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Abstract: In many real problems, dependence structures more general
than exchangeability are required. For instance, in some settings partial
exchangeability is a more reasonable assumption. For this reason, vectors
of dependent Bayesian nonparametric priors have recently gained popular-
ity. They provide flexible models which are tractable from a computational
and theoretical point of view. In this paper, we focus on their use for es-
timating multivariate survival functions. Our model extends the work of
Epifani and Lijoi (2010) to an arbitrary dimension and allows to model
the dependence among survival times of different groups of observations.
Theoretical results about the posterior behaviour of the underlying depen-
dent vector of completely random measures are provided. The performance
of the model is tested on a simulated dataset arising from a distributional
Clayton copula.
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1. Introduction

Bayesian nonparametric modelling in survival analysis problems often relies on
the assumption that the times observed are exchangeable, see for example Dok-
sum (1974) and Ishwaran and James (2009). Such assumption fails to hold when
we consider events that are pooled from different dependent scenarios. For ex-
ample, consider patients under the same treatment but in different hospitals.
The survival times of patients from the same hospital could be assumed ex-
changeable. On the other hand, this is not a reasonable assumption when we
consider patients from different hospitals since factors specific to each hospital
might exert significant influence. In general, we can consider that the data is
originated from d different but related studies. Formally, we have d sets of ob-
servations where the exchangeability assumption is assumed only within each
set. In the above cases, it would be more appropriate to assume a form of
dependence called partial exchangeability (see Section 2 for a formal account
on exchangeability and partial exchangeability). This motivates the extension
of Bayesian nonparametric models into a partially exchangeable setting where
multiple-samples information could be used.

Applications of Bayesian nonparametrics in survival analysis go back, for
example, to Doksum (1974) and Ferguson and Phadia (1979), who used non-
decreasing independent increment processes to construct random survival func-
tions. Dykstra and Laud (1981) and Lo and Weng (1989) focused on random
hazard rates. More recently, Ishwaran and James (2009) used a general class
of random hazard rate-based models, and Nieto-Barajas (2014) used a gen-
eral short-term and long-term hazard ratios model. There is an ongoing effort
in Bayesian nonparametrics to propose flexible dependent random probability
measures as set forth with the seminal work of MacEachern (1999). In survival
analysis, for example, De Iorio et al. (2009) introduced a model based on a
dependent Dirichlet process. In a partial exchangeable setting, survival analy-
sis models have been used, for example, in Epifani and Lijoi (2010) where a
dependent two-dimensional extension of the neutral to the right (NTR) model
was introduced and in Lijoi and Nipoti (2014) where a dependent vector of haz-
ard rates was constructed. Griffin and Leisen (2017) introduced a new class of
vectors of dependent completely random measures, called Compound Random
Measures, where the dependence contribution is modelled with a parametric
distribution.
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In the seminal work of Doksum (1974), the NTR model for survival functions
was introduced. The NTR model can be expressed in terms of a Completely
Random Measure (CRM) μ. This means that when μ is evaluated at pairwise
disjoint sets it gives rise to mutually independent nonnegative random variables.
We say that a positive random variable Y has a NTR distribution given by a
CRM μ, denoted Y ∼ NTR(μ), if

S(t) = P[Y > t |μ] = e−μ(0,t],

where μ is such that
lim
t→∞

μ(0, t] = ∞.

NTR distributions have several appealing properties, including the indepen-
dence of normalized increments and posterior conjugacy for censored to the right
data. An extension of the NTR model into a partially exchangeable setting was
given by Epifani and Lijoi (2010) for the 2−dimensional case. In the present
work, we follow the approach of Epifani and Lijoi (2010) and focus on models
based on a d-dimensional vector of completely random measures (VCRM). More

precisely, we consider d collections of survival times {Y (1)
j }∞j=1, . . . , {Y

(d)
j }∞j=1

such that, for t = (t1, . . . , td) ∈ (R+)d,

S(t) = P

[
Y

(1)
i1

> t1, . . . , Y
(d)
id

> td |(μ1, . . . , μd)
]
= e−μ1(0,t1]−···−μd(0,td], (1)

with arbitrary i1, . . . , id ∈ N \ {0}. This model is convenient for modeling data
where the dependence among the entries of the VCRM μ = (μ1, . . . , μd) ac-
counts for dependence among the multiple-samples in a partially exchangeable
setting. Furthermore, marginally we recover the NTR model, namely

Y
(i)
1 , . . . , Y (i)

ni

i.i.d.∼ NTR(μi) (2)

with i ∈ {1, . . . , d}, ni ∈ N \ {0}. In (2) we want to model the dependence of
the VCRM μ in a way that allows us to fix a marginal behavior so to exploit
the fact that marginally we recover a NTR model; Lévy copulas are a natural
framework to model the dependence structure of VCRM’s in such way.

In this paper we provide a posterior characterization for the above model,
see Theorem 1. Similarly to Epifani and Lijoi (2010) for 2-dimensional setting,
we show that the posterior distribution corresponds to a survival function of
the type as in (1) leading to a conjugacy property. Extensions of some results
in Epifani and Lijoi (2010) are also provided. We would like to stress that the
derivation of such results are not trivial when considering an arbitrary dimen-
sion. In particular, Proposition 1 gives a general expression for the Laplace
exponent when a Lévy copula is considered to set the dependence of the VCRM
underlying the d−dimensional NTR model; Proposition 3 gives an alternative
characterization of the multivariate NTR. Furthermore, other theoretical results
are proved in order to facilitate the calculation of posterior means when the in-
ferential exercise is implemented. Finally, we illustrate the methodology on a
synthetic dataset.
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The paper is organized as follows: Section 2 presents the preliminary notions
which are needed in this work. In Section 3 we extend some results in Epifani
and Lijoi (2010) to the multivariate setting. In particular, we state the posterior
characterization of the model and provide some useful corollaries for implement-
ing the posterior inference. In Section 4, an application with synthetic data is
illustrated. All the proofs can be found in the appendix.

2. Preliminaries

In this section, we provide some preliminaries about exchangeability, partial ex-
changeability and vectors of completely random measures which are the building
blocks of our Bayesian nonparametric proposal. Furthermore, we will illustrate
the concept of a positive Lévy copula which is useful to model the dependence
structure between the components of a vector of completely random measures.

2.1. Exchangeability and partial exchangeability

Let Z be a complete and separable metric space, with corresponding Borel σ-
algebra Z = B(Z)

Definition 1. A collection of random variables {Zi}∞i=1 in Z is exchangeable if
for any permutation π of {1, . . . ,m} we have that

{
Z1, . . . , Zm

} d
=
{
Zπ(1), . . . , Zπ(m)

}
.

As highlighted in the Introduction, in several problems the exchangeability as-
sumption appears far too restrictive. In particular, we considered d groups of
observations where the order in which they are collected within each group is
irrelevant. To describe this setting we resorted to the notion of partial exchange-
ability, as set forth by de Finetti (1938), that formalizes the idea of partitioning
the entire set of observations into a certain number of classes, say d, in such
a way that exchangeability may be reasonably assumed within each class. For
ease of exposition, we confine ourselves to consider the case where d = 2.

Definition 2. The collection of random vectors{(
Z

(1)
i , Z

(2)
i

)}∞

i=1

in Z
2 is partially exchangeable if, for any m1,m2 ≥ 1 and for all permutations

π1 and π2 of {1, . . . ,m1} and {1, . . . ,m2} respectively, we have that

{
Z

(1)
1 , . . . , Z(1)

m1
, Z

(2)
1 , . . . , Z(2)

m2

} d
=
{
Z

(1)
π1(1)

, . . . , Z
(1)
π1(m1)

, Z
(2)
π2(1)

, . . . , Z
(2)
π2(m2)

}
.
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2.2. Vectors of completely random measures

Given a complete and separable metric space X, with corresponding Borel σ-
algebra X = B(X), we call a measure μ on (X,X ) boundedly finite if μ(A) < ∞
for any bounded set A ∈ X . A random measure is a measurable function from a
probability space (Ω,F ,P) onto (MX,MX) which is the measure space formed
by MX, the space of boundedly finite measures on (X,X ), and its correspond-
ing Borel σ-algebra MX. In particular we will focus on the class of completely
random measures as introduced in Kingman (1967).

Definition 3. A random measure μ on a complete and separable metric space
X with corresponding Borel σ-algebra X = B(X) is called a completely random
measure (CRM) if for any collection of disjoint sets {A1, . . . , An} ⊂ X the
random variables μ(A1), . . . , μ(An) are mutually independent.

A CRM μ has the following representation (Kingman, 1967),

μ = μd + μr + μfl,

where μd is a deterministic measure, μfl is a measure that consists on jumps
with possibly random jump heights but fixed jump locations, and

μr =

∞∑
i=1

WiδXi ,

where for i ∈ {1, 2, . . . } Xi ∈ X are random jump locations and Wi ∈ R
+ are

random jump heights. The measures μd, μfl and μr are mutually independent.
In particular, μr is again a CRM and is characterized by the following Laplace
transform

E

[
e−λμr(A)

]
= e−

∫
R+×A

(1−e−λs)ν(ds,dx), (3)

where λ > 0 and ν is a measure on R
+ × X such that∫

R+×A

min{s, 1}ν(ds, dx) < ∞,

for any bounded set A ∈ X . The measure ν is usually called the Lévy intensity
of μr. In the remainder of this work we only consider CRM’s μ without fixed
jump locations nor deterministic part so we take μ = μr to be solely determined
by (3). In particular we focus on Lévy intensities ν which are homogeneous, i.e.

ν(ds, dx) = ρ(ds)α(dx),

where α is a non-atomic measure on X referring to the jump locations and ρ
is a measure on R

+ referring to the jump heights. A popular example of an
homogeneous CRM is the σ-stable process given by

ν(ds, dx) =
Aσs−1−σ

Γ(1− σ)
dsα(dx). (4)
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Fig 1. Plot of μ(0, t] when a σ-stable process is considered.

As an illustration, we plot in Figure 1 the associated process μ(0, t] for the
σ-stable process (4) with α(dx) = dx.

We extend this framework to the multivariate setting by considering vectors
(μ1, . . . , μd) where each μi is a homogeneous CRM on (X,X ) with respective
Lévy intensities ν̄j(ds, dx) = νj(ds)α(dx). Moreover we take the intensity α
to be smooth in the sense that α((0, t]) = γ(t) with γ : [0,∞) → R

+ a non-
decreasing and differentiable function such that γ(0) = 0 and limt→∞ γ(t) = ∞;
this last conditions on the limit behaviour will enable us to get, marginally,
the associated NTR cumulative distributions in our models. We have that for
any A1, . . . , An in X , with Ai ∩ Aj = ∅ for any i 
= j, the random vectors
(μ1(Ai), . . . , μd(Ai)) and (μ1(Aj), . . . , μd(Aj)) are mutually independent; fur-
thermore, one has a multivariate analogue of the Laplace transform (3)

E

[
e−λ1μ1(A)−···−λdμd(A)

]
= e−

∫
(R+)d×A

(1−e−λ1s1−···−λdsd )ρd(ds1,...,dsd)α(dx), (5)

where λ = (λ1, . . . , λd) ∈ (R+)d and ρd is a measure on (R+)d. In particular,
we introduce the notation for the multivariate Laplace transform

E

[
e−λ1μ1(0,t]−···−λdμd(0,t]

]
= e−ψt(λ). (6)

Henceforth, ψt(λ) is called the Laplace exponent of μ = (μ1, . . . , μd); in the
case at hand, ψt(λ) = γ(t)ψ(λ) where ψ(λ) =

∫
(R+)d

(1 − e−<λ,s>)ρd(ds) and

< λ, s >=
∑d

i=1 λisi is the usual inner product in R
d. Marginalizing, we have

that

νi(A) =

∫
A

νi(ds) =

∫
(R+)d−1

ρd(ds1, . . . , dsi−1, A, dsi+1, . . . , dsd).

In Section 3, we use this particular kind of homogeneous and additive vector of
CRM’s to construct priors for survival analysis models.



1336 A. Riva Palacio and F. Leisen

2.3. Positive Lévy copulas

Although in this work we consider vectors of CRM’s with fixed marginal be-
haviour, it remains to establish the dependence structure. Kallsen and Tankov
(2006) introduced the concept of positive Lévy copulas which allows to construct
vectors of CRM’s with fixed marginals.

Definition 4. A function C(s = (s1, . . . , sd)) : [0,∞)d → [0,∞] is a positive
Lèvy copula if

(1) ∀B = [s1, t1] × · · · × [sd, td] ⊂ [0,∞)d such that s1 ≤ t1, . . . , sd < td we
have that ∑

{v : v is a vertex of B}
sign(v)C(v) ≥ 0,

with

sign(v) =

{
1, if vk = sk for an even number of vertices,

−1, if vk = sk for an odd number of vertices.

(2) If s is such that si = 0 for some i ∈ {1, . . . , d} then C(s) = 0.
(3) Let y1 = · · · = yk−1 = yk+1 = · · · = yd = ∞ and

Ck(s) = C(y1, . . . , yk−1, sk, yk+1, . . . , yd) for k ∈ {1, . . . , d} then Ck(s) = s.

For example, a vector of independent CRM’s is obtained with

C⊥,d(s) = s11s2=∞,...,sd=∞ + · · ·+ sd1s1=∞,...,sd−1=∞.

A vector of completely dependent CRM’s, in the sense that the jumps of the
stochastic vector are in a set S such that whenever v,u ∈ S then either vi < ui

or ui < vi for all i ∈ {1, . . . , d}, is obtained with

C‖,d(s) = min{s1, . . . , sd}.
An interesting example of positive Lévy copulas is the Clayton Lévy copula

Cθ,d(s) = (s−θ
1 + · · ·+ s−θ

d )−
1
θ . (7)

The parameter θ is positive and regulates the level of dependence. The above
copulas are special cases of the Clayton Lévy copula, i.e.

lim
θ→0

Cθ,d(s) = C⊥,d(s) and lim
θ→∞

Cθ,d(s) = C‖,d(s).

We define the tail integral of an univariate Lévy intensity ν to be U(x) =∫∞
x

ν(s)ds. In the setting of Section 2.1 we use a Lévy copula Cd and the
marginal tail integrals U1, . . . , Ud associated to ν1, . . . , νd to specify an abso-
lutely continuous ρd(ds) = ρd(s)ds via

U(x) =

∫ ∞

x1

. . .

∫ ∞

xd

ρd(s)ds

=

∫ ∞

x1

. . .

∫ ∞

xd

∂d

∂u1 · · · ∂ud
Cd(u)

∣∣∣∣
u1=U1(s1),···ud=Ud(sd)

ν1(s1) · · · νd(sd)ds.
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Fig 2. Plot of dependent σ-stable processes with dependence given by Clayton Lévy copula
with parameter θ = 0.3 (top) and θ = 3.5 (bottom).

Therefore, under suitable regularity conditions, we can recover the multivariate
Lévy intensity from the copula and marginal intensities in the following way

ρd(s) =
∂d

∂u1 · · · ∂ud
Cd(u)

∣∣∣∣
u1=U1(s1),··· ,xd=Ud(sd)

ν1(s1) · · · νd(sd). (8)

For example, consider the Clayton Lévy copula with σ-stable margins, given
by (4), and α(dx) = dx. Figure 2 shows the dependence behaviour when a
2-dimensional Clayton Lévy copula with parameter θ = 0.3 and θ = 3.5 is
employed; we plot the associated stochastic processes μi(0, t] with i ∈ {1, 2}
similarly to Figure 1. As expected, when θ = 0.3, at each jumping time, the
processes have one jump weight big and one small since we are close to the
independence case (where the processes almost surely share no jumping times).



1338 A. Riva Palacio and F. Leisen

On the other hand, when θ is increased to 3.5, we can appreciate the higher
dependence induced by a larger value of the copula parameter. We simulated
the trajectories in Figure 2 by using Algorithm 6.15 in Cont and Tankov (2004),
where a full treatment of the dependence structure of Lévy intensities is also
given. Leisen and Lijoi (2011), Leisen, Lijoi and Spano (2013) and Zhu and
Leisen (2015) used a Lévy copula approach for building vectors of dependent
completely random measures.

2.3.1. Working example

If we consider the Lévy intensity arising from (8) when considering the d-
dimensional Clayton Lévy copula, (7), with parameter θ and σ-stable marginals,
(4), with parameters A, σ, we obtain

ρd,θ,A,σ(s) =
A(1 + θ)(1 + 2θ) · · · (1 + (d− 1)θ)σd (s1s2 · · · sd)σθ−1

Γ(1− σ)
(
sσθ1 + · · ·+ sσθd

) 1
θ+d

.

Furthermore, if we take θ = 1/σ we obtain the simplified Lévy intensity

ρd,A,σ(s) =
A(σ + 1)(σ + 2) · · · (σ + d− 1)σ

Γ(1− σ) (s1 + · · ·+ sd)
σ+d

. (9)

Such intensity corresponds to a particular family of vectors of completely ran-
dom measures known as Compound Random Measures (CoRM’s) and intro-
duced in Griffin and Leisen (2017); the previous Lévy intensity arises when
taking φ = 1 in equation (4.4) of the aforementioned paper. A convenient fea-
ture of this Lévy intensity is that, as shown in Proposition 3.1 of Zhu and Leisen
(2015), we can explicitly get the corresponding Laplace exponent

ψd,A,σ(λ) =

d∑
i=1

λσ+d−1
i∏d

j=1, j �=i(λi − λj)
; λi 
= λj for j 
= i, (10)

where we take the appropriate limits when λ = (λ1, . . . , λd) is such that λi = λj

for distinct i, j ∈ {1, . . . , d}. As indicated in the remark at the end of Section 3,
evaluation of the Laplace exponent is necessary for the explicit calculation of
the posterior mean of the survival function given censored data.

3. Main results

Let d ∈ N \ {0}, and suppose we have d collections of random variables

{{Y (i)
j }∞j=1}di=1. (11)

We characterize the probability distribution of these random variables in terms
of a vector of CRM’s μ = (μ1, . . . , μd). For t = (t1, . . . , td) ∈ (R+)d, let
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P

[
Y

(1)
1 > t1,1, . . . , Y

(1)
n1

> t1,n1 , . . . , Y
(d)
1 > td,1, . . . , Y

(d)
nd

> td,nd
|(μ1, . . . , μd)

]

=

d∏
i=1

ni∏
j=1

e−μi(0,ti,j ]. (12)

We observe that under such model the random variables (12) are partially ex-
changeable and marginally follow a NTR process. The dependence structure in
this model can be given through the Lévy copula associated to the CRM μ. This
model extends the one in Epifani and Lijoi (2010) to an arbitrary dimension d.

The family of Clayton Lévy copulas is of interest because it has both the
independence and complete dependence cases as limit behaviour. In the next
result, we work towards finding expressions for the Laplace exponent associated
to the Clayton family in such a way that the dependence structure is decoupled
across dimensions. This result could be useful since, as we will see, an explicit
calculation of ψ is of key importance to implement the Bayesian inference in
our survival analysis model.

Let ρd(s; θ) be the Lévy intensity associated via (8) to the Clayton Lévy
copula Cθ,d and fixed marginal Lévy intensities ν1, . . . , νd with corresponding
Laplace transforms ψ1, . . . , ψd. We denote the vector of tail integrals corre-
sponding to the marginal Lévy intensities as Ud(x) = (U1(x1), . . . , Ud(xd)) and
fix the notation

κ(θ;λ, i) = λi1 · · ·λim

∫
(R+)m

e−λi1s1−···−λimsmCθ,m(Ui1(s1), . . . , Uim(sm))ds,

where d ∈ N \ {0}, λ = (λ1, . . . , λd) ∈ (R+)d, m ∈ {1, . . . , d}, and i =
(i1, i2, . . . , im) ∈ {1, . . . , d}m is such that i1 < · · · < im.

Proposition 1. Suppose that d ∈ {2, 3, . . . } and

∫
‖s‖≤1

‖s‖ρd(s; θ)ds < ∞, (13)

then

ψ(λ) =

∫
(R+)d

(1− e−<λ,s>)
∂d

∂ud · · · ∂u1
Cθ,d(u)

∣∣
u=Ud(s)

ν1(s1) · · · νd(sd)ds

=

d∑
i=1

ψi(λi)−
∑

i=(i1,i2)∈{1,...,d}2
i1<i2

κ(θ;λ, i) + · · ·

· · ·+ (−1)d
∑

i=(i1,...,id−1)∈{1,...,d}d−1

i1<···<id−1

κ(θ;λ, i) + (−1)d+1κ(θ;λ, (1, . . . , d)),

where λ = (λ1, . . . , λd) ∈ (R+)d.
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We refer to the Appendix A.1 for the proof. We incorporate the Lévy exponent
ψ in the multivariate survival analysis setting of (12), in the next result. We
introduce the notation

νi1,...,ih(si1 , . . . , sih) =

∫ ∞

0

· · ·
∫ ∞

0

ρd(s)
∏

j �∈{i1,...,ih}
dsj

for h ∈ {1, . . . , d} and distinct i1, . . . , ih ∈ {1, . . . , d}; and denote ψi1,··· ,ih for
the respective Laplace exponents.

Proposition 2. In the context of (12), let 1 = (1, . . . , 1). For t1 ≤ · · · ≤ td and
i1, . . . , id ∈ {1, . . . , d} such that ti1 ≤ · · · ≤ tid then

P

[
Y (1) > t1, . . . , Y

(d) > td

]
=e−γ(ti1 )ψ(1)e−[γ(ti2 )−γ(ti1 )]ψi2,...,id

(1) (14)

× · · · e−[γ(tid )−γ(tid−1
)]ψid

(1). (15)

We refer to the Appendix A.2 for the proof. This result showcases the im-
portance of the Laplace exponent ψ for calculating probabilities in the model
and the impact of the function γ(t), related to the time depending part of the
Laplace exponent, in the survival function. In Section 4, we will show that the
availability of the Laplace exponent is also of main importance to implement the
Bayesian inference for the model. The model we are working on generalizes to
arbitrary dimension the classic model of Doksum (1974). We present a multivari-
ate extension of Theorem 3.1 in Doksum (1974), which relates our model with
the notion of neutrality to the right. Let F be a d-variate random distribution
function on (R+)d and, for a d-variate vector of CRM’s μ = (μ1, . . . , μd), denote
μi(t) = μi ((0, t]) with i ∈ {1, . . . , d}. Then, we have the following multivariate
extension to Theorem 3.1 in Doksum (1974) and Proposition 4 in Epifani and
Lijoi (2010).

Proposition 3. F (t = (t1, . . . , td)) has the same distribution as

[1− e−μ1(t1)] · · · [1− e−μd(td)]

for some d-variate CRM μ = (μ1, . . . , μd) if and only if for h ∈ {1, 2, . . . } and
vectors t1 = (t1,1, . . . , td,1), . . . , th = (t1,h, . . . , td,h) with t0,i = 0 < t1,i < · · · <
td,i and tj,0 = 0 < tj,1 < · · · < tj,h, there exists h independent random vectors
(V1,1, . . . Vd,1), . . . , (V1,h, . . . Vd,h) such that

(F (t1), . . . , F (th))
d
=⎛

⎝V1,1 · · ·Vd,1, [1− V̄1,1V̄1,2] · · · [1− V̄d,1V̄d,2], . . . , [1−
h∏

j=1

V̄1,j ] · · · [1−
h∏

j=1

V̄d,j ]

⎞
⎠

(16)

Where V̄i,j = 1− Vi,j with i ∈ {1, . . . , d} and j ∈ {1, . . . , h}.



BNP estimation of survival functions 1341

We refer to the Appendix A.3 for the proof. We now establish some notation in
order to address the posterior distribution arising from (12) when some survival

data is available. Let Y
(i)
ni =

(
Y

(i)
1 , . . . , Y

(i)
ni

)
, i = 1, . . . , d, be d groups of

observations that come from the distribution given by

P

[
Y (1)
n1

> t1,n1 , . . . ,Y
(d)
nd

> td,nd
|(μ1, . . . , μd)

]
=

d∏
i=1

ni∏
j=1

e−μi(0,ti,j ],

where ti,ni = (ti,1, . . . , ti,ni) and the event {Y (i)
ni > ti,ni} corresponds to the

event {Y (i)
1 > ti,1, . . . , Y

(i)
ni > ti,ni}. Let c

(1)
1 , . . . , c

(1)
n1 , . . . , c

(d)
1 , . . . , c

(d)
nd be their

respective censoring times; therefore, the set of censored data is the following

D =

d⋃
i=1

{(T (i)
j , δ

(i)
j )}ni

j=1,

where T
(i)
j = min{Y (i)

j , c
(i)
j } and δ

(i)
j = 1

(0,c
(i)
j ]

(
Y

(i)
j

)
. The number of exact

observations is ne =
∑d

i=1

∑ni

j=1 δ
(i)
j and the number of censored observations is

nc = n1 + n2 − ne. Taking into account the possible repetition of values among
the observations, we consider the order statistics (T(1), . . . , T(k)) of the distinct
observations where k is the number of distinct observed times among all groups.

Let define the set functions

me
i (A) =

ni∑
j=1

δ
(i)
j 1A(T

(i)
j ) ; mc

i (A) =

ni∑
j=1

(1− δ
(i)
j )1A(T

(i)
j )

for i ∈ {1, . . . , d}, which denote the number of, respectively, exact and cen-
sored marginal observations in A, with respect to group i. We define Ne

i (x) =
me

i ((x,∞)), N c
i (x) = mc

i ((x,∞)), for i ∈ {1, . . . , d} and ne
i,j = me

i ({T(j)}),
nc
i,j = mc

i ({T(j)}), n̄e
i,j =

∑k
r=j n

e
i,r n̄c

i,j =
∑k

r=j n
c
i,r for (i, j) ∈ {1, . . . , d} ×

{1, . . . , k}; and the corresponding vectors

n̄e
j = (n̄e

1,j , . . . , n̄
e
d,j) ; n̄c

j = (n̄c
1,j , . . . , n̄

c
d,j)

for j ∈{1, . . . , k} andN e(x)= (Ne
1 (x), . . . , N

e
d (x)),N

c(x)= (N c
1 (x), . . . , N

c
d(x)).

The next theorem determines the calculation of the posterior distribution for
a vector of CRM’s given some censored data and it applies to general vectors
of CRM’s. In particular, the assumption that the respective Lèvy intensity is
homogeneous has been dropped.

Theorem 1. Let μ = (μ1, . . . , μd) be a d-variate CRM such that its correspond-
ing Lèvy intensity ν(s, dt)ds is differentiable with respect to t0 on R

+ \ {0} in
the sense that for ηt = ν(s, (0, t]) the partial derivative η′t0(s) = ∂ηt(s)/∂t

∣∣
t=t0

exists. Moreover we assume that the entries of μ are not independent. Then
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the posterior distribution of μ given data D is the distribution of the random
measure

(μ�
1, . . . , μ

�
d) +

∑
{j :T(j)is an exact observation}

(J1,jδT(j)
, . . . , Jd,jδT(j)

)

where

(1) μ� = (μ�
1, . . . , μ

�
d) is a d-variate CRM with Lévy intensity ν� such that

ν�(ds, dx)
∣∣
dx∈(T(j−1),T(j))

= e−〈n̄c
j+n̄e

j , s〉ν(ds, dx)

for j ∈ {1, . . . , k + 1}.
(2) The vectors of jumps {(J1,j , . . . , Jd,j)}j∈J , where

J = {j : T(j) is an exact observation},

are mutually independent and the vector of jumps corresponding to the
exact observation T(j) has density

fj(s) ∝
d∏

i=1

{
e−(n̄c

i,j+n̄e
i,j+1)si(1− e−si)n

e
i,j

}
η′T(j)

(s).

(3) The random measure μ� is independent of {(J1,j , . . . , Jd,j)}j∈J , with J =
{j : T(j) is an exact observation}.

We refer to the Appendix A.4 for the proof. The previous result showcases
that the posterior distribution arising from (12) can be modeled in the same
framework via a vector of CRM’s by updating the prior vector of CRM’s μ to
μ� as above.

This result is enough to provide a scheme for posterior inference. In particular,
in the setting of (12) and Theorem 1, we want to estimate the corresponding
survival function P

[
Y (1) > t1, . . . , Y

(d) > td |(μ1, . . . , μd)
]
when multiple sam-

ples information is available.
A natural approach in Bayesian nonparametrics is to marginalize over the

infinite dimensional random element which characterizes the probability model.
In our case, given censored data D, we calculate the mean of the survival func-
tion given the data by marginalizing over the vector of CRM’s μ. As a result
of Theorem 1, we can calculate such quantity. The next results allow us to im-
plement the necessary inferential scheme for performing the estimation of the
survival function as a posterior mean. We denote ei for the canonical basis of
R

d, and SL(t) = S(t
∑

l∈L el) for t > 0, ∅ 
= L ⊂ {1, . . . , d}. In view of the
independent increments of the CRM’s, calculation of the posterior mean of SL

is all that is needed for the evaluation of the posterior mean of S. The next
corollary shows how to evaluate the posterior mean of SL.

Corollary 1. Let μ be a vector of CRM’s with corresponding Lèvy intensity
such that ηt(s) = γ(t)ν(s) with γ a differentiable function satisfying γ′(t) 
= 0
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for t > 0. Moreover we assume that the entries of μ are not independent. Let
∅ 
= L ⊂ {1, . . . , d} and set

Jt = {j : T(j) ≤ t}

where T(k+1) = ∞. Then,

ŜL(t) = E[E[SL(t)|μ] |D] = e
−
∑k+1

j=1 [γ(t∧T(j))−γ(Tj−1)]1[T(j−1),∞)(t)ψ
�
j (
∑

l∈L el)

×
∏
j∈Jt

γ′(T(j))

⎡
⎣
∫
(R+)d

∏d
i=1

{
e−(1i∈L+n̄c

i,j+n̄e
i,j+1)si(1− e−si)n

e
i,j

}
ν(s)ds∫

(R+)d

∏d
i=1

{
e−[n̄c

i,j+n̄e
i,j+1]si(1− e−si)n

e
i,j

}
ν(s)ds

⎤
⎦

where T(0) = 0 and for λ ∈ (R+)d

ψ�
j (λ) =

∫
(R+)d

(
1− e−〈λ,s〉

)
e−〈n̄c

j+n̄e
j ,s〉ν(s)ds

= ψ(λ+ n̄c
j + n̄e

j)− ψ(n̄c
j + n̄e

j).

We see that we can estimate S(t) for arbitrary t ∈ (R+)d in terms of the
estimates defined in the previous corollary. Indeed, let t = (t1, . . . , td) and π be
a permutation of {1, . . . , d} such that tπ(1) ≤ tπ(2) ≤ · · · ≤ tπ(d). We define, for
i ∈ {1, . . . , d− 1}, the following sets

Li = {j : π(−1)(j) ≥ i}.

From the independence of increments of CRM’s, it follows that the posterior
mean of the survival function given censored data D is

Ŝ(t) = E[E[S(t)|μ] |D] = ŜL1(tπ(1))

d−1∏
i=1

ŜLi(tπ(i+1))

ŜLi(tπ(i))
t ∈ (R+)d. (17)

Usually, we deal with Lévy intensities which exhibit some dependences in a
vector of hyper-parameters c. On the proof of Theorem 1, it is outlined how,
given censored data D as before, we could derive the likelihood of the hyper-
parameters in the Lévy intensity. This likelihood is necessary for implementing
the inferential procedure and it is displayed in the next corollary.

Corollary 2. Let μ be a vector of CRM’s with corresponding Lèvy intensity
such that ηt(s) = γ(t)ρd,c(s) with γ a differentiable function satisfying γ′(t) 
= 0
for t > 0, and c a vector of hyper-parameters. Given censored data D we get
the likelihood on c.

l(c;D) =e−
∑k

j=1[γ(T(j))−γ(T(j−1))]ψd,c(n̄
c
j+n̄e

j )

×
∏
j∈J

γ′(T(j))

∫
(R+)d

d∏
i=1

{
e−(n̄c

i,j+n̄e
i,j)si(1− e−si)n

e
i,jρd,c(s)ds

}
,

where ψd,c is the Laplace exponent associated to ρd,c.
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The next lemma provides a useful identity for the computation of the integrals
in Corollary 1 and Corollary 2.

Lemma 1. For q = (q1, . . . , qd) ∈ (R+)d and n = (n1, . . . , nd) ∈ N
d

∫
(R+)d

e−〈q,x〉
d∏

i=1

(
1− e−si

)ni
ν(s)ds =

d∑
i=1

ni∑
k=1

(
ni

k

)
(−1)k+1[ψ(kei + q)− ψ(q)]

+
∑

i1 
= i2
ni1 , ni2 /∈ {0}

n1∑
k1=1

n2∑
k2=1

(
n1

k1

)(
n2

k2

)
(−1)k1+k2+1[ψ(k1ei1 + k2ei2 + q)− ψ(q)]

+ . . .

+ 1{n1 �=0,...,nd �=0}

n1∑
k1=1

· · ·
nd∑

kd=1

(−1)k1+···+kd+1[ψ(k1e1 + · · ·+ kded + q)− ψ(q)].

We omit the proof as it is just an application of the binomial theorem in the
same line as the proof of Lemma 3 in the appendix.

Remark. The previous results highlights that the implementation of the infer-
ential procedure depends on whether we can perform evaluations of the Laplace
exponent or not.

4. Application

In this section we perform the fitting of a multivariate survival function given
censored to the right data in the framework of (12). As mentioned in the previous
remark, the evaluation of the Laplace exponent of μ in (12) is necessary to
evaluate the posterior mean in Corollary 1 and the likelihood in Corollary 2;
with this in mind, we choose the random measure μ given by the Lévy intensity
showcased in (9), so that the corresponding Laplace exponent is readily given
by (10). For illustration purposes, we use 4-dimensional data arising from a
distributional copula with fixed marginal distributions, see Nelsen (2013) for an
overview of distributional copulas. More precisely, we generate simulated data
Y = (Y1, ..., Y4) with probability distribution Fθ,λ given by a distributional
Clayton copula with parameter θ and exponential marginals with parameter
λ. Then, we perform right-censoring by considering censoring time variables c
consisting of independent exponential random variables with parameter λc, and
define

δ = (1Y1<c1 , . . . ,1Y4<c4),

T = (min{Y1, c1}, . . . ,min{Y4, c4}). (18)

For fitting the data, we use the 4-dimensional Lévy intensity given by (9) and
assign priors for the hyper-parameters in (9), σ and A. We choose a log-normal
prior for the parameter A and a Beta prior for the parameter σ. We use the
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Metropolis within Gibbs algorithm to draw samples from the posterior distri-
butions of A and σ by making use of the likelihood showed in Corollary 2. We
present a Monte Carlo approximation of the estimator (17), where we have av-
eraged over the posterior draws of A and σ. A more in depth description of
the simulation algorithm is given in Appendix A.5. In Figures 3 and 4 we show
the fit for 150 possibly right censored observations as in (18). The simulated
synthetic observations are such that

Yj ∼ Fθ=0.3,λ=1., j = 1, . . . , 150

ci,j ∼ Exp(λc = 3.7), i = 1, ..., 4; j = 1, . . . , 150

Ti,j = min{Yi,j , ci,j}, i = 1, ..., 4; j = 1, . . . , 150.

We chose λc = 3.7 so we have at least 75% of exact observations for T in each
dimension. The construction of Fθ,λ through a distributional Clayton allows us
to calculate explicitly the associated survival function as showcased in Appendix
A.6. We use the true survival function for comparison with the fitted survival
functions. The estimated survival function are given by the posterior mean

Ŝ(t1, t2, t3, t4) = E[E[S(t1, t2, t3, t4)|μ] |D] ,

as in (17). The prior distributions of the hyperparameters are

σ ∼ Beta(μ = 0.4, σ2 = 0.1)

A ∼ Log-Norm(μ = log(0.88), σ2 = 3.5).

We ran 1000 iterations for the associated Metropolis within Gibbs sampler. Fig-
ure 3 and Figure 4 show that the estimated survival functions approximate well
the true functions. For comparison purposes, we presented a Kaplan-Meier esti-
mator for the true survival function, see for example Aalen et al. (2008). As there
is no multivariate Kaplan-Meier, we use the next estimator for a multivariate
survival function:

ŜKM(t1, . . . , td) =

SKM(t1|T2 > t2, . . . , Td > td)SKM(t2|T3 > t3, · · · , Td > td) . . . SKM(td),

where each SKM estimator is treated as a univariate Kaplan-Meier estimator
restricted to the corresponding set of observations. In Figure 3 and Figure 4,
we could appreciate that in the last subplots of each column the Kaplan-Meier
can fit poorly as there are less observations on the conditioned Kaplan-Meier
functions, as presented in the formula above.

Appendix

A.1. Proof of Proposition 1

Given d ∈ {2, 3, . . . }, we use the notation ν−i(s) =
∏d

j=i+1 νj(sj) and Uk:d(s) =

(Uk(s1), . . . , Ud(sd−k+1)) for s ∈ (R+)d. Furthermore we define integrals

a0,m(λ) =

∫
(R+)m

(1− e−<λ,s>)
∂d

∂ud · · · ∂u1
Cθ,m(u)

∣∣
u=Ud−m+1:d(s)

ν−0(s)ds
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Fig 3. Plot of our methodology fits (violet lines), compared with Kaplan-Meier fits (dashed
lines) and the true survival function associated to the distributions Fθ=0.3,λ=1. (green lines).
The first column shows fits of the survival function with fixed values in all dimensions except
the first one; the second column has fixed values in all dimensions except the second one.

and

ak,m(λ)

= (−1)k+1

∫
(R+)m

λ1 · · ·λke
−<λ,s> ∂d−k

∂ud · · · ∂uk+1
Cθ,m(Ud−m+1:d(s))ν−k(s)ds

where k ∈ {1, . . . , d}, m ∈ {0, 1, . . . , d} and λ ∈ (R+)d such that a0,d(λ) < ∞;

we also define
∏l

j=k aj = 1 when k > l, and denote x−i for the vector x without
its i-th entry.
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Fig 4. Plot of our methodology fits (violet lines), compared with Kaplan-Meier fits (dashed
lines) and the true survival function associated to the distributions Fθ=0.3,λ=1. (green lines).
The first column shows fits of the survival function with fixed values in all dimensions except
the third one; the second column has fixed values in all dimensions except the fourth one.

An integration by parts shows that

a0,d = −
∫
(R+)d−1

(1− e−<λ,s>)
∂d−1

∂ud · · · ∂u2
Cθ,d(u)

∣∣
u=Ud(s)

ν−1(s)

∣∣∣∣
s1=∞

s1=0

ds−1

+

∫
(R+)d

λ1e
−<λ,s> ∂d−1

∂ud · · · ∂u2
Cθ,d(u)

∣∣
u=Ud(s)

ν−1(s)ds

= a0,d−1(λ−1) + a1,d(λ)

and in general for r ∈ {1, . . . , d} we get the recursion formula

ar,d(λ) = ar,d−1(λ−(r+1)) + ar+1,d(λ) (A.19)
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We prove the next technical lemma

Lemma 2. If a0,d(λ) < ∞ then the next d+ 1 identities hold

a0,d(λ) =

d∑
i=1

ψi(λi)−
∑

i=(i1,i2)∈{1,...,d}2
i1<i2

κ(θ;λ, i) + · · ·

· · ·+ (−1)d
∑

i=(i1,...,id−1)∈{1,...,d}d−1

i1<···<id−1

κ (θ;λ, (i1, . . . , id−1))

+ (−1)d+1κ(θ;λ, (1, . . . , d))

a1,d(λ) = ψ1(λ1)−
d∑

i=2

κ (θ;λ, (1, i)) +
∑

i1,i2∈{2,...,d}
i1<i2

κ (θ;λ, (1, i1, i2)) + · · ·

· · ·+ (−1)d
∑

i1,...,id−2∈{2,...,d}
i1<···<id−2

κ((θ;λ, (1, i1, . . . , id−2))

+ (−1)d+1κ (θ;λ, (1, . . . , d))

...

ad−1,d(λ) = (−1)dκ (θ;λ, (1, . . . , d− 1)) + (−1)d+1κ (θ;λ, (1, . . . , d))

ad,d(λ) = (−1)d+1κ (θ;λ, (1, . . . , d)) (A.20)

Proof. We proceed by mathematical induction over the dimension d. We observe
that from the definition of κ we always have

ad,d(λ) = (−1)d+1κ(θ;λ, (1, . . . , d))

For the case d = 2 we have from Proposition 1 in Epifani and Lijoi (2010) that

a0,2(λ1, λ2) = ψ1(λ1) + ψ2(λ2)− κ(θ; (λ1, λ2), (1, 2))

And integrating by parts we obtain

a1,2(λ1, λ2) =∫
R+

λ1e
−λ1s1U1(x1)ds1 − λ1 λ2

∫
(R+)2

e−λ1x2−λ2s2Cθ(U1(s1), U2(s2))ds1ds2

= ψ1(λ1)− κ (θ;λ, (1, 2))

Therefore, we get the validity of the equations in (A.20) for the case d = 2.
Now, suppose that (A.20) is true for d = m− 1, we must show the validity for
d = m. From the recursion formula (A.19) we get for r ∈ {0, 1, · · · , d}

ar,m(λ) =ar,m−1(λ−(r+1)) + ar+1,m−1(λ−(r+2))

+ · · ·+ am−1,m−1(λ−m) + am,m(λ)
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The validity of (A.20) for d = m follows from the validity for d = m− 1 and a
combinatorial argument.

Proposition 1 follows by considering the first equation in the Lemma statement
and the definition of a0,d.

A.2. Proof of Proposition 2

Proof. Using the independent increments property of CRM’s we get that

P

[
Y (1) > t1, . . . , Y

(d) > td

]
= E

[
e−μ1(0,t1]−···−μd(0,td]

]
= E

[
e−μi1 (0,ti1 ]−···−μid

(0,ti1 ]
]

× E

[
e−μi2 (ti1 ,ti2 ]−···−μid

(ti1 ,ti2 ]
]
· · ·E

[
e−μid

(tid−1
,tid ]

]
= e−γ(ti1 )ψ(1)e−[γ(ti2 )−γ(ti1 )]ψi2,...,id

(1) · · · e−[γ(tid )−γ(tid−1
)]ψid

(1)

A.3. Proof of Proposition 3

For notation purposes, in this proof we use the shorthand μ(t) = μ ((0, t]) for a
measure μ and positive real number t.

Proof. For the only if part we define Vi,j = 1 − e−[μi(ti,j)−μi(ti,j−1)] for i ∈
{1, . . . , d} and j ∈ {1, . . . , h} so by supposing (F1(t1), . . . , Fd(td))

d
= (1 −

e−μ1(t1), . . . , 1− e−μd(td)) we have

F (t1,1, . . . , td,1)
d
= [1− e−μ1(t1,1)] · · · [1− e−μd(td,1)]

= [1− e−[μ1(t1,1)−μ1(t1,0)]] · · · [1− e−[μd(td,1)−μd(td,0]]

= V1,1 · · ·Vd,1

We observe that for i ∈ {2, . . . , h} and r ∈ {1, . . . , d}

1−
i∏

j=1

V̄r,j = 1−
i∏

j=1

(1− Vr,j) = 1−
i∏

j=1

e−[μr(tr,j)−μr(tr,j−1]) = 1− e−μr(tr,i)

So for i ∈ {2, . . . d}

F (t1,i, . . . , td,i)
d
= [1− e−μ1(t1,i)] · · · [1− e−μd(td,i)]

= [1−
i∏

j=1

V̄1,j ] · · · [1−
i∏

j=1

V̄d,j ].

Concluding the only if part.
For the if part we define μi(t) = − log(1− Fi(t)) for i ∈ {1, . . . , d} and suppose
for h ∈ {1, 2, . . . }, t1 = (t1,1, . . . , td,1), . . . , th = (t1,h, . . . , td,h) with t0,i = 0 <
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t1,i < · · · < td,i and tj,0 = 0 < tj,1 < · · · < tj,h the existence of independent
random vectors (V1,1, . . . Vd,1), . . . , (V1,h, . . . Vd,h) such that we have (16).
Marginalizing in (16), we can apply Theorem 3.1 of Doksum (1974) to each Fi so
we obtain that Fi ∼ NTR(μi) for some CRM μi that is stochastically continuous,
almost surely non-decreasing and has the appropriate limit behaviour.
We observe that

(μ1(tj)− μ1(tj−1), . . . , μd(tj)− μd(tj−1))
d
=

(
log(

1

1− V1,j
), . . . , log(

1

1− Vd,j
)

)

Hence (μ1, . . . , μd) defines a vector of CRM’s.

A.4. Proof of Theorem 1

This proof is not only restricted to the homogeneous Lévy intensity case; in this
general setting, we recall that the Laplace exponent has the form (6). In order
to prove the theorem we use the next technical lemma.

Lemma 3. Let (μ1, . . . , μd) be a d-variate CRM such that μ1, . . . , μd are not
independent and let the Lévy intensity ν(s, dt)ds of (μ1, . . . , μd) be such that
ηt = ν(x, (0, t]) is differentiable with respect to t ∈ R

+ at some t0 
= 0 and denote
η′t0(s) = ∂ηt(s)/∂t

∣∣
t=t0

. If q = (q1, . . . , qd) ∈ N
d are such that max{q1, . . . , qd} ≥

1 and r = (r1, . . . , rd) ∈ (R+)d are such that min{r1, . . . , rd} ≥ 1, then

E

[
e−r1μ1(Aε)−···−rdμd(Aε)

(
1− e−μ1(Aε)

)q1
· · ·
(
1− e−μd(Aε)

)qd]
= ε

∫
(R+)d

e−〈r,s〉(1− e−s1)q1 · · · (1− e−sd)qdη′t0(s)ds+ o(ε)

as 0 < ε → 0, with Aε = (t0 − ε, t0] for some t0 ∈ R
+ \ {0}.

Proof. We denote �s2
s1ft(r) = fs2(r)−fs1(r) for a function f where s1, s2 ∈ R

+

and r ∈ R
d. We use the binomial theorem and apply expectation to write the

left hand side in the equation above as

q1∑
j1=0

· · ·
qd∑

jd=0

(
q1
j1

)
· · ·
(
qd
jd

)
(−1)〈1,j〉e−[ψt0 (r1+j1,...,rd+jd)−ψt0−ε(r1+j1,...,rd+jd)]

= e−�t0
t0−εψt(r) + e−�t0

t0−εψt(r)

⎧⎨
⎩

d∑
i=1

qi∑
j=1

(
qi
j

)
(−1)je−�t0

t0−ε[ψt(r+jei)−ψt(r)]

+
∑

i1,i2∈{1,...,d}
i1<i2

qi1∑
j1=1

qi2∑
j2=1

(
qi1
j1

)(
qi2
j2

)
(−1)j1+j2e−�t0

t0−ε[ψt(r+j1ei1+j2ei2 )−ψt(r)]

+ · · ·+
q1∑

j1=1

· · ·
qd∑

jd=1

(
q1
j1

)
· · ·
(
qd
jd

)
(−1)〈1,j〉e−�t0

t0−ε[ψt(r+j)−ψt(r)]

⎫⎬
⎭ (D.21)
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We note that for ji ∈ {0, . . . , xi}, i ∈ {1, . . . , d}, j = (j1, . . . , jd), a Taylor
expansion yields

e−�t0
t0−ε[ψt(r+j)−ψt(r)] = e−

∫
(R+)d

e−〈r,x〉(1−e−〈j,s〉)�t0
t0−εηt(s)ds

= 1− ε

∫
(R+)d

e−〈r,s〉(1− e−〈j,s〉)η′t0(s)ds+ o(ε) (D.22)

Furthermore by the binomial theorem we get the next d identities

(1)

d∑
i=1

q∑
j=1

(
q

j

)
(−1)j(1− e−js) = −

d∑
i=1

(1− e−s)q

(2)
∑

i1,i2∈{1,...,d}
i1<i2

qi1∑
j1=1

qi2∑
j2=1

(
qi1
j1

)(
qi2
j2

)
(−1)j1+j2(1− e−j1si1−j2si2 )

=
∑

i1,i2∈{1,...,d}
i1<i2

{
(1− e−si1 )qi1 + (1− e−si2 )qi2 − (1− e−si1 )qi1 (1− e−si2 )qi2

}

...

(d− 1)
∑

i1,...,id−1∈{1,...,d}
i1<···<id−1

qi1∑
j1=1

· · ·
qid−1∑
jd−1=1

(
qi1
j1

)
· · ·
(
qid−1

jd−1

)
(−1)j1+···+jd−1

× (1− e−j1si1−···−jd−1sid−1 )

=
∑

i1,...,id−1∈{1,...,d}
i1<···<id−1

{
(−1)d−1

d−1∑
j=1

(1− e−sij )qij

+ (−1)d−2
∑

j1,j2∈{i1,...,id−1}
j1<j2

(1− e−sj1 )qj1 (1− e−sj2 )qj2

+ · · · − (1− e−si1 )qi1 · · · (1− e−sid−1 )qid−1

}

(d)

q1∑
j1=1

· · ·
qd∑

jd=1

(
q1
j1

)
· · ·
(
qd
jd

)
(−1)〈1,j〉(1− e−〈j,s〉) = (−1)d

d∑
j=1

(1− e−sj )qj

+ (−1)d−1
∑

j1,j2∈{1,...,d}
j1<j2

(1− e−sj1 )qj1 (1− e−sj2 )qj2

+ · · · − (1− e−si1 )qi1 · · · (1− e−sid )qid

So we have that (D.21) becomes
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e−�t0
t0−εψt(r)

⎧⎨
⎩1 +

d∑
i=1

qi∑
j=1

(
qi
j

)
(−1)j

− ε

∫
(R+)d

e−〈r,s〉
d∑

i=1

qi∑
j=1

(
qi
j

)
(−1)j(1− e−j1s1)η′t0(s)ds

+
∑

i1,i2∈{1,...,d}
i1<i2

qi1∑
j1=1

qi2∑
j2=1

(
qi1
j1

)(
qi2
j2

)
(−1)j1+j2

− ε

∫
(R+)d

e−〈r,s〉
∑

i1,i2∈{1,...,d}
i1<i2

qi1∑
j1=1

qi2∑
j2=1

(
qi1
j1

)(
qi2
j2

)
(−1)j1+j2

× (1− e−j1si1−j2si2 )η′t0(s)ds+ · · ·+
q1∑

j1=1

· · ·
qd∑

jd=1

(
q1
j1

)
· · ·
(
qd
jd

)
(−1)〈1,j〉

− ε

∫
(R+)d

e−〈r,s〉
q1∑

j1=1

· · ·
qd∑

jd=1

(
q1
j1

)
· · ·
(
qd
jd

)
(−1)〈1,j〉(1− e−〈j,s〉)η′t0(s)ds

+ o(ε)

}

= e−�t0
t0−εψt(r)

{
ε

∫
(R+)d

e−〈r,s〉(1− e−s1)q1 · · · (1− e−sd)qdη′t0(s)ds+ o(ε)

}

= {1 + o(1)}
{
ε

∫
(R+)d

e−〈r,s〉(1− e−s1)q1 · · · (1− e−sd)qdη′t0(s)ds+ o(ε)

}

=

{
ε

∫
(R+)d

e−〈r,s〉(1− e−s1)q1 · · · (1− e−sd)qdη′t0(s)ds+ o(ε)

}

Define

ΓD,ε =

d⋂
i=1

k⋂
j=1

{
((t

(i)
1 , δ

(i)
1 , . . . , t(i)n1

, δ(i)n1
)

: mc
i

(
{T(j)}

)
= nc

i,j ,m
e
i

(
(T(j) − ε, T(j)]

)
= ne

i,j

}

so that

E

[
e−λ1μ1(0,t]−···λdμd(0,t]|D

]
= lim

ε→0

E
[
e−λ1μ1(0,t]−···−λdμd(0,t]1ΓD,ε

(D)
]

P[D ∈ ΓD,ε]

We observe that defining T(0) = 0, n̄e
i,k+1 = 0 for i ∈ {1, . . . , d} and selecting ε

sufficiently small such that t 
∈ (T(j) − ε, T(j)) for all j ∈ {1, . . . , k}
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E

[
e−λ1μ1(0,t]−···λdμd(0,t]1ΓD,ε

(D) |(μ1, . . . , μd)
]

=

d∏
i=1

e−λiμi(0,t]
k∏

j=1

e−nc
i,jμi(0,T(j)]−ne

i,jμi(0,T(j)−ε]
(
1− e−μi(T(j)−ε,T(j)]

)ne
i,j

=

d∏
i=1

e−λi1(0,t](T(k))μi(T(k),t]
k∏

j=1

{
e−λi1(0,t)(T(j−1))μi(T(j−1),min{t,T(j)−ε}]

× e−λi1(0,t](T(j))μi(T(j)−ε,T(j)]−nc
i,j

∑ j
r=1(μi(T(r)−ε,T(r)]+μi(T(r−1),T(r)−ε])

× e−ne
i,j

∑ j
r=1 μi(T(r−1),T(r)−ε]−ne

i,j

∑ j−1
r=1 μi(T(r)−ε,T(r)]

×
(
1− e−μi(T(j)−ε,T(j)]

)ne
i,j
}

=

d∏
i=1

e−λi1(0,t](T(k))μi(T(k),t]−
∑k

j=1 nc
i,j

∑ j
r=1(μi(T(r)−ε,T(r)]+μi(T(r−1),T(r)−ε])

× e−
∑k

j=1 ne
i,j

∑ j
r=1 μi(T(r−1),T(r)−ε]−

∑k
j=1 ne

i,j

∑ j−1
r=1 μi(T(r)−ε,T(r)]

×
k∏

j=1

{
e−λi1(0,t)(T(j−1))μi(T(j−1),min{t,T(j)−ε}]−λi1(0,t](T(j))μi(T(j)−ε,T(j)]

(
1− e−μi(T(j)−ε,T(j)]

)ne
i,j

}

=
d∏

i=1

k∏
j=1

{
e−[λi1(0,t](T(j))+n̄c

i,j+n̄e
i,j+1]μi(T(j)−ε,T(j)]

(
1− e−μi(T(j)−ε,T(j)]

)ne
i,j

}

× e−λi1(0,t](T(k))μi(T(k),t]

×
k∏

j=1

{
e−λi1(0,t)(T(j−1))μi(T(j−1),min{t,T(j)−ε}]

× e−n̄c
i,jμi(T(j−1),T(j)−ε]−n̄e

i,jμi(T(j−1),T(j)−ε]
}

So defining

I1,ε =
k∏

j=1

d∏
i=1

{
e−[λi1(0,t](T(j))+n̄c

i,j+n̄e
i,j+1]μi(T(j)−ε,T(j)]

(
1− e−μi(T(j)−ε,T(j)]

)ne
i,j

}

I2,ε =

d∏
i=1

e−λi1(0,t](T(k))μi(T(k),t]
k∏

j=1

{
e−λi1(0,t)(T(j−1))μi(T(j−1),min{t,T(j)−ε}]

×e−(n̄c
i,j+n̄e

i,j)μi(T(j−1),T(j)−ε]
}

We get from the independence property of CRM’s that

E

[
e−λ1μ1(0,t]−···−λdμd(0,t]1ΓD,ε

(D)
]
= E[I1,ε]E[I2,ε] (D.23)
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We observe that for ri = λi1(0,t](T(j))+n̄c
i,j+n̄e

i,j+1, i ∈ {1, . . . , d} we have that
min{r1, . . . , rd} ≥ 1 and for j ∈ {1, . . . , k} such that T(j) is an exact observation
we have that max{n1,j , . . . , nd,j} ≥ 1 so Lemma 2 can be applied yielding

E

[
d∏

i=1

{
e−[λi1(0,t](T(j)+n̄c

i,j+n̄e
i,j+1]μi(T(j)−ε,T(j)]

(
1− e−μi(T(j)−ε,T(j)]

)ne
i,j

}]

= ε

∫
(R+)d

d∏
i=1

{
e−[λi1(0,t](T(j))+n̄c

i,j+n̄e
i,j+1]si(1− e−si)n

e
i,j

}
η′tT(j)(s)ds+ o(ε)

(D.24)

On the other hand, for j 
∈ J = {j : T(j) is an exact observation} we have
ne
i,j = 0 so by the continuity of ηt(s) in t we have

lim
ε→0

E

[
d∏

i=1

{
e−[λi1(0,t](T(j)+n̄c

i,j+n̄e
i,j+1]μi(T(j)−ε,T(j)]

(
1− e−μi(T(j)−ε,T(j)]

)ne
i,j

}]

= lim
ε→0

E

[
d∏

i=1

{
e−[λi1(0,t](T(j)++n̄c

i,j+n̄e
i,j+1]μi(T(j)−ε,T(j)]

}]
= 1 (D.25)

From (D.24), (D.25) and the independence property of CRM’s we obtain

lim
ε→0

E[I1,ε] = lim
ε→0

∏
j∈J

{
ε

∫
(R+)d

d∏
i=1

{
e−[λi1(0,t](T(j))+n̄c

i,j+n̄e
i,j+1]si

× (1− e−si)n
e
i,j

}
η′T(j)

(s)ds+ o(ε)
}

Also by continuity and independence, defining λ = (λ1, . . . , λd), we get

lim
ε→0

E[I2,ε] = e
−[ψt(1(0,t](T(k))λ)−ψT(k)(1(0,t](T(k))λ)]×

×
k∏

j=1

{
e
−[ψt∧T(j)(1(0,t](T(j−1))λ+n̄c

j+n̄e
j)−ψT(j−1)(1(0,t](T(j−1))λ+n̄c

j+n̄e
j)]

× e
−[ψT(j)(n̄

c
j+n̄e

j)−ψt∧T(j)(n̄
c
j+n̄e

j)]
}

So by (D.23), (D.25) and (D.24) we get that

lim
ε→0

E

[
e−λ1μ1(0,t]−···−λdμd(0,t]1ΓD,ε

(D)
]
= e

−�t
T(k)

ψt(1(0,t](T(k))λ)

× e
−
∑k

j=1 �
t∧T(j)
T(j−1)

ψt(1(0,t](T(j−1))λ+n̄c
j+n̄e

j)

×
∏
j∈J

lim
ε→0

{
ε

∫
(R+)d

d∏
i=1

{
e−[λi1(0,t](T(j))+n̄c

i,j+n̄e
i,j+1]si
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× (1− e−si)n
e
i,j

}
η′T(j)

(s)ds+ o(ε)
}

× e
−
∑k

j=1 �
T(j)
t∧T(j)

ψt(n̄c
j+n̄e

j)

And similarly

lim
ε→0

P[D ∈ ΓD,ε] = e
−
∑k

j=1 �
T(j)
T(j−1)

ψt(n̄c
j+n̄e

j)

×
∏
j∈J

lim
ε→0

{
ε

∫
(R+)d

d∏
i=1

{
e−(n̄c

i,j+n̄e
i,j+1)si(1− e−si)n

e
i,j

}
η′tT(j)(s)ds+ o(ε)

}

We set T(k+1) = ∞ so we conclude

E

[
e−λ1μ1(0,t]−···−λdμd(0,t]|D

]
= lim

ε→0

E
[
e−λ1μ1(0,t]−···−λdμd(0,t]1ΓD,ε

(D)
]

P[D ∈ ΓD,ε]

= e
−
∑k+1

j=1 �
t∧T(j)
T(j−1)

[ψt(1(0,t](T(j−1))λ+n̄c
j+n̄e

j)−ψt(n̄c
j+n̄e

j)] ∏
j∈J

lim
ε→0

⎧⎨
⎩

ε
∫
(R+)d

∏d
i=1

{
e−[λi1(0,t](T(j))+n̄c

i,j+n̄e
i,j+1]si(1− e−si)n

e
i,j

}
η′T(j)

(s)ds+ o(ε)

ε
∫
(R+)d

∏d
i=1

{
e−[n̄c

i,j+n̄e
i,j+1]si(1− e−si)n

e
i,j

}
η′T(j)

(s)ds+ o(ε)

⎫⎬
⎭

= e
−
∑k+1

j=1

∫
(R+)d×(T(j−1),t∧T(j)]

1(0,t](T(j−1))(1−e−〈λ , s〉)e−〈n̄c
j+n̄e

j , s〉
ν(ds,du)

×
∏
j∈J

⎧⎨
⎩
∫
(R+)d

∏d
i=1

{
e−[λi1(0,t](T(j))+n̄c

i,j+n̄e
i,j+1]si(1− e−si)n

e
i,j

}
η′T(j)

(s)ds∫
(R+)d

∏d
i=1

{
e−[n̄c

i,j+n̄e
i,j+1]si(1− e−si)n

e
i,j

}
η′T(j)

(s)ds

⎫⎬
⎭

A.5. Simulation algorithm

We use a Metropolis within Gibbs sampler to draw simulations from σ|D and
A|D as in Section 4. We recall that Corollary 2 gives the likelihood l(σ,A;D)
and we denote pσ, pA for the prior distributions of σ and A as in Section 4.
Given initial values σ(0), A0), the algorithm is as follows

(1) Draw A(i+1) from a Metropolis-Hastings sampler with proposal distribu-
tion g(x′|x) ∼ Log-Norm(log(x), 1) and target distribution

l(σ(i), x;D)pA(x).

(2) Draw σ(i+1) from a Metropolis-Hastings sampler with Uniform proposal
distribution and target distribution

l(x,A(i+1);D)pσ(x).

For the fits in Section 4 we used 100 iterations for each inner Metropolis-Hasting
sampler and 1000 iterations for the overall Gibbs sampler.
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A.6. Survival function of Fθ,λ.

Let Cθ,d be a d-dimensional distributional Clayton copula and F̃i, i = 1, . . . , d,
a collection of marginal cumulative distribution functions; then the survival
function associated to the Clayton distributional copula and marginals is given
by

S (x1, . . . , xd) = 1−
d∑

i=1

F̃i(xi) +

d∑
j=2

(−1)j
∑

i1,...,ij∈{1,...,d}
i1<...<ij

Cθ,j(xi1 , . . . , xij ),

see Section 2.6 in Nelsen (2013).
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