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Abstract: Isotonic regression offers a flexible modeling approach under
monotonicity assumptions, which are natural in many applications. Despite
this attractive setting and extensive theoretical research, isotonic regression
has enjoyed limited interest in practical modeling primarily due to its ten-
dency to suffer significant overfitting, even in moderate dimension, as the
monotonicity constraints do not offer sufficient complexity control. Here
we propose to regularize isotonic regression by penalizing or constraining
the range of the fitted model (i.e., the difference between the maximal and
minimal predictions). We show that the optimal solution to this problem
is obtained by constraining the non-penalized isotonic regression model to
lie in the required range, and hence can be found easily given this non-
penalized solution. This makes our approach applicable to large datasets
and to generalized loss functions such as Huber’s loss or exponential family
log-likelihoods. We also show how the problem can be reformulated as a
Lasso problem in a very high dimensional basis of upper sets. Hence, range
regularization inherits some of the statistical properties of Lasso, notably
its degrees of freedom estimation. We demonstrate the favorable empirical
performance of our approach compared to various relevant alternatives.
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1. Introduction

The statistics community has long had an interest in fitting monotone models to
data [18, 2, 29, 25]. Assume we are given a set of observations (x1, y1), ..., (xn, yn),
each consisting of a vector of covariates x ∈ X and a response y ∈ R, along with
a partial order � on covariate space X . The class of isotonic models G is defined
as the collection of models on X which obey the partial order constraints, i.e.,
a model g : X → R is in G if for all x, z ∈ X ,

x � z ⇒ g(x) ≤ g(z).

The partial order on X can be translated to a set of order constraints on the
observations indexed by I = {(i, j) : xi � xj}. Isotonic regression aims to find
the model ĝ ∈ G which minimizes the residual sum of squares on the sample
data:

ĝ = argmin
g∈G

n∑
i=1

(yi − g(xi))
2. (1)

It is well-known that an optimal solution of (1) can be written as a non-negative
linear combination of upper sets plus an intercept. An upper set is any subset
U � {x1, ..., xn} such that xi ∈ U , xi � xj implies xj ∈ U . Assume we have
N distinct upper sets (N is typically exponential in n) denoted U1, ..., UN . We
thus know that the optimal solution has the form

ĝ(x) =

N∑
l=1

β̂lI{x ∈ Ul}+ α̂, (2)

for some set of nonnegative coefficients β̂l ≥ 0. Note that this only defines
the solution at our observed covariate vectors x1, . . . , xn, but it can easily be
extended to all of X by associating every point x ∈ X with the set of upper sets it
“dominates”. Prediction and extrapolation in this context have been previously
discussed in Luss et al. [21].
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The most commonly used covariate space and partial order are the standard
Euclidean space X = Rd and the partial order defined on x, z ∈ Rd by x � z iff
the inequality holds coordinate-wise, i.e., xj ≤ zj for all j = 1, . . . , d.

In terms of model form, isotonic regression is clearly very attractive in situ-
ations where monotonicity is a reasonable assumption but commonly assumed
structures such as linearity or additivity are not. Indeed, this formulation has
found useful applications in biology [25, 21], medicine [29], statistics [2] and
psychology [18], among others (see Tibshirani et al. [31] for a nearly-isotonic
formulation that relaxes the isotonic assumption). However, two major con-
cerns arise when considering the practical use of isotonic regression in modern
situations as the number of observations n, the data dimensionality d, and the
number of isotonicity constraints m = |{(i, j) : xi � xj}| implied by (1) all
grow large: statistical overfitting and computational difficulty. The notations n,
d, and m will refer to these quantities throughout the paper.

The first concern is statistical overfitting. Beyond very low dimensions, the
isotonicity constraints on the family G can become inefficient in controlling
model complexity and the isotonic regression solutions can be severely overfit-
ted (for example, see Bacchetti [1] and Schell and Singh [29]). At the extreme,
there may be no isotonicity constraints because no two observations obey the
coordinate-wise requirement for the partial order �. In this case, every observa-
tion is a singleton upper set, and if we denote these n upper sets by U1, ..., Un,
the isotonic model can fit the data perfectly using only these upper sets:

ĝ(x) =

n∑
l=1

(yl −min
i

yi)I{x ∈ Ul}+min
i

yi,

i.e., α = mini yi and β̂l = yl − mini yi for all l = 1, . . . , n, providing a perfect
interpolation of the training data. As demonstrated in the literature [29, 21]
and below, the overfitting concern is clearly well-founded when considering the
optimal isotonic regression model implied by (1), even in non-extreme cases
with a large number of constraints. In this case, regularization, i.e. fitting iso-
tonic models that are constrained to a restricted subset of G, offers an approach
that maintains isotonicity while controlling variance, leading to improved accu-
racy.

A second important issue is computation. Traditional methods developed in
the statistics community did not scale well with the dimension d [19, 3]. However,
in recent years, ideas from optimization have permeated this area and led to the
development of very efficient algorithms which can be used to solve problems
with tens of thousands of observations in any dimension. The most efficient
algorithm for isotonic regression known to the authors is due to Hochbaum and
Queyranne [14] where the problem is cast in a more general form they refer to
as the convex cost closure problem. They show how to obtain the global isotonic
solution with the complexity of solving a single minimum-cut problem (which
deals with finding a minimal cut through the arcs of a graph). Furthermore,
their algorithm can impose fixed upper and lower bounds on the isotonic model
at all observation points.
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The isotonic recursive partitioning (IRP) method proposed in Spouge et al.
[30] and Luss et al. [21] (following previous related work by Maxwell and Muck-
stadt [23] and Roundy [28], among others) finds a solution of (1) through it-
erative partitioning of the space X (i.e., solving a sequence of minimum-cut
problems). Each split can be computed efficiently and the procedure is guaran-
teed to converge to an optimal solution of (1). It offers a highly efficient approach
for solving (1) that is also amenable to regularization through early stopping
of the iterative partitioning process. However, as demonstrated there, IRP does
not offer sufficient complexity control and regularization in many cases. For ex-
ample, at dimension d = 6 for particular simulation models, the first iteration of
IRP already performs more than half of the fitting of the optimal solution of (1)
as measured by equivalent degrees of freedom [21]. IRP regularization also lacks
a rigorous formulation of the problem solved, as one cannot explicitly write the
optimization problem being solved to obtain the model after k IRP iterations.

We are thus interested in designing a rigorous regularization approach for
isotonic regression that would allow for a continuum of regularized models with
increasing model complexity. In the nonparametric context where we fit a model
by choosing it from a large function class, there has been an extensive use of
smoothness (or complexity) penalties, leading to important tools such as spline
methods and kernel machines [12]. These nonparametric smoothness regulariza-
tion problems are typically solved by identifying “equivalent” parametric repre-
sentations and solving those using ridge- or lasso-like approaches. This includes
smoothing splines, kernel machines, and total variation penalties [22], among
others. Importantly, total variation penalties are intimately tied to Lasso-type
penalties on spline bases, as demonstrated by Mammen and van der Geer [22]
and others.

A similar approach can be proposed for isotonic regression, where a natural
measure of model “complexity” is the range of model predictions. For a model
g ∈ G, define:

range(g) = sup
x∈X

g(x)− inf
x∈X

g(x).

It is easy to see that for a model of the form (2), we have:

range(ĝ) ≤
∑
l

β̂l, (3)

so there is a close connection here too between range regularization and Lasso
regularization, which we return to later.

Our explicit range-regularized isotonic regression model is thus (in its con-
strained form):

ĝ = argmin
g∈G,range(g)≤s

∑
i

(yi − g(xi))
2, (4)

or in its equivalent penalized form:

ĝ = argmin
g∈G

∑
i

(yi − g(xi))
2 + λ · range(g). (5)
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Our main observation in this paper is that this problem has a simple optimal
solution, obtained by solving the non-regularized isotonic regression problem
and finding optimal thresholds on this solution which obey the range constraint.
Thus, all solutions to range-regularized isotonic regression problems are in fact
thresholded versions of the non-regularized solutions. This leads to a simple
and efficient algorithm for deriving all range-regularized solutions, which we
term Bounded Isotonic Regression (BIR) and present in Section 2.

In Section 3 we investigate the properties of our new formulation and algo-
rithm. We show that BIR is in fact equivalent to solving a non-negative Lasso
problem in the set of upper sets. We further examine the regularization behavior
of BIR and demonstrate that it generally adds one degree of freedom per upper-
set added to the solution, as shown for Lasso by Zou et al. [33]. Hence, BIR offers
a gentle fitting of isotonic models with increasing complexity. Finally, we show
that the basic ideas and efficient implementation of the BIR framework are not
limited to isotonic regression, but can be applied to isotonic modeling problems
with other differentiable loss functions (e.g., exponential family log-likelihoods
or Huber’s loss).

We demonstrate our BIR algorithm on simulated datasets in Section 4. We
compare BIR regularization to IRP, and show its continuous regularization be-
havior, as well as its improved predictive performance, compared to IRP. We
demonstrate its superior predictive performance over multivarate additive re-
gression splines (MARS) for models that are both isotonic and highly complex.
We also compare model selection approaches for the regularization parameter
in BIR: general purpose cross-validation is compared to methods based on in-
sample error, such as AIC and GCV, using the degrees of freedom approximation
based on the Lasso connection.

It is interesting to compare our approach to a recent paper by Fang and
Meinshausen [9] which also combines isotonic regression and Lasso penalties in
an algorithm termed LISO (Lasso-Isotone). Fang and Meinshausen limit their
interest to additive isotonic models, i.e., where a univariate isotonic function
is fit to every covariate, and the overall isotonic model is the sum of these
univariate functions. Additivity significantly limits the generality of the isotonic
models being fit, but allows Fang and Meinshausen [9] to fit useful models to
very high dimensional data (large d). Our approach is more assumption-free,
and in lower dimensions (up to d = 8 or d = 10) when the models are complex
and data is abundant, demonstrates superior performance relative to LISO in
our experiments (Section 4).

A corresponding result to our main observation about a simple solution for
range-regularized isotonic regression problem (5) was independently derived in
parallel for the range-constrained isotonic regression problem (4) in Chen et al.
[6]. While our results were discovered independently, our proof proceeds in sim-
ilar fashion. However, whereas our result on the range-regularized case directly
leads to an algorithm for the entire path of solutions (i.e., a solution to problem
(5) for all values of λ), the result in Chen et al. [6] for the range-constrained
case was used to prove a theorem about the degrees of freedom of the esti-
mator. Again, we have independently discovered the same properties, however
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our claims were realized through the above-mentioned connection between BIR
and Lasso. We address the connections to Chen et al. [6] more thoroughly in
Sections 2.1 and 3.1.1

2. Regularization path for bounded isotonic regression

In this section, we derive an efficient algorithm for solving BIR. It relies on the
result in Theorem 1 (in Section 2.1 below) that the solutions to BIR are all
thresholded versions of the non-regularized isotonic regression solution.

2.1. Derivation of the optimal solution to BIR

Our focus is on the range-regularized isotonic regression problem in its penalized
form given by problem (5). We first reformulate it as

minŷ,â,b̂
∑n

i=1 (yi − ŷi)
2 + λ(b̂− â)

subject to ŷi ≤ ŷj for all (i, j) ∈ I
â ≤ ŷi ≤ b̂ for all i ∈ {1, . . . , n},

(6)

where â = inf{ŷi : i ∈ {1, . . . , n}}, b̂ = sup{ŷi : i ∈ {1, . . . , n}}, and the range

of the isotonic model is now captured by b̂ − â. We will use the optimality
conditions to (6) to derive an algorithm for efficiently generating the solution
to (6) for all values of λ. The optimality conditions are:

(a) 2(ŷi − yi) +
∑

j:(i,j)∈I
μij −

∑
j:(j,i)∈I

μji − γi + δi = 0 for all i ∈ {1, . . . , n}

(b) ŷi ≤ ŷj for all (i, j) ∈ I
(c) â ≤ ŷi ≤ b̂ for all i ∈ {1, . . . , n}
(d) γT 1 = λ, δT 1 = λ
(e) μij(ŷi − ŷj) = 0 for all (i, j) ∈ I
(f) γi(â− ŷi) = 0, δi(b̂− ŷi) = 0 for all i ∈ {1, . . . , n}
(g) γ, δ, μ ≥ 0,

where μ ∈ R|I|, γ ∈ Rn, δ ∈ Rn are the dual variables to the monotonicity
constraints, the lower range, and the upper range constraints, respectively.

The following theorem shows that BIR solutions are all thresholded versions
of the non-regularized isotonic regression solution (i.e., BIR with λ = 0). Thus,
if we have this non-regularized solution, we can obtain the solution to all BIR
problems with minimal effort. We note that this result extends a similar theorem
of Fang and Meinshausen [9] from one dimensional (complete order) isotonic
regression to partial order isotonic regression. Furthermore, a corresponding
result was recently made in Chen et al. [6] for solving the constrained version
of bounded isotonic regression. We discuss their result in more detail at the end
of this section.
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Theorem 1. Let ẑ be the optimal solution to the non-regularized isotonic re-
gression problem. Then setting

ŷi = max (â,min (ẑi, b̂)) (7)

for all i ∈ {1, . . . , n} solves BIR problem (6), where â and b̂ solve the equations

2
∑
i

(â− ẑi)+ = λ and 2
∑
i

(ẑi − b̂)+ = λ.

Proof. By construction, we prove that ŷ as defined by (7) solves the optimality
conditions (a)–(f) for problem (6) given above.

Let μ∗ be the optimal dual variables to the corresponding monotonicity con-
straints in the non-regularized problem (which has the same optimality condi-
tions above when λ = 0). Then λ = 0 implies γ = δ = 0 and condition (a) can
be rewritten as

ẑi = yi −
1

2

( ∑
j:(i,j)∈I

μ∗
ij −

∑
j:(j,i)∈I

μ∗
ji

)
for all i ∈ {1, . . . , n} (8)

For λ > 0, set the dual variables to be the same as the optimal dual variables
as given in (8), i.e., set μ = μ∗. First note that the optimality conditions (e),
called complementarity conditions, are satisfied by construction (μij > 0 ⇒
ẑi = ẑj ⇒ ŷi = ŷj and ŷi < ŷj ⇒ ẑi < ẑj ⇒ μij = 0). The next set of
complementarity conditions (f) imply that either γi or δi can be nonzero, but not
both. Nonnegativity of γ and δ, along with condition (a) which can be written
2(ŷi − ẑi) = γi − δi, then imply γi = 2(ŷi − ẑi)+ and δi = 2(ẑi − ŷi)+. Given the

definition for ŷ in (7), note that (ŷi − ẑi)+ = (max (â− ẑi,min (0, b̂− ẑi)))+ =

(â − ẑi)+ and (z∗i − ŷi)+ = (min (ẑi − â,max (0, ẑi − b̂)))+ = (ẑi − b̂)+, so that

γi = 2(â− ẑi)+ and δi = 2(ẑi − b̂)+.

Next are the primal variables. Suppose ŷi = max (â,min (ẑi, b̂)) for some â, b̂.
With this definition, conditions (d) are equivalent to 2

∑
i (â− ẑi)+ = λ and

2
∑

i (ẑi − b̂)+ = λ. Both â and b̂ are scalars and can be chosen to satisfy these
equations, and then used to obtain ŷ from its definition. Given optimal ŷ, the
optimal dual variables can be computed.

Optimality conditions (a),(d), and (g) hold by construction. Condition (b)
holds from the definition of ŷ since ẑ is feasible for the non-regularized prob-
lem, and condition (c) holds strictly by definition of ŷ. Conditions (f) hold by
construction and using condition (c): ŷ∗i �= â ⇒ ŷ∗i > â ⇒ ẑ∗i > â ⇒ γi =

2(ŷi − ẑi)+ = 2(max (â− ẑi,min (0, b̂− ẑi)))+ = 0, since both terms in the
max are less than or equal to zero. A similar argument shows the other com-
plementarity condition holds as well. Optimality conditions (a)–(g) hold and,

thus, ŷ, â, b̂ are optimal solutions to the range-regularized isotonic regression
problem (6).

Theorem 1 is illustrated in Figure 1 where the solution to BIR problem (6)
for a decreasing sequence of λ values is depicted. We use data from a well-known
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Fig 1. Illustration of BIR on Baseball data. Salary is modeled by number of runs batted
in and hits. BIR models corresponding to a decreasing sequence of λ concluding at the non-
regularized model (λ = 0) are shown. The optimal â, b̂ described in Theorem 1 are given by the
bottom and top lines in each figure, respectively. They correspond to the range for which the
non-regularized solution in the last figure is thresholded (i.e., the first two figures with λ > 0
are thresholded versions of the last figure (λ = 0) with thresholds determined by Theorem 1).

Baseball dataset [13] which describes the dependence of salary on a collection
of player properties. Models are limited to two covariates in order to facilitate
visualization. The number of runs batted in and hits were selected since they
seemed a-priori most likely to comply with the isotonicity assumptions. The
increasing range, given in each figure as the distance between the two lines
corresponding to the optimal values of â and b̂, can be seen as λ is decreased.
The first two figures with λ > 0 are thresholded versions of the last figure which
depicts the non-regularized solution, i.e. the surface between the â and b̂ lines
is identical to the corresponding surface in the non-regularized solution.

As mentioned above, Chen et al. [6] independently and concurrently devel-
oped a corresponding thresholding theory for the constrained version of bounded
isotonic regression. In our notation, we could reformulate problem (4) as

minŷ,â
∑n

i=1 (yi − ŷi)
2

subject to ŷi ≤ ŷj for all (i, j) ∈ I
â ≤ ŷi ≤ â+ s for all i ∈ {1, . . . , n}

(9)

where, again, â = inf{ŷi : i ∈ {1, . . . , n}}, â+ s = sup{ŷi : i ∈ {1, . . . , n}}, and
the range is still captured by s. Rather than adding variables â with our range
constraints, Chen et al. [6] constrains the range by adding constraints of the
form yj − yi ≤ s for all (i, j) such that there exists no observations that bound
yi from below and no observations that bound yj from above (with respect to
the partial order). We next state the main result of Proposition 3.3 of Chen
et al. [6] using our notation and in similar form to Theorem 1 above:

Proposition 3.3 of Chen et al. [6]. Let ẑ be the optimal solution to the
non-regularized isotonic regression problem. Then setting

ŷi = max (â,min (ẑi, â+ s)) (10)

for all i ∈ {1, . . . , n} solves range-constrained BIR problem (9), where â solves
the equation ∑

i

(â− ẑi)+ −
∑
i

(ẑi − â− s)+ = 0.
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The optimality conditions for problem (9) are almost equivalent to those of
problem (6) where the only differences are

(c) â ≤ ŷi ≤ â+ s for all i ∈ {1, . . . , n}
(d) γT 1− δT 1 = 0
(e) γi(â− ŷi) = 0, δi(â+ s− ŷi) = 0 for all i ∈ {1, . . . , n}

Given the optimality conditions, proof of the above proposition follows straight-
forward almost exactly as the proof for Theorem 1. The most significant dif-
ference is that the new equation for determining â is given by the new opti-
mality condition (d). We note that this proof differs from that given in Chen
et al. [6] where they describe the optimality conditions in terms of a graph
representation of problem (9) that falls under a class of problems known as
transportation problems. Proposition 3.3 of Chen et al. [6] also states that â is
a non-increasing function of s (which we did not mention in Theorem 1, but
this is trivially noted from the equation that determines â above in Proposition
3.3 of Chen et al. [6]). Chen et al. [6] developed the above theory in order to
prove a statement about the degrees of freedom of the BIR estimator, and we
discuss this further in Section 3.1.1. Rather, our motivation of such theory is to
derive efficient algorithms for generating solutions to problem (6) for a sequence
of λ.

Lastly, regarding the above discussion on thresholding isotonic regression, an
interesting and related work was done by Hu [15]. While he previously showed

that problem (6) with fixed â and b̂ could be solved by projecting the non-
regularized isotonic regression solution onto the bound constraints, he showed
that the same was not true when the lower (or upper) bounds for each data
point are not equivalent. The new approach he took approximated the bounded
isotonic regression problem with an extended and weighted isotonic regression
problem and showed that the limit (as some of the weights go to infinity) of
solving these weighted isotonic regression problems converges to the bounded
isotonic regression problem (with fixed but different bounds).

2.2. Regularization path

Given Theorem 1, we can compute BIR for any fixed value of the regularization
parameter λ. Rather than compute solutions over a grid of λ which would require
solving the one variable equations for â and b̂, we next derive an efficient path
algorithm that generates all solutions for a sequence of λ. For fixed λ, define the
following three sets of indices: Aλ = {i : â < ŷi < b̂}, Aλ

a = {i : â = ŷi}, Aλ
b =

{i : b̂ = ŷi}. The decreasing sequence of λ values for which we derive solutions
contains those values at which the sets Aλ, Aλ

a , and Aλ
b change. Between those

values the interpolation is trivial.
Our approach to problem (6) requires that we first solve the non-regularized

isotonic regression problem (1) to get ẑ, which can be done using the IRP
algorithm of [21]. We next consider the solution to the completely regularized

problem when the range is constrained to zero, i.e., λ = ∞ and b̂ = â. Under



Bounded isotonic regression 4497

this constraint, ŷi is fixed to the same constant for all i and it is trivial to see
that ŷi = y = â = b̂. Given this fit, we can obtain the dual variables γ and δ
and determine that λ = γT 1. It is easy to see that we would obtain the same
solution for any larger value of λ.

Our next goal is to decrease λ until there is a change in Aλ, Aλ
a , or Aλ

b , in

which case âmust be decreased and b̂must be increased. Clearly, from optimality
condition (f), γi = δi = 0 for all i ∈ Aλ. From the above conditions 2(ŷi − ẑi) =

2(â − ẑi) = γi for all i ∈ Aλ
a and 2(ŷi − ẑi) = 2(b̂ − ẑi) = −δi for all i ∈ Aλ

b ,

we see that â is decreased by decreasing γi for all i ∈ Aλ
a and b̂ is increased by

decreasing δi for all i ∈ Aλ
b . We make two observations: for each i ∈ Aλ

a , γi must
be decreased by the same amount in order for the optimality condition to be
maintained, and similarly, for each i ∈ Aλ

b , δi must be decreased by the same
amount. A change in the sets will occur when a nonzero γi or δi becomes zero.

Let γmin = min{γi : i ∈ Aλ
a} and δmin = min{δi : i ∈ Aλ

b } be the most that
either dual variable can be decreased. Recall that decreasing the dual variables
decreases λ. Decreasing γ or δ as much as possible would decrease λ by γmin|Aλ

a |
and δmin|Aλ

b |, respectively. If γmin|Aλ
a | < δmin|Aλ

b |, we will decrease γ as much
as possible (by γmin for all i ∈ Aλ

A) and decrease â by γmin/2 and λ by γmin|Aλ
a |.

Note that δ cannot be decreased by as much as possible because then optimality
condition (d) would not hold. Summing over the optimality condition for b̂ over

i ∈ Aλ
b and using optimality condition (d) gives b̂ = (

∑
i∈Aλ

b
z∗i −λ/2)/|Aλ

b |. The
new δ is obtained from our formula δi = (ẑi − b̂)+. Given the new boundaries

â and b̂, the new model ŷ for the new regularization λ can be computed. The
cases γmin|Aλ

a | > δmin|Aλ
b | and γmin|Aλ

a | = δmin|Aλ
b | are handled in a similar

manner. Obtaining the BIR regularization path is summarized by Algorithm 1.
The output is the path of â and b̂, which can be used to generate the path of
isotonic models via ŷi = max (â,min (ẑi, b̂)).

While we do not develop a corresponding algorithm for problem (9) for a
sequence of s, we note that such an algorithm could be a subject of future
research. Initial investigations suggest that formulation (9) may not lead to a
simple algorithm because it is difficult to control how parameter s and variable
a move together. Another reformulation where we add variable b̂, change the
upper bound constraints to ŷi ≤ b̂, and control the range with the constraint
b̂− â ≤ s might lead to a corresponding efficient algorithm.

3. Properties of bounded isotonic regression

Here we discuss the statistical behavior of our new algorithm and the resulting
models. We address two aspects:

1. The connection between BIR and Lasso, and the resulting conclusions
about regularization behavior of the BIR “regularization path”, using re-
sults on degrees of freedom of Lasso [33].

2. Generalization of our algorithm to other loss functions besides the
quadratic loss in (5), which turns out to be straightforward.
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Algorithm 1 Bounded Isotonic Regression (BIR)
Require: Optimal nonregularized isotonic regression solution ẑ and mean of observations y

1: Initialize primal variables ŷ
(0)
j = â(0) = b̂(0) = y

2: Initialize dual variables γ
(0)
i = (y − ẑi)+, δ

(0)
i = (ẑi − y)+

3: Initialize λ(0) =
∑

i γ
(0)
i

4: i = 0
5: while â(i) > minj ẑj and b̂(i) < maxj ẑj do

6: Let Aλ
a = {j : â(i) = ŷ

(i)
j } and Aλ

b = {j : b̂(i) = ŷ
(i)
j }

7: Let γmin = min{γj : j ∈ Aλ
a} and δmin = min{δj : j ∈ Aλ

b }
8: if γmin|Aλ

a | < δmin|Aλ
b | then

9: â(i+1) = â(i) − γmin

10: γ
(i+1)
j = (â(i+1) − ẑj)+ for all j

11: λ(i+1) =
∑

j γ
(i+1)
j for all j

12: b̂(i+1) = (
∑

j∈Aλ
b
z∗j − λ(i+1)/2)/|Aλ

b |

13: δ
(i+1)
j = (ẑj − b̂(i+1))+ for all j

14: else if γmin|Aλ
a | > δmin|Aλ

b | then
15: b̂(i+1) = b̂(i) + δmin

16: δ
(i+1)
j = (ẑj − b̂(i+1))+ for all j

17: λ(i+1) =
∑

j δ
(i+1)
j for all j

18: â(i+1) = (
∑

j∈Aλ
a
z∗j + λ(i+1)/2)/|Aλ

a |
19: γ

(i+1)
j = (â(i+1) − ẑj)+ for all j

20: else
21: â(i+1) = â(i) − γmin

22: b̂(i+1) = b̂(i) + δmin

23: γ
(i+1)
j = (â(i+1) − ẑj)+ for all j

24: δ
(i+1)
j = (ẑj − b̂(i+1))+ for all j

25: λ(i+1) =
∑

j γ
(i+1)
j for all j

26: end if
27: ŷ

(i+1)
j = max (â(i+1),min (ẑj , b̂

(i+1)))
28: i = i+ 1
29: end while
30: return â(i) and b̂(i) for all iterations

3.1. BIR as a Lasso problem

As noted in Section 1, any isotonic fit to data can be described as a non-negative
linear combination of N upper set indicators, and the range of any such model is
smaller or equal than the sum of upper set coefficients, as shown in (3). Here we
show that in fact any optimal solution to (5) is also exactly an optimal solution
to a non-negative Lasso problem in upper sets. Following (2), we propose the
following Lasso-like problem, with added non-negativity requirement:

(β̂, α̂) = arg min
β≥0,α

n∑
i=1

(yi −
N∑
l=1

βlI{xi ∈ Ul} − α)2 + λ

N∑
l=1

βl, (11)

where we optimize a penalized (penalty on the sum of upper set coefficients)
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criterion over all isotonic functions. Denote the optimal solution:

ĝλ(x) =
∑
l

β̂lI{x ∈ Ul}+ α̂.

Lemma 2. The upper sets for which β̂l > 0 in the solution to (11) are a nested

sequence, i.e., if β̂l1 > 0 and β̂l2 > 0 then either Ul1 ⊂ Ul2 or Ul2 ⊂ Ul1 .

Proof. Assume by negation that this does not hold for l1, l2. Uu = Ul1 ∪ Ul2

and U12 = Ul1 \ Ul2 and U21 = Ul2 \ Ul1 are all also trivially upper sets (U21

or U12 may be empty). Now we increase β̂Uu by min(β̂l1 , β̂l2), increase β̂U12

by β̂l1 − min(β̂l1 , β̂l2) and increase β̂U21 by β̂l2 − min(β̂l1 , β̂l2), and set β̂l1 =

β̂l2 = 0. The new ĝ(x) remained unchanged for all x, but
∑

l β̂ has decreased

by min(β̂l1 , β̂l2) > 0. Hence this new function would have a lower penalized loss
than the original ĝλ in (11), which contradicts the optimality of ĝλ.

Lemma 3.
range(ĝλ) =

∑
l

β̂l

Proof. By Lemma 2 the upper sets for which β̂l > 0 are a nested sequence. Let
lmin be the index of the minimal set in this sequence. Then for some x̃ ∈ lmin,
the fitted value is

ĝλ(x̃) =
∑
l

β̂l + α̂,

because this x̃ is in all nested sequence. On the other hand, let lmax be the index
of the maximal set in this sequence. Then Ulmax � X because if Ulmax = X , then

we can set β̂lmax = 0 and increase the non-penalized α̂ correspondingly, again
contradicting optimality. Hence there is x∗ /∈ Ulmax such that ĝλ(x

∗) = α̂. Hence

range(ĝλ) ≥ ĝλ(x̃)− ĝλ(x
∗) =

∑
l

β̂l.

The other inequality is trivial, and has been stated in the introduction.

Theorem 4. Any optimal solution to the Lasso problem (11) is also an optimal
solution to the BIR problem (5) with the same λ.

Proof. From Lemma 3, the optimal solution to (11) also gives a solution to (5)
with the same penalized objective value. Denote this solution by ĝλ, as before.
It remains to prove that (5) cannot have a better solution.

Assume by negation there is a lower penalized objective solution to (5), de-

noted by f̂λ. Assume WLOG that {f̂λ(xi) : i = 1, ..., n} is sorted in increasing

order, and denote U∗
i = {x : f̂λ(x) ≥ f̂λ(xi)}. It is easy to verify that U∗

1 , ..., U
∗
n

are a nested sequence of upper sets, and that we can express:

f̂λ(x) =
n∑

i=2

(f̂λ(xi)− f̂λ(xi−1))I{x ∈ U∗
i }+ f̂λ(x1),
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which is a solution for (11) with the same loss and penalty as f̂λ has in (5),
hence same penalized objective. This contradicts optimality of ĝλ.

3.1.1. Implications of the Lasso connection

Lasso-type problems have been extensively studied in the literature from various
theoretical, methodological and practical perspectives. We focus here on two
important classes of Lasso-related results and their implications on BIR.

First is the statistical complexity of BIR models, as measured in degrees of
freedom (df ) and optimism [7, 12]. For a generic penalized Lasso problem,

β̂(λ) = argmin
∑
i

(yi − xT
i β̂)

2 + λ
∑
j

|βj |,

denote by A = {j : β̂j(λ) �= 0} the set of active covariates with non-zero
coefficients. Zou et al. [33] have shown that Stein’s unbiased estimator for df is
the number of covariates with non-zero coefficients in the solution:

d̂f = |A|.

If our Lasso-like formulation for BIR (11) did not contain the non-negativity
constraint, this result would apply directly and would imply, using Lemma 2,
that the number of blocks (distinct values of the function ĝλ) is the Stein esti-
mate.

In the presence of the non-negativity constraint, we claim that the generic
Lasso result still holds. This can be verified by carefully considering the proof of
Zou et al. [33], which only relies on the behavior of the Lasso regularization path
given the set of active variables. Since the non-negativity constraint only affects
selection of variables into the active set, and not the path direction given this
active set, the result still holds. Furthermore, considering Algorithm 1, it is easy
to see that the BIR solutions only add variables into the model and never drop
them. Hence the Stein unbiased estimate of degrees of freedom is simply the
number of iterations the algorithm has performed. This result is also consistent
with the result of Meyer and Woodroofe [24], showing that the Stein estimate of
degrees of freedom of non-regularized isotonic regression is the number of blocks
(groups of distinct values) in the solution, which is the number of iterations the
algorithm takes to reach the solution as λ → 0.

The Lasso connection is not the only way to make our claim about the degrees
of freedom of the BIR estimator. Indeed, Chen et al. [6] (equation (22)), again
independently and concurrently, show the result that the number of degrees of
freedom is equal to the number of blocks in the BIR solution. While they derive
the result for range-constrained BIR, the claim is equivalent although they pose
it in terms of the number of connected components of a graph induced by the
BIR estimator. It is interesting to note two completely different approaches for
obtaining this result. We rely on results for the Lasso regularization path, while
Chen et al. [6] rely on a result from algebraic graph theory pertaining to the
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Fig 2. Degrees of freedom vs BIR iterations. The X axis is the value of the regularization
parameter λ. The Y axis shows the degrees of freedom as estimated from repeated simulations.
For each simulation setup, the dashed lines with the denoted shapes show the actual df at each
regularization level (estimated directly using the optimism theorem), while the dotted line (in

most cases obscured by the dashed line) shows the empirical mean of d̂f (number of pieces in
the lasso solution, identical to the number of iterations of Algorithm 1) at each regularization
level. Simulations use i.i.d. covariates xij ∼ U [0, 3] with yi =

∏
j xij + N (0, d2). Each path

is the mean over 500 trials with 1000 observations.

rank of incidence matrices of graphs. Also note that essentially the same result
we used for the regularized version Lasso above is also known for the constrained
version of Lasso (e.g., see Kato [16]).

Behavior of our BIR regularization path is demonstrated empirically in Fig-
ure 2, where we compare the expected value of this Stein estimate to the actual
df as estimated from repeated simulations using the optimism theorem of Efron
[7]. In all dimensions, the number of iterations is seen empirically to be an
unbiased estimate of the actual df.

This df result clarifies the regularization behavior of BIR, and in particular
the gradual increase of model complexity as λ decreases. It also naturally facil-
itates using for BIR the multitude of model selection approaches developed for
Lasso. We note that this non-increasing behavior of df as λ increases that we
illustrate empirically was proved in Chen et al. [6] (refer to their Theorem 3.4
though note there df is non-decreasing in λ because λ is the range parameter to
the range-constrained case). Our Lasso connection can easily be used to make
the same claim since, as we noted above, BIR solutions only add variables and
never drop them.

The second aspect we consider is the computational one. Efficient algorithms
have been developed for calculating Lasso regularization paths [26, 8]. Can these
be used to efficiently calculate BIR solutions? If we consider these algorithms
in their standard forms the answer is clearly no, since they include a step of
enumerating over all covariates and solving a simple linear equation for each
one, which is repeated many times (in every iteration). Since the covariates in
our Lasso formulation are upper set indicators, and the number of upper sets
is exponential in the number of observations, a direct application of these algo-
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rithms is unlikely to yield efficient algorithms. An alternative approach for high
dimensional problems could be to replace this enumeration with an appropriate
search algorithm as proposed in Rosset et al. [27]. This turns out to be possible
for BIR (details are eliminated for brevity), but the resulting algorithm is still
substantially less efficient than our algorithmic solution presented in Section 2,
which relies on the specific structure of this problem. Hence we do not see a com-
putational benefit in considering the Lasso connection, although this is open for
further research.

3.2. Generalization of BIR for other loss functions

A natural question that arises is whether the useful structure identified in Sec-
tion 2 is unique to isotonic regression with l2 loss, or whether it generalizes to
other loss functions. Of particular interest are exponential family log-likelihoods
and robust regression loss functions, as discussed in Luss and Rosset [20] and
references therein. The generic problem we consider is:

minŷ,â,b̂
∑n

i=1 Li(ŷi) + λ(b̂− â)

subject to ŷi ≤ ŷj for all (i, j) ∈ I
â ≤ ŷi ≤ b̂ for all i ∈ {1, . . . , n},

(12)

where Li is some convex and differentiable loss function (usually a function of
observation yi) like the ones mentioned above.

As noted in the Introduction, the non-regularized isotonic modeling problem
can be solved for all such loss functions with the same complexity as the standard
l2 isotonic regression problem as shown by Hochbaum and Queyranne [14], which
addresses the general loss function (and even furthermore solves problem (12)

for fixed â and b̂). Hence for us to be able to solve the BIR version we only need
to verify that Theorem 1 also generalizes successfully. This is in fact true, as
captured by the following generalized result which is proven in the Appendix.

Theorem 5. Let ẑ be the optimal solution to the non-regularized isotonic re-
gression problem with convex and differentiable loss functions Li. Then setting

ŷi = max (â,min (ẑi, b̂)) (13)

for all i ∈ {1, . . . , n} solves the generalized BIR problem (12), where â and b̂
solve the equations

∑
i

(
∂Li(â)

∂ŷi
− ∂Li(ẑ

∗
i )

∂ŷi

)
+

= λ and
∑
i

(
∂Li(ẑ

∗
i )

∂ŷi
− ∂Li(b̂)

∂ŷi

)
+

= λ.

(14)

Hence, Algorithm 1 can be generalized to solving the family of problems (12)
by replacing averages and residuals with their appropriate loss-function-specific
generalization, following the same ideas as in Luss and Rosset [20]. We eliminate
the details for brevity. We also note that there have been other works regarding
bounded isotonic regression with a total order and fixed bounds (see Chakravarti
[4] for an example with an l1 loss function).
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4. Experiments

Our simulations examine the performance of BIR from several perspectives: In
Section 4.1, we compare BIR and IRP to the popular flexible modeling approach
multivariate adaptive regression splines (MARS) [11] as a representative of mod-
ern competitive approaches which do not assume linearity or additivity. Reas-
suringly, BIR shows significantly improved performance for isotonic functions.
In Section 4.2, we compare BIR and IRP to additive LISO [9], demonstrat-
ing the expected behavior: in lower dimension, with large amounts of data, the
added flexibility of BIR allows fitting of better models. In Section 4.3, we con-
centrate on comparing our two isotonic modeling approaches, IRP [21] and BIR,
demonstrating the advantage of BIR regularization as expressed by improved
prediction performance. Finally, in Section 4.4, we describe the application of
in-sample model selection approaches GCV and AIC to BIR, capitalizing on the
Lasso connection, and compare their performance to cross-validation.

Simulations are carried out in the following manner: Training and testing
data are generated. The training data is further split into training and validation
folds. An IRP model is trained on the training fold resulting in a regularization
path. Models along this regularization path are used to generate a path of
RMSEs by predicting responses in the validation fold. The model that generates
the lowest RMSE is the chosen model which is used to predict the independent
testing data. Results on this independent testing data are reported. The global
isotonic solution generated by IRP from the training fold of the training data
is then used to generate a path of BIR models, which is, in turn, used to select
a model using the validation fold of the training data. As with IRP, this chosen
BIR model is used to obtain prediction results on the independent testing data.
Note that time results for BIR include the time to find the non-regularized
solution with IRP. In all simulations, the extra computation that BIR required
given the non-regularized solution was less than 5% of the computation required
to find the solution. All results are averaged over 50 trials.

4.1. Comparing with MARS

MARS is a well-known regression approach that builds models of the form

f̂(x) = β0 +
∑
i

βihi(x),

where each hi(x) is a hinge function (i.e., of the form hi(x) = max(xj − t, 0)
or hi(x) = max(t − xj , 0) for the jth covariate and knot t ∈ R) or the product
of hinge functions. The choice of knots are typically determined by the training
data, and β is then estimated by standard linear regression. Basis functions
hi(x) are added to the model in a greedy fashion. Fang and Meinshausen [9]
show scenarios where LISO outperforms MARS, particularly in much higher
dimensions than are considered here. In lower dimensions, MARS performs very
well, but in our experiments suffers computationally with the large number of
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Table 1

Performance of IRP, BIR, and MARS on two different interaction models with 8
dimensions. Paths of IRP and BIR models are trained on 12000 observations, model
selection done on another 3000 observations, and performance results are based on an

independent test set of 3000 observations. IRP RMSE and BIR RMSE refer to using models
that gave minimum root mean squared errors (RMSE) in model selection to predict the

independent test set. Values for RMSE are given along with a conservative 95% confidence
interval. Time is measured in seconds. Note that MARS is trained with 15000 observations.

Model IRP BIR MARS IRP BIR MARS
RMSE RMSE RMSE Time Time Time∗

1 13.03(± 0.22) 12.35(± 0.19) 13.79(± 0.62) 127.9 130.5 228.2
2 14.35(± 0.11) 14.02(± 0.11) 14.93(± 0.42) 100.6 102.8 266.1

training observations we consider. In experiments with relatively simple true
models and especially low number of observations, MARS and BIR generally
perform comparably (results not shown). We concentrate here on situations that
are both statistically and computationally challenging, where BIR’s advantages
are emphasized. Table 1 displays the regression results on two models that
incorporate interactions of the variables. The models are

Model 1: zij ∈ {0, 1}, xij ∼ U [0, 5], yi =
∑4

j=2 zi,j−1zi,jxi,j−1x
2
i,j +N (0, 52)

Model 2: zij ∈ {0, 1}, xij ∼ U [0, 5], yi =
∑4

j=2 zi,j−1zi,j2
xi,j−1xi,j +N (0, 52),

where the zij indicator variables are uniform over {0, 1} and both zij and xij

variables are independent. Each model has four indicator variables and four con-
tinuous variables for a total of eight dimensions. These are deemed “interaction”
models because the terms in the summations are only included in the response
if the two corresponding indicators are both on (i.e., both set to one). These
are scenarios in which IRP outperforms MARS, as well as where range regular-
ization learns better isotonic models than offered by the regularization of IRP.
Furthermore, the timing results clearly show that MARS takes much longer to
learn models than IRP and BIR. As the amount of training data is increased,
the computational complexity of MARS increases faster than IRP and BIR. The
following simulation trains IRP and BIR models on 12000 observations, perform
model selection using another 3000 observations, and the performance results
are based on an independent test set of 3000 observations. MARS, which has an
internal cross-validation mechanism, trains models on the first two folds (15000
observations) with peformance results based on the same independent test set
of 3000 observations.

We next use Model 1 to examine how performance and regularization change
as the training sample size increases. Figure 3 (left) demonstrates that RMSE
on the hold-out test samples decreases as the number of training samples in-
creases, due to better modeling of the entire space. Regarding the regularization
parameter λ, the optimal λ increases as the number of training samples increases
(not shown). To understand why, consider the BIR formulation as a Lasso-like
problem (3). As the number of training samples increases, the number of upper
sets (and variables) increases exponentially, and hence a higher regularization
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Fig 3. Regularization as a function of the number of samples for Model 1: zij ∈ {0, 1}, xij ∼
U [0, 5], yi =

∑4
j=2 zi,j−1zi,jxi,j−1x

2
i,j + N (0, 52). The figure on the left demonstrates that

accuracy of the model increases (error decreases) as the number of training samples increases.
For BIR, the regularization parameter λ is optimized over the path for each individual exper-
iment. The figure on the right demonstrates that λn/n → λ0 ≥ 0. The number of training
samples in both figures varies from 1000 to 15000. Model selection is done on a separate 3000
observations and performance evaluated on another 3000 observations.

is need to eliminate additional potential upper sets. More importantly, Figure
3 (right) compares the rate of increase in regularization versus the increase in
the number of training samples and empirically shows that λn = o(n) where we
denote by λn the optimal regularization parameter for n training samples. For a
fixed number of variables (which we do not have), this would imply consistency
of the BIR model (see Theorem 1 of [17]). Results in our case where the number
of variables is exponential in the number of training samples require a Strong
Irrepresentable Condition [32]) on the design matrix. Under other technical as-

sumptions, consistency is shown when λn ∝ n
1+c
2 for some small c (Theorem 4

of [32]). However, while Figure 3 (right) shows that λn grows slower than n, our
empirical tests do not demonstrate that λn grows faster than

√
n as required

for this particular consistency theorem.

4.2. Comparing with LISO

LISO builds models of the form

f̂(x) = α+
∑
i

hi(xi),

where hi(xi) is a one-dimensional isotonic function of the ith covariate. This
additive isotonic regression is trained by taking each hi(xi) to be a positive
linear combination of the upper sets formed by the ith dimension and solving
the following lasso problem,
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minα,β
∑n

i=1(yi − α−
∑d

j=1

∑N
l=1 βjlI{xij ∈ Ujl})2 + λ

∑d
j=1

∑N
l=1 βjl

s.t. βjl ≥ 0 ∀j = 1, . . . , d, l = 1, . . . , N,
(15)

where β ∈ Rd×N . The coefficient for upper set l in the jth dimension (rep-
resented by Ujl) is βjl and α is again the intercept. Then we have hj(xj) =∑N

l=1 βjlI{xj ∈ Ujl}. Note that the number of upper sets N in each dimension is
bounded by the number of training instances n. Then problem (15) reduces to a
lasso problem with nd parameters, as shown in Fang and Meinshausen [9], which
can be solved by the classic LARS algorithm for low-dimensional problems to
get a full regularization path of additive isotonic models. For high-dimensional
problems, Fang and Meinshausen [9] offer an algorithm that solves (15) for fixed
λ, and hence require solving the problem many times over a λ-grid in order to
generate a path of solutions. The following results use a LARS-implementation
of LISO in order to obtain a full regularization path for additive isotonic models.

A path of models with increasing complexity (i.e., increasing number of upper
sets in the solution) is learned for IRP, BIR, and LISO and performance is shown
in Table 2. For dimensions 2-5, the following simulation trains models on 3000
observations, performs model selection using another 3000 observations, and the
performance results are based on an independent test set of 3000 observations.
The limited training on 3000 observations is because LISO is computationally
expensive (3000 observations with d dimensions translates to running LARS
on 3000 observations with roughly 3000d variables). For dimension 5, we give
results for training IRP and BIR with 12000 observations (indicated by 5∗) as
well to show how performance improves when training with more data.

Neither model is additive so we should expect isotonic regression (IRP and
BIR) to outperform LISO in all dimensions. This is true for the first model,
however the second model with d = 5 shows better performance for LISO. This
is because isotonic regression is less structured than additive isotonic regression
and requires more data to learn the model as the dimension increases, demon-
strated by the improved performance of IRP and BIR when trained with 12000,
rather than 3000, observations (LISO is too computationally expensive to train
with this many observations and dimensions as demonstrated by the time re-
sults). These simulations further show that range regularization using BIR gives,
in many cases, statistically significant improved results over the regularization
provided by IRP.

4.3. Comparing with IRP

The previous subsection noted that IRP and BIR are less structured than other
regression methods, such as LISO, and hence require more training data to learn
a good model. This was exhibited in Table 2 in 5 dimensions by the increased
performance between training with 3000 versus 12000 observations. In this sec-
tion, we give two more examples in slightly higher dimension that are trained
with 12000 observations. Results are shown in Table 3. Again, a validation set
of 3000 observations is used to select models and performance is measured on
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Table 2

Performance of IRP, BIR, and LISO on two different isotonic models. Paths of IRP, BIR,
and LISO models are trained on 3000 observations, model selection done on another 3000

observations, and performance results are based on an independent test set of 3000
observations. IRP RMSE, BIR RMSE, and LISO RMSE refer to using models that gave

minimum root mean squared errors (RMSE) in model selection to evaluate the independent
test set. Values for RMSE are given along with a conservative 95% confidence interval.

Time is measured in seconds. Note that for dimension 5, results are given for training IRP
and BIR with 12000 observations (indicated by 5∗) to show how performance improves

when training with more data.

Model 1: yi =
∏

j xij +N (0, 102) with xij ∼ U [0, 5] and xij independent

Dim. IRP BIR LISO IRP BIR LISO
(d) RMSE RMSE RMSE Time Time Time
2 10.12(± 0.04) 10.07(± 0.04) 10.24(± 0.04) 7.5 7.5 37.4
3 10.92(± 0.04) 10.81(± 0.04) 13.94(± 0.04) 20.6 20.7 124.6
4 25.83(± 0.31) 24.49(± 0.25) 37.40(± 0.26) 86.7 87.1 500.1
5 121.20(± 1.20) 115.94(± 1.23) 123.96(± 1.20) 79.3 79.6 478.3
5∗ 95.11(± 1.36) 88.52(± 1.36) —– 238.3 248.4 —–

Model 2: yi =
√∏

j 2
xij +N (0, 52) with xij ∼ U [0, 5] and xij independent

Dim. IRP BIR LISO IRP BIR LISO
(d) RMSE RMSE RMSE Time Time Time
2 5.07(± 0.02) 5.05(± 0.02) 5.30(± 0.03) 6.3 6.3 41.3
3 5.13(± 0.72) 5.02(± 0.70) 7.93(± 1.11) 32.4 32.5 185.8
4 10.72(± 2.42) 10.14(± 2.17) 14.40(± 2.52) 55.7 55.9 314.3
5 141.95(± 2.76) 136.81(± 2.78) 119.85(± 2.84) 78.0 78.3 527.5
5∗ 114.03(± 2.56) 106.04(± 2.56) —– 288.8 297.6 —–

a separate test set of 3000 observations. Both models in these simulations are
highly nonlinear and non-additive. Performance shows that Model 1 is easier
to learn than Model 2, but similar trends are seen in the table. BIR improves
upon the performance of IRP in dimensions 4, 6, and 8, however, BIR does not
improve upon IRP in 10 dimensions. In 10 dimensions, 12000 observations is al-
ready insufficient for learning any useful model, since the number of isotonicity
constraints becomes too small.

Comparison of performance is further demonstrated in Figure 4, which illus-
trates performance throughout the regularization path for both IRP and BIR
on a single sample of data. Diamonds represent the minimum RMSE along the
respective paths. First note that IRP performance is minimized very early in
all regularization paths. This is consistent with the observation in Luss et al.
[21] that IRP performs most of its fitting in its first few iterations. Next note
that the overall trend is the same for IRP and BIR. In dimensions 4,6, and 8,
performance improves (RMSE decreases) as the models become more complex
until a certain point at which more complexity hurts performance and RMSE
increases. The minimum of the BIR path is lower than the minimum of the IRP
path for these dimensions under both models, a result due to the sounder and
slower regularization employed in BIR compared to early stopping of IRP. This
slower model fitting can also be observed by comparing the expected degrees
of freedom in Figure 2 to corresponding simulations for IRP in Luss et al. [21].
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While each iteration here increases the degrees of freedom by about one, most of
the total fitting in IRP was done in the first few iterations (usually more than
half in the first iteration). Finally, we again note the equivalent performance
in 10 dimensions. Figure 4 depicts the immediate overfitting, attributed to the
insufficient constraints, that occurs in both IRP and BIR.

Table 3

Performance of IRP and BIR on two different isotonic models. Paths of IRP and BIR
models are trained on 12000 observations, model selection done on another 3000

observations, and performance results are based on an independent test set of 3000
observations. IRP RMSE and BIR RMSE refer to using models that gave minimum root

mean squared errors (RMSE) in model selection to evaluate the independent test set. Values
for RMSE are given along with a conservative 95% confidence interval. Time is measured in

seconds.

Model 1: yi = (
∑d/2

j=1 (xij + xi,j+(d/2))
2)/d+N (0, 302)

with xij ∼ U [0, 10] and xij independent
Dim. (d) IRP BIR IRP BIR

RMSE RMSE Time Time
4 31.43(± 0.11) 30.94(± 0.11) 97.3 98.9
6 32.63(± 0.15) 31.55(± 0.13) 281.7 288.2
8 35.81(± 0.15) 33.84(± 0.13) 214.3 220.4
10 35.48(± 0.13) 35.43(± 0.13) 444.6 455.4

Model 2: yi = (
∑d

j=3 (xi,j−1 + xi,j−2)
xi,j )/d+N (0, 502)

with xij ∼ U [0, 10] and xij independent
Dim. (d) IRP BIR IRP BIR

RMSE RMSE Time Time
4 132.90(± 2.19) 125.05(± 2.00) 297.2 304.6
6 276.08(± 2.95) 263.98(± 2.88) 400.8 410.3
8 405.67(± 2.72) 389.71(± 2.60) 428.0 438.2
10 383.37(± 2.96) 383.37(± 2.96) 515.3 529.8

4.4. Comparing model selection approaches for BIR

Our experiments so far have exclusively used cross-validation (CV) for selecting
the regularization parameters of BIR and other approaches. This is convenient
for comparing between different approaches which may not necessarily have
available in-sample approaches for model selection. CV is also an appropriate
model selection approach for observational situations where future prediction
points are independently drawn (“random-X”), which arguably represent the
majority of modern data analysis scenarios [12].

However, for BIR specifically, the Lasso connection allows us to use a variety
of in-sample model selection methods developed or adapted for Lasso, including
AIC, GCV and others [10, and references therein]. Here we briefly compare CV
to AIC and GCV as approaches for selecting λ in BIR, where we use the Stein
estimate df as the number of parameters / degrees of freedom in AIC and GCV.

Because the in-sample approaches are targeted at “fixed-X” situations, we
slightly change the setup of the simulation for this experiment, and draw the
test set for evaluating selected models at the same set of x-values as the training
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Fig 4. Root mean squared error (RMSE) for out-of-sample predictions of simulations with
different dimensions d. The x-axis in each figure corresponds to the number of iterations
made by IRP and BIR in log-scale, i.e. the curves show how the RMSE of test data varies
as IRP and BIR progress. Diamonds indicate minimum RMSE along the paths. Models are
those used in Table 3.

set. As before, for CV a portion of the training set is set aside for model selection,
while for AIC and GCV the entire set (15000 observations) is used for model
building. In general, in this situation, we expect in-sample approaches to do
better than CV.

We compare the approaches on models 1 and 2 from Section 4.3, and show
the results in Table 4. For model 1, which is a relatively simple model with
limited non-additivity effects, CV does roughly as well as GCV and AIC and
essentially selects the same models. Still, GCV appears to be slightly superior
to both CV and AIC in higher dimensions. Model 2 is a much more “wild”
model, hence prediction at new covariate vectors outside the training set is a
much more difficult task than “fixed-X” prediction. Consequently for this model
the difference between the CV model selection and GCV/AIC becomes evident.
CV selects models with heavy regularization, while GCV/AIC tend to select
smaller λ and hence models which are appropriate for predicting under the
“fixed-X” assumption. The exception is the deteriorated performance of GCV
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Table 4

Performance of model selection approaches for λ in BIR on two different isotonic models.
For CV, BIR models are trained on 12000 observations, and model selection is done on
another 3000 observations, while for GCV/AIC the models are trained on all 15000

observations. Performance results are based on an independent test set of 3000 observations,
whose covariate vectors are resampled from the training set to represent the “fixed-X”

situation. Values for RMSE are given along with a conservative 95% confidence interval

Model 1: yi = (
∑d/2

j=1 (xij + xi,j+(d/2))
2)/d+N (0, 302)

with xij ∼ U [0, 10] and xij independent
Number of CV GCV AIC

Variables (d) RMSE RMSE RMSE
4 31.52(± 0.10) 31.55(± 0.10) 31.59(± 0.10)
6 33.07(± 0.14) 33.33(± 0.13) 33.88(± 0.12)
8 33.97(± 0.15) 33.92(± 0.15) 36.15(± 0.18)
10 34.87(± 0.10) 33.83(± 0.08) 38.47(± 0.17)

Model 2: yi = (
∑d

j=3 (xi,j−1 + xi,j−2)
xi,j )/d+N (0, 502)

with xij ∼ U [0, 10] and xij independent
Number of CV GCV AIC

Variables (d) RMSE RMSE RMSE
4 93.14(± 3.24) 60.28(± 0.23) 60.28(± 0.23)
6 177.68(± 3.44) 67.17(± 0.25) 67.17(± 0.25)
8 304.78(± 4.21) 69.82(± 0.28) 69.82(± 0.28)
10 383.37(± 2.82) 294.35(± 37.55) 70.57(± 0.23)

at dimension d = 10, a phenomenon whose detailed investigation may reveal
further insights but is a topic for future study.

We also performed some experiments comparing the performance of the three
approaches in prediction in the “random-X” scenario. As expected, CV was
consistently superior to AIC/GCV in this setting (results not shown).

5. Discussion and conclusion

In this paper we propose to regularize isotonic regression by penalizing or con-
straining the range of the estimated function and name this new approach BIR.
We demonstrate that, given the non-regularized isotonic regression model, all
BIR solutions can be generated by a simple and efficient algorithm because they
are obtained by thresholding the non-regularized solution from above and below.
Furthermore, the BIR problem can be formulated as a non-negative Lasso prob-
lem in the basis of upper set indicators and thus inherits properties of Lasso,
in particular its regularization behavior. Like Lasso, it adds about one degree
of freedom with each iteration (each upper set added to the model). Thus, BIR
combines a sound regularization approach, efficient computations, and interest-
ing connections to other methods. Furthermore, we show that the BIR algorithm
can easily be generalized to other loss functions, including exponential family
log-likelihoods and robust regression. This significantly enhances the utility of
BIR methods.

As mentioned in the Introduction, isotonic regression suffers from overfitting
issues that severely limit its utility for modern high-dimensional problems. Our
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simulations demonstrate that BIR can significantly increase the range of useful-
ness of isotonic modeling compared to the non-regularized solution or coarsely
regularized alternative when using IRP. Up to about dimension eight, BIR can
significantly improve on isotonic regression and still generate useful models.
Overall, we believe our simulations demonstrate that when isotonicity assump-
tions are appropriate, the true relationship is complex and non-additive, the
dimension is relatively low, and data is abundant, properly regularized isotonic
regression is likely to do very well compared to alternatives. It should be noted
that our simulations are “space filling” in the sense that the covariate values are
uniformly distributed in the covariate space X . This means that the actual di-
mension is also the effective dimension. Natural data are often highly structured
(as captured for example by PCA) and can be closely approximated by lower di-
mensional spaces. In our context it means that the isotonic constraints required
to control model complexity can persist into higher dimension in natural data
than in our simulations, thus allowing BIR to remain useful.

An interesting connection of BIR is to total variation penalties, which have
become important in several application domains [22, 5]. In d = 1 dimension,
the range of a monotonic function is trivially also its total variation, so BIR can
be thought of as a total variation approach with added isotonicity constraints,
rather than isotonic regression with an added range constraint. In higher dimen-
sions, total variation definitions become mathematically quite involved, but for
isotonic functions they simply reduce back to the range. Hence BIR can also be
thought of as total variation penalized isotonic regression.

Appendix

Proof of Theorem 5

As with the proof for Theorem 1, we prove that the solution given in the theorem
solves the optimality conditions. The optimality conditions for the generalized
BIR problem (12) are the same as for BIR problem (6) with the generalized
first-order optimality condition:

(a):
∂Li(ŷi)

∂ŷi
+

∑
j:(i,j)∈I

μij −
∑

j:(j,i)∈I
μji − γi + δi = 0 for all i ∈ {1, . . . , n}.

We assume that â < b̂ (the theorem trivially holds in equality). Let μ∗ be
the optimal dual variables to the corresponding monotonicity constraints in the
non-regularized problem (which has the same optimality conditions above when
λ = 0). Then λ = 0 implies γ = δ = 0 and condition (a) can be rewritten as

∂Li(ẑi)

∂ŷi
= −

∑
j:(i,j)∈I

μ∗
ij +

∑
j:(j,i)∈I

μ∗
ji for all i ∈ {1, . . . , n}.

Take the dual variables μ to be equal to the dual variables μ∗ of the non-
regularized problem. Optimality condition (e) again holds immediately by con-
struction. Optimality conditions (f) imply that either γi or δi can be nonzero,
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but not both. Nonnegativity of γ and δ, along with condition (a) which can be
written

∂Li(ŷi)

∂ŷi
− ∂Li(ẑi)

∂ŷi
= γi − δi

then imply

γi =

(
∂Li(ŷi)

∂ŷi
− ∂Li(ẑi)

∂ŷi

)
+

and δi =

(
∂Li(ẑi)

∂ŷi
− ∂Li(ŷi)

∂ŷi

)
+

.

Suppose ŷ is defined by (13). Then

ŷ∗i �= â ⇒ ŷ∗i > â ⇒ ẑ∗i > â ⇒ γi =

(
∂Li(ŷi)

∂ŷi
− ∂Li(ẑi)

∂ŷi

)
+

=

(
∂Li(max (â,min (ẑi,b̂)))

∂ŷi
− ∂Li(ẑi)

∂ŷi

)
+

= 0,

where equality to zero is by convexity of Li(·) and since ẑ∗i > â ⇒ ẑ∗i ≥
max (â,min (ẑi, b̂)). A similar argument holds for the other conditions in (e).
We next prove that condition (d) holds. First, note that

γi =

(
∂Li(ŷi)

∂ŷi
− ∂Li(ẑi)

∂ŷi

)
+

=

(
∂Li(max (â,min (ẑi,b̂)))

∂ŷi
− ∂Li(ẑi)

∂ŷi

)
+

=

(
∂Li(â)
∂ŷi

− ∂Li(ẑi)
∂ŷi

)
+

by convexity of Li(·) and since ẑ∗i ≥ â ⇒ ẑ∗i ≥ max (â,min (ẑi, b̂)) and ẑ∗i < â ⇒
â = max (â,min (ẑi, b̂)) ≥ ẑ∗i . A similar argument shows that δi = (∂Li(ẑ

∗
i )/∂ŷi−

∂Li(b̂)/∂ŷi)+. Then conditions (d) are satisfied by choosing â and b̂ to solve
equations (14). Conditions (a),(d),(f), and (g) hold by the above constructions.
Conditions (b) and (c) hold by construction of ŷ in (13). The optimality condi-
tions are satisfied implying the theorem holds true. �
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