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Abstract: In the problem of testing for signal in Gaussian white noise,
over a smoothness class with an L2-ball removed, minimax rates of conver-
gences (separation rates) are well known (Ingster [24]); they are expressed
in the rate of the ball radius tending to zero along with noise intensity,
such that a nontrivial asymptotic power is possible. It is also known that,
if the smoothness class is a Sobolev type ellipsoid of degree β and size M ,
the optimal rate result can be sharpened towards a Pinsker type asymp-
totics for the critical radius (Ermakov [9]). The minimax optimal tests in
that setting depend on β and M ; but whereas in nonparametric estimation
with squared L2-loss, adaptive estimators attaining the Pinsker constant
are known, the analogous problem in testing is open. First, for adaptation
to M only, we establish that it is not possible at the critical separation
rate, but is possible in the sense of the asymptotics of tail error probabili-
ties at slightly slower rates. For full adaptation to (β,M), it is well known
that a log logn-penalty over the separation rate is incurred. We extend a
preliminary result of Ingster and Suslina [25] relating to fixed M and un-
known β, and establish that sharp minimax adaptation to both parameters
is possible. Thus a complete solution is obtained, in the basic L2-case, to
the problem of adaptive nonparametric testing at the level of asymptotic
minimax constants.
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1. Introduction and main result

Consider the Gaussian white noise model in sequence space, where observations
are

Yj = fj + n−1/2ξj , j = 1, 2, ..., (1.1)

with unknown, nonrandom signal f = (fj)
∞
j=1, and noise variables ξj which

are i.i.d. N(0, 1). We intend to test the null hypothesis of “no signal” against
nonparametric alternatives described as follows. For some β > 0 and M > 0, let
Σ(β,M) be the set of sequences

Σ(β,M) = {f :

∞∑
j=1

j2βf2
j ≤ M};

this might be called a Sobolev type ellipsoid with smoothness parameter β and
size parameter M . Consider further the complement of an open ball in the
sequence space l2: if ‖f‖22 =

∑∞
j=1 f

2
j is the squared norm then

Bρ = {f ∈ l2 : ‖f‖22 ≥ ρ}.

Here ρ1/2 is the radius of the open ball; for brevity we call ρ itself the “radius”.
We study the hypothesis testing problem

H0 : f = 0 against Ha : f ∈ Σ(β,M) ∩Bρ.

Assuming that n → ∞, implying that the noise size n−1/2 tends to zero, we
expect that for a fixed radius ρ, consistent α-testing in that setting is possible.
More precisely, there exist α-tests with type II error tending to zero uniformly
over the nonparametric alternative f ∈ Σ(β,M)∩Bρ. If now the radius ρ = ρn
tends to zero as n → ∞, the problem becomes more difficult and if ρn → 0
too quickly, all α-tests will have the trivial asymptotic (worst case) power α.
According to a fundamental result of Ingster [24] there is a critical rate for ρn,
the so-called separation rate

ρn 	 n−4β/(4β+1) (1.2)
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at which the transition in the power behaviour occurs. More precisely, consider
a (possibly randomized) α-test φ in the model (1.1) for null hypothesis H0 :
f = 0, that is, a test fulfilling En,0φ ≤ α where En,f (·) denotes expectation
in the model (1.1). For given φ, we define the worst case type II error over the
alternative f ∈ Σ(β,M) ∩Bρ as

Ψ(φ, ρ, β,M) := sup
f∈Σ(β,M)∩Bρ

(1− En,fφ) . (1.3)

The search for a best α-test in this sense leads to the minimax type II error

πn(α, ρ, β,M) := inf
φ:En,0φ≤α

Ψ(φ, ρ, β,M). (1.4)

An α-test which attains the infimum above for a given n is minimax with respect
to type II error. Ingster’s separation rate result can now be formulated as follows:
if ρn 	 n−4β/(4β+1) and 0 < α < 1 then

0 < lim inf
n

πn(α, ρn, β,M) and lim sup
n

πn(α, ρn, β,M) < 1− α.

Moreover, if ρn 
n−4β/(4β+1) then πn(α, ρn, β,M) → 0, and if ρn �n−4β/(4β+1)

then πn(α, ρn, β,M) → 1− α.
These minimax rates in nonparametric testing, presented here in the sim-

plest case of an l2-setting, have been extended in two ways. In the first of
these, Ermakov [9] found the exact asymptotics of the minimax type II error
πn(α, ρ, β,M) (equivalently, of the maximin power) at the separation rate. The
shape of that result and its derivation from an underlying Bayes-minimax the-
orem on ellipsoids exhibit an analogy to the Pinsker constant in nonparametric
estimation. In another direction, Spokoiny [35] considered the adaptive version
of the minimax nonparametric testing problem, where both β and M are un-
known, and showed that the rate at which ρn → 0 has to be slowed down by a
log logn-factor if nontrivial asymptotic power is to be achieved. Thus an “adap-
tive minimax rate” was specified, analogous to Ingster’s nonadaptive separation
rate (1.2), where the additional log logn-factor is interpreted as a penalty for
adaptation. However this result did not involve a sharp asymptotics of type II
error in the sense of [9].

It is noteworthy that in the problem of nonparametric estimation of the
signal f over f ∈ Σ(β,M) with l2-loss, where the risk asymptotics is given by
the Pinsker constant, there is an array of results showing that adaptation is
possible with neither a penalty in the rate nor in the constant, cf. Efromovich
and Pinsker [7], Golubev [16], [17], Tsybakov [36]. The present paper deals with
the question of whether the sharp risk asymptotics for testing in the sense of
[9] can be reproduced in an adaptive setting, in the context of a possible rate
penalty for adaptation.

Let us present the well known result on sharp risk asymptotics for testing
in the nonadaptive setting. Let Φ be the distribution function of the standard
normal, and for α ∈ (0, 1) let zα be the upper α-quantile, such that Φ(zα) = 1−
α. Write an 
 bn (or bn � an) iff bn = o(an), and an ∼ bn if an = bn (1 + o (1)).
Furthermore, we write an 	 bn if both an = O (bn) and bn = O (an) hold.
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Proposition 1.1 (Ermakov [9]). Suppose α ∈ (0, 1) and that the radius ρn
tends to zero at the separation rate, more precisely

ρn ∼ c n−4β/(4β+1) (1.5)

for some constant c > 0.
(i) For any sequence of tests φn satisfying En,0φn ≤ α+ o(1) we have

Ψ(φn, ρn, β,M) ≥ Φ(zα −
√
A(c, β,M)/2) + o(1) as n → ∞,

where
A(c, β,M) = A0(β)M

−1/2βc2+1/2β (1.6)

and A0(β) is Ermakov’s constant

A0(β) =
2(2β + 1)

(4β + 1)1+1/2β
. (1.7)

(ii) For every M > 0 there exists a sequence of tests φn satisfying En,0φn ≤
α+ o(1) such that

Ψ(φn, ρn, β,M) ≤ Φ(zα −
√
A(c, β,M)/2) + o(1).

This gives the sharp asymptotics for the minimax type II error at the separa-
tion rate, analogous to the Pinsker constant [33] for nonparametric estimation.
The optimal test attaining the bound of (ii) above, as given in [9], depends on β
and M . Concerning adaptivity in both of these parameters, the following result
is known.

Proposition 1.2 (Spokoiny [35]). Let J be a subset of (0,∞) × (0,∞) such
that there exist M > 0, β2 > β1 > 0 and

[β1, β2]× {M} ⊆ J.

(i) If tn � (log logn)1/2 and ρn ∼ c · (tnn−1)4β/(4β+1) for some c > 0, then
for any sequence of tests φn satisfying En,0φn ≤ α+ o(1) we have

sup
(β,M)∈J

Ψ(φn, ρn, β,M) ≥ 1− α+ o(1).

(ii) For some β∗ > 1/2 and 0 < M1 ≤ M2, let

J = (1/2, β∗]× [M1,M2] .

Then there exist a constant c1 = c1(β
∗,M1,M2) and a sequence of tests φn

satisfying En,0φn = o(1) such that, if

ρn ∼ c1

(
(log logn)1/2n−1

)4β/(4β+1)

(1.8)

then
sup

(β,M)∈J

Ψ(φn, ρn, β,M) = o(1). (1.9)
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Here the criterion to evaluate a test sequence does now include the worst
case type II error over a whole range of β,M . Hence the critical radius rate
(1.8) has to be interpreted as an adaptive separation rate. It differs by a fac-
tor (log log n)2β/(4β+1) from the nonadaptive separation rate (1.2); this fac-
tor is an example of the well-known phenomenon of a penalty for adapta-
tion. Furthermore, as noted in [35], a degenerate behaviour occurs here, in
that both error probabilities at the critical rate tend to zero. Thus any se-
quence φn of tests fulfilling (1.9) should be seen as adaptive rate optimal, com-
parable to rate optimal tests in the nonadaptive case (that is, tests fulfilling
lim supn Ψ(φn, ρn, β,M) < 1 − α at ρn given by (1.2)). In Ingster and Suslina
[25], chap. 7, the worst case adaptive error (1.9) is further analyzed, with a
view to a sharp asymptotics; essentially a test is developed there which is sharp
minimax adaptive over β for known M . We address this subject in our Sec-
tions 1.2 and 4 where the results of [25] are extended towards full minimax
sharp adaptivity over β and M .

1.1. Adaptation over M only

Initially we now assume that β is fixed while we aim for adaptation over the
ellipsoid sizeM . First, we present a negative result for adaptation at the classical
separation rate (1.2).

Theorem 1.1. Suppose c > 0, 0 < M1 < M2 and (1.5). Then there is no test
φn satisfying En,0φn ≤ α+ o(1) and both relations

Ψn(φn, ρn, β,Mi) ≤ Φ(zα −
√
A(c, β,Mi)/2) + o(1), i = 1, 2.

This result states that adaptation just over M is impossible at the separation
rate.

We now modify the criterion, by enlarging the radius slightly and examining
how the minimax error approaches zero. To be specific, we replace the constant
c in (1.5) by a sequence cn tending to infinity slowly. In that case the minimax
type II error bound of Proposition 1.1, namely Φ(zα−

√
A(c, β,M)/2) will tend

to zero (since A(c, β,M) as defined in (1.6) contains a factor c2+1/(2β)). When
the log-asymptotics of this error probability is considered, as in moderate and
large deviation theory, it turns out that adaptation to Ermakov’s constant is
possible.

Theorem 1.2. Assume cn → ∞ but cn = o(nK) for every K > 0, and that
ρn = cn n−4β/(4β+1). For given 0 < M1 < M2, there exists a test φn fulfilling

En,0φn ≤ α+ o(1),

and

lim sup
n

1

c
2+1/2β
n

sup
M1≤M≤M2

M1/2β logΨ(φn, ρn, β,M) ≤ −A0(β)

4
.
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To complement this result, a formal argument is needed that no α-test can
be better in the sense of the log-asymptotics over radii ρn for the error of second
kind. In Ermakov [12] the nonadaptive sharp asymptotics is studied in the above
setting where type II error probability tends to zero.

Proposition 1.3. Under the assumptions of Theorem 1.2, any test φn (possibly
depending on M) satisfying En,0φn ≤ α+ o(1) also fulfills

lim inf
n

M1/2β

c
2+1/2β
n

logΨ(φn, ρn, β,M) ≥ −A0(β)

4
. (1.10)

This result is implied by Theorem 3 in [12], and hence the proof is omitted.
In conjunction with Theorem 1.2, this proposition implies that if one switches
to an error criterion expressed in the rate exponent of a slowly decaying error
probability, then there is no penalty for adaptation. It is obvious from [12]
that the bound (1.10) is nontrivial, in the sense that it specifies as optimal the
quadratic tests using the optimal filtering weights found by Ermakov [9], and is
not attained e.g. by tests with projection weights (i.e. weights from {0, 1}).

It is of interest to consider a certain dual formulation of Theorems 1.1 and 1.2,
where the radius ρn is allowed to depend on the ellipsoid parameters β and M ,
and a certain prescribed type II error level is to be attained, such as Φ(zα − d)
for fixed d > 0. This formulation might be called the variable radius approach. A
test is then optimal if it attains a given type II error level over the complement
of sufficiently small balls. The “variable radius aproach” has been crucially used
in [35] for expressing the rate penalty for adaptation (cf Proposition 1.2); we
will also adopt it here for our sharp adaptation results. Note that in this setting,
the sharp type II error asymptotics is encoded in the radius ρn.

Consider first the nonadaptive setting of Proposition 1.1. In this case, the
connection between type II error level and optimal radius can easily be obtained
by rescaling from Proposition 1.1: if for a d > 0, the constant c is determined
by

c(4β+1)/4β = A1 (β)M
1/4βd,

A1 (β) := (A0 (β) /2)
−1/2

, (1.11)

with A0 (β) given by (1.7), or equivalently, the radius ρn is determined by

ρ
(4β+1)/4β
n,M = n−1A1 (β)M

1/4βd, (1.12)

one obtains that A (c, β,M) given by (1.6) equals 2d2, and hence over a radius
ρn,M as in (1.12), the type II error level Φ(zα − d) is unimprovable and is
attainable by a test depending on M .

For the adaptation problem in the variable radius setting, the two parts of
the result below state the analogs of Theorems 1.1 and 1.2 respectively.

Theorem 1.3. (i) Suppose d > 0, 0 < M1 < M2, and also that ρn,M is given by
(1.12). Then there is no test φn satisfying En,0φn ≤ α+ o(1) and both relations

Ψn(φn, ρn,Mi , β,Mi) ≤ Φ(zα − d) + o(1), i = 1, 2.
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(ii) Assume dn → ∞ but dn = o(nK) for every K > 0, and that ρn,M is
given by

ρ
(4β+1)/4β
n,M = n−1A1 (β)M

1/4βdn. (1.13)

For given 0 < M1 < M2, there exists a test φn such that

En,0φn ≤ α+ o(1),

and

lim sup
n

1

d2n
log sup

M1≤M≤M2

Ψ(φn, ρn,M , β,M) ≤ −1

2
.

As with Theorem 1.2, to complement Theorem 1.3 a formal argument can
be given that no α-test, possibly depending on M , can be better in the sense of
the log-asymptotics over radii ρn,M for the error of second kind. Such a result
is analogous to Proposition 1.3 and is implicit in [12].

1.2. Adaptation over β and M

The adaptivity result of Spokoiny [35], discussed in Proposition 1.2, about the
rate penalty for adaptation (log logn)2β/(4β+1), does not provide a sharp risk
asymptotics in the sense of either Proposition 1.1 or our Theorem 1.3. Some im-
portant results in this direction however are presented in section 7.1.3 of Ingster
and Suslina [25]. Indeed in [25] the solution is presented for unknown β ∈ [β1, β2]
but fixed M . It should be noted that adaptation to β only, with M assumed
known, does not have a practical interpretation in the context of smooth func-
tions. We will address here the problem of a sharp risk bound for adaptation
to the full parameter (β,M). For the analogous problem in the estimation case
(regarding the Pinsker bound), solutions have been presented by Golubev [17]
and Tsybakov [36], sec 3.7.

Our result can be summarized as follows: the lower asymptotic risk bound
for known M , unknown β ∈ [β1, β2] of [25] is achievable even for unknown M ,
by a refinement of the Bonferroni-type tests used to treat adaptation to β. Thus
there is no further penalty for adaptation to M , in addition to the log logn-type
penalty already incurred by adaptation to β.

We begin by stating the lower asymptotic risk bound for known M , unknown
β ∈ [β1, β2], a variation of Theorem 7.1 in [25]. Assume that 0 < β1 < β2 are
given as well as some M > 0. Let D ∈ R be arbitrary and define a radius
sequence ρn,β,M by

(ρn,β,M )
(4β+1)/4β

= n−1A1 (β)M
1/4β

(
(2 log logn)

1/2
+D

)
. (1.14)

Proposition 1.4. Any sequence of tests φn satisfying En,0φn ≤ α + o(1) also
fulfills

sup
β∈[β1,β2]

Ψ(φn, ρn,β,M , β,M) ≥ (1− α) Φ (−D) + o(1). (1.15)
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In [25] the l2-Sobolev ellipsoids represent a boundary case and are therefore
not covered, but the above bound can be proved by very similar methods (cf.
Section 4.2 below). Note that part (i) of Proposition 1.2 is implied by (1.15) by
letting D → −∞.

As to the attainability of this bound, the test provided in section 7.3 of
[25] depends on M . Indeed in [25] observations are assumed to be Xj = vj +
ξj , where ξj are i.i.d. standard normal and v = (vj)

∞
j=1 satisfies restrictions∑

j v
2
j ≥ r2,

∑
j j

2βv2j ≤ R2 where R → ∞ and r/R → 0 (the “power norm”
case in [25], where p = q = 2, s = β; also r is ρ in [25]). This observation
model is equivalent to ours upon setting R2 = nM , r2 = nρ, and then Yj =
n−1/2Xj , fj = n−1/2vj . The reasoning provided in section 7.3.2 of [25] makes
it clear that the test constructed uses solutions of an extremal problem under

restrictions
{
v :
∑

j v
2
j ≥ r2,

∑
j j

2βv2j ≤ R2
}

where r2 = nρn,β,M with ρn,β,M

from (1.14) and β is from a certain grid of values in (β1, β2). Since in particular
R = n1/2M1/2, it turns out that the test depends on M , though it has been
made independent of β ∈ (β1, β2). A version of such results for αn-tests with
αn → 0 is given in [26].

The following theorem extends the result of [25] about attainability of the
bound (1.15) for fixed M towards full adaptivity over (β,M).

Theorem 1.4. Let D ∈ R be arbitrary and define a radius sequence ρn,β,M
by (1.14). Assume a nonempty interval J = [β1, β2] × [M1,M2] ⊂ R

2
+ is fixed.

There exists a test φn such that

En,0φn = α+ o(1),

and
lim sup

n
sup

(β,M)∈J

Ψ(φn, ρn,β,M , β,M) ≤ (1− α) Φ (−D) .

1.3. Further discussion

To further discuss the context of the main results, we note the following points.

Logarithmic vs. strong asymptotics. In [12] it is also shown that, for nonadap-
tive testing where ρn = cn n−4β/(4β+1), cn → ∞, the lower bound (1.10) is
attainable, so that the minimax type II error defined by (1.4) satisfies

log πn(α, ρn, β,M) ∼ −1

4
A(cn, β,M). (1.16)

This holds as long as ρn � n−2β/(2β+1). Moreover if additionally ρn �
n−3β/(3β+1) then the log-asymptotics (1.16) can be strengthened to

πn(α, ρn, β,M) ∼ Φ(zα −
√
A(cn, β,M)/2). (1.17)

Results (1.16) and (1.17) have been obtained within a framework of efficient
inference for moderate deviation probabilities, cf. Ermakov [11], [8]. Recall that
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in our setting cn = o(nK) for every K > 0, so that the strong asymptotics (1.17)
holds in the nonadaptive setting. It is an open question whether an adaptive
analog of (1.17) holds.

For standardized sums Sn of independent random variables, if {Sn > xn} is
a large or moderate deviation event, theorems on the relative error caused by
replacing the exact distribution of Sn by its limiting distribution are sometimes
called strong large or moderate deviation theorems to distinguish them from first
order results on logP (Sn > xn). For a background cf. [32], [22], [2], chap. 11.

The detection problem. Instead of focussing on the worst case type II error
Ψ(φ, ρ, β,M) (1.3) of α-tests φ, one may consider minimization of the sum
of errors, that is of En,0φ + Ψ(φ, ρ, β,M), over all tests φ. That has been
called the detection problem in the literature; in [25] this problem is largely
treated in parallel to the one for α-tests. There and in [23] one finds the analog
of the nonadaptive sharp asymptotics of Proposition 1.1. It may be conjec-
tured that analogs of our Theorems 1.1–1.4 concerning adaptivity hold there
as well.

The sup-norm problem. Lepski and Tsybakov [29] proved a sharp minimax re-
sult in testing when the alternative is a Hölder class (denoted H (β,M), say)
with an sup-norm ball removed, which is a testing analog of the minimax es-
timation result of Korostelev [27] and also a sup-norm analog of Ermakov [9].
For adaptive minimax estimation with unknown (β,M) in the sup-norm case cf.
[19]; for the testing case where β is given, Dümbgen and Spokoiny [6] established
a sharp adaptivity result with respect to the size parameter M only. The result
in Theorem 2.2. of [6] can be seen as a analog of our Theorem 1.3, although
the methodology in the sup-norm case is much different due to the connection
to deterministic optimal recovery, cf. [29]. The case of unknown (β,M) seems
to be an open problem in the sup-norm testing case, with regard to sharp min-
imaxity, although in [6] a test is given which is adaptive rate optimal without
a log logn-type penalty. Rohde [34] discusses the sup-norm case for regression
with nongaussian errors, combining methods of [6] with ideas related to rank
tests.

Density, regression and other models. The phenomenon of the log logn-type
penalty in the rate for adaptation when an L2-ball is removed, as found in [35],
has also been established in a discrete regression model [15], and in density
models with direct and indirect observations [13], [1]. Testing in a white noise
model with composite hypotheses derived from a shifted curve model has been
treated in [3]. In a regression context, composite null hypotheses given by a
parametric family have been considered in [21]. For a review of adaptive sepa-
ration rates and further results in a Poisson process model cf. [14]. For sharp
minimax testing in nongaussian models (the nonadaptive theory) cf. Ermakov
[10] and references therein; for the analogous topic in estimation cf. [18], [31].
An interesting connection to random matrix theory has recently been made in
[5] by establishing a Pinsker type constant for estimation in high dimensional
regression models.
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The structure of the paper is as follows. In Section 2 we prove the negative
result of Theorems 1.1 and 1.3 (i) that adaptation over M fails at the separation
radius (at rate n−4β/(4β+1)). Section 3 presents the proofs that adaptation over
M is possible if the radius is slightly enlarged, i.e. the proofs of Theorem 1.2 and
its dual version Theorem 1.3 (ii). The proof of Theorem 1.4 about existence of
adaptive tests in the two parameter framework (β,M) is presented in Section 4;
for completeness a proof of the lower bound of Proposition 1.4 is also included.
In an Appendix section some technical auxiliary results are collected.

2. Proof of the negative result at separation rate

The following lemma will serve to prove the result of Theorem 1.1 and its version
in the variable radius setting (Theorem 1.3 (i)) in a unified way.

Lemma 2.1. Let ci > 0, Mi > 0, i = 1, 2 be constants such that 0 < M1/c1 ≤
M2/c2, and define sequences

ρn,i = cin
−4β/(4β+1), i = 1, 2.

Assume there exists a test sequence φn satisfying, for some α > 0

En,0φn ≤ α+ o (1) (2.1)

and both relations

Ψ(φn, ρn,i, β,Mi) ≤ Φ
(
zα −

√
A (ci, β,Mi) /2

)
+ o (1) , i = 1, 2. (2.2)

Then
M1

c1
=

M2

c2
. (2.3)

The proof will be carried out in several steps. For brevity we write Ai =
A(ci, β,Mi), i = 1, 2 in this section (cp. (1.6)). Let λ (M,ρ), μ (M,ρ) be the
solutions of (A.1) provided by Lemma A.1, and for some ε ∈ (0, 1) set λi =
λ (ρn,i (1 + ε) ,Mi (1− ε)) , μi = μ (ρn,i (1 + ε) ,Mi (1− ε)), i = 1, 2. Define

f2
0,j,i = (λi − μij

2β)+, j = 1, 2, . . . , i = 1, 2.

Then according to (A.1)

∞∑
j=1

j2βf2
0,j,i = Mi (1− ε) ,

∞∑
j=1

f2
0,j,i = ρn,i (1 + ε) , i = 1, 2. (2.4)

Define Ni = (μi/λi)
1/2β

in agreement with (A.2) and note that f2
0,j,i = 0 if and

only if j ≥ Ni. Let Qn,i be the Gaussian prior for f where fj ∼ N(0, f2
0,j,i)

independently if f2
0,j,i > 0, and fj = 0 otherwise.

Lemma 2.2. For all ε ∈ (0, 1), the prior measures Qn,i satisfy

Qn,i (Σ(β,Mi) ∩B (ρn,i)) = 1 + o (1) , i = 1, 2.
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Proof. It suffices to show that

Qn,i (Σ(β,Mi)
c) = o (1) , (2.5)

Qn,i (B (ρn,i)
c
) = o (1) , i = 1, 2. (2.6)

We have, by the first relation of (2.4)

Qn,i (Σ(β,Mi)
c) = P

⎛
⎝∑

j≥1

j2βf2
j > Mi

⎞
⎠

= P

⎛
⎝∑

j≥1

j2β
(
f2
j − f2

0,j,i

)
> εMi

⎞
⎠ ≤ (εMi)

−2
2
∑
j≥1

j4βf4
0,j,i.

According to Lemma A.1, relation (A.5), the latter quantity is O
(
ρ
2+3/2β
n,i

)
=

o (1), which establishes (2.5). Furthermore, by the second relation of (2.4)

Qn,i (B (ρn,i)
c
) = P

⎛
⎝∑

j≥1

f2
j < ρn,i

⎞
⎠

= P

⎛
⎝∑

j≥1

(
f2
j − f2

0,j,i

)
< −ρn,iε

⎞
⎠ ≤ 2ε−2ρ−2

n,i

∑
j≥1

f4
0,j,i = 2ε−2O

(
ρ
2+3/2β
n,i

)

according to Lemma A.1, relation (A.6), which establishes (2.6).

As a consequence, for Bi = Bρn,i

sup
f∈Σ(β,Mi)∩Bi

Ef,n(1− φn) ≥
∫

En,f (1− φn)Qn,i(df) + o (1) . (2.7)

Recall Yj = fj + n−1/2ξj . Let Qn,0 be the prior distribution where f = 0 a.s.
and consider the resulting joint distribution of (Yj)

∞
j=1 under the priors Qn,i

i = 0, 1, 2, that is

πn,0 : Yj ∼ N(0, n−1), j = 1, 2, . . .

πn,i : Yj ∼ N(0, n−1 + f2
0,j,i), j = 1, 2, . . . , i = 1, 2

with corresponding expectations Eπ
n,i. Then we obtain

Eπ
n,0φn = En,0φn,

Eπ
n,i(1− φn) =

∫
En,f (1− φn)Qn,i(df), i = 1, 2.

Combining this with (2.2), (2.1) and (2.7) gives

Eπ
n,0φn ≤ α+ o(1),

Eπ
n,i(1− φn) ≤ Φ

(
zα −

√
Ai/2

)
+ o(1), i = 1, 2.
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The likelihood ratio of πn,i against πn,0 is, using notation γ2
j,i := nf2

0,j,i,

dπn,i

dπn,0
=
∏
j

(
n−1

n−1 + f2
0,j,i

)1/2

exp

⎛
⎝−1

2

∑
j

(
Y 2
j

n−1 + f2
0,j,i

−
Y 2
j

n−1

)⎞⎠

=
∏
j

(
1

1 + γ2
j,i

)1/2

exp

⎛
⎝1

2

∑
j

γ2
j,i

1 + γ2
j,i

nY 2
j

⎞
⎠ .

Set g̃j,i := γ2
j,i/
(
1 + γ2

j,i

)
, then by the factorization theorem, it is seen that the

bivariate statistic ⎛
⎝∑

j

g̃j,1
(
nY 2

j − 1
)
,
∑
j

g̃j,2
(
nY 2

j − 1
)⎞⎠ (2.8)

is sufficient for the family of distributions {πn,i, i = 0, 1, 2}. To simplify notation,
set zj = 2−1/2

(
nY 2

j − 1
)
and g̃i := (g̃j,i)

∞
j=1. Since only finitely many g̃j,i are

nonzero, the scalar product 〈g̃i, z〉 and the euclidean norm ‖g̃i‖ are well defined.
Set g = g̃i/ ‖g̃i‖ and define the bivariate statistic

Tn = (〈g1, z〉 , 〈g2, z〉)′

which is equivalent to (2.8) and thus sufficient in {πn,i, i = 0, 1, 2}. Write the
induced family for Tn as {πT

n,i, i = 0, 1, 2} with corresponding expectations

Eπ,T
n,i and take the conditional expectation φ∗

n(Tn) = Eπ
n,·(φn|Tn). By sufficiency

the (possibly randomized) test φ∗
n(Tn) for null hypothesis

{
πT
n,0

}
against al-

ternative
{
πT
n,i, i = 1, 2

}
is as good as φn (cf. e.g. Theorem 4.66 in [30]), that

is

Eπ,T
n,0 φ

∗
n ≤ En,0φn ≤ α+ o(1),

Eπ,T
n,i (1− φ∗

n) ≤ Eπ
n,iφn ≤ Φ(zα −

√
Ai/2) + o(1), i = 1, 2.

Then we have the following lemma, which is proved later.

Lemma 2.3. As n → ∞, for fixed ε > 0, each distribution πT
n,i, i = 0, 1, 2 con-

verges in total variation to πT
0,i := N(μi,Σ), i = 0, 1, 2 respectively, where μ0 =

(0, 0)′ and for

δε := (1 + ε) [(1 + ε)/(1− ε)]
1/4β

μ1 = (A1/2)
1/2

δε(1, r)
′, (2.9)

μ2 = (A2/2)
1/2

δε(r, 1)
′, (2.10)

Σ =

(
1 r
r 1

)
where (2.11)

r =

(
M1c2
M2c1

)1/(4β)

· 4β + 1−M1c2/M2c1
4β

. (2.12)
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The proof follows below. Here both the families
{
πT
n,i, i = 0, 1, 2

}
and their

limit
{
πT
0,i, i = 0, 1, 2

}
depend on ε. It is then obvious that there exists a se-

quence εn → 0 such that
{
πT
n,i, i = 0, 1, 2

}
converges in total variation to a

limit family defined as in the Lemma above, with δε replaced by 1, still denoted{
πT
0,i, i = 0, 1, 2

}
. Then by the weak compactness theorem (cf. [28], A.5.1), there

exist a test φ∗ and a subsequence φ∗
nk

such that φ∗
nk

converges weakly to φ∗.
Thus

Eπ,T
0,0 φ∗ ≤ α, (2.13)

Eπ,T
0,i (1− φ∗) ≤ Φ(zα −

√
Ai/2), i = 1, 2. (2.14)

Consider now the Neyman-Pearson test for N(0,Σ) against a simple hypothesis
N(μi,Σ). Here the type II error is Φ(zα−

∥∥Σ−1/2μi

∥∥), and we find (from (2.9)–
(2.11) for ε = 0)∥∥∥Σ−1/2μ1

∥∥∥2 = μ′
1Σ

−1μ1 =
A1

2 (1− r2)
(1, r)

(
1 −r
−r 1

)
(1, r)′ =

A1

2
,

∥∥∥Σ−1/2μ2

∥∥∥2 = μ′
2Σ

−1μ2 =
A2

2 (1− r2)
(r, 1)

(
1 −r
−r 1

)
(r, 1)′ =

A2

2
.

Therefore, by (2.13), (2.14) the α-test φ∗ is uniformly most powerful (UMP)
for N(0,Σ) against a composite alternative {N(μ1,Σ), N(μ2,Σ)}. It can be
checked that r in (2.12) is monotone increasing in M1c2/M2c1: indeed for g (t) =
t1/4β (4β + 1− t) we have

g′ (t) =
(4β + 1)

4β
t1/4β

(
t−1 − 1

)
> 0 for 0 < t < 1.

Assume now that M1/c1 < M2/c2; then it follows that 0 < r < 1. Since μ1

is a multiple of the vector (1, r)′ and μ2 is a multiple of the vector (r, 1)′, it
follows that μ1, μ2 and the origin are not on the same line. We shall show that
in that situation, a UMP test for alternative {N(μ1,Σ), N(μ2,Σ)} does not
exist. Indeed, the log-likelihood ratio of N(μi,Σ) against N(0,Σ) has the form
μ′
iΣ

−1T − μ′
iΣ

−1μi/2 (T representing observations), thus by the necessity part
of the Neyman-Pearson lemma ([28], Theorem 3.2.1), the most powerful test for
N(0,Σ) against N(μi,Σ) has the form of 1{μ′

iΣ
−1T > ki}. But since these two

types of tests can never coincide, for any choice of thresholds ki, there is no
UMP test for N(0,Σ) against {N(μ1,Σ), N(μ2,Σ)}. By this contradiction, the
claim M1/c1 = M2/c2 in Lemma 2.1 is proved.

Proof of Lemma 2.3. Note that under πn,0, the r.v.’s zj = 2−1/2
(
nY 2

j − 1
)
are

i.i.d. with Ezj = 0 and Var (zj) = 1, hence E 〈gi, z〉 = 0, Var (〈gi, z〉) = 1, and
from Lemma A.2, Appendix we find

Cov (〈g1, z〉 , 〈g2, z〉) = 〈g1, g2〉 −→
n→∞

r.

To check the CLT in distribution for Tn under πn,0, it suffices to show that

sup
j

g̃j,i/ ‖g̃i‖ = o (1) for i = 1, 2.
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This follows from relation (A.13) in Lemma A.2 in conjunction with N1, N2 →
∞, cf. (A.2). It remains to check the CLT in total variation. Consider the first
component of Tn, that is

〈g1, z〉 = ‖g̃1‖−1
∑
j

g̃j,1zj .

Here at most [N1] of the g̃j,1 are nonzero, so one may apply Lemma A.4, iden-
tifying the sample size m there with [N1]. Then the condition

sup
1≤j≤N1

g̃j,1/ ‖g̃1‖ = O
(
N−1/2

)
follows again from (A.13). To check the condition on the characteristic function
of z1, note that

φ (t) = E exp (itz1) =
(
1− 21/2it

)−1/2

exp
(
it2−1/2

)
,

|φ (t)|2 =
(
1 + 2t2

)−1
,

such that |φ|2 is integrable. Hence the two marginal distributions of Tn satisfy
the CLT in total variation. A straighforward extension of Lemma A.4 to bivari-
ate coefficients cjn = (cjn,1, cjn,2) for which the limit of

∑
j cjn,1cjn,2 exists,

establishes the result for the law of the vector Tn under πn,0.
Under πn,1, we have E21/2zj = nf2

0,j,1 = g̃j,1 (1 + o (1)), hence E21/2 〈g1, z〉 ∼
〈g1, g̃1〉 = ‖g̃1‖ and E21/2 〈g2, z〉 ∼ 〈g2, g̃1〉 = ‖g̃1‖ 〈g2, g1〉. From (A.12) in
Lemma A.2 we find

‖g̃1‖2 ∼ c
2+1/2β
1 M

−1/2β
1 A0(β) δ

2
ε = A1δ

2
ε

and since 〈g2, g1〉 ∼ r, we obtain that under πn,1

ETn ∼ 2−1/2 ‖g̃1‖ (1, r)′ ∼ (A1/2)
1/2

δε(1, r)
′.

The result ETn ∼ (A2/2)
1/2

δε(r, 1)
′ under πn,2 is shown analogously.

Proof of Theorem 1.1. In Lemma 2.1, set c1 = c2 = c. If there exists a test as in
the theorem then according to (2.3) it follows that M1 = M2, which contradicts
the assumption M1 < M2 in the theorem.

Proof of Theorem 1.3 (i). In accordance with (1.12) set ci = M
1/(1+4β)
i ×(

n−1A1 (β) d
)4β/(4β+1)

, i = 1, 2 in Lemma 2.1. If there exists a test as in the the-

orem then according to (2.3) it follows that 1=M1c2/M2c1 = (M1/M2)
4β/(4β+1)

,
which contradicts the assumption M1 < M2.

3. Proofs for adaptation over M

Assume f ∈ Σ (β,M), M fixed and set for a fixed γ ∈
[
0, (4β + 1)

−1
]

ρn,M = cnM
γn−4β/(4β+1) (3.1)
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where cn is a sequence fulfilling

cn → ∞, cn = o
(
nK
)
for all K > 0, (3.2)

such that ρn = o (1). Define the test statistic

Tn = 2−1/2
∞∑
j=1

dj
(
nY 2

j − 1
)
. (3.3)

where the coefficients dj , (only finitely many are nonzero) are determined as
follows. Let λ = λ (M,ρn,M ), μ = μ (M,ρn,M ) be the solutions of (A.1) provided

by Lemma A.1, set N = (λ/μ)
1/2β

and

d̃j =
(
1− (j/N)2β

)
+
, j = 1, 2, . . .

Observe that d̃j = 0 for j ≥ N , so the vector d̃ =
(
d̃j

)∞
j=1

has finite Euclidean

norm
∥∥∥d̃∥∥∥ and we set

dj = d̃j/
∥∥∥d̃∥∥∥ , j = 1, 2 . . . . (3.4)

Observe that the that test statistic Tn in (3.3) now depends on M and the choice
of ρn,M ; we write Tn (M,ρn,M ) to indicate that dependence. Assume also that
αn → 0 is a sequence fulfilling

|logαn| = O
(
c2n
)

(3.5)

and let z̃ (αn) =
(
2 logα−1

n

)1/2
. Define a test by

φn (M,ρn,M , αn) = 1{Tn (M,ρn,M ) > z̃ (αn)}. (3.6)

The following lemma concerning the nonadaptive test (3.6) is similar to Theorem
4 in [12]; for clarity of exposition we present a proof here.

Lemma 3.1. Under assumptions (3.1), (3.2) and (3.5), the test φn = φn(M,
ρn,M , αn) fulfills

En,0φn ≤ αn (1 + o (1)) , (3.7)

M1/2β

(Mγcn)
2+1/2β

logΨ(φn, ρn,M , β,M) ≤ −A0(β)

4
+ o (1) (3.8)

uniformly over any interval M ∈ [M1,M2] where M1 > 0.

Proof. Under H0, we have f = 0. In this case Tn = Un where

Un =
∑

1≤j≤N

djzj , zj = 2−1/2
(
ξ2j − 1

)
. (3.9)
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In view of
∑

1≤j≤N d2j = 1, Ezj = 0 and Var (zj) = 1, for the convergence in
law of Un to N(0, 1) it suffices to show that max1≤j≤N |dj | = o (1). Recall that

dj = d̃j/
∥∥∥d̃∥∥∥, where ∣∣∣d̃j∣∣∣ ≤ 1, and observe that according to Lemma A.1∥∥∥d̃∥∥∥2 =

∑
1≤j≤N

(
1− (j/N)2β

)2
= λ−2T(1) 	 ρ−1/2β 	 N,

so that
max

1≤j≤N
|dj | = O

(
N−1/2

)
(3.10)

and Un � N(0, 1).
Consider now

En,0φn = Pn,0 (Un ≥ z̃ (αn)) .

for z̃ (αn) =
(
logα−2

n

)1/2
. We will apply Lemma A.5, Appendix to estimate

that probability. Setting m = [N ], Yj = zj and cjm = dj for dj > 0 there, we
have seen above that this set of coefficients {cjm}mj=1 fulfills the conditions of

Lemma A.5. Furthermore, the zj are standardized χ2
1-variables where Cramer’s

condition is fulfilled for any H > 0. Setting am = z̃ (αn), we find from (3.5)

z̃ (αn) =
(
logα−2

n

)1/2
= O (cn) . (3.11)

Note that if (3.1) holds then according to (A.2) in Lemma A.1 (Appendix), we
have

N 	 ρ
−1/2β
n,M 	 c−1/2β

n n2/(4β+1). (3.12)

The basic growth condition cn = o
(
nK
)
for every K > 0 and (3.12) imply that

N 
 nη for some η > 0, so that am = o
(
N1/6

)
. Lemma A.5 now implies

Pn,0 (Un ≥ z̃ (αn)) ≤ exp
(
− (z̃ (αn))

2
/2
)
(1 + o (1)) = αn (1 + o (1))

which proves (3.7).
Consider now, for ρ = ρn,M ,

Ψ(φn, ρ, β,M) = sup
f∈Σ(β,M)∩Bρ

(1− En,fφn)

= sup
f∈Σ(β,M)∩Bρ

Pn,f (Tn ≤ z̃ (αn)) .

We now make use of some further results collected in the Appendix. By Lem-
ma A.6, the set Bρ in the supremum may be replaced by B0

ρ defined in (A.16).
Set

T 0
n(f) = 21/2

∞∑
j=1

djn
1/2fjξj , (3.13)

then

Tn = 2−1/2
∞∑
j=1

dj

(
nf2

j + 2n1/2fjξj + ξ2j − 1
)

= Ln (d, f) + T 0
n(f) + Un
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where Ln (d, f) denotes the functional (A.17) and Un is defined by (3.9). Note
that

ET 0
n(f) = 0,

τn(f) := Var
(
T 0
n(f)

)
= 2

∞∑
j=1

d2jnf
2
j ≤ 2

(
max

j
d2j

) N∑
j=1

nf2
j

≤ nρO
(
N−1

)
= nρO

(
ρ1/2β

)
by using (3.10) and f ∈ B0

ρ , and then (A.2). The current choice ρ = ρn,M 	
n−4β/(4β+1)cn implies

τn := sup
f∈B0

ρ

τn(f) = O
(
n−1/(4β+1)c1+1/2β

n

)
. (3.14)

By splitting into events
{
−T 0

n(f) ≤ 1
}
and its complement, we find

Pn,f

(
Ln (d, f) + T 0

n(f) + Un ≤ z̃ (αn)
)

≤ Pn,f (Ln (d, f) + Un ≤ z̃ (αn) + 1) + Pn,f

(
T 0
n(f) ≤ −1

)
.

Here the second term is

Pn,f

(
T 0
n(f) ≤ −1

)
= Φ

(
−τ−1/2

n (f)
)
≤ Φ

(
−τ−1/2

n

)
.

Defining žn = z̃ (αn) + 1, we now have

Ψ(φn, ρ, β,M) ≤ sup
f∈Σ(β,M)∩B0

ρ

Pn (Ln (d, f) + Un ≤ žn) + Φ
(
−τ−1/2

n

)
. (3.15)

Note that (3.12) implies N � n2. Hence if we take p = n2 in Lemma A.3 and
ρ = ρn,M , then the first p coefficients of the test statistic Tn given by dj in (3.4)
are given by the saddlepoint solution d0 of (A.18), and all other dj are zero.
Then relation (A.4) can be used to find the asymptotics of

inf
f∈Σ(β,M)∩B0

ρ

Ln (d, f) = Sn = n
(
T(1)/2

)1/2
(3.16)

where Sn is given by (A.20) and T(1) by (A.4). This implies

Ψ(φn, ρn,M , β,M) ≤ Pn (Sn + Un ≤ žn) + Φ
(
−τ−1/2

n

)
. (3.17)

Combining relation (A.4) with the current choice ρn,M = cnM
γn−4β/(4β+1) one

obtains

Sn ∼ (Mγcn)
1+1/4β

M−1/4β

(
A0(β)

2

)1/2

(3.18)
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and thus by (3.11)
hn := Sn − žn ∼ Sn. (3.19)

Again invoking Lemma A.5, Appendix, with cjm andm as above but now setting
Yj = −zj and am = hn, we find

Pn (Sn + Un ≤ žn) = Pn (−Un ≥ hn) ≤ exp
(
h2
n/2
)
(1 + o (1)) .

From (3.17) we now have

Ψ(φn, ρn,M , β,M) ≤ exp
(
−h2

n/2
)
(1 + o (1)) + Φ

(
−τ−1/2

n

)
.

Note that by (3.14), (3.18) and (3.19) we have τ
−1/2
n 
 hn so that Φ

(
−τ

−1/2
n

)
≤

Φ (−hn), and the well known relation Φ (−hn) ∼ (2π)−1/2h−2
n exp

(
−h2

n/2
)
now

implies
Ψ(φn, ρn,M , β,M) ≤ exp

(
−h2

n/2
)
(1 + o (1)) .

With (3.18) and (3.19) this yields

M1/2β

(Mγcn)
2+1/2β

logΨ(φn, ρ, β,M) ≤ −M1/2βh2
n/2

(Mγcn)
2+1/2β

(1 + o (1)) = −A0(β)

4
+o (1) .

The uniformity claim can be checked using part (iii) of Lemma A.1 and the
uniformity implicit in Lemma A.5.

Lemma 3.2. Under the assumptions of Lemma 3.1, for given α > 0 and 0 <
M1 < M2, there exists a test φ0

n fulfilling

En,0φ
0
n ≤ α+ o(1) (3.20)

and

lim sup
n

1

c
2+1/2β
n

sup
M1≤M≤M2

M1/2β−γ(2+1/2β) logΨ(φ0
n, ρn,M , β,M) ≤ −A0(β)

4
.

(3.21)

Proof. Let Ln → ∞ be a sequence satisfying Ln = O (cn). Using notation M(i)

for the smoothness bounds Mi, i = 1, 2 in the lemma, define a grid of values

Ml =

(
1− l

Ln

)
M(1) +

l

Ln
M(2), l = 0, . . . , Ln.

Consider again the test statistic Tn given by (3.3) and observe that it depends
on M and ρ (via (A.1)); we use notation Tn (M,ρ) to indicate that dependence.
Define the test statistics

Tn,l := Tn

(
Ml, ρn,Ml−1

)
, 1 ≤ l ≤ Ln.

For fixed α > 0, set αn = αL−1
n and, referring to (3.6), define the family of tests

ψn,l := φn

(
Ml, ρn,Ml−1

, αn

)
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and also the test
φ0
n = max

1≤l≤Ln

ψn,l.

First check that φ0
n is an α-test: by Bonferroni’s inequality

Pn,0

(
φ0
n = 1

)
≤

∑
1≤l≤Ln

Pn,0 (ψn,l = 1) . (3.22)

We claim that
Pn,0 (ψn,l = 1) ≤ αL−1

n (1 + o(1)) (3.23)

uniformly over 1 ≤ l ≤ Ln. Indeed relation (3.5) now holds in view of

|logαn| = log
(
α−1Ln

)
= o
(
L2
n

)
= O

(
c2n
)
,

and then the property

Pn,0

(
φn

(
M,ρn,M , αL−1

n

)
= 1
)
≤ αL−1

n (1 + o(1)) (3.24)

has been shown for fixed M in (3.7). The uniformity statement in Lemma 3.1
now allows to claim (3.24) for M = Ml uniformly over of 1 ≤ l ≤ Ln. A minor
modification of that proof, using the fact that Ml/Ml−1 = 1 + o(1) uniformly
over 1 ≤ l ≤ Ln, now allows to replace ρn,Ml

by ρn,Ml−1
in (3.24) and thus to

obtain (3.23). In conjunction with (3.22) this implies

Pn,0

(
φ0
n = 1

)
≤ (1 + o(1))

∑
1≤l≤Ln

αL−1
n = α+ o(1)

establishing (3.20).
For fixed M > 0, consider now the type II error probability (for ρ = ρn,M )

Ψ(φ0
n, ρn,M , β,M) = sup

f∈Σ(β,M)∩Bρ

Pn,f

(
φ0
n = 0

)
≤ sup

f∈Σ(β,M)∩Bρ

min
1≤l≤Ln

Pn,f (ψn,l = 0)

≤ Ψ(ψn,l, ρn,M , β,M) for 1 ≤ l ≤ Ln.

= Ψ(φn

(
Ml, ρn,Ml−1

, αn

)
, ρn,M , β,M) for 1 ≤ l ≤ Ln.

Let l̃ := min {l : 1 ≤ l ≤ Ln : Ml ≥ M}; then in particular

Ψ(φ0
n, ρn,M , β,M) ≤ Ψ(φn

(
Ml̃, ρn,Ml̃−1

, αn

)
, ρn,M , β,M)

≤ Ψ(φn

(
Ml̃, ρn,Ml̃−1

, αn

)
, ρn,Ml̃−1

, β,Ml̃). (3.25)

The last relation holds in view of Σ (β,M) ⊂ Σ
(
β,Ml̃

)
and Bρ ⊂ Bρ̃ for

ρ = �n,M , ρ̃ = �n,Ml̃−1
. Note that (3.8) in Lemma 3.1 concerns the expression

Ψ(φn (M,ρn,M , αn) , ρn,M , β,M). By a slight extension of that lemma, noting
that M ∼ Ml̃ ∼ Ml̃−1 uniformly over M ∈

[
M(1),M(2)

]
, the pair (M,ρn,M )
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there can be replaced by
(
Ml̃, ρn,Ml̃−1

)
. In particular, the reasoning (3.16) on

the basis of the saddlepoint property (A.19) still applies. In conjunction with
(3.25) we thus obtain

M1/2β

(Mγcn)
2+1/2β

logΨ(φ0
n, ρn,M , β,M) ≤ −A0(β)

4
+ o (1)

uniformly over M ∈
[
M(1),M(2)

]
, which implies (3.21).

Proof of Theorem 1.2. In (3.1) set γ = 0 and note that the test φ0
n found in

Lemma 3.2 has the property claimed in the theorem.

Proof of Theorem 1.3 (ii). In accordance with (1.13) set γ = (4β+1)−1 in (3.1)

and cn = (A1 (β) dn)
4β/(4β+1)

there. Then the test φ0
n found in Lemma 3.2 has

the property claimed in the theorem, in view of

c2+1/2β
n = d2n (A1 (β))

2
= d2n 2/A0 (β) .

4. Proofs for adaptation over (β,M)

4.1. The adaptive test

We first consider adaptation over a two dimensional grid of the smoothness
parameter (β,M) within an interval J =

[
β(1), β(2)

]
×
[
M(1),M(2)

]
⊂ R

2
+. Define

the integer sequences

L1,n = [(log logn) logn] , L2,n = [log logn] , Ln = L1,n · L2,n

and a set of multiindices

Λn =
{
l ∈ Z

2
+ : l = (l1, l2) , 1 ≤ l1 ≤ L1,n, 1 ≤ l2 ≤ L2,n

}
.

For l ∈ Λn define

βl =

(
1− l1

L1,n

)
β(1) +

l1
L1,n

β(2), Ml =

(
1− l2

L2,n

)
M(1) +

l2
L2,n

M(2)

and consider the grid of values {(βl,Ml) , l ∈ Λn} ⊂ J . Consider the test statistic
Tn given by (3.3) with coefficients dj determined by (3.4) where λ = λ (ρn,M),
μ = μ (ρn,M) are the solutions of (A.1) provided by Lemma A.1, and N =

(λ/μ)
1/2β

. Thus the test statistic Tn is determined by β, M , and ρ = ρn; we
write Tn (β,M, ρ) to indicate that dependence. Consider the radius ρn,β,M given
by (1.14), namely by

(ρn,β,M )
(4β+1)/4β

= n−1A1 (β)M
1/4β

(
(2 log logn)

1/2
+D

)
(4.1)
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(recall that D ∈ R is arbitrary; it will be fixed throughout this section). For the
radius ρ associated to (βl,Ml) according to (4.1), we introduce an abbreviation

ρn,l := ρn,βl,Ml
. (4.2)

For any l ∈ Λn, consider the test statistic

Tn,l := Tn (βl,Ml, ρn,l) . (4.3)

Furthermore, define zn by

zn = (2 log (LnL2,n))
1/2

(4.4)

and define a test by (analogously to (3.6)) by

ψn,l := 1 {Tn,l > zn} .

Lemma 4.1. The family of tests {ψn,l, l ∈ Λn} fulfills

En,0ψn,l ≤ (LnL2,n)
−1

(1 + o(1)) , (4.5)

Ψ(ψn,l, ρn,l, βl,Ml) ≤ Φ (−D) + o(1) (4.6)

uniformly over l ∈ Λn.

The proof follows below; the lemma allows to prove a preliminary version of
Theorem 1.4 where the interval J is replaced by the grid Jn := {(βl,Ml) : l ∈ Λn},
using the standard Bonferroni approach. Define the tests

φ0
n := max

l∈Λn

ψn,l; φn = α+ (1− α)φ0
n.

For the test φ0
n we obtain

En,0φ
0
n ≤ En,0

∑
l∈Λn

ψn,l ≤
∑
l∈Λn

(LnL2,n)
−1

(1 + o(1))

= (1 + o(1))L−1
2,n = o(1)

and for the type II error we have uniformly over f ∈ Σ(βl,Ml)∩Bρn.l
and l ∈ Λn

En,f

(
1− φ0

n

)
= En,f min

k∈Λn

(1− ψn,k) ≤ En,f (1− ψn,l)

≤ Φ (−D) + o(1) (4.7)

in view of (4.6). The test φn therefore fulfills

En,0φn = α+ (1− α)En,0φ
0
n = α+ o(1),

En,f (1− φn) = En,f (1− α)
(
1− φ0

n

)
= (1− α) Φ (−D) + o(1)
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uniformly over f ∈ Σ(βl,Ml) ∩ Bρn.l
and l ∈ Λn, in view of (4.7). For the

supremal type II error Ψ (·) according to (1.3) we thus obtain

sup
(β,M)∈Jn

Ψ(φn, ρn,β,M , β,M) = sup
l∈Λn

Ψ(φn, ρn,l, βl,Ml)

≤ (1− α) Φ (−D) + o(1) (4.8)

which is the claimed preliminary version of Theorem 1.4 where the interval J is
replaced by the grid Jn.

Proof of Lemma 4.1. Consider first (4.5); the argument here is similar to the
proof of (3.7) in Lemma 3.1. Let λ = λ (ρ, β,M), μ = μ (ρ, β,M, ) be the

solutions of (A.1) provided by Lemma A.1, set N (ρ, β,M) := (λ/μ)
1/2β

and
define Nl := N (ρn,l, βl,Ml, ). With a view to the condition am = o

(
m1/6

)
in

Lemma A.5, we first establish that zn � N
1/6
l uniformly over l ∈ Λn. We denote

by log(k) n a k-fold logarithm iteration: log(k) n := log (log (. . . logn)). It suffices
to show that

log (LnL2,n) � N
1/3
l (4.9)

uniformly. Here we have

log (LnL2,n) = logL1,n + 2 logL2,n

	 log(2) n+ log(3) n+ log(3) n

	 log(2) n; (4.10)

On the other hand, the asymptotics of Nl is given by (A.2) where part (iii)
of Lemma A.1 states uniformity of the 1 + o(1) terms over (β,M) ∈ J . Then
according to (A.2) we have

Nl =

(
(4βl + 1)Ml

ρn,l

)1/2βl

(1 + o(1))

uniformly over l ∈ Λn. In conjunction with (4.1) this implies that a lower bound
for the rate of Nl → ∞ is given by Nl 
 n2/(4βl+1), which implies

Nl 
 n2/(4β(2)+1)
(
log(2) n

)−1/(4β(1)+1)
.

This and (4.10) establish (4.9). As in the proof of Lemma 3.1, setting Tn,l = Un,l

as in (3.9) for every l ∈ Λn, from Lemma A.5 we now obtain

Pn,0 (Un,l ≥ zn) ≤ exp
(
−z2n/2

)
(1 + o(1))

uniformly over l ∈ Λn. The relation exp
(
−z2n/2

)
= (LnL2,n)

−1
now establishes

(4.5).
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To prove (4.6), we first note the inequality (3.15) obtained in the proof of
Lemma 3.1, applied to the test ψn,l

Ψ(ψn,l, ρ, β,M) ≤ sup
f∈Σ(β,M)∩B0

ρ

Pn,f (Ln(d, f) + Un ≤ žn) + Φ
(
−tnτ

−1/2
n,l

)
(4.11)

where tn is to be chosen and žn = zn+ tn, and (ρ, β,M) = (ρn,l, βl,Ml), and we
note that τn,l = supf∈B0

ρ
Var
(
T 0
n(f)

)
with T 0

n(f) defined by (3.13) now depend

on l (via the coefficient vector d). As before we can claim

inf
f∈Σ(β,M)∩B0

ρ

Ln (d, f) = Sn = n
(
T(1)/2

)1/2
where Sn is given by (A.20) and T(1) by (A.4) in Lemma A.1, for the pertaining
values of ρl, βl,Ml. This allows to infer from (4.11) relation (3.17) again, writing
Sn,l = Sn:

Ψ(ψn,l, ρn,l, βl,Ml) ≤ Pn (Sn,l + Un,l ≤ žn) + Φ
(
−tnτ

−1/2
n,l

)
. (4.12)

Lemma A.1 now yields a relation, holding uniformly over l ∈ Λn

Sn,l = nρ
1+1/4β
n,l M

−1/4β
l

(
A0(βl)

2

)1/2

(1 + o(1)) . (4.13)

Invoking (1.14) and (1.11) we find

Sn,l = A1 (βl)

(
A0(βl)

2

)1/2 (
(2 log logn)

1/2
+D

)
(1 + o(1))

=
(
(2 log logn)

1/2
+D

)
(1 + o(1)) . (4.14)

As a consequence of Lemma A.1 (iii), the o(1) term here is of algebraic rate,
meaning there is γ > 0 such that this term is actually o (n−γ) uniformly over
l ∈ Λn. This holds because (βl,Ml) ∈ J and because there exists γ1 > 0 such
that ρn,l given by (4.2), (4.1) satisfies ρn,l = o (n−γ1) uniformly over l ∈ Λn.
This implies that (4.14) can be strengthened to

Sn,l = (2 log log n)
1/2

+D + o(1). (4.15)

Furthermore, for τn,l we find for ρ = ρn,l

τn := sup
f∈B0

ρ

Var
(
T 0
n(f)

)
= nρO

(
ρ1/2β

)

= O

(
n−1/(4β+1)

(
log(2) n

)(2β+1)/(4β+1)
)

= O
(
n−1/(4β(2)+1) log n

)
. (4.16)
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For zn we find in view of (4.4)

zn = (2 log (LnL2,n))
1/2

= (2 logL1,n + 4 logL2,n)
1/2

=
(
2 log(2) n+ 2c log(3) n+ 4 log(3) n

)1/2
.

The inequality

(x+ y)
1/2 − x1/2 ≤ 1

2x1/2
y for x, y > 0

now implies

zn =
(
2 log(2) n

)1/2
+ o(1).

As a consequence, in conjunction with (4.15) we obtain

žn − Sn,l = zn + tn − Sn,l

= tn −D + o(1).

It now suffices to choose tn = o(1) such that t−2
n τn = o(1). The choice tn =

(logn)
−1

clearly qualifies in view of (4.16). Now invoking (4.12) and the Linde-
berg-Feller CLT for Un,l (with uniformity over l ∈ Λn, cp. Lemma A.4) concludes
the proof.

We now consider adaptation over the full interval J =
[
β(1), β(2)

]
×
[
M(1),M(2)

]
for the smoothness parameter (β,M). In terms of the grid {(βl,Ml) , l ∈ Λn},
define sets

Vl = [βl, βl+1]× [Ml−1,Ml] .

Note that J ⊂
⋃

l∈Λn

Vl and for (β,M) ∈ Vl we have

Σ (β,M) ⊂ Σ (βl,Ml) . (4.17)

We also set γn :=
(
log(2) n

)
.

Lemma 4.2. Suppose that for (β,M) ∈ Vl, the radius ρn,β,M is given by (4.1).
Then

sup
l∈Λn

sup
(β,M)∈Vl

∣∣∣∣ ρn,l
ρn,β,M

− 1

∣∣∣∣ = O (γn) .

Proof. Write ρn = ρn,β,M and note that

log ρn =
4β

4β + 1

(
− logn+ logA1 (β) +

1

4β
logM + log

(
(2 log logn)

1/2
+D

))
(4.18)

and analogously for log ρn,l. It suffices to prove that

|log ρn − log ρn,l| = O (γn)
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uniformly over (β,M) ∈ Vl, l ∈ Λn. According to (4.18), the difference log ρn −
log ρn,l splits into four terms, say Tj , j = 1, . . . , 4. Define a function g(x) =
4x/(4x+ 1) for x > 0; we then have

T1 = (g (βl)− g (β)) logn.

The function g satisfies |g(x)− g(y)| ≤ 4 |x− y| for x, y > 0, so that

|T1| ≤ 4L−1
1,n log n =

4 logn[
logn

(
log(2) n

)c] = O (γn) .

Next, we have
T2 = g (β) logA1 (β)− g (βl) logA1 (βl) .

Since A1 (β) = (A0 (β) /2)
−1/2

with A0 (β) given by (1.7), we have

logA1 (β) =
1

2
log

(4β + 1)
1+1/2β

2β + 1
=

2β + 1

4β
log

4β + 1

2β + 1
.

Clearly the function β �→ g (β) logA1 (β) has a bounded derivative over β ∈[
β(1), β(2)

]
so that

|T2| = O
(
L−1
1,n

)
= O

(
L−1
1,n

)
= O

⎛
⎝ 1[

log n
(
log(2) n

)c]
⎞
⎠ = O (γn) .

For the term T3 we obtain

T3 =
1

4β + 1
logM − 1

4βl + 1
logMl.

For this function of (β,M), the same Lipschitz type argument yields

|T3| = O
(
L−1
1,n

)
+O

(
L−1
2,n

)
= O (γn) +O

(
1

log(2) n

)
= O (γn) .

For the term T4 we obtain

T4 = (g (β)− g (βl)) log
(
(2 log logn)

1/2
+D

)

= O
(
L−1
1,n

)
log
(
(2 log logn)

1/2
+D

)
= O

(
log(3) n

L1,n

)
= O (γn) .

These bounds for Tj , j = 1, . . . , 4 prove the lemma.

Define also another radius sequence as

ρ̃n,l := ρn,l (1− ηn) where ηn =
(
log(2) n

)−c

(4.19)
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for a constant c ∈ (1/2, 1). We thus have ηn 
 γn. For (β,M) ∈ Vl we now have
in view of Lemma 4.2

ρ̃n,l
ρn,β,M

= ρn,l (1− ηn) ρ
−1
n,l (1 +O (γn)) = 1− ηn +O (γn)

= 1− ηn + o (ηn) .

As a consequence, there exists n0 such that for n ≥ n0 we have

ρn,β,M ≥ ρ̃n,l for all (β,M) ∈ Vl, l ∈ Λn.

In conjunction with (4.17) we obtain for n ≥ n0 and (β,M) ∈ Vl

Σ (β,M) ∩B (ρn,β,M ) ⊂ Σ (βl,Ml) ∩B (ρ̃n,l) . (4.20)

In analogy to (4.3), for any l ∈ Λn define the test statistic

T̃n,l := Tn (βl,Ml, ρ̃n,l)

and for zn be defined by (4.4) define a test by

ψ̃n,l := 1
{
T̃n,l > zn

}
.

Lemma 4.3. The family of tests
{
ψ̃n,l, l ∈ Λn

}
fulfills

En,0ψ̃n,l = (LnL2,n)
−1

(1 + o(1)) , (4.21)

sup
(β,M)∈Vl

Ψ(ψ̃n,l, ρn,β,M , β,M) ≤ Φ (−D) + o(1) (4.22)

uniformly over l ∈ Λn.

Proof. Consider first (4.21); the argument here follows verbatim the proof of
(4.5) in Lemma 4.1, based on the fact ρ̃n,l = ρn,l (1 + o (1)).

To prove (4.22), observe that, in view of (4.20)

Ψ(ψ̃n,l, ρn,β,M , β,M) = sup
f∈Σ(β,M)∩B(ρn,β,M )

(
1− En,f ψ̃n,l

)
≤ Ψ(ψ̃n,l, ρ̃n,l, βl,Ml).

Note that the quantity Ψ(ψ̃n,l, ρ̃n,l, βl,Ml) is an exact analog of Ψ(ψn,l, ρn,l,
βl,Ml) considered in (4.11): in both cases, the test ψ is defined by the statis-
tic Tn (β,M, ρ) (via (3.3), (A.1), (3.4)) with parameters (βl,Ml) and radius ρ
specified either as ρ̃n,l or as ρn,l, and with the same critical value zn. The proof
of (4.22) is therefore entirely analogous to that of (4.6), where the change from
ρn,l to ρ̃n,l = ρn,l (1− ηn) has to be taken into account. Let S̃n,l for l ∈ Λn be

the appropriate modification of the saddlepoint value Sn,l, i.e. S̃n,l is given by
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(A.20) for the pertaining values (ρ, β,M) = (ρ̃n,l, βl,Ml). Analogously to (4.13)
we obtain

S̃n,l = nρ̃
1+1/4β
n,l M

−1/4β
l

(
A0(βl)

2

)1/2

(1 + o(1)) .

where o(1) is uniform over l ∈ Λn. Analogously to (4.14) we find

S̃n,l = (1− ηn)
1+1/4β

(
(2 log logn)

1/2
+D

)
(1 + o(1)) . (4.23)

Here (1− ηn)
1+1/4β

= 1 + O (ηn) uniformly over β ∈ J , and the choice ηn =(
log(2) n

)−c

, c > 1/2 implies

ηn (log logn)
1/2

= o (1) .

This, in conjunction with same argument about the o (1) term in (4.23) as used
previously for (4.14) allows to obtain the analog of (4.15), that is

S̃n,l = (2 log log n)
1/2

+D + o(1). (4.24)

The rest of the proof follows verbatim that of Lemma 4.1 after (4.15).

The proof of Theorem 1.4 is now concluded in the same way which led up to
(4.8) for the preliminary version over the grid Jn := {(βl,Ml) : l ∈ Λn}. Define
the test φ̃0

n and the randomized test φ̃n by

φ̃0
n := max

l∈Λn

ψ̃n,l; φ̃n = α+ (1− α) φ̃0
n.

For φ̃0
n we obtain

En,0φ̃
0
n ≤ En,0

∑
l∈Λn

ψn,l ≤ (1 + o(1))L−1
2,n = o(1)

and for the type II error we have uniformly over f ∈ Σ(β,M) ∩ Bρn,β,M
and

(β,M) ∈ Vl, l ∈ Λn

En,f

(
1− φ̃0

n

)
= En,f min

k∈Λn

(
1− ψ̃n,k

)
≤ En,f

(
1− ψ̃n,l

)

≤ sup
f∈Σ(β,M)∩B(ρn,β,M )

(
1− En,f ψ̃n,l

)
= Ψ(ψ̃n,l, ρn,β,M , β,M)

≤ Φ (−D) + o(1)

in view of (4.6). The test φ̃n therefore fulfills

En,0φ̃n = α+ (1− α)En,0φ̃
0
n = α+ o(1),

En,f

(
1− φ̃n

)
= En,f (1− α)

(
1− φ̃0

n

)
= (1− α) Φ (−D) + o(1)

uniformly over f ∈ Σ(β,M)∩Bρn,β,M
and (β,M) ∈ J . This implies Theorem 1.4.
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4.2. Lower risk bound

The proof of lower risk bound of Proposition 1.4 in [25] does not actually cover
the present case of a Sobolev ellipsoid. Indeed in [25] the problem of adaptive
testing is considered for parameters spaces given by a quadruplet (p, q, r, s),
where the corresponding space is an lp-ellipsoid of smoothness r with an lq -
ellipsoids of smoothness s removed. In this generality, the prior measures re-
quired for the lower risk bound have to be non-Gaussian, but the model of the
present paper, which corresponds to the case p = q = 2, r = β and s = 0, calls
for Gaussian prior measures on the ellipsoids Σ (β,M). In [25] the two sets of
quadruplets ΞG01 and ΞG02 treated ([25], p. 278) exclude the present case which
is on the boundary between these. In this section we will provide the necessary
details for this boundary case in an abbreviated fashion.

As in [25], in the ellipsoid Σ (β,M) the parameter M = M0 will be considered

fixed (M0 ∈
(
M(1),M(2)

)
here) and β ∈

[
β(1), β(2)

]
. Set Ln = logn/ log(2) n and

consider a grid of values of the smoothness parameter β as

βl =

(
1− l

Ln

)
β(1) +

l

Ln
β(2), l = 1, . . . , Ln.

For proving Proposition 1.4, it suffices to prove the inequality (1.15) with the
supremum over β ∈

[
β(1), β(2)

]
replaced by a supremum over βl, l = 1, . . . , Ln.

Introduce notation, similar to (4.2), but with M = M0 now fixed,

ρn,l := ρn,βl,M0 =
(
n−1A1 (βl)M

1/4βl

0

(
(2 log logn)

1/2
+D

))4βl/(4βl+1)

.

(4.25)
The first step is to find prior probability measures Qn,l such that

Qn,l (Σ (βl,M0) ∩B (ρn,l)) = 1 + o(1) (4.26)

uniformly in l. In the prior measure Qn,l, the fj are independent Gaussian

fj ∼ N
(
0, f2

0,j,l

)
, j = 1, . . . , n

and f2
0,j,l =

(
λ− μj2βl

)
+

(cp. (A.18)), where λ, μ are the unique positive solu-

tions of (A.1) where the triplet (ρ, β,M) is set as follows. Define M1 = M0 − ε

for some ε > 0 and ρ̃n,l := ρn,l (1 + ηn) with ηn =
(
log(2) n

)−c

for some

c ∈ (1/2, 1) (cp. 4.19). Then (ρ, β,M) = (ρ̃n,l, βl,M1) in (A.1), and then (4.26)
follows by standard arguments similar to Lemma 2.2. After switching to the
model of random fj , the testing problem becomes the one of testing between

H0: yj ∼ N
(
0, n−1

)
, and H0: yj ∼ N

(
0, f2

0,j,l + n−1
)
, or equivalently between

H0: yj ∼ N (0, 1), and H0: yj ∼ N
(
0, nf2

0,j,l + 1
)
. Denote γ2

j,l = nf2
0,j,l, and let

Λn,l be the corresponding log-likelihood ratio:

Λn,l = log
∏n

j=1

dN
(
0, γ2

j,l + 1
)

dN (0, 1)
. (4.27)
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Note that setting Nl = (λ/μ)
1/2βl , we have γ2

j,l = 0 for j > Nl. Observe that as
h → 0

log
dN (0, 1 + h)

dN (0, 1)
(y) = −1

2
log (1 + h) +

y2

2

(
1− 1

1 + h

)

= −1

2

(
h− h2

2
+O

(
h3
))

+
y2

2

(
h− h2 +O

(
h3
))

.

(4.28)

To use that expansion with (4.27) we have to show

sup
j=1,...,n, l=1,...,Ln

γ2
j,l → 0 uniformly in j and l. (4.29)

Indeed

γ2
j,l = nf2

0,j,l = n
(
λ− μj2βl

)
+

= nλ
(
1− (j/Nl)

2βl

)
+
≤ nλ

Furthermore according to (A.3) we have, for C not depending on n and l

nλ = nρ̃
1+1/2βl

n,l M−1
1

2βl + 1

(4βl + 1)
1/2β

2βl

(1 + o(1)) uniformly in l

= n
(
n−1

(
(2 log logn)

1/2
+D

))(4βl+2)/(4βl+1)

C

= n−1/(4βl+1)
(
(2 log logn)

1/2
+D

)(4βl+2)/(4βl+1)

C

= o (1) uniformly in l

which implies (4.29). We now expand (4.27), for yj ∼ N (0, 1)

log
∏n

j=1

dN
(
0, γ2

j,l + 1
)

dN (0, 1)
(yj)

=

n∑
j=1

{
−1

2

(
γ2
j,l −

γ4
j,l

2
+O

(
γ6
j,l

))
+

y2j
2

(
γ2
j,l − γ4

j,l +O
(
γ6
j,l

))}

=

n∑
j=1

{
γ2
j,l

2

(
y2j − 1

)
−

γ4
j,l

4

(
2y2j − 1

)}
+

n∑
j=1

(
y2j + 1

)
O
(
γ6
j,l

)
.

Setting zj =
(
y2j − 1

)
/
√
2, such that Ezj = 0, Var (zj) = 1, this can be written

Λn,l =

n∑
j=1

{
γ2
j,l√
2
zj −

1

2

γ4
j,l

2

}
−

n∑
j=1

γ4
j,l√
2
zj +

n∑
j=1

(zj + 2)O
(
γ6
j,l

)
(4.30)

=

⎧⎨
⎩

n∑
j=1

γ2
j,l√
2
zj −

1

2

n∑
j=1

γ4
j,l

2

⎫⎬
⎭+Rn,l (4.31)
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with Rn,l being the last two terms on the r.h.s. of (4.30). Denote

S̃n,l :=

⎛
⎝ n∑

j=1

γ4
j,l

2

⎞
⎠

1/2

=
n√
2

⎛
⎝ n∑

j=1

f4
0,j,l

⎞
⎠

1/2

. (4.32)

This coincides with the saddlepoint value Sn defined in (A.20) for the current
values of β,M and ρn (i.e. β = βl,M = M1 and ρn = ρ̃n,l). The approxima-

tion (4.31) suggests a normal approximation Λn,l ≈ N
(
−1

2 S̃
2
n,l, S̃

2
n,l

)
but from

Lemma A.1 or (4.15) it can be seen that S̃n,l 	
(
log(2) n

)1/2
, thus the normal

approximation will be established in the sense

λ̃n,l :=

(
Λn,l +

1

2
S̃2
n,l

)
/S̃n,l � N (0, 1) (4.33)

(convergence in distribution, uniform in l).

We formulate a version of the lower bound for type II error proved in Corol-
lary 7.2 of [25]. Introduce the following notation: let Φ (x, y; r) be the two-
dimensional distribution function of jointly normal random variables Z1, Z2,
each having marginal distribution N(0, 1) and correlation r, and let Φ (x) be
the distribution function of N(0, 1). Let πn

l , l = 0, . . . , Ln be a set of probability

measures on a sample space (Ωn,An), where π
n
l � πn

0 and define Λn,l = log
dπn

l

dπn
0
,

l = 1, . . . , Ln. Define the mixture distribution

πn := L−1
n

∑
1≤l≤Ln

πn
l .

Proposition 4.1. [25] Let there be given a family {un,l, l = 1, . . . , Ln} such
that for some D > 0

max
1≤l≤Ln

∣∣∣un,l − (2 logLn)
1/2 −D

∣∣∣ = o (1) (4.34)

and a family {ρn,kl, k, l = 1, . . . , Ln} satisfying ρn,kl = ρn,lk such that

max
1≤l<k≤Ln

ρn,klun,kun,l = o (1) . (4.35)

Furthermore, assume that the family of random variables

λ̃n,l :=

(
Λn,l +

1

2
u2
n,l

)
/un,l

fulfills ∑
1≤l≤Ln

sup
x∈R

∣∣∣P (λ̃n,l < x|πn
0

)
− Φ (x)

∣∣∣ = o (1) , (4.36)

∑
1≤l<k≤Ln

sup
x,y∈R

∣∣∣P (λ̃n,l < x, λ̃n,k < y|πn
0

)
− Φ (x, y; ρn,kl)

∣∣∣ = o (1) . (4.37)
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Assume α ∈ (0, 1). Then for any sequence of tests φn satisfying E [φn|πn
0 ] ≤

α+ o(1) one has

E [1− φn|πn] ≥ (1− α) Φ (−D) + o(1).

The measures πn
0 and πn

l are those where yj ∼ N (0, 1) and yj ∼
N
(
0, f2

0,j,l + n−1
)
(independent) respectively. Setting un,l = S̃n,l from (4.32),

we find analogously to (4.24)

S̃n,l = (2 log logn)
1/2

+D + o (1) (4.38)

uniformly over l = 1, . . . , Ln (note that in (4.24) the radius is given by
ρn,l (1− ηn) whereas now we use ρ̃n,l = ρn,l (1 + ηn) with ρn,l given by (4.25),
but it can be checked that (4.38) still holds true). Furthermore we have

(2 logLn)
1/2

=
(
2 log

(
logn/ log(2) n

))1/2
= 21/2

(
log(2) n− log(3) n

)1/2
.

Set tn = log(2) n and note that

0 ≤ t1/2n − (tn − log tn)
1/2 ≤ (log tn)

1

2
(tn − log tn)

−1/2
= o (1) .

Hence

(2 logLn)
1/2

= (2 log logn)
1/2

+ o (1) ,

Sn,l − (2 logLn)
1/2 → D

which establishes (4.34) for this choice of un,l.
To determine the family ρn,kl, consider the expansion (4.31) of the log-

likelihood ratios Λn,l. Define ρn,kl through

ρn,klun,lun,k = Cov (Λn,l −Rn,l,Λn,k −Rn,k) .

We then have

ρn,klun,lun,k = E

⎛
⎝ n∑

j=1

γ2
j,l√
2
zj

⎞
⎠
⎛
⎝ n∑

j=1

γ2
j,k√
2
zj

⎞
⎠

=
1

2

n∑
j=1

γ2
j,kγ

2
j,l =

n2

2

n∑
j=1

f2
0,j,kf

2
0,j,l.

Lemma 4.4. The current choice Ln = logn/ log(2) n implies that condition
(4.35) is fulfilled.
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Proof. We first show that
Nl

Nk
= o (1) (4.39)

uniformly over k < l. Indeed, since βk < βl and since N is related to the
bandwidth parameter in a smoothing problem, we expect Nk > Nl. Note that
according to (A.2), we have

logNk =

(
− 1

2βk
log ρn,k

)
(1 + o (1))

≥ 2

4βk + 1
logn− C1 log

(3) n+ C2

uniformly over k = 1, . . . , L and for Nl

logNl ≤
2

4βl + 1
logn+ C3.

Accordingly

Nl

Nk
≤ exp (logNl − logNk)

≤ exp

((
1

4βl + 1
− 1

4βk + 1

)
2 logn+ C1 log

(3) n+ C4

)
.

The function g(t) = (4t+ 1)
−1

and its derivative are monotone decreasing for
t > 0, hence

1

4βk + 1
− 1

4βl + 1
> |βl − βk| |g′(βl)| = L−1

n

4

(4βl + 1)
2

> L−1
n C,

where C does not depend on n and k, l hence

Nl

Nk
≤ exp

(
−L−1

n C logn+ C1 log
(3) n+ C4

)
= exp

(
−C log(2) n+ C1 log

(3) n+ C4

)
Clearly the exponent tends to −∞, so (4.39) is proved. Now we have

ρn,klun,kun,l =
n2

2

n∑
j=1

f2
0,j,kf

2
0,j,l

=
n2

2
λlλk

n∑
j=1

(
1− (j/Nk)

2β
)
+

(
1− (j/Nl)

2β
)
+

≤ n2

2
λlλk min (Nk, Nl) .
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The asymptotics for λl, λk shown in (A.3) gives λl 	 N
−(2βl+1)
l . Observe that

for l = k the above term would be of the order

n2N
−2(2βl+1)
l Nl = n2N

−(4βl+1)
l 	 1.

We can use (4.39) to show it is o(1) for k < l. Equivalently, it can be shown,
analogously to (4.39), that

λk

λl
= o (1)

and then it follows

n2

2
λlλk min (Nk, Nl) ≤ o (1)

n2

2
λ2
lNl 	 o (1) .

We still need to establish the asymptotic normalities required, namely (4.36)
and (4.37). In the sequel we use notation C for generic constant which does not
depend on n, j and l, the value of which can change, even on the same line.

Proof of (4.36). Recall that β ∈
[
β(1), β(2)

]
and define δ2n := n−1/(8β(2)+1) so

that for some ε > 0 we have

n−1/(4βl+1) ≤ n−εδ2n (4.40)

for all l = 1, . . . , Ln. It suffices to show that

sup
l=1,...,Ln

sup
x∈R

∣∣∣P (λ̃n,l < x|πn
0

)
− Φ (x)

∣∣∣ = O (δn) (4.41)

since Lnδn = o (1). We have in view of (4.31)

λ̃n,l = S−1
n,l

⎛
⎝ n∑

j=1

γ2
j,l√
2
zj +Rn,l

⎞
⎠ ,

Rn,l = −
n∑

j=1

γ4
j,l√
2
zj +

n∑
j=1

(zj + 2)O
(
γ6
j,l

)
. (4.42)

Note that by (4.28) and (4.29) the O
(
γ6
j,l

)
term is uniform, that is

∣∣∣O (γ6
j,l

)∣∣∣ ≤
Cγ6

j,l where C does not depend on j, l and n. To establish (4.41), it suffices to
show

sup
x∈R

∣∣∣∣∣∣P
⎛
⎝S−1

n,l

n∑
j=1

γ2
j,l√
2
zj < x

⎞
⎠− Φ (x)

∣∣∣∣∣∣ = O (δn) , (4.43)

uniformly in l, and in addition, using standard arguments, that

P
(∣∣∣S−1

n,lRn,l

∣∣∣ ≥ δn

)
= O (δn) (4.44)
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uniformly in l. To establish the latter, denote NRn,l the nonrandom term of
S−1
n,lRn,l: its absolute value is bounded by

|NRn,l| ≤ CS−1
n,l

∣∣∣∣∣∣
n∑

j=1

γ6
j,l

∣∣∣∣∣∣ ≤ CSn,l sup
j=1,...,n

γ2
j,l.

In conjunction with (4.29) the stronger relation was shown

sup
j=1,...,n

γ2
j,l ≤ Cn−1/(4βl+1)

(
(2 log logn)

1/2
+D

)(4βl+2)/(4βl+1)

. (4.45)

Furthermore, by (4.38) the term Sn,l grows like a power of log(2) n. In view of
n−1/(4βl+1) ≤ n−εδ2n the last two facts imply

|NRn,l| = o
(
δ2n
)

uniformly in l. To consider the random term of S−1
n,lRn,l, apply Chebyshev’s

inequality to its first component:

P

⎛
⎝S−1

n,l

∣∣∣∣∣∣
n∑

j=1

γ4
j,l√
2
zj

∣∣∣∣∣∣ ≥ δn

⎞
⎠ ≤

∑n
j=1 γ

8
j,l

2S2
n,lδ

2
n

Var (z1)

≤ Cδ−2
n sup

j=1,...,n
γ4
j,l.

In view of (4.45) and (4.40) the latter term is o
(
δ2n
)
. The other random term

S−1
n,lRn,l (namely

∑n
j=1 zjO

(
γ6
j,l

)
) is treated in a similar fashion, which estab-

lishes (4.44). For (4.43) we use the Berry-Esseen type result of [20]: suppose vj ,
j = 1, . . . , n are independent random vectors in R

k with zero expectation and
normalized in such a way that

∑n
j=1 vj has unit covariance matrix. If C is the

set of convex subsets of Rk and Φ is the standard normal measure then

sup
A∈C

∣∣∣∣∣∣P
⎛
⎝ n∑

j=1

vj ∈ A

⎞
⎠− Φ (A)

∣∣∣∣∣∣ ≤ C
n∑

j=1

E ‖vj‖3 (4.46)

where ‖·‖ is the Euclidean norm, and the constant C depends only on k. We
use this result for k = 1, A = (−∞, x] and set vj = S−1

n,lγ
2
j,lzj/

√
2. Then

n∑
j=1

E ‖vj‖3 =

n∑
j=1

E
∣∣∣S−1

n,lγ
2
j,lzj/

√
2
∣∣∣3 ≤ CS

−3/2
n,l

n∑
j=1

γ6
j,l

≤ CS
−1/2
n,l sup

j=1,...,n
γ2
j,l = o

(
δ2n
)

(4.47)

which establishes (4.43).
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Proof of (4.37). We will apply (4.46) for k = 2 and random vectors

vj = Σ−1/2ṽj , ṽj :=
(
S−1
n,lγ

2
j,lzj/

√
2, S−1

n,lγ
2
j,kzj/

√
2
)


,

where Σ is the covariance matrix

Σ = Cov

⎛
⎝ n∑

j=1

ṽj

⎞
⎠ =

(
1 ρn,kl

ρn,kl 1

)
.

Let ξ be a 2-vector of independent standard normals; then (4.46) implies that
for any convex set A∣∣∣∣∣∣P

⎛
⎝ n∑

j=1

vj ∈ A

⎞
⎠− P (ξ ∈ A)

∣∣∣∣∣∣ ≤ C

n∑
j=1

E
∥∥∥Σ−1/2ṽj

∥∥∥3 . (4.48)

Here Σ = I2 + o(1) uniformly over k, l (cp. (4.35) and (4.38)), so that it suffices
to estimate

n∑
j=1

E ‖ṽj‖3 ≤ C

n∑
j=1

(∣∣∣S−1
n,lγ

2
j,lzj

∣∣∣3 + ∣∣∣S−1
n,kγ

2
j,kzj

∣∣∣3) .

By (4.47) this quantity is o
(
δ2n
)
. Set A = Σ−1/2B in (4.48) where B is convex;

then uniformly over k, l and over convex sets B∣∣∣∣∣∣P
⎛
⎝ n∑

j=1

ṽj ∈ B

⎞
⎠− P

(
Σ1/2ξ ∈ B

)∣∣∣∣∣∣ = o
(
δ2n
)
. (4.49)

Now set B = Bx,y := (−∞, x) × (−∞, y) and for the error terms Rn,l defined
by (4.42) consider random vectors

v̌j := ṽj +
(
S−1
n,lRn,l, S

−1
n,kRn,k

)′
=
(
λ̃n,l, λ̃n,k

)′
.

By a standard reasoning, the results (4.44) and (4.49) for rectangles Bx,y to-
gether imply ∣∣∣∣∣∣P

⎛
⎝ n∑

j=1

v̌j ∈ Bx,y

⎞
⎠− P

(
Σ1/2ξ ∈ Bx,y

)∣∣∣∣∣∣ = o (δn) .

Comparing notation with (4.37), we find

P
(
Σ1/2ξ ∈ Bx,y

)
= Φ(x, y; ρn,kl) ,

P

⎛
⎝ n∑

j=1

v̌j ∈ Bx,y

⎞
⎠ = P

(
λ̃n,l < x, λ̃n,k < y|πn

0

)
.

The claim (4.37) follows since L2
nδn = o (1).
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Appendix

Lemma A.1. (i) For every β > 0, M > 0, ρ > 0 such that M/ρ > 1 there are
unique positive solutions λ, μ of the equations

∞∑
j=1

j2β
(
λ− μj2β

)
+
= M ,

∞∑
j=1

(
λ− μj2β

)
+
= ρ. (A.1)

(ii) Assume ρ → 0 while (β,M) is fixed. Then

N := (λ/μ)
1/2β

=

(
(4β + 1)M

ρ

)1/2β

(1 + o (1)), (A.2)

λ = ρ1+1/2βM−1 2β + 1

(4β + 1)
1/2β

2β
(1 + o (1)) (A.3)

T(1) :=

∞∑
j=1

(
λ− μj2β

)2
+
= ρ2+1/2βM−1/2βA0 (β) (1 + o (1)) (A.4)

where A0(β) is given by (1.7). Furthermore, there exist C > 0 such that for
ρ ≤ C−1

T(2) :=

∞∑
j=1

j4β
(
λ− μj2β

)4
+
≤ Cρ2+3/2β, (A.5)

T(3) :=

∞∑
j=1

(
λ− μj2β

)4
+
≤ Cρ4+3/2β. (A.6)

(iii) Suppose that J1, J2 are finite closed subintervals of (0,∞). Then there
exists γ > 0 such that the o (1) terms occurring in (A.2)–(A.4) are O (ργ)
uniformly over (β,M) ∈ J1 × J2. Furthermore, the constant C can be chosen
such that (A.5), (A.6) hold uniformly over (β,M) ∈ J1 × J2 and ρ ≤ C−1.

Proof. (i) Note that if λ, μ > 0 then
(
λ− μj2β

)
+
> 0 only for finitely many j.

Set t = λ/μ, then it suffices to prove that there are unique positive solutions
λ, t of

λ

∞∑
j=1

j2β
(
1− t−1j2β

)
+
= M , λ

∞∑
j=1

(
1− t−1j2β

)
+
= ρ. (A.7)

Define for t > 0

g1 (t) =
∞∑
j=1

j2β
(
1− t−1j2β

)
+
, g2 (t) =

∞∑
j=1

(
1− t−1j2β

)
+
.

Both functions gi are continuous on R+, fulfill gi (t) = 0 for 0 < t ≤ 1, are
strictly monotone increasing for t > 1 and piecewise differentiable on intervals
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j2β , (j + 1)

2β
]
for j ≥ 1. Solving for λ in (A.7), one sees that it suffices to

prove that for the function g3 = g1/g2 there is a unique solution t > 1 of

g3 (t) = M/ρ.

Suppose that t > 1; for kt =
[
t2β
]
we have

g3 (t) =

∑kt

j=1 j
2β
(
1− t−1j2β

)
∑kt

j=1 (1− t−1j2β)

Thus if 1 < t < 22β then kt = 1 and g3 (t) = 1. To show that g3 (t) is
strictly monotone increasing for t > 22β , it suffices to show that on each in-

terval
(
j2β , (j + 1)

2β
)
, j ≥ 2 we have g′3 (t) > 0. Now g22 (t) > 0 and

g22 (t) g
′
3 (t) = g′1 (t) g2 (t)− g′2 (t) g1 (t)

=

⎛
⎝t−2

kt∑
j=1

j4β

⎞
⎠
⎛
⎝ kt∑

j=1

(
1− t−1j2β

)⎞⎠−

⎛
⎝t−2

kt∑
j=1

j2β

⎞
⎠
⎛
⎝ kt∑

j=1

j2β
(
1− t−1j2β

)⎞⎠ .

Let Y be a random variable with discrete uniform distribution on {1, . . . , kt}
and write k−1

t

∑kt

j=1 j
α = EY α for α > 0. Then the above expression can be

written

t−2k2t
{
EY 4β

(
1− t−1EY 2β

)
− EY 2β

(
EY 2β − t−1EY 4β

)}
= t−2k2t

{
EY 4β −

(
EY 2β

)2}
= t−2k2tVar

(
Y 2β
)
.

For t > 22β we have kt > 1, and Var
(
Y 2β
)
> 0. This shows that g3 (t) is strictly

monotone increasing for t > 22β . It is easy to see that g3 (t) ↗ ∞ as t → ∞, so
that g3 (t) = M/ρ has a unique solution.

For (ii), set N := (λ/μ)
1/2β

and rewrite (A.7) as

λ
∑

1≤j≤N

j2β
(
1− (j/N)

2β
)
+
= M , λ

∑
1≤j≤N

(
1− (j/N)

2β
)
+
= ρ.

If N = O (1) then λ → 0 by the second equation, which contradicts the first.
Hence N → ∞; then replacing the sums by integrals one obtains

λN2β+1κ1 ∼ M where κ1 =

1∫
0

x2β
(
1− x2β

)
dx,

λNκ2 ∼ ρ where κ2 =

1∫
0

(
1− x2β

)
dx.
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Solving this for λ and N gives

N ∼ M1/2βρ−1/2β (κ2/κ1)
1/2β

, λ ∼ ρ1+1/2βM−1κ−1
2 (κ1/κ2)

1/2β
(A.8)

Computing the constants, we find

κ1 =
2β

(2β + 1) (4β + 1)
,

κ2 =
2β

2β + 1
,

which proves (A.2) and (A.3).
Furthermore we find

T(1) = λ2
∞∑
j=1

(
1− (j/N)

2β
)2
+

∼ λ2Nκ3 where κ3 =

1∫
0

(
1− x2β

)2
dx (A.9)

∼ M−1/2βρ2+1/2β
n

(
κ1

κ2

)1/2β
κ3

κ2
2

(using (A.8))

We find

κ3 = κ2 − κ1 =
8β2

(2β + 1) (4β + 1)
,

so that (
κ1

κ2

)1/2β
κ3

κ2
2

=
2 (2β + 1)

(4β + 1)
1+1/2β

= A0 (β)

which proves (A.4). To treat the expression T(2), note that

∞∑
j=1

j4β
(
λ− μj2β

)4
+
= λ4N4β

∞∑
j=1

(j/N)
4β
(
1− (j/N)

2β
)4
+

∼ λ4N4β+1κ4 where κ4 =

1∫
0

x4β
(
1− x2β

)4
dx

∼ ρ2+3/2βM−2+1/2βκ
3/2β−2
1 κ

−3/2β−2
2 κ4 (using (A.8)) (A.10)

which proves (A.5). To treat the expression T(3), note that

∞∑
j=1

(
λ− μj2β

)4
+
= λ4

∞∑
j=1

(
1− (j/N)

2β
)4
+

∼ λ4Nκ5 where κ5 =

1∫
0

(
1− x2β

)4
dx

∼ ρ4+3/2βM−4+1/2βκ
−4−3/2β
2 κ

3/2β
1 κ5 (using (A.8)) (A.11)

which proves (A.6).
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For (iii), note that the o(1) terms arise from approximating the integrals κ1,
κ2 by Riemann sums with N terms, and since the pertaining functions satisfy
a Lipschitz condition uniformly over β ∈ J1, the error there is of order N−1.
Since both β and M are bounded and bounded away from zero, by (A.2) N−1

is of order ρ1/2β uniformly, so for γ = min {1/2β : β ∈ J1} the claim holds true.
The second claim follows from this and the nature of the constants in (A.10),
(A.11).

Lemma A.2. For given M > ρ > 0, let λ, μ be the solutions of (A.1) and define

g̃j =
n
(
λ− μj2β

)
+

1 + n (λ− μj2β)+
.

Assume that ρ → 0 along with n → ∞ such that ρ � n−2β/(2β+1).
(i) The vector g̃ = (g̃j)

∞
j=1 has at most [N ] nonzero components, N being

given by (A.2), fulfilling

sup
j

|g̃j | = o (1) ,

and the squared norm ‖g̃‖2 =
∑∞

j=1 g̃
2
j fulfills

‖g̃‖2 = n2ρ2+1/2βM−1/2βA0 (β) (1 + o (1)). (A.12)

(ii) For fixed M and β

sup
1≤j≤N

|g̃j |
‖g̃‖ = O

(
N−1/2

)
. (A.13)

(iii) Let ci > 0, i = 1, 2 be constants and define ρi = ciρ, i = 1, 2. For
M2 > M1, let λi, μi be the solutions of (A.1) corresponding to a pair (Mi, ρi),
let g̃(i) be the vector pertaining to i as above and define the unit vectors g(i) :=

g̃(i)/
∥∥g̃(i)∥∥, i = 1, 2. Then for the scalar product

〈
g(1), g(2)

〉
=
∑∞

j=1 g(1),jg(2),j
one has 〈

g(1), g(2)
〉
= r (1 + o (1)),

r =

(
M̃1

M̃2

)1/(4β)

· 4β + 1− M̃1/M̃2

4β
for M̃i = Mi/ci.

Proof. We first claim that

n
(
λ− μj2β

)
+
= o (1) (A.14)

uniformly over j = 1, 2, . . .. Indeed, with N = (λ/μ)
1/2β

n
(
λ− μj2β

)
+
= nλ

(
1− (j/N)

2β
)
+
≤ nλ
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and using (A.3), for a constant Cβ ,

nλ ∼ nρ1+1/2βM−1Cβ = o (1)

since ρ � n−2β/(2β+1), so (A.14) is shown. This implies, with T(1) from (A.4)

‖g̃‖2 ∼ n2T(1) = n2
∞∑
j=1

(
λ− μj2β

)2
+

(A.15)

and relation (A.4) establishes (i).
For (ii), note that

|g̃j |
‖g̃‖ ≤ nλ

‖g̃‖ ∼ nρ1+1/2βM−1Cβ

nT
1/2
(1)

∼ ρ1+1/2βM−1Cβ

ρ1+1/4βM−1/4βA
1/2
0 (β)

= O
(
ρ1/4β

)

and (A.2) establishes the claim.
For (iii), denote λi, Ni, i = 1, 2 the expressions λ,N from Lemma A.1 per-

taining to (Mi, ρi) and note that

〈
g(1), g(2)

〉
=

〈
g̃(1), g̃(2)

〉∥∥g̃(1)∥∥∥∥g̃(2)∥∥ ,
and, in view of (A.14),

〈
g̃(1), g̃(2)

〉
∼ n2λ1λ2

∞∑
j=1

(
1− (j/N1)

2β
)
+

(
1− (j/N2)

2β
)
+

= n2λ1λ2N
1/2
1 N

1/2
2 · Jn

where

Jn := N
−1/2
1 N

−1/2
2

∞∑
j=1

(
1− (j/N1)

2β
)
+

(
1− (j/N2)

2β
)
+
.

In (A.15) and (A.9) it has been shown that

∥∥g̃(i)∥∥ ∼ nλiN
1/2
i κ

1/2
3 , i = 1, 2

so that now 〈
g(1), g(2)

〉
∼ κ−1

3 Jn.

By (A.2) we have N2 ∼
(
M̃2/M̃1

)1/2β
N1 and thus
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Jn ∼
(
M̃1/M̃2

)1/4β
N−1

1

∞∑
j=1

(
1− (j/N1)

2β
)
+

(
1− (N1/N2)

2β
(j/N1)

2β
)
+

∼
(
M̃1/M̃2

)1/4β ∫ 1

0

(
1− x2β

) (
1− x2β

(
M̃1/M̃2

))
dx

= (M1/M2)
1/4β

(κ2 − κ1 (M1/M2)) .

Using the values of the constants κi, 1, 2, 3 found in the proof of Lemma A.1 we
find

〈
g(1), g(2)

〉
∼
(
M̃1/M̃2

)1/4β (
κ2κ

−1
3 − κ1κ

−1
3

(
M̃1/M̃2

))
=
(
M̃1/M̃2

)1/4β (4β + 1

4β
− 1

4β

(
M̃1/M̃2

))
= r.

Lemma A.3. For some finite dimension p > 0, define sets

D0 =
{
d ∈ R

p
+ : ‖d‖2 = 1

}
,

B0
ρ = {f ∈ R

p : ‖f‖2 = ρ}. (A.16)

For f ∈ R
p set f2 :=

(
f2
j

)p
j=1

, and for d, f2 ∈ R
p
+ define the functional

L(d, f) =
n√
2

〈
d, f2

〉
=

n√
2

p∑
j=1

djf
2
j . (A.17)

Consider the pair (d0, f0) given by

d0 =
f2
0

‖f2
0 ‖

, f2
0,j =

(
λ− μj2β

)
+
, j = 1, . . . , p (A.18)

where λ, μ are the solutions of (A.1) for the given β,M and ρ small enough.
The pair d0 ∈ D0, f0 ∈ Σ(β,M)∩B0

ρ is a saddlepoint of the functional L(d, f)
such that

L(d, f0) ≤ L(d0, f0) ≤ L(d0, f) (A.19)

for all d ∈ D0 and all f ∈ Σ(β,M) ∩B0
ρ. The value of L at the saddlepoint is

Sn := L(d0, f0) =
n√
2

∥∥f2
0

∥∥ . (A.20)

Proof. It suffices to show that the pair (d0, f0) fulfills (A.18). Consider maxi-
mizing L(d, f) in d for given f . Under the sole restriction ‖d‖ = 1, by Cauchy-
Schwartz the solution is found as

d(f) =
f2

‖f2‖ .
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For f = f0 we obtain the first inequality of (A.18). The second inequality is
equivalent to

λρ− L(d0, f) ≤ λρ− L(d0, f0), f ∈ Σ(β,M) ∩B0
ρ.

For this, in view of
∑p

j=1 f
2
j = ρ, it is sufficient to show

p∑
j=1

(
λ− f2

0,j

)
f2
j ≤

p∑
j=1

(
λ− f2

0,j

)
f2
0,j , f ∈ Σ(β,M). (A.21)

Note that if f2
0,j > 0 then λ > μj2β , consequently λ − f2

0,j = μj2β . Hence for
f ∈ Σ(β,M)

p∑
j=1

(
λ− f2

0,j

)
f2
0,j =

p∑
j=1

μj2βf2
0,j = μM ≥

p∑
j=1

μj2βf2
,j .

Furthermore λ− f2
0,j = λ−

(
λ− μj2β

)
+
= min

(
λ, μj2β

)
for j = 1, . . . , p, hence

p∑
j=1

μj2βf2
,j ≥

p∑
j=1

(
λ− f2

0,j

)
f2
,j

which establishes (A.21).

The following is a slight extension of the CLT in total variation, given in The-
orem 2.31 of [37] for i.i.d. random variables, to the case of linear combinations∑n

j=1 cjnYj of i.i.d. random variables Y1, Y2, . . ..

Lemma A.4. Let Y1, Y2, . . . be i.i.d. random variables with EY = 0, Var(Y ) =

1 and characteristic function φ such that
∫
|φ (t)|2 dt < ∞. Let {cjm}mj=1 be a

double array of coefficients satisfying
∑m

j=1 c
2
jm = 1 for all m and

max1≤j≤m |cjm| = O
(
m−1/2

)
. Then the law of Sm =

∑m
j=1 cjmYj converges

to N (0, 1) in total variation.

The corresponding CLT in distribution (a consequence of the Lindeberg-
Feller theorem), requiring only max1≤j≤m |cjm| = o (1) and no conditions on φ,
is known as the Hajek-Šidak theorem (Theorem 5.3 in [4]).

Proof. We can assume the cjm are ordered: c1m ≥ c2m ≥ . . . ≥ cmm. We claim
there exists δ > 0 such that

min
1≤j≤δm

c2jm ≥ 1

4
m−1. (A.22)

Since min1≤j≤δm c2jm ≥ maxδm<j≤m c2jm, it suffices to show that

max
δm<j≤m

c2jm ≥ 1

4
m−1.
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Let C be such that max1≤j≤m c2jm ≤ Cm−1; then

m max
δm<j≤m

c2jm ≥ m (m− [δm])
−1

∑
δm<j≤m

c2jm = (1− δ)
−1

⎛
⎝1−

∑
1≤j≤δm

c2jm

⎞
⎠

≥ (1− δ)
−1 (

1− [δm]Cm−1
)
.

Then [δm]Cm−1 ≤ δC ≤ 1/4 for sufficiently small δ, which establishes (A.22).

Now the characteristic function of Sm is

m∏
j=1

φ (cjmt) which is integrable for

sufficiently large m, so Sm has a density pm which by the inversion formula for
characteristic functions is given by

pm (x) =
1

2π

∫
exp (itx)

m∏
j=1

φ (cjmt) dt. (A.23)

By the Hajek-Šidak CLT, Sm � N (0, 1) in distribution which implies that
m∏
j=1

φ (cjmt) → exp
(
−t2/2

)
pointwise in t. It will be shown that the integral

above converges to

1

2π

∫
exp (itx) exp

(
−t2/2

)
dt =

1√
2π

exp
(
−x2/2

)
.

Then an application of Scheffé’s theorem (2.30 in [37]) concludes the proof.
The integral (A.23) can be split in two parts. First for every ε > 0

∫
|t|>εm1/2

∣∣∣∣∣∣exp (itx)
m∏
j=1

φ (cjmt)

∣∣∣∣∣∣ dt ≤
∫
|t|>εm1/2

∣∣∣∣∣∣
∏

1≤j≤δm

φ (cjmt)

∣∣∣∣∣∣ dt
≤ sup

|t|>εm1/2

∏
3≤j≤δm

|φ (cjmt)|
∫
|t|>εm1/2

|φ (c1mt)φ (c2mt)| dt

≤

⎛
⎝ sup

|u|>ε/2

∏
3≤j≤δm

|φ (u)|

⎞
⎠ ∏

j=1,2

(∫
|t|>εm1/2

|φ (cjmt)|2 dt
)1/2

≤ sup
|u|>ε/2

|φ (u)|[δm]−2
c
−1/2
1m c

−1/2
2m

∫
|φ (u)|2 du. (A.24)

Here of c
−1/2
1m c

−1/2
2m ≤ 2m1/2 by (A.22), and sup|u|>ε/2 |φ (u)| < 1 by the Riemann-

Lebesgue lemma and because the distribution of Y is non-lattice, hence (A.24)
converges to zero geometrically fast.

Second, a Taylor expansion yields that φ (t) = 1− t2/2 + o
(
t2
)
as t → 0, so

that there exists ε > 0 such that |φ (t)| ≤ 1− t2/4 for every |t| < Cε. It follows
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that ∣∣∣∣∣∣exp (itx)
m∏
j=1

φ (cjmt)

∣∣∣∣∣∣1
{
|t| < εm1/2

}
≤

m∏
j=1

(
1−

c2jmt2

4

)

≤
m∏
j=1

exp
(
−c2jmt2/4

)
= exp

(
−t2/4

)
.

The proof can be concluded by applying the dominated convergence theorem to
the remaining part of the integral (A.23).

In the situation of the previous lemma, for linear combinations Sm =∑m
j=1 cjmYj , we now aim at an auxiliary result on tail probabilities P (Sm ≥ am)

in the moderate deviation range where am = o
(
m1/2

)
. For our purposes, it suf-

fices to assume the restrictive growth condition am = o
(
m1/6

)
and establish an

asymptotic upper bound; the stronger result P (Sm ≥ am) ∼ 1 − Φ (am) could
be deduced from the general i.n.i.d. case treated in Theorem 10, chap. 8 of [32].

Lemma A.5. Let Y1, Y2, . . . be i.i.d. random variables with EY = 0, Var(Y ) =
1 and such that Cramér’s condition is fulfilled: there exists H > 0 such that the
moment generating function E exp (tX) < ∞ exists for all t ∈ (−H,H). Let
{cjm}mj=1 be a double array of coefficients satisfying

∑m
j=1 c

2
jm = 1 for all m

and max1≤j≤n |cjm| = O
(
m−1/2

)
. Suppose that am → ∞ and am = o

(
m1/6

)
;

then for Sm =
∑m

j=1 cjmYj one has

P (Sm ≥ am) ≤ exp
(
−a2m/2

)
(1 + o (1)) as m → ∞.

Proof. Let

L(t) = logE exp (tX) =

∞∑
l=1

κl
tl

l!

be the cumulant generating function of Y and κl be its cumulants. We have
κ1 = 0 and κ2 = 1. Also, it is well known (cf. [32], chap. 8, (2.10)) that under
Cramér’s condition there exists a constant C > 0 such that

|κl| ≤ C
l!

H l
, l = 1, 2, . . . (A.25)

The cumulant generating function of Sm is

L̃m (t) := logE exp (tSm) =
n∑

j=1

L(cjmt)

=

∞∑
l=1

κl
tl

l!

⎛
⎝ n∑

j=1

cljm

⎞
⎠ .
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Denoting c̄l,m = m−1

m∑
j=1

(
n1/2cjm

)l
, we may write

L̃m (t) = m

∞∑
l=1

κl

(
tm−1/2

)l
l!

c̄l,m

=
t2

2
+m

∞∑
l=3

κl

(
tm−1/2

)l
l!

c̄l,m.

Now observe that by Markov’s inequality for any t > 0

P (Sm ≥ am) = P (exp (tSm − tam) ≥ 1) ≤ exp (−tam)E exp (tSm)

= exp
(
L̃m (t)− tam

)
.

The choice t = am gives

P (Sm ≥ am) ≤ exp
(
−a2m/2

)
exp

(
m

∞∑
l=3

κl

(
amm−1/2

)l
l!

c̄l,m

)

= exp
(
−a2m/2

)
exp
(
a2mRm

)
where Rm :=

m

a2m

∞∑
l=3

κl

(
amm−1/2

)l
l!

c̄l,m.

(A.26)
Now Rn can be written

Rm =
∞∑
l=3

κl

(
amm−1/2

)l−2

l!
c̄l,m.

By assumption there is a constant K > 0 such that
∣∣m1/2cjm

∣∣ ≤ K, hence

|c̄l,m| ≤ Kl, and in view of (A.25) one has for un = ann
−1/2

|Rm| ≤
∞∑
l=3

|κl|
ul−2
m

l!
Kl ≤

∞∑
l=3

Cul−2
m

Kl

H l
= C

K2

H2

∞∑
l=1

(umK/H)
l

= C
K2

H2

(
1

1− umK/H
− 1

)
= C

K2

H2

(
umK/H

1− umK/H

)
.

This implies, in view of am = o
(
m1/6

)
,

a2mRm = O
(
a2mum

)
= O

(
a3mm−1/2

)
= o (1)

so that (A.26) establishes the claim.

Lemma A.6. Let fj ≥ 0, dj > 0, j = 1, . . . , N and let ξj ∼ N(0, 1), indepen-
dent. Then for every z > 0 the function

g0(c) = P

⎛
⎝ N∑

j=1

dj (cfj + ξj)
2 ≤ z

⎞
⎠

is monotone decreasing in c ≥ 0.
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We note that the implied maximization at c = 0 is a special case of Anderson’s
Lemma ([30], Propos. 3.62).

Proof. For N = 1 we have, ϕ being the standard normal density,

g0(c) = P
(
−zd

−1/2
1 − cf1 ≤ ξ1 ≤ zd

−1/2
1 − cf1

)
,

g′0(c) = ϕ
(
zd

−1/2
1 − cf1

)
− ϕ

(
−zd

−1/2
1 − cf1

)
= ϕ

(∣∣∣zd−1/2
1 − cf1

∣∣∣)− ϕ
(
zd

−1/2
1 + cf1

)
.

Since zd
−1/2
1 + cf1 ≥

∣∣∣zd−1/2
1 − cf1

∣∣∣ , we have g′0(c) ≤ 0. Now for N ≥ 2 and

x ∈ R
N define the function

g (x) = P

⎛
⎝ N∑

j=1

dj (xj + ξj)
2 ≤ z

⎞
⎠ .

Then g0(c) = g (cf); define also for every j ∈ {1, . . . , N} and every ξ ∈ R
N

ξ(−j) = (xi)i=1,...,N,i �=j ,

h
(
ξ(−j), x(−j)

)
=

∑
i=1,...,N,i �=j

di (xi + ξi)
2
.

This allows to write for every j ∈ {1, . . . , N}

g (x) = P
(
h
(
ξ(−j), x(−j)

)
+ dj (xj + ξj)

2 ≤ z
)

= Eξ(−j)1{h(ξ(−j),x(−j))≤z}P
(
dj (xj + ξj)

2 ≤ z − h
(
ξ(−j)

)
|ξ(−j)

)
.

Then, setting gj (x) =
∂

∂xj
g (x), we obtain

g′0(c) =
N∑
j=1

fjgj (cf)

=

N∑
j=1

Eξ(−j)1{h(ξ(−j),cf(−j))≤z}
d

dc
P
(
dj (cfj + ξj)

2 ≤ z − h
(
ξ(−j)

)
|ξ(−j)

)
.

(A.27)
Here, according to what has been shown in the case N = 1, for every ξ(−j) such

that z − h
(
ξ(−j)

)
> 0 we have

d

dc
P
(
dj (cfj + ξj)

2 ≤ z − h
(
ξ(−j)

)
|ξ(−j)

)
< 0.

This implies that (A.27) is ≤ 0.
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