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posed “meta” algorithms that convert any online learning algorithm to one
that is adaptive to changing environments, where the adaptivity is analyzed
in a quantity called the strongly-adaptive regret. This paper describes a new
meta algorithm that has a strongly-adaptive regret bound that is a factor
of

√
log(T ) better than other algorithms with the same time complexity,

where T is the time horizon. We also extend our algorithm to achieve a
first-order (i.e., dependent on the observed losses) strongly-adaptive regret
bound for the first time, to our knowledge. At its heart is a new parameter-
free algorithm for the learning with expert advice (LEA) problem in which
experts sometimes do not output advice for consecutive time steps (i.e.,
sleeping experts). This algorithm is derived by a reduction from optimal
algorithms for the so-called coin betting problem. Empirical results show
that our algorithm outperforms state-of-the-art methods in both learning
with expert advice and metric learning scenarios.
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1. Introduction

Online learning algorithms are typically tailored to stationary environments,
but in many applications the environment is dynamic. In online portfolio man-
agement, for example, stock price trends can vary unexpectedly, and the ability
to track changing trends and adapt to them are crucial in maximizing profit.
In product reviews, words describing product quality may change over time
as products evolve and the tastes of customers change. Keeping track of the
changes in the metric describing the relationship between review text and rat-
ing is crucial for improving analysis and the quality of recommendations.

We consider the problem of adapting to changing environments in the online
learning context. Let D be the decision space, L be a family of loss functions
that map D to R, and T be the target time horizon. Let A be an online learning
algorithm. We define the online learning protocol in Figure 1.

At each time t = 1, 2, . . . , T ,

• The learner A picks a decision xA
t ∈ D.

• The environment reveals a loss function ft ∈ L.
• The learner A suffers loss ft(xA

t ).

Fig 1. Online learning protocol

The usual goal of online learning is to find a strategy that compares favorably
with the best fixed comparator in a subset W of decision space D, in hindsight.
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Algorithm SA-Regret order Time factor

FLH [9]
√
T log T T

AFLH [9]
√
T log T log(I2 − I1) log T

SAOL [5]
√

(I2 − I1) log
2(I2) log T

CBCE (ours)
√

(I2 − I1) log(I2) log T
Table 1

SA-Regret bounds of meta algorithms on I = [I1..I2] ⊆ [T ]. We show the part of the regret
due to the meta algorithm only, not the black-box. The last column is the multiplicative
factor in the time complexity introduced by the meta algorithm. CBCE (our algorithm)

achieves the best SA-Regret and time complexity.

(Often, W = D.) Classically, one seeks a low value of the following (cumulative)
static regret objective:

RegretAT :=

T∑
t=1

ft(x
A
t )− min

w∈W

T∑
t=1

ft(w) .

When the environment is changing, static regret is not a suitable measure,
since it compares the learning strategy against a decision that is fixed for all t.
We need to make use of stronger notions of regret that allow comparators to
change over time. We introduce the notation [T ] := {1, . . . , T} and [A..B] :=
{A,A+1, . . . , B}. Daniely et al. [5] defined strongly-adaptive regret (SA-Regret),
which measures the regret over any time interval I = [I1..I2] ⊆ [T ]:

SA-RegretAT (I) :=

(∑
t∈I

ft(x
A
t )− min

w∈W

∑
t∈I

ft(w)

)
. (1)

Throughout, I1 (I2) denotes the starting (ending) time step of an interval I.
We call an algorithm strongly-adaptive if it has a low value of SA-Regret, by
which we mean a value O(polylog(T )RP(I)), where RP(I) is the minimax static
regret of the online learning problem P restricted to interval I.

Let us call w1:T := {w1, . . . ,wT } an m-shift sequence if it changes at most m

times, that is,
∑T−1

j=1 1{wj �= wj+1} ≤ m. A related notion, m-shift regret [10],
measures the regret with respect to a comparator that changes at most m times
in T time steps.

m-Shift-RegretAT :=

T∑
t=1

ft(x
A
t )− min

w1:T∈WT : m-shift seq.

T∑
t=1

ft(wt) .

While the m-shift regret is more interpretable, SA-Regret is a stronger notion
since it is well-known that a tight SA-Regret bound implies a tight m-shift
regret bound [14, 5], as we discuss further in Section A.2. As noted by [21],
SA-Regret has a strong connection to so-called dynamic regret (with respect to
the temporal variations of the ft’s).

Several generic online algorithms that adapt to changing environments have
been proposed recently. Rather than being designed for a specific learning prob-
lem, these are “meta” algorithms that take any online learning algorithm as a
black-box and turn it into an adaptive one. We summarize the SA-Regret of ex-
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Algorithm m-shift regret Running time Agnostic to m

Fixed Share [10, 4]
√

mT (logN + log T ) NT ✗√
m2T (logN + log T ) NT ✓

GeneralTracking〈EXP〉 [8]
√

mT (logN +m log2 T ) NT log T ✓√
mT (logN + log2 T ) NT log T ✗

(γ ∈ (0, 1))
√

1
γ
mT (logN +m log T ) NT 1+γ log T ✓√
1
γ
mT (logN + log T ) NT 1+γ log T ✗

ATV [14]
√

mT (logN + log T ) NT 2 ✓

SAOL〈MW〉 [5]
√

mT (logN + log2 T ) NT log T ✓

CBCE〈CB〉 (ours)
√

mT (logN + log T ) NT log T ✓

Table 2

m-shift regret bounds of LEA algorithms. Our proposed algorithm (last line) achieves the
best regret among those with the same time complexity and does not need to know m. Each
quantity omits constant factors. “Agnostic to m” means that an algorithm does not need to

know the number m of switches in the best expert.

isting meta algorithms in Table 1. In particular, the pioneering work of Hazan &
Seshadhri [9] introduced adaptive regret, a slightly weaker notion than the SA-
Regret, and proposed two meta algorithms called Follow-the-Leading-History
(FLH) and Advanced FLH (AFLH).1 However, their SA-Regret depends on T
rather than |I| and hence can be significantly larger. The SAOL approach of [5]

improves the SA-Regret to O

(√
(I2 − I1) log

2(I2)

)
.

In this paper, we propose a new meta algorithm called Coin Betting for
Changing Environments (CBCE) that combines the idea of “sleeping experts”
introduced in [2, 6] with the Coin Betting (CB) algorithm [16]. The SA-Regret
of CBCE is better by a factor

√
log(I2) than that of SAOL, as shown in Table 1.

We present our extension of CB to sleeping experts and prove its regret bound
in Section 3. This result leads to the improved SA-Regret bound of CBCE in
Section 4.

Our improved bound yields a number of improvements in various online learn-
ing problems. In describing these improvements, we designate by M〈B〉 a com-
plete algorithm assembled from meta algorithm M and black-box B. In this
notation, our algorithm is designated by CBCE〈CB〉.

Consider the learning with expert advice (LEA) problem with N experts.
We make comparisons with respect to m-shift regret bounds, as many LEA
algorithms provide only bounds of this type. Our algorithm CBCE〈CB〉 has
m-shift regret

O
(√

mT (logN + log T )
)

and time complexity O(NT log T ). This regret is a factor
√
log T better than ex-

isting algorithms with the same time complexity. Although AdaNormalHedge.TV
(ATV) and Fixed Share achieve the same regret, the former has larger time com-

1Strongly adaptive regret is similar to the notion of adaptive regret introduced by [9], but
emphasizes the dependency on the interval length |I|.
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plexity, and the latter requires prior knowledge of the number of shifts m. We
summarize the m-shift regret bounds of various algorithms in Table 2. We em-
phasize that the same regret order and time complexity as CBCE〈CB〉 can be
achieved by combining our proposed CBCE meta algorithm with any blackbox
algorithm (e.g., AdaNormalHedge [14]).

In online convex optimization with G-Lipschitz loss functions over a con-
vex set D ∈ Rd of diameter B, Online Gradient Descent (OGD) has regret
O(BG

√
T ) [19]. Thus, CBCE with OGD (CBCE〈OGD〉) has the following SA-

Regret:

O
(
(BG+

√
log(I2))

√
|I|
)
,

which improves by a factor
√
log(I2) over SAOL〈OGD〉.

We also propose an improved version of CBCE that has a so-called first-order
regret bound. That is, the SA-Regret on an interval I = {I1, . . . , I2} scales with
minw∈W

∑
t∈I ft(w) rather than |I| as follows:

O

⎛⎝log(I2)

√
min
w∈W

∑
t∈I

ft(w) + polylog(I2)

⎞⎠ ,

where we omit the term due to the blackbox algorithm. We emphasize that,
while there is an extra

√
log(I2) factor and additive term, the main quantity

minw∈W
∑

t∈[T ] ft(w) can be significantly smaller than |I| if there exists the
decision w whose loss is very small in I. To our knowledge, this is the first
first-order SA-Regret bound in online learning.2

In Section 5, we compare CBCE empirically to a number of meta algorithms
for changing environments in two online learning problems: LEA and Maha-
lanobis metric learning. We observe that CBCE outperforms the state-of-the-art
methods in both tasks, thus confirming our theoretical findings.

2. Meta algorithms for changing environments

Let B be a black-box online learning algorithm following the protocol in Fig-
ure 1. A trick commonly used in designing a meta algorithm M for changing
environments is to initiate a new instance of B at every time step [9, 8, 1]. That
is, we run B independently for each interval J in {[t..∞] | t = 1, 2, . . .}. Denoting
by BJ the run of black-box B on interval J , a meta algorithm at time t takes
a weighted average of decisions from the runs {BJ : t ∈ J}. The underlying
idea is as follows. Suppose we are at time t and the environment has changed
at an earlier time t′ < t. We hope that the meta algorithm would assign a large
weight to the black-box run BJ ′ (where J ′ = [t′..∞]), since other runs are either
based on data prior to t′ or use only a subset of the data generated since t′.
Ideally, the meta algorithm would assign a large weight to BJ ′ soon after time
t′, by carefully examining the online performance of each black-box run.

2First-order bounds are available for specific online learning problems. For LEA, for ex-
ample, AdaNormalHedge.TV [14] has a first-order regret bound.
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This schema requires updating of t instances of the black-box algorithm at
each time step t, leading to a O(t) multiplicative increase in complexity over
a single run. This factor can be reduced to O(log t) by restarting black-box
algorithms on a carefully designed set of intervals, such as the geometric covering
intervals [5] (GC) or the data streaming intervals [9, 8] (DS), which is a special
case of a more general set of intervals considered in [20]. While both GC and
DS achieve the same goal, as we show in Section A.3,3 we use the former as our
starting point for ease of exposition.

Geometric covering intervals We define the Jk to be the collection of
intervals of length 2k:

Jk :=
{
[
(
i · 2k

)
..
(
(i+ 1) · 2k − 1

)
] : i ∈ N

}
, ∀k ∈ {0, 1, . . .}.

The geometric covering intervals [5] are

J :=
⋃

k∈{0,1,...}
Jk .

That is, J is the set of intervals of doubling length, with intervals of size 2k

exactly partitioning the set N\{1, . . . , 2k − 1}; see Figure 2.
Define the set of intervals that includes time t as follows:

Active(t) := {J ∈ J : t ∈ J} .

It can be shown that |Active(t)| = �log2(t)
+1. Since at most O(log(t)) intervals
contain any given time point t, the time complexity of the meta algorithm is a
factor O(log(t)) larger than that of the black-box B.

The following Lemma from Daniely et al. [5] shows that an arbitrary interval
I can be partitioned into a sequence of smaller blocks whose lengths succes-
sively double, then successively halve. This result is key to the usefulness of the
geometric covering intervals.

Lemma 1. [5, Lemma 5] Any interval I ⊆ N can be partitioned into two fi-
nite sequences of disjoint and consecutive intervals, denoted {J (−a), J (−a+1), . . . ,
J (0)} and {J (1), J (2), . . . , J (b)} where for all i ∈ [(−a)..b], we have J (i) ∈ J and
J (i) ⊂ I, such that

|J (−i)|/|J (−i+1)| ≤ 1/2, i = 1, 2, . . . , a;

|J (i+1)|/|J (i)| ≤ 1/2, i = 1, 2, . . . , b− 1 .

Regret decomposition We show now how to use the geometric covering
intervals to decompose the SA-Regret of a complete algorithm M〈B〉. Using the
notation

RA
I (w) :=

∑
t∈I

ft(x
A
t )−

∑
t∈I

ft(w) ,

3Except for a subtle case, which we discuss in Section A.4.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...

J0[ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ][ ]...

J1 [ ][ ][ ][ ][ ][ ][ ][ ][ ...

J2 [ ][ ][ ][ ...

J3 [ ][ ...

Fig 2. Geometric covering intervals. Each interval is denoted by [ ].

we can restate (1) as follows:

SA-RegretAT (I) = max
w∈W

RA
I (w).

Suppose we denote by xBJ
t the decision from black-box run BJ at time t and by

x
M〈B〉
t the combined decision of the meta algorithm at time t. Since M〈B〉 is a

combination of a meta M and a black-box B, its regret depends on both M and
B. Perhaps surprisingly, we can decompose the two sources of regret additively
through the geometric covering J , as we now describe. For any I ⊆ [T ], let⋃b

i=−a J
(i) be the partition of I obtained from Lemma 1. The regret of M〈B〉

on I can be decomposed as follows:

R
M〈B〉
I (w)

=
∑
t∈I

(
ft(x

M〈B〉
t )− ft(w)

)

=

b∑
i=−a

( ∑
t∈J(i)

ft(x
M〈B〉
t )− ft(x

B
J(i)

t ) + ft(x
B

J(i)

t )− ft(w)

)

=

b∑
i=−a

∑
t∈J(i)

(
ft(x

M〈B〉
t )− ft(x

B
J(i)

t )
)

︸ ︷︷ ︸
=:(meta regret on J(i))︸ ︷︷ ︸

=:(meta regret on I)

+

b∑
i=−a

∑
t∈J(i)

(
ft(x

B
J(i)

t )− ft(w)
)

︸ ︷︷ ︸
=:(black-box regret on J(i))

. (2)

(We purposely use symbol J for intervals in J and I for a generic interval that
is not necessarily in J .) The black-box regret on J = [J1..J2] ∈ J is exactly the
standard regret for T = |J |, since the black-box run BJ was started from time
J1. Thus, in order to prove that a meta algorithm M suffers low SA-Regret, it
remains to show two things:

1. M has low regret on interval J ∈ J ;

2. The outer sums over i in (2) are small for both the meta algorithm and
the black-box algorithm.

Daniely et al. [5] address the second issue above in their analysis. They show

that if the black-box regret on J (i) is c
√
|J (i)| for some c then the second double

summation of (2) is bounded by 8c
√
|I|,4 which is perhaps the best one can hope

4The argument is essentially the “doubling trick” described in [3, Section 2.3].
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for. The same holds true for the meta algorithm. Thus, it remains to focus on
the first issue above. This is our main contribution.

In the next two sections, we describe the design and application of our meta
algorithm. In Section 3, we propose a novel method that incorporates sleeping
experts and the coin betting framework. Section 4 describes how our method
can be used as a meta algorithm that has an SA-Regret guarantee.

3. Coin betting meets sleeping experts

Our meta algorithm CBCE extends the coin-betting framework [16] to a variant
of the learning with expert advice (LEA) problem called “sleeping experts” [2, 6].
CBCE is parameter-free (there is no explicit learning rate) and has near-optimal
regret. Our construction below has further interest as a near-optimal solution
for the sleeping bandits problem.

Sleeping experts In the LEA framework, the decision set is D = ΔN , an N -
dimensional probability simplex of weights assigned to the various experts. To
distinguish LEA from the general online learning problem, we use notation pt

in place of xt, and ht in place of ft. Denoting by �t := (�t,1, . . . , �t,N )� ∈ [0, 1]N

the vector of loss values of experts at time t provided by the environment, the
learner’s loss function is ht(p) := p��t.

Since p ∈ D is a probability vector, the learner’s decision can be viewed as
hedging between the N alternatives. Let ei be an indicator vector for dimen-
sion i; e.g., e2 = (0, 1, 0, . . . , 0)�. In this notation, the comparator set W is
{e1, . . . , eN}, that is, the learner competes with a strategy that commits to a
single expert for the entire time interval [1..T ].5

Recall that each black-box run BJ is on a different interval J . The meta
algorithm’s role is to hedge bets over multiple black-box runs. Thus, it is natural
to treat each run BJ as an expert and use an LEA algorithm to combine decisions
from each expert BJ . The loss incurred on run BJ is �t,BJ

:= ft(x
BJ
t ).

The challenge is that each expert BJ may not output decisions at time steps
outside the interval J . This problem can be reduced to the sleeping experts
problem studied in [2, 6], in which experts are not required to provide decisions
at every time step; see [14]. We introduce an indicator variable It,i ∈ {0, 1},
which is set to 1 if expert i is awake (that is, outputting a decision) at time t, and
zero otherwise. Define It := [It,1, It,2, . . . , It,N ]�, where N can be countably
infinite. The algorithm is said to be “aware” of It and it assigns zero weight to
the experts that are sleeping, that is, It,i = 0 =⇒ pt,i = 0. We would like to
have a guarantee on the regret with respect to expert i, but only for the time

5The decision set may be nonconvex, or even discrete, for example, D = {e1, . . . , eN} [3,
Section 3]. In this discrete case, no hedging is allowed; the learner must pick a single expert
for the entire interval. To choose an element of this set, one could first choose an element pt

from ΔN , then choose a decision ei ∈ D with probability pt,i. The regret guarantee for such
a scheme is the same as for the standard LEA, but with expected rather than deterministic
regret.
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steps for which expert i is awake. Following Luo & Schapire [14], we define a
regret bound with respect to u ∈ ΔN as follows:

RegretT (u) :=
T∑

t=1

N∑
i=1

It,iui(〈�t,pt〉 − �t,i) . (3)

If we set u = ej for some j, the above is simply regret with respect to expert j
while that expert is awake, and we aim to achieve a regret of O(

√∑
t It,j) up

to logarithmic factors. If It,j = 1 for all t ∈ [T ], then it recovers the standard
static regret in LEA.

Coin betting for LEA We consider the coin betting framework of Orabona
& Pál [16], which constructs an LEA algorithm from a coin betting potential
function (explained below). A player starts from the initial endowment 1. At
each time step, the adversary chooses an outcome arbitrarily while the player
decides on which side to bet (heads or tails) and how much to bet. Then the
outcome is revealed. The outcome can be a head (+1), tail (-1), or any point on
the continuum between these two extremes (e.g., −0.3) where the absolute value
of the outcome indicates the weight of being a head or tail. We encode a coin flip
at iteration t as gt ∈ [−1, 1] where |gt| indicates the weight of the outcome. Let
Wealtht−1 be the total money the player possesses after time step t− 1. (Note
that Wealth0 = 1.) We encode the player’s betting decision as the signed betting
fraction βt ∈ (−1, 1), where the positive (negative) sign indicates head (tail) and
the absolute value |βt| < 1 indicates the fraction of his current wealth to bet.
Thus, the actual amount wagered is wt := βtWealtht−1. Once the coin flip gt is
revealed, the player’s wealth changes as follows: Wealtht = (1+gtβt)Wealtht−1.
The player makes (loses) money when the betted side is correct (wrong), and
the amount of wealth change depends on both the flip weight |gt| and his betting
amount |wt|.

In the coin betting framework, a potential function denoted by Ft(g1, . . . , gt)
has an important role. Given this function, and denoting g1:t := g1, g2, . . . , gt,
the betting fraction βt and the amount wagered wt are determined as follows:

βt(g1:t−1) :=
Ft(g1:t−1, 1)− Ft(g1:t−1,−1)

Ft(g1:t−1, 1) + Ft(g1:t−1,−1)
, (4a)

wt = βt(g1:t−1) ·
(
1 +

t−1∑
s=1

gsws

)
. (4b)

(We use βt in place of βt(g1:t−1) when it is clear from the context.) A precise
definition of Ft appears in Section A.1; it suffices for now to say that the sequence
F1, F2, . . . must satisfy the following key condition by (4a):

∀t, Ft (g1:t) ≤ 1 +
t∑

s=1

gsws . (5)

That is, Ft is a lower bound on the wealth of a player who bets by (4a).
We emphasize that the term wt is decided before gt is revealed, yet the in-
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Algorithm 1 Sleeping CB

Input: Number of experts N , prior distribution π ∈ ΔN

for t = 1, 2, . . . do
For each i ∈ Active(t), set

wt,i ← βt,i(z1:t−1,i) ·
(
1 +

∑t−1
s=1 zs,iws,i

)
.

For all i ∈ [N ], set p̂t,i ← πiIt,i[wt,i]+.

Predict with pt ←
{
p̂t/||p̂t||1 if ||p̂t||1 > 0

πIt if ||p̂t||1 = 0.

Receive loss vector �t ∈ [0, 1]N .
The learner suffers loss ht(pt) = 〈�t,pt〉It

.
For each i ∈ Active(t), set

gt,i ←
{
ht(pt)− �t,i if wt,i > 0

[ht(pt)− �t,i]+ if wt,i ≤ 0.

end for

equality (5) holds for any gt ∈ [−1, 1]. Property (5) is key to analyzing the
wealth arising from the strategy (4a); see Section A.1. In the restricted setting
in which gs ∈ {±1}, a betting strategy βt based on a potential function pro-
posed by Krichevsky & Trofimov [12] achieves the optimal wealth up to constant
factors [3].

Orabona & Pál [16] have devised a reduction of LEA to the simple coin bet-
ting problem described above. The idea is to instantiate a coin betting problem
for each expert i where the signed coin flip gt,i is set as a conditionally trun-
cated regret with respect to expert i, rather than being set by an adversary.
We denote by βt,i the betting fraction for expert i and by wt,i the amount of
betting for expert i, ∀i ∈ [N ].

We apply this treatment to the sleeping experts setting and propose a new
algorithm Sleeping CB. Modifications are required because some experts may
not output a decision for some time steps. Defining zt,i := It,igt,i, we modify (4)
as follows:

βt,i(z1:t−1,i) :=
Ft,i(z1:t−1,i, 1)− Ft,i(z1:t−1,i,−1)

Ft,i(z1:t−1,i, 1) + Ft,i(z1:t−1,i,−1)
, (6a)

wt,i = βt(z1:t−1,i) ·
(
1 +

t−1∑
s=1

zs,iws,i

)
.

Condition (5) on the potential functions is modified accordingly to

∀t, Ft,i (z1:t,i) ≤ 1 +

t∑
s=1

zs,iws,i . (7)

We denote by πIt the prior π restricted to experts that are awake (for which
It,i = 1). The Sleeping CB algorithm is specified in Algorithm 1. (Here and
subsequently, we use notation [x]+ := max(x, 0).)
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The regret of Sleeping CB is bounded in Theorem 2. Unlike the standard
CB, in which all the experts use Ft at time t, expert i in Sleeping CB uses Ft,i,
which is different for each expert. For this reason, the proof of the CB regret
in [16] does not transfer easily to the regret (3) of Sleeping CB. However, this
result is crucial to an improved strongly-adaptive regret bound.

Theorem 2. (Regret of Sleeping CB) Define St,i :=
∑t

s=1 Is,i and for every
i ∈ [N ] let {Ft,i}t≥1 be a sequence of potential functions that satisfies (7).
Suppose that

log(FT,i(z1:T )) ≥ HT,i(z1:T,i) := c1
(
∑T

s=1 zs,i)
2

ST,i
+ c2,i, for all i ∈ [N ],

for some c1 > 0 and c2,i ∈ R. Then for the regret defined in (3), Algorithm 1
satisfies

RegretT (u) ≤

√√√√ 1

c1
·
(

N∑
i=1

uiST,i

)
·
(
KL(u||π)−

N∑
i=1

uic2,i

)
.

Proof. We show first that
∑N

i=1 πiIt,igt,iwt,i ≤ 0. Define rt,i := 〈�t,pt〉It
− �t,i.

Using the fact that∑
i:πiIt,iwt,i>0

pt,irt,i =
∑

i:It,i=1

pt,irt,i =
∑

i:It,i=1

pt,i〈�t,pt〉It
−

∑
i:It,i=1

pt,i�t,i = 0,

we have

N∑
i=1

πiIt,igt,iwt,i =
∑

i:πiIt,iwt,i>0

πi[wt,i]+rt,i +
∑

i:πiIt,iwt,i≤0

πiIt,iwt,i[rt,i]+

= ||p̂t||1
∑

i:πiIt,iwt,i>0

pt,irt,i +
∑

i:πiIt,iwt,i≤0

πiIt,iwt,i[rt,i]+

= 0 +
∑

i:πiIt,iwt,i≤0

πiIt,iwt,i[rt,i]+ ≤ 0 .

Then, because of the property (7) of the coin betting potentials, we have

N∑
i=1

πiFT,i (z1:T,i) ≤ 1 +

N∑
i=1

πi

T∑
t=1

It,igt,iwt,i ≤ 1, (8)

and

N∑
i=1

ui log(FT,i(z1:T,i)) =

N∑
i=1

ui

(
log

(
ui

πi

)
+ log

(
πi

ui
· FT,i(z1:T,i)

))
(Jensen’s)

≤ KL(u||π) + log

(
N∑
i=1

ui ·
πi

ui
· FT,i(z1:T,i)

)
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(8)

≤ KL(u||π) .

Define ZT,i :=
∑T

t=1 zt,i and H ′
T,i(x) := c1

x2

ST,i
+ c2,i. We see from the definition

of HT,i in Theorem 2 that H ′
T,i(ZT,i) = HT,i(z1:T,i). Since H ′ is symmetric

around 0, its inverse H ′−1
usually maps to two distinct values with opposite

sign. To resolve this ambiguity, we define it to map to the nonnegative real
value. Then, for any comparator u ∈ ΔN , we have

RegretT (u) =

T∑
t=1

N∑
i=1

It,iui(〈�t,pt〉 − �t,i) ≤
T∑

t=1

N∑
i=1

It,iuigt,i =

N∑
i=1

uiZT,i

=

N∑
i=1

uiH
′−1
T,i(H

′
T,i(ZT,i)) =

N∑
i=1

uiH
′−1
T,i(HT,i(z1:T,i))

≤
N∑
i=1

uiH
′−1
T,i(log(FT,i(z1:T,i)))

=

N∑
i=1

ui

√
c−1
1 ST,i · (log(FT,i(z1:T,i))− c2,i)

=

N∑
i=1

√
uic

−1
1 ST,i ·

√
ui(log(FT,i(z1:T,i))− c2,i)

(a)

≤

√√√√c−1
1

(
N∑
i=1

uiST,i

)
·
(

N∑
i=1

ui(log(FT,i(z1:T,i))− c2,i)

)

≤

√√√√c−1
1

(
N∑
i=1

uiST,i

)
·
(
KL(u||π)−

N∑
i=1

uic2,i

)
,

where (a) is due to the Cauchy-Schwartz inequality (noting that the factors
under the square root are all nonnegative since logFT,i(x) ≥ HT,i(x)).

Note that if u = ej , then the regret scales with ST,j , which is essentially the
number of time steps at which expert j is awake.

While any potential function satisfying the condition (7) and symmetric-
ity around 0 can be used, we present two interesting choices: the Krichevsky-
Trofimov potential and the AdaptiveNormal potential.

Krichevsky-Trofimov potential The Krichevsky-Trofimov (KT) potential
[16] is defined as follows:

Ft(g1:t) =
2t · Γ(δ + 1) · Γ

(
t+δ+1

2 +
∑ t

s=1 gs
2

)
· Γ

(
t+δ+1

2 −
∑ t

s=1 gs
2

)
Γ( δ+1

2 )2 · Γ(t+ δ + 1)
, (9)
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where δ ≥ 0 is a time shift parameter set to 0 in this work. Orabona & Pál [16]
show that the KT potential satisfies (5). We modify the KT potential as follows
to handle sleeping experts by replacing t in several places by St,i:

Ft,i(z1:t,i)=
2St,i · Γ(δ+1) · Γ

(
St,i+δ+1

2 +
∑ t

s=1 zs,i
2

)
· Γ

(
St,i+δ+1

2 −
∑ t

s=1 zs,i
2

)
Γ( δ+1

2 )2 · Γ(St,i + δ + 1)
,

(10)

which satisfies (7).6 The betting fraction βt defined in (4a) with KT poten-

tial exhibits the simple form βt =
∑ t−1

s=1 gs
t+δ and, for sleeping experts, we have

βt,i =
∑ t−1

s=1 zs,i
St,i+δ . We present the regret of Algorithm 1 with the KT potential in

Corollary 3.

Corollary 3. Let δ = 0. Suppose we run Algorithm 1 with the KT potential.
Then,

RegretT (u) ≤

√√√√2

(
N∑
i=1

uiST,i

)
·
(
KL(u||π) + 1

2
ln(T ) + 2

)
.

Proof. Define H ′
T,i(x) :=

x2

2ST,i
+ 1

2 ln(
1

ST,i
)−ln(e

√
π). Note that this definition is

identical with the one used in Theorem 2 if we set c1 = 1
2 and c2,i =

1
2 ln(

1
ST,i

)−
ln(e

√
π). According to Orabona & Pál [16, Lemma 15] with δ = 0, we have

H ′
T,i(ZT,i) = HT,i(z1:T,i) ≤ lnFT,i(z1:T,i). It follows that

−
N∑
i=1

uic2,i =

N∑
i=1

ui

(
(1/2) ln(ST,i) + ln(e

√
π)
)
≤ 1

2
ln(T ) + 2 .

By plugging c1 and c2,i into Theorem 2, we obtain the result.

AdaptiveNormal potential Let Gt :=
∑t

s=1 |gs|. The AdaptiveNormal
(AN) potential proposed by Orabona & Tommasi [17] is defined by

Ft(g1:t) = exp

(
(
∑t

s=1 gs)
2

2(ξ +Gt)
−

t∑
s=1

|gs|
2(ξ +Gs−1 + 1)

)
, (11)

where ξ > 0 is a parameter of minor importance in our context that we set to
1. Orabona & Tommasi [17, Lemma 2] show that the AN potential satisfies the
condition (5). Let Zt,i :=

∑t
s=1 |zs,i|. For sleeping experts, we use the following

potential that satisfies (7) due to a trivial consequence of (11) satisfying (5):

Ft,i(z1:t,i) = exp

(
(
∑t

s=1 zs,i)
2

2(ξ + Zt,i)
−

t∑
s=1

|zs,i|
2(ξ + Zs−1,i + 1)

)
. (12)

6This is trivially implied by the fact that (9) satisfies (5) since the only modification in (10)
compared to (9) is to allow “individual clock” St,i that counts the time steps expert i was
awake up to t.
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The betting fraction (6a) using the AN potential can be simplified to

βt = 2σ

(
2
∑t−1

s=1 gs

ξ +Gt−1 + 1

)
− 1, where σ(z) =

1

1 + exp(−z)
.

For sleeping experts, we have

βt,i = 2σ

(
2
∑t−1

s=1 zs,i

ξ + Zt−1,i + 1

)
− 1.

Define rt,i := It,i(ht(pt) − �t,i) and L̃T,i :=
∑T

t=1[−rt,i]+. We present the
regret bound of Sleeping CB with the AN potential in Corollary 4.

Corollary 4. Let ξ = 1. Suppose we run Algorithm 1 with the AN potential.
Let Wu := 1 +

∑N
i=1 uiZT,i and LT,i :=

∑T
t=1 It,i�t,i. Then we have

RegretT (u) =
√
2Wu

(
KL(u||π) + 1

2 ln(Wu)
)
,

and moreover

RegretT (u)

= O

⎛⎝
√√√√(

N∑
i=1

uiLT,i

)
· (KL(u||π) + ln(Wu)) + KL(u||π) + ln(Wu)

⎞⎠ .

Proof. Define

H ′
T,i(x) :=

x2

2(1 + ZT,i)
−

T∑
s=1

|zs,i|
2(1 + Zs−1,i + 1)

.

Note that H ′
T,i(ZT,i) = HT,i(z1:T,i) = ln(FT,i(z1:T,i)). To match this definition

with the setup of Theorem 2, we redefine ST,i := 1+ZT,i, for which the theorem
still holds, since ST,i is used only through the function HT,i. We also set

c1 =
1

2
, c2,i = −

T∑
s=1

|zs,i|
2(1 + Zs−1,i + 1)

.

Using |zs,i| ≤ 1 and a−b
a ≤ ln(a)− ln(b), we have

−c2,i ≤
1

2

T∑
s=1

|zs,i|
(1 + Zs−1,i + |zs,i|)

=
1

2

T∑
s=1

(
ln(1 + Zs,i)− ln(1 + Zs−1,i)

)
=

1

2
ln(1 + ZT,i),
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so it follows from Jensen’s inequality that

N∑
i=1

−c2,i ≤
1

2
ln

(
1 +

N∑
i=1

uiZT,i

)
.

Then, by Theorem 2, we have

RegretT (u) =

√
2
(
1 +

∑N
i=1 uiZT,i

)
·
(
KL(u||π) + 1

2 log
(
1 +

∑N
i=1 uiZT,i

))
,

proving the first statement of the theorem.
For the second statement, we use Lemma 13 in Section A.5, which says if

RegretT (u) ≤
√
(1 +

∑N
i=1 uiZT,i)A(u) for some function A(u) then

RegretT (u) =
√
(1 + 2

∑N
i=1 uiL̃T,i)A(u) +A(u) .

Setting A(u) = KL(u||π)+ 1
2 log

(
1 +

∑N
i=1 uiZT,i

)
and the fact that [−rt,i]+ ≤

�t,i =⇒ L̃T,i ≤ LT,i we verify the second claim.

When we set u = ei with this AN potential, we obtain a regret bound that
scales with LT,i, which is always smaller than ST,i. The difference becomes
significant when the expert i suffers a loss �t,i that is close to 0 for all t ∈
Active(i). Note that Sleeping CB with the AN potential is quite similar to
AdaNormalHedge [14], which has the same regret order. The key difference
is that the truncation operates in the potential function for AdaNormalHedge
whereas for ours it operates in the reduction to LEA (see the definition of gt,BJ

).
According to our results, the regret bound of the KT potential can be much

larger than that of the AN potential. Thus, one might wonder if we should
always use the AN potential. Our empirical study in Section 5 shows a case
where KT has a benefit over AN.

4. Coping with a changing environment by sleeping CB

In this section, we synthesize the results in Sections 2 and 3 to specify and ana-
lyze our meta algorithm. Recall that a meta algorithm must efficiently aggregate
decisions from multiple black-box runs that are active at time t. By treating each
black-box run as an expert, we use Sleeping CB (Algorithm 1) as the meta algo-
rithm, with geometric covering intervals. An important motivation for the use
of Sleeping CB is that it is parameter-free. Other sleeping bandits techniques re-
quire the number of black-box runs (experts) to be specified in advance, which
results in a theoretical guarantee only up to some finite time horizon T . By
contrast, our approach provides an “anytime” guarantee. The complete algo-
rithm, which we call Coin Betting for Changing Environments (CBCE),
is shown in Algorithm 2.

We first present the results with the KT potential and then discuss applying
the AN potential in the same manner. We make use of the following assumption.
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Algorithm 2 Coin Betting for Changing Environment (CBCE)

Input: A black-box algorithm B and a prior distribution π ∈ Δ|J | over {BJ | J ∈
J }.
for t = 1 to T do

For each J ∈ Active(t), set
wt,BJ ← βt,BJ (zt,BJ ) · (1 +

∑t−1
s=1 zs,BJws,BJ )

Set p̂t,BJ ← πBJIt,BJ [wt,BJ ]+ for J ∈ Active(t) and 0 for J �∈ Active(t).

Compute pt ←
{
p̂t/||p̂t||1 if ||p̂t||1 > 0

[πBJ ]J∈Active(t) if ||p̂t||1 = 0.

The black-box run BJ picks a decision xBJ
t ∈ D, ∀J ∈ Active(t).

The learner picks a decision xt =
∑

J∈J pt,BJx
BJ
t .

Each black-box run BJ that is awake (J ∈ Active(t)) suffers loss �t,BJ := ft(x
BJ
t ).

The learner suffers loss ft(xt).
For each J ∈ Active(t), set

gt,BJ ←
{
ft(xt)− �t,BJ if wt,BJ > 0

[ft(xt)− �t,BJ ]+ if wt,BJ ≤ 0.

end for

Assumption A1. The loss function ft is convex and maps to [0, 1], ∀t ∈ N.

Nonconvex loss functions can be accommodated by randomized decisions:
We choose the decision xBJ

t from black-box BJ with probability pt,BJ
. It is not

difficult to show that the same regret bound holds, but now in expectation.
When loss functions are unbounded, they can be scaled and truncated to [0, 1].
Any nonconvexity that results can be handled in the manner just described.

We define our choice of prior π̄ ∈ Δ|J | as follows:

π̄BJ
:= Z ′−1

(
1

J2
1 (1 + �log2 J1
)

)
, ∀J ∈ J , (13)

where Z ′ is a normalization factor. Since there exist at most 1+�log2 J1
 distinct
intervals starting at time J1, we have that Z ′ <

∑∞
t=1 t

−2 = π2/6.
We bound the meta regret with respect to a black-box run BJ as follows.

Lemma 5. (Meta regret of CBCE with the KT potential) Assume A1. Suppose
we run CBCE (Algorithm 2) with a black-box algorithm B, prior π̄, and the
KT potential (10) with δ = 0. The meta regret of CBCE〈B〉 on interval J =
[J1..J2] ∈ J is∑

t∈J

ft(x
CBCE〈B〉
t )− ft(x

BJ
t ) ≤

√
|J | (7 ln(J2) + 5) = O(

√
|J | log J2) .

Proof. Note that our regret definition for meta algorithms∑
t∈J

ft(x
CBCE〈B〉
t )− ft(x

BJ
t ) , (14)
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is slightly different from that of Theorem 2 for u = ei:
∑

t∈J:It,i=1 〈�t,pt〉− �t,i.

This translates to, in the language of meta algorithms,
∑

t∈J:It,BJ
=1 〈�t,pt〉It

−
�t,BJ

for u = eBJ
(recall �t,BJ

= ft(x
BJ
t )).

We claim that Theorem 2 and Corollary 3 for hold true for the regret (14).

Note that, using Jensen’s inequality, ft(x
CBCE〈B〉
t ) ≤ 〈�t,pt〉It

. Then, in the
proof of Theorem 2∑

J∈J
πBJ

It,BJ
gt,BJ

wt,BJ

=
∑

J∈J :πBJ
It,BJ

wt,BJ
>0

πBJ
[wt,BJ

]+(ft(x
CBCE〈B〉
t )− �t,BJ

)

+
∑

J∈J :πBJ
It,BJ

wt,BJ
≤0

πBJ
It,BJ

wt,BJ
[ft(x

CBCE〈B〉
t )− �t,BJ

]+

≤
∑

J∈J :πBJ
It,BJ

wt,BJ
>0

πBJ
[wt,BJ

]+(〈�t,pt〉It
− �t,BJ

)

+
∑

J∈J :πBJ
It,BJ

wt,BJ
≤0

πBJ
It,BJ

wt,BJ
[〈�t,pt〉It

− �t,BJ
]+ .

Then, one can see that the proof of Theorem 2 goes through, so does Corollary 3.

Since KL(eBJ
||π̄) = ln 1

π̄BJ
≤ ln

(
π2

6 J2
1 (1 + �log2 J1
)

)
≤ 3 ln(J2) +

1
2 , it

follows that∑
t∈J

ft(x
CBCE〈B〉
t )− ft(x

BJ
t )

(Cor. 3)

≤
√

2ST,BJ
·
(
KL(eBJ

||π) + 1

2
ln(J2) + 2

)

≤
√

2|J |
(
7

2
ln(J2) +

5

2

)
=
√

|J | (7 ln(J2) + 5) .

We now present the bound on the SA-Regret R
CBCE〈B〉
I (w) with respect to

w ∈ W on intervals I ⊆ [T ] that are not necessarily in J .

Theorem 6. (SA-Regret of CBCE〈B〉 with the KT potential) Take the same
assumption as Lemma 5. Suppose that the black-box algorithm B has regret RB

T

bounded by A1T
α, where α ∈ (0, 1). Let I = [I1..I2]. The SA-Regret of CBCE

with black-box B on the interval I with respect to any w ∈ W is bounded as
follows:

R
CBCE〈B〉
I (w) ≤ 4

2α − 1
A1|I|α + 8

√
|I|(7 ln(I2) + 5) = O(A1|I|α +

√
|I| ln I2) .

Proof. By Lemma 1, we know that J can be decomposed into two sequences of
intervals {J (−a), . . . , J (0)} and {J (1), J (2), . . . , J (b)}. Continuing from (2),

R
CBCE〈B〉
I (w)
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=

b∑
i=−a

∑
t∈J(i)

(
ft(x

CBCE〈B〉
t )− ft(x

B
J(i)

t )
)

︸ ︷︷ ︸
=:E1

+

b∑
i=−a

∑
t∈J(i)

(
ft(x

B
J(i)

t )− ft(w)
)

︸ ︷︷ ︸
=:E2

.

Then,

E1 =
∑

i∈[(−a)..0]

∑
t∈J(i)

(
ft(x

CBCE〈B〉
t )− ft(x

B
J(i)

t )
)

+
∑

i∈[1..b]

∑
t∈J(i)

(
ft(x

CBCE〈B〉
t )− ft(x

B
J(i)

t )
)

.

The first summation is upper-bounded by, due to Lemma 5 and Lemma 1,∑
i∈[(−a)..0]

√
|J (i)|(7 ln(I2) + 5) ≤

√
7 ln(I2) + 5 ·

∑∞
i=0(2

−i|I|)1/2 ≤√
7 ln(I2) + 5 ·(4

√
|I|). The second summation is bounded by the same quantity

due to symmetry. Thus, E1 ≤ 8
√
|I|(7 ln(I2) + 5).

In the same manner, one can show that E2 ≤ 2 · 2α

2α−1 |I|α ≤ 4
2α−1 |I|α, which

concludes the proof.

For the standard LEA problem, one can run the algorithm CB with KT po-
tential (equivalent to Sleeping CB with It,i = 1, ∀t, i), which achieves static

regret O(
√

T log(NT )) [16]. Using CB as the black-box algorithm, the regret of

CBCE〈B〉 on I is R
CBCE〈CB〉
I (w) = O(

√
|I| log(NI2)), and so

SA-Regret
CBCE〈CB〉
T (|I|) = O(

√
|I| log(NT )). It follows that the m-shift re-

gret of CBCE〈CB〉 is O(
√

mT log(NT )) using the technique presented in Sec-
tion A.2.

As said above, our bound improves over the best known result with the same
time complexity in [5]. The key ingredient that allows us to get a better bound
is the Sleeping CB Algorithm 1, that achieves a better SA-Regret than the one
of [5]. In the next section, we will show that the empirical results also confirm
the theoretical gap between these two algorithms.

The AdaptiveNormal potential We present the meta regret bound of
CBCE with the AN potential on intervals J ∈ J in Lemma 7 and on any
interval I in Lemma 8.

Lemma 7. (Meta regret of CBCE with the AN potential) Assume A1. Suppose
we run CBCE (Algorithm 2) with a black-box algorithm B, prior π̄, and the
AN potential (12) with ξ = 1. The meta regret of CBCE〈B〉 on interval J =
[J1..J2] ∈ J is

∑
t∈J

ft(x
CBCE〈B〉
t )− ft(x

BJ
t ) = O

⎛⎝√∑
t∈J

ft(x
BJ
t ) log(J2) + log(J2)

⎞⎠ .
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Proof. The proof deviates from the proof of Lemma 5. Since WeBJ
= O(J2).∑

t∈J

ft(x
CBCE〈B〉
t )− ft(x

BJ
t )

(Cor. 4)
= O

(√
LT,BJ

log(J2WeBJ
) + log(J2WeBJ

)
)

= O

(√
LT,BJ

log(J2) + log(J2)

)
.

Theorem 8. (SA-Regret of CBCE〈B〉 with the AN potential) Make the same
same assumption as Lemma 5. Suppose that the black-box algorithm B has re-
gret RB

T (w) bounded by A1(
∑T

t=1 qt)
α + A2 for some {qt} where α ∈ (0, 1)

where A2 grows poly-logarithmically in T . For any I = [I1..I2] and w ∈ W,

R
CBCE〈B〉
I (w) = O

(
min

{
A1|I|α +

√
|I| log I2, U(w)

})
where U(w) =

A1(log |I|)1−α

(∑
t∈I

qt

)α

+ log(I2)

√∑
t∈I

ft(w) ,

and we ignore additive terms scaling at most poly-logarithmically in I2.

Proof. The first equation in the minimum operator of the stated regret bound is
trivial as

∑
t∈J ft(x

BJ
t ) ≤ |J |. Thus, we focus on U(w). By Lemma 1, we know

that J can be decomposed into two sequences of intervals {J (−a), . . . , J (0)} and
{J (1), J (2), . . . , J (b)}. Continuing from (2),

R
CBCE〈B〉
I (w)

=

b∑
i=−a

∑
t∈J(i)

(
ft(x

CBCE〈B〉
t )− ft(x

B
J(i)

t )
)

︸ ︷︷ ︸
=:E1

+

b∑
i=−a

∑
t∈J(i)

(
ft(x

B
J(i)

t )− ft(w)
)

︸ ︷︷ ︸
=:E2

.

Define LB
J(i) :=

∑
t∈J(i) ft(x

B
J(i)

t ). For simplicity, we denote by C1,i

√
LB
J(i)+C2,i

the meta regret bound of CBCE for the interval J (i) (see Lemma 7). Define

C̄1 = maxi C1,i. Then, due to Lemma 7 and the fact
∑k

i=1 x
α
i ≤ k1−α(

∑k
i=1 xi)

α

for α ∈ (0, 1),

E1 ≤
∑

i C1,i

√
LB
J(i) + C2,i

= O(C̄1

√
log |I|

√∑
i L

B
J(i) +

∑
i C2,i)

= O(C̄1

√
log |I|

√∑
t∈I ft(w) +

∑
i

∑
t∈J(i) ft(x

B
J(i)

t )− ft(w) +
∑

i C2,i)

= O(C̄1

√
log |I|

√∑
t∈I ft(w) + E2 +

∑
i C2,i) .

Note that

E2 = O(A1(log |I|)1−α(
∑

t∈I qt)
α +A2 log |I|) .
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Note that C̄1,i = O(
√
log I2) and C2,i = O(log I2). For brevity, we ignore the

term
√
E2 that is smaller than E2 unless E2 < 1. Ignoring terms that cannot

grow faster than poly-logarithmically in I2, the regret of CBCE〈B〉 for interval
I can be simplified to

O(A1(log |I|)1−α(
∑

t∈I qt)
α + log(I2)

√∑
t∈I ft(w)) .

We emphasize that the order of regret stated in Theorem 8 is always no larger
than CBCE with the KT potential. Furthermore, the regret bound of the AN
potential scales roughly with minw∈W

∑
t∈I ft(w) + (

∑
t∈I qt)

α. In some cases,
this form of regret can be much smaller when there exists a decision w that has
a very small loss in the interval I. We instantiate the result above for LEA in
Corollary 9 and for online convex optimization (OCO) in Corollary 10.

Corollary 9. (SA-Regret of CBCE〈CB〉 with the AN potential) Suppose we
run CBCE with the AN potential equipped with CB with the AN potential for
LEA. Then, for any I = [I1..I2],

SA-Regret
CBCE〈CB〉
T (I) = O

⎛⎝log(I2)

√√√√(
min
i∈[N ]

∑
t∈I

�t,i

)
logN + polylog(I2)

⎞⎠ .

Proof. Consider the standard LEA problem where all experts are awake all
the time. Verify that the regret of CB with the AN potential with respect
to expert i is O(

√
LT,i log(NT )) by Corollary 4, ignoring additive terms that

are O(polylog(T )). Plugging in A1 =
√
log(N |I|) and α = 1/2 in Theorem 8

concludes the proof.

For LEA, AdaNormalHedge.TV of Luo & Schapire [14] achieves the SA-

Regret bound O
(√(

mini∈[N ]

∑
t∈I �t,i

)
log(NI1) + polylog(I2)

)
, which is at

least
√
log(I2) factor smaller than CBCE〈CB〉. However, the time complexity

of AdaNormalHedge.TV is O(NT ) per time step rather than O(N log(T )).

Corollary 10. (SA-Regret of CBCE〈FTRL〉 with the AN potential) Consider
the OCO problem where the functions {ft} are nonnegative, smooth (gradients
are Lipschitz continuous), and L-Lipschitz. Suppose we run CBCE with the AN
potential and use Follow The Regularized Leader (FTRL) on the linearized losses

as the blackbox [18, 15], setting the regularizer at time t to

√
L2+

∑ t−1
s=1 ‖∇fs(xs)‖2

2

2 ‖·
‖22. Then, for any I = [I1..I2],

SA-Regret
CBCE〈OGD〉
T (I) = O

⎛⎝log(I2)

√
min
w∈W

∑
t∈I

ft(w) + polylog(I2)

⎞⎠ .

Proof. One can show that the regret bound of FTRL with the assumed regu-

larizer achieves the regret bound of order O(
√

L2 +
∑T

t=1 ft(w)) with respect

to any w, see, e.g., [18, Theorem 2]. Then, plugging in α = 1/2 in Theorem 8
concludes the proof.
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To the best of our knowledge, Corollary 10 is the first first-order SA-Regret
bound for OCO.

Discussion Note that one can obtain the same result using the data streaming
intervals (DS) [9, 8] in place of the geometric covering intervals (GC). Section A.3
elaborates on this with a lemma stating that DS induces a partition of an interval
I in a very similar way to GC (a sequence of intervals of doubling lengths).

Our improved bound has another interesting implication. In designing
strongly-adaptive algorithms for LEA, there is a well known technique called
“restarts” or “sleeping experts” that has time complexity O(NT 2) [9, 14], and
several studies used DS or GC to reduce the time complexity to O(NT log T ) [9,
8, 5]. However, it was unclear whether it is possible to achieve both an m-shift
regret of O(

√
mT (logN + log T )) and a time complexity of O(NT log T ) with-

out knowing m. Indeed, every study on m-shift regret with time O(NT log T )
results in suboptimal m-shift regret bounds [5, 8, 9], to our knowledge. Fur-
thermore, some studies (e.g., [14, Section 5]) speculated that perhaps applying
the data streaming technique would increase its SA-Regret by a logarithmic
factor. Our analysis implies that one can reduce the overall time complexity to
O(NT log T ) without sacrificing the order of SA-Regret and m-shift regret.7

5. Experiments

We now turn to an empirical evaluation of algorithms for changing environments.
We compare the performance of the meta algorithms under two online learning
problems: (i) learning with expert advice (LEA) and (ii) metric learning (ML).
We compare CBCE with SAOL [5] and AdaNormalHedge.TV (ATV) [14]. Al-
though ATV was originally designed for LEA only, it is not hard to extend it to
a meta algorithm and show that it has the same order of SA-Regret as CBCE
using the same techniques. We run CBCE with both KT and AN potential,
which are denoted by CBCE(KT) and CBCE(AN) respectively.

For our empirical study, we replace the geometric covering intervals (GC)
with the data streaming intervals (DS) [9, 8]. Let u(t) be a number such that
2u(t) is the largest power of 2 that divides t; e.g., u(12) = 2. The data streaming
intervals are J = {[t..(t + g · 2u(t) − 1)] : t = 1, 2, . . .} for some g ≥ 1. DS is
an attractive alternative, unlike GC, (i) DS initiates one and only one black-
box run at each time, and (ii) it is more flexible in that the parameter g can be
increased to enjoy smaller regret in practice while increasing the time complexity
by a constant factor.

For both ATV and CBCE, we set the prior π over the black-box runs as the
uniform distribution. Note that this does not break the theoretical guarantees
since the number of black-box runs is never actually infinite; we used π̄ (13) for
ease of exposition.

7Note that we still pay an extra logarithmic factor when it comes to the first-order regret
bound as discussed right below Corollary 9.
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5.1. Learning with expert advice (LEA)

We consider LEA with the linear loss. That is, the loss function at time t is
ht(p) = ��t p. We draw linear losses �t ∈ [0, 1]N , ∀t = 1, . . . , 600 for N = 1000
experts by setting �t,i as the absolute value of an i.i.d. sample from N (0, 0.52).
Then, for time t ∈ [1, 300], we reduce loss of expert 1 by subtracting 1/2 from its
loss: �t,1 ← [�t,1 − 1/2]+. For time t ∈ [301, 600] and t ∈ [601, 900], we perform
the same for expert 2 and 3, respectively. Thus, the best expert is 1, 2, and 3
for time segment [1,300], [301,600], and [601,900], respectively. Finally, we cap
�t,i below 1: �t,i ← min{�t,i, 1}. We use the data streaming intervals with g = 2.
In all our experiments, DS with g = 2 outperforms GC while spending roughly
the same time.

For each meta algorithm, we use Sleeping CB with the AN potential as the
black-box,8 where It,i = 1 for all t ≥ 1 and i ∈ [N ] as there are no sleeping
experts in this experiment. We warm-start each black-box run at time t ≥ 2
by setting its prior to the decision pt−1 chosen by the meta algorithm at time
step t − 1. We repeat the experiment 200 times and plot their average loss by
computing moving mean with window size 10 in Figure 3(a). The overall winner
is CBCE(AN). While CBCE(KT) catches up with the environmental change
faster than CBCE(AN), CBCE(AN) shows smaller loss than CBCE(AN) once
the change settles down. ATV is outperformed by both CBCEs but outperforms
SAOL. Note that SAOL with GC intervals (SAOL-GC) tends to incur larger loss
than the SAOL with DS. We observe that this is true for every meta algorithm,
so we omit the result here to avoid clutter. We also run Fixed Share using the
parameters recommended by Corollary 5.1 of [3], which requires knowing the
target time horizon T = 900 and the true number of switches m = 2. Such a
strong assumption is often unrealistic in practice. Furthermore, we observe that
Fixed Share is the slowest in adapting to the environmental changes. Neverthe-
less, Fixed Share can be attractive since (i) after the switch has settled down
its loss is competitive to CBCE(AN), and (ii) its time complexity (O(NT )) is
lower than other algorithms (O(NT log T )).

5.2. Metric learning

We consider the problem of learning squared Mahalanobis distance from pairwise
comparisons using the mirror descent algorithm [13]. The data point at time t

is (z
(1)
t , z

(2)
t , yt), where yt ∈ {1,−1} indicates whether or not z

(1)
t ∈ Rd and

z
(2)
t ∈ Rd belongs to the same class. The goal is to learn a squared Mahalanobis

distance parameterized by a positive semi-definite matrix M and a bias μ that
have small loss ft([M;μ]) :=

[1− yt(μ− (z
(1)
t − z

(2)
t )�M(z

(1)
t − z

(2)
t ))]+ + ρ||M||∗ ,

8 We also experimented with Sleeping CB with the KT potential, but we found that it
works slightly worse than the AN potential in general. We omit this result here to avoid
clutter.
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Fig 3. Experiment results: Our method CBCE outperforms several baseline methods.

where μ is the bias parameter and || · ||∗ is the trace norm. Such a formulation
encourages predicting yt with a large margin and with a low rank matrix M. A
learned matrix M that has low rank can be useful in a number of machine learn-
ing tasks; e.g., distance-based classifications, clusterings, and low-dimensional
embeddings. We refer to [13] for details.

We create a scenario that exhibits shifts in the metric, which is inspired
by [7]. Specifically, we create a mixture of three Gaussians in R3 whose means
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are well-separated, and mixture weights are .5, .3, and .2. We draw 2000 points
from it while keeping a record of their memberships. We repeat this three times
independently and concatenate these three vectors to have 2000 9-dimensional
vectors. Finally, we append to each point a 16-dimensional vector filled with
Gaussian noise to have 25-dimensional vectors. Such a construction implies that
for each point there are three independent cluster memberships. We run each
algorithm for 1500 time steps. For time 1 to 500, we randomly pick a pair of
points from the data pool and assign yt = 1 (yt = −1) if the pair belongs to the
same (different) cluster under the first clustering. For time 501 to 1000 (1001
to 1500), we perform the same but under the second (third) clustering. In this
way, a learner must track the change in the metric, especially the important
low-dimensional subspaces for each time segment.

Since the loss of the metric learning is unbounded, we scale the loss by mul-
tiplying 1/5 and then capping it above at 1 as in [7]. Although the randomized
decision discussed in Section 4 can be used to maintain the theoretical guaran-
tee, we stick to the weighted average since the event that the loss being capped
at 1 is rare in our experiments. As in our LEA experiment, we use the data
streaming intervals with g = 2 and initialize each black-box algorithm with the
decision of the meta algorithm at the previous time step. We repeat the ex-
periment 200 times and plot their average loss in Figure 3(b) by moving mean
with window size 10. While we observe that CBCE(KT), CBCE(AN), and ATV
are indistinguishable (see Figure 3(c)), all these methods outperform SAOL.
We have verified that visible gaps in Figure 3 are statistically significant. This
confirms the improved regret bound of CBCE and ATV.

6. Future work

Among a number of interesting directions, we are interested in reducing the
time complexity in online learning within a changing environment. For LEA,
Fixed Share has the best time complexity. However, Fixed Share is inherently
not parameter-free; especially, it requires the knowledge of the number of shifts
m. Achieving the best m-shift regret bound without knowing m or the best
SA-Regret bound in time O(NT ) would be an interesting future work. The
same direction is interesting for the online convex optimization (OCO) problem.
It would be interesting if an OCO algorithm such as online gradient descent
can have the same SA-Regret as CBCE〈OGD〉 without paying extra order of
computation.

Appendix

A.1. The coin betting potential

We precisely define the coin betting potential. In this paper, we set ε = 1
throughout. For technical reasons, we define the potential function that takes a
form of F̄t(x; y1:t). We then define Ft(y1:t) := F̄t(

∑t
s=1 ys; y1:t).
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Definition 11. (Coin Betting Potential [16]) Let ε > 0. Let {F̄t}∞t=0 be a se-
quence of functions F̄t : (−at, at) × [−1, 1]t → R+ where at > t. The sequence
{F̄t}∞t=0 is called a sequence of coin betting potentials for initial endow-
ment ε, if it satisfies the following three conditions:

(a) F̄0(0; ·) = ε.
(b) For every t ≥ 0, F̄t(x; y1:t) is even, logarithmically convex, strictly in-

creasing on [0, at) in the first argument, and limx→at F̄t(x; y1:t) = +∞.

(c) Define βt :=
F̄t(x+1;y1:t−1,1)−F̄t(x−1;y1:t−1,−1)

F̄t(x+1,y1:t−1,1)+F̄t(x−1,y1:t−1,−1)
. For every t ≥ 1 every x ∈

[−(t− 1), (t− 1)] and every g ∈ [−1, 1],

(1 + gβt)F̄t−1(x; y1:t−1) ≥ F̄t(x+ g; y1:t−1, g) .

We now describe how the conditions for the coin betting potential lead to a
lowerbound on the wealth:

Wealtht ≥ Ft (g1:t)

for any g1, g2, . . . , gt ∈ [−1, 1]. We use induction. First, verify that Wealth0 ≥
F0(·) = ε, trivially. Assuming Wealtht−1 ≥ Ft−1(g1:t−1),

Wealtht = Wealtht−1 + wtgt = (1 + gtβt)Wealtht−1

≥ (1 + gtβt)Ft−1 (g1:t−1)
Def. 11(c)

≥ Ft (g1:t−1, gt) = Ft (g1:t) .

A.2. SA-Regret is stronger than m-shift regret

A strongly-adaptive regret bound can be turned into an m-shift regret bound
as follows. Let c > 0. We claim that:(

∀I = [I1..I2], R
A
I (w) ≤ c

√
|I| log(I2)

)
=⇒ m-Shift-RegretAT ≤ c

√
(m+ 1)T log(T ) .

To prove the claim, note that an m-shift sequence of experts w1:T can be par-
titioned into m+1 contiguous blocks denoted by I(1), . . . , I(m+1). For example,
(1, 1, 2, 2, 1) is 2-switch sequence whose partition {[1, 2], [3, 4], [5]}. Denote by
wI(k) ∈ W the comparator in interval I(k): wt = wI(k) , ∀t ∈ I(k). Then, using
Cauchy-Schwartz inequality, we have

m-Shift-RegretAT = max
w1:T :m-shift seq.

m+1∑
k=1

RA
I(k)(wI(k))

≤ max
w1:T :m-shift seq.

c
√
log T

m+1∑
k=1

√
|I(k)|

≤ max
w1:T :m-shift seq.

c
√
log T

√
m+ 1

√√√√m+1∑
k=1

|I(k)|

= c
√
log T

√
m+ 1

√
T . (15)
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A.3. The data streaming intervals can replace the geometric
covering intervals

We show that the data streaming intervals achieves the same goal as the ge-
ometric covering intervals (GC). Let u(t) be a number such that 2u(t) is the
largest power of 2 that divides t; e.g., u(12) = 2. The data streaming intervals
(DS) are

J = {[t..(t+ g · 2u(t) − 1)] : t = 1, 2, . . .} . (16)

For any interval J , we denote by J1 its starting time and by J2 its ending time.
We say an interval J ′ is a prefix of J if J ′

1 = J1 and J ′ ⊆ J .
We show that DS also partitions an interval I in Lemma 12.

Lemma 12. Consider J defined in (16) with g ≥ 1. An interval [I1..I2] ⊆ [T ]
can be partitioned to a sequence of intervals J̄ (1), J̄ (2), . . . , J̄ (n) such that

1. J̄ (i) is a prefix of some J ∈ J for i = 1, . . . , n.
2. |J̄ (i+1)|/|J̄ (i)| ≥ 2 for i = 1, . . . , (n− 1).

Proof. For simplicity, we assume g = 1; we later explain how the analysis can
be extended to g > 1. Let I1 = 2u · k where 2u is the largest power of 2 that
divides I1. It follows that k is an odd number.

Let J ∈ J be the data streaming interval that starts from I1. The length |J |
is 2u by the definition, and J2 is I1 + 2u − 1. Define J̄ (1) := J .

Then, consider the next interval J ′ ∈ J starting from time I1 + 2u. Note

J ′
1 = I1 + 2u = 2u · k + 2u = 2u+1 · k + 1

2

Note that k+1
2 is an integer since k is odd. Therefore, J ′

1 = 2u
′ ·k′ where u′ > u.

It follows that the length of J ′ is

|J ′| = 2u
′ ≥ 2 · 2u .

Then, define J̄ (2) := J ′.
We repeat this process until I is completely covered by J̄ (1), . . . J̄ (n) for some

n. Finally, modify the last interval J̄ (n) to end at I2 which is still a prefix of
some J ∈ J . This completes the proof for g = 1.

For the case of g > 1, note that by setting g > 1 we are only making the inter-
vals longer. Observe that even if g > 1, the sequence of intervals J̄ (1), . . . , J̄ (n)

above are still prefixes of some intervals in J .

Note that, unlike the partition induced by GC in which interval lengths suc-
cessively double then successively halve, the partition induced by DS just suc-
cessively doubles its interval lengths except the last interval. One can use DS to
decompose SA-Regret of M〈B〉; that is, in (2), replace

∑b
i=−a with

∑n
i=1 and

J (i) with J̄ (i). Since the decomposition by DS has the same effect of “doubling
lengths’, one can show that Theorem 6 holds true with DS, too, with slightly
smaller constant factors.
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A.4. A subtle difference between the geometric covering and data
streaming intervals

There is a subtle difference between the geometric covering intervals (GC) and
the data streaming intervals (DS).

As far as the black-box algorithm has an anytime regret bound, both GC
and DS can be used to prove the overall regret bound as in Theorem 6. In our
experiments, the blackbox algorithm has anytime regret bound, so using DS
does not break the theoretical guarantee.

However, there exist algorithms with fixed-budget regret bounds only. That
is, the algorithm needs to know the target time horizon T ∗, and the regret
bound exists after exactly T ∗ time steps only. When these algorithms are used
as the black-box, there is no easy way to prove Theorem 6 with DS intervals.
The good news, still, is that most online learning algorithms are equipped with
anytime regret bounds, and one can often use a technique called ‘doubling-
trick’ [3, Section 2.3] to turn an algorithm with a fixed budget regret into the
one with an anytime regret bound.

A.5. Technical results

Lemma 13. Assume RegretT (u) ≤
√(

ξ +
∑N

i=1 uiZT,i

)
A(u) for some func-

tion A. Then, RegretT (u) =
√
(ξ + 2

∑N
i=1 uiL̃t,i)A(u) +A(u).

Proof. We closely follow the proof of Luo & Schapire [14, Theorem 2]. We first

claim that
∑N

i=1 uiZt,i ≤ RegretT (u) + 2
∑N

i=1 uiL̃T,i. The proof is as follows:

N∑
i=1

uiZT,i

=
∑
i

ui

∑
t∈[T ]

|rt,i|1{wt,i > 0}+ |[rt,i]+|1{wt,i ≤ 0}

=
∑
i

ui

∑
t

|rt,i|1{wt,i > 0}+ [rt,i]+1{wt,i ≤ 0}

=
∑
i

ui

∑
t

rt,i1{wt,i > 0 ∧ rt,i > 0}+ (−rt,i)1{wt,i > 0 ∧ rt,i ≤ 0}

+ [rt,i]+1{wt,i ≤ 0}
=
∑
i

ui

∑
t

rt,i1{wt,i > 0 ∧ rt,i > 0}+ (−rt,i)1{wt,i > 0 ∧ rt,i ≤ 0}

+ [rt,i]+1{wt,i ≤ 0}
+ rt,i1{wt,i > 0 ∧ rt,i ≤ 0} − rt,i1{wt,i > 0 ∧ rt,i ≤ 0}
+ [−rt,i]+1{wt,i ≤ 0} − [−rt,i]+1{wt,i ≤ 0}

=
∑
i

ui

∑
t

rt,i



Online learning for changing environments using coin betting 5309

+
∑
i

ui

∑
t

2(−rt,i)1{wt,i > 0 ∧ rt,i ≤ 0}+ [−rt,i]+1{wt,i ≤ 0}

= RegretT (u) +
∑
i

ui

∑
t

2[−rt,i]+1{wt,i > 0}+ [−rt,i]+1{wt,i ≤ 0}

≤ RegretT (u) + 2
∑
i

uiL̃T,i

Let us simply use the notations R in place of RegretT (u), A in place of A(u),

and L̃ in place of
∑

i uiL̃T,i. It is safe to assume that R ≥ 0 since otherwise the
statement of the Theorem is trivial. Then, by the assumption of the theorem,

R ≤
√
(ξ +R+ 2L)A

⇐⇒ R2 ≤ (ξ +R+ 2L)A

=⇒ R ≤ 1

2
(A+

√
A2 + 4(ξ + 2L)A)

≤ 1

2
(A+A+ 2

√
(ξ + 2L)A)

= A+
√

(ξ + 2L)A .
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