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1. Introduction

We consider learning the causal structure among a set of variables from obser-
vational data. In general, the data can be modelled with a structural equation
model (SEM) over the observed and unobserved variables, which expresses each
variable as a function of its direct causes and a noise term, where the noise
terms are assumed to be mutually independent. The structure of the SEM can
be visualized as a directed graph, with vertices representing variables and edges
representing direct causal relationships. We assume the structure to be recur-
sive (acyclic), which results in a directed acyclic graph (DAG). DAGs can be
understood as models of conditional independence, and many structure learning
algorithms use this to find all DAGs which are compatible with the observed con-
ditional independencies (Spirtes et al., 1993). Often, however, not all relevant
variables are observed. The resulting marginal distribution over the observed
variables might still satisfy some conditional independencies, but in general
these will not have a DAG representation (Richardson and Spirtes, 2002). Also,
there generally are additional constraints resulting from the marginalization of
some of the variables (Evans, 2016; Shpitser et al., 2014).

In this paper we consider a model class which can accommodate certain hid-
den variables. Specifically, we assume that the graph over the observed variables
is a bow-free acyclic path diagram (BAP). This means it can have directed as
well as bidirected edges (with the directed part being acyclic), where the di-
rected edges represent direct causal effects, and the bidirected edges represent
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hidden confounders. The bow-freeness condition means there cannot be both a
directed and a bidirected edge between the same pair of variables. The BAP can
be obtained from the underlying DAG over all (hidden and observed) variables
via a latent projection operation (Pearl, 2000) (if the bow-freeness condition
admits this). We furthermore assume a parametrization with linear structural
equations and Gaussian noise, where two noise terms are correlated only if there
is a bidirected edge between the two respective nodes. In certain situations, it is
beneficial to consider this restricted class of hidden variable models, as it forms a
middle ground between DAG models that don’t allow any hidden variables and
maximal ancestral graph (MAG) models (Richardson and Spirtes, 2002) that
allow arbitrarily many and general hidden variables. Such a restricted model
class, if not heavily misspecified, results in a smaller distributional equivalence
class, and estimation is expected to be more accurate than for more general
hidden variable methods like FCI (Spirtes et al., 1993), RFCI (Colombo et al.,
2012), or FCI+ (Claassen et al., 2013).

The goal of this paper is structure learning with BAPs, that is, finding the set
of BAPs that best explains some observational data. Just like in other models,
there is typically an equivalence class of BAPs that are statistically indistin-
guishable, so a meaningful structure search result should represent this equiva-
lence class. We propose a penalized likelihood score that is greedily optimized
and a heuristic algorithm (supported by some theoretical results) for finding
equivalent models once an optimum is found. This method is the first of its
kind for BAP models.

Example of a BAP

Consider the DAG in Figure 1a, where we observe variables X1, . . . , X4, but do
not observe H1, H2, H3. The only (conditional) independency over the observed
variables is X1 ⊥⊥ X3 | X2, which is also represented in the corresponding BAP
in Figure 1b. The parametrization of this BAP would be

X1 = ε1

X2 = B21X1 + ε2

X3 = B32X2 + ε3

X4 = B43X3 + ε4

with (ε1, ε2, ε3, ε4)
T ∼ N (0,Ω) and

Ω =

⎛⎜⎜⎝
Ω11 0 0 0
0 Ω22 0 Ω24

0 0 Ω33 0
0 Ω24 0 Ω44

⎞⎟⎟⎠ .

Hence the model parameters in this case are B21, B32, B43, Ω11, Ω22, Ω33, Ω44,
and Ω24. An example of an acyclic path diagram that is not bow-free is shown
in Figure 1c.
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Fig 1. (a) DAG with hidden variables H1, H2, H3, (b) resulting BAP over the observed vari-
ables X1, . . . , X4 with annotated edge weights, and (c) resulting graph if X3 is also not ob-
served, which is not a BAP.

Challenges

The main challenge, like with all structure search problems in graphical mod-
elling, is the vastness of the model space. The number of BAPs grows super-
exponentially. Hence, as is the case for DAGs, exhaustively scoring all BAPs
and finding the global score optimum is very challenging. For DAGs, Silander
and Myllymäki (2006) proposed a surprisingly simple algorithm whose runtime
is exponential in the number of nodes and which is feasible for problems with
up to about 30 nodes. However, extending their idea to BAPs is not straight-
forward, and we aim to deal with settings where the number of nodes can be
significantly larger.

Another major challenge, specifically for our setting, is the fact that a graph-
ical characterization of the (distributional) equivalence classes for BAP models
is not yet known. In the DAG case, for example, it is known that models are
equivalent if and only if they share the same skeleton and v-structures (Verma
and Pearl, 1991). A similar result is not known for BAPs (or the more general
acyclic directed mixed graphs). This makes it hard to traverse the search space
efficiently, since one cannot search over the equivalence classes (like the greedy
equivalence search for DAGs, see Chickering (2002)). It also makes it difficult to
evaluate simulation results, since the graphs corresponding to the ground truth
and the optimal solution may be distinct and yet still represent the same model.

Contributions

We provide the first structure learning algorithm for BAPs. It is a score-based
algorithm and uses greedy hill climbing to optimize a penalized likelihood score.
We are able to achieve a significant computational speedup by decomposing the
score over the bidirected connected components of the graph and caching the
score of each component. To mitigate the problem of local optima, we perform
many random restarts of the greedy search.

We propose to approximate the distributional equivalence class of a BAP
by using a greedy strategy for likelihood scoring. If two BAPs are similar with
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respect to their penalized likelihoods within a tolerance, they should be treated
as statistically indistinguishable and hence as belonging to the same class of
(nearly) equivalent BAPs. Based on such greedily computed (near) equivalence
classes, we can then infer bounds of total causal effects, in the spirit of Maathuis
et al. (2009, 2010).

We present some theoretical results towards equivalence properties in BAP
models, some of which generalize to acyclic path diagrams. In particular, we
prove some necessary and some sufficient conditions for BAP equivalence. Fur-
thermore, we present a Markov Chain Monte Carlo method for uniformly sam-
pling BAPs based on ideas from Kuipers and Moffa (2015).

We obtain promising results on simulated data sets despite the challenges
listed above. Comparing the highest-scoring BAPs and DAGs on real datasets
exemplifies the more conservative nature of BAP models.

Related work

There are two main research communities that intersect at this topic. On the
one side there are the path diagram models, going back to Wright (1934) and
then being mainly developed in the behavioral sciences (Jöreskog, 1970; Duncan,
1975; Glymour and Scheines, 1986; Jöreskog, 2001). In this setting a model for
the edge functions is assumed, usually a parametric model with linear edge
functions and Gaussian noise. In a very general formulation, the graph over the
observed variables is assumed to be an acyclic directed mixed graph (ADMG),
which can have bows. While in general the parameters for these models are
not identified, Drton et al. (2011) give necessary and sufficient conditions for
global identifiability. Complete necessary and sufficient conditions for the more
useful almost everwhere identifiability remain unknown (however, see Foygel
et al. (2012) for some necessary and some sufficient conditions). BAP models
are a useful subclass, since they are almost everywhere identified (Brito and
Pearl, 2002). Drton et al. (2009) provided an algorithm, called residual iterative
conditional fitting (RICF), for maximum likelihood estimation of the parameters
for a given BAP.

On the other side there are the non-parametric hidden variable models, which
are defined as marginalized DAG models (Pearl, 2000)1. The marginalized dis-
tributions are constrained by conditional independencies, as well as additional
equality and inequality constraints (Evans, 2016). When just modelling the
conditional independence constraints, the class of maximal ancestral graphs
(MAGs) is sufficient (Richardson and Spirtes, 2002). Shpitser et al. (2014) have
proposed the nested Markov model using ADMGs to also include the additional
equality constraints. Finally, mDAGs were introduced to model all resulting
constraints (Evans, 2016). In general BAPs induce independence constraints
and also Verma constraints (Richardson and Spirtes, 2002, Sections 7.3 and 8),

1Strictly speaking, not all SEMs with correlated Gaussian errors can be interpreted as
latent variable models, since the latent variable models have additional inequality constraints.
We do not discuss this further here, but see Fox et al. (2015) for more details.
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as well as other restrictions that do not apply in the non-parametric case. The
BAP in Figure 1b, for example, implies a Verma constraint. Gaussian BAPs
are also ‘maximal’, in the sense that every missing edge induces a constraint.
In the non-parametric case, with each additional layer of constraints learning
the graphical structure from data becomes more complicated, but at the same
time more available information is utilized and a possibly more detailed struc-
ture can be learned. In the Gaussian case, however, all models are parameteric,
and fitting BAPs that do not correspond to conditional independence models is
essentially no different to fitting those that do. At the graphical level the search
is perhaps easier, since we do not have to place the restriction of ancestrality on
the structure of the graph. However, unlike for MAGs, the equivalence class of
BAPs is not known, which means that one may end up fitting the same model
multiple times in the form of different graphs. Furthermore, BAPs are easier
to interpret as hidden variable models. This can be seen when comparing the
BAP in Figure 1b with the corresponding MAG. The latter would have an ad-
ditional edge between X1 and X4 since there is no (conditional) independency
of these two variables. As can be verified, the BAP and the MAG in this ex-
ample are not distributionally equivalent, since the former encodes additional
non-independence constraints.

Structure search for MAGs can be done with the FCI (Spirtes et al., 1993),
RFCI (Maathuis et al., 2009), or FCI+ (Claassen et al., 2013) algorithms. Silva
and Ghahramani (2006) propose a fully Bayesian method for structure search
in linear Gaussian ADMGs, sampling from the posterior distribution using an
MCMC approach. Shpitser et al. (2012) employ a greedy approach to optimize
a penalized likelihood over ADMGs for discrete parametrizations.

Outline of this paper

In Section 2 we give an in-depth overview of the model and its estimation
from data, as well as some distributional equivalence properties. In Section 3 we
present the details of our greedy algorithm with various computational speedups.
In Section 4 we present empirical results on simulated and real datasets. All
proofs as well as further theoretical results and justifications can be found in
the Appendix.

2. Model and estimation

2.1. Graph terminology

Let X1, . . . , Xd be a set of random variables and V = {1, . . . , d} be their index
set. The elements of V are also called nodes or vertices. A mixed graph or path
diagram G on V is an ordered tuple G = (V,ED, EB) for some ED, EB ⊆
V × V \ {(i, i) | i ∈ V }. If (i, j) ∈ ED, we say there is a directed edge from
i to j and write i → j ∈ G. If (i, j) ∈ EB, we must also have (j, i) ∈ EB,
and we say there is a bidirected edge between i and j and write i ↔ j ∈ G.
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The set paG(i) := {j | j → i ∈ G} is called the parents of i. This definition
extends to sets of nodes S in the obvious way: paG(S) :=

⋃
i∈S paG(i). The

in-degree of i is the number of arrowheads at i. If V ′ ⊆ V , E′
D ⊆ ED|V ′×V ′ , and

E′
B ⊆ EB |V ′×V ′ , then G′ = (V ′, E′

D, E′
B) is called a subgraph of G, and we write

G′ ⊆ G. The induced subgraph GW for some vertex set W ⊂ V is the restriction
of V to vertices W . If G′ ⊆ G but G′ 	= G, we call G′ a strict subgraph of G and
write G′ ⊂ G. The skeleton of G is the undirected graph over the same node set
V and with edges i− j if and only if i → j ∈ G or i ↔ j ∈ G (or both).

A path π between i and j is an ordered tuple of (not necessarily distinct)
nodes π = (v0 = i, . . . , vl = j) such that there is an edge between vk and vk+1

for all k = 0, . . . , l−1. If the nodes are distinct, the path is called non-overlapping
(note that in the literature a path is mostly defined as non-overlapping). The
length of π is the number of edges λ(π) = l. If π consists only of directed
edges pointing in the direction of j, it is called a directed path from i to j. A
node j on a non-overlapping path π is called a collider if π contains a non-
overlapping subpath (i, j, k) with two arrowheads into j2. Otherwise j is called
a non-collider on the path. If j is a collider on a non-overlapping path (i, j, k),
we call (i, j, k) a collider triple. Moreover, if (i, j, k) is a collider triple and i
and k are not adjacent in the graph, then (i, j, k) is called a v-structure. A path
without colliders is called a trek.

Let A,B,C ⊂ V be three disjoint sets of nodes. The set an(C) := C ∪
{i ∈ V | there exists a directed path from i to c for some c ∈ C} is called the
ancestors of C. A non-overlapping path π from a ∈ A to b ∈ B is said to be
m-connecting given C if every non-collider on π is not in C and every collider
on π is in an(C). If there are no such paths, A and B are m-separated given C,
and we write A ⊥⊥m B | C. We use a similar notation for denoting conditional
independence of the corresponding set of variables XA and XB given XC : XA ⊥
⊥ XB | XC .

A graph G is called cyclic if there are at least two distinct nodes i and j such
that there are directed paths both from i to j and from j to i. Otherwise G is
called acyclic or recursive. An acyclic path diagram is also called an acyclic di-
rected mixed graph (ADMG). An acyclic path diagram having at most one edge
between each pair of nodes is called a bow-free3 acyclic path diagram (BAP). An
ADMG without any bidirected edges is called a directed acyclic graph (DAG).

2.2. The model

A linear structural equation model (SEM) M is a set of linear equations involving
the variables X = (X1, . . . , Xd)

T and some error terms ε = (ε1, . . . , εd)
T :

X = BX+ ε, (1)

where B is a real matrix, cov(ε) = Ω is a positive semi-definite matrix, and
we assume that all variables X have been normalized to mean zero. M has an

2That is, one of the following structures: →←,↔←,→↔,↔↔.
3The structure i → j together with i ↔ j is also known as bow.
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associated graph G that reflects the structure of B and Ω. For every non-zero
entry Bij there is a directed edge from j to i, and for every non-zero entry Ωij

there is a bidirected edge between i and j. Thus we can also write (1) as:

Xi =
∑

j∈paG(i)

BijXj + εi, for all i ∈ V, (2)

with cov(εi, εj) = Ωij for all i, j ∈ V .

Our model is a special type of SEM, which we refer to as Gaussian BAP
model4. In particular, we make the following assumptions:

(A1) The errors ε follow a multivariate Normal distribution N (0,Ω).
(A2) The associated graph G is a BAP.

Assumption (A1) is not strictly needed for our equivalence results, but we rely
on it for fitting the models in practice using the RICF method of Drton et al.
(2009).

Often M is specified via its graph G, and we are interested to find parameters
θG compatible with G. We thus define the parameter spaces for the edge weight
matrices B (directed edges) and Ω (bidirected edges) for a given BAP G as

BG = {B ∈ R
d×d | Bij = 0 if j → i is not an edge in G}

OG = {Ω ∈ R
d×d | Ωij = 0 if i 	= j and i ↔ j is not an edge in G;

Ω is symmetric positive semi-definite}

and the combined parameter space as

ΘG = BG ×OG.

The covariance matrix for X is given by:

φ(θ) = (I −B)−1Ω(I −B)−T , (3)

where φ : ΘG → SG maps parameters to covariance matrices, and SG := φ(ΘG)
is the set of covariance matrices compatible with G. Note that φ(θ) exists since
G is acyclic by (A2) and therefore I −B is invertible.

We assume that the variables are normalized to have variance 1, that is, we
are interested in the subset S̄G ⊂ SG, where S̄G = {Σ ∈ SG | Σii = 1 for all i =
1, . . . , d}, and its preimage under φ, Θ̄G := φ−1

(
S̄G

)
⊂ ΘG.

One of the main motivations of working with BAP models is parameter iden-
tifiability. This is defined below:

Definition 1. A normalized parameter θG ∈ Θ̄G is identifiable if there is no
θ′G ∈ Θ̄G such that θG 	= θ′G and φ(θG) = φ(θ′G).

4All BAP models in this paper are assumed to have a Gaussian parametrization unless
otherwise stated.
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Brito and Pearl (2002) show that for any BAP G, the set of normalized
non-identifiable parameters has measure zero.

The causal interpretation of BAPs is the following. A directed edge from X
to Y represents a direct causal effect of X on Y . A bidirected edge between
X and Y represents a hidden variable which is a cause of both X and Y , see
also Figure 1. In practice, one is often interested in predicting the effect of an
intervention at Xj on another variable Xi. This is called the total causal effect
of Xj on Xi and can be defined as Eij = ∂

∂xE[Xi | do(Xj = x)], where the
do(Xj = x) means replacing the respective equation in (2) with Xj = x (Pearl,
2000). For linear Gaussian path diagrams such as in (1) or (2), this is a constant
quantity given by

Eij =
(
(I −B)−1

)
ij
. (4)

2.3. Penalized maximum likelihood

Consider a BAP G. A first objective is to estimate the parameters θG from n

i.i.d. samples of model (2), denoted by {x(s)
i } (i = 1, . . . , d and s = 1, . . . , n).

This can be done by maximum likelihood estimation using the RICF method of
Drton et al. (2009). Given the Gaussianity assumption (A1) and the covariance
formula (3), one can express the log-likelihood for some given parameters θG
and the sample covariance matrix S as:

l(θG;S) = −n

2

(
log |2πΣG|+

n− 1

n
tr(Σ−1

G S)

)
, (5)

where ΣG = φ(θG) is the covariance matrix implied by parameters θG, see for
example Mardia et al. (1979, (4.1.9)). However, due to the structural constraints
on B and Ω it is not straightforward to maximize this for θG. RICF is an iterative
method to do so, yielding the maximum likelihood estimate:

θ̂G = argmax
θG∈ΘG

l(S; θG). (6)

We now extend this to the scenario where the graph G is also unknown, using
a regularized likelihood score with a BIC-like penalty term that increases with
the number of edges. Concretely, we use the following score for a given BAP G:

s(G) :=
1

n

(
max

θG∈ΘG

l(S; θG)− (#{nodes}+#{edges}) logn
)
. (7)

We have scaled the log-likelihood and penalty with 1/n so that the score is
expected to be O(1) as n increases. Compared with the usual BIC penalty, we
chose our penalty to be twice as large, since this led to better performance
in simulations studies5. The number of nodes is typically fixed, so does not

5In practice, one could also treat the penalty coefficient as a hyperparameter and choose
it via cross-validation.
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matter for comparing graphs over the same vertex set. We included it to make
explicit the penalization of the model parameters (which correspond to nodes
and edges).

In our search for the true causal graph G, we assume that if Σ ∈ S̄H for
any other graph H, then S̄H ⊇ S̄G, that is H represents a strict supermodel
of G. This rules out the possibility that ‘by chance’ we land on a distribution
contained in a submodel, and is a minimal requirement for causal learning. The
set of matrices that violate the requirement has measure zero within the model
S̄G (assuming entries in B and Ω are generated according to a positive joint
density with respect to the Lebesgue measure)6. This requirement is analogous
to the faithfulness assumption of Spirtes et al. (1993), though faithfulness applies
separately to individual conditional independence constraints rather than to the
entire model.

2.4. Equivalence properties

There is an important issue when doing structure learning with graphical mod-
els: typically the maximizers of (7) will not be unique. This is a fundamental
problem for most model classes and a consequence of the model being underde-
termined. In general, there are sets of graphs that are statistically indistinguish-
able (in the sense that they can all parametrize the same joint distributions over
the variables). These graphs are called distributionally equivalent. For nonpara-
metric DAG models (without non-linearity or non-Gaussianity constraints), for
example, the distributional equivalence classes are characterized by conditional
independencies and are called Markov equivalence classes. For BAPs, distribu-
tional equivalence is not completely characterized yet (see Spirtes et al. (1998)
or Williams (2012) for a discussion of the linear Gaussian ADMG case), but we
present some necessary and some sufficient conditions, that can be used to sim-
plify structure search in practice. Let us first make precise the different notions
of model equivalence.

Definition 2. Two BAPs G1, G2 over a set of nodes V are Markov equivalent
if they imply the same m-separation relationships.

This essentially means they imply the same conditional independencies, and
the definition coincides with the classical notion of Markov equivalence when
G1 and G2 are both DAGs. The following notion of distributional equivalence
is stronger.

Definition 3. Two BAPs G1, G2 are distributionally equivalent if S̄G1 = S̄G2 .

We now present some sufficient and some necessary conditions for distribu-
tional equivalence in BAP models. Note that the Gaussianity assumption (A1)
is not required for these to hold.

6This follows because the models are parametrically defined algebraic varieties, which are
therefore irreducible. Any sub-variety of S̄G, such as that achieved by intersecting with another
model is either equal to S̄G or has strictly smaller dimension. See, for example, Cox et al.
(2007).
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2.4.1. Necessary conditions

Spirtes et al. (1998) showed the following global Markov property for general
linear path diagrams: if there are nodes a, b ∈ V and a possibly empty set
C ⊂ V such that a ⊥⊥m b | C, then the partial correlation of Xa and Xb given
XC is zero. In addition, if such an m-separation does not hold then the partial
correlation is non-zero for almost all distributions. As a direct consequence, we
get the following first result:

Lemma 1. If two BAPs G1, G2 do not share the same m-separations, they are
not distributionally equivalent.

Unlike for DAGs, the converse is not true, as the counterexample in Figure 2
shows. For DAGs it is trivial to show that having the same skeleton is necessary
for Markov equivalence, since a missing edge between two nodes means they can
be d-separated, and thus a conditional independency would have to be present
in the corresponding distribution. For BAPs a missing edge does not necessarily
result in an m-separation, as the counterexample in Figure 2 shows. However,
the following result will allow us to improve the necessary condition of same
m-separations for BAPs to the same as for DAGs.

Theorem 1. Let G and G′ be distributionally equivalent BAPs on vertices V .
Then, for any subset W ⊆ V , the induced subgraphs GW and G′

W are also
distributionally equivalent.

If we in particular look at the induced subgraphs of size two and three we
obtain the following necessary conditions for distributional equivalence.

Corollary 1. Let G and G′ be distributionally equivalent BAPs. Then they have
the same skeleton and v-structures.

Since m-separations are not fully determined by the skeleton and the v-
structures of a graph, it is also worthwhile to look at larger subgraphs. This
leads, for example, to the following result: if two graphs are distributionally
equivalent and a particular path is a so-called discriminating path in both
graphs, then the discriminated triple will be a collider in both or in neither
(see Ali et al., 2009, Section 3.4).

The criteria given above are not complete, in the sense that there exist BAPs
that are not distributionally equivalent and yet this cannot be proven by ap-
plying these results. For example, the BAPs in Figure 3 are not distributionally
equivalent, which can be shown using the results of Shpitser et al. (2014). How-
ever, they both have no m-separations. A complete characterization remains an
open problem.

2.4.2. Sufficient conditions

To prove sufficient conditions, we first give a characterization of the equiva-
lence class in terms of treks (collider-free paths) using Wright’s path tracing
formula (Wright, 1960). Wright’s formula expresses the covariance between any



Distr. equivalence and structure learning for BAPs 5353

Fig 2. The two BAPs in (a) and (b) share the same skeleton and v-structures, but in (a)
there are no m-separations, whereas in (b) we have X2 ⊥⊥m X3 | {X1, X4}. BAPs (a) and
(c) share the same m-separations (none) but are not distributionally equivalent since they
have different skeletons (using Corollary 1).

Fig 3. The two BAPs in (a) and (b) differ only in the direction of the X1, X3 edge; both
have no m-separations, and every induced subgraph leads to models which are distributionally
equivalent. However, by using the results of Shpitser et al. (2014) one can show that these
models are not distributionally equivalent.

two variables in a path diagram as the sum-product over the edge labels of
the treks between those variables, as long as all variables are normalized to
variance 1. A precise statement as well as a proof of a more general version of
Wright’s formula can be found in the Appendix (Theorems 3 and 4). As an ex-
ample, consider the BAP in Figure 1b. There are two treks between X2 and X4:
X2 → X3 → X4 and X2 ↔ X4. Hence cov(X2, X4) = B32B43 + Ω24, assuming
normalized parameters. Similarly we have cov(X1, X4) = B21B32B43.

As a consequence of Wright’s formula, we can show that having the same
skeleton and collider triples is sufficient for two acyclic path diagrams to be
distributionally equivalent:

Theorem 2. Let G1, G2 be two acyclic path diagrams that have the same skele-
ton and collider triples. Then G1 and G2 are distributionally equivalent.

Considering Figure 3b, for example, this result shows that if we replace the
X1 ↔ X2 edge with X1 → X2, the resulting graph is distributionally equivalent
to the original.

For DAGs, it is known that the weaker condition of having the same skeleton
and v-structures is sufficient for being Markov equivalent. For BAPs this is not
true, as the counterexample in Figure 2 (together with Lemma 1) shows.
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We therefore have that the distributional equivalence class of a BAP G:

• is contained in the set of BAPs with the same skeleton and v-structures
as G and

• contains the set of BAPs with the same skeleton and collider triples as G.

We know that the first relation is strict by the counterexample mentioned above
and have strong evidence that the second relation is strict as well (Nowzohour,
2015, Appendix B)7.

3. Greedy search

We aim to find the maximizer of (7) over all graphs over the node set V =
{1, . . . , d}. Since exhaustive search is infeasible, we use greedy hill-climbing.
Starting from some graph G0, this method obtains increasingly better esti-
mates by exploring the local neighborhood of the current graph. At the end
of each exploration, the highest-scoring graph is selected as the next estimate.
This approach is also called greedy search and is often used for combinatorial
optimization problems. Greedy search converges to a local optimum, although
typically not the global one. To alleviate this we repeat it multiple times with
different (random) starting points.

We use the following neighborhood relation. A BAP G′ is in the local neigh-
borhood of G if it differs by exactly one edge, that is, the number of edges differs
by at most one, and one of the following holds:

1. G ⊂ G′ (edge addition),
2. G′ ⊂ G (edge deletion), or
3. G and G′ have the same skeleton (edge change).

If we only admit the first condition, the procedure is called forward search,
and it is usually started with the empty graph. Instead of searching through
the complete local neighborhood at each step (which can become prohibitive for
large graphs), we can also select a random subset of neighbors and only consider
those.

In Sections 3.1 and 3.2 we describe some adaptations of this general scheme,
that are specific to the problem of BAP learning. In Section 3.3 we describe our
greedy equivalence class algorithm.

3.1. Score decomposition

Greedy search becomes much more efficient when the score separates over the
nodes or parts of the nodes. For DAGs, for example, the log-likelihood can
be written as a sum of components, each of which only depends on one node
and its parents. Hence, when considering a neighbor of some given DAG, one

7These empirical results suggest all 3-node full BAPs to be distributionally equivalent,
which would mean there are distributionally equivalent BAPs with different collider triples,
implying the strictness of the second inclusion relation above.
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only needs to update the components affected by the respective edge change.
A similar property holds for BAPs. Here, however, the components are not the
nodes themselves, but rather the connected components of the bidirected part
of the graph (that is, the partition of V into sets of vertices that are reachable
from each other by only traversing the bidirected edges). For example, in Fig-
ure 1b the bidirected connected components (sometimes also called districts)
are {X1}, {X2, X4}, {X3}. This decomposition property is known (Tian, 2005;
Richardson, 2009), but for completeness we give a derivation in appendix B. We
write out the special case of the Gaussian parametrization below.

Let us write pXG for the joint density of X under the model (2), and pεG for the
corresponding joint density of ε. Let C1, . . . , CK be the connected components
of the bidirected part of G. We separate the model G into submodels G1, . . . , GK

of the full SEM (2), where each Gk consists only of nodes in Vk = Ck ∪ pa(Ck)
and without any edges between nodes in pa(Ck) \ Ck. Then, as we show in
appendix B, the log-likelihood of the model with joint density pXG given data

D = {x(s)
i } (with 1 ≤ i ≤ d and 1 ≤ s ≤ n) can be written as:

l(pXG ;D) =

n∑
s=1

log pXG(x
(s)
1 , . . . , x(s)

p )

=
∑
k

⎛⎝l(pXGk
; {x(s)

i }s=1,...,n
i∈Vk

)−
∑

j∈pa(Ck)\Ck

l(pXGk
; {x(s)

j }s=1,...,n)

⎞⎠ ,

where l(pXGk
; {x(s)

j }s=1,...,n) refers to the likelihood of the Xj-marginal of pXGk
.

For our Gaussian parametrization, using (5), this becomes

l(ΣG1 , . . . ,ΣGK
;S) =

−n

2

∑
k

(
|Ck| log 2π + log

|ΣGk
|∏

j∈pa(Ck)\Ck
σ2
kj

+

n− 1

n
tr
(
Σ−1

Gk
SGk

− |pa(Ck) \ Ck|
))

,

where SGk
is the restriction of S to the rows and columns corresponding to Ck,

and σ2
kj is the diagonal entry of ΣGk

corresponding to parent node j. Note that

now the log-likelihood depends on {x(s)
i } and pXG only via S and ΣG1 , . . . ,ΣGK

.
Furthermore, the log-likelihood is now a sum of contributions from the submod-
els Gk. This means we only need to re-compute the likelihood of the submodels
that are affected by an edge change when scoring the local neighborhood. In
practice, we also cache the submodel scores, that is, we assign each encoun-
tered submodel a unique hash and store the respective scores, so they can be
re-used.
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Fig 4. Relative frequencies of the 62 3-node BAPs when sampled 30000 times with the “naive”
(triangular matrix sampling) and the MCMC method.

3.2. Uniformly random restarts

To restart the greedy search we need random starting points (BAPs), and it
seems desirable to sample them uniformly at random8. Just like for DAGs, it is
not straightforward to achieve this. What is often done in practice is uniform
sampling of triangular (adjacency) matrices and subsequent uniform permuta-
tion of the nodes. However, this does not result in uniformly distributed graphs,
since for some triangular matrices many permutations yield the same graph (the
empty graph is an extreme example). The consequence is a shift of weight to
more symmetric graphs, that are invariant under some permutations of their ad-
jacency matrices. A simple example with BAPs for d = 3 is shown in Figure 4.
One way around this is to design a random process with graphs as states and
a uniform limiting distribution. A corresponding Markov Chain Monte Carlo
(MCMC) approach is described for example in Melançon et al. (2001) for the
case of DAGs. See also Kuipers and Moffa (2015) for an overview of different
sampling schemes.

We adapted the MCMC algorithm for BAPs as described below.

Algorithm 1. Let Gk = (V,ED, EB) be the BAP of the current MCMC iter-
ation. Let (i, j) ∈ V × V \ {(i, i) | i ∈ V } be a position sampled uniformly at
random and let σ ∈ Bernoulli(0.5) be a single Bernoulli draw. We then form
Gk+1 = (V,E′

D, E′
B) by applying the following rules.

1. If there is an edge at (i, j) (i.e. if (i, j) ∈ ED or (j, i) ∈ ED or (i, j) ∈ EB),
and

8Another motivation for uniform BAP generation is generating ground truths for simula-
tions.
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(a) if σ = 0: remove the edge (i.e. E′
D = ED \ {(i, j), (j, i)}, E′

B =
EB \ {(i, j), (j, i)}).

(b) if σ = 1: do nothing.

2. If there is no edge at (i, j) (i.e. if (i, j) /∈ ED and (j, i) /∈ ED and (i, j) /∈
EB), and

(a) if σ = 0: add i → j (i.e. E′
D = ED ∪ {(i, j)}, E′

B = EB) as long as
this does not create a directed cycle, otherwise do nothing;

(b) if σ = 1: add i ↔ j (i.e. E′
D = ED, E′

B = EB ∪ {(i, j), (j, i)}).
It is easy to check that the resulting transition matrix is irreducible and

symmetric (see Appendix C) and hence the Markov chain has a (unique) uniform
stationary distribution. Thus, starting from any graph, after an initial burn-in
period, the distribution of the visited states will be approximately uniform over
the set of all BAPs. In practice, we start the process from the empty graph and
sample after taking O(d4) steps (c.f. Kuipers and Moffa (2015)).

It is straightforward to adapt this sampling scheme to a number of con-
straints, for example uniform sampling over all BAPs with a given maximal
in-degree.

3.3. Greedy equivalence class construction

We propose the following recursive algorithm to greedily estimate the distribu-
tional equivalence class EC(G) of a given BAP G with score ζ. We start by

populating the empirical equivalence class ÊC(G) with graphs that have the
same skeleton and collider triples as G, since these are guaranteed to be equiv-
alent by Theorem 2. This is a significant computational shortcut, since these
graphs do not have to be found greedily anymore. Then, starting once from
each of the graphs in ÊC(G) found above, at each recursion level we search all
edge-change neighbors of the current BAP for BAPs that have a score within ε
of ζ (edge additions or deletions would result in non-equivalent graphs by Corol-
lary 1). For each such BAP, we start a new recursive search until a maximum
depth of d(d− 1)/2 (corresponding to the maximum number of possible edges)
is reached, and always comparing against the original score ζ. Already visited
states are stored and ignored. Finally, all found graphs are added to ÊC(G).
The main tuning parameter here is ε, essentially specifying the threshold for
numerical error, as well as statistically indistinguishable graphs. This results in
conservative estimates for total causal effects using the methods discussed in
Section 4.1 by also including neighboring equivalence classes, that are statisti-
cally indistiguishable from the given data.

3.4. Implementation

Our implementation is done in the statistical computing language R (R Core
Team, 2015), and the code is available as an R package on github (Nowzohour,
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2017). We make heavy use of the RICF implementation fitAncestralGraph9

in the ggm package (Marchetti et al., 2015). We noted that there are sometimes
convergence issues, so we adapted the implementation of RICF to include a
maximal iteration limit (which we set to 10 by default).

4. Empirical results

In this section we present some empirical results to show the effectiveness of our
method. First, we consider a simulation setting where we can compare against
the ground truth. Then we turn to a well known genomic data set, where the
ground truth is unknown, but the likelihood of the fitted models can be com-
pared against other methods.

4.1. Causal effects discovery on simulated data

To validate our method, we randomly generate ground truths, simulate data
from them, and try to recover the true total causal effects from the generated
datasets. This procedure is repeatedN = 100 times and the results are averaged.
We now discuss each step in more detail.

Randomly generate a BAP G.
We do this uniformly at random (for a fixed model size d = 10 and maximal
in-degree α = 2). The sampling procedure is described in Section 3.2.

Randomly generate parameters θG.
We sample the directed edge labels in B independently from a standard Normal
distribution. We do the same for the bidirected edge labels in Ω, and set the
error variances (diagonal entries of Ω) to the respective row-sums of absolute
values plus an independently sampled χ2(1) value10.

Simulate data {x(s)
i } from θG.

This is straightforward, since we just need to sample from a multivariate Normal
distribution with mean 0 and covariance φ(θG). We use the function rmvnorm()

from the package mvtnorm (Genz et al., 2014).

Find an estimate Ĝ from {x(s)
i }.

We use greedy search with R = 100 uniformly random restarts (as outlined in
Section 3), as well as one greedy forward search starting from the empty model.

Compare G and Ĝ.
A direct comparison of the graphs does not make sense since they could be
different but in the same equivalence class. We therefore estimate the equivalence

9Despite the function name the implementation is not restricted to ancestral graphs.
10By Gershgorin’s circle theorem, this is guaranteed to result in a positive definite matrix.

To increase stability, we also repeat the sampling of Ω if its minimal eigenvalue is less then
10−6.
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classes of both G and Ĝ using the greedy approach described in Section 3.3 with
ε = 10−10 to get ÊC(G) and ÊC(Ĝ).

Since the estimated equivalence classes are empirical, it is not straightfor-
ward to compare them. For one, they might be intersecting, but not equal (if
the recursion level was set too low and they were started from different graphs
for example). More relevantly, they might be entirely different, but still agree
in large areas of the graph. We therefore chose to evaluate not the graph struc-
ture but the identifiability of causal effects. Often this is also more relevant in
practice. Maathuis et al. (2009) developed a method (which they called IDA) to
find identifiable causal effects in a multiset of DAGs. We apply the same idea
in our setting. Specifically, this means we estimate the causal effects matrix Ê
for each graph G′ ∈ ÊC(G) (using the estimated parameters θ̂G′ = (B̂′, Ω̂′)
and (4)). We then take absolute values and take the entry-wise minima over all
Ê to obtain Êmin

G , the minimal absolute causal effects matrix (if an entry Eij

is nonzero, there is a nonzero causal effect from Xi to Xj for every graph in the

equivalence class). We do the same for Ĝ to get Êmin
Ĝ

.

What is left is to compare the minimal absolute causal effects matrix Êmin
G

of the ground truth to the minimal absolute causal effects matrix Êmin
Ĝ

of the

estimate. Thus, our target set consists of all pairs (i, j), such that (Êmin
G )ij > 0.

We score the pairs according to our estimated Êmin
Ĝ

values, and we report

the area under the ROC curve (AUC, see Hanley and McNeil (1983)). The
AUC ranges from 0 to 1, with 1 meaning perfect classification and 0.5 being
equivalent to random guessing11. In our case, we have a separate ROC curve
for each graph. The points on the curve correspond to the thresholding on the
estimated absolute value of the causal effects; the k-th point shows the situation
when we classify the largest k − 1 values as causal, and the rest as non-causal.

The results for 100 simulations can be seen in Figure 5; the average AUC is
0.75. While this suggests that perfect graph discovery is usually not achieved,
causal effects can be identified to some extent. We also note that our simulation
setting is challenging, in the sense that non-zero edge weights can be arbitrar-
ily close to zero. The computations took 2.5 hours on an AMD Opteron 6174
processor using 20 cores.

4.2. Genomic data

We also applied our method to a well-known genomics data set (Sachs et al.,
2005), where the expression of 11 proteins in human T-cells was measured under
14 different experimental conditions (the sample size varies between 707 and
927). There are likely hidden confounders, which makes this setting suitable for
hidden variable models. However, it is questionable whether the bow-freeness,
linearity, and Gaussianity assumptions hold to a reasonable approximation (in

11Some care has to be taken because of the fact that the cases (Êmin
G )ij > 0 and

(Êmin
G )ji > 0 exclude each other, but we took this into account when computing the false

positive rate.
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Fig 5. ROC curves for causal effect discovery for N = 100 simulation runs of BAPs with
d = 10 nodes and a maximal in-degree of α = 2. Sample size was n = 1000, greedy search
was repeated R = 100 times at uniformly random starting points. The average area under the
ROC curves (AUC) is 0.75. The thick curve is the point-wise average of the individual ROC
curves.

fact the data seem not to be multivariate normal). Furthermore, there does
not exist a ground truth network (although some individual links between pairs
of proteins are reported as known in the original paper). So we abstain from
comparing a “best” network with reported links in literature, but instead use
this as an example for comparing highest-scoring BAPs and DAGs.

To do this, we first log-transform all variables since they are heavily skewed.
We then run two sets of greedy searches for each of the 14 data sets: one with
BAPs and one with DAGs. We use 100 random restarts in both cases. The
results can be seen in Figures 6 and 7. The computations took 4 hours for the
BAP models and 1.5 hours for the DAG models on an AMD Opteron 6174
processor using 20 cores.

Note that while the BAPs and DAGs look very similar in many cases, the
BAPs are more conservative in identifying causal effects. Eg for dataset 4 there
is a v-structure at pip3 (with pip2 and plcg) in both the highest-scoring BAP
and DAG. However, by Theorem 2, this part of the BAP is equivalent to versions
with different edge directions (as long as the collider is preserved). This is not
the case for the DAG. Hence, in the DAG model these edges are identifiable, but
this identifiability disappears in the presence of potential hidden confounders in
BAPs. This exemplifies the more conservative nature of BAP models. Another
example is the v-structure at pakts473 (with pka and pkc) in dataset 8.

5. Conclusions

We have presented a structure learning method for BAPs, which can be viewed
as a generalization of Gaussian linear DAG models that allow for certain latent
variables. Our method is computationally feasible and the first of its kind. The
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Fig 6. Highest-scoring BAPs and DAGs found by greedy search for 8 of the 14 genomic
datasets in Sachs et al. (2005) (continued in Figure 7). For simplicity only one highest-scoring
graph is shown per example while equivalent and equally high-scoring graphs are omitted. Note
that the equivalence classes in the corresponding BAPs and DAGs are similar but some v-
structures lead to identifiablity in DAGs but not in BAPs.

results on simulated data are promising, keeping in mind that structure learn-
ing and inferring causal effects are difficult, even for the easier case with DAGs.
The main sources of errors (given the model assumptions are fulfilled) are sam-
pling variability, finding a local optimum only, and not knowing the equivalence
classes. Local optima are a general weakness of many structure learning meth-
ods in Bayesian networks since this problem is NP-hard in general (Chickering,
1996). In our simulations, overestimating the equivalence class leads to too few
causal effects, while the opposite happens if we underestimate it. On the other
hand, our approach of greedily approximating the empirical equivalence class
is building on the idea that some models are statistically indistinguishable, due
to limited sample size and estimation error. Therefore, our approach has the
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Fig 7. Highest-scoring BAPs and DAGs found by greedy search for the remaining 6
genomic datasets in Sachs et al. (2005) (continuation of Figure 6). Dataset Names:
1: cd3cd28, 2: cd3cd28icam2+aktinhib, 3: cd3cd28icam2+g0076, 4: cd3cd28icam2+psit,
5: cd3cd28icam2+u0126, 6: cd3cd28icam2+ly, 7: cd3cd28icam2, 8: cd3cd28+aktinhib,
9: cd3cd28+g0076, 10: cd3cd28+psitect, 11: cd3cd28+u0126, 12: cd3cd28+ly, 13: pma,
14: b2camp

advantage that it can include neighboring equivalence classes, that score almost
as well, which is desirable from a statistical point of view. Our theoretical results
about model equivalence go some way towards characterizing the distributional
equivalence classes in BAP models and allow us to efficiently approximate them
empirically.

In many applications, not all relevant variables are observed, calling for hid-
den variable models. While there have been structure learning methods for gen-
eral hidden variable models for many years (FCI, RFCI, FCI+, see Spirtes et al.
(1993); Colombo et al. (2012); Claassen et al. (2013)), causal inference based
on these models is very conservative (Malinsky and Spirtes, 2017). BAP mod-
els are restricted hidden variable models, where the restriction comes from the
bow-freeness constaint. As such, they form an interesting middle ground be-
tween general hidden variable models and models that do not allow any hidden
variables. In particular, the bow-freeness constraint leads to improved identifia-
bility of causal effects when compared to general hidden variable models, while
being more conservative than models without hidden variables. This makes our
structure learning algorithm for BAPs a useful addition to existing structure
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learning methods. Structure learning for a different type of restricted hidden
variable models is considered in Frot et al. (2017), and it will be interesting to
compare our results with this method.

Appendix A: Distributional equivalence

A.1. Necessary conditions

The following Lemma shows that the point (B,Ω) = (0, I) is non-singular for
the map φ : ΘG → SG for any BAP G. The result also appears in Brito and
Pearl (2002) and Drton et al. (2011).

Lemma 2. Let G be a BAP with parameters (B,Ω), and let φ be as in (3). Then
φ−1(I) = {(0, I)}; that is, the parameters are uniquely identifiable at Σ = I (or
indeed at any diagonal Σ).

Proof. We proceed by induction on d, the number of vertices in G. If d = 1 then
the result is trivial since B = 0.

Otherwise assume without loss of generality that the last vertex d has no
children. The result holds for the subgraph of the remaining vertices by the in-
duction hypothesis and the fact that the distribution of X is defined recursively.
We know that Σ is of the form

Σ = (Id −B)−1Ω(Id −B)−T ,

and we may deduce by the induction hypothesis that the first d − 1 rows of B
are zero, and the upper (d− 1)× (d− 1)-sub matrix of Ω is the identity matrix.
Hence

Ω =

(
Id−1 ω
ωT ωdd

)
,

where ωT = (ω1d, . . . , ωd−1,d), and

(Id −B)−1 =

(
Id−1 0
−βT 1

)−1

=

(
Id−1 0
βT 1

)
,

where βT = (βd1, . . . , βd,d−1). Hence

Σ = (I −B)−1Ω(I −B)−T

=

(
Id−1 0
βT 1

)(
Id−1 ω
ωT ωdd

)(
Id−1 β
0 1

)
=

(
Id−1 0
βT 1

)(
Id−1 β + ω
ωT βTω + ωdd

)
but note that βTω = 0 by the bow-free assumption, so we get

Σ =

(
Id−1 β + ω

βT + ωT ‖β‖2 + ωdd

)
,

and hence β + ω = 0. Now note that for each j, either βdj = 0 or ωjd = 0 by
the bow-free assumption; hence β + ω = 0 implies that β = ω = 0, leaving
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Σ =

(
Id−1 0
0T ωdd

)
and hence ωdd = 1. This completes the result.

Corollary 2. Let G be a BAP. For some neighborhood U of the set of covariance
matrices containing I, if Σ ∈ SG ∩ U with σij = 0 (for i 	= j), then this implies
that ωij = βij = 0.

Proof. Since φ is nonsingular and differentiable at θ0 = (O, I), its partial deriva-
tives are defined and given by ∂φ

∂ωij
(θ0) = 1 and ∂φ

∂βij (θ0) = 1 (this can be shown

via a Taylor expansion for example). Therefore, in a small neighborhood around
φ(θ0) we have σij = 0 only if ωij = ωji = βij = 0.

Note that Lemma 2 allows a direct proof of the fact that having the same
skeleton is necessary for BAPs to be distributionally equivalent by looking at
the tangent spaces of the models at Σ = I and showing that they are determined
by the skeletons of the graphs.

In the proof of Theorem 1 we make use of the language of polynomial varieties
(see Cox et al. (2007) for an overview). A variety is a set defined by the zeros
of some collection of polynomials (in our case polynomials in the entries of Σ),
and all SEM models are varieties.

Let G be a BAP with vertices V = W ∪̇W where W ∩W = ∅. Let BW
G be the

set of matrices B ∈ BG such that only entries corresponding to directed edges
in G between vertices in W have non-zero coefficients. Similarly, let OW

G be the
set of Ω ∈ OG such that entries corresponding to edges outside W are zero and
diagonal entries outside W are 1.

Define a model S̃W
G as the image of the map φ applied to (BW

G ,OW
G ). So in

other words, we only manipulate parameters in G that correspond to vertices
and edges in GW . The resulting model is canonically isomorphic to SGW

via a
simple projection, since this is the same setup as for the BAP GW , but with the
matrices extended to include independent vertices in W ≡ V \W .

Let TW be the set of covariance matrices Σ on V such that ΣWW = I and
ΣWW = 0 (i.e. so that vertices outside W are completely independent).

We will show that looking at the set of covariance matrices in SG that are
also in TW is essentially the same as the set S̃W

G . Since the first set is a property
of the full model, and the second set is determined by the subgraph GW , this
will be enough to prove Theorem 1.

Proof of Theorem 1. What we need to prove is that SG = S ′
G implies SGW

=
SG′

W
. Consider again the variety TW defined above.

Clearly SG = SG′ implies TW ∩ SG = TW ∩ SG′ . We will show that the
irreducible component of TW ∩ SG which contains Σ = I is the same as S̃W

G ;
since this last quantity is isomorphic to SGW

we will prove the result.
First, note that S̃W

G ⊆ TW and S̃W
G ⊆ SG, so clearly S̃W

G ⊆ SG ∩ TW . In
addition, note that by Corollary 2, in a neighborhood of Σ = I every element of
TW ∩SG is also contained in S̃W

G . It follows that the entire irreducible component
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of TW ∩ SG containing Σ = I is contained within S̃W
G , and therefore that the

irreducible component of TW ∩ SG containing Σ = I is S̃W
G .

We can now prove the Theorem giving necessary conditions for BAP equiv-
alence.

Proof of Corollary 1. Let us first consider vertex pairs, i.e. W = {i, j}. By The-
orem 1 we have GW being distributionally equivalent to G′

W . If GW 	= G′
W we

would have i ⊥⊥m j in one of the graphs but not the other, and using Lemma 1
this would lead to a contradiction. Hence GW = G′

W for any vertex pair, and
hence G and G′ must have the same skeleton.

Let us now consider vertex triplets W = {i, j, k}, such that (without loss
of generality) there is a v-structure at j in GW . Then i ⊥⊥m k in GW and by
the same argument as above we must have i ⊥⊥m k also in G′

W . This is only
possible if there is a v-structure at j in G′

W . Hence G and G′ must have the
same v-structures.

A.2. Sufficient conditions

We first make precise the definition of an important class of paths: treks. These
are paths that do not contain colliders. We adopt the notation of Foygel et al.
(2012). A trek τ from i to j can have one of the following forms:

vLl ← · · · ← vL0 ←→ vR0 → · · · → vRr

or

vLl ← · · · ← v0 → · · · → vRr ,

where vLl = i and vRr = j and in the second case v0 = vL0 = vR0 . Accordingly, we
define the left-hand side of τ as Left(τ) = vLl ← · · · ← vL0 and the right-hand
side of τ as Right(τ) = vR0 → · · · → vRr . Note that there is nothing inherently
directional about a trek other that the (arbitrary) definition which end node is
on the left. That is, every trek from i to j is also a trek from j to i just with
the left and right sides switched. We denote the lengths of the left- and right-
hand sides of a trek τ by λL(τ) and λR(τ) respectively. If τ does not contain
a bidirected edge, we define its head to be Hτ = v0. If the left- and right-hand
sides of τ do not intersect (except possibly at Hτ ), we call τ simple12. We define
the following sets that will be useful later:

Dij
G = {π | π is a directed path from i to j in G},

T ij
G = {τ | τ is a trek from i to j in G},
Sij
G = {τ | τ is a simple trek from i to j in G}.

We will usually drop the subscript if it is clear from context which is the reference
graph.

12Note that each side might well be self-intersecting, if the corresponding graph is cyclic.
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We now show some intermediate results that are well-known, but we prove
them here for completeness nevertheless. All of these apply more generally to
path diagrams (possibly cyclic and with bows).

Lemma 3. Let B ∈ R
d×d such that every eigenvalue λ of B satisfies |λ| < 1.

Then (I −B)−1 exists and is equal to
∑∞

s=0 B
s.

Proof. First note that det(λI−B) = 0 only if |λ| < 1, hence det(I−B) 	= 0, and
therefore (I−B)−1 exists. The eigenvalue condition also implies liml→∞ Bl = 0,
therefore

(I −B)

∞∑
s=0

Bs = lim
l→∞

l∑
s=0

(Bs −Bs+1) = lim
l→∞

(I −Bl+1) = I,

and the result follows.

Lemma 4. Let G be a path diagram over d nodes and B ∈ BG. Then

(Bl)ij =
∑

π∈Dji

λ(π)=l

∏
s→t∈π

Bts.

Proof. By induction on l. For l = 1 the claim follows from the definition of BG.
Using the inductive hypothesis we get

(Bl)ij = (BBl−1)ij =

d∑
k=1

Bik(B
l−1)kj =

d∑
k=1

Bik

∑
π∈Djk

λ(π)=l−1

∏
s→t∈π

Bts,

and the claim follows, since every directed path from j to i of length l can be
decomposed into a directed path π of length l − 1 from j to some node k and
the edge k → i.

Lemma 5. Let G be an acyclic path diagram over d nodes and B ∈ BG. Then
(I −B)−1 = I +B + . . .+Bd−1.

Proof. Since G is acyclic, there is an ordering of the nodes, such that B is strictly
lower triangular and hence all its eigenvalues are zero. Furthermore, the longest
directed path in G has length d− 1. Therefore the result follows from Lemma 3
and Lemma 4.

The following theorem is a version of Wright’s theorem that applies to non-
standardized variables. It does not require a proper parametrization (in the
sense that Ω needs to be positive definite). This result is probably known to
experts, but we could not find a proof in the literature.

Theorem 3. Let G be a (possibly cyclic) path diagram over d nodes, B ∈ BG,
and Ω ∈ R

d×d such that Ω is symmetric (but not necessarily positive definite)
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and Ωij = 0 if i ↔ j is not an edge in G. Then the entries of the matrix
φ = (I −B)−1Ω(I −B)−T are given by

φij =
∑

τ∈Sij

↔∈τ

∏
s→t∈τ

Bts

∏
s↔t∈τ

Ωst +
∑

τ∈Sij

↔/∈τ

∏
s→t∈τ

Bts · φHτHτ (i 	= j),

φii =
∑

τ∈T ii

↔∈τ

∏
s→t∈τ

Bts

∏
s↔t∈τ

Ωst +
∑

τ∈T ii

↔/∈τ

∏
s→t∈τ

Bts · ΩHτHτ +Ωii.

Proof. Let us write

ce(τ ;B,Ω) =
∏

s→t∈τ

Bts

∏
s↔t∈τ

Ωst

as a shorthand for the edge contribution13 of a trek τ given parameter matrices
B and Ω. We write c(τ ;B,Ω) = ce(τ ;B,Ω) ·ΩHτHτ for the total contribution of
τ (where we define ΩHτHτ to be 1 if τ contains a bidirected edge and therefore
Hτ = ∅).

Using Lemma 3, we can expand φ as φ =
∑∞

k=0

∑∞
l=0 B

kΩ(Bl)T . We now
first show the following intermediate result, which interprets the entries of these
matrices as contributions of certain treks:

(BkΩ(Bl)T )ij =
∑

τ∈T ij

λL(τ)=k
λR(τ)=l

c(τ ;B,Ω) + Ωii1{i = j}, (8)

for integers k ≥ 0, l ≥ 0. To see this, we expand the double matrix product and
use Lemma 4 to get

(BkΩ(Bl)T )ij =

d∑
a=1

d∑
b=1

(Bk)iaΩab(B
l)jb

=

d∑
a=1

d∑
b=1

⎛⎜⎜⎝ ∑
π∈Dai

λ(π)=k

∏
s→t∈π

Bts

⎞⎟⎟⎠Ωab

⎛⎜⎜⎝ ∑
π∈Dbj

λ(π)=l

∏
s→t∈π

Bts

⎞⎟⎟⎠ ,

and (8) follows since each bracketed expression corresponds to one side of the
trek from i to j via a and b (and the diagonal entries of Ω do not correspond to
a trek, so they are separate). Now summing over k and l gives the following

φij =
∑

τ∈T ij

c(τ ;B,Ω) + Ωii1{i = j}, (9)

which gives the result for the diagonal entries φii.

13That is, the contribution depending only on the edge labels and not the diagonal elements
of Ω.
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For the off-diagonal entries φij , we can get a simpler expression involving
only simple treks and the diagonal entries φii. Note that every trek τ can be
uniquely decomposed into a simple part ξ(τ) and a (possibly empty) non-simple
part ρ(τ) (we just split at the point, where the right- and the left-hand sides of
τ first intersect). Since

c(τ) =

{
ce(ξ(τ)) · ΩHξ(τ)Hξ(τ)

if ρ(τ) = ∅

ce(ξ(τ)) · c(ρ(τ)) otherwise,

(dropping the parameter matrices B and Ω in our notation), we can factor out
the contributions of the simple parts. Note that if the simple part ξ(τ) contains
a bidirected edge, then ρ(τ) must be empty and ΩHξ(τ)Hξ(τ) = 1. Hence (9)
becomes

φij =
∑

τ∈T ij

↔∈ξ(τ)

c(τ) +
∑

τ∈T ij

↔/∈ξ(τ)
ρ(τ) �=∅

c(τ) +
∑

τ∈T ij

↔/∈ξ(τ)
ρ(τ)=∅

c(τ)

=
∑

τ∈T ij

↔∈ξ(τ)

ce(ξ(τ)) +
∑

τ∈T ij

↔/∈ξ(τ)
ρ(τ) �=∅

ce(ξ(τ)) · c(ρ(τ)) +
∑

τ∈T ij

↔/∈ξ(τ)
ρ(τ)=∅

ce(ξ(τ)) · ΩHξ(τ)Hξ(τ)

=
∑
ξ∈Sij

↔∈ξ

ce(ξ) +
∑
ξ∈Sij

↔/∈ξ

ce(ξ)
∑

ρ∈T HξHξ

c(ρ) +
∑
ξ∈Sij

↔/∈ξ

ce(ξ) · ΩHξHξ

=
∑
ξ∈Sij

↔∈ξ

ce(ξ) +
∑
ξ∈Sij

↔/∈ξ

ce(ξ)

⎛⎝ ∑
ρ∈T HξHξ

c(ρ) + ΩHξHξ

⎞⎠ ,

and the result follows.

The following version for standardized parameters is often quoted as Wright’s
theorem.

Theorem 4. Let G be a (not necessarily acyclic) path diagram over d nodes,
B ∈ BG, and Ω ∈ R

d×d such that Ω is symmetric (but not necessarily positive
definite) and Ωij = 0 if i ↔ j is not an edge in G. Furthermore assume that we
have standardized parameters B,Ω such that (φ(B,Ω))ii = 1 for all i. Then the
off-diagonal entries of φ(B,Ω) are given by

(φ(B,Ω))ij =
∑

τ∈Sij

∏
s→t∈τ

Bts

∏
s↔t∈τ

Ωst.

Proof. This is a direct consequence of Theorem 3.

We can now prove Theorem 2, which is a consequence of Wright’s formula.

Proof of Theorem 2. Let θG1 ∈ Θ̄G1 and choose θG2 = (B2,Ω2) such that their
edge labels agree, that is,
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(B2)ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(B1)ij if i ← j ∈ G1, i ← j ∈ G2,

(B1)ji if i → j ∈ G1, i ← j ∈ G2,

(Ω1)ij if i ↔ j ∈ G1, i ← j ∈ G2,

0 if i ← j /∈ G2,

and

(Ω2)ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(B1)ij if i ← j ∈ G1, i ↔ j ∈ G2,

(B1)ji if i → j ∈ G1, i ↔ j ∈ G2,

(Ω1)ij if i ↔ j ∈ G1, i ↔ j ∈ G2,

0 if i ↔ j /∈ G2.

This is possible since G1 and G2 have the same skeleton: we just assign the edge
labels of G1 to G2, irrespective of the edge type. The diagonal entries of Ω2 are
still free—we now show that they can be used to enforce

(φ(B2,Ω2))ii = 1 (10)

for all i, which defines a linear system for the diagonal entries of Ω2. Let d =
diag(Ω2) be the vector consisting of the diagonal elements of Ω2, and write (10)
as Md + c = 1, where M is the coefficient matrix of the linear system, and
c is constant. To show that (10) always has a solution, we need to show that
det(M) 	= 0. Without loss of generality, assume that the nodes are topologically
ordered according to G2 (this is possible since G2 is assumed to be acyclic),
that is, there is no directed path from i to j if i > j. Then we have Hτ < i (or
Hτ = ∅) for all τ ∈ T ii, and using the expression for φii in Theorem 3 we see
that M must be lower triangular with diagonal equal to 1. Thus det(M) = 1,
and we can enforce (10).

Since G1 and G2 share the same collider triples, the sets of simple treks
between any two nodes are the same in both graphs: Sij

G1
= Sij

G2
∀i, j. Together

with Theorem 4 and the fact that the edge labels agree this shows that

φ(θG1) = φ(θG2). (11)

What is left to show is that Ω2 is a valid covariance matrix, that is, it is
positive semi-definite. By (3) and (11) we have that

Ω2 = (I −B2)Σ1(I −B2)
T ,

where Σ1 = φ(θG1). Since Σ1 is positive semidefinite, so is Ω2.

Appendix B: Likelihood separation

Since we can write ε = ε(X) as a function of X = (X1, . . . , Xd), we have that
their densities satisfy

pXG(X1, . . . , Xd) = pεG(ε1(X), . . . , εd(X)). (12)
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The joint density for the errors ε can be factorized according to the independence
structure implied by Ω. Let us adopt the notation {X}I := {Xi}i∈I and {ε}I :=
{εi}i∈I for some index set I. Then we have {ε}Ck

⊥⊥ {ε}Cl
∀k 	= l. Furthermore,

we implicitly refer to marginalized densities via the arguments, i.e. we write
pεG({ε}C1) for the marginal density of {ε}C1 . We can thus write

pεG(ε1, . . . , εd) = pεG({ε}C1) · · · pεG({ε}CK
).

Hence (12) becomes

pXG(X1, . . . , Xd) =
∏
k

pεG

({
Xi −

∑
j∈pa(i)

BijXj

}
i∈Ck

)
. (13)

Each factor depends only on the nodes in the respective component Ck and the
parents of that component pa(Ck). By the same argument the joint density of
the submodel Gk is

pXGk
({X}Vk

) = pεGk
({ε}Ck

)
∏

j∈pa(Ck)\Ck

pεGk
(εj)

= pεGk

({
Xi −

∑
j∈pa(i)

BijXj

}
i∈Ck

) ∏
j∈pa(Ck)\Ck

pεGk
(Xj).

This factorization is symbolic, since the parents {Xj}j∈pa(Ck)\Ck
will not be

independent in general. This does not matter, however, since these terms cancel
when reconstructing the full density pXG (X1, . . . , Xd) later. The advantage of
this symbolic factorization is that we can still fit the (wrong) submodel and
then use the easier to compute product of marginal densities to reconstruct the
full density, rather than doing the same with the actual submodel factorization
and the joint density of the component parents.

Note that

pεGk

({
Xi −

∑
j∈pa(i)

BijXj

}
i∈Ck

)
= pεG

({
Xi −

∑
j∈pa(i)

BijXj

}
i∈Ck

)
,

that is, the conditionals {X}Ck
|{X}pa(Ck)\Ck

are the same in models G and
Gk. This is because the structural equations of {X}Ck

are the same in these
models. Note also that pεGk

(Xj) = pXGk
(Xj) for all j ∈ pa(Ck) \ Ck and all k,

since pa(Ck) \ Ck are source nodes in model Gk (all edges between them were
removed).

Thus we can reconstruct the full joint density (13) from joint densities of the
connected component submodels and marginal densities of the parent variables:

pXG(X1, . . . , Xd) =
∏
k

pXGk
({X}Vk

) ·

⎛⎝ ∏
j∈pa(Ck)\Ck

pXGk
(Xj)

⎞⎠−1

.



Distr. equivalence and structure learning for BAPs 5371

Writing D for the observed data {xs
i} (with 1 ≤ i ≤ d and 1 ≤ s ≤ n), the

log-likelihood can then be written as

l(pXG ;D) =

n∑
s=1

log pXG(x
(s)
1 , . . . , x(s)

p )

=

n∑
s=1

∑
k

⎛⎝log pXGk
({x(s)

i }i∈Vk
)−

∑
j∈pa(Ck)\Ck

log pXGk
(x

(s)
j )

⎞⎠
=

∑
k

⎛⎝l(pXGk
; {x(s)

i }s=1,...,n
i∈Vk

)−
∑

j∈pa(Ck)\Ck

l(pXGk
; {x(s)

j }s=1,...,n)

⎞⎠ ,

where l(pXGk
; {x(s)

j }s=1,...,n) refers to the likelihood of the Xj-marginal of pXGk
.

Appendix C: Symmetry and irreducibility of Markov Chain

We show that the transition matrix of the Markov Chain described in Algo-
rithm 1 is symmetric and irreducible. For two BAPs G,G′, let P (G,G′) be the
probability of a single step transition from G to G′.

Theorem 5. We have

1. Symmetry: P (G,G′) = P (G′, G).
2. Irreducibility: ∃G1, . . . , Gn such that

P (G,G1)

(
n−1∏
i=1

P (Gi, Gi+1)

)
P (Gn−1, G

′) > 0.

Proof. Let p be the probability of sampling one position (i, j), i.e. p = 1/(d(d−
1)). Let us first consider the case where G and G′ only differ by one edge
addition, i.e. WLOG either

• G = G′ ∪ i → j.
• G = G′ ∪ i ↔ j.

In both cases we get P (G,G′) = p/2 = P (G′, G). In the first case, by multiplying
the probabilities along the branches of 1a and 2a in Algorithm 1 respectively, and
since G has no cycles. In the second case, by multiplying the probabilities along
the branches of 1a and 2b respectively. Hence symmetry holds, and irreducibility
is trivially true in this case.

For the general case, note that the transitions described in Algorithm 1 in-
volve either edge additions or deletions, so if G,G′ do not differ by only one
edge addition, we have P (G,G′) = P (G′, G) = 0. Furthermore, we can always
find a collection of graphs G1, . . . , Gn, such that irreducibility holds, e.g. by suc-
cessively removing edges from G until the graph is empty and then successively
adding edges until we arrive at G′. Then we have P (Gi, Gi+1) = p/2 > 0 for all
1 ≤ i < n by the case considered above, and the claim follows.
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