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Abstract: Modeling and analysis of spectroscopy data is an active area
of research with applications to chemistry and biology. This paper focuses
on modelling high-dimensional spectra for the purpose of noise reduction
and prediction in problems where the spectra can be used as covariates. We
propose a functional representation of the spectra as well as functional re-
gression model that accommodates multiple spatial dimensions. Both steps
emphasize sparsity to reduce the number of parameters and mitigate over-
fitting. The motivating application for these models, discussed in some de-
tail, is predicting bone-mineral-density (BMD), an important indicator of
fracture healing, from Raman spectra, in both the in vivo and ex vivo set-
tings of a bone fracture healing experiment. To illustrate the general appli-
cability of the method, we also use it to predict lipoprotein concentrations
from spectra obtained by nuclear magnetic resonance (NMR) spectroscopy.
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1. Introduction

Spectroscopic imaging is a technique for understanding the spatial variation in
the composition of a material. It obtains a chemical spectrum at each pixel
in the imaging field. As in traditional non-imaging spectroscopy, these spectra
reflect the prevalence of different types of atomic bonds, which can ultimately be
used to make inferences about the chemical composition of the material. Since a
spectrum is obtained for every pixel, using this technique we are able to recover
spatial variation in the materials chemical composition. This can be used, for
example, to identify different types of bone in a tissue specimen that would
appear to be homogeneous when using non-spectroscopic imaging. The data
produced by spectroscopic imaging comprise a data cube that can be viewed
either as a collection of 1d spectra indexed by two or three spatial dimensions,
or as a stack of 2d (or 3d) images indexed by the position along the spectral axis
(wave number or frequency). This results in a hybrid of functional and spatial
data.
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Our goal in this paper is to propose models for dealing with these challenging
data types, especially in the context where the spectral image data is to be used
as a predictor of an outcome (e.g. the mineral content of the bone). The work
is applicable to any spectroscopic approach (e.g. infrared, nuclear magnetic res-
onance), but is motivated by Raman spectroscopy. Raman spectra arise from
light and can be used transcutaneously as a non-invasive biomedical test. How-
ever Raman spectra are quite weak and therefore sensitive analytic methods are
needed to recover meaningful changes in the spectra.

More specifically, we assume that, for each subject, we observe a collection of
functional data of the forms Xij(t), where i and j index the spatial dimensions,
and t ∈ T ⊂ R indexes the continuous functional dimension (e.g., spectral
wavelengths). Further, for each subject we observe a response y and our objective
is to effectively predict y based on the entire data {Xij(t)}. Ignoring the spatial
dimension, the problem can be formulated in the context of functional data
analysis (FDA) [1, 2]. A line of work [3, 4, 5, 6, 7, 8, 9, 10] considers the natural
situation where both the predictors and the response are functional, e.g., values
of quantities that vary over time (longitudinal data). In this paper, we consider
the case where the response is a scalar while the predictors are functional; we
refer to [11, 12, 13, 14, 15] for a sample of work in this area. From the FDA
perspective, our setting is similar to that of [15], where a functional regression
model, with real-valued response, of the form y =

∫
X(t)β(t)dt+ε is considered.

Here β(t) is the coefficient function and ε is the additive noise. It is clear that
one needs some restrictions on β, otherwise one can obtain a perfect fit to any
scalar y, based on a finite sample. In [15], the authors point out that there
are in general two approaches to dealing with a functional coefficient vector to
avoid overfitting: modeling β(t) via a truncated basis function representation, or
adding smoothness penalties of the form

∫
β(r)(t)dt to the least-squares problem,

where β(r) is the rth derivative of β. They propose a hybrid approach based
on a basis function representation and sparsity constraints on the derivatives
β(r), over a fine grid of points. See [16] for a nice survey of scalar-on-function
regression.

Our approach here can also be considered a hybrid, but with some notable
differences from [15]. First, we model the functional covariates as elements of a
reproducing kernel Hilbert space (RKHS) [17]. This allows us to obtain efficient
representations of the spectra as sparse nonnegative combinations of the kernel
functions. The nonnegativity assumption is natural when dealing with spectra;
it helps interpretation of the coefficients and results in a very different represen-
tation than that based on basis functions. The RKHS can be chosen so that its
natural norm measures the smoothness, and we can then control the smoothness
of the representation by adding a norm penalty. Alternatively, the kernel choice
can be motivated by physical considerations: for example, physics of scattering
suggests the Lorentzian (cf. (4)) for Raman spectra. Our penalized approach
to representation is also an efficient noise reduction mechanism, since {Xij(t)}
are often very noisy. This is especially important for Raman spectroscopy, since
Raman scattering is a very weak effect.

An important contribution of our approach is the joint modeling of spatial
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and spectral dimensions in a regression model. From this perspective, our ap-
proach is related to recent work on matrix or tensor regression with a low-rank
coefficient matrix [18, 19, 20]. Specifically, we impose an explicit rank-one as-
sumption on the coefficient viewed as a tensor indexed by (i, j, t), with a model
of the form

y =
∑
ij

∫
T

αiβjX̂ij(t) + ε (1)

where X̂ij(t) is our functional covariate representation. The explicit rank-one
assumption dramatically reduces the dimension of the parameter space (i.e.,
model complexity), guarding against overfitting. Among the challenges posed
by this model is the existence of cross-terms in the discrete version of (1) due to

non-orthogonality of the components of X̂ij(t), and the nonconvex nature of the
resulting least squares problem. Nevertheless, we show that a simple alternating
minimization approach can be used to fit the model, and that our approach is
effective in predicting responses based on various spectroscopy data, when a
functional relation exists. We also provide a case study of an in vivo Raman
experiment, which served as the original motivation for this model, and show
that in this case the model can be used to reveal anomalies in the dataset,
which were later traced back to an experimental flaw. In this experiment, n =
37 rats were considered, and the Raman spectra were obtained on N = 544
wavenumbers, for each rat, by rotating a source-detector pair over 5×10 possible
positions around a ring. This led to a high-dimensional, very noisy, tensor of size
5×10×544 per rat. The goal was to use the Raman tensor to build a predictive
model of bone mineral density (BMD). The denoising and implicit dimension
reduction of our approach helps reduce the potential for overfitting in building
models based on such high-dimensional tensors, relative to the sample size (i.e.,
p = 27200 covariates relative to n = 37). We refer to Section 3.2 for more details
on the in vivo experiment.

The indices i and j in model (1) need not literally reflect orthogonal spa-
tial axes, which would imply a spatial structure with primarily horizontal and
vertical patterning. Instead, i and j can index axes in any transformed coor-
dinate system, for example resulting from 2d Fourier or wavelet transforms of
the original image. Alternatively, the data may suggest a natural 2-dimensional
parameterization, such as the ring of source/detector pairs used in the in-vivo
Raman data considered in Section 3.2. In general, we only require that the
spatial variation be captured through two ordered sequences of parameters, cor-
responding to αi and βj in model (1), with the mean structure being separately
convex in (αi) and (βj).

We note that multilinear or tensor regression models have successfully been
used in the past for modeling longitudinal data with matrix covariates [21] and
in imaging applications where each image can be considered a matrix-valued
covariate [22, 23, 24]. In general, a tensor model with reduced-rank coefficients
is a fairly natural extension of a regular regression model to covariates of di-
mension ≥ 2 (see also Remark 2). Our model also takes this natural approach
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and combines it with the functional representation of the spectral dimension
of the tensor. In other words, the novelty relative to a simple tensor regression
setup is that we are dealing with tensors with both discrete and functional in-
dices (mixed tenors) and provide an effective representation of the functional
dimension suitable for dealing with nonnegative spectra. This latter aspect is
also what separates our approach from the popular approaches in the family
of partial-least squares (PLS) and principal component regression (PCR) [25].
Our representation of the spectra, via kernels of nonnegative weights, keeps the
coefficients in a roughly one-to-one correspondence with original wavenumbers.
In contrast, the coefficients in PLS or PCR are weights for the “learned” basis
functions, and individually not very meaningful. The basis functions are usually
orthonormal and not restricted to be nonnegative and have no spectral inter-
pretations. While PLS family is good for prediction, we believe our approach
has the added advantage of giving interpretable weights which in many exam-
ples are necessary for understanding which parts of the spectra affect certain
phenomena. For this reason (i.e., very different representation of spectra), we
have not directly compared to the PLS family.

The paper is organized as follows. Section 2 presents our models, starting
with our representation of the data in Section 2.1 which takes into account
its functional nature. The representation, based on a functional version of the
Lasso [26], simultaneously achieves denoising and compression. Our main re-
gression model, discussed in Section 2.2, builds on the functional representation
and takes into account the tensor aspect of the spatial spectroscopy data. In
Section 3, we apply our methods to three spectroscopy datasets. The first is a
fracture healing experiment, in which spatial in vivo Raman data were obtained
from a collection of rats, with the aim of predicting progression of healing, as
measured by the bone mineral density (BMD). The second example is ex vivo
microscopy data from the same fracture healing experiment. The ex vivo data
have higher signal-to-noise ratio than the in vivo data and are expected to pro-
vide much more accurate estimates of the BMD. Our final example is an NMR
spectroscopy experiment with the aim of predicting lipoprotein concentrations.
The paper concludes, in Section 4 with a discussion of present shortcomings and
possible extensions of this work.

2. Models and methods

We consider data that have one continuous (functional) dimension and several
discrete (spatial) dimensions. In order to describe the model in concrete terms,
we focus on the case of two discrete dimensions and a single continuous one,
although the results can be easily generalized. To be specific, the data is a
collection {

Xk
ij(·) : (i, j, k) ∈ [d1]× [d2]× [n]

}
(2)

of functions, recorded at spatial positions (i, j). Here, we are using the notation
[d1] := {1, . . . , d1} and similarly for [d2] and [n]. Index k is used to enumerate
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the samples which we assume to be i.i.d. across k. We will use t to denote the
continuous index, and assume that each function t �→ Xk

ij(t) is observed in some
interval T ⊂ R, typically at discrete points {t1, . . . , tN} ∈ T . Since our main
application here is spectroscopy, we may refer to the continuous domain T as
the spectral domain and to its elements as wavenumbers, though the model is
general.

We consider two analysis goals: finding a compact and informative represen-
tation of the data, and using the high-dimensional dataset {Xk

ij(t)} as covariates

in a regression problem to predict a response vector {yk}. These goals are re-
lated, since obtaining a compact representation of the data greatly facilitates
the regression analysis.

2.1. Functional representation

In order to obtain a compact representation of the data, we assume that each
functionXk

ij(·) lies in a reproducing kernel Hilbert space (RKHS) [17], generated

by some kernel function K : T × T → R+. Usually, the functions {Xk
ij(·)} are

only observed at a discrete set of points T := {t1, t2, . . . , tN}. We additionally
assume that each Xk

ij(·) can be well approximated by a finite linear combination
of the kernel functions anchored at points of T . That is,

Xk
ij(t) ≈ X̂k

ij(t) :=
N∑

v=1

x̂k
ijv K(t, tv), t ∈ T. (3)

This assumption simplifies the subsequent derivations and is motivated and to
some extent justified by the representer theorem [27]. The kernel function K

can be taken to be any valid kernel (positive semidefinite, symmetric bivariate
function), though our main focus will be on the Lorentzian

K(t, s) =
1

1 + ( t−s
W )2

=: L(t− s;W ), (4)

where W is a bandwidth parameter. In spectroscopy, it has been found em-
pirically that this kernel provides a good model for spectra obtained from a
chemically pure sample, and is also justified by physical considerations [28].
Another restriction that we impose is for the coefficients {xk

ijv} to be nonneg-
ative. This is also in accordance with the physics of how spectra are formed as
a weighted linear combination of spectra of pure chemical components, without
any cancellations.

Let us fix (i, j, k) for the rest of this section. Based on (3), the idea is to turn
the collection {Xk

ij(t)}t∈T into the vector of coefficients

x̂k
ij· := (x̂k

ijv, v ∈ [N ]) ∈ R
N

which is easier to work with. To achieve a compact representation, we impose a
sparsity constraint on the vector xk

ij·, seeking a representation of the form (3)
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with as few nonzero coefficients as possible. Let

X̂k
ij(t) = ϕ(t; x̂k

ij·) where ϕ(t; z) :=

n∑
v=1

zvK(t, tv),

and let ‖f‖2,N := [
∑N

v=1 f
2(tv)]

1/2 be the empirical L2 norm. The sparse rep-
resentation x̂k

ij· can be obtained by solving the following �1-regularized least-
squares problem

x̂k
ij· = argmin

z ∈R
N
+

{1

2
‖Xk

ij(·)− ϕ(· ; z)‖22,N + λH‖ϕ(· ; z)‖2H + λ1

N∑
v=1

|zv|
}
, (5)

where R
N
+ is the set of N -vectors with nonnegative components, and ‖f‖H

denotes the RKHS norm. When the RKHS norm measures roughness of the
function, regularizing by this norm leads to smoother solutions. Problem (5)
can be written in the expanded form

argmin
z ∈R

N
+

{1

2

N∑
u=1

[
Xk

ij(tu)−
N∑

v=1

zv K(tu, tv)
]2
+λH

N∑
u,v=1

zuzvK(tu, tv)+λ1

N∑
v=1

|zv|
}
.

(6)

Let K be the N×N symmetric matrix with entries K(tu, tv), and let ‖z‖p :=(∑N
v=1 |zv|p

)1/p
denote the �p norm of z = (z1, z2, . . . , zN ). Moreover, let xk

ij :=(
Xk

ij(tu), u ∈ [N ]
)
so that xk

ij is an N -vector. Then, (6) can be rewritten in the
compact form

x̂k
ij· ∈ argmin

z ∈R
N
+

{1

2
‖xk

ij −Kz‖22 + λH zTKz + λ1‖z‖1
}
. (7)

This is a standard convex problem which can be solved efficiently. Figure 2.1
shows examples of fitted Raman spectra.

2.2. Regression model

In this section we devise a model to predict a one-dimensional response {yk}
based on the observed tensor covariates {Xk

ij(t)}. Since we expect the covariates
to be noisy, we in fact base the model on the denoised covariates {X̂k

ij(t)}, as
derived in Section 2.1. Perhaps the simplest model is a rank-one multilinear map
relating the covariates to the response, that is,

yk =
∑
ij

∫
T

αiβjw(t) X̂
k
ij(t) dt+ εk (8)
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Fig 1. Examples of fitting model (3) to Raman spectra. The fitted spectra are shown
in black; the estimated non-zero coefficients {x̂k

ijv} are shown as vertical lines, with
height representing their magnitude.

for k = 1, . . . , n, where {εk} are i.i.d. noise variables. In accordance with (3),
we simplify the model further by assuming the following representation for w,

w(t) =

N∑
u=1

γuK(t, tu), t ∈ T. (9)

Combining with representation (3) for {X̂k
ij(t)} and ignoring its approximation

error, we arrive at the model

yk =
∑
ijuv

αiβjγu Guv x̂
k
ijv + εk

where Guv :=
∫
T
K(t, tu)K(t, tv) dt. Note that this is the L

2(T ) inner product of
the functions K(·, tu) and K(·, tv). Let G := (Guv) ∈ R

N×N , and note that this
is a Gram matrix. The model can be written more compactly as

yk =
∑
iju

αiβjγu x̃
k
iju + εk, where x̃k

iju =

N∑
v=1

Guv x̂
k
ijv, (10)

and the summation is over (i, j, u) ∈ [d1]× [d2]× [N ]. Note that the advantage
of this rank-one model is that it contains d1 + d2 +N variables, which in high
dimensions is far less than that of a full linear model with d1d2N variables.
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In order to fit model (10), we solve a regularized least-squares problem. Since
(i, j) represents spatial dimensions, we do not expect sparsity in α = (αi) and
β = (βj). We regularize α and β by imposing constraints

∑
i αi =

∑
i βi = 1.

This gives α and β the natural interpretation of being probability vectors. On
the other hand, we expect considerable sparsity in the functional (spectral)
domain variable γ = (γu), thus we regularize by its �1 norm.

The final element of our proposed regularizer is a penalty which tends to
bring the coefficients assigned to nearby points in T closer together. This is
justified if proximity in the functional domain signifies similar impact on the
response variable, as is the case for many functional data including spectra.
This regularization also provides a practical advantage which is discussed in
Section 2.3. As a measure of similarity, we can use the Gram matrix G. We
consider two possibilities:

(a) Weighted fused Lasso [29, 30]: A penalty of the form

fG(γ) = ρG
∑
uv

Guv|γu − γv|, for some ρG > 0. (11)

(b) Exact fused Lasso: A constrained version of the above where we force
equality among (γu); more explicitly:

fG(γ) = δC(γ), for C = {γ : γu = γv if Guv > τ} (12)

where δC is the indicator of set C in the sense of convex analysis (i.e.,
δC(x) = 0 if x ∈ C, otherwise = ∞), and τ ∈ [0, 1] is a threshold control-
ling the degree of regularization.

Unless otherwise stated, in the numerical experiments, the weighted form (a) is
used. The exact form (b) is discussed in Remark 3 below and in the context of
synthetic data model of Section 3.1.

Let D
d := {v ∈ R

d : v ≥ 0,
∑

i vi = 1} be the probability simplex in R
d.

Putting the pieces together, we solve the following problem:

(α̂, β̂, γ̂) = argmin
α∈D

d1 ,

β ∈D
d2 ,

γ ∈R
N

1

2n

n∑
k=1

(
yk −

∑
iju

αiβjγu x̃
k
iju

)2

+ ργ ‖γ‖1 + fG(γ) (13)

where ργ and either of ρG or τ (in fG) are tuning parameters chosen by cross-
validation. Note that there is a scale ambiguity in model (10) since (α, β, γ) and
(c1α, c2β, c2γ) give the same map as long as c1c2c3 = 1, but not in (13) due to
the presence of the regularizers. (Also, note that there is no sign ambiguity.)

Remark 1. Enforcing an exact rank-one constraint on the regression function
has been recently proposed in [31] in the context of regression with matrix co-
variates. Their model is similar to (8), without the functional dimension, i.e.,
yk =

∑
ij αiβjX

k
ij + εk. They enforce sparsity on both sets of coefficients (α)
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and (β) using a multiplicative �1 penalty. Our model is a more general variant
for the tensor case with mixed functional and discrete dimensions. In our appli-
cation, the coefficients (α) and (β) have physical (spatial) interpretations and
are not expected to be sparse.

Remark 2. Enforcing a low-rank assumption on the regression function has
been studied extensively in recent years. The preferred approach to the problem
is via nuclear norm penalization. We refer to [18, 19] for more details. Em-
pirically, we found that imposing a rank-one assumption directly enhances the
interpretation by considerably reducing the dimensionality.

Although we have considered a rank-one model in (8), the idea can be easily
extended to a higher-rank version. The number of parameters for the rank r
model is about r(d1+d2+N), a rough measure of the complexity of the model.
One has to consider the sample size relative to this complexity in choosing r. For
most applications in spectroscopy, the sample size is usually quite small, making
the choice of r = 1 almost inevitable. For example, in the in vivo Raman case,
after reduction of the wavenumbers, we have N ≈ 40, d1 = 5 and d2 = 10,
giving a total parameter count of ≈ 55 for the rank-one model relative to the
sample size n = 37. The rank-two model has ≈ 110 
 37 which requires severe
penalization (hence severe shrinkage effect on nonzero parameters) to combat
over-fitting.

Remark 3. An advantage of the exact fused Lasso formulation (12) is the
potential for dramatic reduction in the number of parameters. Note that this
penalty is equivalent to a set of homogeneous linear constraints on γ of the
form Aγ = 0, for a matrix A. An equivalent representation is γ = V θ where
the columns of V ∈ R

N×q form a basis for the null space of A. Here, q is
the dimension of this null space and is related to how many pairs (u, v) satisfy
Guv > τ . Thus, in the case of the exact fused Lasso, (13) can be written as

(α̂, β̂, γ̂) = argmin
α∈D

d1 ,

β ∈D
d2 ,

θ∈R
q

1

2n

n∑
k=1

(
yk −

∑
iju

αiβj(V θ)u x̃
k
iju

)2

+ ργ ‖V θ‖1 (14)

For sufficiently large τ , the “effective dimension” q of the spectral parameter θ
is much smaller than N , providing a better guard against overfitting and leading
to faster computation. For small q, one might even achieve enough regularization
in the spectral domain that �1 penalty is not needed (i.e., ργ = 0).

Convex tensor regularizers. Very recently, and while this paper was under
review, in an interesting work, [20] studied some convex regularizations in the
context of high-dimensional tensor regression, and provided theoretical analysis
of these approaches. Since their work is very relevant to our setup, we briefly
review two of their approaches to third-order tensor regression. The model is

yk = 〈B, X̃k〉+ εk, k = 1, . . . , n (15)
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where X̃k = (x̃k
iju) ∈ R

d1×d2×N and B ∈ R
d1×d2×N are third-order tensors, the

latter being a parameter to be estimated. Here, 〈B, X̃k〉 =
∑

iju Bijux̃iju is the

natural inner product on R
d1×d2×N  R

d1d2N , hence (15) is the natural linear
regression model. In [20, Section 5.1], the followingM -estimators are considered:

B̂ ∈ argmin
A ∈ Rd1×d2×N

1

2n

n∑
k=1

‖yk − 〈A, X̃k〉‖2F + λ

N∑
u=1

‖B∗∗u‖a (16)

where B∗∗u ∈ R
d1×d2 is the slice of the tensor at third index u, and we either take

‖ · ‖a := ‖ · ‖F , the Frobenius norm, or ‖ · ‖a := ‖ · ‖∗, the nuclear norm (i.e., the
sum of singular values). We will refer to these two approaches as grp_lasso_fro
and grp_lasso_nuc, respectively.

With the choice of the Frobenius norm, the regularizer is a group lasso penalty
on B, imposing sparsity on entire slices of the form B∗∗u, u = 1, . . . , N ; that is,
the penalty is useful when one expects, for any given u, that either B∗∗u has
mostly nonzero entries, or almost all its entries are zero. This is very much what
we expect with the spectra: entire measurements for a given wavenumber u are
either relevant or irrelevant.

The choice of nuclear norm penalty imposes a slice-wise low-rank restriction,
i.e., one tends to get slices B∗∗u that have low rank. (This is well-known and
can been seen by noting that the nuclear norm is the �1 norm of the spectrum
of the matrix.) This type of restriction is exactly the assumption that we made
in this work, with one major difference: In the extreme case of large λ, one
hopes that grp_lasso_nuc forces the rank of most slices B∗∗u, u ∈ [N ] to be
the minimal possible value, i.e. 1. However, there is no guarantee that one can
simultaneously achieve a low rank for all the slices (e.g., it is very unlikely that
one gets all B∗∗u to be of rank r, for a small r, at the same time).

Even when one has such a solution, one obtains different low rank solutions
for each slice B∗∗u. This is in contrast to our model where a single rank-one
(or rank r) model is enforced for all the slices. One might consider the possible
variation in low-rank solutions an advantage of grp_lasso_nuc, and in some
applications this might indeed be the case. However, in cases with an extremely
impoverished sample size as ours, a simple parameter counting favors our ap-
proach: In the extreme case, assuming all slices can be forced to have the same
rank r, grp_lasso_nuc will have at most r(d1 + d2)N free parameters, whereas
our approach (generalized to rank r) will have at most r(d1 + d2 + N), which
is much smaller. In Section 3.1, we compare these approaches on synthetic data
and empirically confirm these observations in very low sample size settings.

2.3. Optimization and computational considerations

Let us consider some practical issues regarding the models and methods dis-
cussed earlier. The cost function in (13) is not (jointly) convex in (α, β, γ), but
it is separately convex in each of these variables. A standard way to optimize
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Fig 2. Scores obtained from (17) for a sample of Raman data. The bottom plot shows
the 40 wavenmubers with the highest scores.

such functions is by alternating minimization, fixing two variables at a time and
minimizing over the other.

In practice, we might observe {Xk
ij(·)} at more points than we want to keep in

the model, observing the functions at a set of points T ′ ⊃ T and only using the
observations from the set T in fitting the model. This is primarily done to avoid
over-fitting by reducing model complexity, though it also helps reduce the overall
computational cost. One approach to choose which points to keep is to assign a
score to each point in T ′ = {t′1, t′2 . . . , t′N ′}, based on their weighted frequency
of appearing in the dataset, or simply the frequency, 1

pdn

∑
ijk 1{xk

ijv �= 0}. For
example, we can assign the following score to t′v,

sv :=
1

d1d2n

∑
ijk

x̂k
ijv, v ∈ [N ′] (17)

where {x̂k
ijv} are the coefficients in expansion (3) of Section 2.2, and the sum

runs for (i, j, k) ∈ [d1]× [d2]× [n]. We can then keep wavenumbers corresponding
to the N largest scores. Figure 2.3 shows the scores obtained for the example
Raman data and the wavenumbers corresponding to N = 40 largest scores, out
of N ′ = 544. An advantage of the weighted fused Lasso penalty used in (13)
is that we do not need to worry about the order of the wavenumbers kept in
T . The Gram matrix G automatically tries to match the coefficients of nearby
wavenumbers regardless of how they are ordered in T .

Although theoretically not necessary, in practice some crude normalization of
covariates is useful prior to fitting the model. For example, one can normalize so
that the maximum amplitude for a particular spatial combination is 1, that is,
work with the normalized sequence {x̃k

iju/(maxk,u x̃
k
iju)}. Other variations, such

as �2 normalization, are possible and empirically lead to comparable results.
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The results reported in the following are based on the maximum amplitude
normalization, unless stated otherwise.

3. Applications to spectroscopy

3.1. Synthetic data

Data generating model. Let us first describe a simplified data generating
model that captures the spectroscopy applications we have in mind. We will then
evaluate the performance of the proposed framework on simulated data from this
model. Assume for simplicity that the spatial domain is the unit square [0, 1]2

and that we partition this space into blocks, or cells, of equal size, each with
side length 1/d. We assume that the spatial features are constant over the cells.
Letting u be the spatial index, we can set ξ = (i, j) where i, j = 1, . . . , d. We
assume that the spatio-spectral signal is generated as follows:

f(ξ, t) = (μξ + w0ξ)+h0(t) + (w1ξ)+h1(t), t ∈ T. (18)

Here h0(·) is the spectrum of the compound of interest, for example, the bone
in Raman experiments described below and h1(·) is the spectrum of background
material, e.g., collagen in the Raman case. We refer to these as the signal and the
clutter, respectively. The coefficient (μξ +w0ξ)+ models the spatial variation in
the signal, with μξ modeling the mean and w0ξ the variation about the mean.
Here (·)+ is the positive part of a number. We assume that μξ = 1{ξ ∈ S}
(indicator of S) where S ⊂ [d]2 is a randomly generated subset with cardinality
|S| = s � d2, hence the signal is spatially sparse. We model wkξ, k = 0, 1 as
spatially correlated zero-mean Gaussian process with:

wkξ ∼ N(0, σ2
k), E[wkξwkξ′ ] = σ2

k exp
[
−δ(ξ, ξ′)2

τ2k

]
, k = 0, 1

where δ(ξ, ξ′) =
√
|i− i′|2 + |j − j′|2, is the �2 distance between ξ = (i, j) and

ξ′ = (i′, j′). We assume that the two processes (w0ξ) and (w0ξ′) are independent.
We assume that the signal+clutter spectra are observed indirectly via the

following measurement process: An excitation device moves along the i-axis and
a detection device along the j-axis. The excitation device at position i0 generates
a field (in the case of Raman, a laser producing light) and the detector at position
j0 collects the response. Consider a general model of attenuation where the field
attenuates along i-axis with profile αii0 = Ai0q1(i− i0) and the response along
the j-axis with profile βjj0 = Bj0q2(j − j0) for some function q1 and q2. Thus,
we can model the observed signal at joint position ξ0 = (i0, j0) for excitation
and detection devices as

Xξ0(t) =
∑
ij

αii0βjj0

[
f(ξ, t) + e(ξ, t)

]
, ξ = (i, j), ξ0 = (i0, j0). (19)

where e(ξ, t) ≡ e(i, j, t) is the noise modeled as i.i.d. samples (across i, j and t)
from N(0, σ2

X). (19) describes the a general convolution model for the observed
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Fig 3. Data generated from the synthetic model of Section 3.1 with d = 10, N = 500 and
n = 50. . (Top-left) The spectral profiles of the signal h0(t) and clutter h1(t). (Bottom-
left) The random attenuation factors Ai and Bj along the two spatial dimensions, each with
d = 10 cells. (Top-middle and right) The 3D nature of spatio-spectral signals illustrated by
showing d × d slices at t = 50, 100, . . . , 400. This is done for two different samples k = 13
(Top-middle) and k = 23 (Top-right). For each sample, three different versions are shown,
the noiseless version fk(ξ, t), the observed version Xk

ξ (t) and the optimal amplitude-corrected

version (AiBj)
−1Xk

ξ (t) where ξ = (i, j). Note the variation in spatial patterns of the signal

and clutter across samples. (Bottom-middle and right) Individual spectra at a particular spa-
tial location ξ = (6, 3), both the ideal version fk((6, 3), t) and the noisy amplitude-corrupted
version Xk

(6,3)
(t) for the two samples k = 13 (Bottom-middle) and k = 23 (Bottom-right).

spectra. In the sequel, we focus on the ideal case where the attenuation profiles
are q1(i− i0) = 1{i− i0 = 0} and q2(j − j0) = 1{j − j0 = 0}. In this case, there
is no mixing from neighboring cells and we arrive at the model

Xξ0(t) = Ai0Bj0

[
f(ξ0, t) + e(ξ0, t)

]
, ξ0 = (i0, j0). (20)

We will assume that Ai0 and Bj0 are randomly generated unknown quantities.
This simplified model captures the difficulty of the model to the first-order,
through unknown amplitudes Ai0 and Bj0 , and is a reasonable approximation
in cases where q1 and q2 are sharply concentrated around 0. Let X = {Xξ0(·) ≡
Xi0,j0(·) : i0, j0 ∈ [d]} be the collection of spatio-spectral observations.

In order to have a regression model, we need a response variable. Here, we
assume it to be the aggregate (across space) of the underlying signal amplitude:

y =
∑
ξ

(μξ + w0ξ)+ ≡
∑
ij

(μij + w0ij)+. (21)

Equations (18), (20) and (21) fully describe our generating model. We assume
that we have n i.i.d. samples (yk,Xk) ∼ (y,X), k = 1, . . . , n from this model.
Note that {Xk : k ∈ [n]} ≡ {Xk

i0,j0
(·) : (i0, j0, k) ∈ [d] × [d] × [n]} corresponds
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Fig 4. The optimal versus naive spatial averaging of spectra, namely, d−2
∑

ξ(AiBj)
−1Xk

ξ (t)

versus d−2
∑

ξ X
k
ξ (t) respectively, for the two samples k = 13 (Left) and k = 23 (Right).

to (2) with d1 = d2 = d, which has been assumed here for simplicity. We
note that only h0, h1 and {Ai, Bj} remain the same across samples; all other
parameters are generated independently for each sample, including μk

ξ , w
k
0ξ, w

k
1ξ,

changing the spatial patterns of signal and clutter in each sample (cf. Figure 3).

What synthetic data looks like. Figure 3 shows an example of the data
generated from this synthetic model. We have taken N = |T | = 500 (the number
of spectral indices), d = 10 and n = 50 (the number of samples). The signal and
clutter are generated using combinations of Lorentz kernels, cf. (4), with one
distinct component and one shared component, namely, h0(t) = L(t− 100; 5) +
0.3L(t − 250; 100) and h1(t) = L(t − 400; 50) + 0.3L(t − 250; 100). The signal
is mostly sharply concentrated around t = 100, while the clutter is vaguely
concentrated around t = 400 and the two have an overlapping component at t =
250. The randomly generated amplitudes {Ai} and {Bj} are also shown. The 3D
nature of the spectra is illustrated by showing d×d slices at t = 50, 100, . . . , 400.
This is done for two different samples k = 13, 23. For each sample, three different
versions are shown, the noiseless version fk(ξ, t), the observed version Xk

ξ (t) and

the optimal amplitude-corrected version (AiBj)
−1Xk

ξ (t) where ξ = (i, j). Note
that the observed spectra are quite weak, due primarily to two factors: (1) Most
amplitudes are small; (2) it is very likely that large amplitudes do not match
the high signal locations. For example, where AiBj is high, fk(ξ, 100) could be
small, the latter carrying the unique signal component. The optimal amplitude
correction is unavailable in practice, since AiBj is unknown, and even then the
result will be highly noisy. The noise level is taken to be σX = 0.25. Individual
spectra depicted in the bottom right corner of Figure 3 illustrate the highly
noisy nature of the observations.

Naive versus optimal averaging. Below, we will consider simulation results
for some of the methods discussed in Section 2.2, in addition to what we call
averaged lasso, avg_lasso for short, which is the usual lasso applied to averaged
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spectra. This averaging is done naively without taking into account the random
amplitudes AiBj ; namely, naive averaging computes Xk

avg(t) = d−2
∑

ξ X
k
ξ (t)

and avg_lasso fits the regression model yk ∼ γ0 +
∑

t γtX
k
avg(t) using �1

penalty on (γt). Figure 4 compares Xk
avg(t) with the result of optimal aver-

aging, d−2
∑

ξ(AiBj)
−1Xk

ξ (t), where {Ai, Bj} are the true attenuation factors
that are not available. We note that there is a strong signal in optimally-averaged
spectra, whereas in naive averaging much of the signal is lost. The tensor re-
gression captures a stronger signal by adaptively estimating the weights and in
effect fitting a regression yk ∼ γ0+d−2

∑
ξ(ÂiB̂j)

−1Xk
ξ (t), for estimated factors

{Âi, B̂j}.

Simulation results. Figure 5(a) and the first row of the table there shows the
result of applying the methods discussed in Section 2.2 to the kernel representa-
tion of the spectra (as discussed in Section 2.1). For the kernel representation, we
have used the scoring scheme of Section 2.3 and kept the top N = 100 spectral
features (a 5-fold reduction from 500 wavenumbers). For our tensor regression
model, we consider the variant given in (14), and we denote it as eref for “exact
rank, exact fusion”, since it enforce the rank, and the fusion of the γ parameter
explicitly. More precisely, we set (γu) coefficients corresponding to neighboring
spectral indices to be equal; indices u and v are neighbors if Guv ≥ 0.95. (The
Gram matrix G is built based on L(t− s; 8), matching what is used in the real-
data applications in the sequel.) The effective dimension of (γu) turned out to
be 7 for this exact fusion scheme (cf. Remark 3).

In addition, we consider the two tensor regularization approaches given in (16),
which we have called grp_lasso_fro and grp_lasso_nuc. Also included in the
comparison is the avg_lasso described earlier. To solve the convex optimiza-
tion problems involved in these methods, we have relied on CVX, a package for
specifying and solving convex programs [32, 33]. All these four methods have a
single regularization parameter which we vary over a range. The plots in Fig-
ure 5 show the prediction Root-MSE (RMSE) as a function of this regularization
parameter, where the error is computed by cross-validation over 20 batches each
containing 10 prediction samples out of n = 50. As a baseline we have also in-
cluded the RMSE of the mean model, which can be considered a regression with
just the intercept present.

Figure 5(a), and the first row of the table, clearly show the advantage of
eref over the other approaches, when deployed with the kernel representation
features. Notably, because of the low effective dimension in eref, the error is
not as sensitive to regularization parameter once it is sufficiently small, in con-
trast to the other approaches. In other words, the bulk of improvement comes
from better rescaling of the spectra done by the tensor model (and not regu-
larization of the wavenumber parameter γ). The relatively poor performance of
grp_lasso_fro and grp_lasso_nuc can be attributed to the very low sample
size we have here. This can be easily seen by the blow-up of their error as the
regularization parameter goes to zero, showing that their effective parameter di-
mension is quite large compared to the sample size (At λ = 0, they are dealing
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Denoising approach eref avg_lasso grp_lasso_fro grp_lasso_nuc

Kernel rep. 0.0237 0.1521 0.1997 0.1998
Naive smoothing (8) 0.1663 0.1551 0.1885 0.1857
Naive smoothing (2) 0.1672 0.1677 0.2003 0.2001

Fig 5. Results on the synthetic data. Plots show the prediction Root-MSE (RMSE) for our
proposed “exact rank, exact fusion” tensor lasso (14), abbreviated eref, the averaged lasso
(avg_lasso), i.e., lasso on the naively-averaged spectra, and the two tensor regularizations
of (16), abbreviated grp_lasso_fro and grp_lasso_nuc., for the Frobenius and nuclear norm
versions, respectively. The plots show RMSE as the single regularization parameter of each
method is varied. The prediction errors are computed by cross-validation. Also shown is the
mean model, i.e., regression with only the intercept present, which has RMSE of 0.2281. (Top-
left) With kernel representation. (Top-right) With naive local smoothing of zeroth order, with
window lengths = 2,8.

with a parameter to sample-size ratio of d1d2N/n = 102 ·100/50 = 200.) Never-
theless, we believe that they are very interesting approaches and should perform
quite well for moderate sample sizes. It is also interesting to note that the two
convex tensor regularizers behave almost identical, with a slight advantage for
the Frobenius norm version at lower regularization values.
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Effect of kernel representation. In order to study the effectiveness of the
kernel representation of Section 2.1, as a combined denoising and dimension
reduction step, we have also run the aforementioned methods on the spectra
denoised by a more naive approach. Namely, we partition each waveform into
blocks, or windows, of length W , and average the signal within each window.
In effect, this approach is equivalent to running a zeroth order local (polyno-
mial) smoothing, with window length W , followed by subsampling at rate 1/W .
Thus, the approach provides both denoising and dimension reduction, albeit
somewhat naively. We consider two window sizes, the very short width W = 2
as a surrogate for no denoising, and W = 8 for moderate denoising and dimen-
sion reduction. (We have avoided W = 1 due to the large covariates it produces
and the computational challenges of running on the resulting large parameter
spaces.) We have used these denoised waveforms as input to the 4 approaches
considered earlier.

Figure 3(b) and (c), as well the second and the third row of the table there,
summarize the results. It is seen that in both cases (W = 2, 8) all methods
perform no better than avg_lasso. The results are more or less similar for the
two window lengths: eref does as well as avg_lasso (and in fact slightly better
for W = 2), while grp_lasso_fro and grp_lasso_nuc perform slightly worse.
Overall, however, no method achieves a substantial gain over the mean model
with RMSE 0.2281, as opposed to the eref when applied to the kernel repre-
sentation. Note also that grp_lasso_fro and grp_lasso_nuc behave almost
identically over the whole regularization path, similar to what observed earlier;
they also behave somewhat worse for W = 2 relative to W = 8, which is ex-
pected since the (ambient) dimension of the tensor parameter in this case is four
times bigger. The conclusion is that the kernel representation paired with an
appropriate (very) low-dimensional approach, such as eref, is indeed effective
in driving down the prediction error, and both components are in fact necessary
for this success.

3.2. In vivo Raman data

The models in this paper were motivated by Raman data collected from a bone
fracture healing experiment. The study was conducted on 30 rats. Each rat
underwent a surgical procedure to induce a small defect in one of its tibias,
removing a thin slice of bone and fixing the bone to a metal plate so that it can
heal back. The rats were then monitored for an eight-week period, at two-week
intervals, starting from week 2. Six rats were sampled at all the four time points,
while the rest were only sampled at a single time point (either at week 2, 4, 6
or 8) and then sacrificed to collect ex vivo Raman and micro-CT data. We have
discarded week 2 data, due to equipment calibration issues that were resolved
later. In total, n = 37 usable rat-week samples are available for the analysis.

In order to collect the Raman spectra, a ring-shaped apparatus was devised.
The ring has d2 = 10 holes around its circumference, where an illumination or a
detection fiber can be inserted. The illumination (source) fiber emits laser light,
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and the detection fibers capture the resulting scattered light. At any given time,
only one illumination fiber is used, and the remaining holes contain detection
fibers. To obtain each Raman measurement, the ring was placed around the leg
of the rat, aligned with the defect, and the light source was placed in five differ-
ent positions resulting in measurements around the perimeter of the ring. The
spectra were recorded for wavenumbers approximately in the range 954 cm−1 to
1700 cm−1, for a total number N = 544 of wavenumbers.

Fig 6. Ring view of in vivo Raman tensor for each of the p = 5 source positions. Each
cylinder represents all the spectra collected for a particular source. The dimension per-
pendicular to the page represents the wavenumber. The dots around the ring correspond
roughly to detector positions (one of which is also a source position in each case.)

Thus the data for each rat obtained on a single measurement occasion is a
544× 10× 5 array, with the first dimension corresponding to wavenumbers, the
second to the detector position, and the third to the source position. Figure 6
visualizes these data by placing each detector waveform at the corresponding
position around the ring. Note that as the source rotates, the location of the
highest amplitude detector rotates too – the closer the detector is to the source,
the larger is the amplitude of its waveform. Figure 7 is another visualization
of a single measurement, where the source and detector dimensions are stacked
to obtain a 544 × 50 matrix. The four different plots in Figure 7 show the
same measurement at different scales. In each plot, the spectra whose amplitude
exceeds the scale are omitted from the plot.

Figure 7 clearly shows the need for normalization. Different source-detector
combinations produce spectra of highly different amplitudes, which cannot be
explained by the relative source/detector positions. After simple pre-processing
normalization discussed above, the model learns a “proper” normalization from
data by assigning a coefficient to each source and each detector. Figure 7 also
shows the noisy nature of Raman data, which is especially evident at lower
scales, suggesting that some form of denoising might be helpful. This will be
handled by our functional representation, as discussed in Section 2.1

Our main goal for the Raman data from this experiment is to test its ability
to predict well-established biomarkers of fracture healing which can be obtained
by the more costly micro-CT approach. The mirco-CT data is obtained ex vivo,
and it can measure various quantities more accurately, the primary measure of
interest being bone mineral density (BMD), which is a good indicator of how the
fracture is healing. We had access to an average BMD value within the region



Structured functional regression models 4169

of interest, resulting in n = 37 scalar BMD measurements for the available
rat-weeks.

Fig 7. Flattened view of the in vivo Raman tensor. The same data is shown on four
different scales of y-axis. In each plot, the spectra with peak amplitudes exceeding the
scale are not shown.

Here, the models of Section 2 are applicable verbatim. We centered and nor-
malized the response {yk} so that 1

n

∑
k yk = 0 and maxk |yk| = 1. The modified

Raman tensor {x̃k
iju} was normalized as discussed in Section 2.3, so as to have

the maximum amplitude of 1 for every source-detector pair. Figure 8 shows some
examples of predictive performance of the regression model (10). In each case,
the sample is split randomly into a training set and a test set, the latter contain-
ing 2 rats from each of weeks 4, 6 and 8, corresponding to a “CV batch” with 26
training and 6 test rats. We have discarded 5 rats from the sample as outliers,
based on their average prediction error across all the partitions, which were sig-
nificantly higher than the rest. A total of 50 CV batches were considered. We
employed two approaches in setting the regularization parameters: (1) Adaptive
regularization where for each batch, we chose the regularization parameters to
minimize the prediction error on the corresponding test set (the oracle choice).
This gives the best performance we could hope that the model achieves in each
case. (2) Fixed regularization, the more common approach, where a fixed set of
parameters is used for all batches, and they are chosen so that the average error
over all batches (i.e., the CV error) is minimized.

Figure 9 shows prediction errors measured by the median absolute deviation
(MAD). As baseline, the x-axis on this plot shows the error of the prediction
by the mean, that is, the error of the model with no covariates. The y-axis
shows the training and test errors of our model, together with the test error
of a simple approach traditionally used by spectroscopists, which we call ratio
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Fig 8. Normalized BMD estimation. The plots show examples of estimated versus observed
normalized BMD for the training (blue) and prediction (red) sets. The six plots correspond
to six random splittings of the data into training and prediction sets.

Fig 9. Relative prediction performance. The plots show the mean absolute deviation error, in
normalized BMD estimation, for the training (blue) and prediction (red) sets of our proposed
regression model (10), versus the error of prediction by the mean. Also shown (green) is the
error of the simpler ratio regression approach. The two panels correspond to the adaptive
versus fixed choice of regularization parameters in regression model (10).
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regression. The ratio regression approach predicts the BMD by regressing it
on the ratio of spectra at two specific wavenumbers 954 cm−1 and 1450 cm−1,
after averaging over all source-detector positions which are known to correspond
to bone density. More precisely, adopting the notation in (8), ratio regression
assumes the following model

yk = β0 + β1

X̂k
avg(t1)

X̂k
avg(t0)

+ εk (22)

where X̂k
avg(t) =

1
d1d2

∑
ij X̂

k
ij(t), t1 = 954 and t0 = 1450. Note that prediction

by the mean corresponds to assuming β1 = 0. (In fact, since we also standardize
{yk}, β0 = 0 is the optimal choice in prediction by the mean.)

Each point, on the plots in Figure 9, corresponds to a CV batch, with points
below the diagonal corresponding to partitions of the data where the model
has predictive value. With the adaptive regularization (left panel), this holds
for almost all the batches, whereas the ratio regression result for this dataset is
very similar to the baseline of predicting by the mean without using the spectral
data at all. Note also the dependence on the CV batch, with some partitions of
the data allowing for a good prediction and some not. With fixed regularization
(right panel), all the models are similar to the baseline.

Figure 10 shows the estimated coefficients of the model. The three sets of co-
efficients are the 5-vector of source weights (α), the 10-vector of detector weights
(β) and the 40-vector of wavenumber weights (γ). The high number of outliers
in source/detector weights and the general tendency of the wavenumber weights
to fluctuate around zero are in alignment with poor prediction performance.

Fig 10. Estimated model coefficients for the in vivo dataset, for both adaptive and fixed
regularization. Boxplots of source weights (5-vector), detector weights (10-vector) and
wavenumber weights (40-vector) are illustrated.

We draw the following conclusions from these results: Predicting BMD (or
similar measures) from in vivo Raman is inherently difficult (and to the best
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of our knowledge, this experiment was the first to attempt this to monitor
fracture healing). This may be due to any number of reasons – the mixing of
bone and tissue signals, variability in the rats and the small sample size, and
the quality of the Raman data from this experiment. The success of adaptive
regularization in predicting most batches (to varying degrees) and the failure of
fixed regularization suggest that the samples are not homogeneous; if this is due
to inherent population variability, a larger sample size would improve prediction.
This may also be due to data collection problems for selected experiments, due
to the sometimes inaccurate placement of the complicated ring setup, and our
discussion with the chemists who conducted the experiment suggests this is the
likely explanation.

3.3. Ex vivo Raman data

The ex vivo Raman dataset was collected from the same experiment described in
Section 3.2, obtained directly from the bone without tissue interference after the
animals were sacrificed. The data are Raman spectral maps of cross-sections of
bone. The specific locations at which the Raman spectra were collected differed
by rat, based on bone morphology, and the number of measurement locations
varied from 3 to 7, with up to 3 sub-locations for each. Thus we averaged
the spectra within rats to obtain a single average spectrum per rat. Since the
BMD is also an average value, this can be viewed as a prediction of spatially
averaged BMD from spatially averaged Raman spectra. In total, there were 23
rats measured at 806 wavenumbers.

For ex vivo data, there are no spatial dynamics to be modeled. That is,
d1 = d2 = 1, and the model becomes a functional regression with Lasso and fused
Lasso penalties. In this case, we only have one set of parameters to estimate,
namely, {γu} or equivalently, the functional weights w(t) of (9). More precisely,

the model in (8) is reduced to yk =
∫
T

w(t) X̂k
11(t) dt+ εk and the optimization

problem in (13) to

γ̂ = argmin
γ ∈RN

1

2n

n∑
k=1

(
yk −

∑
u

γu x̃
k
11u

)2

+ ργ ‖γ‖1 + fG(γ),

where fG is the weighted fused Lasso penalty in (11).
Figure 11 (left panel) shows cross-validated errors for our model (prediction

and training) and prediction errors for the baseline (prediction by the mean)
and ratio regression, described in Section 3.2. Here, a fixed set of the tuning
parameters of our model was chosen by CV in the usual fashion, so that average
CV error is minimized. The partitioning of data into prediction and training
sets, and the number of batches are as in Section 3.2. Our model provides a
noticeable improvement over the simple ratio regression which is only slightly
better than the baseline.

Also shown in Figure 11 (right panel) are the boxplots of the estimated
coefficients {γu}. In contrast to the in vivo case, one can clearly identify regions
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Fig 11. The results for ex vivo dataset. Left panel shows, from left to right: prediction
error for the mean (baseline), prediction error for our model, training error for our
model, and prediction error for ratio regression. All errors are computed from cross-
validation. Right panel shows the estimated model coefficients.

of wavenumbers that consistently exhibit large coefficients and hence are helpful
in predicting the BMD. For example, the mineral band at ≈ 954, which is known
to be excited by calcium in the bone, is prominent in the plot. Overall, these
results suggest that the main challenges in using Raman spectra to predict BMD
come from the attempt to do it in vivo, rather than some inherent problem with
the bone spectra themselves.

3.4. NMR data

To further explore the effectiveness of our approach, we also considered a dataset
of 2D diffusion-edited H NMR spectra. This dataset is extensively studied in [34].
It is also used by [31] to illustrate their matrix regression approach, discussed
in Remark 1 in Section 2.2. The dataset contains NMR spectra and lipopro-
tein concentrations for 25 human subjects. The concentrations of cholesterol
and triglyceride were obtained by ultracentrifugation, for various fractions and
subfractions in terms of lipoprotein density. The primary fractions of interest
are very low, low, intermediate, and high density lipoproteins, abbreviated as
VLDL, LDL, IDL and HDL. A total of 32 concentration levels are reported, from
which we have used the variable ‘CH_V2’, following [31]. For this variable, the
concentrations were missing for 5 subjects; hence, we take the response vector
to be the n = 20 (scalar) recorded concentration levels, and discard the spectra
corresponding to missing responses.

The NMR spectra are measured as intensity for each chemical shift (in the
range 2.5–0.6ppm); see [34] for details. For each subject, a 2-D spectrum of
dimensions 24 × 1600 is produced, where the second dimension is the spectral
one. The first dimension corresponds to 24 steps of gradient pulse strength.
Figure 12 illustrates a typical example. Note that the spectral range is indexed
sequentially from 1, as the dataset does not include the exact chemical shift
value. This dataset has both a spatial and a spectral dimension, making it a
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Fig 12. A typical example of a NMR spectrum. The spectral dimension runs to 1600.

good fit for our modeling approach. Since the spectra are smooth along the
spectral dimension, we have sub-sampled them at a rate 1/3 as a preprocessing
step to reduce the dimension of each observation to 534× 24.

Setting d2 = 1 in the regression model introduced in Section 2.2, since here
we have only one spatial dimension, results in two sets of parameters to be
estimated, {αi} and {γu}. More precisely, the model in (8) is reduced to yk =∑

i

∫
T
αiw(t) X̂

k
i1(t) dt+ εk and the optimization problem in (13) to

(α̂, γ̂) = argmin
α∈D

d1 ,

γ ∈R
N

1

2n

n∑
k=1

(
yk −

∑
iu

αiγu x̃
k
i1u

)2

+ ργ ‖γ‖1 + fG(γ)

where fG is the weighted fused Lasso penalty in (11). As with the Raman
datasets, we retain the N = 40 highest scoring chemical shifts in the model.
Figure 13 shows errors for the NMR datasets, computed over a total of 50 CV
batches, where in each batch we left 4 samples out for prediction (out of the total
of n = 20). The left panel in Figure 13 shows CV errors for the baseline (pre-
diction by the mean) and for our model (both prediction and training errors).
Here we observe a substantial improvement by our model over the baseline. The
left panel shows the boxplots for estimated coefficients α (on the top) and γ (on
the bottom). These clearly show some spatial and spectral positions to predict
the response. It further illustrates that with a sufficiently high signal-to-noise
ratio, our models can be used for prediction and variable selection.

4. Discussion

We presented a functional model for spectra which can be used for denoising and
compression as well as in downstream prediction. Based on this representation
of the data, we proposed a regression model to predict a scalar response (e.g.,
bone mineral density or lipoprotein concentration) based on multi-dimensional
spectroscopy data. The data was modeled as a tensor with several spatial di-
mensions and one spectral dimension. A rank-one multilinear map was proposed
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Fig 13. The results for NMR dataset. Left panel shows, from left to right, CV error for
prediction by the mean, prediction error for our model, and the training error for our model.
Right panel shows the estimated model coefficients.

to describe the relationship between the spectra and the response, with sparsity
imposed on the spectral domain coefficients, and smoothing based on a similar-
ity measure. The structure was enforced using regularization, with �1 penalty
to induce sparsity, and a fused Lasso type penalty to enforce similarity.

We considered the effectiveness of the approach in three settings: in vivo and
ex vivo Raman data from a fracture healing experiment, and using NMR data
in a lipoprotein concentration study. For the in vivo Raman experiments, our
results were mixed and led us to conclude that the data were not sufficiently
homogenous to allow for good global prediction, although for some partitions
of the data into training and test sets good prediction was possible. There are
many possible explanations for that, from inhomogeneity among the rats to
insufficient sample size to experimental errors in device placement, with the
latter considered the most likely explanation by our chemistry collaborators.
For the ex vivo Raman data and the NMR data, we showed that the model has
good global predictive power.

Some of the lessons learned from a modeling perspective are as follows: One
can use a kernel approach with nonnegative weights to achieve sparse represen-
tation of spectra. In addition to effective denoising and dimension reduction,
the weights obtained can be directly mapped back to the spectral domain to fa-
cilitate interpretation. We have also observed while testing various models that
whenever the choice is between simplicity and complexity, the simpler model is
more effective when dealing with very noisy high-dimensional covariates. More
precisely, simple parameter-counting and comparison with the sample size pro-
vides a good guide in deciding the complexity of the models we could hope to
fit. This, for example, has been the main reason behind restricting to rank-one
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models in this paper, though our approach can be easily extended to accommo-
date rank r > 1 (which we did try during our experiments with in vivo Raman
data). We believe it is better to try to pick the dominant mode of variation first
(r = 1) and if successful try higher rank models. Finally, it is possible to use
regression models as compelling evidence for the lack of a relation between the
response and covariates, giving the model the alternate role of a diagnostic tool.
In other words, the lack of predictive power is not always a defect of the model;
rather, when applied with enough scrutiny, it could serve as revealing possible
lack of the signal in the data. It is better to err on the side of caution by using
simple models rather than fitting a complex model and picking up relations that
do not necessarily exist.

In this paper we mainly focused on regression models. An interesting possi-
bility for future work is to look at PCA type analyses, by which we mean models
taking into account a decomposition of the spectra into relevant (and irrelevant)
components. A promising direction is to use the response variable to guide the
selection of components, along the lines of supervised PCA [35]. For the chemi-
cal interpretation to be meaningful, the components need to satisfy the physical
constraints imposed on spectra, such as positivity. This makes the problem dif-
ferent and more challenging than classical PCA or PCA-based regression. A
challenge in this case is to find alternatives to orthogonality constraints which
are meaningful for positive components and still allow for efficient optimization.

Acknowledgements

This research was supported by NIH grant 5-R01-AR-056646-03. We are grateful
to Prof. Michael Morris (Department of Chemistry, University of Michigan) and
members of his lab, especially Dr. Paul Okagbare and Dr. Francis Esmonde-
White, as well as Prof. Steven Goldstein (Orthopedic Surgery, University of
Michigan) and members of his lab for collaborating on the grant and collecting
and sharing the data, as well as for many useful discussions.

References

[1] J. O. Ramsay and B. W. Silverman. Functional Data Analysis. Springer
Series in Statistics. Springer-Verlag, New York, 2005. MR2168993

[2] F. Ferraty and P. Vieu. Nonparametric Functional Data Analysis. Springer
Series in Statistics. Springer New York, 2006. MR2229687

[3] R.A. Moyeed and P.J. Diggle. Rates of convergence in semi-parametric
modelling of longitudinal data. Australian Journal of Statistics, 36(1):75–
93, mar 1994. MR1309507

[4] S. L. Zeger and P. J. Diggle. Semiparametric models for longitudinal data
with application to CD4 cell numbers in HIV seroconverters. Biometrics,
50(3):689–699, 1994.

[5] K. Y. Liang and S. L. Zeger. Longitudinal data analysis using generalized
linear models. Biometrika, 73(1):13–22, 1986. MR0836430

http://www.ams.org/mathscinet-getitem?mr=2168993
http://www.ams.org/mathscinet-getitem?mr=2229687
http://www.ams.org/mathscinet-getitem?mr=1309507
http://www.ams.org/mathscinet-getitem?mr=0836430


Structured functional regression models 4177

[6] J. J. Faraway. Regression analysis for a functional response. Technometrics,
39(3), 1997. MR1462586

[7] D. R. Hoover, J. A. Rice, C. O. Wu, and L. P. Yang. Nonparametric
smoothing estimates of time-varying coefficient models with longitudinal
data. Biometrika, pages 809–822, 1998. MR1666699

[8] C. Wu, C. T. Chiang, and D. R. Hoover. Asymptotic confidence regions
for kernel smoothing of a varying-coefficient model with longitudinal data.
Journal of the American Statistical Association, 93(444):1388–1402, 1998.
MR1666635

[9] J. Fan and J. T. Zhang. Two-step estimation of functional linear models
with applications to longitudinal data. Journal of the Royal Statistical
Society. Series B, 62(2):303–322, 2000. MR1749541

[10] D. Y. Lin and Z. Ying. Semiparametric and nonparametric regression anal-
ysis of longitudinal data. Journal of the American Statistical Association,
96(453):103–113, 2001. MR1952726

[11] G. M. James and T. J. Hastie. Functional linear discriminant analysis for
irregularly sampled curves. Journal of the Royal Statistical Society. Series
B, (2):1–18, 2001. MR1858401

[12] G. M. James. Generalized linear models with functional predictors. Journal
of the Royal Statistical Society: Series B, (2), 2002. MR1924298

[13] F. Ferraty and P. Vieu. Curves discrimination: a nonparametric functional
approach. Computational Statistics & Data Analysis, 44(1-2):161–173, oct
2003. MR2020144

[14] H.-G. Müller and U. Stadtmüller. Generalized functional linear models.
The Annals of Statistics, 33(2):774–805, apr 2005. MR2163159

[15] G. M. James, J. Wang, and J. Zhu. Functional linear regression that’s inter-
pretable. The Annals of Statistics, 37(5A):2083–2108, oct 2009. MR2543686

[16] Philip T. Reiss, Jeff Goldsmith, Han Lin Shang, and R. Todd Ogden. Meth-
ods for Scalar-on-Function Regression. International Statistical Review,
pages 1–22, 2016.

[17] A. Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in
Probability and Statistics. Springer US, Boston, MA, 2004. MR2239907

[18] V. Koltchinskii, K. Lounici, and A. B. Tsybakov. Nuclear-norm penaliza-
tion and optimal rates for noisy low-rank matrix completion. The Annals
of Statistics, 39(5):2302–2329, oct 2011. MR2906869

[19] S. Negahban and M. J. Wainwright. Estimation of (near) low-rank ma-
trices with noise and high-dimensional scaling. The Annals of Statistics,
39(2):1069–1097, apr 2011. MR2816348

[20] Garvesh Raskutti and Ming Yuan. Convex Regularization for High-
Dimensional Tensor Regression. page 55, 2015.

[21] Peter D. Hoff. Multilinear tensor regression for longitudinal relational data.
Annals of Applied Statistics, 9(3):1169–1193, 2015. MR3418719

[22] Hua Zhou, Lexin Li, and Hongtu Zhu. Tensor Regression with Applica-
tions in Neuroimaging Data Analysis. Journal of the American Statistical
Association, 108(502):540–552, jun 2013. MR3174640

[23] Hua Zhou and Lexin Li. Regularized matrix regression. Journal of the Royal

http://www.ams.org/mathscinet-getitem?mr=1462586
http://www.ams.org/mathscinet-getitem?mr=1666699
http://www.ams.org/mathscinet-getitem?mr=1666635
http://www.ams.org/mathscinet-getitem?mr=1749541
http://www.ams.org/mathscinet-getitem?mr=1952726
http://www.ams.org/mathscinet-getitem?mr=1858401
http://www.ams.org/mathscinet-getitem?mr=1924298
http://www.ams.org/mathscinet-getitem?mr=2020144
http://www.ams.org/mathscinet-getitem?mr=2163159
http://www.ams.org/mathscinet-getitem?mr=2543686
http://www.ams.org/mathscinet-getitem?mr=2239907
http://www.ams.org/mathscinet-getitem?mr=2906869
http://www.ams.org/mathscinet-getitem?mr=2816348
http://www.ams.org/mathscinet-getitem?mr=3418719
http://www.ams.org/mathscinet-getitem?mr=3174640


4178 A. A. Amini et al.

Statistical Society: Series B (Statistical Methodology), 76(2):463–483, mar
2014. MR3164874

[24] Yue Hu and Genevera I Allen. Local-aggregate modeling for big data
via distributed optimization: Applications to neuroimaging. Biometrics,
71(4):905–917, dec 2015. MR3436716

[25] I. E. Frank and J. H. Friedman. A statistical view of some chemometrics
regression tools using adaptive splines. Technical report, 1991.

[26] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society. Series B, 58(1):267–288, 1996. MR1379242

[27] B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer
theorem. Computational learning theory, pages 416–426, 2001. MR2042050

[28] R. J. Meier. On art and science in curve-fitting vibrational spectra. Vibra-
tional Spectroscopy, 39(2):266–269, oct 2005.

[29] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and
smoothness via the fused lasso. Journal of the Royal Statistical Society:
Series B, 67(1):91–108, feb 2005. MR2136641

[30] X. Chen, Q. Lin, and S. Kim. Smoothing proximal gradient method for
general structured sparse regression. The Annals of Applied Statistics,
6(2):719–752, jun 2012. MR2976489

[31] Junlong Zhao and Chenlei Leng. Structured lasso for regression with matrix
covariates. Statistica Sinica, To appear, 2014. MR3235399

[32] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined
convex programming, version 2.1. http://cvxr.com/cvx, March 2014.

[33] Michael Grant and Stephen Boyd. Graph implementations for nons-
mooth convex programs. In V. Blondel, S. Boyd, and H. Kimura, edi-
tors, Recent Advances in Learning and Control, Lecture Notes in Control
and Information Sciences, pages 95–110. Springer-Verlag Limited, 2008.
http://stanford.edu/~boyd/graph_dcp.html. MR2409077

[34] M. Dyrby, M. Petersen, A. K. Whittaker, L. Lambert, L. Nörgaard, R. Bro,
and S. B. Engelsen. Analysis of lipoproteins using 2D diffusion-edited
NMR spectroscopy and multi-way chemometrics. Analytica Chimica Acta,
531(2):209–216, feb 2005.

[35] E. Bair, T. Hastie, D. Paul, and R. Tibshirani. Prediction by Supervised
Principal Components. Journal of the American Statistical Association,
101(473):119–137, mar 2006. MR2252436

http://www.ams.org/mathscinet-getitem?mr=3164874
http://www.ams.org/mathscinet-getitem?mr=3436716
http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=2042050
http://www.ams.org/mathscinet-getitem?mr=2136641
http://www.ams.org/mathscinet-getitem?mr=2976489
http://www.ams.org/mathscinet-getitem?mr=3235399
http://cvxr.com/cvx
http://stanford.edu/~boyd/graph_dcp.html
http://www.ams.org/mathscinet-getitem?mr=2409077
http://www.ams.org/mathscinet-getitem?mr=2252436

	Introduction
	Models and methods
	Functional representation
	Regression model
	Optimization and computational considerations

	Applications to spectroscopy
	Synthetic data
	In vivo Raman data
	Ex vivo Raman data
	NMR data

	Discussion
	Acknowledgements
	References

