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Abstract: We describe a probabilistic PARAFAC/CANDECOMP (CP)
factorization for multiway (i.e., tensor) data that incorporates auxiliary co-
variates, Sup CP. SupCP generalizes the supervised singular value decompo-
sition (SupSVD) for vector-valued observations, to allow for observations
that have the form of a matrix or higher-order array. Such data are in-
creasingly encountered in biomedical research and other fields. We use a
novel likelihood-based latent variable representation of the CP factoriza-
tion, in which the latent variables are informed by additional covariates.
We give conditions for identifiability, and develop an EM algorithm for si-
multaneous estimation of all model parameters. SupCP can be used for
dimension reduction, capturing latent structures that are more accurate
and interpretable due to covariate supervision. Moreover, SupCP specifies
a full probability distribution for a multiway data observation with given
covariate values, which can be used for predictive modeling. We conduct
comprehensive simulations to evaluate the SupCP algorithm. We apply it
to a facial image database with facial descriptors (e.g., smiling / not smil-
ing) as covariates, and to a study of amino acid fluorescence. Software is
available at https://github.com/lockEF/SupCP.
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1. Introduction

Data are often best represented as a multiway array, also called a tensor, which
extends the familiar two-way data matrix (e.g., Samples x Variables). Multiway
data are increasingly encountered in many application areas. For example, in
biomedical applications molecular profiling data may be measured over multiple
body regions, tissue types, or time points for the same sample set (e.g., Samples
x Molecules x Time x Tissue). A multiway representation is also useful for
imaging modalities. In this article we describe an application to aligned color
images of the faces of different individuals, from the Labeled Faces in the Wild
database [17]. In particular we consider images for 4000 individuals, each with
pixel dimensions 90 x 90, where each pixel contains three color intensities (red,
green, blue); thus the data is given by a 4-way array of dimensions 4000 x 90 x
90 x 3 (Individual x X x Y x Color).

Unsupervised factorization methods for multiway data, which extend well-
known methods such as the singular value decomposition (SVD) and princi-
pal component analysis (PCA) for a data matrix, are commonly used in many
fields. See [15] for an accessible and detailed survey of multiway factoriza-
tion methods and their uses. A classical and straightforward method is the
PARAFAC/CANDECOMP (CP) [11] decomposition, in which the data are ap-
proximated as a linear combination of rank-1 tensors. Alternative approaches
include the Tucker decomposition [30], and the population value decomposition
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(PVD) for 3-way data [8]. All of these approaches reconstruct the data using a
small number of underlying patterns in each modality, and they are therefore
useful for dimension reduction, de-noising, and exploratory analysis.

In many scenarios, additional variables of interest are available for multiway
data objects. For example, [16] provide several attributes for the images in the
Faces in the Wild database, which describe the individual (e.g., gender and race)
or their expression (e.g., smiling / not smiling). There is a growing literature on
analyzing the relationship between multiway data and additional variables via
predictive models in which the multiway data are predictors and the additional
variables are treated as outcomes. [34] propose a tensor regression model for
a clinical outcome, in which the coefficients for multiway data are assumed
to have the structure of a low-rank CP decomposition. [24] describe a Bayesian
formulation for regression models with multiple outcome variables and multiway
predictors, which is applied to a neuroimaging study. Multiple methods have
been developed for the classification of multiway data [5, 29, 22|, extending
well-known linear classification techniques under the assumption that model
coefficients have a factorized structure.

As in matrix factorization techniques such as PCA, the goal of multiway fac-
torization is to capture underlying patterns that explain variation in the data.
It is often reasonable to assume that these patterns are at least partially driven
by additional measured variables of interest (e.g., gender or expression for fa-
cial images). Therefore, supervising on these variables can improve both the
accuracy and the interpretation of the results. In this article we introduce a
probabilistic CP factorization for multiway data that incorporates additional
variables, called SupCP. To our knowledge there is no previous work wherein
additional variables inform the factorization or dimension reduction of multiway
data. Moreover, SupCP specifies a full probability distribution for a multiway
data observation with given covariate values. It can therefore be used for model-
ing of a multiway outcome given vector-valued predictors (rather than predicting
an outcome vector from multiway predictors), for which there is little existing
methodology.

There is an existing literature on supervised factorization methods for two-
way data (matrices). For example, [4] describe an approach in which PCA is
performed on a subset of variables that are selected by the strength of their
association with an outcome, and the resulting principal components are used
in a predictive model for the outcome. However, in our framework the additional
variables are not outcomes to be predicted from multiway data; rather, they are
treated as auxiliary covariates to inform a CP model for multiway data. In
this respect our framework is most related to the supervised SVD (SupSVD)
approach [19] for matrices, which has also been generalized to accommodate
sparse or functional PCA models [18] and non-parametric relations between the
covariates and principal components [9)].

The rest of this manuscript is organized as follows. In Section 2 we intro-
duce some algebraic notation and terminology for multiway factorization. In
Section 3.1 we introduce the SupCP model, in Section 3.2 we give its full like-
lihood, and in Section 3.3 we describe its identifiability properties. In Section 4
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we describe a modified EM-algorithm for simultaneous estimation of all param-
eters in the model. In Section 5 we describe the connections between SupCP
and other methods in more detail. In Section 6 we describe a comprehensive
simulation study to evaluate the SupCP method, in Section 7 we apply it to a
study of amino acid fluorescence, and in Section 8 we describe an application
to facial image data from the Faces in the Wild database.

2. Notation and preliminaries

Here we give some algebraic notation and terminology for multiway data that
will suffice to describe the development in the following sections. For a general
and more comprehensive introduction to multiway data and its factorization we
recommend [15].

Define a K-way array (i.e., a Kth-order tensor) by X : dy x ...dg, where dj,
is the dimension of the kth mode. The entries of the array are given by square
brackets, X[i1,...,ix], where iy € {1,...,dg} for k € 1,..., K. In this article
we use script capital letters to denote arrays of order greater than 2, bold capital
letters to denote matrices (X : d; x dz), and bold lowercase letters to denote
vectors (v : d x 1).

For vectors vi,...,vk of length dy,...,dg, respectively, define the outer
product

X=vjovy---ovg

as the K-way array of dimensions d; X ... X dg, with entries

K
X1, ... ik] = H Vi[ig]-
k=1

An array given by the outer product of vectors has rank 1. For matrices V1, ...,
V i of the same column dimension R, we introduce the notation

R
[Vi,...,Vk] = E Vir OO VKy,
r=1

where vy, is the rth column of V. This defines a rank R CP factorization.
Often, the columns of each Vy, are scaled to have unit norm (||vy.||r = 1 for
r=1,--+,R, where || - | represents the Frobenius norm) and scalar weights
A are given for each rank-1 component:

R
E Ap +V1p O OV,
r=1

The rank R CP approximation to an array of higher-rank X is typically esti-
mated by minimizing the residual sum of squares

R
||X72)\T'vlro~~ovKrH%. (1)
r=1
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From (1) it is easy to see how the CP factorization extends the SVD for ar-
rays of order greater than 2. However, there are some important differences.
In particular, for K > 2 it is not common to enforce orthogonality among the
columns of Vi because this restricts the solution space and is not necessary for
identifiability. Also, while the dimensions of the row space and column space are
equal for K = 2, there is no analogous symmetry for K > 2, and therefore the
rank of X may be greater than the dimension of each mode (i.e., dy,...,dk).
Finally, it is often useful to represent a multiway array in matrix form,
wherein it is unfolded along a given mode. For this purpose we let X®*) :

di X (H#k di) be the array X arranged so that the jth row contains all values
for jth subarray in the kth mode; specifically, for k = 1

K k—1
iz 4y <H dl) (ik — 1)
k=3 \i=2

and we define X®) similarly for k = 2,..., K.

x™M = X[j,d2,...,ik],

3. Model
3.1. Latent variable model

Suppose we observe a K-way data array (e.g., an image with modes = X y X
color) for each of n observational units, hereafter called samples. The full data
set can then be represented as a (K + 1)-way array with samples as the first
mode, X :n X dy X --- X di. In addition, we observe a g-dimensional vector of
covariates for each sample (e.g., describable features for facial images), given by
the matrix Y : n x ¢. Without loss of generality, we assume both X and Y are
centered across samples.

The SupCP model extends the CP factorization for X (1) to a generative
likelihood model in which the covariates in Y inform latent patterns for the
sample mode. Specifically, the rank R SupCP model is

X=[U,Vy,..., VK] +E

B (2)
U=YB+F,

where

U :n x R is a latent score matrix for the samples,

{Vy :dy x R}E_| are loading matrices in different modes,

E:nxd; X -+ xdg is an error array with independent normal entries
N(0,02),

B : ¢ x R is a regression coeflicient matrix for Y on U,

e F : n x R has independent and identically distributed (iid) multivariate
normal rows with mean 0 and R x R covariance Y.
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The loadings [V, ..., Vk] form a basis for the sampled dy x - - - X dg arrays,
that can be decomposed into patterns for each mode. The scores U reconstruct
each sample from this basis, and give an efficient lower-dimensional embedding
of X if the data have multilinear structure. Thus, to describe the relation of
covariates Y on structured variation in X it suffices to consider the relation
between Y and U, and this gives an efficient generative model for X given Y.
Moreover, the patterns in each mode (V1,..., V) are often interpretable, and
supervision on Y can facilitate this interpretation by capturing how they relate
to the covariates Y (see, e.g., Section 7).

The sample scores U are decomposed into what is explained by the covari-
ates (YB) and not explained by the covariates (F). Therefore, the SupCP model
decomposes the variation in X into variation explained by the covariates, struc-
tured variation not explained by the covariates, and independent residual noise;
this is easily seen with the following reformulation of (2):

X= [[YBavla"'aVK]] + [[F,Vla"‘ ;VK]] + E.

The model allows for components that have little relation to Y, are partially
explained by Y, or that are almost entirely explained by Y, depending on
the relative size of B and X;. If X has structured low-rank variation that is
orthogonal to Y, then for some components r the sample variance of the rth
column of YB will be very small relative to X¢[r,r]. Also, if ||E|r goes to
0, it implies that all structured variation in X is dependent on the variables
in Y. In Section 4 we describe a maximum likelihood estimation approach for
all parameters simultaneously, including ¥ and 02; therefore, the appropriate
level of covariate supervision is determined empirically.

In practice, we constrain the columns of each Vi to have a unit norm. The
scaling of the factorization components, given by the A,.’s in (1), are therefore
subsumed into U. Remarkably, this is enough to make the model parameters
identifiable up to trivial sign changes and ordering of components, as discussed
in Section 3.3.

3.2. Likelithood

The full marginal distribution for X under the SupCP model, specified in (2), is
a multilinear normal distribution [25]. Here we derive its equivalent likelihood
by considering the more tractable matricized version of X, X(*). The ith row of
X ™) gives all values for the ith sample. We define d as the overall dimension for

each sample,
K
d =[] dx,
k=1

so XM is of dimension n x d. Further, let Viat : d X R be a matricized version
of Vi,..., Vg, where the rth column is the vectorization of the K-way array
given by vi,0---0vg,. This gives a matrix representation of the SupCP model,

XM =vyBVL  +FVL +EWD. (3)

mat
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It follows that the distribution of X, marginalizing over F, is multivariate
normal with log-likelihood

n 1 _
LX) o —Zlogdet(Ex) — 5tr ((x<1> — px) S (XD — MX)T) (4)

where
Ux = Vimat £y Vi +021a,
and
Hx = YBVIIrlaw

and I is a d x d identity matrix. Because the likelihoods of X and X() are equiv-
alent, it suffices to consider (4). However, this likelihood function is very high-
dimensional and not convex with respect to all parameters. Thus it is difficult
to optimize directly over all parameters. In Section 4 we describe an Expectation-
Mazimization (EM) algorithm to maximize this likelihood over {V1,..., Vg, Xy,
o2, B}.

The covariance matrix for the d — dimensional matricized data for each
sample is given by Yx. This can be described as a spiked covariance model with
rank—R structure and independent noise. The resulting covariance is not in
general separable [13], meaning that it can not be factorized into the Kronecker
product of separate covariances for each mode. Indeed, our model assumes that
structured variation in X is driven by latent factors that affect multiple modes,
rather than an independent factor structure for each mode [10].

3.3. Identifiability

Here we describe conditions under which the parameters in the SupCP model
are identifiable. That is, for two sets of parameters

ez{vla"'vaazfvo-sz} and é:{vlw"avaifv&ng}a

we give conditions for which equivalency of the likelihoods, L(X | ©) = L(X | ©),
implies equivalency of the parameters, © = ©.

Clearly, the model is not identifiable under arbitrary scaling of B and the
Vi’s. For example, if {¥f,02, B} = {¥;,62,B} and V}, = @V}, for k =
1,...,K where [[t_, ax = 1, then L(X | ©) = L(X | ©). We address this by
scaling the columns in V to have unit norm, and restricting the first nonzero
entry (typically the first entry) of each column to be positive:

(@) ||[Virllr =1, and Vi[1,7] >0 for k=1,...,K and r=1,...,R.

The model is also clearly not identifiable under permutation of the R rank-1
components, i.e., applying the same re-ordering to the columns in Vy,..., Vg,
and B. This is easily addressed by rank-ordering the components under any
given criteria; by default we order the components according to the diagonal
entries of X ¢, which will be distinct for non-trivial cases:
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(b) Ef[’l"l,’f‘l] > Ef[’r‘g,rg] for ri > ro.

Alternatively the components can be ordered by their variance explained by Y,
(YB)T(YB)[r,r], or by their overall variance, (YB)” (YB)[r,r] + Z¢[r, r].

After scaling and ordering, the model is identifiable under general conditions
for K > 2. It is remarkable that no other restrictions are required. In particular,
the columns of V need not be orthogonal and ¥ need not be diagonal for
identifiability.

There is a vast body of literature on the uniqueness of components in a CP
factorization up to scaling and ordering (see Section 3.2 of [15] for a review),
which can be used to derive conditions for identifiability of the model given (a)
and (b) above. Here we use a result of [27], which requires the notion of k-rank.
The k-rank of a matrix A, kr(A), is defined as the maximum number &k such
that any k columns of A are linearly independent. Note that in general kr(A) <
rank(A) and if A is of full column rank, then kr(A) = rank(A). Sufficient
conditions for identifiability of the SupCP model are given in Theorem 1.

Theorem 1. For the model defined in (2), if

K
kr(YB) + > kr(Vi) > 2R+ K, (5)
k=1

and if Y is of full column rank, then the parameters {V1,..., Vi, 02, B}
are identifiable under the restrictions (a) and (b).

The proof of Theorem 1 is given in Appendix A. Generally we expect the solu-
tion to be matrices of full rank satisfying kr(YB) = min(n, ¢, R) and kr(Vy) =
min(dy, R), and therefore the model will be identifiable if R is sufficiently small
relative to the dimensions of X. Nevertheless, the conditions of Theorem 1 are
easily verifiable. Moreover, these conditions are sufficient but not necessary, and
so failure to satisfy (5) does not imply that the model is not identifiable.

In practice, although not necessary for identifiability, we also constrain the
covariance Xy to be diagonal:

Yy[i,j] =0 for i # j.

This simplifies the model complexity considerably, and tends to improve perfor-
mance of the estimation algorithm. We impose this constraint by default, but
allow the option of an unconstrained covariance in our implementation.

4. Model estimation

Here we describe estimation of all parameters for the model specified in Sec-
tion 3.1. In Section 4.1 we describe a modified EM-algorithm for optimizing the
likelihood (4) for fixed rank R. In Section 4.2 we discuss selection of the rank.
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4.1. EM algorithm

For our implementation of the modified EM algorithm, the latent random vari-
ables U are updated via their conditional moments at each iteration. For this
purpose, it is useful to consider the joint log-likelihood of X and U:

L(X,U) = L(X | U) + L(U), (6)
where
L(X|U) = —ndlogo? 4+ 0. %X — [U, Vy,..., Vi]||%, (7)
and

1
L(U) = —nlogdet Xy — tr ((U ~YB)Z; (U - YB)T) .

Moreover, the conditional log-likelihood (7) can be expressed in terms of the
matrices X and V,,.; used in Section 3.2:

L(X | U) = ~ndloga? + o, *tr (XD — UVE (XD ~ UVE,)T),

and so the joint likelihood (7) gives the sum of two multivariate normal likeli-
hoods. This facilities a modified EM algorithm, which is described in detail in
steps 4.1.1 through 4.1.3.

4.1.1. Initialization

One could initialize U and Vy,..., Vg via a least-squares CP factorization
(1), wherein the columns of each Vj, are scaled to have unit norms and the
corresponding weights are absorbed into U. However, this is estimated via an
alternating least squares algorithm that can be computationally intensive, and
is not guaranteed to find the global minimizer.

Alternatively we consider a random initialization in which the entries of each
V. are generated independently from a normal distribution with mean 0, and
then the columns of each Vj are scaled to have unit norm, for £k = 1,..., K.
The latent factor U is initialized by

U=XDV,_ ..

In practice we find that random initialization performs as well as initialization

via a CP factorization (see Appendix D), and so in our implementation we

initialize randomly by default, with the option to initialize via CP factorization.

After initializing U and Vy,..., Vg, we initialize B by regressing U on Y:
B=(YTY)'YTU.

We initialize o2 by the sample variance of the entries in the residual array
X—[U,Vy,...,Vg], and initialize ¥ ¢ by the diagonal entries of the covariance
of the residuals for the random factors F = U — YB:

Y; = diag (F'F/n),

where diag(A) sets the off-diagonal values of a square matrix A to zero.
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4.1.2. E-step

We estimate U via its conditional expectation, given the data {X(), Y} and
fixed parameters:

U = (02YBZ; ! + XU Vi) (VI Vinae + 02871 7L (8)

mat

Similarly, the conditional variance of U is

-1
S L yr -1
EU = (U—ngathat + Ef > .
This matrix inverse can be efficiently evaluated via the Woodbury matrix iden-
tity [26]. Thus, the computation of the E-step is very efficient.

4.1.83. M-step

The parameters Vi,..., Vg,B, Yy, 02 are updated by maximizing the condi-
tional expectation of the log-likelihood. Derivations for the following conditional
maximum likelihood estimates, using the expected moments of U from 4.1.2,
are given in Appendix B.
The updating step for V; is
V, = X(Q)wai;t (V(l)TV(l)

mat mat

PN —~ —1
(070 + nZU)) ,

where the rth column of W) - nH,IfZQ d;, x R is the vectorization of U, o

mat
Vo, O -+ 0 Vg,, the rth column of Vx(nl;t : HkK:2 di X R is the vectorization of
Var 0 -+ 0 Vi, and - is the Hadamard (entry-wise) product. The remaining
loading matrices Va,..., Vi are updated similarly.

We then update the parameters B, ¥, and o2 by setting their respective

partial derivative of the expected log-likelihood equal to 0. As a result, we obtain:
B=(YTY)"'Y'U,
2= (O70 +nSy + (YB)'(YB) - (YB)'T - T'(YB)), (9)
s = %(m(x“)(X“)T ~ 2Vinat UT) + (Ve VinatZ0)

e mat
+tr(UVE, Ve UT)).

mat

As a final step, we adjust the sign and scale of each column of Vi and re-

scale B and X7 accordingly. This step is only for identifiability purpose (see Sec-

tion 3.3) and does not change the likelihood. Specifically, if Vi,..., Vi, Vi, B

and X correspond to their respective unscaled parameters, the scaled versions

are given by

Vir = Vi /|[Vir || 7 fork=1,...,Kand r=1,...,R,
Bli,r] = B[i, 7] - | Vmas, || F fori=1,...,qandr=1,..., R,

Eplr, sl =Xgls, r] - [[Vimat,

£ ||[Vmat,||p fors=1,...,Randr=1,...,R.
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Optionally, we also restrict X to be diagonal by setting 3 ([r, s] = 0 for r # s.

We iterate between the E-step and the M-step of the algorithm until the
marginal likelihood (4) converges. The M-step (Section 4.1.3) maximizes the
expected log-likelihood coordinate-wise over each parameter, but may not give
a global optimum over the full parameter space {V1,..., Vg, Zy, o2, B}. Nev-
ertheless, the marginal likelihood is guaranteed to increase over each iteration
and therefore converge. In practice the likelihood may converge to a local, rather
than a global, optimum, depending on the initial values. We find that a form
of annealing, in which random variation is incorporated into the first several
iterations, helps to avoid dependence on the initialization. See Appendix D for
more detail. R

After estimation, [U,Vy,..., V] is the full low-rank reconstruction of X,
where U is given in (8). The reconstruction of X given Y only is [YB, Vy,...,
Vi].

4.2. Rank selection

We recommend selecting the rank R of the model by likelihood cross-validation,
in which model parameters are estimated via a training set and evaluated using
the likelihood of a test set. Such an approach is desired because it directly
assesses the fit of the specified probabilistic model (via the likelihood) in a way
that is robust to overfitting. Also for exploratory purposes it provides validation
that the estimated components describe real underlying structure.

First, we select nain samples to fit the model, yielding the reduced data
array Xirain : Mtrain X d1 X -+ X di and covariate matrix Yipain : Ttrain X ¢- The
remaining samples are considered the test set, yielding Xiest : (1 — Ngrain) X d1 X

- X dg and Yiest : ( — Ngrain) X ¢. For candidate values of R, we optimize
the likelihood of the training daAta XtrainAand ¥tmm using/\ the algorithm in
Section 4.1 to obtain estimates {V1 r,..., Vi r, 2 R, EEVR, Br}. The resulting
estimates are assessed via the log-likelihood of the test set

A e
L (Ktests Yiest | Viors o, Vieor, 5.0, 52 5 Br)

which can be evaluated as in (4). The rank is chosen to be the value of R that
gives the lowest log-likelihood of the test set. The above approach works well in
simulation studies, as shown in Appendix C.

5. Special cases

The SupCP model specified in Section 3.1 reduces to traditional factor analysis
without supervision (B = 0) and when K = 1, i.e., when X is a matrix. More
generally, when K = 1 SupCP reduces to the SupSVD model [19]. Thus, an al-
ternative strategy of decomposing X is to apply SupSVD to the matricized data
X, However, this strategy is inefficient and therefore less accurate when the
data have multi-linear structure, as shown in Sections 6 and 8; moreover, the
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patterns within each mode (V) that are provided by a multiway factorization
framework are often useful to interpret. Lastly, the identifiability results in Sec-
tion 3.3 are not applicable to matrices; the SupSVD model requires additional
restrictions of orthogonality and diagonal covariance for identifiability.

Without the presence of covariates Y, SupCP reduces to a probabilistic CP
factorization in which factors for the first mode (samples) are considered ran-
dom. The EM algorithm in Section 4 fits such a model when Y = 0. To our
knowledge this particular unsupervised model and estimation approach, which
provides a generative model for the sampled mode, is novel. Related maximum-
likelihood based CP factorizations have been proposed by [23] and [32], and
there is a large body of work on Bayesian models for the CP and other multi-
way factorizations (see, e.g., [13] and [35]).

If the entries of the residual factor covariance ¥y are large relative to the
noise variance o2, then U, V7,..., Vg reduce to a standard unsupervised least-
squares CP factorization. Specifically, if X/ is diagonal and

min, X ¢[r, 7] /02 — oo,

it is easy to see that the joint likelihood (6) is maximized by the solution that
minimizes the squared residuals for the entries of X; the supervision component
YB is given by a regression of Y and U, but will not influence the factorization

of X.
If the entries of the residual factor covariance Xy are small,

=417/ = 0,

then the residuals F also tend to zero and the underlying structure of X is given
entirely by Y:

X =[YB,Vi,...,V,] +E. (10)

This can be considered a multi-linear regression model for a multiway response
(X) from vector valued predictors Y. This has received considerably less atten-
tion than the reverse scenario, prediction of a vector outcome from multiway
predictors. However, recently [20] proposed a tensor response regression, wherein
the tensor response is assumed to have a Tucker factorization with weights de-
termined by vector-valued predictors. [14], describes a general framework for
tensor-on-tensor regression, in which the predictor tensor and the outcome ten-
sor have the same number of modes.

5.1. Model complexity

An important advantage for using a multiway factorization for multiway data,
rather than vectorizing the data and using a matrix factorization, is the decrease
in model complexity. Any SupCP model is also included in the support of the
SupSVD model for the matricized data, as seen by the matrix form of the
model (3). However, model complexity scales with the sum of dimensions in
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each mode under SupCP and with the product of dimensions in each mode
under SupSVD. The total number of free parameters in the SupCP model with
diagonal covariance, accounting for the identifiability conditions of Theorem 1,
is

Rl+q+di+-+dxg —K)+1.
The number of free parameters for the SupSVD model, accounting for orthog-
onality conditions required for identifiability, is

R(1+q+dids---dx — (R+1)/2)+ 1.

Thus, model complexity for the same rank can decrease by several orders of mag-
nitude under SupCP, especially for data with several high-dimensional modes.
Moreover, incorporating supervision into the likelihood model increases the
model complexity by a factor of only Rq, which is negligible if the size of X
is much larger than the size of Y.

6. Simulation

Here we describe a comprehensive simulation study which compares three differ-
ent methods: the proposed SupCP method, the least-squares CP factorization,
and the SupSVD method (on matricized data along the first mode). We simulate
data from different settings, and evaluate the performance of different methods
in terms of parameter estimation and low-rank signal recovery accuracy. To
avoid complication, we set the ranks for different methods to be the true ranks.
The simulation study for rank estimation is conducted separately in Appendix

C.

6.1. Stmulation settings

We first consider a 3-way array X with n = 100 samples, and d; = 10 and dy =
10 variables in the other two modes respectively. In particular, the generative
model for X is X = [U, V1, V3] 4+ E, where [U, V1, Vy] is the underlying low-
rank signal with true rank R = 5, and E is normally distributed noise with iid
entries with mean 0 and variance o2 = 4. The auxiliary data matrix Y contains
q = 10 variables, potentially related to the latent variables in U through a linear
relation U = YB + F. The coefficient B is a 10 x 5 matrix, and the random
matrix F has iid rows with mean 0 and covariance ¥;.
We particularly consider the following settings:

e Setting 1 (Non-supervision Setting): We set B to be a zero matrix,
indicating the auxiliary data Y have no effect on the underlying structure
of X (i.e., X is generated from a probabilistic CP model). The covariance
matrix Xy is a diagonal matrix with diagonal values {25,16,9,4,1}.

e Setting 2 (Mixed Setting): The coefficient matrix B is filled with Gaus-
sian random numbers. The covariance matrix ¥, is the same as in Setting
1. Correspondingly, the latent score U is jointly affected by Y and F.
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e Setting 3 (Full-supervision Setting): The coefficient matrix B is the
same as in Setting 2, and the covariance matrix ¥ is a zero matrix.
Namely, the latent score U is solely determined by Y.

In all of the above settings, the loading matrices V1 and V4 are filled with
random numbers and normalized to have orthonormal columns. We also consider
several additional simulation settings in Appendix E, where 1) loadings are
highly collinear; 2) dimensions d; and dy are high; 3) there are more than 3
modes; 4) the model is misspecified and data do not have multiway structure.
We conduct 100 simulation runs for each setting, and compare different meth-
ods using various criteria. In particular, to evaluate the overall performance of
dimension reduction, we assess the Frobenius norm of the difference between the
estimated and true low-rank tensors ||[U, V1, V3] — [U, V1, V3]||r (denoted by
SE). We also consider the estimation accuracy of loadings via the maximal
principal angles /(V1, \A/'l) and Z(Va, \72) [6]. This only applies to SupCP and
CP because SupSVD decomposes X1 and there is no direct estimation of V;
and V5. In addition, we evaluate the estimation accuracy of other important

parameters in SupCP and SupSVD via ||B — B||p, (ag — gz) /o2 (relative er-
ror, denoted by RE.), and the mean relative errors of the diagonal values of X
(denoted by RE}). We also compare the fitting times of different methods on a

standard desktop computer (8Gb Ram, 3.30GHz).

6.2. Results

The simulation results for Settings 1-3 are presented in Table 1. Additional
results can be found in Appendix E. In all settings, SupCP always provides the
smallest SE. Namely, it has the highest low-rank signal estimation accuracy.
This is true even in Setting 1 where the data are generated from a CP model.
We remark that SupCP outperforms CP in the non-supervision setting due
to the shrinkage estimate of U in (8) from the EM algorithm. The shrinkage
estimate strikes a balance between bias and variance, and thus leads to a smaller
SE. A similar result was reported in [19]. From the dimension reduction point
of view, SupCP outperforms the competing methods and identifies the most
accurate underlying structure.

In addition, in Setting 1, SupCP has similar loading estimation losses to
CP. Namely, the proposed method automatically approximates the unsuper-
vised method when the auxiliary data are irrelevant. SupCP also outperforms
SupSVD in terms of the estimation of other parameters. In Setting 2, SupCP
almost uniformly outperforms the competing methods. In Setting 3, where the
latent score is solely determined by the auxiliary data, both supervision methods
(SupCP and SupSVD) outperform CP in the signal recovery accuracy. More-
over, SupCP significantly improves the loading estimation over CP. In terms
of the fitting time, CP is the fastest while SupCP and SupSVD are also very
efficient in these settings. However, when dimensions are higher or the num-
ber of modes is larger, the computation of the matrix-based method SupSVD
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quickly becomes infeasible. Both SupCP and CP scale well to larger data sets
(see Appendix E). Overall, SupCP is computationally efficient and has a good

E. F. Lock and G. Li

performance in a range of settings.

Stmulation results under Settings 1, 2 and 8 (each with 100 simulation runs). The median
and median absolute deviation (MAD) of each criterion for each method are shown in the

TABLE 1

table. The best results are highlighted in bold.

Setting Criterion SupCP CP SupSVD
SE 45.97 (1.38) | 58.75 (2.37) | 66.64 (1.08)
Z(V1, V1) || 74.93 (10.93) | 74.23 (8.89)
N Z(V2,Va) || 71.30 (10.40) | 70.11 (9.42)
1: Non-supervision | g gy || 34.27 (1.95) 39.50 (2.48)
100« RE. || 1.75 (0.84) 7.85 (0.96)
100 « RE; || 37.66 (14.67) 143.83 (26.77)
Time 0.36 (0.09) 0.06 (0.02) 0.24 (0.09)
SE 42.45 (0.97) | 51.83 (1.82) | 61.20 (0.92)
Z(V1, V1) || 10.58 (1.64) | 12.34 (3.07)
_ /(V2,V3) || 10.94 (1.63) | 13.21 (3.17)
2: Mixed IB-B|r | 31.51 (1.81) 48.61 (6.30)
100« RE. || 1.29 (0.80) 6.10 (0.83)
100« RE; || 24.00 (6.06) 30.28 (9.32)
Time 0.32 (0.06) 0.04 (0.02) 0.23 (0.07)
SE 25.06 (1.04) | 53.95 (1.08) | 53.23 (1.06)
Z(V1, V1) || 12.88 (1.78) | 18.16 (4.85)
. Z(Va, V) || 12.99 (1.63) | 17.67 (4.35)
3: Full-supervision | g g || 120.44 (11.63) 109.02 (7.24)
100« RE. || 1.77 (0.89) 7.40 (0.87)
100 « REf NA NA
Time 0.85 (0.08) 0.04 (0.02) 0.70 (0.27)

7. Application to amino acid fluorescence

We consider fluorescence data for five laboratory samples, measured over the
emission and excitation frequency domains with a spectral fluorometer. Inten-
sities are available on a 2D grid for excitation wavelengths between 250nm and
450nm, and emission wavelengths between 250nm and 310nm, in increments of 1
nm. Thus, the resulting fluorescence array is of dimension X : 5 x 61 x 201. Each
sample is comprised of a mixture of three amino acids diluted in water: Trypt-
phan, Tyrosine, and Phenylalanin. The known concentration of each amino acid
in Mole/L is given in the matrix Y : 5 x 3. These data have been previously
published [7] and are freely available online at http://www.models.life.ku.
dk/nwaydata (accessed 02/28/2018).

The structure of excitation/emission fluorescence data is suitably character-
ized by a CP factorization [3], to decompose latent patterns in the excitation
and emission domains. We apply SupCP to the fluorescence array X, supervis-
ing on Y to capture the relationship between fluorescence structure and the
three amino acids. A rank—3 model is selected to maximize the test likelihood
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(Section 4.2) under a leave-one-out cross validation scheme. The resulting super-
vision weights B are given in Table 2, scaled by the standard deviation of each
amino acid. These results clearly show that each of the three components are
driven by the concentration of a different amino acid. The resulting components
are shown in Figure 1, and can be interpreted as the excitation and emission
fluorescence spectra that are specific to each amino acid.

TABLE 2

Scaled coefficients for rank—3 fluorescence model.

Component 1 | Component 2 | Component 3
Bphe * Sd(the) 7638 138 130
Bryp * sd(YTrp) 140 11734 -5
By, * sd(YTyr) 87 =72 8514
Phenylalanin Tryptophan Tryosine
450 Y 450 TYPLOoP 450 y
400 400 400
c c c
S S S
8 350 8 350 8 350
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w w w
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260 280 300 260 280 300 260 280 300
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02t/ 02 0.2
g RN \
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3 3 / \ 2
g o1 \ g o1 \ g o1 y
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Fic 1. Rank-1 components corresponding to Phenylalin, Tryptophan and Tryosine. The bot-
tom two rows give the loadings for emission and excitation wavelengths, and the top row gives
their resulting product.
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8. Application to facial images

The Labeled Faces in the Wild database [17] is a publicly available set of over
13000 images, where each image includes the face of an individual. The images
are taken from the internet and the individuals represented are celebrities. Each
image is labeled with the name of the individual, but the images are unposed
and exhibit wide variation in lighting, image quality, angle, etc. (hence “in the
wild”).

[16] developed an attribute classifier, which gives describable attributes for
a given facial image. These attributes include characteristics that describe the
individual (e.g., gender, race, age), that describe their expression (e.g., smiling,
frowning, eyes open), and that describe their accessories (e.g., glasses, make-up,
jewelry). These attribute were determined on the Faces in the Wild dataset,
as well as other facial image databases. In total 72 attributes are measured
for each image. Our goal is to use these characteristics to supervise dimension
reduction of the images and to develop a probabilistic model for computationally
generating faces with given describable characteristics.

PCA and other low-rank matrix factorization approaches are commonly used
to analyze facial image data. For example, the terminology eigenfaces [28, 31|
has been used to describe a broad class of methods in which PCA of vectorized
facial images precedes a given task, such as face recognition. PCA can only be
applied to vectorized images, wherein d; X dy dimensional images are converted
to a dj -dy dimensional vectors (or dj -ds -3 dimensional vectors for color images).
Thus, PCA does not exploit multiway structure. Although facial images are
not obviously multi-linear, the CP factorization has been shown to be much
more efficient as a dimension reduction tool for facial images than PCA, and
marginally more efficient than other multiway factorization techniques [21].

For our application the images are first frontalized, as described in [12]. That
is, the unconstrained images are rotated, scaled, and cropped so that all faces
appear forward-facing and the image shows only the face. After this processing
step, we expect the nose, mouth and other facial features to be in approximately
the same location across the images. This step is important for linear factor-
ization approaches such as PCA or SupCP, which assume the coordinates are
consistent across the images. Some examples of the frontalized images are shown
in Figure 2.

We work with a random sample of 4000 frontalized images from unique
individuals. Each image is 90 x 90 pixels, and each pixel gives the intensity
for colors red, green and blue, resulting in a multiway array of dimensions
X : 4000 x 90 x 90 x 3. We center the array by subtracting the “mean face”
from each image, i.e., we center each pixel triplet (x X yxcolor) to have mean
0 over the 4000 samples. The attribute matrix Y : 4000 x 72 is measured on
a continuous scale; for example, for the smiling attribute, higher values corre-
spond to a more obvious smile and lower values correspond to no smile. We
standardize Y by subtracting the mean and dividing by the standard deviation
for each row, hence converting each attribute to its z-scores.

We assess the fit of the SupCP model with a training set of 100 randomly
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(a) Michael Jordan

(b) George W. Bush (c) Angelina Jolie

Fic 2. Examples of frontalized faces.

sampled images. The mean log-likelihood for this training set and the mean
log-likelihood for the remaining test images are shown for different ranks in
Figure 3(a). The log-likelihood increases consistently for the training set, but the
test log-likelihood peaks at a rank of 200, suggesting that over-fitting decreases
the generalizability of the estimates for higher ranks. For comparison, we also
assess the SupSVD model on the vectorized images X : 4000 x 24300 in
Figure 3(b). The SupSVD model does not perform as well, achieving a maximum
mean log-likelihood of —8.75 x 10%, versus a maximum of —7.55 x 10* for the
SupCP model. Note that SupSVD requires many more parameters for each
component, on the order of 90-90 -3 = 24300 parameters per component versus
90 + 90 + 3 = 183 for SupCP. Thus, the SupSVD model is more prone to
overfitting with a smaller number of components, which is inadequate to capture
the complex covariance structure of the images and the covariate effects. A
factorization using SupCP with no covariates has lower test log-likelihood for
all ranks considered and achieves a maximum of —7.60 x 10%.

Log-likelihood

x10%

SupCP train
— — SupCP test

0 50

100 150 200

Log-likelihood

-75

-8.5

-85

x10*

SupSVD train

— — SupSVD test

10 15 20 25

250 0
CP Rank SVD Rank
(a) SupCP (b) SupSVD

Fia 3. Log-likelihood for the estimated SupCP and SupSVD models, for different ranks, on
the training images used to fit the model and the test images.

We fit the SupCP model, with rank 200, on the full set of 4000 images. This
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job required a computing server with 64GB of RAM. We run the EM algorithm
for 2000 iterations, including a 500 annealing burn-in, which took approximately
8 hours. After 2000 iterations the log-likelihood appears to converge, as shown
in Figure 4. The estimated parameters provide a data-driven generative model
for faces with given covariates. In particular, given a feature vector y with scores
for the 72 describable attributes, the “mean face” for the given attributes is

IIyTB7 Vlv V27 VS]]7

where V7 : 90 X 200 contains loadings in the z-dimension, V5 : 90 x 200 contains
loadings in the y-dimension, and V3 : 3 x 200 contains color loadings.

8
26 10 261 (10
27 -262
238 -263
3 3
2-29 2284
T T
= 3 = -265
f=2 j=21
o] [e]
= 31 — 266
32 -267
-33 -2.68
100 200 300 400 500 500 1000 1500 2000
lteration lteration
(a) Annealing (b) After annealing

Fic 4. Log-likelihood for the model over 2000 EM iterations. The first 500 iterations (a)
incorporate random annealing to avoid local modes.

The constructed mean facial images for certain attributes are given in Fig-
ure 5. To generate these images, the presence of a given features is coded as a
z-score of 3 in the covariate vector, and all other scores are set to 0. The result-
ing images are smooth and remarkably intuitive. For comparison the analogous
constructed images using SupSVD with rank 16 are shown in Figure 6, and the
features are less distinctive.

9. Discussion

High-dimensional data with multiway structure are often encountered in mod-
ern research, yet present statistical methods to deal with such data are in their
infancy and leave much room for further development. Most of the method-
ological development for the analysis of multiway data has traditionally come
from fields other than statistics, such as computer science and chemometrics.
Perhaps in part because of this, methods for multiway data are often not based
on a generative statistical model. In this article we have developed the SupCP
method, which is based on a probabilistic CP factorization model in which addi-
tional covariates inform the factorization. Our simulation studies illustrate the
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(a) Mean (b) Male (c) Male; moustache
d) Male; asian e) Male; smiling f) Female; black; lipstick

Fic 5. Constructed faces under different attribute covariates: SupCP.

(a) Mean ) Male ¢) Male; moustache
(d) Male; asian (e) Male; smiling (f) Female; black; lipstick

Fic 6. Constructed faces under different attribute covariates: SupSVD.
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advantages of SupCP for dimension reduction and interpretation when the un-
derlying structure of multiway data is multi-linear and at least partially driven
by additional covariates. Our application to amino acid data illustrates how su-
pervision can facilitate interpretation of the underlying low-rank components.
Our application to facial image data illustrates how SupCP can be used to more
generally estimate a generative model for multiway data with given covariates.

Many datasets can be represented as multiway arrays, but we caution that
SupCP is not well motivated if the data do not have any multi-linear structure.
In particular, SupCP and other approaches that involve multiway factoriza-
tion are not universally applicable to visual image analysis problems. For our
application to facial analysis it is critical that the images are well-aligned to
common coordinates, and share common structure on that coordinate system.
The data also show some (high-rank) multiway structure, as SupCP is more
accurate than the analogous approach that relies on vectorization of the multi-
way images. State-of-the-art generative deep learning models, such as a properly
trained conditional variational auto encoder, have also been applied to the task
of facial image generation with promising results [33].

Our model assumes that array data can be decomposed into low-rank struc-
ture and independent residual error. Extensions to the model may allow for
more complex residual correlation structures, such as a separable covariance for
a more general array normal framework [13].

The SupCP framework introduced in this article may be extended in sev-
eral ways. Here we have focused on the CP factorization because it allows for a
straightforward extension of the supervised SVD model and has been shown to
be an efficient factorization for facial image data. Supervised and probabilistic
approaches to the Tucker factorization, or other multiway dimension reduction
techniques, are interesting directions for future work. Moreover, there is a grow-
ing body of work on multiway factorization methods for sparse or functional
data [1, 2]. The SupCP framework may be extended to accommodate sparse
and functional data, or non-linear covariate effects, which are analogous to re-
cent extensions of the SupSVD framework [18, 9]. Finally, here we have focused
on allowing a random latent variable and covariate supervision for one mode
(the sample mode). More general approaches which allow for supervision or
random components in more than one mode is another promising direction of
future work.

Appendix A: Proof of Theorem 1

Here we show that the parameters {V1,..., Vg, 3,02 B} are identifiable given
the likelihood (4), for the conditions of Theorem 1. By the identifiability of the
mean and covariance of a multivariate normal likelihood, it suffices to show that
any given mean

ux = YBVT

mat

and covariance
T 2
EX = VmatEfVmat + o, Id
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uniquely identify Vi,..., Vg, ¢, 02, and B.
Note the entries of pux can be re-arranged as the (K+1)-way array

ix =YBoVjo...oVg

of dimensions n X d; X --- X dg. By the result of [27], the components {Y, B,
V1,...V} are uniquely defined up to scaling and ordering if the k-rank condi-
tion (5) is satisfied. Hence, by the scaling and ordering restrictions (a) and (b),
the components are fully identified. Also, the condition that Y is of full column
rank assures that B is uniquely identified by

= (YTy)"'YTu.
Further, o2 is uniquely identified as the value that gives
rank (EX - ogId) = R.

Letting
Yp=Yx — 02l = VX VL

mat>

we see that Xy is uniquely identified by
Ef - (Vlnat Vmat ) -1 Vgat ZRVIHM (Vmat Vmat ) U

Appendix B: M-step derivations

Here we give details for the conditional maximum likelihood estimates given in
Section 4.1.3.
To update V1, we fix Vo,..., Vg and set the partial derivative of the log-

likelihood with respect to V; equal to 0. It helps to define Wnrlat : ( H o2 dk)

R as the design matrix for regressing X(® on V. Given u, is the rth column
of U, the rth column of w)

mat 18 the vectorization of u, ova, 0---ovg,. Then,

1
X® =v,wW{) +E®,
and the derivative of the joint log-likelihood with L(X, U) with respect to V7 is

OL(X, U
G(Tl) =207 (X@)TWSE)W - V1W$it WS;L) (11)
Let W

mat e the conditional expectation of wb Then, the rth column of
w

mat

mat 1 the vectorization of U, o va, o - -+ 0 Vg,., where U, is the rth column of
U. Note that -
W(l) W(l) V(l V(l)

mat mat — ( mat mat

y-UTu
where V)

nat Hk 5 d X R is the matrix with column r being the vectorization

of v, 0 -+ 0vy,. Thus the conditional expectation of W,(Ii)it ngt is

mat

(Vv (ﬁTﬁ +niU) :
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Taking the conditional expectation of (11) and setting equal to 0 yields

T T PPN —~ —1
Vi = XOWI, (VAT VAL (070 nS0)
The remaining loading matrices Vao,..., Vg are updated similarly.

The partial derivatives of B, X¢, and o2 are

9LX, U) =2(Y'U - YTYB)zjjl
0B
aL(Xa U) —1 —1 T —1
872]0:—712]0 +Ef (U-YB) (U—YB)Ef
0L(X,U) —2 | 4 1 T 1 T \T
80‘3 = _ndge + O¢ tr ((X( ) — UVmat)(X( ) — UVmat) ) .

Taking the conditional expectation of the above partial derivatives and setting
them equal to 0 yields the parameter updates in (9).

Appendix C: Rank selection simulation

Here we give the results of a simulation to asses the performance of the likelihood
cross-validation approach to rank selection described in Section 4.2. The data
simulation scheme is similar to that in Section 6.1, but the rank R is varied
for each simulation. Specifically, data are generated for the 3-way array X :
n X d; X de with n = 100 samples, d; = 25 and dy = 25, and Y is an auxiliary
matrix with 10 variables, Y : 100 x 10. Given rank R structure, the latent signals
are generated under model (2) as follows:

1. The entries of Y and B : 10 x R are generated independently from a
standard normal distribution.

2. The diagonal entries of the covariance ¥y : R X R are generated from a
Uniform(5,25) distribution, and the factor residuals F : n x R have iid
rows with mean 0 and covariance Xy.

3. The entries of V; : 25 x R and V3 : 25 X R are generated to have or-
thonormal columns via the SVD of a random matrix.

The error array E : 100 x 25 x 25 is generated by independent N(0,c?)
entries, where we consider differing noise levels given by ¢2 = 1,5, or 10. For
each noise level, we independently generate 10 datasets as above for each of
R=0,1,...,10. For each of the 3-10-11 = 330 simulated datasets, we estimate
the rank via the likelihood cross-validation scheme described in Section 4.2. We
randomly specify a training set and a test set, each of size 50, and consider
the ranks » = 0,1,2,...,9, or 10, choosing the rank that gives the lowest log-
likelihood in the test set. Note that R = 0 corresponds to a null dataset with
independent entries, and the results for » = 0 are given by a the independent
normal log-likelihood of the test set with variance % given by the maximum
likelihood estimate of the training entries.
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Figure 7 shows a scatterplot of the estimated rank and the true rank for each
noise level. For 02 = 1 the estimated rank is a good predictor for the true rank;
the correct ranks were chosen in 83 of the simulations, overestimated slightly
in 13, and underestimated slightly for 4. This demonstrates that a likelihood
cross-validation approach is reasonable to determine the rank of the model.
For 02 = b5, the estimated rank still shows a clear association with the true
rank, but it is less accurate, with a tendency toward under-estimation. When
0% = 10 the ranks are severely underestimated, as the low-rank signal is difficult
to distinguish from the noise. For all null simulations (R = 0) the approach
correctly does not identify any signal.
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Fic 7. True rank vs. estimated rank for 100 randomly generated simulations, under different
levels of moise variance. A small amount of jitter is added to show multiple points with the
same coordinates.

Appendix D: Initialization simulation

Here we describe the results of a simulation to assess the sensitivity of the
iterative algorithm in Section 4.1 to initial values. The algorithm can converge
to a local maximum, and we explore different strategies to alleviate this issue.

Our simulation scheme is as follows. We consider a 4-way array X of dimen-
sions 10 x 20 x 40 x 50, and a vector of covariates y : 10 x 1. For rank R = 2,

1. The entries of U : 2 x 10 are generated independently from a normal
distribution, variance of each row chosen from Uniform(2,22)

2. The entries of y are correlated with first column of U; specifically, y = u; —
f where the entries of f are generated from a standard normal distribution

3. The entries of V1 :20 x 2, Vo :40 x 2, V3 : 50 x 2 are generated indepen-
dently from a standard normal distribution and standardized so that the
columns have unit norm.

4. The error array E : 10 x 20 x 40 x 50 is given by independent N(0, 1)
entries.
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TABLE 3
Results under 6 different initialization approaches over 100 simulated datasets. The mean
log-likelihood, mean absolute difference between runs for the same data, and mean
computing time for a single run are shown, with standard deviations in parentheses.

Method Log-likelihood | Difference | Time (sec)
Random start, no annealing -200160 (589) | 297.6 (576) 3.6 (3.1)
Random start, 100 annealing iters | -200090 (529) | 180.8 (410) 4.7 (3.2)
Random start, 500 annealing iters | -199980 (420) 58.2 (132) 9.0 (2.6)
CP start, no annealing -200320 (752) | 433.5 (743) 3.1 (2.6)
CP start, 100 annealing iters -200080 (501) | 183.1 (404) 5.1 (3.3)
CP start, 500 annealing iters -199980 (422) 53.6 (149) 9.6 (2.6)

We generate 100 datasets under the above scheme, and for each dataset we
run the algorithm under different initialization methods. We apply both ran-
dom initialization and initialization via a CP decomposition, as described in
Section 4.1.1. To avoid local maximum, we also consider a form of annealing in
which random variation is incorporated during the first few iterations. Specifi-
cally, independent normally distributed noise with mean 0 is added to the ex-
pected value for U at each iteration (Section 4.1.2), for the first L iterations,
and the standard deviation of the noise is proportional to the inverse of the
iteration number.

In total we consider six initialization methods: (1) random initialization with
no annealing, (2) random initialization with 100 annealing iterations, (3) ran-
dom initialization with 500 annealing iterations, (4) CP initialization with no
annealing, (5) CP initialization with 100 annealing iterations, and (6) CP ini-
tialization with 500 annealing iterations. For each method, and each simulated
data set, we run the algorithm until convergence twice under different random
seeds.

In Table 3 we show the mean absolute difference in log-likelihoods between
different runs, and the mean likelihood, under the different methods. Under
this scheme, a CP initialization generally gives little benefit over a random
initialization, and annealing improves the log-likelihood after convergence and
the agreement under different runs. However, even 500 annealing iteration did
not result in perfect agreement between different runs of the algorithm. To
further reduce convergence to local optimum, one can run the algorithm under
multiple initialization and choose that which gives the highest log-likelihood
after convergence.

Appendix E: Additional simulation results
E.1. Collinearity simulation

Here we investigate the effect of loading collinearity on model estimation. We
conduct additional simulation studies under Settings 1-3, while setting the load-
ings in V; and V3 to be highly collinear, respectively. In particular, we fill V;
and V, with random numbers, and only normalize the columns to have unit
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Simulation results under Settings 1, 2 and 8 with collinear loadings (each with 100

simulation runs). The median and median absolute deviation (MAD) of each criterion for

each method are shown in the table. The best results are highlighted in bold.

Setting Criterion SupCP CP SupSVD
SE 45.28 (1.11) | 58.60 (1.86) 65.94 (1.08)
Z(V1,V1) || 73.01 (10.09) | 73.97 (10.07)
N Z(V2,Va) || 73.82 (9.53) | 74.40 (9.56)
1: Non-supervision | g gy || 35.56 (1.89) 41.28 (2.40)
(collinear loadings) | 100 % RE, 1.89 (0.87) 7.99 (0.94)
100« RE; || 38.19 (12.63) 132.92 (31.69)
Time 0.48 (0.14) 0.06 (0.02) 0.29 (0.12)
SE 42.75 (1.11) | 54.29 (0.91) 61.70 (1.05)
Z(V1, V1) || 55.40 (15.21) | 68.39 (12.33)
. /(V2,Va2) || 69.45 (10.89) | 75.32 (10.12)
2: Mixed |B-BJ|p || 52.54 (13.81) 87.89 (7.39)
(collinear loadings) | 100  RE, 1.40 (0.78) 6.90 (0.90)
100+ RE; || 29.35 (10.17) 66.01 (17.27)
Time 0.58 (0.21) 0.05 (0.02) 0.24 (0.12)
SE 27.75 (1.29) | 56.05 (1.43) 53.08 (1.08)
Z(V1, V1) | 61.49 (12.91) | 73.88 (8.75)
. £(V2,V3) 71.73 (9.47) | 71.30 (9.12)
3: Full-supervision | g g)1 Il 12534 (11.17) 112.09 (7.22)
(collinear loadings) | 100« RE, 1.88 (1.01) 7.74 (1.00)
100  RE; NA NA
Time 1.19 (0.23) 0.06 (0.02) 0.71 (0.27)

norm. The other parameters are kept unchanged from Settings 1-3 in Section
6.

We conduct 100 simulation runs in each setting, and the results are pre-
sented in Table 4. In general, the results are very similar to those in Section 6.2
(where true loadings are orthonormal). SupCP significantly outperforms CP and
SupSVD in the low-rank signal estimation. In terms of the estimation of each
individual parameter, SupCP is better than or at least comparable to the cor-
responding competing methods. We note that principal angles Z/(V1, V1) and
Z(Va, \72) for SupCP and CP are generally larger and have higher variabilities
under the collinear settings compared to the orthonormal settings. This may be
due to the local optimum issue of the low-rank approximation to a tensor array,
which calls for further investigation.

E.2. High-dimension simulation

We also investigate the performance of different methods in higher dimensions.
In particular, we fix the parameters (B and X¢) as in Setting 2, and increase the
dimensions (dy,ds) of the loading matrices from (10,10) to (50, 50), (100, 100)
and (500,500). We fill V; and V3 with random numbers and normalize them
to have orthonormal columns. In order to keep the signal-to-noise ratio (SNR)
unchanged from Setting 2, we adjust o2 accordingly.
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TABLE 5
Simulation results under Settings 2 with (d1,d2) = (50,50), (100, 100), (500, 500) (each with
100 simulation runs). The median and median absolute deviation (MAD) of each criterion

for each method are shown in the table. The best results are highlighted in bold.

Setting Criterion SupCP CP SupSVD
SE 12.57 (0.23) | 12.95 (0.47) | 45.90 (0.21)
Z(V1, V1) || 4.97 (0.31) | 5.29 (0.58)
. . Z(V2,V3) || 5.14 (0.40) | 5.49 (0.83)
Mixed Setting IB-B|r || 26.63 (0.26) 34.46 (0.76)
(d1, d2) = (50,50) 100 x RE. || 0.26 (0.15) 5.06 (0.18)
100 * RE; || 12.24 (1.27) 28.39 (2.37)
Time 1.06 (0.06) | 0.07 (0.02) | 1.07 (0.02)
SE 7.72 (0.10) | 7.84 (0.21) | 45.06 (0.10)
Z(V1, V1) || 3.64 (0.19) | 3.90 (0.42)
. . Z(V3,V3) || 3.60 (0.20) | 3.76 (0.41)
Mixed Setting IB-B|r || 26.48 (0.17) 33.96 (0.36)
(d1,d2) = (100,100) | 100+ RE. || 0.13 (0.07) 5.03 (0.08)
100  RE; || 11.96 (0.75) 28.04 (1.06)
Time 3.62 (0.18) | 0.22 (0.04) | 11.31 (0.06)
SE 2.99 (0.05) | 31.40 (15.55) NA
Z(V1,V1) || 1.67 (0.07) | 59.30 (30.45)
. . Z(V2,V3) || 1.67 (0.07) | 54.98 (34.81)
Mixed Setting |B-B|r || 26.41 (0.08) NA
(d1,d2) = (500,500) | 100+ RE. || 0.04 (0.03) NA
100  RE; || 11.94 (0.29) NA
Time 98.48 (17.05) | 4.80 (0.96) NA

The results of 100 simulation runs under different settings are presented in Ta-
ble 5. The fitting time for every method increases with the increasing dimension,
but SupCP and CP can be fitted within a reasonable time in all settings. How-
ever, SupSVD is computationally infeasible when (dy,d2) = (500, 500), where
there are 250,000 variables in the matricized data. For SupCP, the estimation
accuracy of the low-rank signal and loading matrices improves with the increas-
ing dimension and fixed SNR. SupCP significantly outperforms CP regardless
of the dimensions.

E.3. Multi-mode simulation

We also conduct a simulation study where the observed tensor has more than
3 modes. The setting is similar to Setting 2 in Section 6, but with 2 additional
modes (i.e., a 5-way tensor) with d3 = dy = 10 dimensions. We use the same
parameters as in Setting 2 and adjust o2 so that the SNR remains the same. The
results from 100 simulation runs are shown in Table 6. SupCP still provides the
best low-rank structure estimation. We note that the tensor methods (SupCP
and CP) tend to have larger variabilities in this multi-mode setting compared
to Setting 2. This may be due to the complexity of multi-mode tensors such as
the identifiability issue and the local optimum issue.
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TABLE 6
Simulation results for 5-way tensor under Settings 2 (with 100 simulation runs). The
median and median absolute deviation (MAD) of each criterion for each method are shown

in the table. The best results are highlighted in bold.

1177

Criterion SupCP CP SupSVD
SE 38.57 (20.79) | 45.53 (13.80) | 45.05 (0.09)

Z(V1, V1) || 61.89 (23.23) | 71.56 (14.11)

Z(V2,V3) || 61.46 (20.29) | 66.20 (14.90)

Z£(V3,V3) || 60.32 (21.56) | 71.00 (12.45)

Z(V4, Vi) || 69.04 (14.64) | 68.18 (15.41)

IB-B|r || 68.67 (37.90) 33.95 (0.41)

100 * RE, 3.65 (3.45) 5.03 (0.09)

100+ RE; || 23.44 (11.81) 27.82 (0.92)
Time 9.67 (3.61) 0.63 (0.15) 11.28 (0.08)

TABLE 7

Simulation results for reduced matriz rank with no multiway structure under Settings 2
(with 100 simulation runs). The median and median absolute deviation (MAD) of each
criterion for each method are shown in the table. The best results are highlighted in bold.

Criterion SupCP CP SupSVD
SE 9317 (3.31) | 98.03 (3.02) | 60.72 (1.71)
Z(V,V) || 88.40 (1.17) | 88.84 (1.05) | 50.25 (9.69)
IB—Bl|lr || 137.5 (23.5) 56.6 (9.96)
100 * RE. || 16.03 (2.54) 6.14 (1.14)
100 x RE; || 67.86 (11.15) 27.23 (8.87)
Time 0.469 (0.143) | 0.095 (0.026) | 0.213 (0.067)

We remark that the number of entries in a multiway tensor increases expo-
nentially with the number of modes, presenting a huge challenge in computation.
Existing methods do not scale well to a very large number of modes (say, > 10).
We deem it a future research direction to extend SupCP to higher modes.

E.}. Misspecified simulation

Here we describe a simulation study in which the generated data do not have
multiway structure. The setting is analogous to Setting 2 in Section 6, except
that loadings V : 100 x 5 are given by the left singular vectors of a 100 x 5
matrix of independent N(0,1) entries. The underlying structure is then given
by the entries of UVT, arranged into an array of dimension 100 x 10 x 10.
Thus, X has rank R structure when it is matricized, but does not have low rank
multilinear structure in 3 dimensions; i.e., the generative model is supported by
the SupSVD model, but not SupCP. We conduct 100 replications and estimate a
rank 5 SupCP, CP, and SupSVD fit for each replication. The results are shown in
Table 7, where the principal angle Z(V,V) is found for the matricized loadings
V= Vat under the SupCP and CP approaches. As expected, the SupSVD
model is superior in this setting, demonstrating that a multiway factorization
performs poorly if the data have no multiway structure.
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