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1. Introduction

In many applications such as in biological, medical imaging or signal detec-
tion only indirect observations are available for statistical inference, and these
problems are called inverse problems in the (statistical) literature. In the case of
medical imaging, a well-known example is Positron Emission Tomography. Here,
the connection between the ‘true’ image and the observations involves the Radon
transform [see, for example, [10]]. Other typical examples are the reconstruction
of biological or astronomical images, where the connection between the true
image and the observable image is - at least in a first approximation - given
by convolution-type operators [see, for example, [2] or [5]]. Whereas in these
models the data is in general described in a regression framework, similar (de-)
convolution problems arise in density estimation from indirect observations [see
[13] for an early reference]. The corresponding (multivariate) statistical model
for density deconvolution is defined by

Yi = Zi + εi, i = 1, . . . , n, (1.1)

where (Z1, ε1), . . . , (Zn, εn) ∈ R
d × R

d are independent identically distributed
random variables and the noise terms ε1, . . . , εn are also independent of the
random variables Z1, . . . , Zn. We assume that the density fε of the errors εi is
known and are interested in properties of the density f of the random variables
Zi based on the sample {Y1, . . . , Yn}. In terms of densities, model (1.1) can be
rewritten as

g = f ∗ fε,
where g denotes the density of Y1. Density estimators can be constructed and
investigated similarly to the regression case (see the references in the next para-
graph), and in this paper we are interested in describing qualitative features
of the density f using the sample {Y1, . . . , Yn}. In particular we will develop a
method for simultaneous detection of regions of monotonicity of the density f
at a controlled level and construct a procedure for the detection of the modes
of f . To our best knowledge multivariate problems of this type have not been
investigated so far in the literature.

On the other hand there exists a wide range of literature concerning statis-
tical inference in the univariate deconvolution model. A Fourier-based estimate
of the density f using a damping factor for large frequencies was introduced in
[13], whereas [26] estimate f with a wavelet-based deconvolution density esti-
mator [see also [32] for a nonparametric estimator for the corresponding distri-
bution function or [8] for a plug-in estimator of f based on estimation of a scale



Multiscale inference for multivariate deconvolution 4181

parameter for the noise level]. [6] develop confidence bands for deconvolution
kernel density estimators, while minimax rates for this estimation problem can
be found in [9] and [16]. [28] and [18] point out that the detection of regions
of monotonicity and of the modes of a density is a more complex problem and
[16] shows that the minimax rate for estimating the derivative over a Hölder-
β-class (β ≥ 2) in the univariate setting d = 1 is given by n−(β−1)/(2β+2r+1),
where r > 0 denotes the order of polynomial decay of the Fourier transform of
the error density fε. [3] develop a test for the number of modes of a univariate
density and [25] proposes a local test for monotonicity for a fixed interval. More
recently [30] discuss multiscale tests for qualitative features of a univariate den-
sity which provide uniform confidence statements about shape constraints such
as local monotonicity properties. These authors use a Komlós-Major-Tusnády
(KMT) estimate for the empirical process (cf. [22]). As the classical KMT con-
struction is not suitable for multivariate multiscale problems because it imposes
rather strong conditions, it is not obvious how to analyze multiscale inference
in a multivariate context. In the present paper we present a solution of this
problem. In particular, we use recent results on Gaussian approximations of
multivariate empirical processes [[11]] to address this problem. Multiscale test-
ing is also widely used in spatial testing, see [24] and [31], among others. Here,
one aims at the detection of geometric objects of activation in a grid of sensors
with noisy measurements and makes use of limit distributions of suprema of
sums of i.i.d. Gaussian random variables [cf. e.g. [20]].

Little research has been done regarding multivariate deconvolution problems.
Recent references for density estimation are e.g. [12] using kernel density esti-
mators and [29] for a Bayesian approach in the case of an unknown error distri-
bution with replicated proxies available. Hypothesis testing in deconvolution is
investigated in [19] and [7].

In the present paper we will develop a multiscale method for simultaneous
identification of regions of monotonicity of the multivariate density f in the
deconvolution model (1.1). As we do not impose any conditions or even assume
prior knowledge about the shape of the density, our problem and approach
differ substantially from the methods used in shape-constrained density estima-
tion [see for example [27] and [4], among others, for some references on shape-
constrained density estimation]. In contrast to shape-constrained inference, our
approach is based on simultaneous local tests of the directional derivatives of
the density f for a significant deviation from zero for “various” directions and
locations.

The remaining part of this paper is organized as follows. In Section 2 we
present a Fourier based method for the construction of local tests, which will
be used for the inference about the monotonicity properties of the density f .
Roughly speaking, we propose a multiscale test investigating the sign of the
derivatives of the density f in different locations and directions and on different
scales. Section 3 is devoted to asymptotic properties, which can be used to ob-
tain a multiscale test for simultaneous confidence statements about the density.
Moreover, we also propose a method for the detection and localization of the
modes. The finite sample properties of the method are discussed in Section 4
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and all proofs are deferred to Sections 5 and 6, while Section 7 contains two
technical results.

2. Multiscale inference in multivariate deconvolution

Let ∂s denote the directional derivative in the direction of s ∈ Sd−1 = {s ∈
R

d | ‖s‖ = 1} and φ : Rd → R≥0 be a sufficiently smooth kernel (i.e. ‖φ‖L1(Rd) =

1) with compact support in [−1, 1]d. From a theoretical point of view, only
assumptions on the smoothness of φ have to be imposed and therefore, the
theoretical part of this paper investigates arbitrary φ. For practical applications,
the function φ can be chosen e.g. as a radially symmetric kernel which does not
favor any directions, or as a polynomial kernel such as used in the simulations
in Section 4. However, this choice has to be made in advance, and φ must be
fixed throughout the data analysis. Define

φt,h(.) = h−dφ
(
.−t
h

)
for t ∈ [0, 1]d, h > 0.

For the description of the local monotonicity properties of the function f we
introduce the integral

−
∫
Rd

∂sf(x)φt,h(x) dx. (2.1)

If this expression is, say, negative, we can conclude that the derivative of f in
direction s has to be strictly larger than zero on a subset of positive Lebesgue
measure of the cube [t1−h, t1+h]× . . .× [td−h, td+h]. Ideally, one would inves-
tigate directly the directional derivatives of f for statistical inference regarding
its monotonicity properties. However, the estimation of derivatives is difficult,
especially in the deconvolution framework of this paper, such that we consider
instead the integral (2.1). Note that for h approaching zero the integral (2.1)
approximates the directional derivative −∂sf(t).

In most applications no prior knowledge about the density f is available and
therefore, one would like to test for all triples (s, t, h) consisting of all directions
s, locations t and scaling factors h. As this is impossible, we choose a finite set
of triples Tn := {(sj , tj , hj) | j = 1, . . . , p} and estimate the integral (2.1) for
every (sj , tj , hj) ∈ Tn simultaneously. For statistical inference we then propose
a multiscale testing procedure. The practical choice of Tn depends on the task
considered by the experimenter, but typically the choice of an equidistant grid is
reasonable. We present below two examples to choose Tn to obtain a graphical
representation of the density and to obtain a local mode test, respectively.

Statistical inference regarding the monotonicity properties of f is performed
by testing simultaneously several hypotheses of the form

H
sj ,tj ,hj

0,incr : −
∫
Rd

∂sjf(x)φtj ,hj
(x) dx ≥ 0

versus

H
sj ,tj ,hj

1,incr : −
∫
Rd

∂sjf(x)φtj ,hj
(x) dx < 0

(2.2)
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and

H
sj ,tj ,hj

0,decr : −
∫
Rd

∂sjf(x)φtj ,hj
(x) dx ≤ 0

versus

H
sj ,tj ,hj

1,decr : −
∫
Rd

∂sjf(x)φtj ,hj
(x) dx > 0

(2.3)

for (sj , tj , hj) ∈ Tn, where the inference is based on estimates of all p integrals∫
Rd

∂sjf(x)φtj ,hj
(x) dx, j = 1, . . . , p,

see (2.6) below for the estimators. Testing simultaneously means that the same
dataset Yi, i = 1, . . . , n, is used for inference about all 2p hypotheses in (2.2)
and (2.3), and that we consider the overall error level for at least one false
rejection over all tests. To take the multiple testing problem into account, we
propose below an investigation of the joint distribution of the p estimates. This
approach allows us to control the family wise error rate of the 2p tests for the
hypotheses (2.2) and (2.3). Moreover, we can choose p much larger than n, such
that standard correction procedures of the p-value in multiple testing problems
such as Holm-Bonferroni or False Discovery Rate do not apply.

The method allows for a global understanding of the shape of the density f . A
particular feature of the proposed method consists in the fact that by conducting
formal statistical tests the multiple level can be controlled (see Theorem 3.2). To
be precise, define by T incr

n the set of all triples in Tn for which the hypothesis
(2.2) is rejected, and by T decr

n the set of all triples in Tn for which the hypothesis
(2.3) is rejected. Then the probability of at least one false rejection within the
sets T incr

n and T decr
n can be bounded by a pre-determined error rate α ∈ (0, 1),

that is, the method allows to conclude that with probability ≥ 1− α it holds

−
∫
Rd

∂sjf(x)φtj ,hj
(x) dx < 0 for all (sj , tj , hj) ∈ T incr

n

and

−
∫
Rd

∂sjf(x)φtj ,hj
(x) dx > 0 for all (sj , tj , hj) ∈ T decr

n .

For example, simultaneous tests for hypotheses of the form (2.2) and (2.3) can be
used to obtain a graphical representation of the local monotonicity behavior of
the density as displayed in Figure 1 for a bivariate density. The displayed map is
based on tests for the hypotheses (2.2) for a fixed scale h0 and different locations
and directions (s1, t1), . . . , (sp, tp) (here taken as the vertices of an equidistant
grid and four equidistant directions on S1). Note that we are investigating here
a symmetric set of triples, that is, for every location tj both the triple (sj , tj , h0)

and (−sj , tj , h0) are considered. Thus, asH
sj ,tj ,h0

0,incr = H−sj ,tj ,h0

0,decr , it is sufficient to
investigate only hypotheses of the form (2.2) in this setting. The figure shows the
results of the tests for the different hypotheses in (2.2). An arrow in a direction sj
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Fig 1. Example of a global map for monotonicity of a bivariate density.

at a location tj represents a rejection of the corresponding hypothesis Hsj ,tj ,h0

0,incr

and provides therefore an indication of a positive directional derivative of f in
direction sj at the location tj . For a detailed description of the settings used to
provide Figure 1 and an analysis of the results we refer to Section 4.3.

If one is interested in specific shape constraints of the density, say in a test
for a mode (local maximum) at a given point x0, inference can be conducted
investigating the hypotheses

Hsj ,tj ,h0

0,decr versus Hsj ,tj ,h0

1,decr (2.4)

for different pairs (t1, s1), . . . , (tp, sp), where t1, . . . , tp are points in a neighbor-
hood of x0 on the lines {x0 + λsj |λ > 0} (j = 1, . . . , p), respectively (of course,
on could additionally use different scales here).

Throughout this paper we will assume that all partial derivatives ∂sf of
the density f are uniformly bounded, such that the estimated quantity (2.1)
is bounded by a constant which does not depend on the triple (s, t, h). Using
integration by parts, Plancherel’s identity and the convolution theorem, we get

−
∫
Rd

∂sf(x)φt,h(x) dx =

∫
Rd

f(x)∂sφt,h(x) dx (2.5)

=
1

(2π)d

∫
Rd

F (f)(y)F (∂sφt,h)(y) dy

=
1

(2π)d

∫
Rd

F (g)(y)

(
F (∂sφt,h)

F (fε)

)
(y) dy

=

∫
Rd

g(x)F−1

(
F (∂sφt,h)

F (fε)

)
(x) dx.

Here,

F (f)(y) =

∫
Rd

e−iy.xf(x) dx,
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F−1(f)(x) =
1

(2π)d

∫
Rd

eix.yf(y) dy
(
x, y ∈ R

d
)

denote the Fourier transform and its inverse, respectively, z is the complex
conjugate of z ∈ C and x.y stands for the standard inner product of x, y ∈ R

d.
For the construction of tests for the hypotheses in (2.2) and (2.3) we define

the statistic

Tn
s,t,h =

1

n

n∑
i=1

Fs,t,h(Yi), (2.6)

where

Fs,t,h(Yi) = F−1
(F (∂sφt,h)

F (fε)

)
(Yi). (2.7)

Because (by (2.5))

E(Tn
s,t,h) = −

∫
Rd

∂sf(x)φt,h(x) dx,

it follows that Tn
s,t,h is a reasonable estimate of the quantity defined in (2.1), and

hence the statistics Tn
s,t,h define the main tool to study qualitative features of

the density f . Inference on local monotonicity of the density f will then be based
on tests rejecting the hypotheses Hs,t,h

0,incr for small values of the corresponding

statistic Tn
s,t,h and rejectingHs,t,h

0,decr for large values of T
n
s,t,h for several directions

s ∈ Sd−1, locations t ∈ [0, 1]d and scales h > 0. The multiple level of these tests
can be controlled by investigating the (asymptotic) maximum of appropriately
normalized statistics Tn

s,t,h calculated over a certain set of locations, directions
and scales.

3. Asymptotic properties

In this section we investigate the asymptotic properties of a statistic which can
be used to control the multiple level of the tests introduced in Section 2. To be
precise, we consider the finite subset

Tn :=
{
(sj , tj , hj) | j = 1, . . . , p

}
⊆ Sd−1 × [0, 1]d × [hmin, hmax]

of cardinality p ≤ nK for the calculation of the maximum of appropriately
standardized statistics Tn

s,t,h, where K > 1 and for some ε > 0

hmin � n−1/d+ε and hmax = o((log(n) log log(n))−1). (3.1)

Throughout this paper we will make frequent use of multi-index notation, where
α = (α1, . . . , αd) ∈ N

d
0 denotes a multi-index (written in bold), |α| = α1+ . . .+

αd its “length”, and for a sufficiently smooth function f : Rd → R and a multi-
index α we denote by

∂αf(x) =
∂|α|

∂xα1
1 · . . . · ∂xαd

d

f(x)

its partial derivative.
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Recall the definition of Fs,t,h in (2.7) and to simplify the notation define for
a point (sj , tj , hj) ∈ Tn

Fj = Fsj ,tj ,hj
. (3.2)

The testing procedure for the hypotheses (2.2) and (2.3) is based on the p
estimates Tn

sj ,tj ,hj
= 1

n

∑n
i=1 Fj(Yi) in 2.6 for the integrals

E(Tn
sj ,tj ,hj

) = E(Fj(Y1)) = −
∫
Rd

∂sjf(x)φtj ,hj
(x) dx, j = 1, . . . , p.

For a rigorous statistical test which controls the multiple level we therefore need
to investigate the asymptotic joint distribution of

√
n
∣∣Tn

sj ,tj ,hj
− E(Tn

sj ,tj ,hj
)
∣∣ = 1√

n

∣∣∣ n∑
i=1

Fj(Yi)− nE(Fj(Y1))
∣∣∣, j = 1, . . . , p.

(3.3)

Recall that p is growing with n. Thus, the maximum over all p random variables
in (3.3) is in general not bounded. As a consequence, the random variables de-
fined in (3.3) have to be properly standardized. It turns out that the approriate
standardization is given by

X̃
(1)
j =

√
log(eh−d

j )

log log(eeh−d
j )

(
h
d/2+r+1
j√
nĝn(tj)Vj

∣∣∣ n∑
i=1

Fj(Yi)−nE(Fj(Y1))
∣∣∣−√

(3d− 1) log(h−d
j )

)
,

(3.4)
where ĝn is a density estimator of g satisfying

‖g − ĝn‖∞ = o(log(n)−1) almost surely (3.5)

(for example a kernel density estimator as considered in [17]) and

Vj = h
d/2+r+1
j ‖Fsj ,tj ,hj

‖L2(Rd). (3.6)

The quantity Vj is well-defined under the assumptions presented below (see
Lemma 5.2 for details).

Note that the boundary of the hypotheses H
sj ,tj ,hj

0,incr and H
sj ,tj ,hj

0,decr in (2.2) and

(2.3) is defined by
∫
Rd ∂sjf(x)φtj ,hj

(x) dx = 0 and in this case we have

1√
n
X̃

(1)
j =

√
log(eh−d

j )

log log(eeh−d
j )

(
h
d/2+r+1
j√
ĝn(tj)Vj

∣∣Tn
sj ,tj ,hj

∣∣−
√

(3d−1) log(h−d
j )

√
n

)
.

Consequently, we will investigate the asymptotic properties of max1≤j≤p X̃
(1)
j in

the following discussion. For this purpose we make the following assumptions.

Assumption 1. Assume that the density g is Lipschitz continuous and locally
bounded from below, i.e.

g(x) ≥ c > 0 for all x ∈ [0, 1]d.
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Assumption 2. We assume a polynomial decay of the Fourier transform of the
error density fε, i.e. that there exist constants r > 0 for d ≥ 2 resp. r > 1

2 for
d = 1 and 0 < Cu < Co such that

Cu

(
1 + ‖y‖2

)−r/2 ≤ |F (fε)(y)| ≤ Co

(
1 + ‖y‖2

)−r/2
.

Furthermore, let

�(d+1)/2�∑
j=1

(1 + ‖y‖2)j/2
∣∣∣ ∂j

∂yjl
F (fε)(y)

∣∣∣ ≤ Co(1 + ‖y‖2)−r/2

for all l = 1, . . . , d.

Note that as a direct consequence of Assumption 1 g is bounded from above
and that there exists a constant δ > 0 such that g(x) ≥ c

2 > 0 for all x ∈
[−δ, 1 + δ]d. Assumption 2 can be seen as a multivariate generalization of the
classical assumptions on the decay of the Fourier transform of the error density
in the ordinary smooth case (see e.g. [30], Assumption 2). We also note that this
assumption defines a mildly ill-posed situation (see [7]). The next assumptions
refer to the kernel φ and are required for some technical arguments.

Assumption 3. Let ‖∂sφ‖L2(Rd) 
= 0 for all s ∈ Sd−1 and assume that ∂βφ

exists in [−1, 1]d and is continuous for all |β| ≤ �r+2�, where r is the constant
from Assumption 2. We assume further that for some δ > 0 the inequality∫

Rd

(
1 + ‖y‖2

)r+(d+δ)/2
∣∣∣ ∂m

∂yml
F (∂ekφ)(y)

∣∣∣2 dy < ∞

holds for all k, l = 1, . . . , d and m = 0, . . . , �(d + 1)/2�, where ek, k = 1, . . . , d,
denotes the kth unit vector of Rd.

As

∣∣∣ ∂m

∂yml
F (∂sφ)(y)

∣∣∣2 =
∣∣∣ d∑
k=1

sk
∂m

∂yml
F (∂ekφ)(y)

∣∣∣2 ≤ C

d∑
k=1

∣∣∣ ∂m

∂yml
F (∂ekφ)(y)

∣∣∣2

for all s ∈ Sd−1 and some constant C > 0 that only depends on d, Assumption
3 yields a uniform upper bound for the integral∫

Rd

(
1 + ‖y‖2

)r+(d+δ)/2
∣∣∣ ∂m

∂yml
F (∂sφ)(y)

∣∣∣2 dy
for all s ∈ Sd−1.

Recall the definition of X̃
(1)
j in (3.4) and define the vector

X̃(1) = (X̃
(1)
1 , . . . , X̃(1)

p )�.

Our first main result provides a uniform approximation of the probabilities
P(X̃(1) ∈ A) by the probabilities P(X̃ ∈ A) for every half-open hyperrectangle
A, where the components of the vector X̃ = (X̃1, . . . , X̃p)

� are defined by
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X̃j =

√
log(eh−d

j )

log log(eeh−d
j )

(
h
d/2+r+1
j

|
∫
Rd Fj(x) dBx|

Vj
−
√

(3d− 1) log(h−d
j )

)
(3.7)

(j = 1, . . . , p), and (Bx)x∈Rd is a standard d-variate Brownian motion. The
limit process X̃ is constructed in such a way that it has (asymptotically) the
same covariance structure as the vector X̃(1) consisting of all test statistics.
Moreover, the process X̃j does not depend on unknown quantities. In order
to construct quantiles for the testing procedure for the hypotheses (2.2) and
(2.3), we consider the quantity max1≤j≤p X̃j and use Theorem (3.1) below to

show that the quantiles of max1≤j≤p X̃
(1)
j can be approximated by those of

max1≤j≤p X̃j (note that this is a simple consequence of Theorem 3.1, using the
the set A = (−∞, a]× (−∞, a]×× . . . (−∞, a]).

Theorem 3.1. Let A denote the set

A := {(−∞, a1]× . . .× (−∞, ap] | a1, . . . , ap ∈ R}.

Then,

sup
A∈A

∣∣P(X̃(1) ∈ A
)
− P

(
X̃ ∈ A

)∣∣ = o(1) for n → ∞. (3.8)

Furthermore, the random variable max1≤j≤p X̃j is almost surely bounded uni-
formly with respect to n.

Theorem 3.1 will be used to control the multiple level of statistical tests for
the hypotheses of the form (2.2) and (2.3). To this end, let α ∈ (0, 1) and denote
by κn(α) the smallest number such that

P

(
max
1≤j≤p

X̃j ≤ κn(α)
)
≥ 1− α. (3.9)

By Theorem 3.1, κn(α) is bounded uniformly with respect to n. The jth hy-
pothesis in (2.2) is rejected, whenever

n−1
n∑

i=1

Fj(Yi) < −κj
n(α), (3.10)

where

κj
n(α) =

√
ĝn(tj)Vj√

n
h
−d/2−r−1
j

(
log log(eeh−d

j )√
log(eh−d

j )
κn(α) +

√
(3d− 1) log(h−d

j )
)
.

(3.11)
Similarly, the jth hypothesis in (2.3) is rejected, whenever

n−1
n∑

i=1

Fj(Yi) > κj
n(α). (3.12)

Note that the ill-posedness of the deconvolution problem is reflected in the
value of the quantile κj

n(α) through the multiplication with h−r
j and by the

standardization with the quantity Vj .
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Theorem 3.2. Assume that the tests (3.10) and (3.12) for the hypotheses (2.2)
and (2.3) are performed simultaneously for j = 1, . . . , p. The probability of at
least one false rejection of any of the tests is asymptotically at most α, that is

P

(
∃j ∈ {1, . . . , p} : n−1|

n∑
i=1

Fj(Yi)| > κj
n(α)

)
≤ α+ o(1)

for n → ∞.

Remark 3.1. It is a well-known fact that statistical inference regarding the
qualitative features of a multivariate density is a challenging problem from a
computational point of view. In the present context conducting all tests (3.10)
and (3.12) for the hypotheses (2.2) and (2.3) is computationally demanding. In
general, the support of the deconvolution kernel Fj is not compact and there-
fore, the computation of all p test statistics consists of p · n kernel evaluations.
The computation of the covariance matrix

( ∫
Rd Fj(x)Fk(x) dx

)
j,k=1,...,p

of the

Gaussian limit process depends on p · (p + 1)/2 numerical integrations and for
the determination of the quantiles of the limit process p-dimensional normal
distributed random vectors have to be simulated.

Next we introduce a method for the detection and localization of the modes
of the density. The main idea is to conduct the local tests for modality proposed
in (2.4) for a set of candidate modes which does not assume any prior knowledge
about the density. To be precise, we assume the following condition on the set
Tn: for any fixed h and s the set {t : (s, t, h) ∈ Tn} is an equidistant grid in [0, 1]d

with grid width h. Furthermore, for any fixed t and h the set {s : (s, t, h) ∈ Tn}
is a grid in Sd−1 with grid width converging to zero with increasing sample size.

This grid is now used as follows to check if a point x0 ∈ (0, 1)d is a mode of f .

Let T x0

n ⊂ Tn be the set of all triples (s, t, h) ∈ Tn such that ch ≥ ‖x0 − t‖ ≥
2
√
dh for some c > 2

√
d sufficiently large and angle(t− x0, s) → 0 for n → ∞.

By the condition on Tn defined above, the set T x0

n is nonempty for sufficiently
large n. We now use the local tests (3.12) for the hypotheses (2.4) and decide
for a mode at the point x0 if the null hypotheses in (2.4) are rejected for all

triples in T x0

n simultaneously. Note that by choosing the test locations as the
vertices of an equidistant grid no prior knowledge about the location of x0 has
to be assumed. Theorem 3.3 below states that the procedure detects all modes
of the density with asymptotic probability one as n → ∞.

Theorem 3.3. Let x0 ∈ (0, 1)d denote an arbitrary mode of the density f and
assume that there exist functions gx0 : Rd → R, f̃x0 : R → R such that the
density f has a representation of the form

f(x) ≡ (1 + gx0(x))f̃x0(‖x− x0‖) (3.13)

(in a neighborhood of x0), gx0 is differentiable in a neighborhood of the point x0

such that both gx0(x) = o(1) and 〈∇gx0(x), e〉 = o(‖x − x0‖) if x → x0 for all
e ∈ R

d with ‖e‖ = 1. In addition, let f̃x0 be differentiable in a neighborhood of
the point 0 with f̃ ′

x0(h) ≤ −ch(1 + o(1)) for h → 0.
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If the set {
(s, t, h) ∈ Tn : h ≥ C log(n)1/(d+2r+4)n−1/(d+2r+4)

}
for some C > 0 sufficiently large is nonempty, then the procedure described in
the previous paragraph detects the mode x0 with asymptotic probability one as
n → ∞.

The method to detect the modes of the density proposed in Theorem 3.3
proceeds in two steps: the verification of the presence of a mode with asymptotic
probability one in the asymptotic regime presented above and its localization at
the rate n−1/(d+2r+4) (up to some logarithmic factor) given by the grid width.
[16] showed that in the univariate setting d = 1 the minimax rate for estimating
the derivative of a density in a deconvolution problem over a Hölder-β-class is of
order n−(β−1)/(2β+2r+1) (β ≥ 2), and it is conjectured that the rate is of order
n−(β−1)/(2β+2r+d) in the multivariate case. In the case of mode estimation there
are no results available regarding optimal rates of estimates (to the best of our
knowledge). However, as the problem of estimating a derivative is closely related
to mode estimation, we expect similar optimal rates in the context considered
in this paper. In the case β = 2 the optimal rate for estimating the derivative is
n−1/(d+2r+4) and Theorem 3.3 shows that the proposed mode estimator attains
this rate up to a logarithmic factor. An important and challenging problem for
future research is to prove that these rates are in fact minimax optimal.

4. Finite sample properties

In this section we illustrate the finite sample properties of the proposed mul-
tiscale inference. The performance of the test for modality at a given point x0

(see the hypotheses in (2.4)) and the dependence of its power on the bandwidth
and the error variance is investigated. We also illustrate how simultaneous tests
for hypotheses of the form (2.2) and (2.3) can be used to obtain a graphical
representation of the local monotonicity properties of the density.

We consider two-dimensional densities, i.e. d = 2. The density fε of the errors
in model (1.1) is given by a symmetric bivariate Laplacian with scale parameter
σ > 0 which is defined through its characteristic function

F (fε)(y1, y2) =
1

1 + 1
2σ

2(y21 + y22)
(4.1)

for (y1, y2) ∈ R
2 (cf. [23], Chapter 5). This means that r = 2 and straightforward

calculations show that

Fs,t,h(x1, x2) = F−1
(

F (∂sφt,h)

F (fε)

)
(x1, x2) =

(
∂s−

σ2

2

(
∂2
e1∂s+∂2

e2∂s
))

φt,h(x1, x2)

(4.2)
for (x1, x2) ∈ R2. The test function is chosen as

φ(x1, x2) = c2(1− x4
1)(1− x4

2)1
{
|x1| ≤ 1, |x2| ≤ 1

}
,
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where c2 defines the normalization constant, that is

c2 =
∥∥(1− x4

1)(1− x4
2)1

{
|x1| ≤ 1, |x2| ≤ 1

}∥∥−1

L1(Rd)

(note that φ is smooth within its support). Moreover, the integration by parts
formula gives

−
∫
R2

∂sf(x)φt,h(x) dx =

∫
R2

f(x)∂sφt,h(x) dx

as φ vanishes on the boundary of its support. Finally, by the representation (4.2)
we find that the deconvolution kernel possesses all properties that are used for
the proof of Theorem 3.1 and therefore Theorem 3.1 is also satisfied for the
function φ.

Throughout this section the nominal level is fixed as α = 0.05, and level and
power are always stated in percent.

4.1. A local test for modality – testing for a single mode

In this section we investigate the performance of a local test for the existence of
a mode (more precisely a local maximum) at a given location x0 which is defined
by testing several hypotheses of the form (2.4) simultaneously. Moreover, the
influence of the choice of the different parameters on the power of the test is
also investigated. To be precise, we conduct four tests for the hypotheses (2.4)
with a fixed bandwidth h = h0. The postulated mode is given by the point x0 =
(0, 0)� and the four directions and locations are chosen as s1 = t1 = (1, 0)�,
s2 = t2 = (0, 1)�, s3 = t3 = (−1, 0)� and s4 = t4 = (0,−1)�. We conclude that
f has a local maximum at the point x0 = (0, 0)�, whenever all hypotheses

Hsj ,tj ,h0

0,decr , j = 1, . . . , 4,

are rejected, that is

Tn
sj ,tj ,h0

> κj
n(α) for all j = 1, . . . , 4, (4.3)

where κj
n(α) is defined by (3.11). An illustration of the considered situation is

provided in Figure 2. The quantiles κn(0.05) defined in (3.9) are derived by
1000 simulation runs based on normal distributed random vectors. In Table
1 we display the normalized quantiles

√
nκ1

n(0.05) for the sample sizes n =
500, 1000, 4000 observations and h0 = 0.5. Here, the value of the parameter of
the Laplacian error density has been chosen as σ = 0.075.

The approximation of the level of the test for a mode at the point x0 defined
by (4.3) is investigated using a uniform distribution on the square [−2.5, 2.5]2 for
the density f . Recall that the quantiles κj

n(α) are constructed in such a way that
the probability of at least one false rejection of any of the tests (4.3) is at most
α. However, the detection of the presence of a mode is based on simultaneous
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Fig 2. Illustration of the four local tests for monotonicity used to define the test (4.3) for
h0 = 0.5. The crosshatched squares display the support of the functions Fsj ,tj ,h0

, j = 1, . . . , 4,

and the arrows the directional vectors sj , j = 1, . . . , 4.

n
√
nκ1

n(0.05)
500 0.039
1000 0.044
4000 0.041

Table 1

Simulated quantiles
√
nκ1

n(0.05) of the test (4.3). The density fε is defined in (4.1).

rejection of all four tests in (4.3). Thus, the multiscale method is conservative
for the local test for modality. In order to obtain a better approximation of the
nominal level we propose a calibrated version of the test, where the quantiles
are chosen such that the test keeps its nominal level α = 0.05. For this purpose,
it turned out to be reasonable to simulate the quantiles for each of the four
tests separately using 1000 simulation runs based on normal distributed random
variables each. Note that this calibration does not require any knowledge about
the unknown density f . The simulated rejection probabilities are presented in
Table 2 for the parameters h0 = 0.5 and σ = 0.075.

n level level (cal.)
500 0.3 4.2
1000 0.1 4.0
4000 0.4 3.1

Table 2

Simulated level (in percent) of the test (4.3) for a mode of a 2-dimensional density. Second

column: test defined by (4.3); third column: test defined by (4.3), where the quantiles κj
n(α)

are replaced by calibrated quantiles.

Power considerations of the test (4.3): For power considerations we sam-
ple the Zi in model (1.1) from three unimodal distributions with differently
shaped modal regions. To this end, we fix the values of h0 = 0.5 and σ = 0.075
and use normal distributed random variables Zi with mean zero and covariance
matrices I (the 2× 2 identity matrix) and

Σ1 =
( 0.7 −0.7
−0.7 1.4

)
and Σ2 =

( 1.4 −1.5
−1.5 2.2

)
. (4.4)
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The simulated rejection probabilities are presented in Table 3 and show that
the mode test performs well, even for small sample sizes. We further note the
superiority of the calibrated test. Moreover, we find that the shape of the modal
region, which is determined by the absolute values of the eigenvalues of the
covariance matrix, has a strong influence on the power of the test (4.3). In the
case of N (0,Σ1)-distributed random variables Zi (eigenvalues approximately
1.8 and 0.3) the test performs better as for standard normal observations (with
both eigenvalues equal to one). In the case of N (0,Σ2)-distributed random
variables Zi (eigenvalues approximately 3.4 and 0.3) the test performs slightly
worse than in the first case but still better as for standard normal observations
due to the eigenvalue with absolute value smaller than one.

I Σ1 Σ2

n power power (cal.) power power (cal.) power power (cal.)
500 39.4 74.7 78.5 94.7 72.6 92.6
1000 71.1 93.3 96.7 99.3 96.5 98.9
4000 99.9 100 100 100 100 100

Table 3

The power of the test (4.3) for a mode at the point x0 = (0, 0)�. The random variables Zi

are centered normal distributed with covariance matrices I, Σ1 and Σ2 given in (4.4).
Second, fourth and sixth column: test defined by (4.3); third, fifth and seventh column: test

defined by (4.3), where the quantiles κj
n(α) are replaced by calibrated quantiles.

Dependence of the power on a misspecification of the position of
the mode: We also investigate the influence of a (slight) misspecification of the
position of the candidate mode on the power of the test (4.3) in the situation
considered in Table 3 with covariance matrix I for the candidate mode x0 =
(0.2, 0.2)�. The results are presented in Table 4 and should be compared with
the second and third column in Table 3. We find that the slight misspecification
of the position of the candidate mode affects the power of the method only
slightly.

x0 = (0.2, 0.2)�

n power power (cal.)
500 34.9 70.8
1000 70.1 89.3
4000 99.9 100

Table 4

Influence of a misspecification of the mode on the power of the test (4.3) for a mode at the
point x0 = (0.2, 0.2)�. The random variables Zi in model (1.1) are standard normal

distributed and therefore the true mode is given by (0, 0)�. Second column: test defined by

(4.3); third column: test defined by (4.3), where the quantiles κj
n(α) are replaced by

calibrated quantiles.

Dependence of the power on the bandwidth: Next we fix the number of
observations, that is n = 1000, the value of the parameter σ = 0.075 and vary the
bandwidth h0 to investigate its influence on the power of the test (4.3). Recall
that by the proposed choice of a Laplacian error density, the deconvolution
kernel has compact support in [−1, 1]2. Hence, by dividing the bandwidth by
2 a fourth of the area is considered and (roughly) a fourth of the number of
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observations is used for the local test. Thus, we observe a decrease in power of
the test for decreasing values of bandwidths which is illustrated in Table 5.

h0 level power level (cal.) power (cal.)
0.3 0.5 7.8 4.6 35.3
0.4 0.2 29.6 4.5 71.7
0.5 0.1 71.1 4.0 93.3
0.6 0.2 95.3 4.8 99.5

Table 5

Dependence of the power of the test (4.3) for a mode at the point x0 = (0, 0)� on the
bandwidth in the situation of Table 3 with covariance matrix I, where the number of

observations is fixed to n = 1000. Second and third column: test defined by (4.3); fourth and

fifth column: test defined by (4.3), where the quantiles κj
n(α) are replaced by calibrated

quantiles.

Dependence of the power on the scale parameter σ: We also investi-
gate the influence of the scale parameter σ on the power of the test (4.3). To
this end, we fix the bandwidth as h0 = 0.5 and the number of observations as
n = 1000 and vary the value of σ. The results are shown in Table 6 and we
observe that an increase in the value of σ decreases the power of the test. On
the other hand the power of the test is very stable for small values of σ.

σ level power level (cal.) power (cal.)
0.0 (direct setting) 0.4 77.7 4.7 94.1

0.075 0.1 71.1 4.0 93.3
0.15 0.2 71.1 3.6 92.8
0.3 0.4 62.3 3.8 87.2
1.0 0.3 31.4 4.5 59.4

Table 6

Dependence of the power of the test (4.3) for a mode at the point x0 = (0, 0)� on the scale
parameter in the situation considered in Table 3 with covariance matrix I, where the

number of observations is fixed to n = 1000. Second and third column: test defined by (4.3);

fourth and fifth column: test defined by (4.3), where the quantiles κj
n(α) are replaced by

calibrated quantiles.

4.2. A local test for modality – testing for two modes simultaneously

We also consider a bimodal density and conduct simultaneously local tests for
modality based on the hypotheses (2.4) for the candidate modes x1 = (0, 0)�

and x2 = (3, 0)�. We conduct eight tests for the hypotheses (2.4) for a fixed
bandwidth h = h0 = 0.5 with s1 = s5 = t1 = (1, 0)�, s2 = s6 = t2 = (0, 1)�,
s3 = s7 = t3 = (−1, 0)�, s4 = s8 = t4 = (0,−1)� and t5 = (4, 0)�, t6 = (3, 1)�,
t7 = (2, 0)�, t8 = (3,−1)� and conclude that f has a local maximum in x1 =
(0, 0)� whenever all hypotheses

Hsj ,tj ,h0

0,decr , j = 1, . . . , 4,

are rejected, that is

Tn
sj ,tj ,h0

> κj
n(α) for all j = 1, . . . , 4 (4.5)
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Fig 3. Illustration of the eight local tests for monotonicity used to create the tests (4.5) and
(4.6). The crosshatched squares display the support of the functions Fsj ,tj ,h0

, j = 1, . . . , 8,

and the arrows the directional vectors sj , j = 1, . . . , 8.

and that f has a local maximum in x2 = (3, 0)� whenever all hypotheses

Hsj ,tj ,h0

0,decr , j = 5, . . . , 8,

are rejected, that is

Tn
sj ,tj ,h0

> κj
n(α) for all j = 5, . . . , 8, (4.6)

where the quantile κj
n(α) is defined by (3.11). An illustration of the considered

scales is provided in Figure 3. For the investigation of the approximation of the
nominal level we consider a uniform distribution on the rectangle [−2.5, 5.5] ×
[−2.5, 2.5] for the density f . The scaling factor in the Laplace density is given
by σ = 0.075. For power investigations we consider two bimodal densities given
by a uniform mixture of a standard normal distribution and a N ((3, 0)�, I)
distribution (symmetric) and a uniform mixture of a N ((0.0)�, 1.2I) and a
N ((3.2, 0.1)�, 0.8I) distribution (asymmetric). The results for the calibrated
version of the test are given in Table 7.

Symmetric Asymmetric
n level power x1 power x2 power x1 power x2

500 5.3 34.6 33.0 23.6 48.5
1000 5.2 48.7 49.9 39.0 72.9
4000 4.2 84.4 81.7 76.1 97.1

Table 7

Simulated level and power of the tests (4.5) and (4.6) for a mode at the points x1 = (0, 0)�

and x2 = (3, 0)�, where the quantiles κj
n(α) are replaced by calibrated quantiles. The

random variables Zi in model (1.1) are given by a uniform mixture of a standard normal
distribution and a N ((3, 0)�, I) distribution (symmetric) and a uniform mixture of a

N ((0.0)�, 1.2I) and a N ((3.2, 0.1)�, 0.8I) distribution (asymmetric).

We observe that in the symmetric case the test detects both modes with
(roughly) the same power, whereas in the asymmetric case the mode with smaller
variance (even though there is a slight misspecification of its position) is detected
more often.

A scatter plot of n = 4000 observations from the convolution of the asymmet-
ric bimodal density and a bivariate Laplace distribution with scale parameter
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Fig 4. n = 4000 observations drawn from the convolution of a uniform mixture of a
N ((0.0)�, 1.2I) and a N ((3.2, 0.1)�, 0.8I) distribution and a bivariate Laplace distribution
with scale parameter σ = 0.5.

σ = 0.5 is given in Figure 4. Here, a look at the scatter plot does not give a
hint on the number of modes of the distribution. However, the test (4.5), where
the quantiles κj

n(α) are replaced by calibrated quantiles, is still able to detect
a mode at (0, 0)� in 48.4 percent of the repetitions and the test (4.6) with cal-
ibrated quantiles detects a mode in (3, 0)� in 81.4 percent of the repetitions.
The simulated level for the calibrated quantiles is 4.1.

4.3. Inference about local monotonicity of a multivariate density

The multiscale approach introduced in Section 2 can be used to obtain a graph-
ical representation of the monotonicity behavior of a (bivariate) density. We
construct a global map indicating monotonicity properties of the density f by
conducting the tests (3.10) for the hypotheses (2.2) for a fixed bandwidth of
h = 0.5. The set of test locations Tt is defined as the set of vertices of an
equidistant grid in the square [−1, 2]2 with width 1 and the set of test direc-

tions is given by Ts = {s1 = −s3 =
√
2
−1

(1, 1)�, s2 = −s4 =
√
2
−1

(−1, 1)�}.
The tests (3.10) are conducted for every triple

(s, t, h0) ∈ Ts × Tt × {h0}.
The scaling factor for the Laplace density in the convolution model (1.1) is given
by σ = 0.075. We consider the tri-modal density with differently shaped modal
regions displayed in Figure 5.

Figure 1 in Section 2 provides the graphical representation of the monotonic-
ity behavior of the density f . Here, each arrow at a location t in direction s
displays a rejection of a hypothesis (2.2). The map indicates the existence of
modes close to the points (−0.5,−0.5)�, (1.5,−0.5)� and (0.5, 1.5)�.

5. Proof of Theorem 3.1

We split the proof of Theorem 3.1 in three parts. The first part is dedicated to
several auxiliary results involving the deconvolution kernel Fs,t,h. In the second



Multiscale inference for multivariate deconvolution 4197

Fig 5. The density of a (uniform) mixture of a N ((−0.4,−0.57)�, 0.2I),
N ((1.5,−0.6)�, 0.25I) and N ((0.45, 1.6)�, 0.5I) distribution.

part of the proof we show the approximation (3.8). Finally we conclude by
proving the boundedness of the limit distribution in the third part.

Throughout this section the symbols � and � mean less or equal and greater
or equal, respectively, up to a multiplicative constant independent of n and
(s, t, h), and the symbol |as,t,h| � |bs,t,h| means that |as,t,h/bs,t,h| is bounded
from above and below by positive constants.

5.1. Auxiliary results

We begin with some basic transformations of the deconvolution kernel Fs,t,h.
Recall that

Fs,t,h(.) = F−1
(

F (∂sφt,h)

F (fε)

)
(.) = h−d−1F−1

(∫
Rd e

−iy.x(∂sφ)((x− t)/h) dx

F (fε)(y)

)
(.)

by definition of the kernel φt,h and the Fourier transform. A substitution in the
inner integral shows that

Fs,t,h(.) = h−1F−1
(e−iy.tF (∂sφ)(hy)

F (fε)(y)

)
(.). (5.1)

By the definition of the inverse Fourier transform and a substitution in the outer
integral, we obtain

Fs,t,h(x) =
h−1

(2π)d

∫
Rd

eix.y e−iy.tF (∂sφ)(hy)

F (fε)(y)
dy = h−d−1

(2π)d

∫
Rd

eiy.
x−t
h

F (∂sφ)(y)

F (fε)(y/h)
dy.

(5.2)

Furthermore, as ∂sφ =
∑d

k=1 sk∂ekφ, where ek, k = 1, . . . , d, denotes the kth
unit vector of Rd, we have

F (∂sφ)(y) =

d∑
k=1

skiykF (φ)(y),
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where i denotes the imaginary unit. The following lemma presents some imme-
diate consequences of the Assumptions 2 and 3 made in Section 3.

Lemma 5.1. Let l ∈ {1, . . . , d}, m ≥ 2 and m̃ = �(d+ 1)/m�. It holds

1. Ss =

∫
Rd

(
1+ ‖y‖2

)r/2∣∣F (∂sφ)(y)
∣∣ dy < ∞ uniformly with respect to s;

2.

∫
Rd

∣∣∣ ∂m̃

∂ym̃l

( F (∂sφ)(y)

F (fε)(y/h)

)∣∣∣ dy � h−r.

Proof of Lemma 5.1. 1.: An application of Cauchy-Schwartz’s inequality yields
for any δ > 0

Ss =

∫
Rd

(
1 + ‖y‖2

)r/2+(d+δ)/4(
1 + ‖y‖2

)−(d+δ)/4∣∣F (∂sφ)(y)
∣∣ dy

≤
(∫

Rd

(
1 + ‖y‖2

)r+(d+δ)/2∣∣F (∂sφ)(y)
∣∣2 dy)1/2∥∥(1 + ‖y‖2

)−(d+δ)/4∥∥
L2(Rd)

.

By Assumption 3, there exists a constant δ > 0 such that the latter integral
is bounded uniformly with respect to s. Hence, the assertion follows from the
integrability of the function (1 + ‖y‖2)−(d+δ)/2.

2.: By Leibniz’s rule we have

∣∣∣ ∂m̃

∂ym̃l

( F (∂sφ)(y)

F (fε)(y/h)

)∣∣∣ � m̃∑
k=0

∣∣∣ ∂m̃−k

∂ym̃−k
l

F (∂sφ)(y)
∂k

∂ykl

1

F (fε)(y/h)

∣∣∣.
Moreover, from Lemma 7.2 it follows that

∣∣∣ ∂k

∂ykl

1

F (fε)(y/h)

∣∣∣
�

∑
(m1,...,mk)∈Mk

1

|F (fε)(y/h)|m1+...+mk+1
h−k

k∏
j=1

∣∣∣( ∂j

∂yjl
F (fε)

)
(y/h)

∣∣∣mj

,

where Mk is the set of all k-tuples of non-negative integers satisfying
∑k

j=1 jmj =
k. Assumption 2 in Section 3 yields the estimates

∣∣∣ ∂j

∂yjl
F (fε)(y)

∣∣∣ � (
1 + ‖y‖2

)−(r+j)/2
and

1

|F (fε)(y)|
�

(
1 + ‖y‖2

)r/2
.

Thus, as
∑k

j=1 jmj = k for some (m1, . . . ,mk) ∈ Mk, we find

∣∣∣ ∂k

∂ykl

1

F (fε)(y/h)

∣∣∣
�h−k

∑
(m1,...,mk)∈Mk

(
1 + ‖ y

h‖
2
)(m1+...+mk+1)r/2

k∏
j=1

(
1 + ‖ y

h‖
2
)−mj(r+j)/2
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�h−k
∑

(m1,...,mk)∈Mk

(
1 + ‖ y

h‖
2
)(m1+...+mk+1)r/2(

1 + ‖ y
h‖

2
)−(m1+...+mk)r/2−k/2

�h−k
(
1 + ‖ y

h‖
2
)(r−k)/2

.

Hence,

∣∣∣ ∂m̃

∂ym̃l

( F (∂sφ)(y)

F (fε)(y/h)

)∣∣∣ � m̃∑
k=0

h−k
∣∣∣ ∂m̃−k

∂ym̃−k
l

F (∂sφ)(y)
∣∣∣(1 + ‖ y

h‖
2
)(r−k)/2

.

In the case r ≥ k, the claim is now a direct consequence of the estimate

h−k
(
1 + ‖ y

h‖
2
)(r−k)/2 � h−r(1 + ‖y‖2)(r−k)/2,

similar arguments as given in proof of 1. and Assumption 3.
If r < k we divide the integration area into the ball B1(0) and its complement.

For the integral

h−k

∫
B1(0)C

∣∣∣ ∂m̃−k

∂ym̃−k
l

F (∂sφ)(y)
∣∣∣(1 + ‖ y

h‖
2
)(r−k)/2

dy

we have h−k
(
1+‖ y

h‖2
)(r−k)/2 � h−r. Therefore, we can bound the integral over

the complement of the unit ball by the integral over R
d and proceed similarly

to the first case. It remains to consider the integral over the ball B1(0). To this
end, notice that

h−k
(
1 + ‖ y

h‖
2
)(r−k)/2 ≤ h−r‖y‖r−k.

Hence, by the boundedness of ∂m̃−k

∂ym̃−k
l

F (∂sφ) (which follows from the compact-

ness of the support of φ) it remains to show that the integral

∫
B1(0)

‖y‖r−k dy �
∫ 1

0

ρd−1+r−k dρ

is bounded, where we used a polar coordinate transform to obtain the inequality.
As k ≤ �(d + 1)/2� and r > 0, the integral on the right hand side is obviously
finite.

Part 1 of the following lemma shows that the constants V1, . . . , Vp defined in
(3.6) are uniformly bounded from above and below.

Lemma 5.2. It holds

1. ‖Fs,t,h‖L2(Rd) � h−d/2−r−1;

2.
∥∥Fs,t,h‖x− t‖

∥∥
L2(Rd)

� h−d/2−r;

3. ‖Fs,t,hFs′,t′,h′‖L1(Rd) � (hh′)−d/2−r−1;

4.
∥∥Fs,t,hFs′,t′,h′‖x− t‖‖x− t′‖

∥∥
L1(Rd)

� (hh′)−d/2−r.
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Proof of Lemma 5.2. 1.: Using Plancherel’s theorem and the representation
(5.1), we obtain

‖Fs,t,h‖2L2(Rd) � h−2
∥∥∥e−iy.tF (∂sφ)(h.)

F (fε)(.)

∥∥∥2
L2(Rd)

= h−2

∫
Rd

∣∣∣F (∂sφ)(hy)

F (fε)(y)

∣∣∣2 dy.
(5.3)

It now follows from Assumption 2 and a substitution that

‖Fs,t,h‖2L2(Rd) � h−d−2r−2

∫
Rd

(
1 + ‖y‖2)r

∣∣F (∂sφ)(y)
∣∣2 dy,

and the latter integral is bounded by Assumption 3 which concludes the proof
of the upper bound.

For the lower bound we find from (5.3) and Assumption 2 that

‖Fs,t,h‖2L2(Rd) � h−2

∫
Rd

(
1 + ‖y‖2

)r∣∣F (∂sφ)(hy)
∣∣2 dy

� h−d−2

∫
Rd

(
1 + ‖ y

h‖
2
)r∣∣F (∂sφ)(y)

∣∣2 dy
� h−d−2r−2

∫
Ba(0)C

∣∣F (∂sφ)(y)
∣∣2 dy

for any constant a > 0. Moreover,∫
Ba(0)C

∣∣F (∂sφ)(y)
∣∣2 dy =

∫
Rd

∣∣F (∂sφ)(y)
∣∣2 dy − ∫

Ba(0)

∣∣F (∂sφ)(y)
∣∣2 dy

� ‖∂sφ‖2L2(Rd)

for a sufficiently small radius a by the integrability of |F (∂sφ)|2 (Assumption
3) and Plancherel’s theorem. Furthermore, the mapping s �→ ‖∂sφ‖L2(Rd) is
continuous such that by Assumption 3 ‖∂sφ‖L2(Rd) ≥ c > 0 for a constant c
that does not depend on s.

2.: The representation (5.2) and a substitution in the integral for the variable
x show

∥∥Fs,t,h‖x− t‖
∥∥2
L2(Rd)

=
h−d

(2π)2d

∫
Rd

‖x‖2
∣∣∣ ∫

Rd

eiy.x
F (∂sφ)(y)

F (fε)(y/h)
dy

∣∣∣2 dx.
As ‖x‖2 = x2

1 + . . .+ x2
d, the differentiation rule for Fourier transforms yields

∥∥Fs,t,h‖x− t‖
∥∥2
L2(Rd)

=
h−d

(2π)2d

d∑
k=1

∫
Rd

∣∣∣ ∫
Rd

eiy.x
∂

∂yk

( F (∂sφ)(y)

F (fε)(y/h)

)
dy

∣∣∣2 dx
= h−d

d∑
k=1

∥∥∥F−1
( ∂

∂yk

( F (∂sφ)(y)

F (fε)(y/h)

))∥∥∥2
L2(Rd)
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� h−d
d∑

k=1

∥∥∥ ∂

∂yk

( F (∂sφ)(y)

F (fε)(y/h)

)∥∥∥2
L2(Rd)

,

where the last identity follows from Plancherel’s theorem. We now proceed sim-
ilarly as in the proof of Lemma 5.1 2. and note that

∂

∂yk

F (∂sφ)(y)

F (fε)(y/h)

=
∂

∂yk
F (∂sφ)(y)

1

F (fε)(y/h)
− F (∂sφ)(y)(

F (fε)(y/h)
)2 ∂

∂yk

(
F (fε)(y/h)

)
.

An application of the Assumptions 2 and 3 shows

∥∥∥ ∂

∂yk
F (∂sφ)(y)

1

F (fε)(y/h)

∥∥∥2
L2(Rd)

�h−2r

∫
Rd

∣∣∣ ∂

∂yk
F (∂sφ)(y)

∣∣∣2(1 + ‖y‖2
)r

dy

�h−2r.

Moreover, by Assumption 2, we have

∥∥∥ F (∂sφ)(y)(
F (fε)(y/h)

)2
∂

∂yk

(
F (fε)(y/h)

)∥∥∥2
L2(Rd)

�h−2

∫
Rd

∣∣F (∂sφ)(y)
∣∣2(1+‖ y

h‖
2
)r−1

dy.

This concludes the proof for r ≥ 1. For r < 1 we split up the area of integration
into the ball B1(0) and its complement and find the required result for the
integration over the complement using similar arguments as in the proof of
Lemma 5.1 2. For the integral over the unit ball we also follow the line of
arguments presented in the proof of Lemma 5.1 2. which yields the required
result provided that the integral on the right hand side of the inequality

∫
B1(0)

‖y‖2r−2 dy �
∫ 1

0

ρd−1+2r−2 dρ

exists. This is the case for all r > 0 if d ≥ 2 and all r > 1
2 in the case d = 1.

3. and 4.: These are direct consequences of Hölder’s inequality and 1. resp.
2.

The following Lemma will be used in the second part of the proof of Theorem
3.1.

Lemma 5.3. For 1 ≤ j, k ≤ p and m ≥ 2 we have for the function Fj = Fsj ,tj ,hj

defined in (3.2)

1. |Fj(x)| � h−d−r−1
j for all x ∈ Rd;

2. E(|Fj(Y1)|m) � h
−(m−1)d−mr−m
j .
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Proof of Lemma 5.3. 1.: Using the representation (5.2) and Assumption 2 it
follows that

|Fj(x)| �h−d−1
j

∫
Rd

∣∣∣ F (∂sjφ)(y)

F (fε)(y/hj)

∣∣∣dy
�h−d−r−1

j

∫
Rd

(
1 + ‖y‖2

)r/2∣∣F (∂sjφ)(y)
∣∣ dy = h−d−r−1

j Ssj .

The claim follows from the uniform boundedness of Ssj shown in Lemma 5.1 1.

2.: Using the representation (5.2), the boundedness of the density g and a
substitution we get∫

Rd

∣∣Fj(x)
∣∣mg(x) dx � h−md−m

j

∫
Rd

∣∣∣ ∫
Rd

e
iy. x−tj

hj
F (∂sjφ)(y)

F (fε)(y/hj)
dy

∣∣∣m dx

= h
−(m−1)d−m
j

∫
Rd

∣∣∣ ∫
Rd

eix.y
F (∂sjφ)(y)

F (fε)(y/hj)
dy

∣∣∣m dx.

The proof will be completed showing the estimate∫
Rd

∣∣∣ ∫
Rd

eix.y
F (∂sjφ)(y)

F (fε)(y/hj)
dy

∣∣∣m dx � h−mr
j .

For this purpose we decompose the domain of integration for the variable x in
two parts: the cube [−δ, δ]d for some δ > 0 and its complement. For the integral

with respect to the cube we use the upper bound
∫
Rd

∣∣ F (∂sjφ)(y)

F (fε)(y/hj)

∣∣ dy � h−r
j

provided in the proof of 1. which yields the required result.
For the integral with respect to ([−δ, δ]d)C note that∫

([−δ,δ]d)C

∣∣∣ ∫
Rd

eix.y
F (∂sjφ)(y)

F (fε)(y/hj)
dy

∣∣∣m dx

≤
d∑

k=1

d∑
l=1

∫
Ak,l

∣∣∣ ∫
Rd

eix.y
F (∂sjφ)(y)

F (fε)(y/hj)
dy

∣∣∣m dx ,

where the sets Ak,l are defined by

Ak,l =
{
x ∈ R

d | |xk| > δ, |xl| ≥ |xl′ | for all l′ 
= l
}
.

Now m̃ = �(d+ 1)/m� fold integration by parts yields∣∣∣ ∫
Rd

eix.y
F (∂sjφ)(y)

F (fε)(y/hj)
dy

∣∣∣m =
1

|xl|mm̃

∣∣∣ ∫
Rd

eix.y
∂m̃

∂ym̃l

( F (∂sjφ)(y)

F (fε)(y/hj)

)
dy

∣∣∣m,

provided that ∂m̃

∂ym̃
l

( F (∂sjφ)(y)

F (fε)(y/hj)

)
∈ L1(Rd), which holds by Lemma 5.1 2. A

further application of Lemma 5.1 2 shows that∫
Ak,l

∣∣∣ ∫
Rd

eix.y
F (∂sjφ)(y)

F (fε)(y/hj)
dy

∣∣∣m dx � h−mr
j

∫
[−δ,δ]C

|xl|d−1

|xl|d+1
dxl,

as |xl′ | ≤ |xl| for all l′ 
= l and |xl| > δ in Ak,l.
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5.2. Proof of the approximation (3.8)

For the consideration of the absolute values we introduce the set

T ′
n := Tn ∪ {(−s, t, h) | (s, t, h) ∈ Tn} =: {(sj , tj , hj) | j = 1, . . . , 2p}

and denote by A ′ the set of all hyperrectangles in R
2p of the form

A = {w ∈ R
2p | aj ≤ wj ≤ bj for all 1 ≤ j ≤ 2p}

for some −∞ ≤ aj ≤ bj ≤ ∞ (1 ≤ j ≤ 2p).
We will show below in Section 5.2.1 that the random vectors

Xi = (Xi,1, . . . , Xi,2p)
� ∈ R

2p, i = 1, . . . , n,

with

Xi,j = h
d/2+r+1
j

(
Fj(Yi)− E(Fj(Y1))

)
(i = 1, . . . , n, j = 1, . . . , 2p)

fulfill

sup
A∈A ′

∣∣∣P( 1√
n

n∑
i=1

Xi ∈ A
)
− P

( 1√
n

n∑
i=1

Y ′
i ∈ A

)∣∣∣
�
(h−d

min log
7(n)

n

)1/6

+
(h−d

min log
3(n)

n1−2/q

)1/3

(5.4)

for any q > 0, where Y ′
1 , . . . , Y

′
n are independent random vectors,

Y ′
i = (Y ′

i,1, . . . , Y
′
i,2p)

� ∼ N (0,E(XiX
�
i )), i = 1, . . . , n.

Note that we have

1√
n

n∑
i=1

Y ′
i ∼ N(0,E(X1X

�
1 )),

where

E(X1X
�
1 )=

(
(hjhk)

d/2+r+1
(
E(Fj(Y1)Fk(Y1))−E(Fj(Y1))E(Fk(Y1))

))
1≤j,k≤2p

,

as the random variables X1, . . . , Xn are i.i.d. and Y ′
1 , . . . , Y

′
n are independent.

Introduce a Gaussian process (B̃(Φ))Φ∈L∞(Rd) indexed by L∞(Rd) as a pro-
cess whose mean and covariance functions are 0 and∫

Rd

Φ1(x)Φ2(x)g(x) dx−
∫
Rd

Φ1(x)g(x) dx

∫
Rd

Φ2(x)g(x) dx, (5.5)

respectively. Hence, there exists a version of B̃(Φ) such that

1√
n

n∑
i=1

Y ′
i =

(
h
d/2+r+1
1 B̃(F1), . . . , h

d/2+r+1
2p B̃(F2p)

)�
.

To derive an alternative representation of the process B̃ recall the definition of
the isonormal process (B(Φ))Φ∈L2(Rd) as a Gaussian process whose mean and
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covariance functions are 0 and
∫
Rd Φ1(x)Φ2(x) dx, respectively (see, e.g. [21],

Section 5.1). In particular, note that (B(1A))A∈B(Rd) defines white noise, where

B(Rd) denotes the Borel-σ-field on R
d. Throughout this paper, we will use the

notation B(Φ) =
∫
Rd Φ(x) dBx.

There exists a version of the isonormal process such that B̃(Φ) = B(Φ
√
g)−∫

Rd Φ(x)g(x) dxB(
√
g) for Φ ∈ L∞(Rd) (one proves easily that (B(Φ

√
g) −∫

Rd Φ(x)g(x) dxB(
√
g))Φ∈L∞(Rd) defines a Gaussian process with the covariance

kernel (5.5)). Thus,

max
1≤j≤2p

∣∣B̃(Fj)−B(Fj
√
g)
∣∣ = max

1≤j≤2p

∣∣∣ ∫
Rd

Fj(x)g(x) dxB(
√
g)
∣∣∣.

From (2.5) we have

∣∣∣ ∫
Rd

Fj(x)g(x)dx
∣∣∣ = |E[Fj(Y1)]| =

∣∣∣ ∫
Rd

∂sf(x)φt,h(x)dx
∣∣∣ = O(1) (5.6)

uniformly with respect to s, t, h (by assumption). Furthermore,

B(
√
g) ∼ N(0,

∫
Rd

g(x) dx) ∼ N(0, 1),

which implies that

E
(

max
1≤j≤2p

h
d/2+r+1
j

∣∣B̃(Fj)−B(Fj
√
g)
∣∣) � hd/2+r+1

max .

An application of Markov’s inequality finally proves

max
1≤j≤2p

h
d/2+r+1
j

∣∣B̃(Fj)−B(Fj
√
g)
∣∣ = OP(| log(hmax)|1/2hd/2+r+1

max ). (5.7)

Here, we have investigated convergence in probability w.r.t. the sup-norm. How-
ever, standard arguments show that this implies the convergence which is inves-
tigated in Theorem 3.1.

In a second step we find that the normalization with cj := (
√

g(tj)Vj)
−1, j =

1, . . . , 2p, has no influence on the convergence as translation and multiplication
preserve the interval structure. More precisely, for any set A = [a1, b1] × . . . ×
[a2p, b2p] ∈ A ′ we have

{(
cjh

d/2+r+1
j B(Fj

√
g)
)2p
j=1

∈ A
}

=
{(

h
d/2+r+1
j B(Fj

√
g)
)2p
j=1

∈ [c−1
1 a1, c

−1
1 b1]× . . .× [c−1

2p a2p, c
−1
2p b2p]

}
,

(5.8)

where [c−1
1 a1, c

−1
1 b1] × . . . × [c−1

2p a2p, c
−1
2p b2p] still defines an element of the set

A ′. A similar result holds for the normalization of the test statistic.
In a third step we show in Section 5.2.2 that the normalization with the

density estimator yields to a distribution-free limit process. We firstly assume
that the density g is known and prove



Multiscale inference for multivariate deconvolution 4205

max
1≤j≤2p

∣∣∣hd/2+r+1
j

B(Fj
√
g)√

g(tj)Vj

− h
d/2+r+1
j

B(Fj)

Vj

∣∣∣
=OP

(√
hmax log(n) log log(n)

)
= oP(1).

(5.9)

Hence, by the consideration of the symmetric set T ′
n it follows from (5.4), (5.7)

and (5.9) that

sup
A∈A

∣∣∣P(( 1√
ng(tj)Vj

|
n∑

i=1

Xi,j |
)p

j=1
∈ A

)
− P

((
h
d/2+r+1
j

|B(Fj)|
Vj

)p

j=1
∈ A

)∣∣∣
=o(1),

(5.10)

as for any real valued random variable X and any a ∈ R it holds

{|X| ∈ (−∞, a]} = {X ∈ (−∞, a]} ∩ {−X ∈ (−∞, a]}.

Next we insert the bandwidth normalization terms. To this end, we introduce
the notation

w(h) =

√
log(eh−d)

log log(eeh−d)
, w̃(h) =

√
(3d− 1) log(h−d)

and write wj = w(hj), w̃j = w̃(hj). Similar arguments as in (5.8) show that the
insertion of the bandwidth correction terms has no influence on the convergence.

Thus recalling the definition of X̃j = wj

(
h
d/2+r+1
j

|B(Fj)|
Vj

−w̃j

)
in (3.7) we obtain

from (5.10)

sup
A∈A

∣∣∣P((wj

( 1√
ng(tj)Vj

|
n∑

i=1

Xi,j | − w̃j

))p

j=1
∈ A

)
− P

(
X̃ ∈ A

)∣∣∣ = o(1),

(5.11)
and it remains to replace the true density by its estimator. For this purpose we
show that

max
1≤j≤p

∣∣∣wj

( 1√
ng(tj)Vj

|
n∑

i=1

Xi,j | − w̃j

)
− X̃

(1)
j

∣∣∣ = OP

( 1

log log(n)

)
,

where X̃
(1)
j is defined in (3.4). Note that

wj
1√
nVj

|
n∑

i=1

Xi,j |
∣∣∣ 1√

g(tj)
− 1√

ĝn(tj)

∣∣∣ � wj
1√

ng(tj)Vj

|
n∑

i=1

Xi,j |‖g − ĝn‖∞

almost surely by the boundedness from below of g (and therefore of ĝn almost
surely). A null addition of the term w̃j shows that the latter is equal to

wj

( 1√
ng(tj)Vj

|
n∑

i=1

Xi,j | − w̃j

)
‖g − ĝn‖∞ + wjw̃j‖g − ĝn‖∞.



4206 K. Eckle et al.

The claim follows now from the convergence of
(
wj

(
1√

ng(tj)Vj

|
∑n

i=1 Xi,j | −

w̃j

))p
j=1

proven in (5.11) and the a.s. boundedness of the maximum of the

limiting process proven in Section 5.3 below. Note that we used the fact that

h �→ log(eh−d)

log log(eeh−d)

is decreasing in a neighborhood of 0 (cf. [30], Lemma B.11).

5.2.1. Proof of (5.4)

The proof of (5.4) mainly relies on Proposition 2.1 in [11]. The result is stated
as follows.

Theorem 5.4. Let X1, . . . , Xn be independent random vectors in R
2p with

E(Xi,j) = 0 and E(X2
i,j) < ∞ for i = 1, . . . , n, j = 1, . . . , 2p. Moreover, let

Y ′
1 , . . . , Y

′
n be independent random vectors in R

2p with Y ′
i ∼ N(0,E(XiX

�
i )), i =

1, . . . , n. Let b, q > 0 be some constants and let Bn ≥ 1 be a sequence of con-
stants, possibly growing to infinity as n → ∞. Assume that the following condi-
tions are satisfied:

1. n−1
∑n

i=1 E(X
2
i,j) ≥ b for all 1 ≤ j ≤ 2p;

2. n−1
∑n

i=1 E(|Xi,j |2+k) ≤ Bk
n for all 1 ≤ j ≤ 2p and k = 1, 2;

3. E
((

max1≤j≤2p |Xi,j |/Bn

)q) ≤ 2 for all i = 1, . . . , n.

Then,

sup
A∈A ′

∣∣∣P( 1√
n

n∑
i=1

Xi ∈ A
)
− P

( 1√
n

n∑
i=1

Y ′
i ∈ A

)∣∣∣ ≤ C(D(1)
n +D(2)

n,q),

where the sequences D
(1)
n and D

(2)
n,q are given by

D(1)
n =

(B2
n log

7(2pn)

n

)1/6

, D(2)
n,q =

(B2
n log

3(2pn)

n1−2/q

)1/3

and the constant C depends only on b and q.

For an application of Theorem 5.4 we have to verify the condition 1. and to
find an appropriate sequence Bn for conditions 2. and 3. For a proof of condition
1. notice that

E(X2
1,j) = hd+2r+2

j E
(
(Fj(Y1))

2
)
− hd+2r+2

j

(
E(Fj(Y1))

)2
� hd+2r+2

j

(
E
(
(Fj(Y1))

2
)
− 1

)
,

where we used (5.6) in the inequality. Moreover, as the density of g is bounded
from below (Assumption 1) we have

hd+2r+2
j E

(
(Fj(Y1))

2
)
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=hd+2r+2
j

∫
Rd

(Fj(x))
2g(x) dx

�hd+2r+2
j

∫
[−δ,1+δ]d

(Fj(x))
2 dx

=hd+2r+2
j

∫
Rd

(Fj(x))
2 dx− hd+2r+2

j

∫
([−δ,1+δ]d)C

(Fj(x))
2 dx.

In Lemma 5.2 1. we have proven that ‖Fj‖2L2(Rd) � h−d−2r−2
j , and using the

representation (5.2) we obtain∫
([−δ,1+δ]d)C

(Fj(x))
2 dx

� h−2d−2
j

∫
([−δ,1+δ]d)C

∣∣∣ ∫
Rd

e
iy. x−tj

hj
F (∂sjφ)(y)

F (fε)(y/hj)
dy

∣∣∣2 dx.
Moreover, [−tj1 − δ,−tj1 + 1 + δ] × . . . × [−tjd − δ,−tjd + 1 + δ] ⊇ [−δ, δ]d and a
substitution show∫

([−δ,1+δ]d)C

∣∣∣ ∫
Rd

e
iy. x−tj

hj
F (∂sjφ)(y)

F (fε)(y/hj)
dy

∣∣∣2 dx
≤
∫
([−δ,δ]d)C

∣∣∣ ∫
Rd

e
iy. x

hj
F (∂sjφ)(y)

F (fε)(y/hj)
dy

∣∣∣2 dx.
We now follow the line of arguments presented in the proof of Lemma 5.3 2. for
m = 2 and note that by conducting integration by parts we get an additional
factor hd+1

j . Hence, ∫
([−δ,1+δ]d)C

(Fj(x))
2 dx � h−d−2r−1

j . (5.12)

This concludes the proof of condition 1. as E(X2
1,j) � 1 − hj − hd+2r+2

j and
hj ≤ hmax → 0 for n → ∞.

For a proof of condition 2. note that by part 1 of Lemma 5.3 it follows that

h
(2+k)(d/2+r+1)
j E(|Fj(Y1)|2+k) � h

−kd/2
j for k = 1, 2,

and therefore Bn can be chosen proportional to h
−d/2
min .

An application of Lemma 5.3 1. yields

|Xi,j | � h
−d/2
j

and therefore condition 3. of Theorem 5.4 holds for any q > 0 for the choice of

Bn = ch
−d/2
min , provided that the constant is chosen sufficiently large.

Hence, Theorem 5.4 proves (recall that p ≤ nK)

sup
A∈A ′

∣∣∣P( 1√
n

n∑
i=1

Xi ∈ A
)
− P

( 1√
n

n∑
i=1

Y ′
i ∈ A

)∣∣∣



4208 K. Eckle et al.

�
(h−d

min log
7(n)

n

)1/6

+
(h−d

min log
3(n)

n1−2/q

)1/3

for any q > 0, which proves (5.4).

5.2.2. Proof of (5.9)

Define

Rj := h
d/2+r+1
j

∫
Rd

Fj(x)
(√

g(x)−
√
g(tj)

)
dBx, (5.13)

then the assertion follows from the statement

max
1≤j≤2p

|Rj | = OP

(√
hmax log(n) log log(n)

)
.

Here, we used the fact that the constants V1, . . . , V2p are bounded uniformly
from below (cf. Lemma 5.2). For this purpose, we will make use of a Slepian-
type result. Note that for all δ > 0

E
(
R2

j

)
= hd+2r+2

j

∫
[−δ,1+δ]d

(
Fj(x)

(√
g(x)−

√
g(tj)

))2
dx

+ hd+2r+2
j

∫
([−δ,1+δ]d)C

(
Fj(x)

(√
g(x)−

√
g(tj)

))2
dx.

(5.14)

For the first integral on the right hand side of (5.14) we use the Lipschitz
continuity of g (Assumption 1) and find

hd+2r+2
j

∫
[−δ,1+δ]d

(
Fj(x)

(√
g(x)−

√
g(tj)

))2
dx

�hd+2r+2
j

∫
[−δ,1+δ]d

(
Fj(x)‖x− tj‖ 1

2
√
ξ

)2

dx

for some ξ satisfying |ξ−g(tj)| ≤ |g(x)−g(tj)|. If δ > 0 is sufficiently small, then
g is bounded from below on [−δ, 1 + δ]d (see the remark following Assumption
1), and Lemma 5.2 2. shows that an upper bound of this term (up to some
constant) is given by

hd+2r+2
j

∫
Rd

(Fj(x))
2‖x− tj‖2 dx � h2

max.

The second integral on the right hand side of (5.14) is bounded by hmax which
follows from (5.12) and the boundedness of g (Assumption 1). Summarizing, we
obtain

E(R2
j ) � hmax.

Moreover, we can show by similar calculations as presented above and an ap-
plication of Lemma 5.2 4. that

|E
(
RjRk

)
|
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=(hjhk)
d/2+r+1

∣∣∣ ∫
Rd

Fj(x)
(√

g(x)−
√
g(tj)

)
Fk(x)

(√
g(x)−

√
g(tk)

)
dx

∣∣∣
�hmax.

Introducing the random variables

R̃j := h
d/2+r+2
j

∫
Rd

Fj(x) dBx,

we obtain from Lemma 5.2 1. and 3.

E
(
R̃2

j

)
� h2

max,E
(
R̃jR̃k

)
� h2

max.

Hence,

max
1≤j,k≤2p

∣∣∣E((Rj −Rk)
2
)
− E

(
(R̃j − R̃k)

2
)∣∣∣ � hmax,

and Theorem 2.2.5 in [1] yields

E

(
max

1≤j≤2p
Rj

)
= E

(
max

1≤j≤2p
R̃j

)
+O

(√
hmax log(n)

)
.

Note that by the symmetry of the set T ′
n with respect to the direction we have

E
(

max
1≤j≤2p

Rj

)
= E

(
max

1≤j≤2p
|Rj |

)
and

E
(

max
1≤j≤2p

R̃j

)
= E

(
max

1≤j≤2p
|R̃j |

)
,

and we can consider expectations of positive random variables here.
For an upper bound of E(max1≤j≤2p R̃j) we use the a.s. asymptotic bound-

edness of

max
1≤j≤2p

√
log(eh−d

j )

log log(eeh−d
j )

(
h−1
j

R̃j

Vj
−

√
(3d− 1) log(h−d

j )
)

shown in Section 5.3 below, which implies

E

(
max

1≤j≤2p
R̃j

)
= O

(√
log(n)hmax

)

and therefore E(max1≤j≤2p Rj) = O(
√

hmax log(n)). This proves (5.9) by an
application of Markov’s inequality.

5.3. Boundedness of the approximating statistic

In order to prove that the approximating statistic max1≤j≤p X̃j considered in
Theorem 3.1 is almost surely bounded uniformly with respect to n ∈ N we note
that for all p ∈ N

max
1≤j≤p

X̃j ≤ B,
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where the random variable B is defined by

B := sup
(s,t,h)∈Sd−1×[0,1]d×(0,1]

√
log(eh−d)

log log(eeh−d)

(
hd/2+r+1 |

∫
Rd Fs,t,h(x) dBx|

Vs,t,h

−
√
(3d− 1) log(h−d)

)
,

where the constant Vs,t,h = hd/2+r+1‖Fs,t,h‖L2(Rd). B does not depend on n
and we show below that B is almost surely bounded. We will make use of the
following result (Theorem 6.1 and Remark 1, [14]).

Theorem 5.5. Let X be a stochastic process on a pseudometric space (T , ρ)
with continuous sample paths. Suppose that the following three conditions are
satisfied.

1. There is a function σ : T → (0, 1] and a constant K ≥ 1 such that

P
(
X(a) > σ(a)η

)
≤ K exp(−η2/2) for all η > 0 and a ∈ T .

Moreover,
σ(b)2 ≤ σ(a)2 + ρ(a, b)2 for all a, b ∈ T .

2. For some constants L,M ≥ 1,

P
(
|X(a)−X(b)|>ρ(a, b)η

)
≤ L exp(−η2/M) for all η > 0 and a, b ∈ T .

3. For some constants A,B, V > 0,

N
(
(δu)1/2, {a ∈ T : σ(a)2 ≤ δ}

)
≤ Au−Bδ−V for all u, δ ∈ (0, 1],

where N(ε,T ′) denotes the packing number of the set T ′ ⊆ T .

Then, the random variable

sup
a∈T

( |X(a)|/σ(a)− (2V log(1/σ(a)2))1/2

(log(e/σ(a)2))−1/2 log log(ee/σ(a)2)

)

is finite almost surely.

For the application of Theorem 5.5 we introduce the pseudometric space
(T , ρ), where T = Sd−1 × [0, 1]d × (0, 1] and

ρ((s1, t1, h1), (s
2, t2, h2)) =

(
‖s1 − s2‖21 + ‖t1 − t2‖+ |hd

1 − hd
2|
)1/2

for (s1, t1, h1), (s
2, t2, h2) ∈ T . Moreover, for (s, t, h) ∈ T define σ(s, t, h) =

hd/2,

X(s, t, h) = σ(s, t, h)
hd/2+r+1

Vs,t,h

∫
Rd

Fs,t,h(x) dBx =
hd+r+1

Vs,t,h

∫
Rd

Fs,t,h(x) dBx.

In the following, we prove that the process X fulfills the conditions of Theorem
5.5.
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1.: We have by definition of σ and ρ that

σ(b)2 ≤ σ(a)2 + ρ(a, b)2 for all a, b ∈ T .

Furthermore, it holds

P
(
X(s, t, h) > σ(h)η

)
≤ exp(−η2/2)

as X(s, t, h)/σ(h) corresponds in distribution to a normal distributed random
variable with mean zero and variance one by definition of Vs,t,h.

2.: By definition, X(s1, t1, h1) − X(s2, t2, h2) corresponds in distribution to
a normal distributed random variable with mean zero and variance∥∥∥ hd+r+1

1

Vs1,t1,h1

Fs1,t1,h1
− hd+r+1

2

Vs2,t2,h2

Fs2,t2,h2

∥∥∥2
L2(Rd)

.

W.l.o.g. we assume in the following h1 ≤ h2 and note that condition 2. (with
L = 2) follows from the inequality∥∥∥ hd+r+1

1

Vs1,t1,h1

Fs1,t1,h1
− hd+r+1

2

Vs2,t2,h2

Fs2,t2,h2

∥∥∥
L2(Rd)

�
∥∥hd+r+1

1 Fs1,t1,h1
− hd+r+1

2 Fs2,t2,h2

∥∥
L2(Rd)

+ h
d/2
1 |Vs1,t1,h1

− Vs2,t2,h2
|

�ρ((s1, t1, h1), (s
2, t2, h2))

(5.15)

for (s1, t1, h1), (s
2, t2, h2) ∈ Sd−1 × [0, 1]d × (0, 1]. In the first inequality we used

the fact that Vs1,t1,h1
is uniformly bounded from below and

∥∥hd+r+1
1 Fs1,t1,h1

∥∥
L2(Rd)

� h
d/2
1

as shown in Lemma 5.2 1.
In a proof of the second inequality in (5.15) we note that by application of

the triangle inequality

h
d/2
1 |Vs1,t1,h1

− Vs2,t2,h2
|

=h
d/2
1

∣∣‖hd/2+r+1
1 Fs1,t1,h1

‖L2(Rd) − ‖hd/2+r+1
2 Fs2,t2,h2

‖L2(Rd)

∣∣
≤h

d/2
1 ‖hd/2+r+1

1 Fs1,t1,h1
− h

d/2+r+1
2 Fs2,t2,h2

‖L2(Rd)

≤hd+r+1
1 ‖Fs1,t1,h1

−Fs2,t2,h2
‖L2(Rd) + ‖Fs2,t2,h2

‖L2(Rd)

∣∣hd+r+1
1 −h

d/2
1 h

d/2+r+1
2

∣∣.
In Lemma 5.2 1. we have proven ‖Fs2,t2,h2

‖L2(Rd) � h
−d/2−r−1
2 , which implies

h
d/2
1 |Vs1,t1,h1

− Vs2,t2,h2
|

� hd+r+1
1 ‖Fs1,t1,h1

− Fs2,t2,h2
‖L2(Rd) +

∣∣ hd+r+1
1

h
d/2+r+1
2

− h
d/2
1

∣∣
� hd+r+1

1 ‖Fs1,t1,h1
− Fs2,t2,h2

‖L2(Rd) + |hd/2
1 − h

d/2
2 |.

(5.16)
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Moreover, we find by another application of the inequality ‖Fs2,t2,h2
‖L2(Rd) �

h
−d/2−r−1
2

‖hd+r+1
1 Fs1,t1,h1

− hd+r+1
2 Fs2,t2,h2

‖L2(Rd)

≤ hd+r+1
1 ‖Fs1,t1,h1

− Fs2,t2,h2
‖L2(Rd) + ‖Fs2,t2,h2

‖L2(Rd)|hd+r+1
1 − hd+r+1

2 |

� hd+r+1
1 ‖Fs1,t1,h1

− Fs2,t2,h2
‖L2(Rd) +

∣∣ hd+r+1
1

h
d/2+r+1
2

− h
d/2
2

∣∣
� hd+r+1

1 ‖Fs1,t1,h1
− Fs2,t2,h2

‖L2(Rd) + |hd/2
1 − h

d/2
2 |.

(5.17)

Hence, observing (5.16) and (5.17) the inequality (5.15) follows from

hd+r+1
1 ‖Fs1,t1,h1

− Fs2,t2,h2
‖L2(Rd) + |hd/2

1 − h
d/2
2 | � ρ((s1, t1, h1), (s

2, t2, h2)).
(5.18)

For a proof of this inequality we use Plancherel’s theorem which yields

‖Fs1,t1,h1
− Fs2,t2,h2

‖2L2(Rd)

�
∫
Rd

(
1 + ‖y‖2)r

∣∣∣F(
h−d
1 ∂s1φ

(
.−t1

h1

)
− h−d

2 ∂s2φ
(
.−t2

h2

))
(y)

∣∣∣2 dy.
The integrand on the right hand side can be estimated as follows

∣∣∣F(
h−d
1 ∂s1φ

(
.−t1

h1

)
− h−d

2 ∂s2φ
(
.−t2

h2

))
(y)

∣∣∣2
�

∣∣∣F(
h−d
1 ∂s1φ

(
.−t1

h1

)
− h−d

1 ∂s2φ
(
.−t1

h1

))
(y)

∣∣∣2
+
∣∣∣F(

h−d
1 ∂s2φ

(
.−t1

h1

)
− h−d

2 ∂s2φ
(
.−t2

h2

))
(y)

∣∣∣2,
and we obtain

‖Fs1,t1,h1
− Fs2,t2,h2

‖2L2(Rd)

�
∫
Rd

(
1 + ‖y‖2

)r∣∣∣ d∑
k=1

{
s1kF

(
h−d
1 ∂ekφ

(
.−t1

h1

))
(y)

− s2kF
(
h−d
1 ∂ekφ

(
.−t1
h1

))
(y)

}∣∣∣2 dy
+

∫
Rd

(
1 + ‖y‖2

)r∣∣∣F(
h−d
1 ∂s2φ

(
.−t1

h1

)
− h−d

2 ∂s2φ
(
.−t2

h2

))
(y)

∣∣∣2 dy,
where ek denotes the kth unit vector of Rd (k = 1, . . . , d). By a substitution it
follows that ∣∣∣F(

h−d
1 ∂ekφ

(
.−t1

h1

))
(y)

∣∣∣ = h−1
1

∣∣F (∂ekφ)(h1y)
∣∣,
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which gives

‖Fs1,t1,h1
− Fs2,t2,h2

‖2L2(Rd)

�h−d−2r−2
1 ‖s1 − s2‖21

∫
Rd

(
1 + ‖y‖2

)r∣∣F (∂ekφ)(y)
∣∣2 dy

+

∫
Rd

(
1 + ‖y‖2

)r∣∣∣F(
h−d
1 ∂s2φ

(
.−t1

h1

))
(y)− F

(
h−d
1 ∂s2φ

(
.−t2

h1

))
(y)

∣∣∣2 dy
+

∫
Rd

(
1 + ‖y‖2

)r∣∣∣F(
h−d
1 ∂s2φ

(
.−t2

h1

)
− h−d

2 ∂s2φ
(
.−t2

h2

))
(y)

∣∣∣2 dy.
(5.19)

Here, we used another substitution and the triangle inequality. For an upper
bound for the first term on the right hand side of (5.19), note that by As-
sumption 3

∫
Rd(1+‖y‖2)r|F (∂ekφ)(y)|2 dy is finite. Furthermore, a substitution

within the Fourier transform shows that the second term of the right hand side
of (5.19) is not greater than∫

Rd

(
1 + ‖y‖2

)r∣∣e−iy.t1 − e−iy.t2
∣∣2∣∣∣F(

h−d
1 ∂s2φ

(
.
h1

))
(y)

∣∣∣2 dy.
By an application of Euler’s formula, cos(x) ≥ 1− x for all x ≥ 0 and Cauchy-
Schwartz’s inequality, we find∣∣e−iy.t1 − e−iy.t2

∣∣2 =
∣∣1− e−iy.(t1−t2)

∣∣2 �
(
1 + ‖y‖2)1/2‖t1 − t2‖.

Therefore, two substitutions and Assumption 3 show that the second term on
the right hand side of (5.19) is bounded from above (up to some constant) by

‖t1 − t2‖
∫
Rd

(
1 + ‖y‖2

)r+1/2
∣∣∣F(

h−d
1 ∂s2φ

(
.
h1

))
(y)

∣∣∣2 dy � h−d−2r−3
1 ‖t1 − t2‖.

It remains to consider the third term on the right hand side of (5.19). Plancherel’s
theorem, the rule for the Fourier transform of a derivative and a substitution
show that the third term on the right hand side of (5.19) can be bounded by

∑
|α|≤�r+1�

∥∥∥∂α
(
h−d
1 φ

(
.
h1

)
− h−d

2 φ
(

.
h2

))∥∥∥2
L2(Rd)

�
∑

|α|≤�r+1�

{
1

h
2d+2|α|
1

∥∥(∂αφ)
(

.
h1

)
− (∂αφ)

(
.
h2

)∥∥2
L2(Rd)

+
∥∥(∂αφ)

(
.
h2

)∥∥2
L2(Rd)

∣∣ 1

h
2d+2|α|
1

− 1

h
2d+2|α|
2

∣∣},
(5.20)

where we have used Assumption 3. From the estimate ‖(∂αφ)( .
h2
)‖2L2(Rd) � hd

2

we obtain that the second term on the right hand side of (5.20) is bounded from
above (up to some constant) by

hd
2

∣∣ 1

h
2d+2|α|
1

− 1

h
2d+2|α|
2

∣∣ � h−2d−2r−2
1

∣∣hd
1 − hd

2

∣∣
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for all |α| ≤ �r + 1�. The first term on the right hand side of (5.20) can be
bounded by Lemma 7.1 using Assumption 3, that is

1

h
2d+2|α|
1

∥∥(∂αφ)
(

.
h1

)
− (∂αφ)

(
.
h2

)∥∥2
L2(Rd)

� h−2d−2r−2
1

∣∣hd
1 − hd

2

∣∣
for all |α| ≤ �r + 1�, which proves that the right hand side of (5.20) is not
greater (up to some constant) than h−2d−2r−2

1

∣∣hd
1 − hd

2

∣∣.
Hence,

‖Fs1,t1,h1
− Fs2,t2,h2

‖2L2(Rd) � h−d−2r−2
1 ‖s1 − s2‖21 + h−d−2r−3

1 ‖t1 − t2‖
+ h−2d−2r−2

1

∣∣hd
1 − hd

2

∣∣
proves (5.18) and concludes the proof of 2.

3.: Let Ñ(ε,T ′) ≡ Ñ(ε,T ′, ρ) denote the covering number of the set T ′ ⊆ T
and note that covering and packing numbers are equivalent in the sense that

N(2ε,T ′) ≤ Ñ(ε,T ′) ≤ N(ε,T ′).

Hence, it suffices to find an upper bound for the cardinality of a well-chosen
covering subset T ′ ⊂ Sd−1 × [0, 1]d × {h ∈ (0, 1] : hd ≤ δ} that fulfills the
following condition:

For any (s1, t1, h1) ∈ Sd−1 × [0, 1]d × {h ∈ (0, 1] : hd ≤ δ} there exists
(s2, t2, h2) ∈ T ′ with ρ2((s1, t1, h1), (s

2, t2, h2)) ≤ δu. It is easy to see that such
a set is given by

T ′ = T ′
1 × T ′

2 × T ′
3 , (5.21)

where T ′
1 is a covering subset of Sd−1 with respect to

√
ε = (δu)1/2√

3
and T ′

2 , T ′
3

are covering subsets of [0, 1]d, {h ∈ (0, 1] : hd ≤ δ}, respectively, with respect
to ε = δu

3 . Here, the metrics under consideration are (s2, s1) �→ ‖s2 − s1‖1,
(t2, t1) �→ ‖t2 − t1‖ and (h2, h1) �→ |hd

2 − hd
1|.

Again, we make use of the equivalence of packing and covering numbers and
determine in the following upper bounds for the packing numbers of Sd−1 and
[0, 1]d.

We begin with the determination of an upper bound for the packing number
N(

√
ε, Sd−1) w.r.t. ‖ . ‖1 for ε > 0. Note that by the equivalence of all norms in

R
d, the packing number N(

√
ε, Sd−1) w.r.t. ‖ . ‖ is of the same order in ε. We

will therefore consider the latter.
Let T ′

1 be any subset of Sd−1 such that ‖s2 − s1‖ >
√
ε for all s2, s1 ∈

T ′
1 , s2 
= s1. By definition of T ′

1 , the open balls B√
ε

2

(s2) and B√
ε

2

(s1) are

disjoint for all s2, s1 ∈ T ′
1 , s

2 
= s1. Furthermore, every ball B√
ε

2

(s), s ∈ T ′
1 , is

contained in the annulus around the zero point with radii 1 +
√
ε
2 and 1 −

√
ε
2 .

Recall that the volume of this annulus is of the order (1 +
√
ε
2 )d − (1−

√
ε
2 )d.

A simple volume argument gives

#T ′
1 �

√
ε
−d

((
1 +

√
ε
2

)d − (
1−

√
ε
2

)d) � ε(−d+1)/2.
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It is a well-known fact that the packing number of [0, 1]d w.r.t. ‖ . ‖ fulfills
N(ε, [0, 1]d) � ε−d. Hence, it remains to consider the covering number
Ñ(ε, (0, δ1/d]) w.r.t. the metric (h2, h1) �→ |hd

2 − hd
1|. Observe that the distance

between adjacent points in the set T ′
3 :=

{
(jε)1/d, j = 1, . . . , � δ

ε�
}
is equal to

ε. As a consequence, Ñ(ε, (0, δ1/d]) � δ
ε .

From (5.21) and the results presented above we deduce

N
(
(δu)

1
2 , {a ∈ T : σ(a)2 ≤ δ}

)
� u

−3d−1
2 δ

−3d+1
2

and hence V in condition 3. is given by V = (3d − 1)/2. It remains to prove
the continuity of the sample paths of X. For this purpose, we will make use of
Theorem 1.3.5 in [1].

Define a further semimetric d̃ on T by

d̃((s1, t1, h1), (s
2, t2, h2)) =

(
E((X(s1, t1, h1)−X(s2, t2, h2))

2)
)1/2

and the log-entropy H(ε) = log(Ñ(ε,T , d̃)). Then, Theorem 1.3.5 in [1] states
that X has a.s. continuous sample paths with respect to the semimetric d̃ if∫ diam(T )/2

0

H1/2(ε) dε < ∞,

where diam(T ) = sup(s1,t1,h1),(s2,t2,h2)∈T d̃((s1, t1, h1), (s
2, t2, h2)). However,

by the definition of X, we have that

d̃((s1, t1, h1), (s
2, t2, h2))

= ‖V −1
s1,t1,h1

hd+r+1
1 Fs1,t1,h1

− V −1
s2,t2,h2

hd+r+1
2 Fs2,t2,h2

‖L2(Rd)

� ρ((s1, t1, h1), (s
2, t2, h2)),

where the latter inequality has been proven in 2. Hence, similar arguments as
presented in 3. show that Ñ(ε,T , d̃) � ε−a for some a > 0, which concludes
the proof of the a.s. continuity of the sample paths of X w.r.t. d̃ and implies
the a.s. continuity of the sample paths of X w.r.t. ρ.

6. Proofs of Theorems 3.2 and 3.3

Proof of Theorem 3.2. Denote by q the probability of at least one false re-
jection among all tests (3.10) and (3.12). Using Theorem 3.1, we further deduce
from (3.9)

q = 1− P

(
n−1|

n∑
i=1

Fj(Yi)| ≤ κj
n(α) for all j = 1, . . . , p

)

= 1− P
(
X̃

(1)
j ≤ κn(α) for all j = 1, . . . , p

)
= 1− P

(
X̃j ≤ κn(α) for all j = 1, . . . , p

)
+ o(1) ≤ α+ o(1)

for n → ∞.
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Proof of Theorem 3.3. We begin deriving a criterion for the simultaneous
rejection of the hypotheses (2.3) on a given set of scales. To this end, let 0 <
(αn)n∈N < 1 be an arbitrary null sequence and J ⊆ {1, . . . , p} be the set of all
indices where the inequality

E(Fj(Y1)) = −
∫
Rd

∂sjf(x)φtj ,hj
(x) dx > 2κj

n(αn) (6.1)

is satisfied. An application of Theorem 3.1 shows that the probability of simul-
taneous rejection of the Null Hypotheses for all tests in (3.12) indexed by J
(where α is replaced by αn) is asymptotically equal to one, i.e.

q̃ := P

(
n−1

n∑
i=1

Fj(Yi) > κj
n(αn) for all j ∈ J

)
≥ 1− αn + o(1) = 1− o(1).

Indeed,

q̃ ≥ P

(
n−1

n∑
i=1

Fj(Yi)− E(Fj(Y1)) ≥ −κj
n(αn) for all j ∈ J

)

≥ P

(∣∣∣n−1
n∑

i=1

Fj(Yi)− E(Fj(Y1))
∣∣∣ ≤ κj

n(αn) for all j ∈ J
)

≥ 1− αn + o(1)

by similar arguments as presented in the proof of Theorem 3.2.

Now let x0 ∈ (0, 1)d be a mode of f and (s, t, h) ∈ T x0

n , i.e. ch ≥ ‖x0 − t‖ ≥
2
√
dh for some c > 2

√
d and angle(x0 − t, s) → 0 for n → ∞. Following the line

of arguments presented in the proof of Theorem 3.3 in [15], one can prove that,
under the given assumptions, ∂sf(x) � −h for all x ∈ suppφt,h. Hence,

−
∫
Rd

φt,h(x)∂sf(x) dx � h.

By Theorem 3.1, we find that

h−d/2−r−1
√
n

( log log(eeh−d)√
log(eh−d)

κn(αn)+
√

(3d− 1) log(h−d)
)
� h−d/2−r−1

√
n

√
log(h−d).

For a proof of (6.1) it remains to find a condition on h such that

hd/2+r+2 � 1√
n

√
log(h−d),

which holds for h ≥ C log(n)1/(d+2r+4)n−1/(d+2r+4) for some C > 0 sufficiently
large.



Multiscale inference for multivariate deconvolution 4217

7. Two technical results

Lemma 7.1. Let Φ : Rd → R be continuously differentiable with compact sup-
port. Then, ∥∥Φ( .

h1

)
− Φ

(
.
h2

)∥∥2
L2(Rd)

�
∣∣hd

1 − hd
2

∣∣
for all h1, h2 ∈ (0, 1].

Proof of Lemma 7.1. W.l.o.g. we assume in the following that h1 ≤ h2 and
obtain ∫

Rd

(
Φ
(

x
h1

)
− Φ

(
x
h2

))2

dx

=

∫
Rd

Φ2
(

x
h1

)
dx+

∫
Rd

Φ2
(

x
h2

)
dx− 2

∫
Rd

Φ
(

x
h1

)
Φ
(

x
h2

)
dx

=hd
1

∫
Rd

Φ2(x) dx+ hd
2

∫
Rd

Φ2(x) dx− 2hd
1

∫
Rd

Φ(x)Φ
(
h1

h2
x
)
dx.

(7.1)

Observe that
Φ
(
h1

h2
x
)
= Φ(x) +

(
− 1 + h1

h2

)
x.∇Φ(ξ)

for some ξ on the line that connects x and h1

h2
x. Hence, the term in (7.1) is

bounded by

(
hd
2 − hd

1

) ∫
Rd

Φ2(x) dx+ 2hd
1

∣∣1− h1

h2

∣∣ sup
y∈ suppΦ

‖∇Φ(y)‖
∫
Rd

|Φ(x)|‖x‖ dx

�
(
hd
2 − hd

1

)
+ hd

1 −
hd+1
1

h2
� hd

2 − hd
1.

Lemma 7.2 (Faà di Brunos formula). Let k ∈ N and assume that h1, h2 : R →
R are sufficiently smooth functions. Then,

dk

dxk
h1(h2(x)) =

∑
(m1,...,mk)∈Mk

k!

m1!...mk!
h
(m1+...+mk)
1 (h2(x))

k∏
j=1

(
h
(j)
2 (x)

j!

)mj

(7.2)
for every x ∈ R, where Mk is the set of all k-tuples of non-negative integers
satisfying

∑k
j=1 jmj = k.
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