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Abstract: Estimating individualized treatment rules is a central task for
personalized medicine. [25] and [23] proposed outcome weighted learning
to estimate individualized treatment rules directly through maximizing the
expected outcome without modeling the response directly. In this paper,
we extend the outcome weighted learning to right censored survival data
without requiring either inverse probability of censoring weighting or semi-
parametric modeling of the censoring and failure times as done in [26]. To
accomplish this, we take advantage of the tree based approach proposed in
[29] to nonparametrically impute the survival time in two different ways.
The first approach replaces the reward of each individual by the expected
survival time, while in the second approach only the censored observations
are imputed by their conditional expected failure times. We establish con-
sistency and convergence rates for both estimators. In simulation studies,
our estimators demonstrate improved performance compared to existing
methods. We also illustrate the proposed method on a phase III clinical
trial of non-small cell lung cancer.
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1. Introduction

An individualized treatment regime provides a personalized treatment strategy
for each patient in the population based on their individual characteristics. A sig-
nificant amount of work has been devoted to estimating optimal treatment rules
[17, 18, 23, 24, 25]. While each of these approaches has strengths and weaknesses,
we highlight the approach in [25] because of its robustness to model misspecifica-
tion (this is similarly true of the approach in [23]) combined with its ability to in-
corporate support vector machines through the recognition that optimizing the
treatment rule can be recast as a weighted classification problem. This approach
is commonly referred to as outcome weighted learning. In clinical trials, right
censored survival data are frequently observed as primary outcomes. Adapt-
ing outcome weighted learning to the censored setting, [26] proposed two new
approaches, inverse censoring weighted outcome weighted learning and doubly
robust outcome weighted learning, both of which require semiparametric estima-
tion of the conditional censoring probability given the patient characteristics and
treatment choice. The doubly robust estimator additionally involves semipara-
metric estimation of the conditional failure time expectation but only requires
that one of the two models, for either the failure time or censoring time, be cor-
rect. Potential drawbacks of these methods are that either or both models may
be misspecified and inverse censoring weighting estimation can be unstable nu-
merically [18, 29].

In this paper, we propose a nonparametric tree based approach for right
censored outcome weighted learning which avoids both the inverse probabil-
ity of censoring weighting and restrictive modeling assumptions for imputation
through recursively imputed survival trees [29]. Since the true failure times T
are only partially known, they cannot be used directly as weights in the out-
come weighted learning [25] framework. However, recursively imputed survival
trees [29] provide an alternative approach to weighting by using the conditional
expectations of censored observations without requiring inverse weighting. Tree-
based methods [4, 3] are a broad class of nonparametric estimators which have
become some of the most popular machine learning tools. Its adaptation to the
survival setting has also drawn a lot of interests in the literature [14, 9, 11],
and it has also been used for interpretable prediction modeling in personalized
medicine [12]. The recursively imputed survival tree approach [29] combines ex-
tremely randomized trees with a recursive imputation method, which has been
shown to improve performance and reduce prediction error while avoiding esti-
mation of inverse censoring weights without making parametric or semiparamet-
ric assumptions on the conditional probability distribution of the failure time.
Numerical studies demonstrate that the proposed method outperforms existing
alternatives in a variety of settings.

The proposed method uses these recursively imputed survival trees to impute
the survival times nonparametrically in a manner suitable for implementation
within outcome weighted learning. We verify this novel approach both theo-
retically and in numerical examples. As part of this, we also present for the
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first time consistency and rate results for tree-based survival models in a more
general setting than the categorical predictors considered in [10].

The remainder of the article is organized as follows. In section 2, we present
the mathematical framework for individualized treatment rules for right cen-
sored survival outcomes. In section 3 we establish consistency and an excess
value bound for the estimated treatment rules. Extensive simulation studies are
presented in Section 4. We also illustrate our method using a phase III clinical
trial on non-small cell lung cancer in Section 5. The article concludes with a dis-
cussion of future work in Section 6. Some needed technical results are provided
in the Appendix.

2. Methodology

2.1. Individualized treatment regime framework

Before characterizing the individualized treatment regime, we first introduce
some general notation and introduce the value function, and then extend the
notation and ideas to the censored data setting. Let X ∈ X be the observed
patient-level covariate vector, where X is a d dimensional vector space, and let
A ∈ {−1,+1} be the binary treatment indicator. T̃ is the true survival time,

however, we consider a truncated version at τ , i.e., T = min(T̃ , τ), where the
maximum follow-up time τ < ∞ is a common practical restriction in clinical
studies. The goal in this framework is to maximize a reward R, which could
represent any clinical outcome. Specifically, we wish to identify a treatment rule
D, which is a map from the patient-level covariate space X to the treatment
space {+1,−1} which maximizes the expected reward. In the survival outcome
setting, we use R = T or log(T ) as done in [26].

To achieve this maximization, we define the value function as

V (D) = ED(R) = E
[
RI{A = D(X)}/π(A;X)

]
,

where I{·} is an indicator function, π(a;X) = pr(A = a | X) > M ′ a.s. for
some M ′ > 0 and each a ∈ {+1,−1}. The function π is the propensity score
and is known in a randomized trial setting, which we assume is the case for
this paper, but needs to be estimated in a non-randomized, observational study
setting. The individualized treatment regime we are most interested in is the
optimal treatment rule D∗ which maximizes the value function, i.e.

D∗ = argmax
D

E
[
RI{A = D(X)}/π(A;X)

]
. (1)

After rewriting the value function as

V (D) = E
[
E(R | A = 1, X)I{D(X) = 1}+ E(R | A = −1, X)I{D(X) = −1}

]
,

it is easy to see that

D∗ = sign
{
E(R | A = 1, X)− E(R | A = −1, X)

}
.
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Hence, the definition of D∗ is equivalent to D∗(x) = argmaxa E(R | A = a,X =
x). Instead of maximization the objective function in (1), the outcome weighted
learning approach searches for the optimal decision rule D∗ by minimizing the
weighted misclassification error, i.e.,

D∗ = argmin
D

E
[
RI{A �= D(X)}/π(A;X)

]
. (2)

In an ideal situation, we would replace R with T or log(T ). However, this is not
possible under right censoring.

2.2. Value function under right censoring

Consider a censoring time C that is independent of T given (X,A). We then have
the observed time Y = min(T,C), and the censoring indicator δ = I(T ≤ C).
Assume that n independent and identically distributed copies, {Yi, δi, Xi, Ai}ni=1,
are collected. Since T is not fully observed we seek for a sensible replacement
which maintains as close as possible the same value function. We propose two ap-
proaches in the following, denoted as R1 and R2 respectively. The first approach
is to obtain a nonparametric estimated conditional expectation Ê(T | X,A).
Letting R1 = E(T | X,A) and bringing the expectation of T inside, we have

E
[
TI{A = D(X)}/π(A;X)

]
= E

[
R1I{A = D(X)}/π(A;X)

]
. (3)

Another approach is to replace only the censored observations conditioning on
the observed data. It is interesting to observe that the conditional expectation
of T , given Y and δ, can be written as

R2 :=E(T | X,A, Y, δ)

=I(δ = 1)Y + I(δ = 0)E(T | X,A, Y, δ = 0)

=I(δ = 1)Y + I(δ = 0)E(T | X,A,C = Y, T > Y, Y )

=I(δ = 1)Y + I(δ = 0)E(T | X,A, T > Y, Y ). (4)

An important property that we used in the last equality is the conditional
independence between T and C. With the information of Y = y given, and
knowing that δ = 0, the conditional distribution of T is defined on (c, τ ] with
density function proportional to the original density of T . In other words, the
conditional survival function of T is S(t | X,A)/S(c | X,A) for t > c, where
S(· | X,A) is the conditional survival function of T . Hence, we can calculate the
expectation of T accordingly. With the definition of R2, it is easy to see that
the corresponding value function is equivalent to the left side of equation (3)
by further taking expectations with respect to Y and δ. Note that the above
arguments remain unchanged if we replace T , C and Y with log(T ), log(C),
and log(Y ), respectively: this equivalence will be tacitly utilized throughout the
paper, except when the distinction is needed.

With our proposed two reward measures, the remaining challenge is to non-
parametrically estimate the conditional expectations. To this end, we utilize the
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nonparametric tree based method proposed by [29]. It is worth noting that the
conditional expectation of T defined in R2 shares the same logical underpin-
nings as the imputation step in [29]. However, the goal of the imputation step
is to replace the censored observations with a randomly generated conditional
failure time which utilizes the same condition survival distribution of T given
T > C. We will provide details of the estimation procedure in the next section.
To conclude this section, we provide the empirical versions of the value function
using the two rewards R1 and R2, respectively, which we solve for the optimal
decision D∗ by minimization:

n−1
n∑

i=1

Ê(Ti | Ai, Xi)I{Ai = D(Xi)}
π(Ai;Xi)

, (5)

and n−1
n∑

i=1

{δiYi + (1− δi)Ê(Ti | Xi, Ai, Ti > Yi, Yi)}I{Ai = D(Xi)}
π(Ai;Xi)

. (6)

2.3. Outcome weighted learning with survival trees

The recursively imputed survival trees method proposed by [29] is a powerful
tool to estimate conditional survival functions for censored data. A brief outline
of the algorithm is provided in the following. We refer interested readers to the
original paper for details. To fit the model, we first generate extremely random-
ized survival trees for the training dataset. Secondly, we calculate conditional
survival functions for each censored observation, which can be used for imputing
the censored value to a random conditional failure time. Thirdly, we generate
multiple copies of the imputed dataset, and one survival tree is fitted for each
dataset. We repeat the last two steps recursively and the final nonparametric
estimate of Ê(T | X,A) is obtained by averaging the trees from the last step.

Following [25], we next use support vector machines to solve for the optimal
treatment rule. A decision function f is learned by replacing I{Ai = D(Xi)} in
Equations (5) or (6) with φ{Aif(Xi)}, where φ(x) = (1− x)+ is the hinge loss
and x+ = max(x, 0). Furthermore, to avoid overfitting, a regularization term
λn‖f‖2 is added to penalize the complexity of the estimated decision function
f . Here, ‖f‖ is some norm of f , and λn is a tuning parameter. A high-level
description of the proposed method is given in Algorithm 1 below. We consider
both linear and nonlinear decision functions f when solving (7). For a linear
decision function, f(x) = θ0 + θTx and we let ‖f‖ be the Euclidean norm
of θ. For nonlinear decision functions, we employ a universal kernel function
k : X × X → R, such as the Gaussian kernel, which is continuous, symmetric
and positive semidefinite. The optimization problem is then equivalent to a dual
problem that maximizes

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjAiAjk(Xi, Xj),
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subject to 0 ≤ αi ≤ γWi/πi and
∑n

i=1 αiAi = 0, where Wi is the numerator
in either (5) or (6) and πi is the respective denominator. Both settings can
be efficiently solved by quadratic programming. For further details regarding
solving weighted classification problems using support vector machines, we refer
to [25, 26, 5].

Algorithm 1: Pseudo algorithm for the proposed method

Step 1. Use {(XT
i , Ai, AiX

T
i )

T, Yi, δi}ni=1 to fit recursively imputed survival

trees. Obtain the estimation Ê(Ti | Ai, Xi) for reward R1 or the estimation

Ê(Ti | Xi, Ai, Ti > Yi, Yi) for reward R2.

Step 2. Let the weights Wi be either Ê(Ti | Ai, Xi) or δiYi + (1 − δi)Ê(Ti |
Ai, Xi, Ti > Yi, Yi), depending on which of the two proposed approaches is used.
Minimize the following weighted misclassification error:

f̂ = argmin
f

n∑
i=1

Wi
φ{Aif(Xi)}
π(Ai;Xi)

+ λn‖f‖2. (7)

Step 3. Output the estimated optimal treatment rule D̂(x) = sign{f̂(x)}.

3. Theoretical results

3.1. Preliminaries

The risk function is defined as

R(f) = E
[ R

π(A;X)
I{A �= sign(f(X))}

]
,

where the reward R = R1 = E(T | X,A) for the first approach, or R =
R2 = δY + (1 − δ)E(T | X,A, T > Y, Y ) for the second one. We define
φ-risk for both the true and the working model as, respectively, Rφ(f) =

E[Rφ{Af(X)}/π(A;X)] and R′
φ(f) = E[R̂φ{Af(X)}/π(A;X)], where R̂ is

the estimated value of R based on one of the two proposed methods. We also
define the hinge loss function for the true and working models as Lφ(f) =

Rφ{Af(X)}/π(A;X) and L′
φ(f) = R̂φ{Af(X)}/π(A;X), respectively.

The proposed estimator D̂ = sign(f̂n), where f̂n is solved by one of the follow-
ing optimization problems within some reproducible kernel Hilbert space Hk:

f̂n = argmin
f∈Hk

n−1
n∑

i=1

Ê(Ti | Xi, Ai)

π(Ai;Xi)
φ{f(Xi)Ai}+ λn||f ||2k,

or

f̂n = argmin
f∈Hk

n−1
n∑

i=1

δiYi + (1− δi)Ê(Ti | Xi, Ai, Ti > Yi, Yi)

π(Ai;Xi)
φ{f(Xi)Ai}+ λn||f ||2k.
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3.2. Consistency of tree-based survival models

In this section, we provide the convergence bound of a simplified tree-based
survival model, which is very close to the original algorithm in [29]. The purpose
of this section and its main result, Theorem 1, is to demonstrate the existence
of an accurate estimator of the underlying hazard function when tree-based
methods are used. An earlier result developed in [10] considers only categorical
feature variables. To the best of our knowledge, what we present below is the
first consistency result for a tree-based survival model under general settings
with restrictions only on the splitting rules, which is interesting in its own right.

For simplicity, we assume in this section that Qn = {(Yi, δi, Xi, Ai), i =
1, . . . , n} is the training sample, where Xi is independent uniformly distributed
on [0, 1]d. The result can be easily generated to distributions with bounded
support and density function bounded above and below. For any fixed X, our
goal is to estimate the cumulative hazard function of failure time r(·, X,A) =
ΛT (· | X,A); hereinafter, we write it as Λ(· | X,A).

A random forest is a collection of randomized regression trees {r̂n(·, X,A,
Θj ,Qn), 1 ≤ j ≤ m}, where m is the number of trees. The randomizing variable
Θ is used to indicate how the successive cuts are performed when an individual
tree is built. Hence the forest version of the survival tree model can be expressed
as

r̂n(·, X,A,Qn) =
1

m

m∑
j=1

r̂n(·, X,A,Θj ,Qn).

Here, we consider a simplified scenario in which the selection of the coor-
dinate is completely random and independent from the training data [1]. We
only consider the consistency of a single tree and denote our tree estimator as
r̂n(·, X,A). The result can be easily extended to the situation where m is finite.

A brief description of how each individual tree is constructed is provided in
the appendix. Here we highlight some key assumptions and the main result. Our
first assumption puts a lower bound on the probability of observing a failure at
τ , and the second one assumes the smoothness of the hazard and cumulative
hazard functions.

Assumption 1. For some M > 0, SY (τ | X,A) > M almost surely.

Assumption 2. For any fixed time point t and treatment decision A, the cumu-
lative hazard function Λ(t | X,A) is L-Lipschitz continuous in terms of X, and
the hazard function λ(t | X,A) is L′-Lipschitz continuous in terms of X, i.e.,
|Λ(t | X1, A)− Λ(t | X2, A)| ≤ L||X1 −X2|| and |λ(t | X1, A) − λ(t | X2, A)| ≤
L′||X1 −X2||, respectively, where || · || is the Euclidean norm.

The following theorem provides the bound of the proposed tree based survival
model for each X. Details of the proof are collected in the Appendix.

Theorem 1. Assume that Assumptions 1–2 and the construction of a tree-
based survival model described in the Appendix. Further assume that kn → ∞
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and n/kn → ∞ as n → ∞, where kn is a deterministic parameter which we can
control (each individual tree has approximately kn terminal nodes). We have for
each X,

pr
{
sup
t<τ

|r̂n(t,X,A)− r(t,X,A)| ≤ C[d1/22−{(1−r)�log2 kn�}/d

+ b1/2{(1− u)n2−�log2 kn�}−1/2]
}
≥ 1− wn,

where r, u ∈ (0, 1), b > 1/228, (1 − u)n2−�log2 kn� ≥ 288b/M4, C is some uni-
versal constant and

wn = 16[(1− u)n2−�log2 kn� + 2]e−b + e−u2n2−�log2 kn�−1

+ de−�log2 kn�r2/(2d).

The ideal balance happens when kn = nd/(d+2). In this case, the optimal rate
of the bound is close to n−1/(d+2). The following theorem proves consistency of
the proposed tree based survival model. Details of the proof are collected in the
Appendix.

Theorem 2. Assume that Assumptions 1–2 and the construction of a tree-based
survival model described in the Appendix. Further assume that kn = nη, where
0 < η < 1. Then the estimator of the survival tree model is consistent. Moreover,

sup
t<τ

EX |r̂n(t,X,A)− r(t,X,A)| ≤ C[d1/22−{(1−r)�log2 kn�}/d

+ b1/2{(1− u)n2−�log2 kn�}−1/2 + wn ln(n)],

where r, u ∈ (0, 1), b > 1/228, (1 − u)n2−�log2 kn� ≥ 288b/M4, C is some uni-
versal constant and

wn = 16[(1− u)n2−�log2 kn� + 2]e−b + e−u2n2−�log2 kn�−1

+ de−�log2 kn�r2/(2d).

3.3. Consistency and excess value bound

Fisher consistency follows directly from Proposition 3.1 in [25], hence the proof
is omitted. Here we restate the result as the following lemma. For the proposed
method, we simply replace the reward R in Rφ(f) with R1 or R2. Note that both
versions are equivalent to the reward functionRφ(f) = E[Tφ{Af(X)}/π(A;X)]:

Lemma 1 (Proposition 3.1 in [25]). For any measurable function f̃ , if f̃ min-

imizes Rφ(f), then D∗(x) = sign(f̃(x)).

Provided the Assumptions in Section 3.2 hold, the following lemma ensures
the convergence of the estimated conditional expectations. The proof is given
in Appendix.

Lemma 2. Based on Theorem 1, for each X the estimated conditional expec-
tations converge in probability, i.e.,

pr
{∣∣Ê(T | X,A)− E(T | X,A)

∣∣
≤ C1[2

−{(1−r)�log2 kn�}/d + (b/{(1− u)n2−�log2 kn�})1/2]
}
≥ 1− wn,
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pr
{∣∣Ê(T | X,A, T > Y, Y )− E(T | X,A, T > Y, Y )

∣∣
≤C2[2

−{(1−r)�log2 kn�}/d + (b/{(1− u)n2−�log2 kn�})1/2]
}
≥ 1− 2wn,

for some constant C1, C2 (depending on L,L′, τ,M, d).

We will use the above lemmas to prove our main theorem based on the Gaus-
sian kernel. Before we derive the convergence rate and excess value bound, we
define the value function corresponding to the true and working model as V (f) =

E(RI[A = sign{f(X)}]/π(A;X)), V ′(f) = E(R̂I[A = sign{f(X)}]/π(A;X)),
respectively. We further define the empirical L2–norm, ‖f − g‖L2(Pn) = (

∑n
i=1

[f(Xi) − g(Xi)]
2/n)1/2, which also defines an ε-ball based on this norm. By

Theorem 2.1 in [20], we restate the bound for covering numbers:

Lemma 3 (Theorem 2.1 in [20]). For any β > 0, 0 < v ≤ 2, ε > 0 we have

supPn
logN(BHk

, ε, L2(Pn)) ≤ cv,β,dσ
(1−v/2)(1+β)d
n ε−v, where BHk

is the closed
unit ball of Hk, σn is the kernel bandwidth, and d is the dimension of X .

Lastly, for f̃ = argminf∈F E{Lφ(f)}, we define the approximation error
function

a(λ) = inf
f∈Hk

[E{Lφ(f)}+ λ||f ||2k − E{Lφ(f̃)}].

Then we have following theorem, the proof of which is given in Appendix.

Theorem 3. Based on Theorem 2 and assuming that the sequence λn > 0
satisfies λn → 0 and λn lnn → ∞, we have that

pr(V (f∗) ≤ V (f̂n) + ε) ≥ 1− 2e−ρ,

where f∗ maximize the true value function V , ε = a(λn)+Mv(nλn/cn)
−2/(v+2)+

Mvλ
−1/2
n (cn/n)

2/(d+2)+Kρ(nλn)
−1+2Kρn−1λ

−1/2
n +Cλ

−1/2
n {2−(1−r)�log2 kn�/d

+(b/{(1−u)n2−�log2 kn�})1/2+wn lnn}, cn = cv,β,dσ
(1−v/2)(1+β)d
n and ρ > 0 for

both methods; also, Mv is a constant depending on v, K is a sufficiently large
positive constant and C is a some large constant depending on d.

The rate consists of two parts. The first part is from the approximation error
using Hk. The second part controls the approximation error due to using the
proposed tree-based method to estimate the conditional expectation.

4. Simulation studies

We perform simulation studies to compare the proposed method with exist-
ing alternatives, including the Cox proportional hazards model with covariate-
treatment interactions, inverse censoring weighted outcome weighted learning,
and doubly robust learning, both proposed in [26]. We use survival time on the
log scale log(T ) as outcome. We also present for comparison an “oracle” ap-
proach which uses the true failure time on the log scale log(T ) as the weight in
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outcome weighted learning, although this would not be implementable in prac-
tice. However, this approach is a representation of the best possible performance
under the outcome weighted learning framework.

We generate Xi’s independently from a uniform distribution. Treatments are
generated from {+1,−1} with equal probabilities. We present four scenarios in
this simulation study. The failure time T and censoring time C are generated
differently in each scenario, including both linear and nonlinear decision rules.
For each case, we learn the optimal treatment rule from a training dataset with
sample size n = 200. A testing dataset with size 10000 is used to calculate the
value function under the estimated rule. Each simulation is repeated 500 times.

Tuning parameters in the tree based methods need to be selected. We mostly
use the default values. The number of variables considered at each split is the
integer part of the square root of d as suggested by [11] and [7]. We set the total
number of trees to be 50 as suggested by [29] and use one fold imputation. For
the alternative approaches such as inverse censoring weighted outcome weighted
learning and doubly robust learning, a Cox proportional hazards model with
covariates (X,A,XA) is used to model T and C respectively. Note that when
at least one of the two working models is correctly specified, the doubly robust
method enjoys consistency. We implemented outcome weighted learning using a
Matlab library for support vector machine [5]. Both linear and Gaussian kernels
are considered for all methods except for the Cox model approach which could
be directly inverted to obtain the decision rules. The parameter λn is chosen by
ten-fold cross-validation.

4.1. Simulation settings

For all scenarios, we generate T̃ and C independently. The failure time T =
min(τ, T̃ ). For all accelerated failure time models, ε is generated from a stan-
dard normal distribution. For all Cox proportional hazards models, the baseline
hazard function λ0(t) = 2t. For all simulation results presented in this section,
we consider setting the censoring rates to approximately 45% for all scenarios.
We also perform a sensitivity analysis for different censoring rates (30% and
60%) for each scenario. These additional results are presented in the Appendix.

Scenario 1. Both T̃ and C are generated from the accelerated failure time
model. τ = 2.5 and d = 10. The optimal decision function is linear. The value
of the optimal treatment rule is approximately 0.031:

log(T̃ ) =− 0.2− 0.5X1 + 0.5X2 + 0.3X3

+ (0.5− 0.1X1 − 0.6X2 + 0.1X3)A+ ε,

log(C) =0.1− 0.8X1 + 0.4X2 + 0.4X3 + (0.5− 0.1X1 − 0.6X2 + 0.3X3)A+ ε.

Scenario 2. T̃ is generated from a Cox model and C is generated from the
accelerated failure time model. The optimal decision function is nonlinear. τ = 8
and d = 10. The value of the optimal treatment rule is approximately 0.181:

λT̃ (t | A,X) =λ0(t) exp{−0.2− 1.5X1.5
1 + 0.5X2 + (0.8− 0.7X0.5

1 − 1.2X2
2 )A},
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log(C) =− 0.5 + 0.7X1 +X2
2 + 0.6X3 + 0.1X4

+ (0.2 +X2.5
1 − 2X2 + 0.5X3)A+ ε.

Scenario 3. T̃ is generated from an accelerated failure time model with tree
structured effects. C is generated from a Cox model with nonlinear effects. τ = 8
and d = 5. The value of the optimal treatment rule is approximately 1.079:

log(T̃ ) =X1 + I(X2 > 0.5)I(X3 > 0.5) + (0.3−X1)A

+ 2{I(X4 < 0.3)I(X5 < 0.3) + I(X4 > 0.7)I(X5 > 0.7)}A+ ε,

λC(t | A,X) =λ0(t) exp{−1.5 +X1 + (1 + 0.6X1.5
2 )A}.

Scenario 4. T̃ is is generated from an accelerated failure time model. C is
generated from a Cox model. τ = 2 and d = 10. The value of the optimal
treatment rule is approximately -0.389:

log(T̃ ) =− 0.5− 0.8X1 + 0.7X2 + 0.2X3

+ (0.6− 0.4X1 − 0.2X2 − 0.4X3)A+ ε,

λC(t | A,X) =λ0(t) exp{−0.5X1 − 0.5X2 + 0.2X3

− (1− 0.5X1 + 0.3X2 − 0.5X3)A}.

4.2. Simulation results

Figure 1 shows the boxplot of values based on the logarithm of T calculated from
the test data. The mean and standard deviation of values are shown in Table 1.
In scenario 1, since the model is not correctly specified for inverse probability
of censoring outcome weighted learning, the doubly robust estimator, or Cox
regression, our method performs better than all other competitors.

In scenario 2, we added some nonlinear terms into both the Cox and acceler-
ated failure time models. The model assumptions for inverse censoring outcome
weighted learning and the doubly robust estimator are not satisfied. Our es-
timated treatment rule performs much better than these two. Compared with
inverse censoring outcome weighted learning and doubly robust learning, both
our approaches improve more than 0.1 for the mean. Since the true model for the
failure time is the Cox model, Cox regression performs better here. In this case,
the Gaussian kernel performs less well than the linear kernel for most methods
since the true model structure is linear and the Gaussian kernel is too flexible.

For scenario 3, which has a more complicated tree structure, the Gaussian
kernel performs better than the linear kernel for all outcome weighted learning
approaches. The performance of the Gaussian kernel is enhanced since it can
better address the true nonlinear model structure. We can see that with either
a linear or Gaussian kernel, our estimators perform better than Cox regression.
Compared with doubly robust learning, our two approaches improve 0.2 for the
mean.
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Fig 1. Boxplots of mean log survival time for different treatment regimes. Censoring rate:
45%. T: using true survival time as weight; RIST-R1 and RIST-R2: using the estimated
R1 and R2 respectively as weights, while the conditional expectations are estimated using
recursively imputed survival trees; ICO: inverse probability of censoring weighted learning;
DR: doubly robust outcome weighted learning. The black horizontal line is the theoretical
optimal value.
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Table 1

Simulation results: Mean (×103) and (sd) (×103). Censoring rate: 45%. For each scenario,
the theoretical optimal value (×103) is 31, 181, 1079, and -389, respectively.

kernel T RIST-R1 RIST-R2 ICO DR Cox

1
Linear 0 (26) 0 (31) 1 (30) -20 (54) -39 (76)

-29 (33)
Gaussian -17 (44) -11 (35) -8 (36) -25 (50) -88 (79)

2
Linear 22 (113) -1 (112) -24 (125) -137 (131) -232 (132)

53 (69)
Gaussian -39 (115) -40 (103) -72 (114) -175 (120) -311 (106)

3
Linear 785 (52) 766 (59) 763 (51) 683 (113) 598 (120)

745 (64)
Gaussian 896 (61) 803 (56) 834 (71) 785 (105) 606 (115)

4
Linear -453 (37) -469 (47) -451 (27) -469 (48) -481 (59)

-464 (36)
Gaussian -465 (35) -482 (44) -457 (28) -487 (45) -531 (43)

T: using true survival time as weight; RIST-R1 and RIST-R2: using the estimated R1 and
R2 respectively as weights, while the conditional expectations are estimated using

recursively imputed survival trees; ICO: inverse probability of censoring weighted learning;
DR: doubly robust outcome weighted learning; Cox: Cox proportional hazards model using

covariate-treatment interactions.

In scenario 4, we see that when the model is correctly specified for inverse
probability of censoring outcome weighted learning and doubly robust learn-
ing, the performances of both approaches are satisfactory while our methods
seem to be only a little better. The performances of our first approach, inverse
probability of censoring outcome weighted learning and Cox regression are all
similar. Our second approach has the best treatment effect among all estima-
tors. Note that our second approach appears to perform as well as the first,
oracle approach. Also, our two proposed methods have smaller standard errors
in scenarios 1 and 3. The standard error is similar for all outcome weighted
learning approaches in scenario 2 and 4. Overall, our proposed methods have
generally lower variances.

Compared with results of censoring rates (30% and 60%) in the Appendix,
we can observed a consistently pattern that lower censoring rate leads to higher
performances in terms of both mean value and variance. The relative perfor-
mances between the proposed and the competing methods remain similar across
different censoring rates.

5. Data analysis

We apply the proposed method to a non-small-cell lung cancer randomized
trial dataset described in [19]. 228 subjects with complete information are used
in this analysis. Each treatment arm contains 114 subjects. Here we use five
covariates: performance status (119 subjects ranging from 90% to 100% and
109 subjects ranging from 70% to 80%), cancer stage (31 subjects in stage 3
and 197 subjects in stage 4), race (167 white, 54 black and 7 others), gen-
der (143 male and 85 female), age (ranging from 31 to 82 with median 63).
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The length of study is τ = 104 weeks. We adopt the same tuning parame-
ters used in the simulation study for this analysis. The value function is again
calculated by using the logarithm of survival time log(T ) (in weeks) as the
reward.

We randomly divide the 228 patients into four equal proportions and use
three parts as training data to estimate the optimal rule and calculate the
empirical value based on the remaining part. We then permute the training and
testing portions and average the four results. This procedure is then repeated
100 times and averaged to obtain the mean and standard deviation. To calculate
the testing data performance, we consider two different measurements, both are
calculated based on the formula

∑n
i=1 RiI{Ai = D(Xi)}/

∑n
i=1 I{Ai = D(Xi)}

for the testing samples, where two versions of Ri’s are used. We first consider
the procedure proposed in [26], where R is defined as

ΔY

ŜC(Y | A,X)
−

∫
ÊT̃ {T | T > t,A,X}

{
dNC(t)

ŜC(t | A,X)
+ I(Yi ≥ t)

dŜC(t | A,X)

ŜC(t | A,X)2

}
.

Here, ŜC(t | A,X) and ÊT̃ (T | T > t,A,X) are estimated from the Cox model
for simplicity. We also consider a more direct clinical measurement without
the double robustness correction, which can be interpreted in a similar way as
the expected survival time or the restricted mean survival time [6, 16, 22]. To
be specific, we consider a restricted mean (log) survival time truncated at τ
defined as δT + (1 − δ)E(T ), and use this as a plug-in quantity of R in the
testing performance calculation. To estimate this quantity, we use a recursively
imputed survival trees (RIST) method to produce the expected survival time
E(T ).

The value function results are presented in Table 2 and Figure 2. Both pro-
posed methods have higher values than the compared methods. Note that for the
Gaussian kernel, our two new approaches are still better than Cox regression,
however, inverse probability of censoring outcome weighted learning and doubly
robust learning are not much different from Cox regression. The standard error
is comparable among all four methods using the linear kernel. For the Gaussian
kernel, the standard errors of the proposed methods and inverse probability of
censoring weighted learning are similar. The standard error for the doubly ro-

Table 2

Analysis of non-small-cell lung cancer data: Mean (sd) of value function

kernel RIST-R1 RIST-R2 ICO DR Cox

Linear 3.641 (0.144) 3.641 (0.138) 3.633 (0.158) 3.590 (0.174)
3.582 (0.158)

Gaussian 3.611 (0.215) 3.615 (0.220) 3.302 (0.221) 3.470 (0.233)

RIST-R1 and RIST-R2: using the estimated R1 and R2 respectively as weights, while the
conditional expectations are estimated using recursively imputed survival trees; ICO: inverse
probability of censoring weighted learning; DR: doubly robust outcome weighted learning;

Cox: Cox proportional hazards model using covariate-treatment interactions.
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Fig 2. Boxplots of cross-validated value of survival weeks on the log scale. RIST-R1 and RIST-
R2: using the estimated R1 and R2 respectively as weights, while the conditional expectations
are estimated using recursively imputed survival trees; ICO: inverse probability of censoring
weighted learning; DR: doubly robust outcome weighted learning.

bust method is slightly worse in this instance. Overall, the proposed methods
seem to perform best.

The restricted log mean results are presented in Table 3 and Figure 3. Note for
the linear kernel, the median of the proposed methods are higher than 3.6 and
median of both inverse probability of censoring outcome weighted learning and
doubly robust learning are lower. For the Gaussian kernel, the proposed methods
are much better than inverse probability of censoring outcome weighted learning
and doubly robust learning. Interestingly, under this measure, the performance
of Cox regression is the best. A possible reason is that the true underlying model
may not deviate much from the proportional hazard model, making the Cox
model a better choice. This is also reflected by the fact that the results look
similar to the simulation Scenario 2 plot, where the Cox model performs the
best. Another possible reason is that the pseudo-outcome estimated from RIST
may not be completely accurate and favors the Cox model in this particular
dataset.

Table 3

Analysis of non-small-cell lung cancer data: Mean (sd) of a clinical measure

kernel RIST-R1 RIST-R2 ICO DR Cox

Linear 3.603 (0.040) 3.606 (0.037) 3.598 (0.037) 3.601 (0.042)
3.646 (0.039)

Gaussian 3.511 (0.064) 3.514 (0.068) 3.451 (0.062) 3.456 (0.052)

RIST-R1 and RIST-R2: using the estimated R1 and R2 respectively as weights, while the
conditional expectations are estimated using recursively imputed survival trees; ICO: inverse
probability of censoring weighted learning; DR: doubly robust outcome weighted learning;

Cox: Cox proportional hazards model using covariate-treatment interactions.
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Fig 3. Boxplots of cross-validated value of survival weeks on the log scale. RIST-R1 and RIST-
R2: using the estimated R1 and R2 respectively as weights, while the conditional expectations
are estimated using recursively imputed survival trees; ICO: inverse probability of censoring
weighted learning; DR: doubly robust outcome weighted learning.

6. Discussion

We proposed a new method that redefines the reward function in a censored
survival setting. The method works by replacing the censored observations (or
all observations) by an estimated conditional expectation of the failure time. In
practice, the failure time (or logarithm of the failure time) is commonly used
in defining the reward function R, however, this choice could more flexible. For
example, we may be interested in searching for a treatment rule that maximizes
the median survival time or a certain quantile. Under our framework, this is
achievable by replacing the censored observations with a suitable estimate of
the quantile. This part of the work is currently under investigation.

The proposed methods may be improved or extended in multiple ways. The
estimated treatment rule may be affected by the shift of the outcome. A potential
extension is to combine our methods with residual weighted learning [28], which
has been shown to reduce the total variation of the weights and improve stability.
Trials with multiple treatment arms occur frequently. Thus a potential extension
of our method is in the direction of multicategory classification [2, 15, 21]. It
is also interesting to extend our method to dynamic treatment regimes where
a sequence of decision rules [17, 24, 13, 27] need to be learned in a censored
survival outcome setting [8].

Appendix

A simplified tree-based survival model used in Theorem 1

We consider a simplified version of a tree-based survival model. Starting from
the root node [0, 1]d, at each internal node, we randomly chose the j-th feature
of X to split the node, while the splitting point is always at the midpoint of
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the range of the chosen feature. We repeat splitting 	log2 kn
 times, where kn
is a deterministic parameter which we can control. Hence, each individual tree
has exactly 2�log2 kn� terminal nodes, which is approximately kn. In practice, we
always chose kn to go to infinity as n goes to infinity.

After we build an individual tree, let Bi (i = 1, 2, . . . , 2�log2 kn�) be the rect-
angular cell of the random partition. We treat observations inside each leaf node
as a group of homogeneous subjects and compute the Nelson-Aalen estimator
Λ̂(· | Bi) for each leaf node Bi. Hence, our estimator is essentially

r̂n(·, X,A) =

2�log2 kn�∑
i=1

I{(X,A) ∈ Bi}Λ̂(· | Bi).

Proof of Theorem 1

Proof. Since we always assume that the treatment variable A is important,
and A has only two categories, we force a split on A at the root node. This
is equivalent to fitting trees for A = 1 and A = −1 separately. In a balanced
design, the problem reduces to estimating r(·, X, 1) or r(·, X,−1) with sample
size n/2. Without the risk of ambiguities, the following results are developed for
r̂n(·, X) with sample size n, where the results can be applied to either A = 1 or
−1. Our proof utilizes two facts from [1]:

Fact 1. Let Knj{Bi} be the number of times the j-th coordinate (j = 1, . . . , d)
is split on to reach the terminal node Bi, (i = 1, 2, . . . , 2�log2 kn�). Condition-

ally on X, Knj{Bi} is Binomial(	log2 kn
 , 1/d). Moreover,
∑d

j=1 Knj{Bi} =
	log2 kn
.
Fact 2. Let Nn(Bi) be the number of data points falling in the cell Bi, (i =
1, 2, . . . , 2�log2 kn�). Conditionally on Θ,Nn(Bi) follows Binomial(n, 2−�log2 kn�).

The following lemma, for later reference, provides the deterministic limit of
the Nelson-Aalen estimator in the independent non-identically distributed case.
The proof can be found in an unpublished technical report by Mai Zhou at the
University of Kentucky.

Lemma 4. Suppose we have two sets of non-negative random variables:
T1, T2, . . . , Tn which are survival times, independent but non-identically dis-
tributed with continuous distribution F1(t), F2(t), . . . , Fn(t); C1, C2, . . . , Cn

which are censoring times, independent but non-identically distributed with con-
tinuous distribution G1(t), G2(t), . . . , Gn(t). We also assume the T ′

is and C ′
is

are independent. The Nelson-Aalen estimator of data Yi = min(Ti, Ci), δi =

I(Ti ≤ Ci) is Λ̂(t). Provided Assumption 1, we have

pr(sup
t<τ

|Λ̂(t)−
∫ t

0

∑
i{1−Gi(s)}dFi(s)∑

i{1−Gi(s)}{1− Fi(s)}
| > (1152b)1/2

n1/2M2
) < 16(n+ 2)e−b,

(8)

where b > 1/228, n ≥ 288b/M4.
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Now we start the proof of Theorem 1. Let the limit of the Nelson-Aalen
estimator inside the cell Bi (i = 1, 2, . . . , 2�log2 kn�) be

Λ∗(t | Bi) =

∫ t

0

[
∑

Xj∈Bi
{1−Gj(s)}dFj(s)]

[
∑

Xj∈Bi
{1−Gj(s)}{1− Fj(s)}]

.

For any t < τ , in order to bound the |r̂n(t,X)− r(t,X)|, we define

r∗n(t,X) =

2�log2 kn�∑
i=1

I{X ∈ Bi}Λ∗(t | Bi).

Then |r̂n(t,X)− r(t,X)| can be decomposed as

|r̂n(t,X)− r(t,X)| = |r̂n(t,X)− r∗n(t,X)|+ |r∗n(t,X)− r(t,X)|. (9)

We start with the first term in Equation (9). From Fact 2, we know the number of
observations in each terminal node is Binomial(n, 2−�log2 kn�). By the Chernoff

bound, with probability larger than 1− e−u2n2−�log2 kn�−1

, in one terminal node
we have at least (1− u)n2−�log2 kn� observations for some 0 < u < 1.

Combining Equation (8), the following equation holds:

|r̂n(t,X)−r∗n(t,X)|

≤
2�log2 kn�∑

i=1

I{X ∈ Bi}(1152b)1/2{(1− u)n2−�log2 kn�}−1/2M−2

= (1152b)1/2{(1− u)n2−�log2 kn�}−1/2M−2, (10)

with probability 1 − 16[(1 − u)n2−�log2 kn� + 2]e−b − e−u2n2−�log2 kn�−1

, where
b > 1/228 and (1− u)n2−�log2 kn� ≥ 288b/M4.

Before we bound the second term in Equation (9). We first show the bound
for the difference between the true cumulative hazard function and aggregated
estimator inside the cell Bi (i = 1, 2, . . . , 2�log2 kn�), i.e. |I{X ∈ Bi}{Λ∗(t |
Bi)− Λ(t | X)}|.

From Fact 1, we know the number of times the terminal node Bi is split on
the j-th coordinate (j = 1, · · · , d) Knj{Bi} is Binomial(	log2 kn
 , 1/d). By the

Chernoff bound, P (Knj{Bi} ≤ (1− r) 	log2 kn
 /d) ≤ e−�log2 kn�r2/(2d) for some

0 < r < 1. So with probability (1− e−�log2 kn�r2/(2d))d ≥ 1− de−�log2 kn�r2/(2d),
every dimension of Bi is less than 2−{(1−r)�log2 kn�}/d. Then with probability
larger than 1− de−�log2 kn�r2/(2d), we have

max
X1,X2∈Bi

||X1 −X2|| ≤ d1/22−{(1−r)�log2 kn�}/d.

So for all the observations Xj inside the same cell as X, by Assumption 2, we
have

|FX(·)− Fj(·)| ≤ Ld1/22−{(1−r)�log2 kn�}/d,

|fX(·)− fj(·)| ≤ (L′ + L2)d1/22−{(1−r)�log2 kn�}/d,
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where fX(·) and FX(·) denote the true density function and distribution function
at X, respectively. Then Λ∗(t | Bi) has the upper bound and lower bound∫ t

0

[fX(s) + b1]/[1− FX(s)− b2]ds and

∫ t

0

[fX(s)− b1]/[1− FX(s) + b2]ds,

respectively, where

b1 = (L′ + L2)d1/22−{(1−r)�log2 kn�}/d and b2 = Ld1/22−{(1−r)�log2 kn�}/d.

Hence, |I{X ∈ Bi}{Λ∗(t | Bi)− Λ(t | X)}| has the bound∫ t

0

b1(1− F (s)) + b2f(s)

(1− F (s)− b2)(1− F (s))
ds ≤ Cτd1/22−{(1−r)�log2 kn�}/d,

where C is some constant depending on L and L′. We then bound the second
term of Equation (9) as follows:

|r∗n(t,X)− r(t,X)| ≤
2�log2 kn�∑

i=1

I{X ∈ Bi}|Λ∗(t | Bi)− Λ(t | X)|

≤ Cτd1/22−{(1−r)�log2 kn�}/d.

(11)

Combining Equation (10) and (11), For each X, we have

pr[sup
t<τ

|r̂n(t,X)− r(t,X)| ≤ C[τd1/22−{(1−r)�log2 kn�}/d

+ (1152b)1/2{(1− u)n2−�log2 kn�}−1/2M−2] ≥ 1− wn,

where

wn = 16[(1− u)n2−�log2 kn� + 2]e−b + e−u2n2−�log2 kn�−1

+ de−�log2 kn�r2/(2d).

This completes the proof.

Proof of Theorem 2

Proof. Based on Theorem 1, we now only need to establish the bound of
|r̂n(t,X,A) − r(t,X,A)| under the event with small probability wn. Noticing
that r̂n(t,X,A) is simply the Nelson-Aalen estimator of the cumulative hazard
function with at most n terms, for any t < τ we have

r̂n(t,X,A) ≤ 1

n
+ . . .+

1

1
= O(ln(n)),

which implies that

|r̂n(t,X,A)− r(t,X,A)| ≤ O(ln(n)).

Combining this with Theorem 1 completes the proof.
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Proof of Lemma 2

Proof. Our survival function estimator is Ŝ(t) = e−Λ̂(t). From Theorem 1, we
know that for any t < τ ,

pr(|Ŝ(t | X,A)− S(t | X,A)| ≤ C[2−(1−r)�log2 kn�/d + (b/{(1− u)n2−�log2 kn�})1/2])

≥ 1− 16[(1− u)n2−�log2 kn� + 2]e−b − e−u2n2−�log2 kn�−1

− de−�log2 kn�r2/(2d).

It is then easy to see that for R1,∣∣∣Ê(T | X,A)− E(T | X,A)
∣∣∣

=
∣∣∣ ∫ τ

0

Ŝ(t | X,A)dt−
∫ τ

0

S(t | X,A)dt
∣∣∣

≤
∫ τ

0

|Ŝ(t | X,A)− S(t | X,A)|dt

≤ τC[2−{(1−r)�log2 kn�}/d + (b/{(1− u)n2−�log2 kn�})1/2],

with probability larger than 1− wn. And for reward R2, we have∣∣Ê(T | X,A, T > Y, Y )− E(T | X,A, T > Y, Y )
∣∣

=
∣∣∣ ∫ τ

Y

{Ŝ(t | X,A)/Ŝ(Y | X,A)}dt−
∫ τ

Y

{S(t | X,A)/S(Y | X,A)}dt
∣∣∣

≤
∣∣∣ ∫ τ

Y

{Ŝ(t | X,A)/Ŝ(Y | X,A)}dt−
∫ τ

Y

{Ŝ(t | X,A)/S(Y | X,A)}dt
∣∣∣

+
∣∣∣ ∫ τ

Y

{Ŝ(t | X,A)/S(Y | X,A)}dt−
∫ τ

Y

{S(t | X,A)/S(Y | X,A)}dt
∣∣∣.

Note that we can bound the distance between Ŝ(Y | X,A) and S(Y | X,A)
with probability no less than 1− wn, which is further bounded above by

(1/M2 + 1/M)

∫ τ

Y

|Ŝ(Y | X,A)− S(Y | X,A)|dt

≤ C2[2
−{(1−r)�log2 kn�}/d + (b/{(1− u)n2−�log2 kn�})1/2],

for some constant C2 with probability larger than 1− 2wn.

Proof of Theorem 3

Proof. We restate the value function corresponding to the true and working
model as

V (f) = E(RI[A = sign{f(X)}]/π(A;X))

and V ′(f) = E(R̂I[A = sign{f(X)}]/π(A;X)),
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respectively. Then we have

V (f∗)− V (f̂n) ≤ V (f∗)− sup
f∈F

V ′(f) + sup
f∈F

V ′(f)− V ′(f̂n) + V ′(f̂n)− V (f̂n)

≤ V (f∗)− V ′(f∗) + sup
f∈F

V ′(f)− V ′(f̂n) + V ′(f̂n)− V (f̂n)

≤ sup
f∈F

V ′(f)− V ′(f̂n) + 2 sup
f∈F

|V (f)− V ′(f)|. (12)

We start with the first term in Equation (12). From Lemma 1, we know that

supf∈F V ′(f)− V ′(f̂n) = V ′(f̃)− V ′(f̂n), where f̃ = argminf∈F E{Lφ(f)}.
Let f̃λn = argminf∈Hk

[E{Rφ{Af(X)}/π(A;X)}+ λn‖f‖2k], then

n−1
n∑

i=1

R̂φ{Aif̂n(Xi)}
π(Ai;Xi)

+ λn‖f̂n‖2k ≤ n−1
n∑

i=1

R̂φ{Aif̃λn(Xi)}
π(Ai;Xi)

+ λn‖f̃λn‖2k.

(13)

By the definition of a(λ), we have

a(λn) = [E{Lφ(f̃λn)}+ λn||f̃λn ||2k − E{Lφ(f̃)}],

and by Theorem 3.2 in [25], we further have

V ′(f̃)− V ′(f̂n) ≤ E{Lφ(f̂n)} − E{Lφ(f̃)}
≤ E{Lφ(f̂n)} − E{Lφ(f̃λn)} − λn||f̃λn ||2k
+E{Lφ(f̃λn)} − E{Lφ(f̃)}+ λn||f̃λn ||2k
≤ E{Lφ(f̂n)} − E{Lφ(f̃λn)} − λn||f̃λn ||2k + λn||f̂n||2k + a(λn).

Combined with (13),

V ′(f̃)−V ′(f̂n) ≤ a(λn) + E

[
Rφ{Af̂n(X)}

π(A;X)
− R̂φ{Af̂n(X)}

π(A;X)

]

+E

[
R̂φ{Af̃λn(X)}

π(A;X)
− Rφ{Af̃λn(X)}

π(A;X)

]

+

(
− n−1

n∑
i=1

[
λn‖f̂n‖2k +

R̂φ{Aif̂n(Xi)}
π(Ai;Xi)

− λn‖f̃λn‖2k − R̂φ{Aif̃λn(Xi)}
π(Ai;Xi)

]
+E

[
λn‖f̂n‖2k +

R̂φ{Af̂n(X)}
π(A;X)

− λn‖f̃λn‖2k − R̂φ{Af̃λn(X)}
π(A;X)

])
= a(λn) + (I) + (II) + (III).

Since

n−1
n∑

i=1

R̂φ{Aif̂n(Xi)}
π(Ai;Xi)

+ λn‖f̂n‖2k ≤ n−1
n∑

i=1

R̂φ(0)

π(Ai;Xi)
= n−1

n∑
i=1

R̂

π(Ai;Xi)
,
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and the estimated value function R̂ is bounded by τ , we know that ‖f̂n‖k ≤
τ1/2λ

−1/2
n . Furthermore, since

λn‖f̃λn‖2k ≤ inf
f∈Hk

{
λn‖f‖2k + E

[
Rφ{Af(X)}
π(A;X)

]}
≤ E

[
Rφ(0)

π(A;X)

]
,

we have ‖f̃λn‖k ≤ τ1/2λ
−1/2
n . Combining with Lemma 2, |I| and |II| are bounded

by C1λ
−1/2
n {2−{(1−r)�log2 kn�}/d+(b/{(1−u)n2−�log2 kn�})1/2+wn lnn} for both

R1 and R2, where C1 is some constant. Following the results in [26], |III|
is bounded by Mv(nλn/cn)

−2/(v+2) + Mvλ
−1/2
n (cn/n)

2/(d+2) + Kρ(nλn)
−1 +

2Kρn−1λ
−1/2
n with probability larger than 1−2e−ρ, where Mv is a constant de-

pending on v and K is a sufficiently large positive constant. Finally, combining
(I), (II) and (III), we have

pr(sup
f∈F

V ′(f) ≤ V ′(f̂n) + ε1) ≥ 1− 2e−ρ, (14)

where ε1 = a(λn)+Mv(nλn/cn)
−2/(v+2)+Mvλ

−1/2
n (cn/n)

2/(d+2)+Kρ(nλn)
−1+

2Kρn−1λ
−1/2
n + C1λ

−1/2
n {2−{(1−r)�log2 kn�}/d + (b/{(1 − u)n2−�log2 kn�})1/2 +

wn lnn}.
For the second part in Equation (12),

V (f)− V ′(f) = E
(RI[A = sign{f(X)}]

π(A;X)

)
− E

( R̂I[A = sign{f(X)}]
π(A;X)

)
= E

(
{E(T | X,A)− Ê(T | X,A)}I[A = sign{f(X)}]

π(A;X)

)
if R = R1. For R = R2, we have

V (f)− V ′(f)

= E
(
(1− δ){E(T | X,A, T > Y, Y )− Ê(T | X,A, T > Y, Y )}I[A = sign{f(X)}]

π(A;X)

)
.

By Lemma 2,

sup
f∈F

|V (f)− V ′(f)|

≤C2λ
−1/2
n {2−{(1−r)�log2 kn�}/d + (b/{(1− u)n2−�log2 kn�})1/2 + wn lnn},

(15)

where C2 is some constant. Now, combining (14) and (15) we have

pr(V (f∗) ≤ V (f̂n) + ε) ≥ 1− 2e−ρ,

where

ε = a(λn) +Mv(nλn/cn)
−2/(v+2) +Mvλ

−1/2
n (cn/n)

2/(d+2) +Kρ(nλn)
−1

+ 2Kρn−1λ−1/2
n + Cλ−1/2

n {2−{(1−r)�log2 kn�}/d + (b/{(1− u)n2−�log2 kn�})1/2

+ wn lnn}.

This completes the proof.
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Additional simulation results for different censoring rates

We summarize the additional simulation results in this section. For each simu-
lation scenario considered in Section 4, we alter the first constant term in the
censoring distribution to achieve 30% (Table 4 and Figure 4), and 60% (Table
5 and Figure 5) censoring rates.

Table 4

Simulation results: Mean (×103) and (sd) (×103). Censoring rate: 30%. For each scenario,
the theoretical optimal value (×103) is 31, 181, 1079, and -389, respectively.

kernel T RIST-R1 RIST-R2 ICO DR Cox

1
Linear 0 (26) 1 (31) 2 (28) -10 (40) -20 (63)

-26 (33)
Gaussian -17 (44) -10 (34) -7 (37) -18 (45) -48 (65)

2
Linear 22 (113) 17 (105) -14 (126) -110 (136) -193 (133)

65 (63)
Gaussian -39 (115) -25 (101) -62 (113) -164 (119) -285 (112)

3
Linear 785 (52) 768 (53) 771 (52) 737 (95) 667 (124)

763 (61)
Gaussian 896 (61) 810 (54) 854 (69) 817 (124) 679 (123)

4
Linear -453 (37) -465 (46) -448 (27) -461 (42) -471 (54)

-457 (32)
Gaussian -465 (35) -477 (42) -456 (27) -474 (41) -505 (48)

T: using true survival time as weight; RIST-R1 and RIST-R2: using the estimated R1 and
R2 respectively as weights, while the conditional expectations are estimated using

recursively imputed survival trees; ICO: inverse probability of censoring weighted learning;
DR: doubly robust outcome weighted learning; Cox: Cox proportional hazards model using

covariate-treatment interactions.

Table 5

Simulation results: Mean (×103) and (sd) (×103). Censoring rate: 60%. For each scenario,
the theoretical optimal value (×103) is 31, 181, 1079, and -389, respectively.

kernel T RIST-R1 RIST-R2 ICO DR Cox

1
Linear 0 (26) -2 (39) -5 (43) -29 (57) -64 (92)

-34 (36)
Gaussian -17 (44) -12 (40) -12 (45) -35 (55) -144 (78)

2
Linear 22 (113) -36 (123) -61 (135) -138 (133) -248 (129)

31 (79)
Gaussian -39 (115) -69 (108) -102 (115) -165 (117) -313 (101)

3
Linear 785 (52) 753 (77) 748 (69) 646 (104) 556 (94)

721 (70)
Gaussian 896 (61) 796 (63) 819 (67) 775 (106) 573 (93)

4
Linear -453 (37) -478 (55) -458 (33) -486 (55) -492 (59)

-480 (43)
Gaussian -465 (35) -492 (48) -461 (29) -513 (53) -551 (38)

T: using true survival time as weight; RIST-R1 and RIST-R2: using the estimated R1 and
R2 respectively as weights, while the conditional expectations are estimated using

recursively imputed survival trees; ICO: inverse probability of censoring weighted learning;
DR: doubly robust outcome weighted learning; Cox: Cox proportional hazards model using

covariate-treatment interactions.
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Fig 4. Boxplots of mean log survival time for different treatment regimes. Censoring rate:
30%. T: using true survival time as weight; RIST-R1 and RIST-R2: using the estimated
R1 and R2 respectively as weights, while the conditional expectations are estimated using
recursively imputed survival trees; ICO: inverse probability of censoring weighted learning;
DR: doubly robust outcome weighted learning. The black horizontal line is the theoretical
optimal value.
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Fig 5. Boxplots of mean log survival time for different treatment regimes. Censoring rate:
60%. T: using true survival time as weight; RIST-R1 and RIST-R2: using the estimated
R1 and R2 respectively as weights, while the conditional expectations are estimated using
recursively imputed survival trees; ICO: inverse probability of censoring weighted learning;
DR: doubly robust outcome weighted learning. The black horizontal line is the theoretical
optimal value.
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