.2)

The equality (1.2) means that W does not provide more information to predict
Y . W should be removed from the regression model (1.1), otherwise, such re-
dundant variables cause statistical analysis more complicated and less accurate
and efficient. This step, particularly in the first stage of regression analysis, is
necessary. In the literature, relevant testing problem called significance testing
has attracted much attention. There exist several proposals that are based on
prevalent locally and globally smoothing methodologies in the literature. For
the former, Lavergne and Vuong (2000)[10] extended the idea introduced by
Fan and Li (1996)[6], proposed a test based on a second conditional moment
to check the significance of a subset of covariates. Further, Li (1999)[15] devel-
oped a nonparametric significance test that is based on the idea of Fan and
Li (1996)[6] for nonparametric and semiparametric time-series models. Racine
et al. (2006)[18] suggested a test for the significance of categorical variables in
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fully nonparametric regression models. It is noted that these locally smoothing-
based test statistics converge to the respective limiting null distributions at the
typical rate Op(n

−1/2h−d/4), where d is the number of all the covariates and h
is the bandwidth in kernel estimation. Further, these tests can also only detect
the local alternative hypotheses distinct from the null hypothesis at the rate
Op(n

−1/2h−d/4). When d = p1 + p2 is large, the convergence rate is very slow
because h converges to zero at a certain rate. This implies that these locally
smoothing methodologies severely suffer from the curse of dimensionality. This
problem is caused by using nonparametric estimation for the models under both
the null and alternative hypothesis that assume the significance of all covari-
ates. However, this clearly has not yet fully used the model structure under the
null hypothesis. For globally smoothing tests, Racine (1997)[17] advised a test
based on nonparametric estimation of partial derivative. Delgado and González
Manteiga (2001)[4] introduced a consistent test based on a stochastic process.
Both the tests have a fast rate of order

√
n. Racine’s (1997)[17] test involves

the nonparametric estimation of partial derivative ∂E(Y |X,W )/∂W and thus,
estimation inefficiency can seriously deteriorate the performance of the test.
Delgado and González-Manteiga’s (2001)[4] test involves the multivariate non-
parametric estimation of E(Y |X) and all the covariates in the process. Thus, the
data sparseness in high-dimensional space still causes negative impact for the
power performance of the resulting test. We can see from the following example
in Section 4 that the power drops down very quickly as d increases. Finally,
when the dimension d of the covariates is large, the computational burden is
also an issue because the Monte Carlo approximations to their sampling null
distributions are computationally intensive.

We now present some simulation results of Example 1 in Section 4 to illus-
trate those disadvantageous phenomena. Here the sample size is n = 200, the
dimension of X is set to be p1 = 2, 4 and the dimension p2 of W is chosen to be
2 to 10 in this numerical simulation. The empirical powers are simulated across
through 2000 replications for each experiment at the significance level α = 0.05.
For the presentation purpose in the figure, the power is set to be 1 when p2 = 0.
We use this example to examine how the powers of existing tests are negatively
affected by increasing the dimension p2.

Figure 1 depicts the empirical power curves of Fan and Li’s (1996)[6] test
and Delgado and González Manteiga’s test (2001)[4] that are regarded as the
representatives of local smoothing tests and global smoothing tests. More de-
tails about the bandwidth selection and other details for this simulation can be
found in Section 4. Obviously, the empirical powers of these two tests rapidly
decrease as p1 and p2 increase. This indicates that both the tests severely suf-
fer from the curse of dimensionality. Relevant discussions on the significance
level maintainance will be discussed below. To this end, how to overcome the
aforementioned problems caused by dimensionality is of great importance.

Recently, Lavergne et al. (2015)[11] devised a new kernel-based test that is
based on a suitable equivalent Fourier transformation. Their test is based on an
idea that combines locally smoothing and globally smoothing test in construc-
tion. Namely, they locally smooth the regression function with covariates under
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Fig 1. The empirical power curves of Fan and Li’s (1996) test and Delgado and González
Manteiga’s (2001) test against the dimensions of X and W , where X ∼ N(0,Σ1) and W ∼
N(0,Σ1) with sample size n = 200 and a = 2 at the significance level α = 0.05 for Example 1.

the null hypothesis, and globally smooth by using the average over the regression
function with the other covariates. The nice feature is that it inherits the merit
of locally smoothing tests that can be sensitive to high-frequency alternative
models and is still omnibus. Theoretically, the test statistic has a faster rate of
order O(n−1/2h−p1/4) to its weak limit rather than the rate O(n−1/2h−d/4) that
classical locally smoothing tests achieve. But even under the null hypothesis, it
still uses all covariates. Thus, to maintain the significance level, the test still
encounters the data sparseness issue even under the null hypothesis.

How to construct a test that involves all covariates only under the alternative
hypothesis is of interest. Guo et al. (2016)[8] advocated an adaptive-to-model
strategy to construct test statistics. They first proposed a dimension-reduction
locally smoothing test which used to test generalized linear regression models.
Under the null hypothesis, the test solely uses the information provided by the
hypothetical model such that it can well maintain the significance level, and
under the alternative hypothesis it can automatically adapt to the alternative
model such that the test is omnibus. Zhu et al. (2017a)[30] followed the similar
idea to develop a dimension reduction globally smoothing test for more general
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regression models. It is of interest to apply this strategy in test statistic con-
struction in significance testing. However, such an application is far from trivial.
As the key, identifying the projected covariates in the hypothetical and alter-
native models plays a crucial role in this method. In Guo et al. (2016)[8], the
projected covariates in the hypothetical models are contained in the alternative
models. In the present setup, we cannot impose this assumption and thus, the
identification procedure will be different from the model adaptation step of Guo
et al. (2016)[8]. Therefore, we need a new method to tickle this issue. The details
will be seen from the following model and the test statistic construction in the
next section.

As is known, the objective of significance testing focuses on choosing the
significant covariates X in the nonparametric regression setting. Let g(x) =
E(Y |X = x). Then the significance testing becomes the following hypothesis:

H0 : E(Y |X,W ) = g(X) versus H1 : E(Y |X,W ) �= g(X). (1.3)

Let U = Y − g(X). Recall Z = (X�,W�)�. Then we have under the null hy-
pothesis H0, E(U |Z) = m(Z)− g(X) = 0, but under the alternative hypothesis
H1, E(U |Z) �= 0. To facilitate a more general model structure we want to test,
consider the following reformulation of the above model. Note that g(·) is an
unknown function, the nonparametric regression model Y = g(X) + U can be
reformulated as:

Y = g(X) + U = g(B1B
�
1 X) + U ≡: g̃(B�

1 X) + U,

where B1 is an orthonormal p1×p1 matrix. This means that the above regression
model can be viewed as a special multi-index regression model with p1 indices
corresponding to the covariates X. Thus, in the present paper, we consider a
general null hypothesis as:

H0 : E(Y |Z) = E(Y |X) = g(B�
1 X) a.s, (1.4)

where B1 is a p1 × q1 orthonormal matrix for a given q1 with 1 ≤ q1 ≤ p1. The
hypothetical regression model covers many popularly used models in the litera-
ture, including the single-index model, the multi-index model and the partially
linear single-index model. When the above regression model is a single-index
model or partially linear single index model, the corresponding number q1 of
the indices becomes one or two, respectively. Particularly, when q1 = p1, the
hypothetical model becomes the classical model (1.2). Consider a general alter-
native model. Let B be a d × q2 orthonormal matrix with B�B = Iq2×q2 and
q2 being an unknown number with d ≥ q2 > q1. The alternative hypothesis is

H1 : E(Y |Z) = m(B�Z) �= g(B�
1 X) = E(Y |X). (1.5)

Note that model (1.2) can also be written in this format. That is, under H0, we
have a matrix (B�

1 , 0�p2×q1) and B�
1 X = (B�

1 , 0�p2×q1)Z.
We develop a test that solely depends on the linear combinations of the

significant covariates X under the null hypothesis H0, and automatically uses
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the linear combinations of all the covariates under the alternative hypothesis H1

such that the test is omnibus. We will call it a Dimension Reduction Adaptive-to-
Model test (DREAM). Compared with existing locally smoothing tests, we will
show that, rather than at the rate of order O(n−1/2h−d/4), DREAM converges
to their weak limit at the rate of order O(n−1/2h−q1/4) and may detect the
local alternative models distinct from the null model also at this rate. Further,
it is worthwhile to mention that almost all existing locally smoothing tests
require the assistance of Monte Carlo approximation to determine critical values,
although the limiting null distribution is tractable, otherwise, the significance
level is difficult to maintain. In contrast, the dimension reduction structure of our
test alleviates this difficulty, the critical values of the new test can be determined
by its limiting null distribution even when the sample size is moderate. Similarly
as the conventionally local smoothing tests, the proposed test has the subjective
constraint choice of bandwidth, which is done by the rule of thumb in this
paper. It naturally hopes that an optimal bandwidth be selected. However, as
we know that choosing optimal bandwidths for local smoothing tests is still an
open problem in theory (Stute and Zhu, 2005)[20]. To see the impact from the
bandwidth selection, we implement several simulation studies and find that this
issue is not critical for the proposed test when the rule of thumb is applied to
select the bandwidth. More details will be discussed in the next sections.

This paper is organized as follows. In Section 2, the test statistic construc-
tion is described. Because dimension reduction technique plays a very important
role, we first briefly review a promising method: the discretization-expectation
estimation. To make the test have the model-adaptation property, a ridge-type
eigenvalue ratio estimate (RERE) for the dimension q of B is recommended,
which can consistently estimate q1 and q2 under the null and alternative hy-
potheses accordingly. The asymptotic properties of the test statistic are pre-
sented in Section 3. Further, the test statistic tends to infinity at the certain
rate under the global alternative hypothesis in Section 3. In Section 4, we ex-
amine the finite sample performance of our test and also apply it to a real
data analysis for illustration. All the technical conditions and the proofs of the
theoretical results are postponed to the Appendix.

2. Dimension reduction-based adaptive-to-model test

2.1. Basic test statistic construction

It is worth noticing that in the above formulations, B and B1 are usually not
identifiable. Actually, under H1, for any q2×q2 orthogonal matrix C, E(Y |Z) =
E(Y |B�Z) = E(Y |CB�Z). And under H0, for any q1 × q1 orthogonal matrix
C1, E(Y |X) = E(Y |B�

1 X) = E(Y |C1B
�
1 X). Hence, what we can identify is

BC� for a matrix C and B1C
�
1 for a matrix C1. Note that it is enough to

have such a weaker identification because under the null hypothesis, C1B
�
1 X =

C1(B
�
1 , 0�p2×q1)Z does not involve W for any q1 × q1 orthogonal matrix C1 and

E(Y |Z) = E(Y |C1B
�
1 X). In the following subsection, we will briefly introduce
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a method to identify BC� for a matrix C and B1C
�
1 for a matrix C1. Without

notational confusion, we use B and B1 to write BC� and B1C
�
1 , respectively,

throughout the rest of the present paper.
Recall U = Y − g(X). Under the null hypothesis H0, we have

E(U |Z) = E(ε|B�Z) = E(ε|B�
1 X) = 0.

Then

E(UE(U |B�Z)W (B�Z)) = E(E2(ε|B�Z)W (B�Z)) = 0, (2.1)

where W (B�Z) is some positive weight function that will be discussed below.
Under the alternative hypothesis H1, since

E(U |B�Z) = m(B�Z)− g(B�
1 X) �= 0,

we have

E(UE(U |B�Z)W (B�Z)) = E(E2(U |B�Z)W (B�Z)) > 0. (2.2)

The above argument implies that the empirical version of the left hand side
in (2.1) can be used as a base to construct a test statistic. Further, the null
hypothesis H0 is rejected for large values of the test statistic. This motivates
a naive construction as any one in the literature. However, we also note that
under the null hypothesis, for a selected weight function W̃ ,

E(UE(U |B�Z)W (B�Z)) = E(E2(ε|B�
1 X)W̃ (B�

1 X)) = 0. (2.3)

This means that under the null hypothesis, the matrix B of dimension q2 is
reduced to the matrix of dimension q1. To have a uniform version, we define
B̃ = (B�

1 , 0q1×p2)
� such that B�

1 X = B̃�Z.
The key is how to construct a test statistic that fully uses this piece of infor-

mation and can automatically adapt the model structure under the alternative
hypothesis such that the test is still omnibus. We will present our idea in the
following construction. When a sample {(z1, y1), · · · , (zn, yn)} is available, the
residual term ui is estimated as ûi = yi − ĝ(B̂�

1 xi), where ĝ(B̂�
1 xi) is a kernel

estimate of g(B�
1 xi) as follows:

ĝ(B̂�
1 xi) =

1
n−1

∑n
j �=i Qh1(B̂

�
1 xj − B̂�

1 xi)yj
1

n−1

∑n
j �=i Qh1(B̂

�
1 xj − B̂�

1 xi)
,

and Qh1 = Q(·/h1)/h
q1
1 with Q(·) being a q1-dimensional product kernel func-

tion from the univariate kernel Q̃(·), h1 being a bandwidth and B̂1 being an
estimate of B1. Then we obtain the following kernel estimate of E(U |B�Z) (or
E(U |B̃�Z)) as:

Ê(ûi|B̂�zi) =
1

n−1

∑n
j �=i Kq̂h(B̂

�zj − B̂�zi)ûj

1
n−1

∑n
j �=i Kq̂h(B̂�zj − B̂�zi)

.
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In this formula, B̂ is an estimate of B (or B̃) with an estimated structural
dimension q̂ in a certain sense that will be specified in the next subsection,
where Kq̂h = K(·/h)/hq̂ with K(·) being a q̂-dimensional kernel function and

h being a bandwidth. If we choose the weight W (·) (or W̃ (·)) to be the density
function pB(·) (or pB̃(·)) of B�Z (or B̃�Z), a non-standardized test statistic
can be constructed as Vn by:

Vn =
1

n(n− 1)

n∑
i=1

n∑
j �=i

ûiûjKq̂h(B̂
�zj − B̂�zi). (2.4)

Remark 2.1. Note that the test statistic developed by Fan and Li (1996) is:

Ṽn =
1

n(n− 1)

n∑
i=1

n∑
j �=i

ûif̂1iûj f̂1jK̃h(zi − zj), (2.5)

where K̃h(·) = K(·/h)/hd with K(·) being a (p1 + p2)-dimensional kernel func-

tion and f̂1 is an estimate of the density function f1(·) of X no matter whether
the underlying model is under the null or alternative hypothesis. Compared the
formula (2.4) with (2.5), the difference is that our test uses B̂�Z in lieu of Z and
applies Kh(·) in Vn instead of K̃h(·). At first glance, this difference seems not
fundamental because it just follows the test statistic construction in the classical
way without use of the model structures under the null and alternative hypoth-
esis. Note that under the null, the dimension q1 is smaller than the dimension
q2. We then want to construct an estimate B̂, which has the following model
adaptation properties: under H0, it estimates B̃ and under H1 it automatically
estimates B. This model adaptation property can allow us to fully use the dimen-
sion reduction structure under the null hypothesis. Thus, how to construct such
an estimate plays a crucial role for this model-adaptation. To achieve this goal,
we also need an estimate q̂ that can be consistent to q1 under H0 and to q2 under
H1. We will see that a standardizing version nhq1/2Vn can be used such that it
has a finite limit under H0 and diverges to infinity much faster than nhd/2Ṽn

in Fan and Li’s (1996) test statistic. The results are reported in Section 3.

2.2. A brief review on discretization-expectation estimation

As we commented above, we need to identify BC� and B1C
�
1 . To this end, a

method is discussed in this subsection. The method is to identify the spaces
spanned by B and B1 automatically under the null and alternative hypothesis.
In other words, the method is to identify the basis vectors in the respective
subspaces. This is an estimation issue for the central mean subspaces in sufficient
dimension reduction (e.g. Cook, 1998)[1]. The respective central mean subspaces
are respectively denoted as SE(Y |X) and SE(Y |Z) that is related to the conditional

independence between Y and X given B�
1 X and between Y and Z given B�Z.

Also, q1 = dim(SE(Y |X)) and q2 = dim(SE(Y |Z)) are respectively called the
structural dimensions of SE(Y |X) and SE(Y |Z). Here we assume that q1 is given,
but q2 is unknown.
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There exist several dimension reduction proposals available in the litera-
ture. For example, Li (1991)[14] proposed sliced inverse regression (SIR), Cook
and Weisberg (1991)[3] advised sliced average variance estimation (SAVE), Xia
et al. (2002)[22] discussed minimum average variance estimation (MAVE), Li
and Wang (2007)[12] presented directional regression (DR). Cook and Forzani
(2009)[2] developed likelihood acquired directions (LAD), Zhu et al. (2010a)[24]
suggested discretization-expectation estimation (DEE) and Zhu et al. (2010b)[25]
provided average partial mean estimation (APME). In this paper, we adopt DEE
because it is computationally inexpensive without any tuning parameter selec-
tion that is required by SIR, SAVE or DR, and can be easily used to construct
a criterion for determining q.

From Zhu et al. (2010a)[24], to identify and estimate B (and B̃), the DEE
estimation procedure can be summarized as the following steps. Without nota-
tional confusion, we consider identify B first and later we clarify that such an
identification can automatically be applied to that for B̃.

1. Define the set of binary variables Υ(t) = I{Y ≤ t} by discretizing the
response variable Y , where the indicator function I{Y ≤ t} = 1 if Y ≤ t
and 0, otherwise.

2. Let SΥ(t)|Z denote the central subspace of Υ(t)|Z, and M(t) be an d × d
positive semi-definite matrix satisfying Span{M(t)} = SΥ(t)|Z .

3. Let Ỹ denote an independent copy of Y . Taking the expectation over the
random variable Ỹ , the target matrix becomes M = E{M(Ỹ )}. B consists
of the eigenvectors associated with the q2 nonzero eigenvalues of M .

4. Get an estimation of the target matrix M as:

Mn =
1

n

n∑
i=1

Mn(yi),

where Mn(yi) is the estimating matrix of M(yi) by some certain sufficient
dimension reduction method such that SIR. Then the estimate B̂ consists
of the eigenvectors associated with the largest q2 eigenvalues of Mn. B̂ is
root-n consistent to the matrix B when q2 is given.

Note that under the null hypothesis, SE(Y |Z) is reduced to SE(Y |X) because the
conditional independence between Y and Z is equivalent to this independence
between Y and X. In Step 2 above, sufficient dimension reduction theory tells us
that the central subspace is reduced to SΥ(t)|X and the matrix in Step 3 above.

The matrix M = E{M(Ỹ )} could have q1 nonzero eigenvalues, and the estimate
q̂ could automatically be consistent to q1. The above estimation procedure is
called discretization-expectation estimation (DEE) in Zhu et al. (2010a)[24],
more details are referred to this paper.

The following proposition states the consistency of the estimated matrix B̂
under H0.

Proposition 2.1. Under H0 and Conditions A1 and A2 in the Appendix, the
DEE-based estimate B̂ is consistent to (C1B

�
1 , 0q1×p2)

� with some q1 × q1 or-
thonormal matrix C1.
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Proposition 2.1 indicates that under H0, in probability the test statistic only
uses those variables that are significant. The curse of dimensionality can then
be largely alleviated when nonparametric estimation is inevitably required.

However, as q2 is unknown, to accommodate the alternative hypothesis, we
should estimate it and B consistently. Let q be q1 under the null and q2 under the
alternative. Thus, we want to define an estimate of q, which could be adaptive
to the underlying model and thus be consistent to q1 and q2 under the respective
hypotheses. The following subsection provides an estimate and its consistency.

2.3. Structural dimension estimation

We define a criterion to estimate q in an automatic manner. Although the BIC-
type criterion in Zhu et al. (2010a)[24] that was motivated from Zhu et al.
(2006)[27] is a candidate, choosing an appropriate penalty is a difficult issue.

In this paper, we recommend a ridge-type eigenvalue ratio estimate (RERE).
Based on our experience in practice, it is not very sensitive to the ridge choice.
Let λ̂d ≤ λ̂d−1 ≤ · · · ≤ λ̂1 be the eigenvalues of the estimating matrix Mn.
Define

λ∗
i =

λ̂i − 1√
n

λ̂i − 1√
n
+ 1

, for 1 ≤ i ≤ d. (2.6)

Theoretically, we can use the original λ̂i to define the following ratio-based
criterion. However, we found that a couple of largest eigenvalues tend to be
much larger than the other non-zero eigenvalues. Then some ratios of estimated
non-zero eigenvalues could be smaller than the minimizer, and then the structure
dimension q is often underestimated. Thus, we ‘standardize’ the eigenvalues λ∗

i

to define a criterion and estimator:

q̂ = arg min
1≤j≤d

{
j :

(λ∗
j+1)

2 + cn

(λ∗
j )

2 + cn

}
. (2.7)

This method is motivated by Xia et al. (2015)[21], Zhu et al. (2016)[29] and Zhu
et al. (2017b)[31]. This algorithm is easily implemented.

The following proposition states the estimation consistency.

Proposition 2.2. In addition to Conditions A1, A2 and A3 in the Appendix,
assume c × logn/n ≤ cn → 0 with some fixed c > 0. Then the estimate q̂ by
(2.7) has the following consistency.

(i) Under H0, P (q̂ = q1) → 1.
(ii) Under H1, P (q̂ = q2) → 1.

From Proposition 2.2, the choice of cn can be in a relatively wide range
to guarantee the estimation consistency under the null and global alternative
hypotheses.
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Altogether, the final estimate B̂ can have the model adaptive property in
the sense that under H0, it is consistent to B̃ = (C1B

�
1 , 0q1×p2)

� for a q1 × q1
orthogonal matrix C1 and under H1, to B.

As q̂ is equal to q1 under the null and larger than q1 under the alternatives,
it seems that we could simply use it to perform a test. However, based on it,
neither type I error nor power can be evaluated. Thus, it can only be an estimate
rather than a test statistic.

3. Asymptotic properties

3.1. Limiting null distribution

First, define some notations. Let

s2 = 2

∫
K2(u)duE{[V ar(ε2|B̃�Z)]2p(B̃�Z)}, (3.1)

and

ŝ2 =
2

n(n− 1)

n∑
i=1

n∑
j �=i

K2
h

(
B̂�zi − B̂�zj

)
û2
i û

2
j . (3.2)

where p(·) denotes the density function of B�
1 X.

Theorem 3.1. Under H0 and the regularity conditions in the Appendix, we
have

nhq1/2Vn ⇒ N(0, s2).

Further, s2 can be consistently estimated by ŝ2.

Therefore, according to Theorem 3.1, we can get the standardized test statis-
tic as:

Tn = nhq1/2Vn/ŝ.

Further, applying the Slutsky’s Theorem yields that under H0, the test statistic
Tn is asymptotically normal:

Tn ⇒ N(0, 1).

3.2. Power study

We now study the power performance of the test statistic Tn. Consider the
following sequence of local alternative hypotheses as:

H1n : E(Y |Z) = g(B�
1 X) + CnG(B�Z). (3.3)

Fixed Cn corresponds to the global alternative model and when Cn goes to zero,
the sequences are the local alternative hypotheses.

To obtain the main results about the power performance under H1n of (3.3),
we first present the asymptotic behavior of the estimate q̂ when Cn → 0. It is
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noted that the estimate q̂ may be not consistently converge to q2. This is caused
by the convergence of the local alternative models to the hypothetical model as
n → ∞, the following lemma states the result.

Proposition 3.1. Under H1n of (3.3) and the regularity conditions in Propo-
sition 2.2 except that c × n−1h−q1/2 logn ≤ cn → 0 for some fixed c > 0, as
n → 0, q̂ determined by (2.7) has the following properties.

(I) If Cn = O(n−1/2h−q1/4), P (q̂ = q1) → 1;
(II) If Cn × n1/2hq1/4 → ∞, P (q̂ ≥ q1) → 1.

Comparing this proposition with Proposition 2.2, we can see the main dif-
ference is that when Cn has slower rate than O(n−1/2h−q1/4), the criterion we
are using cannot determine to which value the estimate is consistent. From the
proof, it seems that with this rate Cn converges to zero, the estimation consis-
tency of q̂ is difficult to satisfy. This is an ongoing research topic beyond the
scope of this paper. As we do not know whether q̂ converges, and furthermore,
even it could be convergent, whether it converges to a constant. It affects the
power study described here. The following theorem states how sensitive the test
is to the alternative models in other cases.

Theorem 3.2. Under the regularity conditions in the Appendix, we have the
following results.

(I) Under H1n with a fixed Cn > 0,

Tn/(nh
q1/2) ⇒ Constant > 0.

(II) Under H1n with Cn = n−1/2h−q1/4,

nhq1/2Vn ⇒ N(u, s2),

where u = E
(
[E{G(B�Z)|B�

1 X}]2pB1(B
�
1 X)

)
with the density function

pB1(·) of B�
1 X. and s2 is given by (3.1). Further, s2 can be consistently

estimated by ŝ2.

Remark 3.1. The results in this theorem confirm our claim in the first section.
The convergence rate of the test statistic is nhq1/2 and the test can detect the local
alternative models converging to the hypothetical model also at the rate of order
Cn = n−1/2h−q1/4 under certain constraint on the alternative model structure.
Fan and Li’s (1996)[6] test, which is also the case for existing locally smoothing
tests, can have the respective rates where q1 is replaced by d, which causes a
much slower rate. However, as we mentioned right before the theorem, when Cn

has slower rate to zero than the rate of order O(n−1/2h−q1/4), the property of
the estimate q̂ is not clear and thus the asymptotic property of the test statistic
is not clear although it would reasonably guess that the power could be higher or
be equal to 1 asymptotically. In the numerical studies, we will consider several
values in a range of Cn to see whether the power could be higher with increasing
the value of Cn. When the estimator q̂ is less than the true structural dimension
q, we can also check whether the test statistic Vn based on q̂ can detect the
corresponding alternatives with positive probability.
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4. Numerical studies

4.1. Simulations

In this subsection, we conduct the simulations to investigate the finite sample
performance of our proposed test. The empirical sizes and powers are computed
via 2000 replications of the experiments at the significance level α = 0.05. Write
the DREAM test as TDEE

n . For comparison, we use Fan and Li’s (1996) test
and Delgado and González Manteiga’s (2001)[4] test as the representatives of
existing local and global tests. Write them as TFL

n and TDM
n .

Delgado and González Manteiga’s (2001)[4] test is defined as:

Ṽn =
1

n(n− 1)

n∑
i=1

⎧⎨
⎩

n∑
j �=i

ûj f̂1jI(xj < xi)I(wj < wi)

⎫⎬
⎭

2

.

As its limiting null distribution is intractable, the critical values are determined
by the wild bootstrap. The bootstrap observations are from: y∗i = ĝ(xi) + ûi ×
vi, where {vi}ni=1 is a sequence of i.i.d. random variables from the two-point
distribution as:

P

(
vi =

1−
√
5

2

)
=

1 +
√
5

2
√
5

, P

(
vi =

1 +
√
5

2

)
= 1− 1 +

√
5

2
√
5

.

The bootstrap critical values are computed by 1000 bootstrap replications. The
Gaussian-based kernel of order 4,Q(u) = (u4−7u2+6)φ(u)/2, is used to estimate
the nonparametric function g(·), where φ(·) denotes the standard normal density,
see Fan and Hu (1992)[5]. For both DREAM and Fan and Li’s (1996)[6] test,
we use the Quartic kernel function as K(u) = 15

16 (1 − u2)2, if |u| ≤ 1 and 0,
otherwise, in constructing the test statistic such as that in (2.4). To determine

the structural dimension q, cn = 0.1 logn/nh
q1
2 is used.

The observations {xi}ni=1 and {wi}ni=1 are i.i.d., respectively, from multivari-
ate normal distribution N(0,Σ1), N(0,Σ2), or N(0,Σ3) and independent of the

standard normal errors, in which Σ1 = (σ
(1)
ij ), Σ2 = (σ

(2)
ij ) and Σ3 = (σ

(3)
ij )

with σ
(1)
ij = I(i = j) + 0I(i �= j), σ

(2)
ij = I(i = j) + 0.5|i−j|I(i �= j) and

σ
(3)
ij = I(i = j) + 0.2I(i �= j). In the following examples, ε is from standard

normal distribution.
In this section, we design 4 examples. The first example is to show that when

the dimensions p1 and p2 are small and the model is low-frequent, how the
performances of the three competitors are. In Example 2, the dimensions grow
up to higher under a high-frequent model, we then check the impact from the
dimensionality. Example 3 is to examine whether DREAM is still omnibus even
when the test statistic fully uses the information of low dimensionality under
the null hypothesis. The model in Example 4 is with higher dimension of B�Z
and then we can see whether, like existing locally smoothing tests, DREAM also
fails to work. The details are in the examples.
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Fig 2. The empirical sizes and powers curves of TDEE
n against the bandwidth h with sample

size n = 200 at the significance level α = 0.05 for Example 1.

Example 1. Consider the linear regression model:

• Y = 2β�
1 X + 2a× β�

2 W + 0.5× ε,

where β1 = (1, · · · , 1︸ ︷︷ ︸
p1/2

, 0, · · · , 0)�/
√
p1/2, β2 = (0, · · · , 0, 1, · · · , 1︸ ︷︷ ︸

p2/2

)�/
√

p2/2. In

this example, p1 = p2 = 2 and p1 = p2 = 4 are considered, where the hypothet-
ical and alternative models respectively respond to a = 0 and a �= 0. To check
the sensitivity of the bandwidth selection, we choose the different bandwidths
h = c× n−1/4+q̂ for c ∈ {1, 1.25, 1.5, 1.75, 2}.

Figure 2 reports the empirical sizes and powers with the above bandwidths
when n = 200. The empirical power is relatively robust against the different
bandwidths that we use. The empirical size is not very sensitive to the band-
width. Thus, the bandwidth h = 1.75 × n−1/(4+q̂) is recommended throughout
the simulations.
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Table 1

Empirical sizes and powers of TDEE
n , TFL

n and TDM
n with p1 = 2 and p2 = 2 in Example 1.

TDEE
n TFL

n TDM
n

a/n 50 100 200 50 100 200 50 100 200
X ∼ N(0,Σ1) 0 0.0515 0.0485 0.0515 0.0570 0.0595 0.0550 0.0490 0.0520 0.0545

0.4 0.1060 0.1535 0.4530 0.1560 0.2465 0.4560 0.3665 0.8490 0.9710
W ∼ N(0,Σ1) 0.8 0.4060 0.7320 0.9230 0.3075 0.5880 0.9335 0.4420 0.8935 0.9860

1.2 0.6020 0.8770 0.9570 0.4550 0.7750 0.9655 0.4485 0.9075 0.9805
1.6 0.6680 0.9045 0.9695 0.5115 0.8700 0.9780 0.4590 0.9050 0.9890
2.0 0.7320 0.9195 0.9785 0.5415 0.8945 0.9890 0.4375 0.9135 0.9935

X ∼ N(0,Σ2) 0 0.0400 0.0635 0.0515 0.0615 0.0790 0.0580 0.0475 0.0470 0.0460
0.4 0.0935 0.1450 0.3600 0.1610 0.2345 0.4230 0.3670 0.8520 0.9770

W ∼ N(0,Σ2) 0.8 0.3435 0.6770 0.9015 0.3780 0.5430 0.9295 0.4400 0.9055 0.9880
1.2 0.5655 0.8365 0.9420 0.5265 0.7085 0.9510 0.4410 0.9005 0.9930
1.6 0.6650 0.8985 0.9520 0.6020 0.8340 0.9795 0.4480 0.9015 0.9890
2.0 0.7110 0.9015 0.9675 0.6145 0.8980 0.9910 0.4645 0.9035 0.9960

X ∼ N(0,Σ3) 0 0.0515 0.0525 0.0520 0.0590 0.0640 0.0555 0.0455 0.0535 0.0465
0.4 0.0985 0.1155 0.3825 0.1225 0.2440 0.3270 0.3660 0.8495 0.9750

W ∼ N(0,Σ3) 0.8 0.3640 0.7455 0.9380 0.3035 0.5905 0.8015 0.4275 0.8935 0.9870
1.2 0.5930 0.8675 0.9470 0.4150 0.8190 0.9355 0.4455 0.9095 0.9865
1.6 0.6830 0.9070 0.9640 0.5185 0.8685 0.9660 0.4605 0.8950 0.9875
2.0 0.7495 0.9175 0.9700 0.5495 0.9055 0.9765 0.4925 0.9045 0.9880

Table 2

Empirical sizes and powers of TDEE
n , TFL

n and TDM
n with p1 = 4 and p2 = 4 in Example 1.

TDEE
n TFL

n TDM
n

a/n 50 100 200 50 100 200 50 100 200
X ∼ N(0,Σ1) 0 0.0545 0.0435 0.0520 0.0310 0.0620 0.0670 0.0020 0.0045 0.0240

0.4 0.0730 0.1690 0.3770 0.0520 0.0615 0.0805 0.0060 0.0325 0.2205
W ∼ N(0,Σ1) 0.8 0.3420 0.7355 0.9190 0.0550 0.0695 0.0955 0.0055 0.0480 0.2645

1.2 0.5635 0.8660 0.9465 0.0545 0.0700 0.0950 0.0090 0.0425 0.2485
1.6 0.6290 0.8860 0.9610 0.0530 0.0790 0.0960 0.0065 0.0520 0.2545
2.0 0.6960 0.9115 0.9825 0.0550 0.0870 0.1290 0.0025 0.0485 0.2610

X ∼ N(0,Σ2) 0 0.0620 0.0550 0.0525 0.0330 0.0600 0.0565 0.0250 0.0440 0.0800
0.4 0.0815 0.1550 0.3320 0.0685 0.0820 0.0930 0.1260 0.2005 0.5100

W ∼ N(0,Σ2) 0.8 0.3555 0.6950 0.9165 0.0810 0.1005 0.1205 0.1410 0.3930 0.7040
1.2 0.5390 0.8295 0.9540 0.0900 0.1065 0.1415 0.1270 0.4260 0.7420
1.6 0.6330 0.8795 0.9615 0.1000 0.1215 0.1430 0.1400 0.4285 0.7600
2.0 0.6965 0.9090 0.9795 0.1070 0.1360 0.1595 0.1410 0.4180 0.7720

X ∼ N(0,Σ3) 0 0.0400 0.0420 0.0555 0.0320 0.0705 0.06255 0.0070 0.0280 0.0715
0.4 0.0680 0.1325 0.3900 0.0660 0.0720 0.07500 0.0410 0.1265 0.6300

W ∼ N(0,Σ3) 0.8 0.3325 0.6960 0.9170 0.0815 0.0775 0.09505 0.0520 0.2320 0.6640
1.2 0.5500 0.8345 0.9490 0.0830 0.0915 0.10005 0.0530 0.2315 0.6545
1.6 0.6245 0.8845 0.9535 0.0865 0.1040 0.11850 0.0630 0.2320 0.6520
2.0 0.6740 0.8890 0.9775 0.0875 0.1030 0.11655 0.0560 0.2500 0.6430

The results of the three tests under different combinations of sample sizes,
dimensions of covariates X and W and covariance matrices Σ are reported in
Tables 1 and 2.

From Table 1, we can clearly observe that when the dimensions p1 and p2 are
lower, all the tests have similar empirical powers and can control the empirical
sizes well. The power performances of the competitors are very good. However,
from Table 2, we can see that with increasing the dimensions p1 and p2, T

DEE
n
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is significantly and uniformly more powerful than TFL
n and TDM

n . Meanwhile
TDEE
n can still well maintain the significance level. Comparing Table 1 with

Table 2, we can see that the dimensions ofX andW have less influence for TDEE
n

than they do for TFL
n and TDM

n . When p1 = p2 = 4, Fan and Li’s (1996)[6] test
completely fails to detect the alternative hypothesis with a power similar to
the significance level even when n = 200. Further, DREAM is robust against
the correlation structure of (X,Z) whereas it significantly influences the power
performance of Delgado and González Manteiga’s (2001)[4] test, particularly
when p1 = p2 = 4.

Example 2. In this example, consider a nonlinear high-frequency regression
model as:

• Y = 2 sin(β�
1 X) + 2a× sin(β�

2 W ) + 0.5× ε,

where β1 = (1, · · · , 1︸ ︷︷ ︸
p1/2

, 0, · · · , 0)�/
√
p1/2 and β2 = (0, · · · , 0, 1, · · · , 1︸ ︷︷ ︸

p2/2

)�/
√
p2/2.

We also consider two cases of dimensions: p1 = p2 = 4 and p1 = p2 = 6. Again
a = 0 responds to the hypothetical model.

Table 3

Empirical sizes and powers of TDEE
n , TFL

n and TDM
n with p1 = 4 and p2 = 4 in Example 2.

TDEE
n TFL

n TDM
n

a/n 50 100 200 50 100 200 50 100 200
X ∼ N(0,Σ1) 0 0.0575 0.0520 0.0495 0.0360 0.0320 0.0695 0.0060 0.0100 0.0180

0.4 0.0805 0.2225 0.6120 0.0665 0.0780 0.0910 0.0080 0.0520 0.1225
W ∼ N(0,Σ1) 0.8 0.2910 0.7200 0.9190 0.0775 0.0875 0.0915 0.0040 0.0560 0.1790

1.2 0.5465 0.8295 0.9405 0.0885 0.0820 0.1075 0.0200 0.0655 0.2290
1.6 0.6215 0.8445 0.9685 0.0775 0.0915 0.1110 0.0160 0.0805 0.2415
2.0 0.6565 0.8695 0.9730 0.0830 0.0960 0.1220 0.0260 0.0940 0.2615

X ∼ N(0,Σ2) 0 0.0435 0.0435 0.0470 0.0640 0.0695 0.0760 0.0240 0.0380 0.0470
0.4 0.1145 0.3035 0.6545 0.0745 0.0860 0.1005 0.0620 0.1255 0.5870

W ∼ N(0,Σ2) 0.8 0.3735 0.6780 0.8755 0.0820 0.1065 0.1230 0.0845 0.2380 0.7190
1.2 0.5570 0.7850 0.8830 0.0780 0.1000 0.1420 0.1070 0.2565 0.7660
1.6 0.6445 0.8130 0.9070 0.0905 0.1090 0.1545 0.1150 0.3070 0.7610
2.0 0.6745 0.8455 0.9300 0.0890 0.1265 0.1620 0.1115 0.3330 0.7900

X ∼ N(0,Σ3) 0 0.0475 0.0490 0.0525 0.0360 0.0820 0.0705 0.0130 0.0230 0.0405
0.4 0.0970 0.2465 0.6405 0.0590 0.0845 0.0920 0.0370 0.1140 0.4645

W ∼ N(0,Σ3) 0.8 0.3360 0.7120 0.9120 0.0615 0.0850 0.1045 0.0580 0.1835 0.5715
1.2 0.5600 0.7995 0.9265 0.0520 0.0925 0.1180 0.0690 0.2000 0.6370
1.6 0.6625 0.8405 0.9370 0.0680 0.0990 0.1260 0.0700 0.2020 0.6125
2.0 0.6760 0.8605 0.9500 0.0715 0.0950 0.1215 0.0730 0.2225 0.6240

The results are presented in Tables 3 and 4. Comparing Table 2 with Table 3-
4, we find that when the dimensions of X and W grow up to p1 = p2 = 6, the
empirical powers of TFL

n and TDM
n are close to 0. This result means that both

the competitors completely fail to detect the alternative hypothesis. We can also
find that the empirical power of DREAM is similar to that when p1 = p2 = 4 in
Table 2. This again suggests that the dimensions of X and W have much less
impact for TDEE

n than they do for TFL
n and TDM

n .
The next example is to confirm that DREAM is still omnibus rather than
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Table 4

Empirical sizes and powers of TDEE
n , TFL

n and TDM
n with p1 = 6 and p2 = 6 in Example 2.

TDEE
n TFL

n TDM
n

a/n 50 100 200 50 100 200 50 100 200
X ∼ N(0,Σ1) 0 0.0405 0.0455 0.0465 0.0005 0.0005 0.0055 0 0 0

0.4 0.0720 0.1860 0.5515 0.0005 0.0025 0.0035 0 0 0
W ∼ N(0,Σ1) 0.8 0.2445 0.6240 0.9045 0 0.0010 0.0030 0 0 0

1.2 0.4575 0.7925 0.9190 0 0.0015 0.0035 0 0 0
1.6 0.5595 0.8260 0.9240 0 0.0005 0.0035 0 0 0
2.0 0.6255 0.8455 0.9445 0 0.0015 0.0040 0 0 0

X ∼ N(0,Σ2) 0 0.0425 0.0470 0.0485 0.0035 0.0135 0.0215 0.0020 0.0110 0.0195
0.4 0.1335 0.2490 0.5550 0.0020 0.0080 0.0270 0.0020 0.0250 0.1040

W ∼ N(0,Σ2) 0.8 0.3160 0.6215 0.8120 0.0020 0.0185 0.0275 0.0030 0.0270 0.1550
1.2 0.5025 0.7645 0.8580 0.0030 0.0100 0.0250 0.0030 0.0290 0.1695
1.6 0.5770 0.7950 0.8850 0.0050 0.0105 0.0290 0.0020 0.0280 0.1725
2.0 0.6375 0.8290 0.9105 0.0070 0.0140 0.0205 0.0020 0.0320 0.1685

X ∼ N(0,Σ3) 0 0.0455 0.0460 0.0475 0 0.0025 0.0100 0 0.0035 0.0115
0.4 0.0985 0.2430 0.5830 0.0005 0.0035 0.0090 0 0.0040 0.0520

W ∼ N(0,Σ3) 0.8 0.3225 0.6515 0.8750 0.0030 0.0020 0.0095 0.0010 0.0075 0.0605
1.2 0.4915 0.7695 0.8940 0.0015 0.0015 0.0080 0.0040 0.0080 0.0780
1.6 0.5880 0.8030 0.9135 0.0010 0.0005 0.0060 0.0020 0.0120 0.0720
2.0 0.6265 0.8380 0.9395 0.0010 0.0035 0.0085 0.0050 0.0135 0.0895

directional even when DREAM fully uses the information under the null hy-
pothesis.

Example 3. The data are generated from the following model:

• Y = 2 sin(β�
1 X) + exp(β�

2 X/2) + 2a× sin(β�
2 W ) + 0.5× ε,

where p1 = 4, p2 = 4, β1 = (1, 1, 0, 0)�/
√
2 and β2 = (0, 0, 1, 1)�/

√
2. Thus,

q1 = 2, and q2 = 3. In this model, the conditional expectation E(Y |BT
1 X)

is the same under the null and alternative hypotheses. If we simply use this
function to define a test, the alternative hypothesis cannot be detected at all
from the theoretical point of view. However, DREAM can automatically adapt
to the alternative model with the matrix BTZ, thus it still works under the
alternative hypothesis.

By the comparison between Tables 2, 3 and 5, we observe that the power
performances of DREAM in Example 3 are similar to those in Examples 1 and
2. This means that the test can have the advantage of dimension reduction and
is still omnibus.

Example 4. The model is adopted from Lavergne et al. (2015)[11] under differ-
ent combinations of dimensions of the covariate vector W and the distribution
of the error ε as:

• Y = (β�
1 X)3 + β�

1 X + a ∗ (β�
2 W − 1)3 + ε,

where β1 = (1, 1)� and β2 = (1, · · · , 1︸ ︷︷ ︸
p2

)�/
√
p2 with two cases of dimensions:

p1 = p2 = 2 and p1 = 2, p2 = 4. X ∼ N(0,Σ1) and X ∼ N(0,Σ1). Again the
value a = 0 responds to the hypothetical model, otherwise to the alternative
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Table 5

Empirical sizes and powers of TDEE
n , TFL

n and TDM
n with p1 = 4 and p2 = 4 in Example 3.

TDEE
n TFL

n TDM
n

a/n 50 100 200 50 100 200 50 100 200
X ∼ N(0,Σ1) 0 0.0420 0.0530 0.0525 0.0575 0.0770 0.0760 0.0015 0.0080 0.0190

0.4 0.0655 0.0985 0.3755 0.0510 0.0740 0.0765 0.0015 0.0280 0.1495
W ∼ N(0,Σ1) 0.8 0.1470 0.5635 0.8930 0.0600 0.0845 0.1070 0.0040 0.0350 0.2085

1.2 0.3690 0.8045 0.9390 0.0510 0.0840 0.0980 0.0035 0.0420 0.2525
1.6 0.5730 0.8765 0.9485 0.0555 0.0840 0.1080 0.0090 0.0330 0.2510
2.0 0.6480 0.8960 0.9645 0.0565 0.1000 0.1225 0.0030 0.0280 0.2595

X ∼ N(0,Σ2) 0 0.0510 0.0545 0.0510 0.0720 0.0745 0.0810 0.0180 0.0440 0.0580
0.4 0.0755 0.1165 0.2820 0.0685 0.0915 0.0945 0.0715 0.2460 0.3295

W ∼ N(0,Σ2) 0.8 0.2075 0.5265 0.8490 0.0800 0.1175 0.1315 0.0925 0.3525 0.7430
1.2 0.4245 0.7610 0.9365 0.0860 0.1040 0.1575 0.0950 0.3740 0.7615
1.6 0.5595 0.8600 0.9480 0.0810 0.1095 0.1470 0.1145 0.3885 0.7630
2.0 0.6315 0.8730 0.9560 0.0885 0.1205 0.1610 0.1140 0.3910 0.8185

X ∼ N(0,Σ3) 0 0.0513 0.0550 0.0495 0.0515 0.0405 0.0790 0.0110 0.0220 0.0340
0.4 0.0750 0.1255 0.3135 0.0625 0.0720 0.0915 0.0200 0.1320 0.4925

W ∼ N(0,Σ3) 0.8 0.1945 0.5490 0.8840 0.0625 0.0875 0.1060 0.0340 0.1870 0.6035
1.2 0.4330 0.7795 0.9300 0.0655 0.0945 0.1270 0.0230 0.1990 0.6100
1.6 0.5955 0.8370 0.9460 0.0580 0.0960 0.1225 0.0470 0.1960 0.6035
2.0 0.6405 0.8610 0.9535 0.0595 0.0990 0.1290 0.0460 0.2200 0.6280

models. For this model, we consider three different cases about the distributions
of the error ε as

Case 1. ε ∼ N(0, 1);
Case 2. ε ∼ N(0, 4);
Case 3. ε ∼ t(4),

where t(4) representes Student’s t-distribution with degrees 4 of freedom.
We have the following observations from the results of Table 6. First, TDEE

n

works better than its competitor. The comparison between TDEE
n and TFL

n

further substantiates the theoretical advantage that our test has the faster con-
vergence rate than that of Fan and Li’s (1996)[6] test. Second, in the limited
simulations, the heavy tail (Cases 3) does not have significant impact for the
performance of all the three tests. Third, when the dimension p2 becomes larger,
the performance of TDEE

n is affected slightly, whereas TFL
n and TDM

n is signif-
icantly negatively affected. Therefore, the dimension is a key factor for power
deterioration of TFL

n and TDM
n , while it is not for the proposed test TDEE

n .
The following example considers higher dimensional B�Z in a model.

Example 5. The data are generated from the following model:

• Y = X1+0.2 exp(X2)+a× ( 1.5(W1+W2)
0.5+(1.5W3+0.5)1.5 +0.75 sin(W4+1))+0.2×ε,

where p1 = 4, p2 = 4, X ∼ N(0, 4Σ1) and W ∼ N(0, 4Σ1) and ε ∼ N(0, 1).
Thus, B1 is a 4× 2 matrix with β1 = (1, 0, 0, 0)� and β2 = (0, 1, 0, 0)� and B is
a 8× 5 matrix with low-right block in which the columns are b1 = (1, 1, 0, 0)�,
b2 = (0, 0, 1, 0)�, and b3 = (0, 0, 0, 1)�. The results are summarized in Table 7.

Comparing them with the results in Examples 1–4, we can see that TDEE
n can

maintains the significance level well and its power reasonably becomes lower,
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Table 6

Empirical sizes and powers of TDEE
n , TFL

n and TDM
n with X ∼ N(0,Σ1) and

W ∼ N(0,Σ1) in Example 4.

TDEE
n TFL

n TDM
n

a/n 50 100 200 50 100 200 50 100 200
ε ∼ N(0, 1) 0 0.0380 0.0415 0.0535 0.0405 0.0380 0.0520 0.0815 0.0735 0.0420

0.3 0.1935 0.2830 0.5115 0.1595 0.3010 0.6025 0.1495 0.3585 0.5965
p1 = 2 0.6 0.3830 0.6215 0.8675 0.2315 0.5395 0.8850 0.1595 0.4230 0.7040

0.9 0.4970 0.7605 0.9095 0.2895 0.6080 0.9410 0.1815 0.4210 0.7610
p2 = 2 1.2 0.5405 0.8010 0.9385 0.3140 0.6490 0.9505 0.1820 0.4350 0.7710

1.5 0.5920 0.8425 0.9450 0.3250 0.6615 0.9565 0.1940 0.4495 0.7845
ε ∼ N(0, 4) 0 0.0545 0.0575 0.0495 0.0615 0.0575 0.0540 0.0795 0.0690 0.0570

0.3 0.1305 0.1875 0.3205 0.1600 0.2600 0.4500 0.1220 0.2760 0.4375
p1 = 2 0.6 0.3575 0.5385 0.8240 0.2590 0.5600 0.8265 0.1655 0.3715 0.6800

0.9 0.5065 0.7145 0.9045 0.3355 0.6915 0.9260 0.1650 0.4055 0.7265
p2 = 2 1.2 0.6010 0.8245 0.9330 0.3785 0.7670 0.9455 0.1815 0.4090 0.7560

1.5 0.6550 0.8670 0.9485 0.4005 0.7785 0.9545 0.1975 0.4190 0.7735
ε ∼ t(4) 0 0.0385 0.0560 0.0565 0.0715 0.0675 0.0470 0.0890 0.0725 0.0400

0.3 0.1570 0.2350 0.4140 0.2230 0.4240 0.7545 0.1310 0.2645 0.5190
p1 = 2 0.6 0.3905 0.6025 0.8180 0.3475 0.6815 0.9625 0.1485 0.3690 0.6735

0.9 0.5025 0.7525 0.9160 0.3875 0.7735 0.9850 0.1760 0.4035 0.7535
p2 = 2 1.2 0.5870 0.8330 0.9445 0.4170 0.7820 0.9855 0.1940 0.4080 0.7680

1.5 0.6400 0.8390 0.9475 0.4410 0.7965 0.9895 0.1895 0.4165 0.7935
ε ∼ N(0, 1) 0 0.0570 0.0555 0.0415 0.0900 0.0885 0.0850 0.0415 0.0630 0.0330

0.3 0.1995 0.2730 0.4905 0.1320 0.2270 0.4240 0.0255 0.0290 0.0735
p1 = 2 0.6 0.4180 0.6390 0.8315 0.1525 0.2910 0.5525 0.0200 0.0315 0.0920

0.9 0.4755 0.7525 0.9185 0.1645 0.3165 0.5825 0.0155 0.0300 0.0950
p2 = 4 1.2 0.5945 0.8220 0.9390 0.1665 0.3230 0.6055 0.0105 0.0360 0.1010

1.5 0.6255 0.8455 0.9390 0.1815 0.3135 0.6195 0.0135 0.0235 0.0965
ε ∼ N(0, 4) 0 0.0405 0.0570 0.0455 0.0860 0.0940 0.0875 0.0400 0.0590 0.0280

0.3 0.1195 0.1775 0.2755 0.1270 0.1665 0.2445 0.0280 0.0475 0.0815
p1 = 2 0.6 0.3550 0.5395 0.8015 0.1430 0.2275 0.4145 0.0265 0.0385 0.0920

0.9 0.5095 0.7315 0.8985 0.1465 0.2680 0.5045 0.0190 0.0345 0.0920
p1 = 4 1.2 0.6045 0.8220 0.9300 0.1580 0.2810 0.5665 0.0165 0.0285 0.1040

1.5 0.6360 0.8490 0.9465 0.1695 0.3075 0.5770 0.0155 0.0450 0.0965
ε ∼ t(4) 0 0.0410 0.0510 0.0565 0.0975 0.0955 0.0890 0.0335 0.0655 0.0420

0.3 0.1680 0.2540 0.4180 0.1250 0.1920 0.3320 0.0260 0.0290 0.0700
p1 = 2 0.6 0.3805 0.6050 0.8410 0.1520 0.2680 0.5125 0.0195 0.0305 0.0850

0.9 0.4995 0.7525 0.9100 0.1625 0.2940 0.5675 0.0155 0.0375 0.0900
p2 = 4 1.2 0.5935 0.8275 0.9305 0.1635 0.2980 0.5920 0.0115 0.0280 0.0870

1.5 0.6205 0.8435 0.9380 0.1700 0.2920 0.6100 0.0125 0.0245 0.1005

Table 7

Empirical sizes and powers of TDEE
n , TFL

n and TDM
n with the dimensions p1 = p2 = 4 and

structure dimensions q1 = 2 and q2 = 5 in Example 5.

n a TDEE
n TFL

n TDM
n

n = 200 0 0.0555 0.0600 0.0290
1 0.3315 0.1455 0.1870

n = 400 0 0.0535 0.0645 0.0465
1 0.4910 0.1710 0.3205

but is still higher than those of TFL
n and TDM

n . Based on our very limited
numerical studies, which are not reported, we find that it is difficult to estimate
the structural dimension q = 5, but our test can still detect the alternative
models with positive probability.
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In summary, the above simulations sustain the aforementioned theoretical
properties that the proposed test is significantly superior to existing tests among
which Fan and Li’s (1996)[6] test and Delgado and González Manteiga’s (2001)[4]
test are regarded as representatives of existing tests.

4.2. Baseball hitters’ salary data

We now analyze the well-known Baseball hitters’ salary data set, which was orig-
inally published for the 1988 ASA Statistical Graphics and Computing Data Ex-
position and is available at http://euclid.psych.yorku.ca/ftp/sas/sssg/

data/baseball.sas. The data set consists of information on salary and 16 per-
formance measures of 263 major league baseball hitters. As always, the question
of main interest is whether salary reflects performance. As displayed by Friendly
(2002)[7], the 16 measures naturally belong to three performance categories: the
season hitting statistics, which include the numbers of times at bat (X1), hits
(X2), home runs (X3), runs (X4), runs batted in (X5), and walks (X6) in 1986;
the career hitting statistics, which include the numbers of years in the major
leagues (X7), times at bat (X8), hits (X9), home runs (X10), runs (X11), runs
batted in (X12) and walks (X13) during the players’ entire career up to 1986;
and the fielding variables, which include the numbers of putouts (X14), assists
(X15) and errors (X16) in 1986.

Further, the covariates from different groups have weak correlations. The log-
arithm of annual salary in 1987 is used to be the response variable (Y ) and the
new covariates from the career totals by dividing totals by years in the ma-
jor leagues are constructed. Let X∗

j = Xj/X7 for j = 8, · · · , 13. As remarked
by Hoaglin and Velleman (1995)[9], the analyses working with ln(salary) and
with the annual rate covariates fared better than those worked with the raw
forms of these covariates. Below, we use X∗

j ’s instead. All the covariates are
standardized to have mean zero and unit length. We write V1 = (X1, · · · , X6),
V2 = (X7, X

∗
8 , · · · , X∗

13) and V3 = (X14, X15, X16). In this application, we con-
sider two cases:

Case (I): X = (V1, V2) and W = V3;
Case (II): X = V1 and W = (V2, V3);

Under the two cases, the values of the test statistics are respectively 1.1171
and 6.5831 and the corresponding p−values are 0.1320 and 0.0000.

From these results under Cases (I) and (II), we can conclude that the career
hitting statistic of the group V2 has positive impact for the annual salary. The
results are consistent with those advised by Xia et al. (2002)[22] who found
that the variables X7, X9 and X13 in the group V2 are prominently to affect the
annual salary. The coefficients of the fielding covariates in the group V3 are closed
to 0 in the estimated directions suggested by Xia et al. (2002)[22]. Therefore,
for the annual salary, the group V2 contains the significance covariates while the
group V3 does not.

http://euclid.psych.yorku.ca/ftp/sas/sssg/data/baseball.sas
http://euclid.psych.yorku.ca/ftp/sas/sssg/data/baseball.sas


1488 X. Zhu and L. Zhu

5. Conclusions

In this paper, we develop a dimension reduction adaptive-to-model test to deter-
mine significant covariates under the nonparametric regression framework. The
approach employs a dimension reduction technique to reduce the dimension such
that the constructed test can well maintain the significance level and be more
powerful than existing tests in the literature. This methodology can be appli-
cable to check other semi-parametric regression models, for example partially
linear models, single-index models and partially linear single-index models. The
research is on-going. Further, as the test involves nonparametric estimation un-
der the null hypothesis, when the dimension of X (or B�

1 X) is high, none of
tests could work well. Thus, it deserves a further study. Another issue is about
the estimation inconsistency for the structural dimension q2 under the local al-
ternative hypotheses, which leads to the destroy of the omnibus property. As
the problem is not caused by the model adaptation idea, while is caused by the
estimation accuracy, defining a good estimate of q under the local alternative
hypotheses is a very interesting topic in a further study.

Appendix

A.1. Regularity conditions

To prove the asymptotic properties in Sections 2 and 3, we provide the following
regularity conditions:

A1 Mn(t) has the following expansion:

Mn(t) = M(t) + En{ψ(Z, Y, t)}+Rn(t),

where En(·) denotes the average over all sample points, E{ψ(Z, Y, t)} = 0
and E{ψ2(Z, Y, t)} < ∞.

A2 supt ||Rn(t)||F = op(n
−1/2), where || · ||F denotes the Frobenius norm of a

matrix.
A3 The estimate M̃n(t) has the following expansion:

M̃n(t) = M̃(t) + En{ψ̃(X,Y, t)}+ R̃n(t),

where M̃n(yi) is an estimate of the p1 × p1 positive semi-definite matrix
M̃(t) satisfying Span{M̃(t)} = SΥ(t)|X , E{ψ̃(X,Y, t)} = 0,

E{ψ̃2(X,Y, t)} < ∞ and supt ||R̃n(t)||F = op(n
−1/2). Corresponding,

M̃n = 1
n

∑n
i=1 M̃n(yi) is an estimate of the target matrix M̃ satisfying

Span{M̃} = SY |E(Y |X).

A4 (B�zi, yi)
n
i=1 is from the probability distribution F (B�z, y) on Rq×R. The

error ε = Y −m(B�Z) satisfies that E(ε8|B�Z = B�z) is continuous and
E(ε8|B�Z = B�z) ≤ b(B�z) almost surely, where b(B�z) is a measurable
function such that E{b2(B�Z)} < ∞.
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A5 The density function pB1(·) of B�
1 X exists with support C and has a con-

tinuous and bounded first-order derivative on the support C. The density
pB1(·) satisfies

0 < inf
B�

1 X∈C

pB1(B
�
1 X) ≤ sup

B�
1 X∈C

pB1(B
�
1 X) < ∞.

A6 The function g(·) is η-order partially differentiable for some positive integer
η, and the ηth partially derivative of g(·) is bounded.

A7 Q̃(·) is a symmetric and twice order continuously differentiable kernel func-
tion satisfying ∫

uiQ̃(u)du = δi0, for i = 0, 1, · · · , η − 1,

Q̃(u) = O{(1 + |u|η+1+β)−1}, some β > 0,

where δij is the Kronecker’s delta and η is given in Condition A6.
A8 K(·) is a bounded, symmetric kernel function and it is a first order con-

tinuously differentiable kernel function satisfying
∫
K(u)du = 1.

A9 n → ∞, h1 → 0, h → 0,

1) under the null or local alternative hypotheses with Cn = n−1/2h−q1/4,
nhq1

1 → ∞, nhq1 → ∞ and nh2η
1 hq1/2 → 0;

2) under the global alternative hypothesis, nhq1
1 → ∞, nhq2 → ∞ and

nh2η
1 hq2/2 → 0,

where η is given in Condition A6.

Remark A.1. Conditions A1, A2 and A3 are necessary for DEE to estimate
the matrixes B and B1. Under the linearity condition and constant conditional
variance condition, DEESIR satisfies the Conditions A1, A2 and A3. Condi-
tions A4, A5, A6 and A7 are widely used for nonparametric estimation in the
literature. It is worth pointing out that Condition A6 about the higher-order
kernel plays an important roles in bias reduction, see Fan and Li (1996)[6].
Conditions A5 and A8 guarantee the asymptotic normality of DREAM statistic
and make the test well-behaved. Condition A9 about the choice of bandwidth h
is reasonable because the estimation q̂ is different under the null and alternative
hypotheses.

A.2. Proof of the theorems

Proof of Proposition 2.1. Note that under the null hypothesis, E(Y |Z) =
g(B�

1 X). Then, we have
Y⊥⊥E(Y |Z)|B�

1 X,

where the notation ⊥⊥ stands for independence. This is equivalent to

Y⊥⊥E(Y |Z)|B̃�Z,
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where B̃ = (B�
1 , 0q1×p2)

�. Recall, without notational confusion, q is a number
that takes value q1 under the null and q2 under the alternatives. From the
definition of central mean subspace, SE(Y |Z) is the intersection of all the linear
spaces spanned respectively by the columns of any d × q orthogonal matrix Γ
with 1 ≤ q ≤ d such that the above conditional independence holds. Thus,
under the null, SE(Y |Z) ⊆ Span(B̃) where Span(B̃) is the linear space spanned

by the columns of B̃. Let {γ1, · · · , γq1} the eigenvectors associated with the
nonzero eigenvalue eigenvalues of M . As Zhu et al. (2010a)[24] argued that
{γ1, · · · , γq1} ∈ SE(Y |Z), we have {γ1, · · · , γq1} ∈ Span(B̃). This implies that γj
for j = 1, · · · q1 can be denoted as a linear combination of the columns of B̃.
Thus, for j = 1, · · · q1, γj has the similar form as γj = (γ̃�

j , 01×p2)
� with γ̃j being

a p1 × 1 vector. This implies that any element in SE(Y |Z) can also be written

as γj = (γ̃�
j , 01×p2)

�. Further, the structural dimension of SE(Y |Z) is smaller

than or equal to q1. Further, we note that under H0, E(Y |Z) = E(Y |B�Z) =
E(Y |B̃�Z) and E(Y |Z) = E(Y |X). Thus, q = q1 = dim{SE(Y |X)}.

Under Conditions A1 and A2, Theorem 2 in Zhu et al. (2010a)[24] shows that
Mn − M = Op(n

−1/2). From the arguments in Zhu and Fang (1996)[26] and

Zhu and Ng (1995)[28], under some regularity conditions, λ̂i − λi = Op(n
−1/2),

where λ̂d ≤ λ̂d−1 ≤ · · · ≤ λ̂1 are the eigenvalues of the matrix Mn and λi are the
eigenvalues of the matrixM . The estimate B̂ that consists of the eigenvectors as-
sociated with the largest q1 eigenvalues of Mn is consistent for (C1B

�
1 , 0q1×p2)

�

for a q1 × q1 orthogonal matrix C1.

Proof of Proposition 2.2. From Proposition 2.1, λ̂i − λi = Op(n
−1/2), where

λ̂d ≤ λ̂d−1 ≤ · · · ≤ λ̂1 are the eigenvalues of the matrix Mn.

Define

λ̃i =
λi

λi + 1
, for 1 ≤ i ≤ d, (A.1)

where λd = · · · = λd−q = 0 and 0 < λq ≤ · · · ≤ λ1 are the eigenvalues of the
target matrix M .

Recall the definition of λ∗
l (2.6) in Subsection 2.3. For any 1 < l ≤ q, since

λl > 0 and λ̂2
l = λ2

l + Op(1/
√
n), we have (λ∗

l )
2 = (λ̃l)

2 + Op(1/
√
n). On the

other hand, for any q < l ≤ d, as λl = 0 and λ̂2
l = λ2

l + Op(1/n) = Op(1/n),
and then (λ∗

l )
2 = Op(1/n).

For any l < q, because λ̃2
l > 0 and λ̃2

l+1 > 0, we have

(λ∗
q+1)

2 + cn

(λ∗
q)

2
−

(λ∗
l+1)

2 + cn

(λ∗
l )

2
=

λ̃2
q+1 + cn +Op(1/n)

λ̃2
q + cn +Op(1/

√
n)

−
λ̃2
l+1 + cn +Op(1/

√
n)

λ̃2
l + cn +Op(1/

√
n)

=
cn +Op(1/n)

λ̃2
q + cn +Op(1/

√
n)

−
λ̃2
l+1 + cn +Op(1/

√
n)

λ̃2
l + cn +Op(1/

√
n)

.
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Since c× log n/n ≤ cn → 0 with some fixed c > 0, we get

(λ∗
q+1)

2 + cn

(λ∗
q)

2
−

(λ∗
l+1)

2 + cn

(λ∗
l )

2
→ 0

λ̃2
q1

−
λ̃2
(l+1)

λ̃2
l

= −
λ̃2
(l+1)

λ̃2
l

< 0.

For any l > q, λ̃l = 0 and λ̃2
q > 0, then we have

(λ∗
q+1)

2 + cn

(λ∗
q)

2
−

(λ∗
l+1)

2 + cn

(λ∗
l )

2
=

λ̃2
q+1 + cn +Op(1/n)

λ̃2
q + cn +Op(1/

√
n)

−
λ̃2
l+1 + cn +Op(1/n)

λ̃2
l + cn +Op(1/n)

=
cn + op(cn)

λ̃2
q + cn +Op(1/

√
n)

− cn + op(cn)

cn + op(cn)

→ −1 < 0.

Therefor, altogether, it is concluded that q̂ = q in probability. This implies that
under H0, P (q̂ = q1) = 1 and under H1, P (q̂ = q2) = 1.

Proof of Theorem 3.1. Define the events An = {Tn ≥ c} for any constant c,
and Bn = {q̂ = q1}. According to Proposition 2.2, under the null hypothesis,
q̂ = q1 with a probability going to one, namely limn→∞ P (Bn) = 1, where P (A)
denotes the probability that the event A happens. The facts that if P (An)
converges, limn→∞ P (An) = limn→∞ P (An ∩ Bn), implies that under the null
hypothesis, in an asymptotic sense it is only needed to consider the case q̂ = q1
for the asymptotic properties of the test statistic Tn throughout the proof of
Theorem 3.1.

For notational convenience, denote zi = (xi, wi), gi = g(B�
1 xi), ĝi = ĝ(B̂�

1 xi),
ui = yi − gi, ûi = yi − ĝi, KBij = K(B�(zi − zj)/h), pi = pB1i and p̂i = p̂B̂1i

,

where p̂B̂1i
is a kernel estimate of the density function pB1(·) of B�

1 xi given by

p̂B̂1i
=

1

n− 1

n∑
j �=i

Qh1(B̂
�
1 xj − B̂�

1 xi).

Throughout this appendix, Ei(·) = E(·|zi). To have a uniform version in this
proof, under the null hypothesis, define B = B̃ = (B�

1 , 0q1×p2)
�.

Note that ûi ≡: yi − ĝi = ui − (ĝi − gi). We then decompose the term Vn as:

Vn =
1

n(n− 1)

n∑
i=1

n∑
j �=i

1

hq1
KB̂ijuiuj +

1

n(n− 1)

n∑
i=1

n∑
j �=i

1

hq1
KB̂ij(ĝi − gi)(ĝj − gj)

− 2
1

n(n− 1)

n∑
i=1

n∑
j �=i

1

hq1
KB̂ijui(ĝj − gj)

≡: Q1n +Q2n − 2Q3n. (A.2)

First, consider the term Q1n. By taking a Taylor expansion for Q1n with respect
to B, we have

Q1n ≡: Q11n +Q12n,
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where

Q11n =
1

n(n− 1)

n∑
i=1

n∑
j �=i

1

hq1
KBijuiuj , (A.3)

Q12n =
1

n(n− 1)

n∑
i=1

n∑
j �=i

1

h2q1
K ′

B∗ijuiuj(B̂ −B)�(zi − zj). (A.4)

Here we assert B∗ = {B∗
ij}d×q1 with B∗

ij ∈ [min{B̂ij , Bij},max{B̂ij , Bij}]. Let
V (t) = B + t(B̂ −B) for a value t ∈ (−∞,∞). Define a function as

f(t) =
1

n(n− 1)

n∑
i=1

n∑
j �=i

1

hq1
KV (t)ijuiuj .

We have f(1) = Q1n and f(0) = Q11n. By an application of mean value theorem,
we have f(1)− f(0) = f ′(t̃) = Q12n with t̃ ∈ (0, 1). Thus, we can conclude that
B∗ = B+t̃(B̂−B) with t̃ ∈ (0, 1). Corresponding, we get B∗

ij = Bij+t̃(B̂ij−Bij)

with t̃ ∈ (0, 1). This affirms the assertion that B∗ = {B∗
ij}d×q1 with B∗

ij ∈
[min{B̂ij , Bij},max{B̂ij , Bij}].

Because ||B̂−B|| = Op(1/
√
n) and the first derivative of KB(·) with respect

to B is a bounded continuity function of B, we conclude that replacing B∗ by
B does not affect the convergence rate of Q12n.

In the present paper, as the dimension of B�Z is fixed, the term Q11n is an
U−statistic. Since under H0, q = q1, following a similar argument as that for
Lemma 3.3 in Zheng (1996)[23], it is easy to obtain:

nhq1/2Q11n ⇒ N(0, s2),

where

s2 = 2

∫
K2

B(u)du ·
∫
{σ2(B�Z)}2p2(B�Z)dB�Z,

with σ2(B�z) = E(u2|B�Z = B�z) and B = (B�
1 , 0q1×p2)

�. We then omit the
details.

We turn to discuss the term Q12n in (A.4). Since E(ui|zi) = 0, we have
E(Q12n) = 0. We then calculate the second order moment of Q12n as follows:

E(Q2
12n) = E

[{ 1

n(n− 1)

n∑
i=1

n∑
j �=i

1

h2q1
K ′

Bijuiuj(B̂ −B)�(zi − zj)
}2

]

= E

{
1

n2(n− 1)2
1

h4q1

n∑
i=1

n∑
i′ �=j′

n∑
i=1

n∑
i′ �=j′

K ′
BijK

′
Bi′j′

uiujui′uj′(B̂ −B)�(zi − zj)(zi′ − zj′)
�(B̂ −B)

}
.
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Since E(uiujui′uj′) �= 0 if and only if i = i′, j = j′ or i = j′, j = i′, we have

E(Q2
12n)

=
2n(n− 1)

n2(n− 1)2
1

h4q1
E
{
(K ′

B12)
2u2

1u
2
2(B̂ −B)�(z1 − z2)(z1 − z2)

�(B̂ −B)
}

=
2

n(n− 1)

1

h4q1
E
{
(K ′

B12)
2u2

1u
2
2(B̂ −B)�(z1 − z2)(z1 − z2)

�(B̂ −B)
}

=
2

n(n− 1)

1

h4q1
{E(u2

1)}2(B̂ −B)�E
{
(K ′

B12)
2(z1 − z2)(z1 − z2)

�}
(B̂ −B).

By changing variables as v1 = (z1 − z2)/h, a further computation yields

E(Q2
12n) =

1

n(n− 1)

1

h4q1
{E(u2

1)}2
∫ ∫

(K ′
B12)

2(B̂ −B)�(z1 − z2)

(z1 − z2)
�(B̂ −B)p(B�z1)p(B

�z2)dz1dz2

=
1

n(n− 1)

1

hq1
{E(u2

1)}2
∫ ∫

(K ′(u))2(B̂ −B)�uu�(B̂ −B)

p(B�z1)p(B
�(z1 − hu))dz1du.

By taking Taylor expansion of p(B�(z1 − hu)) around z1 and using Conditions
A4, A7, A8 and A9, we have

E(Q2
12n)

=
1

n(n− 1)

1

hq1
{E(u2

1)}2
∫ ∫

{K ′(u)}2(B̂ −B)�uu�(B̂ −B)

p(B�z1)p(B
�(z1 − hu))dz1du

=
1

n(n− 1)

1

hq1
{E(u2

1)}2
∫ ∫

{K ′(u)}2(B̂ −B)�uu�(B̂ −B)

[
p2(B�z1) + p(B�z1)p

′(B�z1)h
pu

]
dz1du+ op

{
1

n(n− 1)

}

=
1

n(n− 1)

1

hq1
{E(u2

1)}2
∫ ∫

{K ′(u)}2(B̂ −B)�uu�(B̂−B)p2(B�z1)dz1du

+
1

n(n− 1)

1

hq1
{E(u2

1)}2
∫ ∫

{K ′(u)}2(B̂ −B)�uu�(B̂ −B)

p(B�z1)p
′(B�z1)h

q1B�udz1du+ op

{
1

n(n− 1)

}
O(

1

n
)

= Op

{
1

n2(n− 1)hq1

}
= op(

1

n2
).

The application of Chebyshev’s inequality leads to |Q12n| = op(n
−1h−q1/2). Us-

ing the above results for the termsQ11n andQ12n, it is deduced that nhq1/2Q1n ⇒
N(0, s2).
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Now we consider the term Q2n in (A.2). We can derive that

Q2n =
1

n(n− 1)

n∑
i=1

n∑
j �=i

1

hq1
KB̂q̂ij

(ĝi − gi)(ĝj − gj)
p̂i
pi

p̂j
pj

+
1

n(n− 1)

n∑
i=1

n∑
j �=i

1

hq1
KB̂q̂ij

(ĝi − gi)(ĝj − gj)

×
{
p̂i − pi

pi

p̂j − pj
pj

− 2
(p̂i − pi)p̂j

pipj

}
≡: Q̃2n + op(Q̃2n). (A.5)

Substituting the kernel estimates ĝ and p̂ into Q̃2n, we have

Q̃2n =
1

n(n− 1)3

n∑
i=1

n∑
j �=i

n∑
l �=i

n∑
k �=j

1

hq1h2q1
1

1

pipj
KB̂ijQB̂1il

QB̂1jk

×{yl − g(B�
1 xi)}{yk − g(B�

1 xj)}.

By an application of Taylor expansion for Q̃2n with respect to B and B1, we
can have

Q̃2n ≡ Q21n +Q22n,

where Q21n and Q22n have the following forms:

Q21n =
1

n(n− 1)3

n∑
i=1

n∑
j �=i

n∑
l �=i

n∑
k �=j

1

hq1h2q1
1

1

pipj
KBijQB1ilQB1jk

{yl − g(B�
1 xi)}{yk − g(B�

1 xj)}, (A.6)

Q22n ≡ (B̂1 −B1)
�Q221n + (B̂1 −B1)

�Q222n + (B̂ −B)�Q223n (A.7)

with Q221n, Q222n and Q223n being the following forms:

Q221n =
1

n(n− 1)3

n∑
i=1

n∑
j �=i

n∑
l �=i

n∑
k �=j

1

hq1h3q1
1

1

pipj
KB∗ijQ

′
B∗

1 il
QB∗

1 jk

{yl − g(B�
1 xi)}{yk − g(B�

1 xj)}(xi − xl), (A.8)

Q222n =
1

n(n− 1)3

n∑
i=1

n∑
j �=i

n∑
l �=i

n∑
k �=j

1

hq1h3q1
1

1

pipj
KB∗ijQB∗

1 il
Q′

B∗
1 jk

{yl − g(B�
1 xi)}{yk − g(B�

1 xj)}(xj − xk), (A.9)

and

Q223n =
1

n(n− 1)3

n∑
i=1

n∑
j �=i

n∑
l �=i

n∑
k �=j

1

h2q1h2q1
1

1

pipj
K ′

B∗ijQB∗
1 il

QB∗
1 jk
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{yl − g(B�
1 xi)}{yk − g(B�

1 xj)}(zi − zj). (A.10)

Here, using the similar argument as the justification for the term Q1n, we also
conclude that B∗ = {B∗

ij}d×q1 with B∗
ij ∈ [min{B̂ij , Bij},max{B̂ij , Bij}] and

B∗
1 = {B∗

1ij}p×q1 with B∗
1ij ∈ [min{B̂1ij , B1ij},max{B̂1ij , B1ij}]. As proved

for the term Q12n, we also assert that replacing B∗ and B∗
1 by B and B1,

respectively, do not influence the convergence rate of the term Q22n.
Similarly as the proof of Proposition A.1 in Fan and Li (1996)[6], when we

want to finish the proof of this theorem, what we need to prove is that E(Q2
21n) =

op(n
−2h−q1). It is obvious that the calculation of E(Q2

21n) would be very tedious.
We first prove that E(Q21n) = op(n

−1h−q1/2).
Consider two cases with different combinations of indices i, j, l, k.

Case I: A1 = {i, j, l, k are all different from each other}. Denote the resulting
expression as Q211n. Under the assumption that nh2η

1 hq1/2 = op(1), by
applying Lemma B.1, Lemmas 2 and 3 in Robinson (1988)[19], we have

E(Q211n) =
1

hq1h2q1
1

E
(
E1[

1

p1
QB112{g(B�

1 x2)− g(B�
1 x1)}]

E3[
1

p3
QB134{g(B�

1 x4)− g(B�
1 x3)}]KB13

)
;

≤ C
h2η
1

hq1
E{Dg(B

�
1 x1)Dg(B

�
1 x3)KB13}

= Op(h
2η
1 ) = op(n

−1h−q1/2).

Case II: A2 = {i, j, l, k take no more than three different values}. Denote the
term as Q212n. It is easy to derive that E(Q212n) = op(n

−1h−q1/2).

Hence, altogether, we have E(Q21n) = E(Q211n) + E(Q212n) = op(n
−1h−q1/2).

Now we turn to compute E(Q2
21n). It can be decomposed as:

E(Q2
21n)

= E

[
1

n(n− 1)3

n∑
i=1

n∑
j �=i

n∑
l �=i

n∑
k �=j

1

hq1h2q1
1

1

pipj
KBijQB1ilQB1jk

{yl − g(B�
1 xi)}{yk − g(B�

1 xj)}
]2

=
1

n2(n− 1)6

n∑
i=1

n∑
j �=i

n∑
l �=i

n∑
k �=j

n∑
i′=1

n∑
j′ �=i′

n∑
l′ �=i′

n∑
k′ �=j′

1

h2q1h4q1
1

E

([ 1

pipj
KBijQB1ilQB1jk{g(B�

1 xl)− g(B�
1 xi)}{g(B�

1 xk)− g(B�
1 xj)}

]
[ 1

pi′pj′
KBi′j′QB1i′l′QB1j′k′{g(B�

1 xl′)− g(B�
1 xi′)}{g(B�

1 xk′)− g(B�
1 xj′)}

])
:= LA.
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Firstly, when the indices i, j, l, k are all different from i′, j′, l′, k′, the two parts
in two different braces are independent of each other. Define the related sum as
LA1. Applying the same argument as that for proving E(Q21n) = op(n

−1h−q1/2),
we derive LA1 = op(n

−2h−q1).
Secondly, consider the case where exactly one index from i, j, l, k equals one

of subscripts i′, j′, l′, k′. By symmetry, we only need to compute Case (i): i = i′;
Case (ii): i = l′ and Case (iii) l = l′. The three cases respond the related sums
defined as LA2, LA3 and LA4, respectively.

Under Case (i), we have

LA2 =
1

n2(n− 1)6h2q1h4q1
1

n∑
i=1

n∑
j �=i

n∑
l �=i

n∑
k �=j

E

([ 1

pipj
KBijQB1ilQB1jk

{g(B�
1 xl)− g(B�

1 xi)}{g(B�
1 xk)− g(B�

1 xj)}
]

×
n∑

j′ �=i′

n∑
l′ �=i′

n∑
k′ �=j′

[ 1

pi′pj′
KBi′j′QB1i′l′QB1j′k′

{g(B�
1 xl′)− g(B�

1 xi′)}{g(B�
1 xk′)− g(B�

1 xj′)}
])

=
1

nh2q1h4q1
1

E
[ 1

p1p2
KB12QB113QB124

× {g(B�
1 x3)− g(B�

1 x1)}{g(B�
1 x4)− g(B�

1 x2)}
1

p1p5
KB15QB116QB157{g(B�

1 x6)− g(B�
1 x1)}{g(B�

1 x7)− g(B�
1 x5)}

]
=

1

nh2q1h4q1
1

E
([

E1(g(B
�
1 x3)− g(B�

1 x1))QB113

]
×

[ 1

p1p2
E2(g(B

�
1 x4)− g(B�

1 x2))QB124

]
× 1

p1p5

[
E1{g(B�

1 x6)− g(B�
1 x1)}QB116

]
×

[
E5{g(B�

1 x7)− g(B�
1 x5)}QB157

])
≤ (n− 1)4h4η

1

n5h2q1
E
{ 1

p1p2p1p5
Dg(B

�
1 x1)Dg(B

�
1 x2)

×KB12Dg(B
�
1 x1)Dg(B

�
1 x5)KB15

}
= Op(h

4η
1 n−1) = op(n

−2h−q1).

For Case (ii), we have

LA3 =
1

n2(n− 1)6h2q1h4q1
1

n∑
i=1

n∑
j �=i

n∑
l �=i

n∑
k �=j

E

([ 1

pipj
KBijQB1ilQB1jk

{g(B�
1 xl)− g(B�

1 xi)}{g(B�
1 xk)− g(B�

1 xj)}
]
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×
n∑

i′ �=i

n∑
j′ �=i′

n∑
k′ �=j′

[ 1

pi′pj′
KBi′j′QB1i′iQB1j′k′

{g(B�
1 xi)− g(B�

1 xi′)}{g(B�
1 xk′)− g(B�

1 xj′)}
])

=
1

nh2q1h4q1
1

E
[ 1

p1p2
KB12QB113QB124

× {g(B�
1 x3)− g(B�

1 x1)}{g(B�
1 x4)− g(B�

1 x2)}
1

p5p6
KB56QB115QB167{g(B�

1 x1)− g(B�
1 x5)}{g(B�

1 x7)− g(B�
1 x6)}

]
=

1

nh2q1h4q1
1

E
{
KB12[E1{g(B�

1 x3)− g(B�
1 x1)}QB113]

× [
1

p1p2
E2{g(B�

1 x4)− g(B�
1 x2)}QB124]

× 1

p5p6
KB56E1[{g(B�

1 x1)− g(B�
1 x5)}QB115]

× [E6{g(B�
1 x7)− g(B�

1 x6)}QB167]
}

≤ (n− 1)4h4η
1

n5h2q1
E
{ 1

p1p2p1p5
Dg(B

�
1 x1)Dg(B

�
1 x2)

×KB12Dg(B
�
1 x1)Dg(B

�
1 x6)KB56

}
= Op(h

3η
1 n−1) = op(n

−2h−q1).

Similarly, it is easy to prove that for Case (iii), LA4 = op(n
−2h−q1).

Finally, when the indices i, j, l, k, i′, j′, l′, k′ take no more than six different
values whose sum is defined as LA5, it is easy to see that LA5 = op(n

−2h−q1).
Combining all cases, we get E(Q2

21n) = LA1 + LA2 + 9LA3 + 6LA4 +
LA5 = op(n

−2h−q1). The application of Chebyshev’s inequality yields Q21n =
op(n

−1h−q1/2).
The similar arguments can be applied to handle the first and second moment

of Q22n defined in (A.7). The first moment is very similar to that for Q21n.
Note that Q22n is the weighted sum of Q221n, Q222n and Q223n in (A.8)–(A.10).
Thus, we only need to respectively handle Q221n, Q222n and Q223n. Also, they
can be treated similarly as those for Q21n. When Conditions A4–A9 hold, it is
easy to derive the following convergence rates:

E(Q2
221n) = Op(max{h2η

1 , h2η
1 n−1, hη

1n
−1}) = op(n

−1h−q1/2), (A.11)

E(Q2
222n) = Op(max{h2η

1 , h2η
1 n−1, hη

1n
−1}) = op(n

−1h−q1/2), (A.12)

E(Q2
223n) = Op(max{h4η

1 , h4η
1 n−1, h3η

1 n−1}) = op(n
−1h−q1/2). (A.13)

Due to the facts ||B̂ − B|| = Op(1/
√
n) and ||B̂1 − B1|| = Op(1/

√
n), to-

gether with (A.11)–(A.13), we derive Q22n = op(n
−1h−q1/2) by an application

of Chebyshev’s inequality. Therefore, altogether, from the definition of Q2n in
(A.5), we have that Q2n = op(n

−1h−q1/2).
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Lastly, we consider the terms Q3n in (A.2). Also it is easy to see that

Q3n =
1

n(n− 1)

n∑
i=1

n∑
j �=i

1

hq1
KB̂ijui(ĝj − gj)

p̂j
pj

+
1

n(n− 1)

n∑
i=1

n∑
j �=i

1

hq1
KB̂ijui(ĝj − gj)

(
p̂j − pj

pj

)

≡: Q̃3n + op(Q̃3n).

Substituting the kernel estimates ĝ and p̂ into Q̃3n, we have

Q̃3n =
1

n2(n− 1)

n∑
i=1

n∑
j �=i

n∑
k �=j

1

hq1hq1
1

1

pj
KB̂ijuiQB̂1jk

{yk − g(B�
1 xj)}.

By using the Taylor expansion for Q̃3n with respect to B and B1, we can have

Q̃3n ≡: Q31n +Q32n,

where Q31n and Q32n have following forms:

Q31n =
1

n(n− 1)2

n∑
i=1

n∑
j �=i

n∑
k �=j

1

hq1hq1
1

1

pj
KBijuiQB1jk{yk − g(B�

1 xj)}

and

Q32n =
1

n(n− 1)2

n∑
i=1

n∑
j �=i

n∑
k �=j

1

hq1hq1
1

1

pj
KB∗ijuiQ

′
B∗

1 jk

× {yk − g(B�
1 xj)}(B̂1 −B1)

�(xi − xl)

+
1

n(n− 1)2

n∑
i=1

n∑
j �=i

n∑
k �=j

1

hq1hq1
1

1

pj
K ′

B∗ijuiQB∗
1 jk

× {yk − g(B�
1 xj)}(B̂ −B)�(zi − zj)

≡ (B̂1 −B1)
�Q321n + (B̂ −B)�Q322n.

Here, applying the similar justification for the term Q1n, we also conclude B∗ =
{B∗

ij}d×q1 with B∗
ij ∈ [min{B̂ij , Bij}, max{B̂ij , Bij}] and B∗

1 = {B∗
1ij}p×q1 with

B∗
1ij ∈ [min{B̂1ij , B1ij}, max{B̂1ij , B1ij}]. Similarly, replacing B∗ and B∗

1 by B
and B1, respectively, does not effect the convergence rate of the term Q32n.

Because E(ui|zi) = 0, we have E(Q31n) = 0. Then we compute the second
moment of Q31n as follows:

E(Q2
31n) = E

[ 1

n(n− 1)2

n∑
i=1

n∑
j �=i

n∑
k �=j

1

hq1hq1
1

1

pj
KBijuiQB1jk{yk − g(B�

1 xj)}
]2
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= E
[ 1

n2(n− 1)4
1

h2q1h2q1
1

×
n∑

i=1

n∑
j �=i

n∑
k �=j

n∑
i′=1

n∑
j′ �=i′

n∑
k′ �=j′

1

pjpj′
KBijQB1jkKBi′j′QB1j′k′

uiui′{yk − g(B�
1 xj)}{y′k − g(B�

1 x′
j)}

]
= E

[ 1

n2(n− 1)4
1

h2q1h2q1
1

×
n∑

i=1

n∑
j �=i

n∑
k �=j

n∑
i′=1

n∑
j′ �=i′

n∑
k′ �=j′

1

pjpj′
KBijQB1jkKBi′j′QB1j′k′

uiui′{g(B�
1 xk)− g(B�

1 xj)}{g(B�
1 xk′)− g(B�

1 x′
j)}

]
+ op(n

−2h−q1).

Since E(uiui′) �= 0 if and only if i = i′, we have

E(Q2
31n)

=
1

n

1

h2q1h2q1
1

E(u2
1)E

( 1

p2p4
KB12QB123KB14QB145

{g(B�
1 x3)− g(B�

1 x2)}{g(B�
1 x5)− g(B�

1 x4)}
)

=
1

n

1

h2q1h2q1
1

E(u2
1)E

( 1

p2p4
KB12KB14E2

[
QB123{g(B�

1 x3)− g(B�
1 x2)}

]
× E4

[
QB145{g(B�

1 x5)− g(B�
1 x4)}

])
≤ 1

n

h2η
1

h2q1
E
{ 1

p2p4
KB12KB14Dg(B

�
1 x2)Dg(B

�
1 x4)

}
= Op(h

2η
1 n−1) = op(n

−2h−q1),

Employing Lemma B.1, Lemmas 2 and 3 in Robinson (1988)[19] again, we have
Q31n = op(n

−1h−q1/2). Also, following the similar arguments used for proving
Q22n we get Q32n = op(n

−1h−q1/2) and then Q3n = op(n
−1h−q1/2).

In summary, we conclude that:

nhq1/2Vn⇒N(0, s2).

The variance s2 can be estimated by

ŝ2 =
2

n(n− 1)

n∑
i=1

n∑
j �=i

K2
h

(
B̂�zi − B̂�zj

)
û2
i û

2
j .

Since the proof is straightforward, we only give a very brief outline. Under the
null hypothesis, the estimates B̂ and ĝ are consistent to B̃ and g, and some
elementary calculations result in an asymptotic presentation as:

ŝ2 =
2

n(n− 1)

n∑
i=1

n∑
j �=i

K2
h

(
B̂�zi − B̂�zj

)
u2
iu

2
j + op(1).
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Applying a similar argument used for proving Lemma 2 in Guo et al. (2016)[8],
one can derive

ŝ2 =
2

n(n− 1)

n∑
i=1

n∑
j �=i

K2
h

(
B�zi −B�zj

)
u2
iu

2
j + op(1)

≡: s̃2 + op(1),

with B = (B�
1 , 0q1×p2)

�. As s̃2 is an U−statistic and it is easy to prove s̃2 → s2

in probability. The more details can be referred to Zheng (1996)[23]. The proof
of Theorem 3.1 is finished.

Proof of Proposition 3.1. Consider RERE that is based on DEESIR under the
local alternative hypotheses. From the proof of Theorem 3.2 in Li et al. (2008)[13],
we see that to detain Mn − M = Op(Cn), it is only needed to prove Mn(t) −
M(t) = Op(Cn) uniformly, where M(t) = Σ−1V ar(E(Z|I(Y ≤ t)) = Σ−1(ν1 −
ν0)(ν1−ν0)

�pt(1−pt), Σ is the covariance matrix of Z, ν0 = E{Z|I(Y ≤ t) = 0},
ν1 = E{Z|I(Y ≤ t) = 1} and pt = E(I(Y ≤ t)).

Further, we note that

ν1 − ν0 =
E{ZI(Y ≤ t)}

pt
− E{ZI(Y > t)}

1− pt

=
E{ZI(Y ≤ t)− E(Z)}E{I(Y ≤ t)}

pt(1− pt)
.

Therefore, the matrix M(t) can also be reformulated as

M(t) = Σ−1(E[{Z − E(Z)}I(Y ≤ t)])(E[{Z − E(Z)}I(Y ≤ t)])�

=: Σ−1m̃(t)m̃(t)�,

where m̃(t) = E[{Z − E(Z)}I(Y ≤ t)]. Correspondingly, m̃(t) can be simply
estimated by

m̃n(t) = n−1
n∑

i=1

(zi − z̄)I(yi ≤ t).

Then M(t) can be estimated by

Mn(t) = Σ̂−1Ln(t),

where z̄ = 1
n

∑n
i=1 zi, Ln(t) = m̃n(t)m̃n(t)

� and Σ̂ is the estimate of Σ. Denote
respectively the response under the null and local alternative hypotheses as
Y and Yn to show the dependence of the response under the local alternative
hypotheses. Then under H1n,

E{ZI(Yn ≤ t)} − E{ZI(Y ≤ t)} = E{ZP (Yn ≤ t|Z)} − E{ZP (Y ≤ t|Z)},

where Yn = g(B�
1 X) + CnG(B�Z) + ε ≡: Y + CnG(B�Z). Thus, for all t, we

have

P (Yn ≤ t|Z)− P (Y ≤ t|Z) = FY |Z{t− CnG(B�Z)} − FY |Z(t)
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= −CnG(B�Z)fY |Z(t) +Op(Cn).

Under Condition A2, we can conclude that n−1
∑n

i=1 ziI(yni ≤ t)−E{ZI(Y ≤
t)} = Op(max {Cn, n

−1/2}) = Op(Cn). By the parallel argument for justifying
Theorem 3.2 of Li et al. (2008)[13], Mn(t)−M(t) = Op(Cn) uniformly and then
Mn −M = Op(Cn).

Similarly as those in Zhu and Fang (1996)[26] and Zhu and Ng (1995)[28],

we get that λ̂i − λi = Op(Cn), where λ̂d ≤ λ̂d−1 ≤ · · · ≤ λ̂1 are the eigenvalues
of the matrix Mn. Note that M corresponds to the null hypothesis and then
satisfies that Span{M} = SY |E(Y |Z) and rank(M) = q1. This implies that λd =
· · · = λq1+1 = 0 and 0 < λq1 ≤ · · · ≤ λ1 that are the eigenvalues of the matrix
M . It is clear that for any l > q1, λl = 0, so we get (λ∗

l )
2 = Op(C

2
n), where λ∗

is defined in (2.6). Recall the definition of λ̃ (A.1) in the beginning of the proof
of Proposition 2.2. For any 1 ≤ l ≤ q1, we have (λ∗

l )
2 = (λ̃l)

2 +Op(Cn).
Prove part (I). We consider the case Cn = O(n−1/2h−q1/4). Since

c × n−1h−q1/2 logn ≤ cn → 0 with some fixed c > 0 where cn is the ridge
value in the criterion RERE. we have C2

n = op(cn).
When l > q1, as c× n−1h−q1/2 logn ≤ cn → 0, we have,

(λ∗
q1+1)

2 + cn

(λ∗
q1)

2
−

(λ∗
l+1)

2 + cn

(λ∗
l )

2
=

λ̃2
q1+1 + cn +Op(C

2
n)

λ̃2
q1 + cn +Op(Cn)

−
λ̃2
l+1 + cn +Op(C

2
n)

λ̃2
l + cn +Op(C2

n)

=
λ̃2
q1+1 + cn + op(cn)

λ̃2
q1 + cn +Op(C2

n)
−

λ̃2
l+1 + cn + op(cn)

λ̃2
l + cn + op(cn)

=
cn + op(cn)

λ̃2
q1 + cn +Op(C2

n)
− cn + op(cn)

cn + op(cn)
.

Therefore in probability

(λ∗
q1+1)

2 + cn

(λ∗
q1)

2
−

(λ∗
l+1)

2 + cn

(λ∗
l )

2
→ −1 < 0.

When 1 ≤ l < q1, we derive that:

(λ∗
q1+1)

2 + cn

(λ∗
q1)

2
−

(λ∗
l+1)

2 + cn

(λ∗
l )

2
=

λ̃2
q1+1 + cn +Op(C

2
n)

λ̃2
q1 + cn +Op(Cn)

−
λ̃2
l+1 + cn +Op(Cn)

λ̃2
l + cn +Op(Cn)

=
cn + op(cn)

λ̃2
q1 + cn +Op(cn)

−
λ̃2
l+1 + cn + op(cn)

λ̃2
l + cn + op(cn)

.

Then we have in probability

(λ∗
q1+1)

2 + cn

(λ∗
q1)

2
−

(λ∗
l+1)

2 + cn

(λ∗
l )

2
→ −

λ̃2
l+1

λ̃2
l

< 0.

Therefore, altogether, we can conclude that q̂ = q1 with a probability approach-
ing 1.
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Prove part (II). Now we consider the case Cn × n1/2hq1/4 → ∞. When 1 ≤
l < q1, if c× n−1h−q1/2 log n ≤ cn → 0, we derive that:

(λ∗
q1+1)

2 + cn

(λ∗
q1)

2
−

(λ∗
l+1)

2 + cn

(λ∗
l )

2

=
λ̃2
q1+1 + cn +Op(C

2
n)

λ̃2
q1 + cn +Op(Cn)

−
λ̃2
l+1 + cn +Op(Cn)

λ̃2
l + cn +Op(Cn)

=
Op(max{cn, C2

n})
λ̃2
q1 +Op(max{cn, Cn})

−
λ̃2
l+1 +Op(max{cn, Cn})
λ̃2
l +Op(max{cn, Cn})

.

Then we have in probability

(λ∗
q1+1)

2 + cn

(λ∗
q1)

2
−

(λ∗
l+1)

2 + cn

(λ∗
l )

2
→ −

λ̃2
l+1

λ̃2
l

< 0.

This implies that q̂ determined by (2.7) is greater than q1 or equals to q1 with
a probability approaching 1, namely P (q̂ ≥ q1) = 1.

Proof of Theorem 3.2. Prove Part (I). Since the details of the proof are similar
to those for proving Theorem 3.1, we only sketch it. First, according to Propo-
sition 2.2, under the global alternative hypothesis, P (q̂ = q2) → 1, using the
similar argument as that in Theorem 3.1, we can get that for any fixed constant
c, limn→∞ P (Tn ≥ c) = limn→∞ P (Tn ≥ c, q̂ = q2). Therefore, under the global
alternative hypothesis, in an asymptotic sense we can only need to consider the
conditional probability when the event q̂ = q2 is given.

By using ||B̂1−B1|| = Op(1/
√
n) and Conditions A6 and A8 in the Appendix,

ĝ(B̂�
1 x) is an uniformly consistent estimate of g(B�

1 x) = E(Y |B�
1 X = B�

1 x),
see Powell et al. (1989)[16] or Robinson (1988)[19]. We then have

Vn =
1

n(n− 1)

n∑
i=1

n∑
j �=i

1

hq̂
KB̂ij ûiûj =

1

n(n− 1)

n∑
i=1

n∑
j �=i

1

hq2
KBijuiuj + op(1),

where ui = yi − g(B�
1 xi) with g(B�

1 xi) = E(yi|xi). Let �(zi) = m(B�zi) −
g(B�

1 xi). Therefore, by using the U−statistics theory, we get that

Vn = E(KB12u1u2) + op(1) = E{�2(Z)p(B�Z)}+ op(1).

Similarly, we can also prove that in probability ŝ2 converges to a positive value
which may be different from s2 defined by (3.1). Therefore, we can obtain
Tn/(nh

q1/2) ⇒ Constant > 0 in probability.
Consider Part (II). Under the local alternative hypotheses with Cn =

n−1/2h−q1/4, according to Lemma 3.1, we have q̂ = q1 with a probability tending
to one. By applying the same argument as that in Theorem 3.1, we can get that
for any constant c, we have limn→∞ P (Tn ≥ c) = limn→∞ P (Tn ≥ c, q̂ = q1).
This implies that under the local alternative hypotheses with Cn = n−1/2h−q1/4,



Dimension reduction-based significance testing in nonparametric regression 1503

in an asymptotic sense we still only need to consider the case q̂ = q1 in the rest
proof of this theorem.

Following the similar arguments used to prove Theorem 3.1 or the similar
decomposition by Taylor expansion as the proof of Theorem 3 in Guo et al.
(2016)[8], we can show that:

Vn =
1

n(n− 1)

n∑
i=1

n∑
j �=i

1

hq̂
KB̂ij ûiûj =: Qn + op(Qn)

where Qn = 1
n(n−1)

∑n
i=1

∑n
j �=i

1
hq1

KB̃ijuiuj with B̃ = (B�
1 , 0q1×p2)

� and ui =

yi − g(B�
1 xi) = CnG(B�zi) + εi with E(εi|zi) = 0. Here we omit the techni-

cal details. Then we prove nhq1/2Qn is asymptotically normal. Qn is further
decomposed as:

Qn =

⎡
⎣ 1

n(n− 1)

n∑
i=1

n∑
j �=i

1

hq1
KB̃ij

{
CnG(B�zi) + εi

}{
CnG(B�zj) + εj

}⎤⎦

=

⎧⎨
⎩ 1

n(n− 1)

n∑
i=1

n∑
j �=i

1

hq1
KB̃ijεiεj

⎫⎬
⎭

+ Cn

⎧⎨
⎩ 1

n(n− 1)

n∑
i=1

n∑
j �=i

1

hq1
KB̃ijG(B�zi)εj

⎫⎬
⎭

+ C2
n

⎧⎨
⎩ 1

n(n− 1)

n∑
i=1

n∑
j �=i

1

hq1
KB̃ijG(B�zi)G(B�zj)

⎫⎬
⎭

≡ W1n + CnW2n + C2
nW3n.

Again following the similar argument as that for Lemma 3.3 in Zheng (1996)[23],

we can easily derive that nhq1/2W1n
d→ N(0, s2). By Lemma 3.1 of Zheng

(1996)[23], we get that
√
nW2n = Op(1). Since Cn = n−1/2h−q1/4, it is deduced

that nhq1/2CnW2n = op(1). Lastly, we consider the term W3n. It is obvious that
the term W3n is U−statistic with the kernel as:

H(zi, zj) =
1

hq1
KB̃ijG(B�zi)G(B�zj).

We firstly calculate the expectation of H(zi, zj) as

E{H(zi, zj)} =
1

hq1
E
{
KB̃ijG(B�zi)G(B�zj)

}
=

1

hq1
E
[
KB̃ijE

{
G(B�zi)|B̃�zi

}
E
{
G(B�zj)|B̃�zj

}]
.

For notational simplicity, write M(B̃�zi) = E{G(B�zi)|B̃�zi} and ti = B̃�zi.
The expectation of H(zi, zj) can be further calculated as

E{H(zi, zj)} =
1

hq1
E
{
K

( ti − tj
h

)
M(ti)M(tj)

}
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=

∫ ∫
1

hq1
K

( ti − tj
h

)
M(ti)M(tj)p1(ti)p1(tj)dtidtj .

Further, apply the changing variables u =
ti−tj

h to get that:

E{H(zi, zj)} =

∫ ∫
K(u)M(ti)M(ti − hu)p1(ti)p1(ti − hu)dudti

=

∫
K(u)du

∫
M2(ti)p

2
1(ti)dti + op(h)

= E
(
[E{G(B�Z)|B̃�Z}]2pB̃(B̃�Z)

)
+ op(1)

= E
(
[E{G(B�Z)|B�

1 X}]2pB1(B
�
1 X)

)
+ op(1).

Again using the element characteristics of U−statistic, we derive that:

W3n ⇒ E
(
[E{G(B�Z)|B�

1 X}]2pB1(B
�
1 X)

)
.

Thus, we can deduce that

Vn ⇒ N
(
E
(
[E{G(B�Z)|B�

1 X}]2pB1(B
�
1 X)

)
, s2

)
.

As the variance s2 can be consistently estimated and thus, the expected result
can be proved.

In summary, invoking Slutsky’s theorem, it is concluded that

Tn ⇒ N
(
E
(
[E{G(B�Z)|B�

1 X}]2pB1(B
�
1 X)

)
/s, 1

)
.

The proof of Theorem 3.2 is concluded.
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