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Abstract: We consider the Bayesian active learning and experimental de-
sign problem, where the goal is to learn the value of some unknown target
variable through a sequence of informative, noisy tests. In contrast to prior
work, we focus on the challenging, yet practically relevant setting where test
outcomes can be conditionally dependent given the hidden target variable.
Under such assumptions, common heuristics, such as greedily performing
tests that maximize the reduction in uncertainty of the target, often per-
form poorly.

We propose ECED, a novel, efficient active learning algorithm, and
prove strong theoretical guarantees that hold with correlated, noisy tests.
Rather than directly optimizing the prediction error, at each step, ECED

picks the test that maximizes the gain in a surrogate objective, which takes
into account the dependencies between tests. Our analysis relies on an
information-theoretic auxiliary function to track the progress of ECED,
and utilizes adaptive submodularity to attain the approximation bound.
We demonstrate strong empirical performance of ECED on three prob-
lem instances, including a Bayesian experimental design task intended to
distinguish among economic theories of how people make risky decisions,
an active preference learning task via pairwise comparisons, and a third
application on pool-based active learning.
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1. Introduction

Optimal information gathering, i.e., selectively acquiring the most useful data,
is one of the central challenges in interactive machine learning. The problem of
optimal information gathering has been studied in the context of active instance
labeling [9, 28], active feature evaluation1 [21, 11, 9, 28], Bayesian experimental
design [12, 5], policy making [17, 27], probabilistic planning and optimal control
[31], and numerous other domains. In a typical set-up for these problems, there
is some unknown target variable Y of interest, and a set of tests, which corre-
spond to observable variables defined through a probabilistic model. The goal

1Structurally, the problem of active feature evaluation is the same with active instance
labeling, and hence the term “Bayesian active learning” is used to refer to both cases.
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is to determine the value of the target variable via a sequential policy, which
adaptively selects the next test based on previous observations, such that the
cost of performing these tests is minimized.

Deriving the optimal testing policy is NP-hard in general [4]; however, under
certain conditions, some approximation results are known. In particular, if test
outcomes are deterministic functions of the target variable (i.e., in the noise-free
setting), a simple greedy algorithm, namely Generalized Binary Search (GBS),
is guaranteed to provide a near-optimal approximation of the optimal policy
[23]. On the other hand, if test outcomes are noisy, but the outcomes of dif-
ferent tests are conditionally independent given Y (i.e., under the Näıve Bayes
assumption), then using the most informative selection policy, which greedily
selects the test that maximizes the expected reduction in uncertainty of the tar-
get variable (quantified in terms of Shannon entropy), is guaranteed to perform
near-optimally [7].

However, in many practical problems, due to the effect of noise or complex
structural dependencies in the probabilistic model (beyond Näıve Bayes), we
only have access to tests that are indirectly informative about the target vari-
able Y (i.e., test outcomes depend on Y through another hidden random vari-
able. See Fig. 1.) – as a consequence, the test outcomes become conditionally
dependent given Y . Consider a medical diagnosis example, where a doctor wants
to predict the best treatment for a patient, by carrying out a series of medical
tests, each of which reveals some information about the patient’s physical con-
dition. Here, outcomes of medical tests are conditionally independent given the
patient’s condition, but are not independent given the treatment, which is made
based on the patient’s condition. It is known that in such cases, both GBS and
the most informative selection policy (which myopically maximizes the informa-
tion gain w.r.t. the distribution over Y ) can perform arbitrarily poorly. Golovin
et al. [14] then formalize this problem as an equivalence class determination
problem (See §2.3), and show that if the tests’ outcomes are noise-free, then one
can obtain near-optimal expected cost, by running a greedy policy based on a
surrogate objective function. Their results rely on the fact that the surrogate
objective function exhibits adaptive submodularity [13], a natural diminishing
returns property that generalizes the classical notion of submodularity to adap-
tive policies. Unfortunately, in the general setting where tests are noisy, no
efficient policies are known to be provably competitive with the optimal policy.

Our contribution. In this paper, we introduce Equivalence Class Edge Dis-
counting (ECED), a novel algorithm for practical Bayesian active learning and
experimental design problems, and prove strong theoretical guarantees with
correlated, noisy tests. In particular, we focus on the setting where the tests’
outcomes indirectly depend on the target variable (and hence are conditionally
dependent given Y ), and we assume that the outcome of each test can be cor-
rupted by some random, persistent noise2 (§2). We prove that when the test
outcomes are binary, and the noise on test outcomes are mutually indepen-

2Persistent noise means that repeating a test produces identical outcomes.
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dent, then ECED is guaranteed to obtain near-optimal cost, compared with an
optimal policy that achieves a lower prediction error (§3). We develop a theo-
retical framework for analyzing such sequential policies, where we leverage an
information-theoretic auxiliary function to reason about the effect of noise, and
combine it with the theory of adaptive submodularity to attain the approxima-
tion bound (§4). The key insight is to show that ECED is effectively making
progress in the long run as it picks more tests, even if the myopic choices of
tests do not have immediate gain in terms of reducing the uncertainty of the
target variable. We demonstrate the compelling performance of ECED on two
real-world problem instances: A Bayesian experimental design task intended to
distinguish among economic theories of how people make risky decisions, an ac-
tive preference learning task via pairwise comparisons and a third application on
pool-based active learning (§5). To facilitate better understanding, we provide
illustrative examples and full proofs of our theoretical results in the Appendix.

2. Preliminaries and problem statement

2.1. The basic model

Let Y be the target random variable whose value we want to learn. The value
of Y , which ranges among set Y = {y1, . . . , yt}, depends deterministically on
another random variable Θ ∈ supp(Θ) = {θ1, . . . , θn} with some known distri-
bution P [Θ]. Concretely, there is a deterministic mapping r : supp(Θ) → Y that
gives Y = r(Θ) (see Fig. 1).

Fig 1. The basic model

Let X = {X1, . . . , Xm} be a collection of discrete observable variables that
are statistically dependent on Θ. We use e ∈ V � {1, . . . ,m} as the indexing
variable of a test. Performing each test Xe produces an outcome xe ∈ O (here,
O encodes the set of possible outcomes of a test), and incurs a unit cost. We can
think of Θ as representing the underlying “root-cause” among a set of n possible
root-causes of the joint event {X1, . . . , Xm}, and Y as representing the optimal
“target action” to be taken for root-cause Θ. Also, each of the Xe’s is a “test”
that we can perform, whose observation reveals some information about Θ. In
our medical diagnosis example (see Fig. 2(a)), Xe’s encode tests’ outcomes, Y
encodes the treatment, and Θ encodes the patient’s physical condition.
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Crucially, we assume that Xe’s are conditionally independent3 given Θ, i.e.,
P [Θ, X1, . . . , Xm] = P [Θ]

∏m
i=1 P [Xi | Θ] with known parameters. Note that

noise is implicitly encoded in our model, as we can equivalently assume that
Xe’s are first generated from a deterministic mapping of Θ, and then perturbed
by some random noise. As an example, if test outcomes are binary, then we
can think of Xe as resulting from flipping the deterministic outcome of test e
given Θ with some probability, and the flipping events of the tests are mutually
independent.

2.2. Problem statement

We consider sequential, adaptive policies for picking the tests. Denote a policy
by π. In words, a policy specifies which test to pick next, as well as when
to stop picking tests, based on the tests picked so far and their corresponding
outcomes. After each pick, our observations so far can be represented as a partial
realization Ψ ∈ 2V×O (e.g., Ψ encodes what tests have been performed and what
their outcomes are). Formally, a policy π : 2V×O �→ V is defined to be a partial
mapping from partial realizations Ψ to tests.

Suppose that running π till termination returns a sequence of test-observation
pairs of length k, denoted by ψπ, i.e.,

ψπ � {(eπ,1, xeπ,1), (eπ,2, xeπ,2), · · · , (eπ,k, xeπ,k
)}.

This can be interpreted as a random path taken by policy π. Once ψπ is observed,
we obtain a new posterior on Θ (and consequently on Y ). The best prediction
one can thus make under the Bayesian setting is the MAP estimator ŷ of Y ,
i.e., ŷ � argmaxy′∈Y P [Y = y′ | ψπ]. The error probability of predicting ŷ is

pMAP

err
(ψπ) � P [ŷ �= y | ψπ] = 1−max

y∈Y
P [y | ψπ] .

We call pMAP

err
the prediction error of the MAP estimator. The expected predic-

tion error after running policy π is then defined as perr(π) � Eψπ

[
pMAP

err
(ψπ)

]
.

Let the (worst-case) cost of π be cost(π) � maxψπ |ψπ|, i.e., the maximum num-
ber of tests performed by π over all possible paths it takes. Given some small
tolerance δ ∈ [0, 1], we seek a policy with the minimal cost, such that upon ter-
mination, the posterior puts at least 1− δ mass on the most likely target value
y in expectation. In other words, we require that the expected prediction error
after running the policy is at most δ. Denote such policy by OPT(δ). Formally,
we seek

OPT(δ) ∈ argmin
π

cost(π), s.t. perr(π) ≤ δ. (2.1)

3In active instance selection, this simply implies that labeling errors are independent, which
is a standard assumption made in the statistical learning literature.
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Fig 2. (a) shows an illustrative example of the medical diagnosis problem: there are 5 root-
causes with different symptoms represented by the 3-dimensional binary vectors; each of the
circles represents a medical treatment for the root-causes enclosed. In (b), we initialize EC

2,
by drawing edges between all pairs of root-causes (solid dots) that are mapped into different
treatments (circles). In (c), we run EC

2 and remove all the edges incident to root-causes
θ2[0, 0, 0] and θ5[0, 1, 0] if we observe X1 = 1.

Remarks. Note that there are different ways of defining “success” of a policy.
Other than bounding the prediction error as considered in Eq. (2.1), an alter-
native option is to ensure that the excess error, or regret of acting upon ψπ,
compared to having observed all the tests is not more than δ. While the regret-
based success criterion might be an alternative sensible criterion to consider,
the prediction error criterion offers a natural stopping condition for running a
policy (as one can compute the pMAP

err
(ψπ) purely based on the posterior). Hence

we focus on Problem 2.1 throughout this paper.

2.3. Special case: The equivalence class determination problem

Computing the optimal policy for Problem (2.1) is intractable in general. When
δ = 0, this problem reduces to the equivalence class determination problem
[14, 2]. Here, the target variables are referred to as equivalence classes, since
each y ∈ Y corresponds to a subset of root-causes in supp(Θ) that (equivalently)
share the same “action”.

Noise-free setting: The EC2 algorithm. Let us first assume that tests
are noise-free, i.e., ∀e, P [Xe | Θ] ∈ {0, 1}. Then this problem can be solved
near-optimally by the equivalence class edge cutting (EC2) algorithm [14]. As
illustrated in Fig. 2, EC2 employs an edge-cutting strategy based on a weighted
graph G = (supp(Θ), E), where vertices represent root-causes, and edges link
root-causes that we want to distinguish between. Formally, E � {(θ, θ′) : r(θ) �=
r(θ′)} consists of all (unordered) pairs of root-causes corresponding to different
target values (see Fig. 2(b)). We define a weight function w : E → R≥0 by
w((θ, θ′)) � P [θ] · P [θ′], i.e., as the product of the probabilities of its incident
root-causes. We extend the weight function on sets of edges E′ ⊆ E as the sum
of weight of all edges (θ, θ′) ∈ E′, i.e., w(E′) �

∑
(θ,θ′)∈E′ w((θ, θ′)).
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Performing test e ∈ V with outcome xe is said to “cut” an edge, if at least
one of its incident root-causes is inconsistent with xe (See Fig. 2(c)). Denote
E(xe) � {{θ, θ′} ∈ E : P [xe | θ] = 0 ∨ P [xe | θ′] = 0} as the set of edges cut
by observing xe. The EC

2 objective (which is greedily maximized per iteration
of EC2), is then defined as the total weight of edges cut by the current partial

observation ψπ: fEC2(ψπ) � w
(⋃

(e,xe)∈ψπ
E(xe)

)
.

The EC
2 objective function is adaptive submodular, and strongly adaptive

monotone. Formally, let ψ1, ψ2 ∈ 2V×O be two partial realizations of tests’ out-
comes. We call ψ1 a subrealization of ψ2, denoted as ψ1 
 ψ2, if every test
seen by ψ1 is also seen by ψ2, and P [ψ2 | ψ1] > 0. A function f : 2V×O →
R is called adaptive submodular w.r.t. a distribution P, if for any ψ1 
 ψ2

and any Xe it holds that Δ(Xe | ψ1) ≥ Δ(Xe | ψ2), where Δ(Xe | ψ) :=
Exe [f(ψ ∪ {(e, xe)})− f(ψ) | ψ] (i.e., “adding information earlier helps more”).
Further, function f is called strongly adaptively monotone w.r.t. P, if for all ψ,
test e not seen by ψ, and xe ∈ O, it holds that f(ψ) ≤ f(ψ ∪ {(e, xe)}) (i.e.,
“adding new information never hurts”). For sequential decision problems sat-
isfying adaptive submodularity and strongly adaptive monotonicity, the policy
that greedily, upon having observed ψ, selects the test e∗ ∈ argmaxe Δ(Xe | ψ),
is guaranteed to attain near-minimal cost [13].

Noisy setting. Notice that, the EC2 algorithm can, to some extent, deal with
noisy observations. In particular, for noise with “small” support (e.g., assume
that for any root-cause Θ, a maximal number of k tests are allowed to be
corrupted, where k is some finite integer), one can reduce the noisy problem to
a noiseless one, by enumerating all possible realizations of tests, and treat each
realization as a new “root-cause”. However, for the more general setting with
i.i.d. noise (e.g., P [Xe | Θ] ∈ (0, 1)), it may not be possible to cut all the edges
constructed for EC2 (or equivalently, to attain 0 error probability in prediction
Y ), even if we exhaust all tests. Hence the theoretical results of Golovin et al.
[14] no longer apply. A natural approach to solving Problem (2.1) for δ > 0
would be to pick tests greedily maximizing the expected reduction in the error
probability perr. However, this objective is not adaptive submodular; in fact, as
we show in Appendix C, such policy can perform arbitrarily badly if there are
complementaries among tests, i.e., the gain of a set of tests can be far better
than sum of the individual gains of the tests in the set. Therefore, motivated by
the EC2 objective in the noise-free setting, we would like to optimize a surrogate
objective function which captures the effect of noise, while being amenable to
greedy optimization.

3. The ECED algorithm

We now introduce ECED for Bayesian active learning under correlated noisy
tests, which strictly generalizes EC

2 to the noisy setting, while preserving the
near-optimal guarantee.
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Fig 3. An illustrative example for EC
2-Bayes and ECED. There are two tests: test 1 is very

informative, as observing its outcome may immediately tell us which treatment is the best
(e.g., if “X-ray result is negative”, then we know θ3 is false and hence the best treatment is
y1). Test 2, on the other hand, can be viewed as a “purely noisy” test, because knowing the
gender doesn’t change our belief of the root-causes. Hence, we want to design a criterion that
encourages picking x1.

EC2 with bayesian updates on edge weights. In the noisy setting, the test
outcomes are not necessarily deterministic given a root-cause, i.e., ∀θ, P [Xe | θ]∈
[0, 1]. Therefore, one can no longer “cut away” a root-cause θ by observing xe, as
long as P [Xe = xe | θ] > 0. In such cases, a natural extension of the edge-cutting
strategy will be – instead of cutting off edges – to discount the edge weights
through Bayesian updates: After observing xe, we can discount the weight of an
edge (θ, θ′), by multiplying the probabilities of its incident root-causes with the
likelihoods of the observation4: w((θ, θ′) | xe) := P [θ]P [θ′] ·P [xe | θ]P [xe | θ′] =
P [θ, xe]·P [θ′, xe]. This gives us a greedy policy that, at every iteration, picks the
test that has the maximal expected reduction in total edge weight. We call such
policy EC

2-Bayes. Unfortunately, as we demonstrate later in §5, this seemingly
promising update scheme is not ideal for solving our problem: it tends to pick
tests that are very noisy, which do not help facilitate differentiation among dif-
ferent target values. Consider a simple example as illustrated in Fig. 3. There are
three root-causes distributed as P [θ1] = 0.2,P [θ2] = P [θ3] = 0.4, and two target
values r(θ1) = r(θ2) = y1, r(θ3) = y2. We want to evaluate two tests: (1) a noise-
less test X1 with P [X1 = 1 | θ1] = 1 and P [X1 = 1 | θ2] = P [X1 = 1 | θ3] = 0;
and (2) a purely noisy testX2, i.e., ∀θ, P [X2 = 1 | θ] = 0.5. One can easily verify
that by running EC

2-Bayes, one actually prefers X2 (with expected reduction
in edge weight 0.18, as opposed to 0.112 for X1).

The ECED algorithm. The example above hints at an important principle
of designing proper objective functions for this task: as the noise rate increases,
one must take reasonable precautions when evaluating the informativeness of a

4Here we choose not to normalize the probabilities of θ, θ′ to their posterior probabilities.
Otherwise, we can end up having 0 gain in terms of edge weight reduction, even if we perform
a very informative test.
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Fig 4. Illustration of the equivalence class edge discounting algorithm. Hypotheses are rep-
resented in dots. The size of a dot is proportional to its probabilities. Upon observing “in-
consistent” outcomes, we discount the hypothesis accordingly and consequently discount its
incident edges.

test, such that the undesired contribution by noise is accounted for. Suppose we
have performed test e and observed xe. We call a root-cause θ to be “consistent”
with observation xe, if xe is the most likely outcome of Xe given θ (i.e., xe ∈
argmaxx P [Xe = x | θ]). Otherwise, we say θ is inconsistent. Now, instead of
discounting the weight of all root-causes by the likelihoods P [Xe = xe | θ] (as
EC

2-Bayes does), we choose to discount the root-causes by the likelihood ratio:

λθ,xe � P [Xe = xe | θ]
maxx′

e
P [Xe = x′

e | θ]
.

Intuitively, this is because we want to “penalize” a root-cause (and hence the
weight of its incident edges), only if it is inconsistent with the observation (see
Fig. 4). When xe is consistent with root-cause θ, then λθ,xe = 1 and we do not
discount θ; otherwise, if xe is inconsistent with θ, we have λθ,xe < 1. When a
test is not informative for root-cause θ, i.e. P [Xe | θ] is uniform, then λθ,xe = 1,
so that it neutralizes the effect of such test in terms of edge weight reduction.

Formally, given observations ψπ, we define the (basic) value of observing xe

as the total amount of edge weight discounted:

δbs(xe | ψπ) �
∑

(θ,θ′)∈E

P [θ, ψπ]P [θ′, ψπ] · (1− λθ,xeλθ′,xe).

Further, we call test e to be non-informative, if its outcome does not affect
the distribution of Θ, i.e., ∀ θ, θ′ ∈ supp(Θ) and xe ∈ O, P [Xe = xe | θ] =
P [Xe = xe | θ′]. Obviously, performing a non-informative test does not reveal
any useful information of Θ (and hence Y ). Therefore, we should augment our
basic value function δbs, such that the value of a non-informative test is 0. Follow-
ing this principle, we define δoffset(xe | ψπ) �

∑
(θ,θ′)∈E P [θ, ψπ]P [θ′, ψπ] · (1−

maxθ λ
2
θ,xe

), as the offset value for observing outcome xe. It is easy to check that
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Algorithm 1: The Equivalence Class Edge Discounting (ECED) algorithm

1 Input: [λθ,x]n×m (or Conditional Probabilities P [X | Θ]), Prior P [Θ], Mapping
r : supp(Θ) → Y;
begin

2 ψπ ← ∅;
foreach (θ, θ′) ∈ E do

3 wθ,θ′ ← P [θ]P [θ′];
while pMAP

err
(ψπ) > δ do

4 e∗ ← argmaxe Exe

[∑
(θ,θ′)∈E wθ,θ′ ·

( weight
discounted︷ ︸︸ ︷

1− λθ,xeλθ′,xe
−

offset term︷ ︸︸ ︷
(1−maxθ′′ λ

2
θ′′,xe

)
)]
;

5 Observe xe∗ ; wθ,θ′ ← wθ,θ′ · P [xe∗ | θ]P [xe∗ | θ′];
6 ψπ ← ψπ ∪ {(e∗, xe∗)};
7 Output: y∗ = argmaxy P [y | ψπ ].

if test e is non-informative, then it holds that δbs(xe | ψπ)− δoffset(xe | ψπ) = 0
for all xe ∈ O; otherwise δbs(xe | ψπ) − δoffset(xe | ψπ) ≥ 0. This motivates us
to use the following objective function:

ΔECED(Xe | ψπ) � Exe [δbs(xe | ψπ)− δoffset(xe | ψπ)] , (3.1)

as the expected amount of edge weight that is effectively reduced by performing
test e. We call the algorithm that greedily maximizes ΔECED the Equivalence
Class Edge Discounting (ECED) algorithm, and present the pseudocode in
Algorithm 1.

Similar with EC
2, both the computation complexity (i.e., the running time)

and the query complexity (i.e., number of tests needed) of ECED depend on the
number of root-causes. Let εθ,e � 1 −maxx P [Xe = x | θ] be the noise rate for
test e. As our main theoretical result, we show that under the basic setting where
test outcomes are binary, and the test noise is independent of the underlying
root-causes (i.e., ∀θ ∈ supp(Θ), εθ,e = εe), ECED is competitive with the
optimal policy which achieves a lower error probability for Problem (2.1):

Theorem 1. Let δ ∈ (0, 1) be the target error probability which is achievable.
To achieve expected error probability less than δ, it suffices to run ECED

O

(
k

cε

(
log

kn

δ
log

n

δ

)2
)

steps. Here, n � | supp(Θ)| is the number of root-causes, cε � mine∈V(1− 2εe)
2

characterizes the severity of noise, and k � min{m, cost (OPT(δopt))}, where
cost (OPT(δopt)) denotes the worst-case cost of the optimal policy that achieves

expected error probability δopt � O
(

δ
(logn·log(1/δ))2

)
.

Note that a pessimistic upper bound for k is the total number of tests m,

and hence the cost of ECED is at most O
(
(log(mn/δ) log(n/δ))

2
/cε

)
times the
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worst-case cost of the optimal algorithm, which achieves a lower error probability
O
(
δ/(logn · log(1/δ))2

)
. Further, as one can observe, the upper bound on the

cost of ECED degrades as we increase the maximal noise rate of the tests. When
cε = 1, we have εe = 0 for all test e, and ECED reduces to the EC

2 algorithm.

Theorem 1 implies that running EC
2 for O

(
k
(
log kn

δ log n
δ

)2)
in the noise-free

setting is sufficient to achieve perr ≤ δ. Finally, notice that by construction
ECED never selects any non-informative test. Therefore, we can always remove
purely noisy tests (i.e., {e : ∀θ, P [Xe = 1 | θ] = P [Xe = 0 | θ] = 1/2}), so that
cε > 0, and the upper bound in Theorem 1 becomes non-trivial.

4. Theoretical analysis

Information-theoretic auxiliary function. We now present the main idea
behind the proof of Theorem 1. In general, an effective way to relate the per-
formance (measured in terms of the gain in the target objective function) of
the greedy policy to the optimal policy is by showing that, the one-step gain
of the greedy policy always makes effective progress towards approaching the
cumulative gain of OPT over k steps. One powerful tool facilitating this is the
adaptive submodularity theory, which imposes a lower bound on the one-step
greedy gain against the optimal policy, given that the objective function in con-
sideration exhibits a natural diminishing returns condition. Unfortunately, in
our context, the target function to optimize, i.e., the expected error probability
of a policy, does not satisfy adaptive submodularity. Furthermore, it is nontriv-
ial to understand how one can directly relate the two objectives: the ECED

objective of (3.1), which we utilize for selecting informative tests, and the gain
in the reduction of error probability, which we use for evaluating a policy.

We circumvent such problems by introducing auxiliary functions, as a proxy
to connect the ECED objective ΔECED with the expected reduction in error
probability perr. Ideally, we aim to find some auxiliary objective faux, such that
the tests with the maximal ΔECED also have a high gain in faux; meanwhile, faux
should also be comparable with the error probability perr, such that minimizing
faux itself is sufficient for achieving low error probability.

We consider the function faux : 2V×O → R≥0, defined as

faux(ψ) =
∑

(θ,θ′)∈E

P [θ | ψ]P [θ′ | ψ] · log 1

P [θ | ψ]P [θ′ | ψ]

+ c
∑
y∈Y

H2 (P [y | ψ]) . (4.1)

Here H2 (x) = −x log x− (1−x) log(1−x) denotes the binary entropy function,
and c is a constant that will be made concrete shortly (in Lemma 3). Interest-
ingly, we show that function faux is intrinsically linked to the error probability:

Lemma 2. We consider the auxiliary function defined in Equation (4.1). Let
n � | supp(Θ)| be the number of root-causes, and pMAP

err
(ψ) be the error proba-
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bility given partial realization ψ. Then

2c·pMAP
err

(ψ) ≤ faux(ψ) ≤ (3c+ 4) ·
(
H2

(
pMAP
err

(ψ)
)
+ pMAP

err
(ψ) log n

)
.

Therefore, if we can show that by running ECED we can effectively reduce
faux, then by Lemma 2, we can conclude that ECED also makes significant
progress in reducing the error probability pMAP

err
.

Bounding the gain w.r.t. the auxiliary function. It remains to under-
stand how ECED interacts with faux. For any test e, we define Δaux(Xe | ψ) �
Exe [faux(ψ ∪ {e, xe})− faux(ψ) | ψ] to be the expected gain of test e in faux.
Let Δ

EC
2,ψ(Xe) denote the gain of test e in the EC

2 objective, assuming that
the edge weights are configured according to the posterior distribution P [Θ | ψ].
Similarly, let ΔECED,ψ(Xe) denote the ECED gain, if the edge weights are con-
figured according to P [Θ | ψ]. We prove the following result:

Lemma 3. Let n = | supp(Θ)|, t = |Y|, and ε be the noise rate associated with
test e ∈ V. Fix η ∈ (0, 1). We consider faux as defined in Equation (4.1), with

c = 8
(
log(2n2/η)

)2
. It holds that

Δaux(Xe | ψ) + cη,ε ≥ ΔECED,ψ(Xe) · (1− ε)2/16 = cεΔEC
2,ψ(Xe) ,

where cη,ε = 2t(1− 2ε)2η, and cε � (1− 2ε)2/16.

Lemma 3 indicates that the test being selected by ECED can effectively
reduce faux.

Lifting the adaptive submodularity framework. Recall that our general
strategy is to bound the one step gain in faux against the gain of an optimal
policy. In order to do so, we need to show that our surrogate exhibits, to some
extent, the diminishing returns property. By Lemma 3 we can relate Δaux(Xe |
ψπ), i.e., the gain in faux under the noisy setting, to Δ

EC
2,ψ(Xe), i.e., the

expected weight of edges cut by the EC
2 algorithm. Since f

EC
2 is adaptive

submodular, this allows us to lift the adaptive submodularity framework into
the analysis. As a result, we can now relate the 1-step gain w.r.t. faux of a test
selected by ECED, to the cumulative gain w.r.t. f

EC
2 of an optimal policy in

the noise-free setting. Further, observe that the EC
2 objective at ψ satisfies:

f
EC

2,ψ :=
∑
y

P [y | ψ] (1− P [y | ψ])
(a)

≥ 1−max
y

P [y | ψ] = pMAP
err

(ψ). (4.2)

Hereby, step (a) is due to the fact that the error probability of a MAP estimator
always lower bounds that of a stochastic estimator (which is drawn randomly
according to the posterior distribution of Y ). Suppose we want to compare
ECED against an optimal policy OPT. By adaptive submodularity, we can
relate the 1-step gain of ECED in f

EC
2,ψ to the cummulative gain of OPT.

Combining Equation (4.2) with Lemma 2 and Lemma 3, we can bound the 1-
step gain in faux of ECED against the k-step gain of OPT, and consequently
bound the cost of ECED against OPT for Problem 2.1. We defer a more detailed
proof outline and the full proof to Appendix B.
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5. Experimental results

We now demonstrate the performance of ECED on three real-world problem
instances: a Bayesian experimental design task intended to distinguish among
economic theories of how people make risky decisions, an active preference learn-
ing task via pairwise comparisons, and a third case study on pool-based active
learning for classification.

Baselines. The first baseline we consider is EC2-Bayes, which uses the Bayes’
rule to update the edge weights when computing the gain of a test (as described
in §3). Note that after observing the outcome of a test, both ECED and EC

2-
Bayes update the posteriors on Θ and Y according to the Bayes’ rule; the only
difference is that they use different strategies when selecting a test. We also
compare with two commonly used sequential information gathering policies:
Information Gain (IG) and Uncertainty Sampling (US), which consider picking
tests that greedily maximizing the reduction of entropy over the target variable
Y , and root-causes Θ respectively. Last, we consider myopic optimization of the
decision-theoretic value of information (VoI) [19]. In our problems, the VoI

policy greedily picks the test maximizing the expected reduction in prediction
error in Y .

5.1. Preference elicitation in behavioral economics

We first conduct experiments on a Bayesian experimental design task, which
intends to distinguish among economic theories of how people make risky deci-
sions. Several theories have been proposed in behavioral economics to explain
how people make decisions under risk and uncertainty. We test ECED on six
theories of subjective valuation of risky choices [33, 32, 30], namely (1) expected
utility with constant relative risk aversion, (2) expected value, (3) prospect theory,
(4) cumulative prospect theory, (5) weighted moments, and (6) weighted standard-
ized moments. Choices are between risky lotteries, i.e., known distribution over
payoffs (e.g., the monetary value gained or lost). A test e � (L1, L2) is a pair of
lotteries, and root-causes Θ correspond to parametrized theories that predict,
for a given test, which lottery is preferable. The goal, is to adaptively select a
sequence of tests to present to a human subject to distinguish which of the six
theories best explains the subject’s responses. We employ the same set of param-
eters used in [26] to generate tests and root-causes. In particular, we have gener-
ated ∼16K tests. Given root-cause θ and test e = (L1, L2), one can compute the
values of L1 and L2, denoted by v1 and v2. The noise of a test is characterized
by the Bradley-Terry-Luce (BTL) preference model5 [3], where the probability
that root-cause θ favors L1 is defined as P [Xe = 1 | θ] = 1

1+exp(−λ·(v1−v2))
.

5The BTL model has been widely used for pairwise data, e.g., [24, 29], etc. Intuitively, the
user is more prone to error if the utilities of a pair are close. I.e., for preference elicitation, if
a pair of lotteries (L1, L2) is almost of equal value to the user, then her feedback on whether
she favors L1 over L2 is very noisy.
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Fig 5. Experimental results: ECED outperforms most baselines on both data sets.

Results. To evaluate ECED, we do not specify a target error probability δ as
input. Instead, we set a budget on the number of iterations allowed, and plot the
error probability as a function of the number of iterations. Fig. 5 demonstrates
the performance of ECED. The average error probability has been computed
across 1000 random trials for all methods. We observe that ECED and EC

2-
Bayes have similar behavior on this data set; however, the performance of the
US algorithm is much worse. This can be explained by the nature of the data
set: it has more concentrated distribution over Θ, but not Y . Therefore, since
tests only provide indirect information about Y through Θ, what the uncer-
tainty sampling scheme tries to optimize is actually Θ, hence it performs quite
poorly.

5.2. Active preference learning via pairwise comparisons

The second application considers a comparison-based movie recommendation
system, which learns a user’s movie preference (e.g., the favorable genre) by se-
quentially showing her pairs of candidate movies, and letting her choose which
one she prefers. We use the MovieLens 100k dataset [18] which consists of a ma-
trix of 1 to 5 ratings of 1682 movies from 943 users, and adopt the experimental
setup proposed in [8]. In particular, we extract movie features by computing a
low-rank approximation of the user/rating matrix of theMovieLens 100k dataset
through singular value decomposition (SVD). We then simulate the target “cat-
egories” Y that a user may be interested by partitioning the set of movies into t
(non-overlapping) clusters in the Euclidean space. A root-cause Θ corresponds
to user’s favorite movie, and tests e’s are given in the form of movie pairs, i.e.,
e � (a, b), where a and b are embeddings of the two movies in Euclidean space.
Suppose user’s movie is represented by θ, then test e is realized as 1 if a is closer
to y than b, and 0 otherwise. Similarly with the previous application, we model
the noise with the BTL model, i.e., P [Xe = 1 | θ] = 1

1+exp(−λ·(d(ma,θ)−d(mb,θ)))
.
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Fig 6. Experimental results on active preference learning

where d(·, ·) is the distance function, and λ controls the level of noise in the
system.

Results. Fig. 6(a) shows the performance of ECED compared to other base-
line methods when we fix |Y| = 20 and λ = 10. We compute the average error
probability across 1000 random trials for all methods. We can see that ECED

consistently outperforms all other baselines. Interestingly, EC2-Bayes performs
poorly on this data set. This could be because the noise level is still high, mis-
guiding the two heuristics to select noisy, uninformative tests. Fig. 6(b) shows
the performance of ECED as we vary λ. When λ = 100, the tests become close
to deterministic given a root-cause, and ECED can achieve 0 error with ∼ 12
tests. As we increase the noise rate (i.e., decrease λ), it takes ECED many more
queries for the prediction error to converge. This is because with high noise rate,
ECED discounts the root-causes more uniformly, and therefore those tests are
hardly informative about Y . It comes at the cost of performing more tests, and
hence low convergence rate.

5.3. Pool-based active learning

To demonstrate the empirical performance of ECED, we further conduct ex-
periments on two pool-based binary active classification tasks. In the active
learning application, we can sequentially query from a pool of data points, and
the goal is to learn a binary classifier, which achieves some small prediction error
on the unseen data points from the pool, with the smallest possible number of
queries.

Active learning: Targets and root-causes. To discretize the hypotheses
space, we use a noisy version of hit-and-run sampler as suggested in Chen and
Krause [6]. Each hypothesis can be represented by a binary vector indicating the
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Fig 7. Pool-based Active Learning for Classification

outcomes of all data points in the training set. Then, we construct an epsilon-net
on the set of hypotheses (based on the Hamming distance between hypotheses).
We obtain the equivalence classes for ECED, by assigning each hypothesis to its
closest center of epsilon-ball, measured by their Hamming distances. Note that
the Hamming distance between two hypotheses reflects the difference of predic-
tion error. Consider epsilon-net of fixed radius ε. By construction, hypotheses
that lie in the some equivalence classes are at most 2ε away from each other;
therefore the hypotheses which are within the epsilon-ball of the optimal hy-
potheses are considered to be near-optimal. Using the terminology in this paper,
hypotheses correspond to root-causes, and the groups of hypothesis correspond
to the target variable of interest. Running ECED, ideally, will help us locate a
near-optimal epsilon-ball as quickly as possible.

Baselines. We compare ECED with the popular uncertainty sampling heuris-
tic (UNC-SVM), which sequentially queries the data points which are the closest
to the decision boundary of a SVM classifier. We also compare with the GBS

algorithm, which sequentially queries the data points that maximally reduces
the volume of the version space.

Results. We evaluate ECED and the baseline algorithms on the UCI WDBC
dataset (569 instances, 32-d) and Fourclass dataset (862 instances, 2-d). For
ECED and GBS, we sample a fixed number of 1000 hypotheses in each ran-
dom trial. For both instances we assume a constant error rate ε = 0.02 for all
tests. Fig. 7(a) and Fig. 7(b) demonstrate that ECED is competitive with the
baselines. Such results suggests that grouping of hypotheses could be beneficial
when learning under noisy data.

6. Related work

Active learning in statistical learning theory. In most of the theoret-
ical active learning literature (e.g., Dasgupta [10], Hanneke [15, 16], Balcan
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and Urner [1]), active learning algorithms are mainly considered in terms of
their statistical complexity, which is defined as the worst-case cost (i.e., number
of labels) required to learn a classifier with classification error below certain
threshold. Bounds on statistical complexity have been characterized in terms
of the structure of the hypothesis class, as well as additional distribution-
dependent complexity measures (e.g., splitting index [10], disagreement coef-
ficient [15, 34], etc); In comparison, in this paper we study the problem of
exact identification of the target random variable, and focus on the optimal-
ity: we seek computationally-efficient approaches that are provably competi-
tive with the optimal policy. Therefore, we do not seek to bound how the
optimal policy behaves, and hence we make no assumptions on the hypoth-
esis class (e.g., we don’t restrict Y or supp(Θ) to be a set of linear classi-
fiers).

Persistent noise vs. non-persistent noise. If tests can be repeated with
i.i.d. outcomes, the noisy problem can then be effectively reduced to the
noise-free setting [20, 22, 25]. While the modeling of non-persistent noise may
be appropriate in some settings (e.g., if the noise is due to measurement er-
ror), it is often important to consider the setting of persistent noise: In many
applications, repeating tests are impossible or produces identical outcomes.
For example, it could be unrealistic to replicate a medical test for practical
clinical treatment. Despite some recent development in dealing with persis-
tent noise in simple graphical models [7] and strict noise assumptions [14],
more general settings, which we focus on in this paper, are much less under-
stood.

7. Conclusion

We have introduced ECED, which strictly generalizes the EC
2 algorithm, for

solving practical Bayesian active learning and experimental design problems
with correlated and noisy tests. By introducing an analysis framework that
draws upon adaptive submodularity and information theory, we have proved
that ECED enjoys strong theoretical guarantees. We have demonstrated the
compelling performance of ECED on two (noisy) problem instances, including
an active preference learning task via pairwise comparisons, and a Bayesian
experimental design task for preference elicitation in behavioral economics.
We believe that our work makes an important step towards understanding
the theoretical aspects of complex, sequential information gathering problems,
and provides useful insight on how to develop practical algorithms to address
noise.

Appendix A: Table of notations defined in the main paper

We summarize the notations used in the main paper in Table 1.
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Table 1

A reference table of notations used in the main paper

Y, y random variable encoding the value of the target variable and its value

Y domain of the target variable

Θ, θ random variable encoding the root-cause, and its realization

supp(Θ) the ground set / domain of root-causes

r Θ → Y , a function that maps a root-cause to a target value

V, e the ground set of tests, and the index of a test

m |V|, number of tests

Xe, xe random variable encoding the test outcome and its realization

t |Y|, number of possible target values

n | supp(Θ)|, number of root-causes

π policy, i.e., a (partial) mapping from observation vectors to tests

Ψ, ψπ random variable encoding a partial realization and its value.

δ tolerance of the (expected) error probability

pMAP

err
(ψ) error probability (of a MAP decoder), having observed ψ

perr(π) Eψπ

[
pMAP

err
(ψπ)

]
, expected error probability by running policy π

OPT optimal policy for Problem (2.1)

G G = (supp(Θ), E), the graph constructed for the EC
2 algorithm

w({θ, θ′}) weight of edge {θ, θ′} ∈ E in the EC
2 graph G

f
EC

2 EC
2 objective, with f

EC
2 (∅) :=

∑
θ,θ′∈E P [θ]P [θ′].

f
EC

2,ψ EC
2 objective, with f

EC
2,ψ(∅) :=

∑
θ,θ′∈E P [θ | ψ]P [θ′ | ψ].

λθ,e discount coefficient of θ, used by ECED when computing ΔECED.

εθ,e 1− argmaxe P [Xe = xe], the noise rate for a test e

δbs(xe | ψ) the “basic” component in the ECED gain of xe, having observed ψ

δoffset(xe | ψ) the “offset” component in the ECED gain of xe, having observed ψ

ΔECED(Xe | ψ) the ECED gain which is myopically optimized.

ΔECED,ψ(Xe) suppose we have observed ψ, and re-initialize the EC
2 graph so that

the total edge weight is f
EC

2,ψ(∅). Then, Δ
EC

2,ψ(Xe) is the ex-
pected reduction in edge weight, by performing test e and discounting
edges’ weight according to ECED. It is the re-normalized version of
ΔECED(xe | ψ), i.e., ΔECED,ψ(Xe) = ΔECED(xe | ψ)/P [ψ]2.

Δ
EC

2,ψ(Xe) the expected gain in f
EC

2,ψ by performing test e, and cutting edges

weight according to EC
2. It can be interpreted as ΔECED,ψ(Xe), as if

the test’s outcome is noise-free, i.e., ∀θ, εθ,e = 0.

faux the auxiliary function defined in Equation (4.1)

η parameter of faux (see Eq (4.1), Lemma 3). It is only used for analysis.

c 8
(
log(n2/η)

)2
, parameter of faux. It is only used for the analysis.

Δaux(Xe | ψ) the expected gain in faux by running e given partial realization ψ

cη,ε, cε constants required by Lemma 3

λ parameter controlling the error rate of tests (see §5)

Appendix B: The analysis framework

In this section, we provide the proofs of our theoretical results in full detail.
Recall that for the theoretical analysis, we study the basic setting where test
outcomes are binary, and the test noise is independent of the underlying root-
causes (i.e., given a test e, the noise rate on the outcome of test e is only a
function of e, but not a function of θ).
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B.1. Proof of Theorem 1 outline: Introducing auxiliary functions

The general idea behind our analysis, is to show that by running ECED, the
one-step gain in learning the value of the target variable is significant, compared
with the cumulative gain of an optimal policy over k steps (see Fig. 8).

Fig 8. On the left, we demonstrate a sequential policy in the form of its decision tree repre-
sentation. Nodes represent tests selected by the policy, and edges represent outcomes of tests.
At step 	, a policy maps partial realization ψ� = {(e1, xe1), . . . , (e�, xe�)} to the next test e�+1

to be performed. In the middle, we demonstrate the tests selected by an optimal policy OPT
of length k. On the right, we illustrate the change in the auxiliary function as ECED selects
more tests. Running OPT at any step of execution of ECED will make faux below some
threshold (represented by the red dotted line). The key idea behind our proof, is to show that
the greedy policy ECED, at each step, is making effective progress in reducing the expected
prediction error (in the long run), compared with OPT.

In Appendix §C, we show that if tests are greedily selected to optimize the
(reduction in) expected prediction error, we may end up failing to pick some
tests, which have negligible immediate gain in terms of error reduction, but are
very informative in the long run. ECED bypasses such an issue by selecting tests
that maximally distinguish root-causes with different target values. In order to
analyze ECED, we need to find an auxiliary function that properly tracks the
“progress” of the ECED algorithm; meanwhile, this auxiliary function should
allow us to connect the heuristic by which we select tests (i.e., ΔECED), with
the target objective of interest (i.e., the expected prediction error perr).

We consider the auxiliary function defined in Equation (4.1). For brevity, we
suppress the dependence of ψ where it is unambiguous. Further, we use pθ, pθ′ ,
and py as shorthand notations for P [θ | ψ], P [θ′ | ψ] and P [y | ψ]. Equation (4.1)
can be simplified as

faux =
∑

(θ,θ′)∈E

pθpθ′ log
1

pθpθ′
+ c
∑
y∈Y

H2 (py) (B.1)

We illustrate the outline of our proofs in Fig. 9. Our goal is to bound the
cost of against the cost of (Theorem 1; proof provided in Appendix
§B.5). As we have explained earlier, our strategy is to relate the one-step gain
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Fig 9. The proof outline.

of ECED with the gain of OPT in k-steps
(Appendix §B.4.2, Lemma 8). To achieve that, we divide our proof into three
parts:

Part 1 We show that the auxiliary function faux is closely related with the
target objective function perr. More specifically, we provide both an
upper bound and a lower bound of faux in Lemma 2,
and give the detailed proofs in Appendix §B.2.

Part 2 To analyze the one-step gain of ECED, we introduce another interme-
diate auxiliary function: For a test x
+1 chosen by ECED, we relate its
one-step gain in the auxiliary function , to its one-step gain in
the EC

2 objective (Lemma 3, detailed proof provided in Ap-
pendix §B.3). The reason why we introduce this step is that the EC

2

objective is adaptive submodular, by which we can relate the 1-step gain
of a greedy policy to an optimal policy .

Part 3 To close the loop, it remains to connect the gain of an optimal policy
OPT in the EC

2 objective function , with the gain of OPT
in the auxiliary function . We establish such connection in
Lemma 8, and present its proof in Appendix §B.4.1.

To make the proof more accessible, we insert the annotated color blocks from
Fig. 9 (i.e., , , , , , , etc),
into the subsequent subsections in Appendix §B, so that readers can easily relate
different parts of this section to the proof outline. Note that we only use these
annotated color blocks for positioning the proofs, and hence readers can ignore
the notations, as it may slightly differ from the ones used in the proof.

B.2. Proof of Theorem 1 part 1: Proof of Lemma 2

In this subsection, we provide the proof of Lemma 2, which relates faux to perr.
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Define pe(ψ) �
∑

y∈Y P [y | ψ] (1− P [y | ψ]) as the prediction error of a
stochastic estimator upon observing ψ, i.e., the probability of mispredicting
y if we make a random draw from P [Y | ψ]. We show in Lemma 4 that pMAP

err
(ψ)

is within a constant factor of pe(ψ):

Lemma 4. Fix ψ, it holds that pMAP

err
(ψ) ≤ pe(ψ) ≤ 2pMAP

err
(ψ).

Proof of Lemma 4. We can always lower bound pe by pMAP

err
, since by defini-

tion, pMAP

err
(ψ) = 1 − maxy P [y | ψ] =

∑
y∈Y P [y | ψ] · (1−maxy P [y | ψ]) ≤∑

y∈Y P [y | ψ] (1− P [y | ψ]) = pe(ψ).
To prove the second part, we write pyi = P [Y = yi | ψ] for all yi ∈ Y . W.l.o.g.,

we assume py1 ≥ py2 ≥ · · · ≥ pyt . Then pMAP

err
= 1− py1 . We further have

2pMAP
err

= 2(1− py1) = 2(

t∑
i=2

pyi) = 2(

t∑
i=1

pyi)(

t∑
i=2

pyi)

= 2(py1 +

t∑
i=2

pyi)(

t∑
i=2

pyi)

≥ 2py1(

t∑
i=2

pyi) + (

t∑
i=2

pyi)
2

≥
t∑

i �=j

pyipyj =
∑
i

pyi(1− pyi) = pe

Now, we provide lower and upper bounds of the second term in the RHS of
Equation (B.1):

Lemma 5. 2pMAP

err
≤
∑

y∈Y H2 (py) ≤ 3(H2

(
pMAP

err

)
+ pMAP

err
logn).

Proof of Lemma 5. We first prove the inequality on the left. Expanding the
middle term involving the binary entropy of py, we get∑

y∈Y
H2 (py) =

∑
y∈Y

(
py log

1

py
+ (1− py) log

1

1− py

)
(a)

≥ 2

ln 2

∑
y∈Y

py(1− py)

≥ 2pe
Lemma 4

≥ 2pMAP

err

Here, step (a) is by inequality lnx ≥ 1− 1/x for x ≥ 0.
To prove the second part, we first show in the following that∑

y

(1− py) log
1

1− py
≤ 2
∑
y

py log
1

py
.

W.l.o.g., we assume that the probabilities py’s are in decreasing order, i.e.,
py1 ≥ py2 ≥ · · · ≥ pyt . Observe that if py ∈ [0, 1/2], then (1 − py) log

1
1−py

≤
py log

1
py
. Consider the following two cases:
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1. py1 ≤ 1/2. In this case, we have
∑

y(1− py) log
1

1−py
≤
∑

y py log
1
py
.

2. py1 > 1/2. Since
∑

i>1 pyi = 1− py1 , we have

∑
i

(1− pyi) log
1

1− pyi

= (1− py1) log
1

1− py1

+
∑
i>1

(1− pyi) log
1

1− pyi

=
∑
i>1

pyi log
1∑

i>1 pyi

+
∑
i>1

(1− pyi) log
1

1− pyi

≤
∑
i>1

pyi log
1

pyi

+
∑
i>1

(1− pyi) log
1

1− pyi

≤
∑
i>1

pyi log
1

pyi

+
∑
i>1

pyi log
1

pyi

≤ 2
∑
i>0

pyi log
1

pyi

Therefore,

∑
y∈Y

H2 (py) ≤ 3
∑
i>0

pyi log
1

pyi

= 3H (Y ) . (B.2)

Furthermore, by Fano’s inequality (in the absence of conditioning), we know
that H (Y ) ≤ H2

(
pMAP

err

)
+ pMAP

err
log(|Y| − 1). Combining with Equation (B.2)

we get

∑
y

H2 (py) ≤ 3H (Y ) ≤ 3
(
H2

(
pMAP

err

)
+ log(|Y| − 1)

) (b)

≤ 3
(
H2

(
pMAP

err

)
+ log(n)

)
where in (b) we use the fact that t = |Y| ≤ | supp(Θ)| = n, since Y = r(Θ) is a
function of Θ. Hence it completes the proof.

Next, we bound the first term on the RHS of Equation (B.1), i.e.,

∑
{θ,θ′}∈E

pθpθ′ log
1

pθpθ′
,

against pMAP

err
:

Lemma 6.
∑

{θ,θ′}∈E pθpθ′ log 1
pθpθ′

≤ 2(H2 (pe) + pe logn).

Proof of Lemma 6. We can expand the LHS as

LHS = −
∑
θ′

pθ′
∑

θ:r(θ) �=r(θ′)

pθ(log pθ + log pθ′)

= −2
∑
θ′

pθ′
∑

θ:r(θ) �=r(θ′)

pθ log pθ
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= −2
∑
y∈Y

∑
θ′:r(θ′)=y

pθ′
∑

θ:r(θ) �=y

pθ log pθ

= 2
∑
y∈Y

py(1− py)
∑

θ:r(θ) �=y

pθ
1− py

(
log

pθ
1− py

+ log (1− py)

)

= −2
∑
y∈Y

py(1− py) log(1− py) + 2
∑
y∈Y

py(1− py)H

({
pθ

(1− py)

}
θ:r(θ) �=y

)
(B.3)

≤ 2
∑
y∈Y

pyH2 (1− py) + 2
∑
y∈Y

py(1− py)H

({
pθ

(1− py)

}
θ:r(θ) �=y

)

Since H

({
pθ

(1−py)

}
θ:r(θ) �=y

)
≤ log t ≤ logn, we have

LHS ≤ 2
∑
y∈Y

pyH2 (1− py) + 2
∑
y

py(1− py) log n︸ ︷︷ ︸
pe logn

Jensen
≤ 2H2

⎛
⎝∑

y∈Y
py(1− py)

⎞
⎠+ 2pe logn

= 2 (H2 (pe) + pe logn) .

which completes the proof.

Now, we are ready to state the upper bound and lower bound
of faux.

Proof of Lemma 2. Clearly,
∑

{θ,θ′}∈E pθpθ′ log 1
pθpθ′

≥ 0. By Lemma 5 we get

the lower bound:

faux(ψ) ≥ 2c · pMAP
err

(ψ).

Now assume pMAP

err
≤ 1/4. By Lemma 4 we know pe ≤ 2pMAP

err
, and H2 (pe) ≤

H2

(
2pMAP

err

)
≤ 2H2

(
pMAP

err

)
. Combining with Lemma 5 and Lemma 6, we get

faux(ψ) ≤ 3c ·
(
H2

(
pMAP

err

)
+ pMAP

err
log n

)
+ 2 (H2 (pe) + pe logn)

≤ (3c+ 4) ·
(
H2

(
pMAP

err

)
+ pMAP

err
logn

)
,

which completes the proof.

B.3. Proof of Theorem 1 part 2: Proof of Lemma 3

In this section, we analyze the 1-step gain in the auxiliary function ,
of any test e ∈ V . By the end of this section, we will show that it is lowered
bounded by the one-step gain in the EC

2 objective .
Recall that we assume test outcomes are binary for our analysis, and in the

following of this section, we assume the outcome xe of test e is in {+,−} instead
of {0, 1}, for clarity purposes.
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B.3.1. Notations and the intermediate goal

Fig 10. Performing binary test e on Θ and Y . Dots represent root-causes θ ∈ supp(Θ), and
circles represent values of the target variable y ∈ Y. The favorable outcome of Xe for the
root-causes in gray dots are +; the favorable outcome for root-causes in blue dots are −.
We also illustrate the short-hand notations used in §B.3. They are: p, q (i.e., the posterior
probability distribution over Y and Θ), h (i.e., the prior distribution over Y and Θ) and α, β
(i.e., the probability mass of gray and brue dots, respectively, before performing test e).

Table 2

Summary of notations introduced for the proof of Lemma 3

h P [· | ψ], i.e., probability distribution on Θ and Y , before performing test e
h+, h− P [Xe = + | ψ],P [Xe = − | ψ]
pθ, py P [· | ψ,Xe = +], i.e., probability distribution on Θ and Y having observed

Xe = +
qθ, qy P [· | ψ,Xe = −], i.e., probability distribution on Θ and Y having observed

Xe = −
Θ+, Θ− set of positive / negative root-causes

Θ+
i , Θ−

i set of positive / negative root-causes associated with target yi
α, β total probability mass of positive / negative root-causes
αi, βi probability mass of positive / negative root-causes associated with target yi
μi, νi αi/α, βi/β (defined in §B.3.5)
θ � θ′ r(θ) �= r(θ′), i.e., root-causes θ and θ′ do not share the same target value

For brevity, we first define a few short-hand notations to simplify our deriva-
tion. Let p, q be two distributions on Θ, and h = h+p + h−q be the convex
combination of the two, where h+, h− ≥ 0 and h+ + h− = 1.

In fact, we are using p and q to refer to the posterior distribution over Θ
after we observe the (noisy) outcome of some binary test e, and use h to refer
to the distribution over Θ before we perform the test, i.e., pθ � P [θ | Xe = +],
qθ � P [θ | Xe = −], and hθ � P [θ] = h+pθ + h−qθ, where h+ = P [Xe = +]
and h− = P [Xe = −]. For yi ∈ Y , we use pi �

∑
θ:r(θ)=yi

pθ to denote the

probability of yi under distribution p, and use qi �
∑

θ:r(θ)=yi
qθ to denote the

probability of yi under distribution q.
Further, given a test e, we define Θ+

i , Θ
−
i to be the set of root-causes associ-

ated with target yi, whose favorable outcome of test e is + (for Θ+
i ) and − (for

Θ−
i ). Formally,

Θ+
i � {θ : r(θ) = yi ∧ P [Xe = + | θ] ≥ 1/2}

Θ−
i � {θ : r(θ) = yi ∧ P [Xe = + | θ] < 1/2}
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We then define Θ+ �
⋃

i∈{1,...,t} Θ
+
i , and Θ− �

⋃
i∈{1,...,t} Θ

−
i , to be the set of

“positive” and “negative” root-causes for test e, respectively.

Let αi, βi be the probability mass of the root-causes in Θ+
i and Θ−

i , i.e.,
αi �

∑
y∈Θ+

i
P [θ], and βi �

∑
y∈Θ−

i
P [θ] . We further define α �

∑
yi∈Y αi =∑

θ∈Θ+ P [θ], and β �
∑

yi∈Y βy =
∑

θ∈Θ− P [θ], then clearly we have α+β = 1.
See Fig. 10 for illustration.

Now, we assume that test e has error rate ε. That is,

∀θ, min{P [Xe = + | θ] ,P [Xe = − | θ]} = ε.

Then, by definition of h+, h−, pi, qi, pθ, qθ, it is easy to verify that

h+ = αε̄+ βε, h− = αε+ βε̄

pi =
αiε̄+ βiε

h+
, qi =

αiε+ βiε̄

h−

pθ =
hθ ε̄

h+
, qθ =

hθε

h−
, if θ ∈ Θ+

i

pθ =
hθε

h+
, qθ =

hθ ε̄

h−
, if θ ∈ Θ−

i (B.4)

For the convenience of readers, we summarize the notations provided above
in Table 2.

Given root-causes θ and θ′, we use θ � θ′ to denote that the values of the
target variable Y associated with root-causes θ and θ′ are different, i.e., r(θ) �=
r(θ′).

We can rewrite the auxiliary function (as defined in Equation (4.1)) as follows:

faux =
∑
θ�θ′

hθhθ′ log
1

hθhθ′
+ c

∑
yi∈Y

H2 (hi) .

If by performing test e we observe Xe = +, we have

faux((e,+)) =
∑
θ�θ′

pθpθ′ log
1

pθpθ′
+ c

∑
yi∈Y

H2 (pi)

otherwise, if we observe Xe = −,

faux((e,−)) =
∑
θ�θ′

qθqθ′ log
1

qθqθ′
+ c

∑
yi∈Y

H2 (qi)

Therefore, the expected gain (i.e., ) of performing test e is,

Δaux =

1︷ ︸︸ ︷∑
θ�θ′

hθhθ′ log
1

hθhθ′
−
(
h+

∑
θ�θ′

pθpθ′ log
1

pθpθ′
+ h−

∑
θ�θ′

qθqθ′ log
1

qθqθ′

)

+ c

⎛
⎝∑

yi∈Y
H2 (hi)−

⎛
⎝h+

∑
yi∈Y

H2 (pi) + h−
∑
yi∈Y

H2 (qi)

⎞
⎠
⎞
⎠

︸ ︷︷ ︸
2

(B.5)
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In the following, we derive lower bounds for the above two terms respectively.

B.3.2. A lower bound on term 1

Let gθ,θ′ � h+pθpθ′ + h−qθqθ′ . Then, we can rewrite Term 1 as,

Term 1 =
∑
θ�θ′

hθhθ′ log
1

hθhθ′
−
∑
θ�θ′

gθ,θ′ log
1

gθ,θ′︸ ︷︷ ︸
Part 1

+
∑
θ�θ′

gθ,θ′ log
1

gθ,θ′
−
(
h+

∑
θ�θ′

pθpθ′ log
1

pθpθ′
+ h−

∑
θ�θ′

qθqθ′ log
1

qθqθ′

)
︸ ︷︷ ︸

Part 2

(B.6)

Part 1. We first provide a lower bound for part 1 of Equation (B.6).
Notice that for the concave function f(x) = x log 1

x and δ < x, it holds that

f(x)− f(x− δ) ≥ δ ∂f
∂x

∣∣
x
= δ(log 1

x − 1), then we get∑
θ�θ′

hθhθ′ log
1

hθhθ′
−
∑
θ�θ′

gθ,θ′ log
1

gθ,θ′
≥
∑
θ�θ′

(hθhθ′ − gθ,θ′)

(
log

1

hθhθ′
− 1

)
Further, observe

hθhθ′−gθ,θ′ = (h+pθ + h−qθ)(h+pθ′ + h−qθ′)− (h+pθpθ′ + h−qθqθ′)

= (h+pθ + h−qθ)(pθ′ + qθ′ − h−pθ′ − h+qθ′)− (h+pθpθ′ + h−qθqθ′)

= h+h−pθ′qθ − h+h−pθ′pθ + h+h−pθqθ′ − h−h+qθ′qθ

= −h+h−(pθ − qθ)(pθ′ − qθ′)

Combining the above two equations gives us

Part 1 ≥
∑
θ�θ′

−h+h−(pθ − qθ)(pθ′ − qθ′)

(
log

1

hθhθ′
− 1

)
For any root-cause pair {θ, θ′} with θ � θ′, and binary test e, there are only 4
possible combinations in terms of the root-causes’ favorable outcomes. Namely,

1. Both θ and θ′ maps x to +, i.e., θ ∈ Θ+ ∧ θ′ ∈ Θ+.
We define such set of root-cause pairs with positive favorable outcomes as
U(+,+) � {{θ, θ′} : θ ∈ Θ+ ∧ θ′ ∈ Θ+} (For other cases, we define U(−,−),
U(+,−), U(−,+) in a similar way).
In this case, we have

∑
{θ,θ′}∈U(+,+)

−h+h−(pθ − qθ)(pθ′ − qθ′)

(
log

1

hθhθ′
− 1

)

Eq (B.4)
=

∑
{θ,θ′}∈U(+,+)

−h+h−

(
hθ ε̄

h+
− hθε

h−

)(
hθ′ ε̄

h+
− hθ′ε

h−

)(
log

1

hθhθ′
− 1

)
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=h+h−

(
h−ε̄− h+ε̄

h+h−

)2 ∑
{θ,θ′}∈U(+,+)

−hθhθ′

(
log

1

hθhθ′
− 1

)

=
β2 (1− 2ε)

2

h+h−

∑
{θ,θ′}∈U(+,+)

−hθhθ′

(
log

1

hθhθ′
− 1

)

=
β2 (1− 2ε)

2

h+h−

∑
{θ,θ′}∈U(+,+)

(
−2hθhθ′ log

1

hθ
+ hθhθ′

)

=
β2 (1− 2ε)

2

h+h−

⎛
⎝∑

yi∈Y
(α− αi)

∑
θ∈Θ+

i

−2hθ log
1

hθ
+
∑
yi∈Y

αi(α− αi)

⎞
⎠

=
(1− 2ε)

2

h+h−

⎛
⎝−2β2

∑
yi∈Y

(α− αi)
∑
θ∈Θ+

i

hθ log
1

hθ
+ β2

∑
yi∈Y

αi(α− αi)

⎞
⎠

2. Both θ and θ′ maps x to −. Similarly, we get∑
{θ,θ′}∈U(−,−)

−h+h−(pθ − qθ)(pθ′ − qθ′)

(
log

1

hθhθ′
− 1

)

=
(1− 2ε)

2

h+h−

⎛
⎝−2α2

∑
yi∈Y

(β − βi)
∑

θ∈Θ−
i

hθ log
1

hθ
+ α2

∑
yi∈Y

βi(β − βi)

⎞
⎠

3. θ maps x to +, θ′ maps x to −. We have

∑
(θ,θ′)∈U(+,−)

h+h−
2

(pθpθ′ − qθqθ′)
2

pθpθ′ + qθqθ′

≥
∑

(θ,θ′)∈U(+,+)

h+h−
2

(√
hθ ε̄

h+

hθ′ε

h+
−
√

hθε

h−

hθ′ ε̄

h−

)2

=
∑

(θ,θ′)∈U(+,+)

h+h−
2

hθhθ′εε̄

(
1

h+
− 1

h−

)2

=
(1− 2ε)2

2h+h−
εε̄(α− β)2

∑
yi∈Y

αi(β − βi)

4. θ maps x to −, θ′ maps x to +. By symmetry we have∑
(θ,θ′)∈U(−,+)

−h+h−(pθ − qθ)(pθ′ − qθ′)

(
log

1

hθhθ′
− 1

)

=
∑

(θ,θ′)∈U(+,−)

−h+h−(pθ − qθ)(pθ′ − qθ′)

(
log

1

hθhθ′
− 1

)
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Combining the above four equations, we obtain a lower bound on Part 1:

Part 1 ≥ (1− 2ε)
2

h+h−

⎛
⎝−2β2

∑
yi∈Y

(α− αi)
∑
θ∈Θ+

i

hθ log
1

hθ
+ β2

∑
yi∈Y

αi(α− αi)

−2α2
∑
yi∈Y

(β − βi)
∑

θ∈Θ−
i

hθ log
1

hθ
+ α2

∑
yi∈Y

βi(β − βi)

+2αβ
∑
yi∈Y

(β − βi)
∑
θ∈Θ+

i

hθ log
1

hθ

+2αβ
∑
yi∈Y

(α− αi)
∑

θ∈Θ−
i

hθ log
1

hθ
− 2αβ

∑
yi∈Y

αi(β − βi)

⎞
⎠

=
(1− 2ε)

2

h+h−

⎛
⎝
⎛
⎝2αβ

∑
yi∈Y

(β − βi)− 2β2
∑
yi∈Y

(α− αi)

⎞
⎠ ∑

θ∈Θ+
i

hθ log
1

hθ

+

⎛
⎝2αβ

∑
yi∈Y

(α− αi)− 2α2
∑
yi∈Y

(β − βi)

⎞
⎠ ∑

θ∈Θ−
i

hθ log
1

hθ

+β2
∑
yi∈Y

αi(α− αi) + α2
∑
yi∈Y

βi(β − βi)− 2αβ
∑
yi∈Y

αi(β − βi)

⎞
⎠

=
(1− 2ε)

2

h+h−
·

⎛
⎝2
∑
yi∈Y

β(βαi − αβi)
∑
θ∈Θ+

i

hθ log
1

hθ

+2
∑
yi∈Y

α(αβi − βαi)
∑

θ∈Θ−
i

hθ log
1

hθ
−
∑
yi∈Y

(βαi − αβi)
2

⎞
⎠

=
(1− 2ε)

2

h+h−
·

⎛
⎝2
∑
yi∈Y

(βαi − αβi)

⎛
⎝βαi

∑
θ∈Θ+

i

hθ

αi
log

1

hθ

−αβi

∑
θ∈Θ−

i

hθ

βi
log

1

hθ

⎞
⎠−

∑
yi∈Y

(βαi − αβi)
2

⎞
⎠ (B.7)

Part 2. Next, we will provide a lower bound on Part 2 of Equation (B.6).
By definition, we have

Part 2 =
∑
θ�θ′

(h+pθpθ′ + h−qθqθ′) log
1

h+pθpθ′ + h−qθqθ′

−
(
h+

∑
θ�θ′

pθpθ′ log
1

pθpθ′
+ h−

∑
θ�θ′

qθqθ′ log
1

qθqθ′

)
(a)

≥ h+h−
2

∑
θ�θ′

(pθpθ′ − qθqθ′)
2

pθpθ′ + qθqθ′
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Hereby, step (a) is due to the strong concavity6 of f(x) = x log 1
x .

Similarly with the analysis of Part 1, we consider the four sets of {θ, θ′} pairs:

1. {θ, θ′} ∈ U(+,+): both θ and θ′ maps x to +.
In this case, we have

∑
(θ,θ′)∈U(+,+)

h+h−
2

(pθpθ′ − qθqθ′)
2

pθpθ′ + qθqθ′

≥
∑

(θ,θ′)∈U(+,+)

h+h−
2

(
√
pθpθ′ −√

qθqθ′)
2

Eq (B.4)
=

∑
(θ,θ′)∈U(+,+)

h+h−
2

(√
hθ ε̄

h+

hθ′ ε̄

h+
−
√

hθε

h−

hθ′ε

h−

)2

=
∑

(θ,θ′)∈U(+,+)

h+h−
2

hθhθ′

(
ε̄

h+
− ε

h−

)2

=
∑

(θ,θ′)∈U(+,+)

h+h−
2

hθhθ′
β2 (1− 2ε)

2

(h+h−)2

=
(1− 2ε)

2

2h+h−
β2
∑
yi∈Y

αi(α− αi)

2. (θ, θ′) ∈ U(−,−). Similarly, we get

∑
(θ,θ′)∈U(−,−)

h+h−
2

(pθpθ′ − qθqθ′)
2

pθpθ′ + qθqθ′
≥ (1− 2ε)

2

2h+h−
α2
∑
yi∈Y

βi(β − βi)

3. (θ, θ′) ∈ U(+,−): θ maps x to +, θ′ maps x to −. We have

∑
(θ,θ′)∈U(+,−)

h+h−
2

(pθpθ′ − qθqθ′)
2

pθpθ′ + qθqθ′

≥
∑

(θ,θ′)∈U(+,+)

h+h−
2

(√
hθ ε̄

h+

hθ′ε

h+
−
√

hθε

h−

hθ′ ε̄

h−

)2

=
∑

(θ,θ′)∈U(+,+)

h+h−
2

hθhθ′εε̄

(
1

h+
− 1

h−

)2

=
(1− 2ε)2

2h+h−
εε̄(α− β)2

∑
yi∈Y

αi(β − βi)

6If f is strongly concave, then for t ∈ [0, 1], it holds that f(tx+(1−t)y)−tf(x)−(1−t)f(y) ≥
t(1−t)

2
m(x− y)2, where m = min (|f ′′(x)| , |f ′′(y)|) .
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4. (θ, θ′) ∈ U(−,+): θ maps x to −, θ′ maps x to +. By symmetry we have

∑
(θ,θ′)∈U(+,−)

h+h−
2

(pθpθ′ − qθqθ′)
2

pθpθ′ + qθqθ′
≥ (1− 2ε)2

2h+h−
εε̄(α− β)2

∑
yi∈Y

βi(α− αi)

Combining the above four equations, we obtain a lower bound on Part 2:

Part 2

≥
∑

(θ,θ′)∈U(+,+)

h+h−
2

(pθpθ′ − qθqθ′)
2

pθpθ′ + qθqθ′
+

∑
(θ,θ′)∈U(−,−)

h+h−
2

(pθpθ′ − qθqθ′)
2

pθpθ′ + qθqθ′

+
∑

(θ,θ′)∈U(+,−)

h+h−
2

(pθpθ′ − qθqθ′)
2

pθpθ′ + qθqθ′
+

∑
(θ,θ′)∈U(−,+)

h+h−
2

(pθpθ′ − qθqθ′)
2

pθpθ′ + qθqθ′

= (1−2ε)2

2h+h−
·
(
β2∑

yi∈Y αi(α−αi)+α2∑
yi∈Y βi(β−βi)+2εε̄(α−β)2

∑
yi∈Y αi(β−βi)

)
(B.8)

B.3.3. A lower bound on term 2

Now we move on to analyze Term 2 of Equation (B.6). By strong concavity of
f(x) = x log 1

x + (1− x) log 1
1−x , we obtain

Term 2 = c
∑
yi∈Y

(
hi log

1

hi
+ (1− hi) log

1

1− hi

−h+

(
pi log

1

pi
+ (1− pi) log

1

1− pi

)

− h−

(
qi log

1

qi
+ (1− qi) log

1

1− qi

))
footnote 6

≥ c · h+h−
2

∑
yi∈Y

(pi − qi)
2

max{pi(1− pi), qi(1− qi)}

Plugging in the definition of pi, qi from Equation (B.4), we get

Term 2 =
c · h+h−

2

∑
yi∈Y

(
αiε̄+ βiε

h+
− αiε+ βiε̄

h−

)2
1

max{pi(1− pi), qi(1− qi)}

=
c

2h+h−

∑
yi∈Y

((αε+ βε̄)(αiε̄+ βiε)− (αε̄+ βε)(αiε+ βiε̄))
2

max{pi(1− pi), qi(1− qi)}

=
c

2h+h−

∑
yi∈Y

(
αβiε

2 + βαiε̄
2 − αβiε̄

2 − βαiε
2
)2

max{pi(1− pi), qi(1− qi)}

=
c(1− 2ε)2

2h+h−

∑
yi∈Y

(βαi − αβi)
2

max{pi(1− pi), qi(1− qi)}
(B.9)
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B.3.4. A combined lower bound for Δaux

Now, combining Equation (B.7), (B.8), and (B.9), we can get a lower bound for
Δaux:

Δaux ≥ (1− 2ε)
2

h+h−

⎛
⎝2
∑
yi∈Y

(βαi − αβi)

×

⎛
⎝βαi

∑
θ∈Θ+

i

hθ

αi
log

1

hθ
− αβi

∑
θ∈Θ−

i

hθ

βi
log

1

hθ

⎞
⎠−

∑
yi∈Y

(βαi − αβi)
2

⎞
⎠

+
(1− 2ε)2

2h+h−

⎛
⎝β2

∑
yi∈Y

αi(α− αi)

+α2
∑
yi∈Y

βi(β − βi) + 2εε̄(α− β)2
∑
yi∈Y

αi(β − βi)

⎞
⎠

+
c(1− 2ε)2

2h+h−

∑
yi∈Y

(βαi − αβi)
2

max{pi(1− pi), qi(1− qi)}
(B.10)

We can rewrite Equation (B.10) as

Δaux ≥ (1− 2ε)2

4h+h−

⎛
⎝∑

yi∈Y
(βαi − αβi)

2 + β2
∑
yi∈Y

αi(α− αi) + α2
∑
yi∈Y

βi(β − βi)

+ 2εε̄(α− β)2
∑
yi∈Y

αi(β − βi)

⎞
⎠

︸ ︷︷ ︸
LB1

+
(1− 2ε)2

4h+h−

⎛
⎝β2

∑
yi∈Y

αi(α− αi) + α2
∑
yi∈Y

βi(β − βi) + 2εε̄(α− β)2
∑
yi∈Y

αi(β − βi)

+ 2c
∑
yi∈Y

(βαi − αβi)
2

max{pi(1− pi), qi(1− qi)}
− 5

∑
yi∈Y

(βαi − αβi)
2

+ 8
∑
yi∈Y

(βαi − αβi)

⎛
⎜⎝βαi

∑
θ∈Θ+

i

hθ

αi
log

1

hθ
− αβi

∑
θ∈Θ−

i

hθ

βi
log

1

hθ

⎞
⎟⎠
⎞
⎟⎠

︸ ︷︷ ︸
LB2

(B.11)

B.3.5. Connecting Δaux with Δ
EC

2

Next, we will show that term LB1 is lower-bounded by a factor of Δ
EC

2 (i.e.,
), while LB2 cannot be too much less than 0. Concretely, we will show
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• LB1 ≥ 1
16 (1− 2ε)

2
Δ

EC
2 , and

• LB2 ≥ −2t (1− 2ε)
2
η, for η ∈ (0, 1).

At the end of this subsection, we will combine the above results to connect
with (See Equation (B.18)).

LB1 VS. ΔEC2 . We expand the EC
2 gain as

Δ
EC

2 =
∑
yi∈Y

(αi + βi)(1− αi − βi)− α
∑
yi∈Y

αi(α− αi)− β
∑
yi∈Y

βi(β − βi)

= β
∑
yi∈Y

αi(α− αi) + α
∑
yi∈Y

βi(β − βi) + 2
∑
yi∈Y

αi(β − βi) (B.12)

Define⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

* � 16h+h−
(1−2ε)2 · LB1

= 4
(∑

yi∈Y (βαi − αβi)
2
+ β2

∑
yi∈Y αi(α− αi) + α2

∑
yi∈Y βi(β − βi)

+2εε̄(α− β)2
∑

yi∈Y αi(β − βi)
)

† � h+h−ΔEC
2

=
(
εε̄(α− β)2 + αβ

) (
β
∑

yi∈Y αi(α− αi) + α
∑

yi∈Y βi(β − βi)

+2
∑

yi∈Y αi(β − βi)
)

To bound LB1 against 1
16 (1− 2ε)

2
Δ

EC
2 , it suffices to show * ≥ † .

To prove the above inequality, we consider the following two cases:

1. εε̄(α− β)2 ≤ αβ. In this case, we have εε̄(α− β)2 + αβ ≤ 2αβ. Then,

* − †
2

≥ *

2
− αβ

⎛
⎝β

∑
yi∈Y

αi(α− αi) + α
∑
yi∈Y

βi(β − βi) + 2
∑
yi∈Y

αi(β − βi)

⎞
⎠

≥ β2(1 + β)
∑
yi∈Y

αi(α− αi) + α2(1 + α)
∑
yi∈Y

βi(β − βi)

+
∑
yi∈Y

(βαi − αβi)
2 − 2αβ

∑
yi∈Y

αi(β − βi)

≥
∑
yi∈Y

(
β2αi(α− αi) + α2βi(β − βi) + (βαi − αβi)

2 − 2αβαi(β − βi)
)

= 0

2. εε̄(α − β)2 > αβ. W.l.o.g., we assume β ≤ α ≤ 1. By α + β = 1 we get
2α ≥ 1.
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Observe the fact that∑
yi∈Y

(βαi − αβi)
2 = −β2

∑
yi∈Y

αi(α− αi)

− α2
∑
yi∈Y

βi(β − βi) + 2αβ
∑
yi∈Y

αi(β − βi) ≥ 0

Rearranging the terms in the above inequality, we get

β
∑
yi∈Y

αi(α− αi) ≤ 2α
∑
yi∈Y

αi(β − βi)

≤ 2(αβ −
∑
yi∈Y

αiβi) = 2
∑
yi∈Y

αi(β − βi) (B.13)

Hence,

† ≤ 2εε̄(α− β)2

⎛
⎝β ∑

yi∈Y
αi(α− αi) + α

∑
yi∈Y

βi(β − βi) + 2
∑
yi∈Y

αi(β − βi)

⎞
⎠

(B.13)

≤ 2εε̄(α− β)2

⎛
⎝α

∑
yi∈Y

βi(β − βi) + 4
∑
yi∈Y

αi(β − βi)

⎞
⎠

2α≥1

≤ 2εε̄(α− β)2

⎛
⎝2α2

∑
yi∈Y

βi(β − βi) + 4
∑
yi∈Y

αi(β − βi)

⎞
⎠

εε̄(α−β)2≤1

≤ 4

⎛
⎝2εε̄(α− β)2

∑
yi∈Y

αi(β − βi) + α2
∑
yi∈Y

βi(β − βi)

⎞
⎠

≤ *

Therefore, we get

LB1 ≥ 1

16
(1− 2ε)

2
Δ

EC
2 (B.14)

A lower bound on LB2. In the following, we will analyze LB2.

LB2 ≥ (1− 2ε)
2

4h+h−

⎛
⎝β2

∑
yi∈Y

αi(α− αi) + α2
∑
yi∈Y

βi(β − βi)− 5
∑
yi∈Y

(βαi − αβi)
2

+ 2c2
∑
yi∈Y

(βαi − αβi)
2

max{pi(1− pi), qi(1− qi)}

+ 8
∑
yi∈Y

(βαi − αβi)

⎛
⎝βαi

∑
θ∈Θ+

i

hθ

αi
log

αi

hθ
+ βαi log

1

αi

−αβi

∑
θ∈Θ−

i

hθ

βi
log

βi

hθ
− αβi log

1

βi

⎞
⎠
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For brevity, define μi � αi/α, and νi � βi/β. We can simplify the above equation
as

LB2 ≥ α2β2 (1− 2ε)
2

4h+h−

∑
yi∈Y

⎛
⎝μi(1− μi) + νi(1− νi)

− 5(μi − νi)
2 +

2c2 (μi − νi)
2

max{pi(1− pi), qi(1− qi)}

+ 8(μi − νi)

⎛
⎝μi

∑
θ∈Θ+

i

hθ

αi
log

αi

hθ
+ μi log

1

μiα

−νi
∑

θ∈Θ−
i

hθ

βi
log

βi

hθ
− νi log

1

νiβ

⎞
⎠
⎞
⎠ (B.15)

Denote the summand on the RHS of the above equation as LB2i. If for any
yi ∈ Y we can lower bound LB2i, we can then bound the whole sum. Fix i.
W.l.o.g., we assume μi ≥ νi. Then

LB2i � μi(1− μi) + νi(1− νi)− 5(μi − νi)
2 +

2c (μi − νi)
2

max{pi(1− pi), qi(1− qi)}

+ 8(μi − νi)

⎛
⎜⎝
���������������≥ 0

μi

∑
θ∈Θ+

i

hθ

αi
log

αi

hθ
+ μi log

1

μiα
− νi

∑
θ∈Θ−

i

hθ

βi
log

βi

hθ
− νi log

1

νiβ

⎞
⎟⎠

≥ μi(1− μi) + νi(1− νi)− 5(μi − νi)
2 +

2c (μi − νi)
2

max{pi(1− pi), qi(1− qi)}

− 8(μi − νi)

⎛
⎜⎝νi

��������
≤ logn∑

θ∈Θ−
i

hθ

βi
log

βi

hθ
+ νi log

1

νi
+ νi log

1

β

⎞
⎟⎠

≥ μi(1− μi) + νi(1− νi)− 5(μi − νi)
2 − 8(μi − νi)

(
νi log

n

β
+ νi log

1

νi

)

+
2c (μi − νi)

2

max{pi(1− pi), qi(1− qi)}

In order to put a lower bound on the above terms, we first need to lower

bound the term involving (μi−νi)
2

max{pi(1−pi),qi(1−qi)} . Notice that pi =
αi+βiε/ε̄
α+βε/ε̄ , and

pi =
αiε/ε̄+βi

αε/ε̄+β . Therefore, min {μi, νi} ≤ pi, qi ≤ max {μi, νi}.
We check three different cases:

• μi ≥ νi ≥ 1/2, or νi ≤ μi ≤ 1/2.
In this case, max{pi(1−pi), qi(1− qi)} ≤ max{μi(1−μi), νi(1− νi)}. There-
fore,
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LB2i ≥ −5(μi − νi)
2 − 8(μi − νi)

(
νi log

n

β
+ νi log

1

νi

)

+
2c (μi − νi)

2

max{μi(1− μi), νi(1− νi)}
+ μi(1− μi) + νi(1− νi)

≥ −5(μi − νi)
2 − 8(μi − νi)

(
νi log

n

β
+ νi log

1

νi

)

+
2c (μi − νi)

2

max{μi(1− μi), νi(1− νi)}
+max{μi(1− μi), νi(1− νi)}

≥ −5(μi − νi)
2 − 8(μi − νi)

(
νi log

n

β
+ νi log

1

νi

)
+ 2

√
2c(μi − νi)

μi−νi≤1/2

≥ (μi − νi)

(
2
√
2c− 5/2− 8

(
νi log

n

β
+ νi log

1

νi

))
(a)

≥ (μi − νi)

(
2
√
2c− 5/2− 8 log

n

β

)

Here, step (a) is due to the fact that f(x) = x log n
βx is monotone increasing

for n ≥ 3. When n < 3, we have μi = 1 and νi = 0 (otherwise, there is no
uncertainty left in Y ) and hence the problem becomes trivial.

• 1/n ≤ νi ≤ 1/2 ≤ μi.
In this case, we cannot replace pi, qi with μi or νi. However, notice that
max{μi(1− μi), νi(1− νi)} ≤ 1/4, we have

LB2i ≥ μi(1− μi) + νi(1− νi)− 5(μi − νi)
2

− 8(μi − νi)

(
νi log

n

β
+ νi log

1

νi

)
+ 8c (μi − νi)

2

= μi(1− μi) + νi(1− νi) + (μi − νi)
2 + (8c− 6)(μi − νi)

2

− 8(μi − νi)

(
νi log

n

β
+ νi log

1

νi

)
= μi(1− νi) + νi(1− μi) + (8c− 6)(μi − νi)

2

− 8(μi − νi)

(
νi log

n

β
+ νi log

1

νi

)

≥ μi(1− νi) + (8c− 6)(μi − νi)
2 − 8(μi − νi)

(
νi log

n

β
+ νi log

1

νi

)
(B.16)

νi≥1/n

≥ μi(1− νi) + (8c− 6)(μi − νi)
2 − 8(μi − νi)νi log

n2

β

To further simplify notation, we denote γ1 � 8c−6, and γ2 � 8 log n2

β . Then
the above equation can be rewritten as

LB2i ≥ μi(1− νi) + γ1(μi − νi)
2 − γ2(μi − νi)νi
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If μi − νi ≤ 1
2γ2

, then

LB2i ≥ μi(1− νi) + γ1(μi − νi)
2 − 1

2γ2
γ2νi = μi(1− νi)−

νi
2

≥ 0

Otherwise, if μi − νi >
1

2γ2
, we have

LB2i ≥ μi(1− νi) + (μi − νi) (γ1(μi − νi)− γ2νi)

> μi(1− νi) + (μi − νi)

(
γ1

1

2γ2
− γ2νi

)

>
μi − νi

2

(
γ1
γ2

− γ2

)
• νi ≤ 1/n < 1/2 ≤ μi. In this case, we have

LB2i
Eq (B.16)

≥ μi(1− νi) + γ1(μi − νi)
2 − 8(μi − νi)

(
νi log

n

β
+ νi log

1

νi

)

≥ μi(1− νi) + γ1(μi − νi)
2 − 8(μi − νi)

(
1

n
log

n

β
+

logn

n

)
= μi(1− νi) + γ1(μi − νi)

2 − γ2
n
(μi − νi)

> μi(1− νi) + (μi − νi)

(
γ1

n− 2

2n
− γ2

n

)
(a)

≥ μi − νi
3

(γ1
2

− γ2

)
≥ μi − νi

3

(
γ1
γ2

− γ2

)
Step (a) is due to the fact that 1/n < 1/2 and therefore n ≥ 3.

Putting the above cases together, we obtain the following equations:

LB2i ≥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(μi−νi)(2
√
2c− 5

2−8 log n
β ) if μi ≥ νi ≥ 1/2, or νi ≤ μi ≤ 1/2

0 if 1
n ≤ νi ≤ 1

2 ≤ μi, and μi − νi ≤ 1
2γ2

μi−νi

2

(
γ1

γ2
− γ2

)
if 1

n ≤ νi ≤ 1
2 ≤ μi, and μi − νi >

1
2γ2

μi−νi

3

(
γ1

γ2
− γ2

)
if νi ≤ 1

n < 1
2 ≤ μi

Fix η ≥ 0. Let c = 8
(
log 2n2

η

)2
, we have γ1 >

(
8 log n2

η

)2
, and γ2 = 8 log n2

β , so

γ1
γ2

− γ2 =
(
√
γ1 − γ2)(

√
γ1 + γ2)

γ2
> 8

√
γ1 + γ2

γ2
log

β

η

and thus we get

LB2i ≥

⎧⎪⎨
⎪⎩
8(μi − νi) log

β
η if μi ≥ νi ≥ 1/2, or νi ≤ μi ≤ 1/2

0 if 1/n ≤ νi ≤ 1/2 ≤ μi, and μi − νi ≤ 1
2γ2

4(μi−νi)(
√
γ1+γ2)

γ2
log β

η if νi ≤ 1/2 ≤ μi, and μi − νi >
1

2γ2
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That is, if β ≥ η, we have LB2i ≥ 0 for all i ∈ {1, . . . , t}.
On the other hand, if β < η, we get

4(
√
γ1+γ2)

γ2
=

4(log n2

η +log n2

β )

log n2

β

≤ 8, and

therefore LB2i ≥ 8(μi − νi) log
β
η .

Summing over all i ∈ {1, . . . , t}, we get that for β < η, it holds LB2 ≥∑
yi∈Y |μi − νi| · 2α2β2(1−2ε)2

h+h−
log β

η . We hence get

LB2 ≥
{
−2t (1− 2ε)

2
αβ log η

αβ if αβ < η

0 if αβ ≥ η

Further relaxing the above condition by αβ log η
αβ ≤ η − αβ ≤ η, we obtain:

LB2 ≥ −2t (1− 2ε)
2
η (B.17)

Combining Equation (B.11), (B.14), and (B.17), we get

Δaux ≥ 1

16
(1− 2ε)

2
Δ

EC
2 − 2t (1− 2ε)

2
η. (B.18)

Hence, we have related to , as stated in Lemma 3.

B.3.6. Bounding Δaux against ΔECED

To finish the proof for Lemma 3, it remains to bound Δaux against ΔECED. In
this subsection, we complete the proof of Lemma 3, by showing that Δaux(Xe |
ψ) + 2t (1− 2ε)

2
η ≥ ΔECED,ψ(Xe) /64.

Recall that ε is the noise rate of test e. Let ρ = ε
1−ε be the discount factor

for inconsistent root-causes. By the definition of ΔECED in Equation (3.1), we
first expand the expected offset value of performing test e:

Exe [δoffset(xe)] =
∑
yi∈Y

(αi + βi)(1− αi − βi)ε
(
1− ρ2

)
.

Denote γ = ε
(
1− ρ2

)
. Then, we can expand ΔECED as

ΔECED =
∑
yi∈Y

⎛
⎜⎝

(initial total edge weight)−(offset value)︷ ︸︸ ︷
(αi + βi)(1− αi − βi) (1− γ) −

expected remaining weight after discounting︷ ︸︸ ︷
(h+(αi + ρβi)(α+ ρβ − αi − ρβi) + h−(βi + ραi)(β + ρα− βi − ραi))

⎞
⎠

= h+

∑
yi∈Y

(−γαi(α− αi) + αi(β − βi)(1− γ − ρ)+

βi(α− αi)(1− γ − ρ) + βi(β − βi)(1− γ − ρ2)
)
+
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h−
∑
yi∈Y

(−γβi(β − βi) + βi(α− αi)(1− γ − ρ)+

αi(β − βi)(1− γ − ρ) + αi(α− αi)(1− γ − ρ2)
)

=
∑
yi∈Y

(
2(1− γ − ρ)αi(β − βi) +

(
h+(1− γ − ρ2)− h−γ

)
βi(β − βi) +

(
h−(1− γ − ρ2)− h+γ

)
αi(α− αi)

)
Since γ = ε(1−2ε)

(1−ε)2 , 1− γ − ρ2 = 1−2ε
1−ε , and 1− γ − ρ =

(
1−2ε
1−ε

)2
, we have,

h+(1− γ − ρ2)− h−γ = (α(1− ε) + βε)
1− 2ε

1− ε
− (αε+ β(1− ε))

ε(1− 2ε)

(1− ε)2

=

(
1− 2ε

1− ε

)2

α

Therefore

ΔECED

=

(
1− 2ε

1− ε

)2
⎛
⎝α

∑
yi∈Y

βi(β − βi) + β
∑
yi∈Y

αi(α− αi) + 2
∑
yi∈Y

αi(β − βi)

⎞
⎠

=

(
1− 2ε

1− ε

)2

Δ
EC

2 (B.19)

Combining Equation (B.19) with Equation (B.18) we obtain

Δaux + 2t (1− 2ε)
2
η ≥ (1− ε)2

16
ΔECED

=
1

16
(1− 2ε)

2
Δ

EC
2

With the results from Appendix §B.3.5 and §B.3.6, we therefore complete the
proof of Lemma 3.

B.4. Proof of Theorem 1 part 3: Relating ECED to OPT

B.4.1. Bounding the error probability: Noiseless vs. noisy setting

Now that we have seen how ECED interacts with our auxiliary function in
terms of the one-step gain, it remains to understand how one can relate the
one-step gain to the gain of an optimal policy , over k steps. In this
subsection, we make an important step towards this goal.

Specifically, we provide
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Lemma 7. Consider a policy π of length k, and assume that we are using a
stochastic estimator (SE). Let p	

e
be the error probability of SE before running

policy π, p⊥
e,noisy be the average error probability of SE after running π in the

noisy setting, and p⊥
e,noiseless be the average error probability of SE after running

π in the noiseless setting. Then

p⊥
e,noiseless ≤ p⊥

e,noisy

Proof of Lemma 7. Recall that a stochastic estimator predicts the value of a
random variable, by randomly drawing from its distribution. Let π be a policy.
We denote by pe(πφ) the expected error probability of an stochastic estimator
after observing πφ:

p⊥
e,noisy = Eφ[pe(πφ)] =

∑
φ

p(πφ)
∑
y∈Y

p(y | πφ)(1− p(y | πφ))

where φ ∈ V × O denotes a set of test-outcome pairs, and πφ denotes a path
taken by π, given that it observes φ.

Now, let us see what happens in the noiseless setting: we run π exactly as
it is, but in the end compute the error probability of the noiseless setting (i.e.,
as if we know which test outcomes are corrupted by noise). Denote the noise
put on the tests by Ξ, and the realized noise by ξ. We can imagine the noiseless
setting through the following equivalent way: we ran the same policy π exactly
as in the noisy setting. But upon completion of π we reveal what Ξ was. We
thus have

p(y | πφ) =
∑
Ξ=ξ

p(y | πφ, ξ)p(ξ | π)

The error probability upon observing πφ and Ξ = ξ is

pe(πφ, ξ) =
∑
y∈Y

p(y | πφ, ξ)(1− p(y | πφ, ξ)).

The expected error probability in the noiseless setting after running π is

p⊥
e,noiseless = Eφ,n[pe(πφ, ξ)] =

∑
φ,n

p(πφ, ξ)
∑
y∈Y

p(y | πφ, ξ)(1− p(y | πφ, ξ))

(B.20)

Now, we can relate p⊥
e,noisy to p⊥

e,noiseless.

p⊥
e,noisy =

∑
φ

p(πφ)
∑
y∈Y

p(y | πφ)(1− p(y | πφ))

=
∑
φ

p(πφ)
∑
y∈Y

∑
ξ

p(ξ | πφ)p(y | πφ, ξ)(1−
∑
n

p(ξ | πφ)p(y | πφ, ξ))

(a)

≥
∑
φ

p(πφ)
∑
y∈Y

∑
ξ

p(ξ | πφ)p(y | πφ, ξ)(1− p(y | πφ, ξ))

=
∑
φ,ξ

p(πφ, ξ)
∑
y∈Y

p(y | πφ, ξ)(1− p(y | πφ, ξ))
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where (a) is by Jensen’s inequality and the fact that f(x) = x(1−x) is concave.
Combining with Equation (B.20) we complete the proof.

Essentially, Lemma 7 implies that, in terms of the reduction in the expected
prediction error of SE, running a policy in the noise-free setting has higher gain
than running the exact same policy in the noisy setting. This result is important
to us, since analyzing a policy in the noise-free setting is often easier. We are
going to use Lemma 7 in the next section, to relate the gain of an optimal policy

in the EC2 objective (which assumes tests to be noise-free), with the
gain in the auxiliary function (which considers noisy test outcomes).

B.4.2. Key lemma: One-step gain of ECED VS. k-step gain of OPT

Now we are ready to state our key lemma, which connects to .

Lemma 8 (Key Lemma). Fix η, τ ∈ (0, 1). Let n = | supp(Θ)| be the number
of root-causes, t = |Y| be the number of target values, OPT(δopt) be the optimal
policy that achieves perr(OPT(δopt)) ≤ δopt, and ψ
 be the partial realization
observed by running ECED with cost �. We denote by favg

aux(�) := Eψ�
[faux(ψ
)]

the expected value of faux(ψ
) over all the paths ψ
 at cost �. Assume that
favg
aux(�) ≤ δg. We then have

favg
aux

(�)− favg
aux

(�+ 1) ≥ favg
aux(�)− δopt

k
· cε
cδ

+ cη,ε.

where k = cost(OPT(δopt))), cη,ε � 2t(1 − 2ε)2η, cδ � (6c+ 8) log(n/δg), c �
8
(
log(2n2/η)

)2
, and cε � (1− 2ε)2/16.

Proof of Lemma 8. Let ψ
 be a path ending up at level � of the greedy algorithm.
Recall that Δ

EC
2(Xe | ψ
) denotes the gain in f

EC
2 if we perform test e and

assuming it to be noiseless (i.e., we perform edge cutting as if the outcome of
test e is noiseless), conditioning on partial observation ψ
. Further, recall that
Δaux(Xe | ψ
) denotes the gain in faux if we perform noisy test e after observing
ψ
 and perform Bayesian update on the root-causes.

Let e = argmaxe′ ΔECED(Xe′ | ψ
) be the test chosen by ECED, and ê =
argmaxe′ ΔEC

2(Xe′ | ψ
) be the test that maximizes Δ
EC

2 , then by Lemma 3
we know

Δaux(Xe | ψ
) + cη,ε ≥
(1− ε)2

16
(ΔECED,ψ�

(Xe))

≥ (1− ε)2

16
(ΔECED,ψ�

(Xê))

=
1

16
(1− 2ε)

2
Δ

EC
2,ψ(Xê) (B.21)

Note that Δ
EC

2,ψ�
(Xe) is the EC2 gain of test e over the normalized edge

weights at step � + 1 in the noiseless setting. That is, upon observing ψ
, we
create a new EC2 problem instance (by considering the posterior probability
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over root-causes at ψ
), and run (noiseless) greedy algorithm w.r.t. the EC2
objective on such problem instance. Recall that cε � (1 − 2ε)/16. By adaptive
submodularity of f

EC
2 (in the noiseless setting, see Golovin et al. [14]), we

obtain

max
e

Δ
EC

2,ψ(Xe)

adaptive
submodularity

≥
f	
EC

2,ψ�
− E[f⊥

EC2,ψ�
]

k

where by f	
EC

2,ψ�
we mean the initial EC2 objective value given partial real-

ization ψ
, and by E[f⊥
EC2,ψ�

] we mean the expected gain in f
EC

2 when we run

OPT (δopt). Note that OPT (δopt) has worst-case length k.
Now, imagine that we run the policy OPT (δopt), and upon completion of the

policy we can observe the noise. We consider the gain of such policy in f
EC

2 :

f	
EC

2 − E[f⊥
EC2 ]

(a)
= p	

e
− E[f⊥

EC2 ]
(b)

≥ p	
e
− p⊥

e,noiseless.

The reason for step (a) is that the error probability of the stochastic estimator
upon observing ψ
, i.e., p

	
e
, is equivalent to the total amount of edge weight at

ψ
, i.e., f
	
EC

2,ψ�
. The reason for step (b) is that under the noiseless setting (i.e.,

assuming we have access to the noise), the EC2 objective is always a lower-bound
on the error probability of the stochastic estimator (due to normalization). Thus,
E[f⊥

EC2 ] ≤ p⊥
e,noiseless.

Hence we get

Δaux(Xe | ψ) + cη,ε ≥ cε
p	
e,ψ�

− p⊥
e,noiseless,ψ�

k
.

Here p	
e,ψ�

denotes the error probability under P [Y | ψ
], and p⊥
e,noisy,ψ�

denotes
the expected error probability of running OPT (δopt) after ψ
 in the noise-free
setting. By Lemma 7 we get

Δaux(Xe | ψ) + cη,ε ≥ cε
p	
e,ψ�

− p⊥
e,noisy,ψ�

k
,

where p⊥
e,noisy,ψ�

denotes the expected error probability of running OPT (δopt)
after ψ
 in the noisy setting. By (the lower bound in) Lemma 4, we know that
p	
e,ψ�

= pe(ψ
) ≥ pMAP

err
(ψ
), and hence

Δaux(Xe | ψ) + cη,ε ≥ cε
pMAP

err
(ψ
)− δopt
k

,

Taking expectation with respect to ψ
, we get

Eψ�
[Δaux(Xe | ψ) + cη,ε] ≥ cε

Eψ�

[
pMAP

err
(ψ
)

]
− δopt

k
. (B.22)

Using (the upper bound in) Lemma 2, we obtain
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favg
aux

(�) = Eψ�
[faux(ψ
)]

≤ (3c+ 4)
(
Eψ�

[
H2

(
pMAP

err
(ψ
)

)]
+ Eψ�

[
pMAP

err
(ψ
)

]
logn

)
(a)

≤ (3c+ 4)
(
H2

(
Eψ�

[
pMAP

err
(ψ
)

])
+ Eψ�

[
pMAP

err
(ψ
)

]
logn

)
(B.23)

where (a) is by Jensen’s inequality.
Suppose we run ECED, and achieve expected error probability δg, then

clearly before ECED terminates we have Eψ�

[
pMAP

err
(ψ
)

]
≥ δg.

Assuming Eψ�

[
pMAP

err
(ψ
)

]
≤ 1/2, we have

favg
aux

(�) ≤ (3c+ 4)Eψ�

[
pMAP

err
(ψ
)

](
2 log

1

Eψ�
[pMAP

err
(ψ
)]

+ logn

)

≤ (3c+ 4)Eψ�

[
pMAP

err
(ψ
)

](
2 log

1

δg
+ logn

)
≤ Eψ�

[
pMAP

err
(ψ
)

]
· (6c+ 8) log

n

δg
(B.24)

which gives us

Eψ�

[
pMAP

err
(ψ
)

]
≥ favg

aux(�)

(6c+ 8) log n
δg

cδ�(6c+8) log n
δg

=
favg
aux(�)

cδ
. (B.25)

Combining Equation (B.25) with Equation (B.22), we get

favg
aux

(�)− favg
aux

(�+ 1) = Eψ�
[Δaux(e | ψ)]

≥ cε

favg
aux

(
)
cδ

− δopt

k
− cη,ε

=
favg
aux(�)− δoptcδ

k
· cε
cδ

− cη,ε

which completes the proof.

B.5. Proof of Theorem 1 final step: Near-optimality of ECED

We are going to put together the pieces from the previous subsections, to give
a proof of our main theoretical result (Theorem 1).

Proof of Theorem 1. In the following, we use both OPT[k] and OPT(δopt) to
represent the optimal policy that achieves prediction error δopt, with worst-cast
cost (i.e., length) k. Define S(π, φ) to be the (partial) realization seen by policy
π under realization φ. With a slight abuse of notation, we use favg

aux

(
OPT[k]

)
:=

Eφ

[
faux(S(OPT[k], φ))

]
to denote the expected value achieved by running OPT[k].

After running OPT[k], we know by Lemma 2 that the expected value of faux is

lower bounded by 2c ·δopt. That is, δopt ·cδ ≤ favg
aux

(
OPT[k]

)
· cδ2c ≤ favg

aux

(
OPT[k]

)
·
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4 log(n/δg), where the last inequality is due to cδ � (6c + 8) log n
δg

< 8c log n
δg
.

We then have

favg
aux

(�)− favg
aux

(�+ 1)
Lemma 8

≥ (favg
aux

(�)− δopt · cδ) ·
cε
kcδ

− cη,ε

≥
(
favg
aux

(�)− favg
aux

(
OPT[k]

)
· 4 log n

δg

)
· cε
kcδ

− cη,ε (B.26)

Let Δ
 � favg
aux(�) − favg

aux

(
OPT[k]

)
· 4 log n

δg
, so that Inequality (B.26) implies

Δ
 −Δ
+1 ≥ Δ
 · cε
kcδ

− cη,ε. From here we get Δ
+1 ≤
(
1− cε

kcδ

)
Δ
 + cη,ε, and

hence

Δk′ ≤
(
1− cε

kcδ

)k′

Δ0 +

k′∑
i=0

(
1− cε

kcδ

)i

· cη,ε

(a)

≤ exp

(
−k′

cε
kcδ

)
Δ0 +

1−
(
1− cε

kcδ

)k′

cε
kcδ

· cη,ε

(b)

≤ exp

(
−k′

cε
kcδ

)
Δ0 +

kcδ
cε

· cη,ε

where step (a) is due to the fact that (1− x)k
′ ≤ exp(−k′x) for any x < 1, and

step (b) is due to
(
1− cε

kcδ

)k′

> 0. It follows that

favg
aux

(k′)− favg
aux

(
OPT[k]

)
· 4 log n

δg

≤ exp

(
−k′

cε
kcδ

)
Δ0 +

kcδ
cε

· cη,ε

≤ exp

(
−k′

cε
kcδ

)(
favg
aux

(∅)− favg
aux

(
OPT[k]

)
· 4 log n

δg

)
+

kcδ
cε

· cη,ε

This gives us

favg
aux

(k′) ≤ favg
aux

(∅) · exp
(
−k′

cε
kcδ

)
︸ ︷︷ ︸

UB1

+ favg
aux

(
OPT[k]

)
· 4 log n

δg

(
1− exp

(
−k′

cε
kcδ

))
︸ ︷︷ ︸

UB2

+
kcδ
cε

· cη,ε︸ ︷︷ ︸
UB3

(B.27)
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Denote the three terms on the RHS. of Equation (B.27) as UB1, UB2 and
UB3, respectively. We get⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
UB1

Eq (B.23)
≤ (3c+ 4) (1 + logn) · exp

(
−k′ cε

kcδ

)
UB2

Eq (B.24)
< (6c+ 8) · δopt log n

δopt
· 4 log n

δg

UB3 = k · (6c+ 8) log n
δg

· 2t(1−2ε)2η
1
16 (1−2ε)2

= (6c+ 8) · 32 · k · log n
δg

· tη

Now we set ⎧⎨
⎩k′ � kcδ

cε
· ln 8 logn

δg

δopt � δg
64·36·logn·log 1

δg
·log n

δg

(B.28)

and obtain exp
(
−k′ cε

kcδ

)
=

δg
8 log n . It is easy to verify that UB1 ≤ 2c · δg

4 , and

UB2 ≤ 2c · δg
2 .

We further set

η � δg
16·32·kt·log n

δg

, (B.29)

and obtain UB3 = 2c · δg
4 .

Combining the upper bounds derived above for UB1, UB2, UB3, and by
Equation (B.27), we get favg

aux(k
′) ≤ 2c · δg. By Lemma 2 we know that the error

probability is upper bounded by perr = Eψk′

[
pMAP

err
(ψk′)

]
≤ favg

aux
(k′)

2c ≤ δg. That
is, with the cost k′ specified in Equation (B.28), ECED is guaranteed to achieve
perr ≤ δg.

It remains to compute the (exact) value of k′. Combining the definitions of

c � 8
(
log(2n2/η)

)2
and cδ � (6c+ 8) log(n/δg) with Equation (B.29) it is easy

to verify that

cδ ≤ c1 ·
(
log

nk

δg

)2

· log n

δg

holds for some constant c1. Therefore by Equation (B.28),

k′ ≤ k · c1
(
log

nk

δg

)2

log
n

δg
· 1

cε
ln

8 log n

δg
= O

(
k

cε

(
log

nk

δg

)2(
log

n

δg

)2
)
.

To put it in words, it suffices to run ECED for O

(
k
cε

(
log nk

δg

)2 (
log n

δg

)2)
steps

to have expected error below δg, where k denotes the worst-case cost the optimal

policy that achieves expected error probability δopt � O
(

δg
(logn·log(1/δg))2

)
; hence

the completion of the proof.
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Appendix C: Examples when GBS and the most informative policy
fail

In this section, we provide problem instances where GBS and/or the Most
Informative Policy may fail, while ECED performs well. Since in the noise-free
setting ECED is equivalent to EC

2, it suffices to demonstrate the limitations
of GBS and the most informative policy, even if we provide just examples that
apply to the noise-free setting.

C.1. A bad example for GBS: Imbalanced equivalence classes

We use the same example as provided in Golovin et al. [14]. Consider an instance
with a uniform prior over n root-causes, θ1, . . . , θn, and two target values y1 =
r(θ1) = . . . r(θn−1), and y2 = r(θn). There are tests V = {1, . . . , n} such that
P [Xe = 1 | θi] = 1 {i = e} (all of unit cost). Here, 1 {·} is the indicator function.
See Fig. 11 for illustration.

Fig 11. A problem instance where GBS performs significantly worse than ECED.

Now, suppose we want to solve Problem (2.1) for δ = 1/n. Note that in the
noise-free setting, the problem is equivalent to find a minimal cost policy π that
achieves 0 prediction error, because once the error probability drops below 1/n
we will know precisely which target value is realized.

In this case, the optimal policy only needs to select test n, however GBS

may select tests {1, . . . , n} in order until running test e, where Θ = θe is the
true root-cause. Given our uniform prior, it takes n/2 tests in expectation until
this happens, so that GBS pays, in expectation, n/2 times the optimal expected
cost in this instance. Note that in this example, ECED (equivalently, EC2) also
selects test n, which is optimal.

C.2. A bad example for the most informative policy: Treasure hunt

In this section, we provide a treasure-hunt example, in which the most informa-
tive policy pays Ω (n/ log(n)) times the optimal cost. This example is adapted
from Golovin et al. [14], where they show that the most informative policy (re-
ferred to as the Informative Gain policy), as well as the myopic policy that
greedily maximizes the reduction in the expected prediction error (referred as
the Value of Information policy), both perform badly, compared with EC

2.
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Fig 12. A problem instance where the maximal informative policy, and the the myopic policy
that greedily maximizes the reduction in the expected prediction error, perform significantly
worse than EC

2 (equivalently, ECED in the noise-free setting).

Consider the problem instance in Fig. 12(a). Fix s > 0 to be some integer,
and let t = |Y| = 2s. For each target value yi ∈ Y , there exists two root-causes,
i.e., θi,1, θi,0, such that r(θi,1) = r(θi,0) = yi. Denote a root-cause as θi,o, if it
belongs to target i and is indexed by o. We assume a uniform prior over the
root-causes: {θi,o}i∈{1,...,t},o∈0,1.

Suppose we want to solve Problem (2.1) for δ = 1/3. Similarly with §C.1, the
problem is equivalent to find a minimal cost policy π that achieves 0 prediction
error, because once the error probability drops below 1/3, we will know precisely
which target value is realized.

There are three set of tests, and all of them have binary outcomes and unit
cost. The first set V1 := {e0} contains one test e0, which tells us the value of
o of the underlying root-cause θi,o. Hence for all i, Θ = θi,o ⇒ Xe0 = o (see
Fig. 12(b)). The second set of tests are designed to help us quickly discover
the index of the target value via binary search if we have already run e0, but to
offer no information whatsoever (in terms of expected reduction in the prediction
error, or expected reduction in entropy of Y ) if e0 has not yet been run. There
are a total number of s tests in the second set V2 := {e1, e2, . . . , es}. For z ∈
{1, . . . , t}, let bk(z) be the kth least-significant bit of the binary encoding of
z, so that z =

∑s
k=1 2

k−1bk(z). Then, if Θ = θi,o, then the outcome of test
ek ∈ V2 is Xek = 1 {φk(i) = o} (see Fig. 12(c)). The third set of tests are
designed to allow us to do a (comparatively slow) sequential search on the index
of the the target values. Specifically, we have V3 := {eseq1 , . . . , eseqt }, such that
Θ = θi,o ⇒ Xeseqk

= 1 {i = k} (Fig. 12(d)).
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Now consider running the maximal informative policy π (the same analysis
also applies to the value of information policy, which we omits from the paper).
Note that in the beginning, no single test from V1 ∪ V2 results in any change in
the distribution over Y , as it remains uniform no matter which test is performed.
Hence, the maximal informative policy only picks tests from V3, which have non-
zero (positive) expected reduction in the posterior entropy of Y . In the likely
event that the test chosen is not the index of Y , we are left with a residual
problem in which tests in V1 ∪ V2 still have no effect on the posterior. The
only difference is that there is one less class, but the prior remains uniform.
Hence our previous argument still applies, and π will repeatedly select tests
in V3, until a test has an outcome of 1. In expectation, the cost of π is least
cost(π) ≥ 1

t

∑t
z=1 z = t+1

2 .
On the other hand, a smarter policy π∗ will select test e0 ∈ V1 first, and then

performs a binary search by running tests e1, . . . , es ∈ V2 to determine bk(i) for
all 1 ≤ k ≤ s (and hence to determine the index i of Y ). Since the tests have
unit cost, the cost of π∗ is cost(π∗) = s+ 1.

Since t = 2s, and n = 2t = 2s+1, we conclude that

cost(π) =
t+ 1

2
>

t

2
=

n

4

s+ 1

logn
=

n

4 log(n)
cost(π∗).
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