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Abstract: We analyze the statistical consistency of robust estimators for
precision matrices in high dimensions. We focus on a contamination mech-
anism acting cellwise on the data matrix. The estimators we analyze are
formed by plugging appropriately chosen robust covariance matrix estima-
tors into the graphical Lasso and CLIME. Such estimators were recently
proposed in the robust statistics literature, but only analyzed mathemati-
cally from the point of view of the breakdown point. This paper provides
complementary high-dimensional error bounds for the precision matrix esti-
mators that reveal the interplay between the dimensionality of the problem
and the degree of contamination permitted in the observed distribution.
We also show that although the graphical Lasso and CLIME estimators
perform equally well from the point of view of statistical consistency, the
breakdown property of the graphical Lasso is superior to that of CLIME.
We discuss implications of our work for problems involving graphical model
estimation when the uncontaminated data follow a multivariate normal dis-
tribution, and the goal is to estimate the support of the population-level
precision matrix. Our error bounds do not make any assumptions about
the the contaminating distribution and allow for a nonvanishing fraction of
cellwise contamination.
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1. Introduction

Covariance matrix estimation has long taken center stage in multivariate analy-
sis [4]. The sample covariance estimator, which originates as the maximum likeli-
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hood estimator under a multivariate normal model, is optimal in many respects:
It is unbiased, consistent, efficient under various distributional assumptions, and
easily computable. Despite its positive traits, however, the sample covariance
matrix is also highly non-robust when data are contaminated. Hence, various
procedures in robust statistics have been derived to obtain a covariance matrix
estimator that behaves well even in the presence of contaminated data [36, 28].

In other areas of multivariate analysis, the precision matrix Ω∗ := (Σ∗)−1

is of significant interest. Examples include computing Mahalanobis distances,
linear discriminant analysis, and Gaussian graphical models. In the setting of
graphical models, a random vectorX is associated with an undirected graphG =
(V,E) that encodes conditional independence relations between components of
X [39]. The vertex set V contains {1, . . . , p}, while the edge set E consists of
pairs (i, j), where (i, j) ∈ E ifXi andXj are connected by an edge. For each non-
edge (i, j) �∈ E, the variables Xi and Xj are conditionally independent given all
other variables. When X ∼ N(μ,Σ∗), pairwise conditional independence holds
if and only if Ω∗

ij = 0. Thus, recovering the support of the precision matrix is
equivalent to graphical model selection. The aforementioned observations have
been used for network reconstruction in many scientific fields, including genetics
and neuroscience (e.g., see [65, 55] and the references cited therein). When the
dimensionality p is small compared to the number of samples n, a reasonable
method for robust precision matrix estimation could consist of computing a
robust estimate of the covariance matrix and then taking a matrix inverse.

With the recent deluge of high-dimensional data, however, a need has arisen
to devise high-dimensional analogs of classical procedures that are both com-
putable and possess rigorous theoretical guarantees. Although several meth-
ods, notably the graphical Lasso (GLasso) [68, 6, 26] and the constrained �1-
minimization for inverse matrix estimation (CLIME) [11] estimator, have been
proposed for high-dimensional precision matrix estimation, robust estimation of
high-dimensional precision matrices has only recently emerged in the literature.
The GLasso and CLIME estimators tend to perform poorly under contaminated
data, since they take as input the sample covariance matrix that is sensitive to
even a single outlier.

Popular classical robust covariance estimators are applicable in settings where
less than half the observation vectors are contaminated. Such an assumption is
closely connected to the Tukey-Huber contamination model that underlies much
of the existing robustness theory [61, 35]. In the Tukey-Huber model, a mixture
distribution with a dominant nominal component (such as a multivariate nor-
mal distribution) and a minority unspecified component are posited, and each
observation vector is either completely clean or completely contaminated. Clas-
sical robust covariance estimators then involve downweighting contaminated
observations in order to reduce their influence. When the dimension p is large,
however, the fraction of perfectly observed data vectors may be rather small:
If all components of an observation vector had an independent chance of being
contaminated, most observation vectors would be contaminated. Thus, down-
weighting an entire observation would waste the information contained in the
clean components of the observation vector. This describes the setting of the
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cellwise contamination model, which was developed by Alqallaf et al. [2]. It gen-
eralizes the classical Tukey-Huber contamination model, which may be viewed
as a case of rowwise contamination of the data matrix, and is fairly realistic for
applications involving measurement error in DNA microarray analysis [59] or
dropout measurements in sensor arrays [57].

On the other hand, most existing approaches for robust covariance estima-
tion focus on affine equivariance. These include theM -estimators [44], Minimum
Volume Ellipsoid (MVE) and Minimum Covariance Determinant (MCD) esti-
mators [50, 51], and Stahel-Donoho (SD) estimator [56, 21]. Although affine
equivariance may be a desirable property under rowwise contamination, it is
less appropriate in the setting of cellwise contamination, since linear combina-
tions of observation vectors lead to a propagation of outliers [3]. In addition,
the MVE, MCD, and SD estimators all require heavy computational effort, ren-
dering them impractical for high-dimensional datasets. To deal with cellwise
contamination, Van Aelst [62] proposed a modified SD estimator that adapts
winsorization [36, 2] and a cellwise weighting scheme. Similar to the original SD
estimator, however, computation is only feasible for small p. A recent approach
by Agostinelli et al. [1] is capable of dealing with both rowwise and cellwise
outliers. The procedure consists of two steps: (1) flagging cellwise outliers as
missing values; and (2) applying a rowwise robust method to the incomplete
data. However, computation is again infeasible in high dimensions. Other re-
cent proposals for robust high-dimensional covariance matrix estimation include
those suggested by Chen et al. [17] and Han et al. [31], but both methods treat
different contamination models and are not suitable to handle data with cell-
wise contamination: Han et al. [31] study robust high-dimensional scatter matrix
estimation when data are drawn from heavy-tailed distributions, and Chen et
al. [17] study a method based on “matrix depth” designed for handling rowwise
contamination that is computationally intractable in high dimensions. However,
note that our proposed estimators are computationally feasible.

In fact, relatively few approaches exist for robust high-dimensional precision
matrix estimation under any form of contamination. One method is supplied
by the TLasso estimator of Finegold and Drton [25], which builds upon the
GLasso and models the data as coming from the multivariate t-distribution, a
long-tailed surrogate for the multivariate normal distribution. The “alternative
multivariate t-distribution” is used to model a case where different coordinates
of the distribution are obtained from the latent multivariate normal distribution
using different weights. Although the TLasso demonstrates a higher degree of
robustness than the GLasso under both rowwise and cellwise contamination in
simulations, however, a theoretical analysis from the point of view of robust
statistics has not been derived.

More recently, Oellerer and Croux [46] and Tarr et al. [58] proposed a promis-
ing new method for high-dimensional precision matrix estimation, designed
specifically for cellwise contamination. The method consists of combining a ro-
bust covariance estimator that may be computed efficiently with a suitable high-
dimensional precision matrix estimation procedure. Similar plug-in estimators
based on rank-based correlation matrix estimates were previously proposed by
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Liu et al. [42] and Xue and Zou [66] for model selection and parameter esti-
mation in nonparanormal graphical models. However, an important difference
in our present work is the model assumption under which we derive our error
rates. Since we draw our motivation from robust statistics, our goal is to prove
estimation error bounds under an ε-contaminated distribution. In contrast, Liu
et al. [42] and Xue and Zou [66] focus on establishing consistency when the ob-
servations are drawn cleanly from a nonparanormal model, although they do
explore the effect of rowwise outliers in their simulations. Other follow-up work
[30, 29, 24, 23, 64, 5] again focuses on establishing statistical consistency un-
der transformational or heavy-tailed variants of the high-dimensional Gaussian
model. Instead, we adopt the framework of Oellerer and Croux [46] and Tarr
et al. [58], who study the behavior of robust estimators when a fraction of the
data are contaminated. A rigorous high-dimensional analysis from the point of
view of statistical consistency is absent from this line of work—the goal of the
present paper is to fill this gap.

Our main contributions are to derive statistical error bounds in elementwise
�∞-norm for robust precision matrix estimation procedures according to the
proposals of Oellerer and Croux [46] and Tarr et al. [58]. We study the setting
of the cellwise ε-contamination model, where at most an ε fraction of entries
in the data matrix are corrupted by outliers. Our work thus fuses two threads
of research involving classical robust statistics and high-dimensional estimation
in a novel and rigorous manner. The bounds we derive match standard high-
dimensional bounds for uncontaminated precision matrix estimation, up to a
constant multiple of ε. Furthermore, they are of a complementary nature to the
theoretical results supplied by Oellerer and Croux [46], since we are primarily
concerned with robustness as measured from the viewpoint of statistical consis-
tency, rather than breakdown behavior. After the initial posting of our work, a
nice minimax theory for statistical estimation under the ε-contamination model
has been developed [17, 18]; we build upon some of these results to show that
the error rates achieved by our estimators are minimax optimal.

More generally, our results reveal an interesting interplay between bounds
for statistical error under ε-contamination and classical measures of robustness
such as the influence function [27] and breakdown point [22]. Estimators with
bounded influence have long been favored in classical robust statistics, as the
rate of change in the statistical functional associated with the estimator is con-
trolled when the nominal distribution is contaminated by an arbitrary point
mass distribution. Our results show that a variety of bounded influence esti-
mators, including Kendall’s and Spearman’s correlation coefficients, give rise
to (inverse) covariance estimators with statistical error rates that depend lin-
early on the degree of contamination; the converse relationship may be seen
to hold more generally as a result of our proof arguments. On the other hand,
our discussion of the breakdown point of the precision matrix estimators, build-
ing upon the analysis of Oellerer and Croux [46], emphasizes the significant
differences between the notions of breakdown point and statistical consistency.
Whereas our analysis shows that the robust CLIME and GLasso procedures
have comparable behavior from the point of view of high-dimensional statistical
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consistency, the CLIME estimator has a substantially smaller breakdown point
than the GLasso, due to its constrained feasibility region. Rather than advo-
cating one measure of robustness over another, our discussion emphasizes the
value of weighing different measures of robustness in selecting an appropriate
estimator.

The remainder of the paper is organized as follows: Section 2 furnishes the
mathematical background for the cellwise contamination model and the robust
covariance and precision matrix estimators to be considered in the paper. Sec-
tion 3 presents our main theoretical contributions, providing bounds on the
statistical error of the covariance and precision matrix estimators under the
cellwise contamination model, as well as concrete consequences in the presence
of outliers and/or missing data. Section 4 provides a discussion of the breakdown
point for the robust GLasso and CLIME estimators. In Section 5, we discuss the
main steps of the proofs of our theorems. Section 6 contains simulation results
that are used to validate the theoretical results of the paper. We conclude with
a discussion in Section 7, including some avenues for future research.

Notation: For a vector a = (a1, . . . , ap)
T ∈ R

p, we write ‖a‖1 =
∑p

i=1 |ai|
and ‖a‖2 = (

∑p
i=1 a

2
i )

1/2 to denote the �1- and �2-norms of a. For a matrix
A = (aij) ∈ R

p×q, we define the elementwise �1-norm ‖A‖1 =
∑p

i=1

∑q
j=1 |aij |,

the elementwise �∞-norm ‖A‖∞ = max1≤i≤p,1≤j≤q |aij |, the Frobenius norm
‖A‖F = (

∑p
i=1

∑q
j=1 a

2
ij)

1/2, the spectral norm |||A|||2 = sup‖x‖≤1 ‖Ax‖2, and
the �1-operator norm |||A|||1 = max1≤j≤q

∑p
i=1 |aij |. We write A � 0 (respec-

tively, A � 0) to indicate that A is positive definite (respectively, positive
semidefinite), in which case we denote by λ1(A) ≥ λ2(A) ≥ · · · ≥ λp(A) the
ordered eigenvalues of A. We write I for the identity matrix and 0 for the vector
of all zeros (the respective dimension of which will be clear from context). The
binary operation ⊗ denotes the tensor product.

2. Background and problem setup

We begin with a description of the cellwise contamination model, followed by
a rigorous formulation of the robust covariance and precision matrix estimators
to be studied in our paper.

Following the notation of [2, 3], we write the cellwise contamination model
in the following form:

Xk = (I−Bk)Yk +BkZk, ∀k = 1, . . . , n. (1)

Here, we observe the contaminated random vector Xk ∈ R
p. The unobservable

random vectors Yk,Zk, and Bk are independent, and Yk ∼ G (a nominal
distribution) and Zk ∼ H∗ (an unspecified outlier generating distribution).
Furthermore, Bk = diag(Bk1, . . . , Bkp) is a diagonal matrix, where Bk1, . . . , Bkp

are independent Bernoulli random variables with P (Bki = 1) = εi, for all 1 ≤
i ≤ p.
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When ε1 = · · · = εp = ε, the probability of an observation vector having
no contamination in any component is (1 − ε)p, a quantity that decreases ex-
ponentially as the dimension increases. This probability goes below the critical
value 1/2 for p ≥ 14 at ε = 0.05, and for p ≥ 69 at ε = 0.01. Equation (1) is a
special case of a more general model, where we allow other joint distributions
for Bk1, . . . , Bkp. For instance, if Bk1, . . . , Bkp were completely dependent (i.e.,
P (Bk1 = · · · = Bkp) = 1), we would obtain the rowwise contamination model.
In that case, the probability of an observation vector being totally free of con-
tamination would be 1 − ε, which is independent of the dimension. Alqallaf et
al. [3] also use the terms fully independent contamination model (FICM) and
fully dependent contamination model (FDCM) to denote the cellwise and row-
wise contamination settings, in order to distinguish the pattern of contamination
across rows of the data matrix.

Throughout, we will work under the cellwise contamination model (1), and
assume that G is a multivariate normal distribution N(μ,Σ∗). Our goal is to
estimate the matrices Σ∗ and Ω∗ = (Σ∗)−1 from the (uncontaminated) normal
component.

2.1. Covariance matrix estimation

When ε = 0 (i.e., the data are uncontaminated), we may use the classical sample
covariance matrix estimator Σ̃, defined pairwise as

Σ̃ij =
1

n− 1

n∑
k=1

(Xki − X̄i)(Xkj − X̄j), ∀1 ≤ i, j ≤ p,

where X̄i = 1
n

∑n
k=1 Xki and X̄j = 1

n

∑n
k=1 Xkj . When n � p, the sample

covariance is an efficient estimator forΣ∗. However, when ε > 0, the performance
of Σ̃may be compromised depending on the properties ofH∗: Under the cellwise
contamination model, for i �= j, we have

(Σ∗
X)ij = (1− εi)(1− εj) (Σ

∗
Y )ij + εiεj (Σ

∗
Z)ij

= (Σ∗
Y )ij − (εi + εj − εiεj) (Σ

∗
Y )ij + εiεj (Σ

∗
Z)ij .

When no restrictions are placed on the covariance Σ∗
Z of the contaminating dis-

tribution, the elementwise deviations between Σ∗
X and Σ∗

Y (and consequently,
also the sample covariance Σ̃X := Σ̃ and Σ∗

Y ) will in general behave arbitrary
badly. Furthermore, note that even when Σ∗

Z is constrained to lie in a space
where the deviations between Σ∗

X and Σ∗
Y are suitably bounded, we would re-

quire the contaminating distribution to have properties such as sub-Gaussian
tails in order to ensure consistency of the sample covariance estimator on the

order of O
(√

log p
n

)
. When a procedure based on covariance estimation is used

to estimate the precision matrix, the errors incurred during the covariance es-
timation step would propagate to the next step. For instance, this issue would
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arise in using the CLIME or GLasso estimator. In contrast, our theory for ro-
bust covariance estimators will not require any assumptions on either Σ∗

Z or the
tail behavior of the contaminating distribution.

To deal with cellwise contamination in the high-dimensional setting, we there-
fore take the pairwise approach suggested by Oellerer and Croux [46], where a
robust covariance or correlation estimate is computed for each pair of variables.
Early proposals of robust procedures are of this type [7, 47], where a coordinate-
wise approach is taken for robust estimation of location. In addition to having
relatively low computational complexity, the pairwise approach is appealing be-
cause a high breakdown point of the pairwise estimators translates into a high
breakdown point of the overall covariance matrix. For 1 ≤ i, j ≤ p, we write

Σ∗
ij = σiσjρij , (2)

where σi = [Var(Xki)]
1/2, σj = [Var(Xkj)]

1/2, and ρij = Corr(Xki, Xkj). We
will take suitable robust estimators of σ̂i, σ̂j , and ρ̂ij , to obtain the covariance

matrix estimator Σ̂, with (i, j) entry Σ̂ij = σ̂iσ̂jρ̂ij .
To estimate σi, we consider the median absolute deviation from the median

(MAD), a robust measure of scale. The MAD estimator was popularized by
Hampel [27], who attributes the concept to Gauss. It has a breakdown point
of 50%. Let X(1),i ≤ · · · ≤ X(n),i denote the ordered values of X1i, . . . , Xni.

The sample median m̂i and the sample MAD d̂i are defined, respectively, as
m̂i = X(k∗),i and d̂i = W(k∗),i, where Wki = |Xki− m̂i|, for all k = 1, . . . , n, and
k∗ = 
n/2�. Expressed another way,

d̂i = median
1≤k≤n

(∣∣∣Xki −median
1≤�≤n

(X�i)
∣∣∣). (3)

We then estimate σi by σ̂i = [Φ−1(0.75)]−1d̂i, where the constant [Φ
−1(0.75)]−1

is chosen in order to make the estimator consistent for σi at normal distribu-
tion. The population-level median of a distribution with cdf F is defined to be
m(F ) := F−1 (0.5), where F−1(c) = inf{x : F (x) ≥ c}, for c ∈ [0, 1]. Simi-
larly, we may define the population-level MAD d(F ) to be the median of the
distribution of |X −m(F )|, where X has cdf F .

To estimate ρij , we consider the classical nonparametric correlation estima-
tors, Kendall’s tau and Spearman’s rho:

Kendall’s tau: This statistic is given by

rKij =
2

n(n− 1)

∑
k<�

sign(Xki −X�i)sign(Xkj −X�j), (4)

where sign(X) = 1 if X > 0, sign(X) = −1 if X < 0, and sign(0) = 0.

Spearman’s rho: This statistic is given by

rSij =

∑n
k=1[rank(Xki)− (n+ 1)/2][rank(Xkj)− (n+ 1)/2]√∑n

k=1[rank(Xki)− (n+ 1)/2]2
∑n

k=1[rank(Xkj)− (n+ 1)/2]2
, (5)

where rank(Xki) denotes the rank of Xki among X1i, . . . , Xni.
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The population versions of the estimators are given, respectively, by

ρK
ij = E[sign(X1i −X2i)sign(X1j −X2j)], (6a)

ρS
ij = 3E[sign(X1i −X2i)sign(X1j −X3j)]. (6b)

When ε1 = · · · = εp = 0, we have Xk ∼ N(μ,Σ∗); in this case, it is known
that [37, 38]

ρij = sin
(π
2
ρK
ij

)
= 2 sin

(π
6
ρS
ij

)
.

Hence, for asymptotic consistency at normal distribution, our estimator for ρij is

the transformed version of Kendall’s tau and Spearman’s rho, given by sin(π2 r
K
ij )

and 2 sin(π6 r
S
ij), respectively. We then define as Σ̂ our robust covariance matrix

estimator, with

Σ̂
K

ij = σ̂iσ̂j sin
(π
2
rKij

)
, and Σ̂

S

ij = 2σ̂iσ̂j sin
(π
6
rSij

)
. (7)

2.2. Precision matrix estimation

A long line of literature exists for precision matrix estimation in the high-
dimensional setting. We will focus our attention on sparse precision matrix
estimation; i.e., Ω∗ contains many zero entries. In this section, we review two
techniques, the GLasso and CLIME, which produce a sparse precision matrix
estimator based on optimizing a function of the sample covariance matrix. As
proposed by Oellerer and Croux [46] and Tarr et al. [58], these methods may eas-
ily be modified to obtained robust versions, where the sample covariance matrix
estimator is simply replaced by a robust covariance estimator Σ̂ as described in
the previous section.

The graphical lasso (GLasso) estimator [68, 6, 26] is defined as the maximizer
of the following function:

Ω̃ = argmin
Ω�0

{
tr(Σ̃Ω)− log det(Ω) + λ‖Ω‖1

}
.

Here, λ > 0 is a tuning parameter that controls the sparsity of the resulting
precision matrix estimator.

In this paper, we replace the sample covariance matrix Σ̃ by the robust
alternative Σ̂, and consider a variant where only the off-diagonal entries of the
estimator are penalized:

Ω̂ = argmin
Ω�0

{
tr(Σ̂Ω)− log det(Ω) + λ‖Ω‖1,off

}
. (8)

Note that although the program (8) is convex for any choice of Σ̂ ∈ R
p×p,

several state-of-the-art algorithms for optimizing the GLasso require the matrix
Σ̂ to be positive semidefinite [26, 70, 34]. We will first derive statistical theory
for the robust GLasso without a positive semidefinite projection step, and then
discuss properties of the projected version in Section 4.
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An alternative to the GLasso is the method of constrained �1-minimization
for inverse matrix estimation (CLIME) proposed in Cai et al. [11]. The CLIME
routine solves the following convex optimization problem by linear program-
ming:

Ω̃ = argmin
Ω∈Rp×p

‖Ω‖1 subject to ‖Σ̃Ω− I‖∞ ≤ λ.

Note that here, no symmetry condition is imposed on Ω, and the solution is not
symmetric in general. If a symmetric precision matrix estimate is desired, we
may perform a post-symmetrization step on Ω̃ = (ω̃1

ij) to obtain the symmetric

matrix Ω̃sym, defined by

Ω̃sym = (ω̃ij), where

ω̃ij = ω̃ji = ω̃1
ij1(|ω̃1

ij | ≤ |ω̃1
ji|) + ω̃1

ji1(|ω̃1
ij | > |ω̃1

ji|). (9)

In other words, between ω̃1
ij and ω̃1

ji, we pick the entry with smaller magnitude.
Similar to the GLasso case, we will robustify the CLIME estimator by solving

Ω̂ = argmin
Ω∈Rp×p

‖Ω‖1 subject to ‖Σ̂Ω− I‖∞ ≤ λ, (10)

and then apply post-symmetrization (9) to obtain the robust CLIME estimator

Ω̂sym.
We remark that the same estimators (8) and (10), based on plugging in a

robust rank-based surrogate of the correlation matrix, also appeared in Liu et
al. [42] and Xue and Zou [66]. However, the focus of both papers was to derive
consistency of the estimators under a nonparanormal model, rather than quan-
tifying the effect of deviations from normality, which is the primary objective
of the present paper.

3. Main results and consequences

We now provide rigorous statements of the main results of the paper. We begin
by stating a series of meta-theorems that bound the elementwise �∞-norm error
on the robust covariance and correlation matrices, as well as the precision matrix
estimators. Although the arguments deriving Theorems 2 and 3 (on the CLIME
and GLasso estimators, respectively) from Theorem 1 are not new to the high-
dimensional statistics literature, Theorem 1 clearly isolates the conditions on
the robust correlation and scale estimates that we require for our overall error
bounds to hold. The main novelty of our work comes in Sections 3.2 and 3.3,
where we show that the conditions in Theorem 1 indeed hold w.h.p. for specific
robust estimators of interest.

3.1. Meta-theorems for covariance and precision estimation

We first list the key properties of our robust correlation and scale estimators
that we require for our theory:
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(i) The correlation and scale estimators satisfy the deviation bounds

max
1≤i,j≤p

|ρ̂ij − ρ̄ij | ≤ C1

√
log p

n
, and (11a)

max
1≤i≤p

|σ̂i − σ̄i| ≤ C ′
1

√
log p

n
. (11b)

(ii) The correlation and scale estimators satisfy the bounded-influence inequal-
ities

max
1≤i,j≤p

|ρ̄ij − ρij | ≤ C2ε, and (12a)

max
1≤i≤p

|σ̄i − σi| ≤ C ′
2ε, (12b)

Here, ρ̄ij and σ̄i represent population-level quantities. (For instance, σ̄i =
E(σ̂i); however, it will be convenient in our analysis to show concentration to a
slightly different quantity for the correlation estimators.) The inequalities (12a)
and (12b) may be interpreted as “bounded-influence” type conditions on the
correlation and scale estimators, enforcing that the population-level version of
the estimator is affected only linearly under ε-contamination.

We also assume that the scale parameters of the uncontaminated distributions
are bounded:

max
1≤i≤p

σi ≤ Mσ. (13)

We will show in the next section that these inequalities are satisfied for estima-
tors of interest such as the MAD scale estimator and the Kendall’s tau or Spear-
man’s rho correlation estimators, under the cellwise contamination model (1).

The following simple theorem provides error bounds for covariance matrix
estimation. As pointed out by the reviewers, situations may arise when the
end goal is correlation matrix estimation. In such settings, it is unnecessary to
obtain scale estimates {σ̂i}pi=1, so we only need bounds on the behavior of the
correlation estimators.

Theorem 1 (Covariance and correlation matrices).

(i) Suppose the correlation estimator ρ̂ satisfies inequalities (11a) and (12a).
Then

‖ρ̂− ρ∗‖∞ ≤ C1

√
log p

n
+ C2ε.

(ii) Suppose the covariance estimator Σ̂ is defined elementwise according to

Σ̂ij = σ̂iσ̂jρ̂ij, and inequalities (11b), (12b), and (13) also hold. Suppose

C ′
1

√
log p
n + C ′

2ε < Mσ. Then

∥∥∥Σ̂−Σ∗
∥∥∥
∞

≤ 4M2
σ

(
C1

√
log p

n
+ C2ε

)
+ 3Mσ

(
C ′

1

√
log p

n
+ C ′

2ε

)
.
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The proof of Theorem 1 is straightforward and mostly involves applications
of the triangle inequality. The proof is provided in Appendix B.1.

We now turn to the more complicated problem of obtaining statistical error
bounds on the precision matrix estimators described in the previous section.
We begin with the CLIME estimator. Consider the following uniformity class of
matrices:

U(q, s0(p),M) =

{
Ω : Ω � 0, |||Ω|||1 ≤ M, max

1≤i≤p

n∑
j=1

|ωij |q ≤ s0(p)

}
, (14)

for 0 ≤ q < 1, where Ω := (ωij) = (ω1, . . . ,ωp). The following result provides
an elementwise error bound on the estimation error between the CLIME output
and the true precision matrix, provided the true precision matrix lies in the
class (14) defined above. The proof of Theorem 2 follows Cai et al. [11]; the
proof is provided in Appendix B.2 only for completeness.

Theorem 2 (CLIME estimator). Suppose Ω∗ ∈ U(q, s0(p),M). If Ω̂ is the

output of the CLIME estimator (10) with λ ≥ M‖Σ̂−Σ∗‖∞, then

‖Ω̂−Ω∗‖∞ ≤ 4λ |||Ω∗|||1 .

Remark 1. Clearly, the optimal choice of λ to minimize the estimation error

bound in Theorem 2 is λ = C ′′
1

√
log p
n +C ′′

2 ε, where C ′′
1 and C ′′

2 are the constant

prefactors appearing in Theorem 1. In this case,

‖Ω̂−Ω∗‖∞ ≤ 4 |||Ω∗|||1

(
C ′′

1

√
log p

n
+ C ′′

2 ε

)
≤ 4M

(
C ′′

1

√
log p

n
+ C ′′

2 ε

)
.

Hence, we see that the error bound on the precision matrix may be separated
cleanly into two parts: A linear term capturing the effect of ε-contamination,

and an O
(√

log p
n

)
term capturing the minimax rate of estimation even when

ε = 0.

For the GLasso, we focus on precision matrices satisfying the following as-
sumption:

Assumption 1 (Incoherence). There exists some 0 < α ≤ 1 such that

max
e∈Sc

∣∣∣∣∣∣Γ∗
eS(Γ

∗
SS)

−1
∣∣∣∣∣∣
1
≤ 1− α, (15)

where Γ∗ := Σ∗ ⊗Σ∗ and S = supp(Ω∗) is the true edge set.

We then have the following result, which is stated in terms of the population-
level quantities κΣ∗ = |||Σ∗|||1 and κΓ∗ =

∣∣∣∣∣∣(Γ∗
SS)

−1
∣∣∣∣∣∣
1
, as well as d, the maximum

number of nonzero elements in each row of Ω∗. The proof of Theorem 3 is
contained in Appendix B.3.
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Theorem 3 (GLasso estimator). Suppose Assumption 1 holds. If the regular-
ization parameter satisfies

∥∥∥Σ̂−Σ∗
∥∥∥
∞

≤ αλ

8
, (16)

and

2κΓ∗λ
(
1 +

α

8

)
≤ min

{
1

3κΣ∗d
,

1

3κ3
Σ∗κΓ∗d

}
, and 48κ3

Σ∗κ2
Γ∗

(α
8
+ 1
)2

dλ ≤ α,

(17)

then the GLasso estimator (8) satisfies supp(Ω̂) ⊆ supp(Ω∗), and

‖Ω̂−Ω∗‖∞ ≤ 2κΓ∗

(
1 +

8

α

)
λ.

Comparing the results of Theorems 2 and 3, we see that as in the tradi-
tional uncontaminated setting, the GLasso delivers slightly stronger guaran-
tees, at the expense of more stringent assumptions. In particular, we will take

λ = C ′′
1

√
log p
n +C ′′

2 ε (and assume for simplicity that ε = 0), the GLasso requires

the sample size to scale as n ≥ Cd2 log p in order for the conditions (17) to hold,

whereas the CLIME requires n ≥ C ′ |||Ω∗|||21 log p in order to achieve consistency.
When the parameter M defining the precision matrix class scales more slowly
than d2, the CLIME thus requires a weaker scaling. In addition, the GLasso re-
sult supposes Assumption 1, which posits an incoherence bound on submatrices
of Γ∗. On the other hand, Theorem 3 establishes that the supp(Ω̂) ⊆ supp(Ω∗)
for the GLasso estimator, whereas Theorem 2 only guarantees consistency for
the CLIME estimator in terms of �∞-norm. In the case of the CLIME estimator,
however, the true support of Ω∗ may be obtained via thresholding, assuming

the nonzero elements of Ω∗ are of the order Ω

(√
log p
n

)
.

Remark 2. Focusing on the level of contamination ε in relation to the problem

dimensions, note that Theorems 2 and 3 both imply an O
(√

log p
n

)
+O(ε) error

bound on the precision matrix estimator, under the corresponding assumptions.

Hence, when ε ≤ C
√

log p
n , the estimation error matches the error of the optimal

precision matrix estimator in the uncontaminated case, up to a constant factor
[49, 12]. Otherwise, condition (17) implies that ε = O

(
1
d

)
. Hence, although the

level of contamination tolerated by the estimator decreases as the degree of the
underlying graph increases, it is not required to decrease as n and p increase,

as long as the ratio
√

log p
n remains fixed. Thus, the conclusions of Theorems 2

and 3 are truly high-dimensional. As in the case of the robust covariance matrix
estimators, a nice feature is that when the data are uncontaminated (ε = 0), the
estimation error of the robust precision matrix estimator agrees with the optimal
rate.
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Note that since the inverse of the correlation matrix has the same support
as the precision matrix, we could also estimate supp(Ω∗) using the Kendall’s or
Spearman’s correlation matrices ρ̂K , ρ̂S , defined by

ρ̂K
ij = sin

(π
2
rKij

)
, and ρ̂S

ij = 2 sin
(π
6
rSij

)
, (18)

respectively, as inputs to the CLIME (10) or GLasso (8). Indeed, Liu et al. [42]
and Xue and Zou [66] proposed to plug in the correlation matrix estimators (18)
into regularization routines for precision matrix estimation under the nonpara-
normal graphical model; in their case, the model under study is only identifiable
up to centering and scaling, so a scale estimate is not necessary. However, note
that the conditions imposed for support recovery would need to hold for the
correlation matrix ρ∗, rather than for the precision matrix Ω∗. In particular,
a minimum signal strength requirement on ρ∗ is stronger than the same re-
quirement imposed on Ω∗, since the latter can scale inversely with the standard
deviations of individual variables in the joint distribution. We have therefore
chosen to focus our attention in this paper on the output of the CLIME and
GLasso when applied to an estimate of the covariance instead of the correlation
matrix.

3.2. Special cases: Robust estimators

We begin by considering the robust scale estimates {σ̂i}. In particular, we show
that the MAD estimator satisfies the required error bounds. Define the expres-
sion

c(σi) =
15

64
√
2πσi

exp

(
− (1.1σi + 0.5)2

2σ2
i

)
, ∀1 ≤ i ≤ p, (19)

and let
cmin := min{c(σi) : σi > 0}.

We have the following result:

Proposition 1. [MAD estimator] Suppose ε := max1≤i≤p εi ≤ 1
16 . Also sup-

pose C ′ > 1
Φ−1(0.75)cmin

√
2
and Φ−1(0.75)C ′

√
log p
n < 1. Then with probability at

least 1 − 6p−{2[Φ−1(0.75)]2C′2c2min−1}, inequality (11b) holds with C ′
1 = C ′; and

inequality (12b) holds with C ′
2 = 7.2Mσ, where σ̄i = E(σi).

We now turn to correlation matrix estimators. Our first result provides a

bound on the statistical error of the robust covariance estimator Σ̂
K

based on
Kendall’s tau correlations. Note that our result does not involve any assumptions
on the contaminating distribution H. Thus, the distribution H may contain
point masses, and we do not require a probability density function of H to even
exist.

Corollary 1. [Kendall’s tau correlation] Under the cellwise contamination
model (1), suppose inequality (13) is satisfied, and ε = max1≤i≤p εi ≤ 0.02.
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Let C > π
√
2 and C ′ > 1

Φ−1(0.75)cmin

√
2
, and suppose

max

{
C

√
log p

n
+ 26πε, C ′

√
log p

n
+ 7.2Mσε

}
≤ 1, (20)

and Φ−1(0.75)C ′
√

log p
n < 1. Then with probability at least

1− 2p
−
(

C2

π2 −2
)
− 6p−{2[Φ−1(0.75)]2C′2c2min−1},

the Kendall’s tau correlation estimator ρ̂K satisfies conditions (11a) and (12a)
with

C1 = C(M2
σ +Mσ + 1) + C ′(2Mσ + 1), and C2 = 97M2

σ + 89Mσ + 82,

where ρ̄ij = sin
(
π
2E(rKij )

)
. Hence, the GLasso and CLIME estimators based on

Σ̂ yield precision matrix estimators satisfying the error bound

‖Ω̂−Ω∗‖∞ ≤ C ′′
1

√
log p

n
+ C ′′

2 ε.

Note that although the restriction ε ≤ 0.02 may seem somewhat prohibitive,
the proof of Theorem 1 reveals that the specific bound on ε is an artifact of the
proof technique, and a more careful analysis would allow for a larger degree of
contamination, at the expense of slightly looser constants C1 and C2, as long as
ε is bounded by some constant in [0, 1). The proof of Corollary 1 is provided in
Section 5.1.

The next result is an analog of Corollary 1, derived for the robust covariance

estimator Σ̂
S
based on Spearman’s correlation coefficient. We assume that the

ranks of variables between samples are distinct; note that this happens almost
surely when the contaminating distribution has continuous density. The proof
of Corollary 2 is provided in Section 5.2.

Corollary 2. [Spearman’s rho correlation] Under the cellwise contamination
model (1), suppose the variable ranks are distinct. Also suppose inequality (13)
is satisfied and ε = max1≤i≤p εi ≤ 0.01. Let C > 8π and C ′ > 1

Φ−1(0.75)cmin

√
2
,

and suppose

max

{
5C

2

√
log p

n
+ 51πε, C ′

√
log p

n
+ 7.2Mσε

}
≤ 1,

and the sample size satisfies Φ−1(0.75)C ′
√

log p
n < 1 and n≥ max

{
15, 144π2

C2 log p

}
.

Then with probability at least

1− 2p
−
(

C2

32π2 −2
)
− 6p−{2[Φ−1(0.75)]2C′2c2min−1},
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the Spearman’s rho correlation estimator ρ̂S satisfies the conditions (11a) and
(12a) with

C1 =
5C

2
(M2

σ +Mσ + 1) + C ′(2Mσ + 1), and C2 = 175M2
σ + 168Mσ + 161.

Hence, the GLasso and CLIME estimators based on Σ̂ yield precision matrix
estimators satisfying the error bound

‖Ω̂−Ω∗‖∞ ≤ C ′′
1

√
log p

n
+ C ′′

2 ε.

Remark 3. The conclusion of Corollary 2 is very similar to that of Corollary 1,
except for constants and an additional requirement on the size of n. However,
note that when log p

n = o(1), implying the statistical consistency of the robust

covariance estimator, the requirement n ≥ max
{
15, 144π2

C2 log p

}
is essentially ex-

traneous.

It is worth noting that although the high-dimensional error bounds derived
in Corollaries 1 and 2 are substantially different from the canonical measures
analyzed in the robust statistics literature, our bounds are somewhat related
to the notion of the influence function of an estimator. The influence function
[27], defined at the population level, measures the infinitesimal change incurred
by the statistical functional associated with an estimator when the underlying
distribution is contaminated by a point mass. Thus, an estimator has a bounded
influence function if the extent of the deviation in its functional representation
due to contamination remains bounded, regardless of the location of the point
mass. The error bounds appearing in Corollaries 1 and 2 also reveal that the
extent to which the error deviation between the robust covariance estimator
and the true covariance grows is bounded by a constant depending only on Mσ.
The two notions do not match precisely; for instance, our theorems allow con-
tamination by an arbitrary distribution rather than simply a point mass, and
we are comparing finite-sample deviations of an estimator from Σ∗ rather than
population-level deviations of a statistical functional under a contaminated dis-
tribution. However, note that by sending n → ∞ in the finite-sample bounds
and taking the contaminating distribution to be a point mass, we may conclude
that the influence function of the robust covariance estimator is bounded when
deviations are measured in the elementwise �∞-sense. Furthermore, the argu-
ments in our proofs (cf. Lemmas 8 and 9 in Appendix D) may be used to derive
the fact that the corresponding correlation estimators have a bounded influence
function, the precise forms of which appear in Croux and Dehon [19].

The framework of Theorem 1 enables us to extend our analysis to other
natural robust candidates for Σ̂, composed of entrywise correlation and scale
estimates. To illustrate this point, we mention several examples below:

• Quadrant correlation estimator. The quadrant correlation estimator
is defined by
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rQij =
1

n

n∑
k=1

sign

(
Xki −median

1≤�≤n
X�i

)
sign

(
Xkj −median

1≤�≤n
X�j

)
,

and is also known to have bounded influence [54]. One can show that
the quadrant correlation estimator also satisfies the inequalities (11a)
and (12a) appearing in Theorem 1; the derivations are similar to those
employed for Kendall’s tau and Spearman’s rho correlation, so we do not
provide the details here.

• Gnanadesikan-Kettenring estimator. Tarr et al. [58] and Oellerer and
Croux [46] also propose to use the following estimator for pairwise covari-
ances: Noting that

Cov(X,Y ) =
1

4αβ
[Var(αX + βY )−Var(αX − βY )] ,

the proposal is to replace the variance estimator by a robust variance es-
timator (e.g., the square of the MAD estimator). The drawback of this
estimator in comparison to the covariance estimators based on Kendall’s
tau and Spearman’s rho is that the covariance estimator has a maximal
breakdown point of 25% under cellwise contamination, since the argument
in the variance involves a sum of variables, and any robust variance esti-
mator has a maximal breakdown point of 50%. However, from the point
of view of statistical consistency, the Gnanadesikan-Kettenring covariance
estimator may be seen to perform equally well. Indeed, consider the co-
variance estimator

1

4

(
σ̂2
(i,j),+ − σ̂2

(i,j),−

)
, (21)

where σ̂(i,j),+ is the (rescaled) MAD statistic computed from {Xki+Xkj :
1 ≤ k ≤ n}, and σ̂(i,j),− is analogously defined to be the MAD statistic
computed from {Xki − Xkj : 1 ≤ k ≤ n}. Then our derivations showing
the consistency of the MAD estimator (cf. Lemmas 6 and 7, with minor
modifications) can be used to derive the requisite deviation bounds for
σ̂(i,j),+ and σ̂(i,j),−, from which we may conclude that the pairwise co-
variance estimator (21) satisfies the deviation bounds (11b) and (12b), as
well.

• Qn estimator. Finally, consider the Qn scale estimator [52], defined by

Qn = c{|Xk −X�| : k < �}(k∗),

where c is a constant factor and k∗ = 

(
n
2

)
/4�. The Qn estimator is also

known to have a bounded influence property for real-valued data. Since
the Qn estimator is also based on quantiles, essentially the same types
of arguments used to derive MAD concentration (cf. Appendix C) may
be used to establish the desired bounds (11b) and (12b) appearing in
Theorem 1.

Finally, note that although Theorems 1 and 2 have been derived under the
assumption that the uncontaminated data follow a normal distribution, the same
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proof techniques may be applied to settings where the uncontaminated data are
drawn from a different underlying distribution, as long as the uncontaminated
distribution is suitably well-behaved. Since our primary goal is precision matrix
estimation, we have focused only on the scenario where the uncontaminated
data are drawn from a Gaussian distribution, in which case the structure of the
precision matrix is of great interest in the statistical community.

3.3. Special cases: Contamination models

We now interpret the conclusions of our theorems in some concrete contamina-
tion settings of interest.

Constant fraction of outliers We first briefly discuss the most basic setting
of cellwise contamination, to emphasize the generality of our results. Following
the model (1), suppose each entry of the data matrix X is contaminated inde-
pendently with probability ε. Furthermore, either all contaminated entries may
be drawn independently from a fixed contaminating distribution, or the con-
taminated entries in each row may be drawn jointly from a fixed contaminating
distribution. In each case, Corollaries 1 and 2, in conjunction with Theorems 2
and 3, provide elementwise error bounds on the robust precision matrix estima-
tors constructed from the CLIME and GLasso. The strength of the theorems lies
in the fact that we do not make any side assumptions about the outlier distribu-
tion; it may be heavy-tailed and/or contain point masses. Hence, whereas statis-
tics such as the sample covariance and sample correlation will have slower rates
of convergence due to a constant fraction of outliers drawn from an ill-behaved
distribution, their robust counterparts are agnostic to the outlier distribution.

It is also important to note that the error bounds for covariance and precision

matrix estimation continue to hold when ε > C
√

log p
n . The difference is that

in such scenarios, the statistical error will be of the order O(ε) rather than

O
(√

log p
n

)
. However, the effect of an ε fraction of outliers nonetheless grows

only linearly as a function of ε. This emphasizes the robustness properties of
the covariance and precision matrix estimators studied in our paper.

Missing data Turning to a somewhat different setting, note that missing data
may also be seen as an instance of cellwise contamination. In this model, data
are missing completely at random (MCAR), meaning that the probability of
missingness is independent of the location of the unobserved entry of the data
matrix [40]. In other words, if we observe the matrix Xmis with missing entries,
where the probability that an entry in column i is missing is equal to εi, we have

Xmis
ki =

{
Yki, with probability 1− εi,

missing, with probability εi,
(22)

where Y is the fully-observed matrix. Note that if we zero-fill the missing en-
tries of Xmis, the resulting matrix X exactly follows the cellwise contamination
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model (1), with Zk = 0 for all k. The following result is an immediate conse-
quence of our theorems:

Corollary 3. Suppose data are drawn from the missing data model (22), and
the matrix X is the zero-filled data matrix. Let ε = max1≤i≤p εi. Under the same
conditions as in Theorem 2, we have

‖Ω̂−Ω∗‖∞ ≤ 4λ |||Ω∗|||1 ,

for the robust CLIME estimator constructed from X. Under the same conditions
as in Theorem 3, we have supp(Ω̂) ⊆ supp(Ω∗) and

‖Ω̂−Ω∗‖∞ ≤ κΓ∗

(
1 +

8

α

)
λ,

for the robust GLasso estimator constructed from X.

Note that the conclusion of Corollary 3 does not require the matrix X to
be zero-filled for missing values; in fact, we could fill the missing entries with
samples generated according to any distribution (as long as the distribution
remains the same across rows). This is because the missing entries are treated
as outliers. Of course, our bounds should only be interpreted up to constant
factors, and filling missing entries in a strategic way, e.g., filling entries in column
i with the mean E(Xki), could lead to smaller estimation error in practice.

Rowwise contamination Although we have thus far assumed that data are
contaminated according to a cellwise mechanism, we now show that the same
results apply for rowwise contamination, as well. Recall that each row in the
data matrix for the rowwise contamination model with contamination level ε is
given by

Xk = (1−Bk)Yk +BkZk, ∀1 ≤ k ≤ n, (23)

where Yk is the uncontaminated row vector, Zk is the contamination vector,
and Bk ∼ Bernoulli(ε).

Although model (23) differs from model (1), all we need to do is verify the
deviation bounds in Theorem 1 under this model. For instance, equation (34)
in the proof of Corollary 1 may be replaced by the equation

(Xki, Xkj)
i.i.d.∼ Fij = (1− ε)Φμ{i,j},Σ{i,j} + εHij , ∀1 ≤ k ≤ n. (24)

Equation (24) comes from the fact that the pair is either drawn jointly from a
normal distribution with probability 1− ε, or from the contaminating distribu-
tion with probability ε. Then the remainder of the argument follows as before,
implying that the same conclusion of Corollary 1 applies. We therefore arrive
at the following result:

Corollary 4. Under the rowwise contamination model (23), the same conclu-
sions as in Corollary 3 hold for the CLIME and GLasso estimators constructed
from X.
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We emphasize that the rowwise contamination model (23) is not in general a
special case of the cellwise contamination model (1); rather, the proof techniques
for analyzing the cellwise model may be used to handle the rowwise model, as
well.

3.4. Optimality of bounds

Finally, we discuss the optimality of the bounds obtained in Theorems 2 and 3.
We have the following result:

Theorem 4. Suppose d2 log p
n = o(1). There exist absolute constants C, c > 0

such that

inf
Ω̂

sup
Ω∗∈U,H∗

P(ε,Ω∗,H∗)

(
‖Ω̂−Ω∗‖∞ ≥ C

(√
log p

n
∨ ε

))
≥ c,

for all ε ∈ [0, 1].

In the statement of the theorem, we use P(ε,Ω∗,H∗) to denote the probability
taken with respect to data drawn from a cellwise ε-contaminated model, where
the uncontaminated distribution is N(0, (Ω∗)−1) and the contaminating distri-
bution is H∗. The proof of Theorem 4 uses ideas from Chen et al. [17], and the
main step is to demonstrate that the pair of multivariate normal distributions
with precision matrices Θ1 = I and Θ2 = I + 2ε11T have the property that the
ε-contamination balls around the two distributions have nontrivial intersection,
so the clean distributions cannot be distinguished from contaminated data. Full
details are provided in Section 5.3.

As pointed out by a reviewer, the lower bound provided in Theorem 4 is very
much a worst-case bound and may not be tight when the class of contaminated
models is further restricted. For instance, in the case of missing data according
to the MCAR model (cf. Section 3.3), the sample size is effectively reduced to

(1 − ε)n. Hence, we would expect the minimax rate to be
√

log p
(1−ε)n , which is

smaller than the
√

log p
n ∨ ε rate derived in Theorem 4 for, say, a constant frac-

tion of missing data. As Theorem 4 reveals, however, classes of ε-contaminated
distributions exist for which the upper bounds are tight.

4. Breakdown point

Our last topic concerns the breakdown point of the estimators studied in this
paper. As discussed in Donoho and Huber [22] and Hampel et al. [28], break-
down analysis concerns the global behavior of a procedure, under large depar-
tures from an assumed situation. On the other hand, the theoretical analysis
of statistical consistency and efficiency are related to notions of infinitesimal
robustness, and quantifies the local behavior of a procedure at or near the as-
sumed situation. Donoho and Huber [22] draw an analogy between the fields
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of material science and statistics, where the notions of stiffness (resistance of a
material to displacements caused by a small load) and breaking strength (the
amount of load required to make the material fracture) parallel those of the in-
fluence function and the breakdown point. Ideally, a procedure should perform
well both locally and globally; optimizing either measure alone is unwise. Our
key result of this section shows that although the GLasso and CLIME estima-
tors both enjoy roughly the same statistical rate of estimation, the CLIME does
not perform as well as the GLasso when the breakdown point is used to quantify
the degree of robustness. In both cases, we use the theoretically optimal choice

of regularization parameter λ∗ = C ′′
1

√
log p
n + C ′′

2 ε.

Our analysis of the GLasso estimator closely follows that of Oellerer and
Croux [46]; however, since the specific precision matrix estimators analyzed in
our paper differ slightly, we include the full argument for the sake of com-
pleteness. We define the finite-sample breakdown point of the precision matrix
estimator under cellwise contamination to be

εn(Ω̂,X) := min
1≤m≤n

{
m

n
: sup
Xm

D(Ω̂(X), Ω̂(Xm)) = ∞
}
, (25)

where
D(A,B) := max

{
|λ1(A)− λ1(B)|, |λ−1

p (A)− λ−1
p (B)|

}
,

and Xm is a data matrix obtained from X by replacing at most m entries in
each column by arbitrary elements. We also define the explosion finite sample
breakdown point of a covariance matrix estimator as follows:

ε+n (S,X) := min
1≤m≤n

{
m

n
: sup
Xm

|λ1(S(X))− λ1(S(X
m))| = ∞

}
(26)

(cf. Maronna and Zamar [45]). Note that the explosion breakdown point only
accounts for maximum eigenvalues, whereas the overall covariance matrix esti-
mator breaks down under explosion or implosion (i.e., arbitrarily small mini-
mum eigenvalues). Also, the breakdown point under cellwise contamination is
less than or equal to the breakdown point under rowwise contamination.

We will consider the breakdown behavior of a slightly tweaked version of the
GLasso presented earlier. Consider the matrix

Σ̌(X) := argmin
M
0

‖Σ̂−M‖∞, (27)

where Σ̂ = Σ̂(X) is the robust covariance matrix estimator constructed from
the data matrix X. Let

Ω̌(X) := argmin
Ω�0

{
tr(Σ̌Ω)− log det(Ω) + λ‖Ω‖1,off

}
(28)

be the corresponding GLasso estimator. Note that from a computational stand-
point, the projection step (27) is important so that fast solvers for the GLasso
program (28) may be applied [26]. Furthermore, the projection step (27) is
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convex, and the additional computational time is negligible compared to the
computation required for running the GLasso. We have the following result,
proved in Section 5.4:

Theorem 5. Consider the positive semidefinite version of the robust GLasso es-
timator (28) with regularization parameter λ = 2λ∗. Under the same conditions
as in Theorem 3, we have supp(Ω̌) ⊆ supp(Ω∗) and

‖Ω̌−Ω∗‖∞ ≤ 4κΓ∗

(
1 +

8

α

)
λ. (29)

Furthermore, for any data matrix X ∈ R
n×p, the breakdown point satisfies

εn(Ω̌,X) = 50%.

Remark 4. Note that Theorem 5 guarantees that the robust GLasso estimator Ω̌
obtained from a semidefinite projection of the robust covariance estimator shares
the same level of statistical consistency achieved by the robust GLasso estimator
Ω̂. In addition, the precision matrix estimator Ω̌ has a breakdown point of 50%.
Although other authors also suggest projecting the robust covariance estimator
onto the positive semidefinite cone before applying the GLasso [46, 58], they ad-
vocate a projection in terms of the Frobenius norm rather than the �∞-norm in
the optimization program (27). As can be seen in the proof of Theorem 5, mini-
mizing the elementwise �∞-norm is much more natural from the point of view of
statistical consistency, since it guarantees that the �∞-error between the precision
matrix estimate and the true precision matrix grows by at most a factor of two.

We now show that although the CLIME is as robust as the GLasso in terms
of statistical consistency under the cellwise contamination model, it has much
poorer breakdown behavior. Consider the CLIME estimator based on corrupted
data:

min ‖Ω‖1 s.t. ‖Σ̂(Xm)Ω− I‖∞ ≤ λ, (30)

where Σ̂(Xm) is the robust covariance estimator based on a data matrix with
at most m arbitrarily corrupted entries per column. Since the CLIME estimator
arises as the solution to a constrained linear program, the solution is undefined
(infinite) when the problem is infeasible. Indeed, we will show in the following
theorem that such a case may arise even by corrupting at most one entry in
each column of the data matrix.

Theorem 6. Suppose p = 2. There exists X ∈ R
n×p such that εn(Ω̂,X) = 1

n ,

where Ω̂ denotes the CLIME estimator with regularization parameter λ = λ∗.

The proof of Theorem 6, supplied in Section 5.5, provides the construction of
a data matrix X ∈ R

n×p where the CLIME estimator becomes infeasible after
perturbing a single entry in each column. This is in stark contrast to the result
in Theorem 5, which establishes that the breakdown point of the robust GLasso
estimator is 50%, for any data matrix X. We note that in order to avoid the
infeasibility problem that arises in the construction of Theorem 6, one could
instead consider a version of the CLIME estimator where the regularization
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parameter λ is chosen adaptively. However, we note that the estimator thus
derived could then have vacuous guarantees from the point of view of statistical
consistency, which is the property we are chiefly concerned about in this paper.

The conclusion of Theorem 6 underscores the fact that consistency and break-
down point under cellwise contamination are in some sense orthogonal measures
of robustness. As demonstrated in the previous section, the robust CLIME and
GLasso both enjoy good rates of statistical consistency when the contamination
fraction ε is sufficiently small relative to the problem parameters. On the other
hand, the results of this section show that the CLIME is extremely non-robust in
terms of its breakdown point. Similarly, procedures such as the Gnanadesikan-
Kettenring estimator (21) may be shown to be statistically consistent under cell-
wise contamination (cf. Section 3.2), but as discussed in Oellerer and Croux [46],

the breakdown point of the covariance estimator Σ̂ is at most 25%, which leads
to error propagation in Ω̂.

Remark 5. Several additional remarks are in order. As pointed out by a re-
viewer, alternative breakdown measures have been introduced in the literature
specifically for quantify the robustness of covariance and correlation-type esti-
mators [16, 9, 20]. For instance, one might redefine the breakdown point of a
covariance (or precision) matrix estimator as the minimum fraction of samples
that may be contaminated before changing the sign of individual entries of the
matrix. This alternate definition could lead to a more refined notion of break-
down point that would lead to a more favorable comparison of the CLIME and
GLasso estimators. However, such a study seems rather complicated, and we
leave an analysis of this important question to future work.

Finally, we note that the notion of breakdown point that we consider in equa-
tion (25) is defined with respect to a finite sample, without recourse to prob-
ability distributions. Other notions of breakdown point, defined with respect to
an ε-contaminated distribution, have also been studied in the literature [28]. For
some alternative measures of breakdown robustness, the CLIME estimator may
have a more controlled breakdown behavior, but we have not explored them here.

5. Proofs

In this section, we provide an outline of the proofs of Corollaries 1 and 2 and
Theorems 4, 5, and 6, which are the main technical contributions of our paper.
Proofs of all supporting lemmas are contained in the supplement [43].

5.1. Proof of Corollary 1

We first verify the bound (11a). When i = j, we have ρ̄K
ii = ρii = 1, and

rKii =
2

n(n− 1)

∑
k<�

sign2(Xki −X�i) =
2

n(n− 1)

∑
k<�

(1− 1(Xki = X�i))

= 1− 2

n(n− 1)

∑
k<�

1(Xki = X�i).



Robust precision matrix estimation 1451

Hence, ∣∣∣∣ sin(π2 rKii
)
− ρii

∣∣∣∣ =
∣∣∣∣ sin(π2 − π

n(n− 1)

∑
k<�

1(Xki = X�i)
)
− 1

∣∣∣∣
=

∣∣∣∣ cos( π

n(n− 1)

∑
k<�

1(Xki = X�i)
)
− cos(0)

∣∣∣∣
≤ π

2
qi,

where

qi =
2

n(n− 1)

∑
k<�

1(Xki = X�i)

is a U -statistic, and the last inequality follows from the fact that cos(x) is 1-
Lipschitz. By Hoeffding’s inequality for U -statistics, we have

P

(∣∣∣∣ sin(π2 rKii
)
− 1

∣∣∣∣ ≥ t

)
≤ P

(
qi ≥

2t

π

)
≤ exp

(
− 4nt2

π2

)
. (31)

Now suppose i �= j. Since rKij is a U -statistic with kernel bounded between −1
and 1, Hoeffding’s inequality and the fact that sin(x) is 1-Lipschitz implies that

P

(∣∣∣∣ sin(π2 rKij
)
− sin

(π
2
ρK
ij

)∣∣∣∣ ≥ t

)
≤ P

(
|rKij − ρK

ij | ≥
2

π
t

)
≤ 2 exp

(
− nt2

π2

)
.

(32)

Combining inequalities (31) and (32) and taking t = C
√

log p
n , we conclude that

with probability at least 1− 2p−(C2/π2−2),

max
1≤i≤p

∣∣∣∣ sin(π2 rKii
)
− ρii

∣∣∣∣ ≤ C

√
log p

n
, and (33a)

max
i �=j

∣∣∣∣ sin(π2 rKij
)
− sin

(π
2
ρK
ij

)∣∣∣∣ ≤ C

√
log p

n
. (33b)

Turning to inequality (12a), we have under model (1) that for any pair i �= j,

(Xki, Xkj)
i.i.d.∼ Fij = (1− γij)Φμ{i,j},Σ{i,j} + γijHij , ∀1 ≤ k ≤ n, (34)

where Φμ{i,j},Σ{i,j} = N(μ{i,j},Σ{i,j}) is the marginal distribution of (Yki, Ykj),
Hij is a mixture of the distributions of Yki, Ykj , Zki, and Zkj , and 1 − γij =
(1− εi)(1− εj).

By Lemma 8, we have ρK
ij = 2

π sin−1 ρij + Rij , where |Rij | ≤ 12γij + 17γ2
ij .

Setting R′
ij =

π
2Rij , we then have∣∣∣sin(π

2
ρK
ij

)
− ρij

∣∣∣ = ∣∣sin ( sin−1(ρij) +R′
ij

)
− ρij

∣∣
=
∣∣sin(sin−1(ρij)) cos(R

′
ij) + cos(sin−1(ρij)) sin(R

′
ij)− ρij

∣∣
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=
∣∣∣ρij cos(R

′
ij) +

√
1− ρ2

ij sin(R
′
ij)− ρij

∣∣∣
≤
∣∣ρij

(
1− cos(R′

ij)
)∣∣+ ∣∣∣√1− ρ2

ij sin(R
′
ij)
∣∣∣

≤
[
1− cos(R′

ij)
]
+
∣∣ sin(R′

ij)
∣∣.

Note that γij = εi + εj − εiεj ≤ 2ε, so

|R′
ij | ≤

π

2
(12γij + 17γ2

ij) ≤
π

2

(
12 · 2ε+ 17(2ε)2

)
= 12πε+ 34πε2.

In particular, this bound is less than 1 when ε ≤ 0.02. Then using the fact that

| sin(x)− x| ≤ |x|3
3! and |1− cos(x)| ≤ x2

2! for |x| ≤ 1, we conclude that

max
1≤i,j≤p

∣∣∣sin(π
2
ρK
ij

)
− ρij

∣∣∣ ≤ max
1≤i,j≤p

[
|R′

ij |+
(R′

ij)
2

2
+

|R′
ij |3

6

]

≤ 2 max
1≤i,j≤p

|R′
ij | ≤ 26πε. (35)

Note that we require the bound ε ≤ 0.02 on the level of contamination, but the
requirement could be relaxed with a more refined proof technique.

5.2. Proof of Corollary 2

We will prove the inequalities with ρ̄ij = 2 sin
(

π
6

(
E(rSij)−Δ

) )
, where Δ is

the population-level quantity defined in equation (71), satisfying |Δ| ≤ 12
n+1 .

We begin by verifying inequality (11a). When i = j, we have 2 sin(π6 r
S
ii) =

2 sin(π6ρ
S
ij) = ρii = 1. We now consider the case when i �= j. By Lemma 10,

we have rSij =
n−2
n+1Uij +

3
n+1r

K
ij , where Uij is a U -statistic with kernel bounded

between −3 and 3, and rKij is the Kendall’s tau correlation. Using the fact that
sin(x) is 1-Lipschitz, we then have

P

(
2

∣∣∣∣ sin(π6 rSij
)
− sin

(π
6

(
E(rSij)−Δ

) )∣∣∣∣ ≥ t

)

≤ P

(
|rSij − E(rSij) + Δ| ≥ 3t

π

)

= P

(∣∣∣∣n− 2

n+ 1
(Uij − E(Uij)) +

3

n+ 1
(rKij − ρK

ij ) + Δ

∣∣∣∣ ≥ 3t

π

)

≤ P

(
|Uij − E(Uij))|+

18

n+ 1
≥ 3t

π

)

≤ P

(
|Uij − E(Uij)| ≥

3t

2π

)
,

where the last inequality follows from the choice t = C
√

log p
n and the fact that
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18
n+1 ≤ 3t

2π when n ≥ 144π2

C2 log p . Furthermore, Hoeffding’s inequality implies

P

(
|Uij − E(Uij)| ≥

3t

2π

)
≤ 2 exp

(
−2
⌊n
3

⌋( 3t

2π

)2
1

62

)
≤ 2 exp

(
− nt2

32π2

)
.

Plugging in t = C
√

log p
n and using a union bound, we then have

P

(
max

1≤i,j≤p
2

∣∣∣∣ sin(π6 rSij
)
− sin

(π
6
E(rSij)

)∣∣∣∣ ≥ C

√
log p

n

)

≤ 2p2 exp

(
− C2 log p

32π2

)
= 2p

−
{

C2

32π2 −2
}
. (36)

For inequality (12a), note that under model (1), for any pair i �= j, we have

(Xki, Xkj)
i.i.d.∼ Fij = (1− γij)Φμ{i,j},Σ{i,j} + γijHij , ∀1 ≤ k ≤ n,

where Φμ{i,j},Σ{i,j} = N(μ{i,j},Σ{i,j}) is the marginal distribution of (Yki, Ykj),
Hij is a mixture of the distributions of Yki, Ykj , Zki, and Zkj , and 1 − γij =
(1− εi)(1− εj).

By Lemma 9, we have E(rSij) − Δ = 6
π sin−1

(ρij

2

)
+ Rij , where |Rij | ≤

48γij + 129γ2
ij + 88γ3

ij . Setting R′
ij =

π
6Rij , we then have∣∣∣∣ρ̄ij − ρij

∣∣∣∣ = ∣∣2 sin ( sin−1(ρij/2) +R′
ij

)
− ρij

∣∣
=
∣∣2 sin(sin−1(ρij/2)) cos(R

′
ij) + 2 cos(sin−1(ρij/2)) sin(R

′
ij)− ρij

∣∣
=
∣∣∣ρij cos(R

′
ij) + 2

√
1− ρ2

ij/4 · sin(R′
ij)− ρij

∣∣∣
≤
∣∣ρij

(
1− cos(R′

ij)
)∣∣+ 2

∣∣∣√1− ρ2
ij/4 · sin(R′

ij)
∣∣∣

≤
[
1− cos(R′

ij)
]
+ 2
∣∣ sin(R′

ij)
∣∣.

Note that γij = εi + εj − εiεj ≤ 2ε, so

|R′
ij | ≤

π

6

(
48γij + 129γ2

ij + 88γ3
ij

)
≤ π

6

(
48 · 2ε+ 129(2ε)2 + 88(2ε)3

)
≤ 16πε+ 86πε2 + 118πε3.

In particular, this bound is less than 1 when ε ≤ 0.01 and n ≥ 15. Then using

the fact that | sin(x)− x| ≤ |x|3
3! and | cos(x)− 1| ≤ x2

2! for |x| ≤ 1, we conclude
that

max
1≤i,j≤p

∣∣ρ̄ij − ρij

∣∣ ≤ max
1≤i,j≤p

[
2|R′

ij |+
(R′

ij)
2

2
+

|R′
ij |3

3

]
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≤ 3 max
1≤i,j≤p

|R′
ij |

≤ 48πε+ 258πε2 + 354πε3

≤ 51πε,

completing the proof.

5.3. Proof of Theorem 4

We adopt a proof technique from Chen et al. [17], where we relate the minimax
bound for contaminated data to the the minimax rate for uncontaminated data.
From Theorem 5 of Ren et al. [49], we have the following result:

Proposition 2. Suppose d2 log p
n = o(1). There exist constants C ′, c′ > 0 such

that

inf
Ω̂

sup
Ω∗∈U

PΩ∗

(
‖Ω̂−Ω∗‖∞ ≥ C ′

√
log p

n

)
≥ c′.

Following the notation of Chen et al. [17], we let M(0) := C ′
√

log p
n denote

the lower bound in the case of uncontaminated data. Clearly, we have

inf
Ω̂

sup
Ω∗∈U,H∗

P(ε,Ω∗,H∗)

(
‖Ω̂−Ω∗‖∞ ≥ C ′

√
log p

n

)

≥ inf
Ω̂

sup
Ω∗∈U

P(ε,Ω∗,N(0,Ω∗))

(
‖Ω̂−Ω∗‖∞ ≥ C ′

√
log p

n

)

= inf
Ω̂

sup
Ω∗∈U

PΩ∗

(
‖Ω̂−Ω∗‖∞ ≥ C ′

√
log p

n

)

≥ c′. (37)

We now provide a lower bound on the term

inf
Ω̂

sup
Ω∗∈U,H∗

P(ε,Ω∗,H∗)

(
‖Ω̂−Ω∗‖∞ ≥ ε

)
.

Consider Θ1 = I and Θ2 = 2ε11T + Θ1. Clearly, we have ‖Θ1 − Θ2‖∞ = 2ε.
Furthermore, we have the total variation bound

TV (N(0,Θ−1
1 ), N(0,Θ−1

2 ))2 ≤ 1

2
DKL(N(0,Θ−1

1 ))‖N(0,Θ−1
2 ))

≤ 1

8
‖Θ−1

1 −Θ−1
2 ‖2F

=
1

8

(
1− 1

1 + 2ε

)2

<

(
ε

1− ε

)2

.
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Hence, there exists ε′ < ε such that TV (N(0,Θ−1
1 ), N(0,Θ−1

2 )) = ε′

1−ε′ . We claim
that there exist contaminating distributions H1 and H2 such that P(ε′,Ω1,H1) =
P(ε′,Ω2,H2). Indeed, note that both PΩ1 and PΩ2 are product distributions:

dPΩ1(x1, . . . , xp) = p1(x1)p1(x2) · · · p1(xp),

dPΩ2(x1, . . . , xp) = pε′(x1)p1(x2) · · · p1(xp),

where p1(x) is a standard normal density and pε′(x) is the pdf of a N
(
0, 1

1+ε

)
random variable. We define

h1(x1, . . . , xp) = q1(x1)p1(x2) · · · p1(xp),

h2(x1, . . . , xp) = q2(x1)p1(x2) · · · p1(xp),

where

q1(x1) =
(p2(x1)− p1(x1)) 1 {p2(x1) ≥ p1(x1)}

ε′/(1− ε′)
,

q2(x1) =
(p1(x1)− p2(x1)) 1 {p1(x1) ≥ p2(x1)}

ε′/(1− ε′)
.

Note that q1 and q2 are both valid pdfs, since∫
q1(x1)dx1 =

1− ε′

ε′
·
∫

(p2(x1)− p1(x1)) 1 {p2(x1) ≥ p1(x1)} dx1

=

(
1− ε′

ε′

)(
1−
∫

(p1(x1) ∧ p2(x1)) dx1

)
=

1− ε′

ε′
· TV (p1, p2)

= 1,

and similarly for q2. We denote the distributions of h1 and h2 by H1 and H2,
respectively. Furthermore, since

(1− ε′)p1(x1)+ ε′q1(x1)

1− ε′
= p1(x1)+ (p2(x1)− p1(x1)) 1 {p2(x1)≥ p1(x1)}

= p1(x1) + (p2(x1)− p1(x1)) (1− 1 {p1(x1) ≥ p2(x1)})
= p2(x1) + (p1(x1)− p2(x1)) 1 {p1(x1) ≥ p2(x1)}

=
(1− ε′)p2(x1) + ε′q2(x1)

1− ε′
,

we conclude that

(1− ε′)dPΩ1(x1, . . . , xp) + ε′dH1 =
(
(1− ε′)p1(x1) + ε′q1(x1)

)
p1(x2) · · · p1(xp)

=
(
(1− ε′)p2(x1) + ε′q2(x1)

)
p1(x2) · · · p1(xp)

= (1− ε′)dPΩ2(x1, . . . , xp) + ε′dH2,
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so P(ε′,Ω1,H1) = Pε′,Ω2,H2 , as claimed. Finally, note that since ε′ < ε, we can con-
struct H ′

1 and H ′
2 such that P(ε,Ω1,H′

1)
= P(ε′,Ω1,H1) and P(ε,Ω2,H′

2)
= P(ε′,Ω2,H2),

simply by defining

dH ′
1 =

ε′

ε
· dH1 +

ε− ε′

ε
· dPΩ1 ,

dH ′
2 =

ε′

ε
· dH2 +

ε− ε′

ε
· dPΩ2 .

Then P(ε,Ω1,H′
1)

= P(ε,Ω2,H′
2)
, implying that the cellwise ε-contaminated models

PΩ1 and PΩ2 have nontrivial intersection. By Le Cam’s two-point hypothesis
testing method [67, 60], we therefore conclude that

inf
Ω̂

sup
Ω∗∈U,H∗

P(ε,Ω∗,H∗)

(
‖Ω̂−Ω∗‖∞ ≥ ε

)
≥ 1

2
. (38)

Combining inequalities (37) and (38), we then have

inf
Ω̂

sup
Ω∗∈U,H∗

P(ε,Ω∗,H∗)

(
‖Ω̂−Ω∗‖∞ ≥ C ′

√
log p

n
∨ ε

)
≥ min

{
c′,

1

2

}
.

5.4. Proof of Theorem 5

Note that Σ̌ is the projection of the robust covariance estimator Σ̂ onto the
positive semidefinite cone, where the distance is measured in the elementwise
�∞-norm. Furthermore, note that ‖Σ̌ − Σ̂‖∞ ≤ ‖Σ∗ − Σ̂‖∞, since Σ∗ � 0.
Hence,

‖Σ̌−Σ∗‖∞ ≤ ‖Σ̌− Σ̂‖∞ + ‖Σ̂−Σ∗‖∞ ≤ 2‖Σ̂−Σ∗‖∞. (39)

Using Lemma 1, we immediately arrive at the bound (29).
Turning to the derivation of the breakdown point, note that by Theorem 1

of Oellerer and Croux [46], we have

εn(Ω̌(X),X) ≥ ε+n (Σ̌(X),X). (40)

Consider the estimator Σ̌(Xm), based on corrupted data. We have

‖Σ̌(Xm)−Σ∗‖∞ ≤ 2‖Σ̂(Xm)−Σ∗‖∞ ≤ 2‖Σ̂(Xm)‖∞ + 2‖Σ∗‖∞, (41)

where the first inequality follows from the bound (39), and the second inequality
comes from the triangle inequality. Furthermore, note that since Σ̌(Xm) � 0 by
construction,

λ1(Σ̌(Xm)) =
∣∣∣∣∣∣Σ̌(Xm)

∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣Σ̌(Xm)−Σ∗∣∣∣∣∣∣

2
+ |||Σ∗|||2

≤ p‖Σ̌(Xm)−Σ∗‖∞ + |||Σ∗|||2 , (42)

where we have used the bound ‖A‖∞ ≤ |||A|||2 ≤ p‖A‖∞, for all A ∈ R
p×p, in

the last inequality. Combining inequalities (41) and (42), we then obtain
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λ1(Σ̌(Xm)) ≤ 2p‖Σ̂(Xm)‖∞ + 2p‖Σ∗‖∞ + |||Σ∗|||2 ,

so∣∣λ1(Σ̌(Xm))−λ1(Σ̌(X))
∣∣ ≤λ1(Σ̌(X))+

(
2p‖Σ̂(Xm)‖∞ +2p‖Σ∗‖∞ + |||Σ∗|||2

)
.

(43)
Finally, since the correlation estimators are bounded in magnitude by 1, we have

‖Σ̂(Xm)‖∞ ≤ max
1≤i,j≤p

σ̂i(X
m)σ̂j(X

m), (44)

where {σ̂i(X
m)}1≤i≤p are the robust scale estimators based on Xm, given by

the MAD estimators calculated from the corresponding columns. Furthermore,
the breakdown point of the MAD is 50% [36], so the quantity on the right-hand
side of inequality (44) is finite when m

n < 50%. Then by inequality (43) and the

definition of the explosion breakdown point, we conclude that ε+n (Σ̌(X),X) ≥
50%. By inequality (40), we therefore have εn(Ω̌(X),X) ≥ 50%, as well.

We now establish that εn(Ω̌(X),X) = 50%. Note that if we are allowed to
corrupt more than 50% of the entries in each column of the data matrix, the
columnwise MAD estimates may be made arbitrarily small (say, smaller than
some value a); indeed, we may simply replace more than half of the entries in
each column by values in (0, a). Consequently, the overall covariance estimator

Σ̂(Xm) will have all entries bounded in magnitude by [Φ−1(0.75)]−2a2. We claim
that the diagonal elements of Σ̌(Xm) must therefore be bounded in magnitude

by 2[Φ−1(0.75)]−2a2. Indeed, note that the matrix diag(Σ̂(Xm)) is feasible for
the projection (27). Hence, we must have

‖Σ̂(Xm)− Σ̌(Xm)‖∞ ≤ ‖Σ̂(Xm)− diag(Σ̂(Xm))‖∞ ≤ [Φ−1(0.75)]−2a2,

implying in particular that

‖diag(Σ̌(Xm))‖∞ ≤ ‖diag(Σ̂(Xm))‖∞ + ‖diag(Σ̂(Xm))− diag(Σ̌(Xm))‖∞

≤ 2a2

[Φ−1(0.75)]2
,

as claimed. Now note that the first-order optimality condition for the GLasso is
given by

Σ̌(Xm)−
(
Ω̌(Xm)

)−1
+ λ · sign{Ω̌(Xm)− diag(Ω̌(Xm))} = 0,

where the sign function is computed entrywise, omitting the diagonal elements of

Ω̌(Xm). In particular, this implies that the diag(Σ̌(Xm)) = diag
{(

Ω̌(Xm)
)−1
}
,

so the diagonal elements of
(
Ω̌(Xm)

)−1
are also bounded in magnitude by

2[Φ−1(0.75)]−2a2. Hence,

λp

((
Ω̌(Xm)

)−1
)
= min

‖v‖2=1
vT
((

Ω̌(Xm)
)−1
)
v ≤ min

1≤j≤p
eTj

((
Ω̌(Xm)

)−1
)
ej
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≤
∥∥∥diag{(Ω̌(Xm)

)−1
}∥∥∥

∞
≤ 2[Φ−1(0.75)]−2a2,

where the ej ’s are the canonical basis vectors, and we have used the variational
representation of eigenvalues of a Hermitian matrix to show that the minimum
eigenvalue is bounded by the minimum diagonal entry. This allows us to conclude
that

1 = λp

(
Ω̌(Xm)

(
Ω̌(Xm)

)−1
)
≤ λ1

(
Ω̌(Xm)

)
λp

((
Ω̌(Xm)

)−1
)

≤ λ1

(
Ω̌(Xm)

)
· 2a2

[Φ−1(0.75)]2
,

where we have used the inequality λp(AB) ≤ λ1(A)λp(B), for A,B � 0, in the

first inequality [69]. Hence, λ1

(
Ω̌(Xm)

)
≥ [Φ−1(0.75)]2

2a2 . However, we may choose

a to be arbitrarily close to 0, implying that the maximum eigenvalue of Ω̌(Xm)
may be made arbitrarily large, and the estimator breaks down. This concludes
the proof.

5.5. Proof of Theorem 6

Clearly, εn(Ω̂,X) ≥ 1
n for any X, by the definition of the breakdown point. To

show equality, we now provide a data matrix X and a corrupted data matrix X1,
where X1 differs from X in at most one element per column, and the CLIME
problem is feasible for Σ̂(X) but infeasible for Σ̂(X1).

Let

X1 =

⎛
⎜⎜⎜⎝

a1 −a1
a2 −a2
...

...
an −an

⎞
⎟⎟⎟⎠ ,

where the ak’s are all distinct and an has the largest magnitude. Note that
the columns of X1 are perfectly negatively correlated; hence, the correlation
matrix (computed from either Kendall’s tau or Spearman’s rho, for instance) is(

1 −1
−1 1

)
. Furthermore, we have σ̂1 = σ̂2 := σ̂, since the data in the two

columns are negatives of each other. It follows that Σ̂(X1) = σ̂2

(
1 −1
−1 1

)
.

Clearly, the problem

β1 :

∥∥∥∥Σ̂(X1)β1 −
(

1
0

)∥∥∥∥
∞

≤ λ (45)

is infeasible for λ < 1
2 . Hence, the CLIME estimator based on Σ̂(X1) is infeasi-

ble.
On the other hand, we may construct an initial data matrix X such that

the CLIME program based on Σ̂(X) is feasible, simply by altering the last row
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of X1. Suppose we change the last row of X1 to (an, an). Then the columns
are no longer perfectly negatively correlated, and it is easy to check that the

correlation matrix of X will take the form

(
1 a
a 1

)
, for some |a| < 1. Denoting

the corresponding estimates of scale as σ̂1 and σ̂2, we then have

Σ̂(X) =

(
σ̂2
1 aσ̂1σ̂2

aσ̂1σ̂2 σ̂2
2

)
.

Note that det{Σ̂(X)} = σ̂2
1 σ̂

2
2(1 − a2) > 0. It follows that Σ̂(X) is invertible.

In particular, the matrix
(
Σ̂(X)

)−1

is always a feasible point for the CLIME

program based on Σ̂(X).
Hence, we conclude that the CLIME program breaks down when even one

corruption per column is allowed. It follows that εn(Ω̂,X) = 1
n for the con-

structed value of X.

6. Simulations

In this section, we perform simulation studies to examine the performance of
the two robust covariance matrix estimators introduced in Section 2, and also
the robust precision matrix estimators obtained using the GLasso. We will refer
to the two type of estimators as Kendall and Spearman, respectively.

For comparison, we also compute the following robust covariance matrix esti-
mators, which are similarly plugged into the GLasso to obtain robust precision
matrix estimators:

• SpearmanU: The pairwise covariance matrix estimator proposed in Oellerer
and Croux [46], where the MAD estimator is combined with Spearman’s
rho (without transformation):

Σ̂ij = σ̂iσ̂jr
S
ij , where σ̂i = [Φ−1(0.75)]−1d̂i.

• OGK: The OGK estimator proposed in Maronna and Zamar [45], with scale
estimator Qn.

• NPD: The pairwise covariance matrix estimator considered in Tarr et al. [58],
where

Σ̃ij =
1

4

(
σ̂2
(i,j),+ − σ̂2

(i,j),−

)
.

Here, σ̂(i,j),+ is the Qn statistic computed from {Xki +Xkj : 1 ≤ k ≤ n}
and σ̂(i,j),− is the Qn statistic computed from {Xki−Xkj : 1 ≤ k ≤ n}. An
NPD projection is applied to Σ̃ to obtain the final positive semidefinite
covariance matrix estimator.

Further details for the orthogonalized Gnanedesikan-Kettenring (OGK) and
nearest positive definite (NPD) procedures may be found in Maronna and Za-
mar [45] and Higham [32], respectively. The nonrobust GLasso, which takes
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the sample covariance matrix estimator as an input (SampleCov), as well as
the inverse sample covariance matrix estimator (InvCov), applicable in the case
p < n, are used as points of reference. On the other hand, we also compare
the precision matrix estimation performance of the methods above to the one
obtained from Tuning-Insensitive Graph Estimation and Regression based on
square root Lasso (Tiger), a robust regression procedure proposed in Liu and
Wang [41] for graphical model estimation.

An implementation of the GLasso that allows the diagonal entries of the
precision matrix estimator to be unpenalized is provided in the widely used
glasso package. In this paper, however, we use the GLasso implementation
from the QUIC package [34], since it does not require the input covariance matrix
to be positive semidefinite, and speeds up substantially over glasso. We select
the tuning parameter λ in GLasso by cross-validation: We first split the data
into K groups, or folds, of nearly equal size. For a given λ and 1 ≤ k ≤ K,
we take the kth fold as the test set, and compute the precision matrix estimate

Ω̂
(−k)

λ based on the remaining K − 1 folds. We then compute the negative log-

likelihood on the test set, L(k)(λ) = − log det Ω̂
(−k)

λ + tr
(
Σ̂

(k)
Ω̂

(−k)

λ

)
, where

Σ̂
(k)

is the robust covariance estimate obtained from the test set. This is done
over a logarithmically spaced grid of 15 values between λmax = maxi �=j |Σ̂ij | and
λmin = 0.01λmax, where Σ̂ is the robust covariance estimate computed from the
whole data set. The value of λ that minimizes 1

K

∑K
k=1 L

(k)(λ) is selected as
the final tuning parameter. On the other hand, the flare package contains an
implementation of Tiger. We use the default parameters in the function sugm()
and we perform model selection using sugm.select() with criterion = cv.

Simulation settings We consider the following sampling schemes, covering
different structures of the precision matrix Ω∗ ∈ R

p×p:

• Banded: Ω∗
ij = 0.6|i−j|.

• Sparse: Ω∗ = B+δIp, where bii = 0 and bij = bji, with P (bij = 0.5) = 0.1
and P (bij = 0) = 0.9, for i �= j. The parameter δ is chosen such that the
condition number of Ω∗ equals p. The matrix is then standardized to have
unit diagonals.

• Dense: Ω∗
ii = 1 and Ω∗

ij = 0.5, for i �= j.
• Diagonal: Ω∗ = Ip.

For each sampling scheme and dimension p ∈ {120, 400}, we generateB = 100
samples of size n = 200 from the multivariate normal distribution N(0, (Ω∗)−1).
We then add 5% or 10% of rowwise or cellwise contamination to the data,
where the outliers are sampled independently from N(10, 0.2). We also simu-
late model deviation by generating all observations from either the multivari-
ate t-distribution, t3(0, (Ω

∗)−1), or the alternative t-distribution, t∗3(0, (Ω
∗)−1),

each with three degrees of freedom. Recall that X ∼ tν(0, (Ω
∗)−1), where

tν(0,Ω
∗)−1) denotes the multivariate t-distribution with ν degrees of freedom,

if X = Y/
√
τ , where Y ∼ N(0, (Ω∗)−1) and τ ∼ Γ(ν/2, ν/2). The alternative
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t-distribution, denoted by t∗ν , is proposed in Finegold and Drton [25] as a gen-
eralization of the multivariate t-distribution. We say that X ∼ t∗ν(0, (Ω

∗)−1)
if Xi = Yi/

√
τi, for all 1 ≤ i ≤ p, where the divisors τi ∼ Γ(ν/2, ν/2) are

independent. In this case, the heaviness of the tails are different for different
components of X.

Performance measures We assess the performance of the covariance and
precision matrix estimators via the deviations ‖Σ̂ − Σ∗‖∞ and ‖Ω̂ − Ω∗‖∞,
respectively. We also consider the false positive (FP) and false negative (FN)
rates:

FP =
|{(i, j) : Ω̂ij �= 0,Ω∗

ij = 0}|
|{(i, j) : Ω∗

ij = 0}| , and FN =
|{(i, j) : Ω̂ij = 0,Ω∗

ij �= 0}|
|{(i, j) : Ω∗

ij �= 0}| .

FP gives the proportion of zero elements in the true precision matrix that are
incorrectly estimated to be nonzero, while FN gives the proportion of nonzero
elements in the true precision matrix that are incorrectly estimated to be zero.
Note that if Ω∗ has no zero entries, as in the case of the banded and dense
structures, the quantity FP is undefined.

Results Not surprisingly, SampleCov performs best for clean data. Under row-
wise contamination, OGK yields the best results in terms of covariance estima-
tion; under cellwise contamination, Kendall, Spearman, and SpearmanU equally
share the best performance, while NPD and Tiger are slightly worse off. Kendall,
Spearman, and SpearmanU also perform very well when the data are generated
from a multivariate t-distribution or the alternative t-distribution, although
these latter cases are not covered by our theory. More detailed comments and
tables summarizing the results of the simulations may be found in Appendix A.
Empirical results of a similar flavor were obtained in Liu et al. [42], although
their paper does not provide theoretical guarantees for the behavior of the esti-
mators under contaminated data.

7. Discussion

We have derived statistical error bounds for high-dimensional robust precision
matrix estimators, when data are drawn from a multivariate normal distribution
and then observed subject to cellwise contamination. We show that in such set-
tings, the precision matrix estimators that are obtained by plugging in pairwise
robust covariance estimators to the GLasso or CLIME routine, as suggested
by Oellerer and Croux [46] and Tarr et al. [58], have error bounds that match
standard high-dimensional bounds for uncontaminated precision matrix estima-
tion, up to an additive factor involving a constant multiple of the contamination
fraction ε. Our results for precision matrix estimators are derived via estima-
tion error bounds for robust covariance matrix estimators, which have similar
deviation properties.
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The results of our paper naturally suggest several venues for future work. In
particular, it would be interesting to relate the nonasymptotic statistical error
bounds to the behavior of the sensitivity curve of the robust covariance estima-
tor, which is the finite-sample analog of the influence function. We have also left
open the question of calculating the breakdown point for the CLIME estimator
with respect to more general data matrices, as well as the breakdown behavior
of CLIME and GLasso under different notions of breakdown point. Although
our results imply the superiority of the GLasso over the CLIME estimator from
the perspective of the finite-sample breakdown point, this may only be part of
the story.

Lastly, it would be interesting to generalize our study to other classes of dis-
tributions. In one direction, it would be possible to study contaminated versions
of other distributions besides the multivariate Gaussian, for which the precision
matrix encodes information about the underlying graphical model (e.g., Ising
models on trees). A harder question to tackle would be the problem of robust
graphical model estimation in settings where the structure of the graph is not
encoded in the precision matrix alone. Finally, one could consider robust esti-
mation of scatter matrices, when the uncontaminated data are drawn from an
elliptical distribution. In that case, the proposed Kendall’s tau and Spearman’s
rho correlation coefficients would still be Fisher consistent upon taking the re-
spective sine transformations, so similar error bounds should hold. As demon-
strated in our simulation results, the pairwise covariance estimators based on
Kendall’s tau and Spearman’s rho perform reasonably well when data are gener-
ated from either the multivariate t-distribution or the alternative t-distribution.
This motivates studying the convergence rates of the same covariance matrix
estimators under heavy-tailed or elliptical distributions.

The problem of estimating high-dimensional covariance matrices under var-
ious structural assumptions has also been widely studied. Various families of
structured covariance matrices have been introduced, including bandable ma-
trices [14], Toeplitz matrices [13], and sparse matrices [8, 15]. The proposed
covariance matrix estimators involve regularizing the sample covariance matrix
in accordance to structural assumptions. It would be interesting to study robust
versions of these structured covariance matrix estimators under a model such
as cellwise contamination. Besides graphical models, covariance matrix estima-
tion is also useful for statistical methods such as linear discriminant analysis
and principal component analysis. Several high-dimensional procedures have
been proposed with proven theoretical guarantees when data are uncontami-
nated [10, 63], and it would be interesting to study robust adaptations of these
procedures, as well.
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Supplementary Material

Supplement to: High-dimensional robust precision matrix estimation:
Cellwise corruption under ε-contamination
(doi: 10.1214/18-EJS1427SUPP; .pdf). We provide proofs for the technical lem-
mas employed in our paper.
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