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Abstract: The present paper deals with the robustness of estimators and
tests for ordinal response models. In this context, gross-errors in the re-
sponse variable, specific deviations due to some respondents’ behavior, and
outlying covariates can strongly affect the reliability of the maximum like-
lihood estimators and that of the related test procedures.

The paper highlights that the choice of the link function can affect the
robustness of inferential methods, and presents a comparison among the
most frequently used links. Subsequently robust M -estimators are proposed
as an alternative to maximum likelihood estimators. Their asymptotic prop-
erties are derived analytically, while their performance in finite samples is
investigated through extensive numerical experiments either at the model
or when data contaminations occur. Wald and t-tests for comparing nested
models, derived from M -estimators, are also proposed. M based inference
is shown to outperform maximum likelihood inference, producing more re-
liable results when robustness is a concern.
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1. Introduction

In recent years, the interest in ordinal data has been constantly growing since
these data convey relevant information on several scientific and applied research
areas, such as medicine, psychology, sociology, political sciences, economics, mar-
keting, and so on. The motivation for this interest stems from the need to col-
lect data on several aspects of current life of people and communities. Generally
categorical data arise when items concerning opinions, preferences, judgements,
evaluations, worries, etc., are expressed as ordered categories.

A large body of statistical literature has been devoted to models for ordinal
data, as summarized in standard books such as Agresti (2010) and Tutz (2012)
among others. The present paper focusses on models where the response variable
is ordinal and depends on explanatory variables given by the subjects’ covariates.

The most popular approach to ordered response models initially advocated
by McCullagh (1980) is based on the assumption that a latent variable drives
the response and the model is embedded within the Generalized Linear Model
framework as formalized by Nelder and Wedderburn (1972) and McCullagh and
Nelder (1989). A different perspective, more related to the psychological process
of selection, leads to the cub models (Piccolo, 2003; Iannario and Piccolo, 2016),
so called because they parameterize the probability of a given response as a
mixture of a shifted Binomial and a discrete Uniform random variable. This
approach does not require the specification of a model for the latent variable and
describes directly the effect of the covariates on the feeling and the uncertainty
underlying the respondents’ choices.

In spite of the huge body of literature on robustness both for continuous and
discrete data in the past decades (see e.g. the books by Huber (1981, 2nd edition
by Huber and Ronchetti 2009), Hampel et al. (1986), Maronna et al. (2006)),
the area of ordinal data has been somewhat neglected. Nevertheless, it has been
recognized that respondents may deliberately or unconsciously choose a wrong
category. This phenomenon, in addition to the occurrence of gross-errors (whose
probability is never negligible) or to erratic behavior by a few respondents,
produces a contamination of the assumed model distribution, which can alter
the properties of estimators and tests.

Few papers in the robustness literature are related to this problem. An early
reference is Hampel (1968), where in addition to the now classical infinitesimal
approach to robustness, robust issues in the pure binomial case are discussed.
This was followed up more recently by Ruckstuhl and Welsh (2001). In addition,
Victoria-Feser and Ronchetti (1997) develop robust estimators for grouped data,
which typically appear e.g. in income studies, by investigating the robustness
properties of estimators with respect to the underlying continuous model. More
recently, Iannario et al. (2016) deal with robustness for the class of cub models,
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and Croux et al. (2013) propose a robust estimator for ordinal response models
with a logistic link function. In the literature about latent variable models,
Moustaki and Victoria-Feser (2006) develop robust alternatives to LISREL and
robust estimators for Generalized Linear Latent Variable Models. Finally, from
a Bayesian perspective, some interest for detecting outliers with categorical
and ordinal data has been advanced by Albert and Chib (1993; 1995), who
compute Bayesian residuals for both binary and polychotomous response data.
The approach has been extended also to sequential ordinal modelling (Albert
and Chib, 2001) with the comparison of nonnested models. For a Bayesian
modelling of categorical response data we refer to Chib (2005) who includes an
overview of MCMC methods in this context.

In this paper we consider a rich class of ordinal response models based on a
latent variable with covariates and different link functions. First, we study the
impact of deviations from the underlying distribution on the reliability of the
Maximum Likelihood (ML) estimator, and illustrate the results for the most
common links: the probit, the logistic and the complementary log-log link. In
particular, we highlight the role of the generalized residuals as diagnostic tools.
Moreover, we compare the behavior of the most common links from a robustness
point of view under different types of deviations. Then, as a robust alternative
to the ML estimators (MLE), M -estimators are proposed, which yield reliable
estimates of the value of the parameters, and can be used to derive robust testing
procedures. They can be viewed as weighted MLEs, where the weights provide
valuable diagnostic information on possible outliers and substructures in the
data. Finally, in an extensive Monte Carlo study we investigate the finite sample
behavior of our new robust estimators at the model and under various types of
deviations that can appear in practice. In particular, we give recommendations
on the choice of the tuning constant for robust estimators.

The paper is organized as follows: the next section provides a brief overview
of the approach currently used in the analysis of ordinal response variables, and
reviews classical ML inference in this context. Section 3 gives some insights
on the robustness of current methods for ordinal response models with special
emphasis on the behaviour of the generalized residuals for some popular links.
Section 4 proposes a class of robust estimators for ordered response models,
whose properties are numerically investigated in Section 5. Robust testing pro-
cedures are considered in Section 6. Some concluding remarks end the paper.
In the Appendix we provide additional numerical evidence and some compu-
tational details. In particular, we investigate the choice of the tuning constant
with respect to the efficiency and the robustness of the corresponding estimator.

2. Maximum likelihood inference for ordered response models

Let Y be an ordinal variable of interest which is linked to an underlying latent
variable Y ∗ through the relationship

Y = j ⇐⇒ αj−1 < Y ∗ ≤ αj , j = 1, 2, . . . ,m, (1)
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where −∞ = α0 < α1 < . . . < αm = +∞ are the thresholds (cutpoints) of the
continuous support of the latent variable, and m represents the given number
of categories of Y .

The variable Y ∗, in turn, depends on p ≥ 1 covariates, so that for the i-th
statistical unit we have the latent regression model

Y ∗
i = Xi1β1 +Xi2β2 + · · ·+Xipβp + εi = X ′

iβ + εi, i = 1, 2, . . . , n, (2)

where Xi = (Xi1, Xi2, . . . , Xip)
′, β = (β1, β2, . . . , βp)

′ and εi is a random vari-
able whose distribution and density function are denoted by G(ε) and g(ε),
respectively. Since Y ∗ is unobservable, a random sample is given by (Yi,Xi),
for i = 1, 2, . . . , n.

Relationship (1) yields the following probability mass function for Yi condi-
tionally on Xi = xi ≡ (xi1, xi2, . . . , xip)

′

P r (Yi = j | xi) = P r (αj−1 < Y ∗
i ≤ αj) = G(αj − x′

iβ)−G(αj−1 − x′
iβ),

for j = 1, 2, . . . ,m. In particular, since α0 = −∞ and αm = +∞, we haveG(α0−
x′
iβ) = G(−∞) = 0 and G(αm − x′

iβ) = G(+∞) = 1, hence Pr(Yi = 1|xi) =
G(α1 −x′

iβ) and Pr(Yi = m|xi) = 1−G(αm−1 −x′
iβ). Common specifications

of G(ε) are the Gaussian, the logistic and the extreme value distributions (see
Agresti, 2010, for an extensive review).

Let θ = (α′,β′)′ be the parameter vector, where α = (α1, . . . , αm−1)
′ is the

vector of the thresholds, then θ ∈ Ω(θ) where Ω(θ) is an open subset of Rp+m−1.
Given an observed random sample (yi,xi), for i = 1, 2, . . . , n, let

y = (y1, y2, . . . , yn)
′ andX be the matrix whose rows are given by x1,x2, . . . ,xn.

The log-likelihood function is

n∑
i=1

�(θ; yi,xi)

with individual term

�(θ; yi,xi) =

m∑
j=1

I[yi = j] logPr(Yi = j|xi)

=

m∑
j=1

I[yi = j] log [G(αj − x′
iβ)−G(αj−1 − x′

iβ)] ,

where I[ω] is an indicator function which takes the value 1 when ω holds and 0
otherwise. Notice that �(θ; yi,xi) includes only one term, that is the j-th term
of the sum if the i-th respondent chooses the j-th category.

The score function is S(θ) =

n∑
i=1

s(yi,xi;θ), where

s(yi,xi;θ) =
∂�(θ, yi,xi)

∂θ
(3)
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=

m∑
j=1

I[yi = j]

[
1

[G(αj − x′
iβ)−G(αj−1 − x′

iβ)]

∂Pr(Yi = j|xi)

∂θ

]
,

and
∂Pr(Yi = j|xi)

∂θ
=

(
∂Pr(Yi = j|xi)

∂β′ ,
∂Pr(Yi = j|xi)

∂α′

)′
.

Finally, the generic term of the information matrix I(θ,X) for a single obser-
vation, conditionally on X = x, is given by

Irs(θ,x) = EY

{
−∂2 �(θ, Y,X)

∂ θr ∂ θs

∣∣∣∣X = x

}

= −
m∑
j=1

I[Y = j]
∂2 �(θ, Y,x)

∂ θr ∂ θs
Pr(Y = j|x)

for (r, s) = 1, 2, . . . ,m+p−1, and the elements of the unconditional information
matrix I(θ) are given by Irs(θ) = EX

{
Irs(θ,X)

}
.

For the thresholds we have
∂Pr(Yi = j|xi)/∂αs = g(αs − x′

iβ) {I[j = s]− I[j = s+ 1]}, for s = 1, 2, . . . ,
m − 1, where it is to be recalled that g(α0 − x′

iβ) = g(−∞) = 0 and g(αm −
x′
iβ) = g(+∞) = 0. Thus, the elements of s(yi,xi;θ) related to the thresholds

are given by

sαs(yi,xi;θ) =
∂�(θ; yi,xi)

∂αs
=

g(αs − x′
iβ)

{
I[yi = s]− I[yi = s+ 1]

}
G(αs+1 − x′

iβ)−G(αs − x′
iβ)

(4)

for j = 1, . . . ,m − 1. Notice that the score functions for the thresholds can be
unbounded, when x′

iβ → ±∞, if the density at the numerator converges to zero
slower than the denominator.

Since ∂Pr(Yi = j|xi)/∂βk =
{
g(αj−1−x′

iβ)−g(αj−x′
iβ)

}
xik, the elements

of s(yi,xi;θ) related to the regression coefficients are given by

sβk
(yi,xi;θ) =

∂�(θ; yi,xi)

∂βk
=

m∑
j=1

I[yi = j]
g(αj−1 − x′

iβ)− g(αj − x′
iβ)

G(αj − x′
iβ)−G(αj−1 − x′

iβ)
xik,

(5)
for k = 1, 2, . . . , p.

Let us re-express (5) by means of the generalized residuals (Franses and Paap,
2004, p. 123)

eij(θ) =
g(αj − x′

iβ)− g(αj−1 − x′
iβ)

G(αj − x′
iβ)−G(αj−1 − x′

iβ)
, i = 1, 2, . . . , n, j = 1, 2, . . . ,m,

(6)
where for j = 1 and j = m (6) yields

ei1(θ) =
g(α1 − xiβ)

G(α1 − xiβ)
, eim(θ) = − g(αm−1 − xiβ)

1−G(αm−1 − xiβ)
.
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Then, (5) becomes

sβk
(yi,xi;θ) = −

m∑
j=1

I[yi = j]eij(θ)xik. (7)

Notice again that, although the generalized residuals eij(θ) are defined for any
j ∈ {1, 2, . . . ,m}, the individual score function for βk, given by (7), contains
only the j-th term such that yi = j. The score function for the whole sample is
given by

n∑
i=1

sβk
(yi,xi;θ) = −

n∑
i=1

m∑
j=1

I[yi = j]eij(θ)xik, (8)

which has the same structure as the first-order condition of the Gaussian (ML)
equation in the linear regression model, i.e.

∑n
i=1 rixi = 0, where the ri’s are

the residuals. Equation (8) makes clear why the quantities eij(θ) are called
generalized residuals: in ordinal response models they play a similar role to the
ri’s in the linear model. Indeed their inspection is crucial to understanding the
impact of anomalous observations on estimators.

Outlying values in the covariates induce both the numerator and the denomi-
nator of (6) to approach 0 and the final value of eij(θ), which can either diverge
or vanish, depends on the speed of convergence of the two terms. However, if a
large xi is associated with a large residual, the corresponding statistical unit will
have a dominating role in (8) when determining the estimate of the parameter.
If instead the generalized residual tends to zero when xi becomes large, then
the impact of outlying covariates in the estimation process is limited. Conse-
quently, it is recommended to choose the link function such that the generalized
residuals, viewed as a function of x′

iβ, are bounded. This point will be dealt
with in greater detail in Section 3.

Notice however that the generalized residuals are affected also by anoma-
lous data in the response Y . This variable has a limited support, {1, 2, . . . ,m},
hence unbounded outlying observations cannot occur. Nevertheless, a category
inconsistent with the covariates may appear as a consequence of an incoherent
selection by the respondent or of a collecting, reading or recording error. Such an
event can produce an outlying residual which may have a non-negligible impact
on (8), as illustrated in the following example.

Example 1. Consider a categorical variable obtained through (1) where Y ∗ =
1.5X + ε, X is a standard normal variable, ε ∼ N(0, 1) and α = (−1.6, 0, 1.6)′.
An observed sample of n = 30 data has been collected, whose values are reported
in Table 1.

Suppose that, by mistake, the first value of the response variable Y , which
is 1, is erroneously reported as 4. Figure 1 shows the generalized residuals of
the original and modified data. In the original data the residuals are displayed
around 0 and no outlying values appear. The first generalized residual, which
originally has the value 0.521, takes, in the modified dataset, the value −3.919
(this change is displayed by an arrow in the right panel). This residual turns out
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Table 1

Dataset of Example 1

y 1 2 2 3 4 3 4 2 2 3
x -1.39 0.04 -0.76 0.21 1.43 0.74 0.70 -0.23 0.20 1.21
y 3 2 2 4 3 3 2 1 2 2
x 0.32 -1.42 -0.41 1.00 0.96 0.92 -0.15 -1.22 -0.87 -1.04
y 1 3 2 4 2 2 3 1 1 2
x -1.10 0.44 -0.20 1.68 -0.13 -0.20 0.05 -0.68 -0.73 -0.86

to be much lower than the other residuals and clearly outlying. Furthermore it
is likely to magnify the role of x1 in the estimation process.

Fig 1. Generalized residuals of the original and modified data of Example 1.
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3. Influence function, link functions and generalized residuals

In order to formalize the robustness properties of the MLE, we study its influ-
ence function (Hampel, 1974). In particular we focus on the boundness of this
function, which is necessary for local robustness. The influence function is given
by

IF (y,xi;ML,G) = I−1(θ)s (y,xi;θ) , y = 1, . . . ,m.

Since, for each parameter, the influence function is a linear combination of
all the score functions, it depends on both the covariates xi and the generalized
residuals introduced in (6). While there is no control on the magnitude of the
covariates, the generalized residuals can be bounded or unbounded according to
the choice of the distribution function G(ε).

To investigate the behaviour of the generalized residuals, let t = x′
iβ and

define the function Aj(t) which, for given thresholds (α1, . . . , αm−1) and any
real t, is given by

Aj(t) =
g(αj − t)− g(αj−1 − t)

G(αj − t)−G(αj−1 − t)
, j = 1, 2, . . . ,m. (9)

Hereafter the behaviour of Aj(t) is examined when some of the most popular
links used for ordinal response models, that is those derived from the Gaussian,
the extreme value and the logistic distribution, are adopted.

• Probit link
If ε has a normal distribution, (9) becomes

Aj(t) =
φ(αj − t)− φ(αj−1 − t)

Φ(αj − t)− Φ(αj−1 − t)
,

where φ(·) and Φ(·) are the standard normal density and distribution
function, respectively. Figure 2 shows Aj(t) for j = 1, 2, . . . ,m when the
thresholds are −2.5, −1, 0, 1 and 2.5. The functions Aj(t) are unbounded
as t → ±∞ (except for j = 1 when t → −∞ and j = m when t →
+∞), hence the impact of large x′

iβ on the estimates can be amplified by
unbounded generalized residuals.
Furthermore, the score functions for the thresholds, defined by (4), are
also unbounded. Consequently, when the probit link is adopted, a large xi

affects all the elements of s(yi,xi;θ) and it is likely to have a non-negligible
impact in the estimation process.

• Complementary log-log link
Assume G(ε) = 1− exp{− exp(ε)}, then (9) becomes

Aj(t) =
{1−G(αj − t)}eαj−t − {1−G(αj−1 − t)}eαj−1−t

G(αj − t)−G(αj−1 − t)
.

Figure 3 shows that the Aj(t) functions for j > 1 are unbounded for
negative values of t and converge to 1 as t → +∞ (notice the asymmetric
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Fig 2. Aj(t) function for the probit link with thresholds α = (−2.5,−1, 0, 1, 2.5)′.

Fig 3. Aj(t) function for the complementary log-log link with thresholds α =
(−2.5,−1, 0, 1, 2.5)′.
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behaviour in the tails produced by this distribution). Moreover, for this
link, analogously to the probit link, the score functions for the thresholds
are also unbounded, so that the influence functions are unbounded as
well.

• Logistic link
If ε has a logistic distribution, (9) yields

Aj(t) = 1−
{

1

1 + et−αj
+

1

1 + et−αj−1

}
.

The functions Aj(t) are illustrated in Figure 4. When a logistic link is
adopted, the functions Aj(t) are bounded everywhere, for any real t, and
in particular lim

t→±∞
Aj(t) = ±1. Hence the generalized residuals are al-

ways bounded between −1 and 1, and they neither diverge nor amplify
the impact on the estimators of outliers in the covariates.

Fig 4. Aj(t) function for the logistic link with thresholds α = (−2.5,−1, 0, 1, 2.5)′.

Remarkably, the functions which appear on the right side of (4) in score
functions for the thresholds are also bounded as illustrated in Figure 5.
Hence the only source of unboundness in the score functions is given
by the xik’s which are multiplied by the generalized residuals in (8).
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Fig 5. Threshold score functions for the logistic link with thresholds α = (−2.5,−1, 0, 1, 2.5)′.

4. Robust estimation

A robust estimator for θ, with a bounded influence function, can be obtained
by weighting the score functions so as to limit the influence of anomalous data.
For this purpose an M -estimator (Hampel et al. 1986 p. 100, 230) is introduced,

which is the implicit solution θ̂M of

n∑
i=1

ψ(yi,xi; θ̂M ) = 0, (10)

where

ψ(yi,xi;θ) = s(yi,xi;θ)w(yi,xi;θ)− a(θ), (11)
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and

a(θ) = E
{
s(Y,X;θ)w(Y,X;θ)

}
.

The weights w(yi,xi;θ) in (11) are designed to downweight outlying ob-
servations in order to control their impact in the estimation. Of course, if
w(yi,xi;θ) ≡ 1 then a(θ) ≡ 0, ψ(yi,xi;θ) coincides with s(yi,xi;θ), and the
solution of (10) is the MLE.

The term a(θ) in (11) is required to achieve Fisher consistency for θ̂M , and
can be obtained as follows

a(θ) = EX

[
EY

{
s(Y,X;θ)w(Y,X;θ)|X

}]
,

where by (3) it yields

EY

{
s(Y,X;θ)w(Y,X;θ)|X = xi

}
=

m∑
r=1

s(r,xi;θ)w(r,xi;θ)Pr(Y = r|xi)

=

m∑
r=1

∂Pr(Y = r|xi)

∂θ
w(r,xi,θ). (12)

LetM(θ, ψ) = −E

{
∂

∂ θ
ψ(Y,X;θ)

}
; the influence function of theM -estimator

is given by

IF (y,xi;ψ,G) = M−1(θ, ψ)ψ (y,xi;θ) for y = 1, 2, . . . ,m, and xi ∈ R
p.

In order to have a bounded influence function, the function ψ(·) needs to be
bounded. The following two cases should be distinguished.

• The covariates are outlier free. This is either the case of qualitative ex-
planatory variables, whose categories are represented by means of dichoto-
mous regressors, or the case of finite explanatory variables without extreme
values. Here the generalized residuals are the only source of unboundness
of the score functions, and hence of the influence function. Consequently
estimators with a bounded influence function can be obtained either by
adopting the logistic link, whose generalized residuals have the limited
range (−1, 1), or by applying a downweighting of the residuals through an
appropriate weight function when other links are adopted.

• The covariates may contain outliers. This case occurs when there are un-
limited variables among the regressors. Here unboundness of the ψ(·) func-
tions can derive either from outlying covariates or from unbounded gener-
alized residuals, and the sequence of weights w(·) in (11) should limit the
effect of both large xi and large eij(θ).

When the regressors cannot contain outliers and the link is different from the
logistic one, the only concern from the robustness viewpoint is given by large
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generalized residuals. Hence, the following Huber weights (Hampel et al., 1986,
p. 104), which are functions of the magnitude of the residuals, can be used

w(yi,xi,θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if

m∑
j=1

I[yi = j] | eij(θ) |< c

c
m∑
j=1

I[yi = j] | eij(θ) |
, if

m∑
j=1

I[yi = j] | eij(θ) | ≥ c,

(13)
where c is a positive constant and the following relationship is exploited to
evaluate the magnitude of the residuals

∥∥∥ m∑
j=1

I[yi = j] eij(θ)
∥∥∥ =

√√√√ m∑
j=1

I[yi = j] eij(θ)2 =

m∑
j=1

I[yi = j] | eij(θ) | .

The weights in (13) are decreasing functions of the magnitude of the residuals,
when the latter exceed c in absolute value.

In the second case, when the regressors may contain outliers so that large
|eij(θ)| and large xi are a concern, the following weights, which are non-in-
creasing functions of the magnitude of both the residuals and the covariates,
can be applied

w(yi,xi,θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if

m∑
j=1

I[yi = j] | eij(θ) | ‖xi‖ < c

c
m∑
j=1

I[yi = j] | eij(θ) | ‖xi‖
, if

m∑
j=1

I[yi = j] | eij(θ) | ‖xi‖ ≥ c.

(14)

A Mahalanobis distance ||xi|| =
{
(xi − μ̂X)′Σ̂−1

X (xi − μ̂X)
}1/2

can be used
for the norm of the covariates in (14), which needs however to be based on a

robust multivariate estimator of location μ̂X and scatter Σ̂X .
The threshold c

‖xi‖ defining the weights w(yi,xi;θ) in (14) is no longer a con-

stant, but depends on ‖xi‖. More trimming is applied to a residual
∑m

j=1 I[yi =
j] | eij(θ) | associated with an outlying covariate, i.e. when ‖xi‖ is large. This
is analogous to the linear regression case; see Hampel et al. (1986), Fig.1, p.
322.

Notice also that if one adopts a logistic link, the generalized residuals are
always bounded (see Section 3) and in principle only weights on the xi may
be needed. This is the robust estimator proposed by Croux et al. (2013). How-
ever the numerical experiments of Section 5 provide evidence that considering
the interaction between regressors and generalized residuals can enhance the
efficiency of the M -estimators, even with the logistic link.
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Finally the value of the tuning constant c is to be chosen so that the loss of
efficiency incurred by M -estimators with respect to the MLEs, does not exceed
a given threshold (say 5% or 10%), when there is no contamination in the data;
see Section 5.1.

Under general regularity conditions (Huber, 1981), the M -estimator θ̂M is
asymptotically normal, i.e.

n1/2
(
θ̂M − θ

)
→ N(0,V (θ, ψ)),

with asymptotic variance-covariance matrix

V (θ, ψ) = M−1(θ, ψ)Q(θ, ψ)M−1(θ, ψ)

and Q(θ, ψ) = E
{
ψ(Y,X;θ)ψ(Y,X;θ)′

}
.

V (θ, ψ) can be estimated by using sample estimates of M(θ, ψ) and Q(θ, ψ),

i.e. V̂ψ = M̂−1Q̂M̂−1, where

M̂ = − 1

n

n∑
i=1

∂ψ(yi,xi;θ)

∂θ

∣∣∣∣
θ=θ̂M

; Q̂ =
1

n

n∑
i=1

ψ(yi,xi; θ̂M )ψ(yi,xi; θ̂M )′.

If we denote by VML and Vψ the variance-covariance matrices of the ML and
M -estimators, respectively, various relative efficiency measures (listed below)
can be considered to evaluate the loss of efficiency at the model corresponding
to a given c.

• Trace criterion. This is a global efficiency measure which compares the
traces of the asymptotic variance-covariance matrices of the MLEs and
the M -estimators,

eff (θ̂M , θ̂ML; c) =
tr
(
VML

)
tr
(
Vψ

) .

• Minimum variance ratio criterion considers the minimum among the ra-
tios between the asymptotic variances of the competing estimators,

eff (θ̂M , θ̂ML; c) = min
i

{
V ii
ML

V ii
ψ

}
.

It evaluates the maximum loss of efficiency in the estimation of a single
parameter, which can be encountered when the data are generated by the
assumed model and an M -estimator is used.

• Determinant criterion. This is also a global measure of efficiency which
compares the determinants of the asymptotic variance-covariance matri-
ces,

eff (θ̂M , θ̂ML; c) =
det

(
VML

)
det

(
Vψ

) .
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All these criteria are functions of c. If the asymptotic variance-covariance
matrices were known, given an efficiency target (say 0.95) for the M -estimator,

the value of c could be chosen such that eff (θ̂M , θ̂ML; c) = 1−ν, where ν is the
acceptable loss of efficiency. Unfortunately the asymptotic variance-covariance
matrices are typically unknown, since they depend on various factors including
the distribution of the covariates which is usually unavailable. Simulated versions
of these criteria are therefore used in Section 5, where numerical investigations
are carried out to determine suitable values of the tuning constant.

5. Numerical experiments

This Section investigates the finite sample behavior of our new robust estima-
tors and discusses the choice of the tuning constant. Subsection 5.1 is devoted
to identify which values of c guarantee that the loss of efficiency, when no con-
tamination of the data occurs, is below the 5% threshold, whereas Subsection
5.2 explores the performance of M -estimators when the data are contaminated
by gross errors or outliers. Both the probit and the logistic link are considered,
since they are the most frequently used in practice. Due to space constraints,
only the most relevant results are reported here, while an extended version of
the numerical experiments is provided in the Appendix.

The analysis is carried out through numerical experiments on six models.
The first two models have only qualitative covariates, whose categories are rep-
resented through dichotomous variables, so that the explanatory variables are
outlier free, although anomalous data can still be encountered in the response
variable. Hence for these two models robust estimation is performed only for
the probit link. When the logistic link is adopted and xi is made up of dichoto-
mous variables, robust estimation is unnecessary since the generalized residuals
belong to (−1, 1) (see Sections 3 and 4). The following three models have 1, 2
and 3 continuous covariates respectively, which implies that outlying xi are a
concern. Finally, in the last model there are both dichotomous and continuous
regressors. For models from 3 to 6 robust estimation is necessary with both the
probit and the logistic link.

• Model 1. The response variable Y , generated by (1), assumes m = 5
categories. It depends on one qualitative explanatory variable with four
categories, coded through 3 dichotomous 0− 1 variables X1, X2, and X3,
such that at most one of them can take the value 1. The error component
in (2) is N(0, 1), the regression coefficients are given by β = (2.5, 1.2, 0.5)′,
and the cutpoints are given by α = (−0.7, 0, 1.5, 2.9)′.

• Model 2. The response variable Y assumes 4 categories and depends
on two qualitative variables Wi, for i = 1, 2. Each of them assumes three
categories, coded by two dichotomous 0−1 variables Xa

i and Xb
i such that

Xa
i +Xb

i ≤ 1. The latent variable is Y ∗ = 2.5Xa
1+1.0Xb

1+3.6Xa
2+1.8Xb

2+ε,
where ε ∼ N(0, 1) and the cutpoints are α = (1.2, 2.8, 5)′.

• Model 3. The response variable Y assumes 5 categories and depends on
one regressor X ∼ N(0, 1). The latent variable is Y ∗ = 1.5X + ε, and
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the cutpoints are α = (−1.7,−0.5, 0.5, 1.7)′ when ε ∼ N(0, 1), and α =
(−2.1,−0.6, 0.6, 2.1)′ when ε has a logistic distribution with mean 0 and
variance π2/3. The cutpoints are defined so that they roughly correspond
to the same percentiles of the latent variable Y ∗ for the probit and the
logistic link.

• Model 4. The response variable Y assumes 4 categories, and depends on
two regressors X1 ∼ N(0, 1) and X2 ∼ N(0, 4), with cov(X1, X2) = 1.2.
The regression coefficients are given by β = (1.5, 0.7)′, while the cutpoints
are α = (−2.3, 0, 2.3)′ for the probit link and α = (−2.6, 0, 2.6)′ for the
logistic one.

• Model 5. The response variable Y assumes 3 categories and the regressors
are X1 ∼ N(0, 1), X2 ∼ N(0, 4) and X3 ∼ N(0, 9), with cov(X1, X2) =
1.5, cov(X1, X3) = 0.8 and cov(X2, X3) = 2.5. The regression coefficients
are given by β = (2.5, 1.2, 0.7)′ while the cutpoints are α = (−3.8, 3.8)′

and α = (−4, 4)′ for the probit and the logistic link, respectively.
• Model 6. The response variable Y assumes 4 categories and depends

on two explanatory variables D ∼ Bernoulli(0.5) and X ∼ N(0, 1). The
latent regression model is Y ∗ = 2.5D+1.2X+0.7XD+ε, and the cutpoints
are α = (−1, 1, 3)′ and α = (−1.4, 1.1, 3.4)′ for the probit and the logistic
link, respectively.

5.1. Tuning constant and loss of efficiency at the model

In order to measure the loss of efficiency of M -estimators, when the data are
generated by the assumed model, 1000 samples of size n = 200 are drawn for
each model, and both ML and M -estimators are computed. On the basis of
experimental evidence, values between 0.5 and 4 are considered for the tuning
constant c, on a grid with step 0.1.

When performing M -estimation, the weights are given by (13) for Models 1
and 2, and by (14) for the other models. Furthermore, when the logistic link
is adopted, the question arises whether it is useful to include |eij(θ)| in the
argument of the weights, in Models from 3 to 6, since the generalized residuals
have a limited range. For this reason, two estimation procedures are considered
for this link: the first one uses the weights defined in (14), while in the second
procedure the weights are functions of ‖xi‖ only, i.e.

w(yi,xi,θ) = min{1, c/‖xi‖}. (15)

These weights are analogous to those used by Carroll and Pederson (1993) to
obtain robust estimators for the logistic model with a dichotomous response
variable.

In Model 3, since there is only one regressor, the norm ‖xi‖ for the i-th obser-
vation is computed as |xi−Med(X)|/MAD(X), where Med(X) and MAD(X)
are the median and the normalized median absolute deviation of X. The same
procedure is used in Model 6, where the norm is a function of the continuous
variable only. In the other two models (4 and 5), the norm of the regressors
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is given by the Mahalanobis distance, computed after estimating location and
scale of X through the Stahel-Donoho procedure (Stahel, 1981; Donoho, 1982;
see also Maronna and Yohai, 1995).

The three efficiency criteria introduced in Section 4 are applied to evaluate
the loss of efficiency due to M -estimation at the model, with the asymptotic
variance-covariance matrices of the estimators replaced by the Mean Square
Error (MSE) matrices obtained from simulation.

The minimum values of c such that the loss of efficiency of M -estimators is
not larger than 5%, are shown in Table 2.

Table 2

Minimum values of the tuning constant required to achieve an efficiency loss smaller than
5% when M-estimation is performed and there is no contamination in the data - n = 200.

Efficiency Model

Link Criterion 1 2 3 4 5 6
Probit Trace 1.1 1.2 1.1 1.7 1.7 1.1

Min(MSE-ratio) 1.2 1.4 1.7 2.3 2.1 1.4
Determinant 1.6 2.0 2.2 3.1 2.7 2.0

Logistic Trace 0.6 0.9 0.9 0.7
Min(MSE-ratio) 0.8 1.0 1.1 0.8
Determinant 0.9 1.4 1.4 1.1

Logistic Trace 0.8 1.1 1.0 0.8
with weights Min(MSE-ratio) 1.1 1.4 1.3 0.9
(15) Determinant 1.2 1.9 1.9 0.8

Some remarks follow.

• For a given loss of efficiency, the values of c are smaller for the logistic link
than for the probit link. This evidence is explained by the circumstance
that the logistic generalized residuals have a limited range and hence they
can be expected to be smaller than the probit residuals. Therefore, the
same value of c yields smaller weights with the probit link than with the
logistic one, with a consequent larger loss of efficiency.

• For a fixed loss of efficiency, the Trace criterion requires smaller values of
c, whereas the Determinant criterion requires larger values (i.e. a milder
downweighting of the observations). On the whole, the value of c does not
seem to be appreciably affected by the nature (dichotomous or continuous)
and the number of regressors.

• When the probit link is adopted, in order to keep the loss of efficiency
below 5%, c needs roughly to be between 1.1 and 1.7 according to the
Trace criterion, between 1.2 and 2.3 according to the Minimum MSE
ratio criterion, and between 1.6 and 3.1 according to the Determinant
criterion. In short, when the target is a 5% loss at the model, c needs to
be greater than 1, but a value of c ≥ 3 might be too conservative.

• When the logistic link is adopted, c < 1.5 seems generally suitable to
ensure that the loss of efficiency is below 5%, whatever criterion is used.
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• When estimation with the logistic link is carried out with weights (15),
the value of the tuning constant necessary to keep the loss of efficiency
below 5% is usually slightly higher than that required by weights (14).
In other words, for a given c, the loss of efficiency is larger when the
residuals are neglected than when they are considered jointly with ‖xi‖ in
the weights. This provides evidence that it is important, when evaluating
the magnitude of xi, to take the corresponding |eij(θ)| into account. In
order to gain efficiency, two statistical units, such that ‖xi‖ takes the same
value, should be treated differently according to the size of the associated
generalized residuals. For this reason, the investigation of this estimation
method is not pursued further.

Figure 6 shows how the efficiency of the M -estimators varies with c, accord-
ing to the three criteria, in case of Model 3 when the probit and the logistic link
are adopted, respectively. When c decreases, the control on outlying observa-
tions increases and the ψ functions in (11) move away from the score functions,
yielding a larger loss of efficiency. Consequently, the larger is the admissible loss
of efficiency, the smaller is the value of the tuning constant. It is also to be
remarked that the convergence of the three criteria to 1 is faster for the logistic
link than for the probit one. Consequently, for a given c, the loss of efficiency
at the model is smaller when the logistic link is adopted rather then when the
probit one is used.

5.2. Tuning constant and robustness

After evaluating the loss of efficiency at the model due to M -estimation, it is
interesting to investigate what is the gain in efficiency which can be achieved by
robust estimation when data are contaminated. In what follows, some contami-
nations of the previous models are considered which highlight the performance
of M -estimation when some observations deviate from the assumed model. In
particular, three types of deviations are taken into account: gross errors in the
response variable, outliers in continuous covariates and model misspecification.

In the comparison of alternative estimators, along with the Minimum MSE
ratio, the maximum ratio between the MSE of the ML and M -estimators for
each parameter,

max
i

{
MSEML

i

MSEM
i

}
,

is also considered. This additional criterion is useful when data contamination
occurs, since under deviations from the model robust estimators are expected to
be more efficient than MLEs. In particular, it points out what is the maximum
gain in efficiency which can be achieved by M -estimation for a single parameter.
For each numerical experiment 1.000 samples of size n = 200 are generated.

Contaminated Model 2 (Shelter Effect). Here we consider the case when
five Yi, which originally take value 1, 2 or 3, are changed into 4. This kind of
contamination occurs when the selected category (in this case “four”) can be
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Fig 6. Trace Efficiency Criterion (circles), Minimum MSE criterion (squares) and Determi-
nant Criterion (triangles) in Model 3 - n = 200.

regarded as a shelter category: a choice that the respondents feel comfortable
with, although it appears incoherent with their profiles in terms of covariates
(see Iannario, 2012, for a more extensive illustration of shelter choices).

The minimum and the maximum MSE-ratios useful for comparing the M -
estimators with the MLEs are shown in Table 3. Values of c between 1 and 1.5
seem thoroughly appropriate to achieve robust estimation according to the two
criteria. If say c = 1.25 is taken, the gain in efficiency in the estimation of a
single parameter varies between 37.6% and roughly 140%, which is a quite re-
markable achievement obtained by M -estimators. On the contrary, high values
of c yield a poor performance of robust estimation.
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Table 3

Efficiency criteria when M-estimation is performed in Model 2 with the probit link and a
shelter effect occurs.

c 1 1.25 1.5 1.75 2 2.5 3 3.5
Min(MSE-ratio) 1.354 1.376 1.373 1.342 1.299 1.201 1.124 1.064
Max(MSE-ratio) 2.556 2.398 2.227 2.029 1.819 1.485 1.253 1.099

Contaminated Model 3. Suppose that gross errors occur so that, for κ sta-
tistical units, the value of the regressor, which is N(0, 1), is erroneously recorded
as 5. The MSE-ratio in Table 4 compares the MLE and the M -estimator (with
c = 1.5) of the regression coefficient, when κ varies between 1 and 20, which - in
a sample of size n = 200 - corresponds to an amount of contamination between
0.5% and 10%.

Table 4

MSE-ratio between the MLE and the M-estimator (with c = 1.5) of the regression
coefficient in Model 3 when there are κ outliers equal to 5 in the explanatory variable.

κ 1 2 3 4 5 6 7

Probit link 6.963 15.912 23.146 26.697 28.012 27.046 25.253
Logistic link 1.283 2.212 3.401 4.377 4.930 5.315 5.368

κ 8 9 10 12 15 20
Probit link 23.072 20.840 18.419 14.576 10.541 6.600
Logistic link 5.098 4.905 4.538 3.853 2.821 1.788

Robust estimation produces a very large gain in efficiency, especially when
the probit link is adopted. In fact, the efficiency as a function of the amount of
contamination increases until a peak is reached, then decreases as a consequence
of likely masking effects. Nevertheless, two remarks are to be made. The decrease
in efficiency starts at a larger contamination for the logistic link with respect
to the probit link; secondly, despite the decrease in efficiency, robust estimation
remains still more efficient than ML estimation.

Figure 7 shows the MSE-ratio for the regression coefficient when c varies
and κ = 3 for both the probit and the logistic link. Although the magnitude of
the gain in efficiency is widely different for the two links, Figure 7 shows that c
needs to be small, say c ≤ 2, to achieve a more effective robust estimation.

Contaminated Model 3 (continued). Table 5 shows the MSE-ratio between
the MLE and the M -estimator of the regression coefficient in Model 3 when -
because of a gross error - the value of xi for a single statistical unit is replaced
by an outlier, whose value varies between 3 and 10. For both the probit and
logistic link the value of the tuning constant is c = 1.5. From the table it can
be appreciated how the gain in efficiency of the M -estimators over the MLEs
increases as the outlier moves away from the bulk of data. As in the previous
experiment, the gain in efficiency is much larger for the probit link than for the
logistic one, although robust estimation is very useful in both cases, as soon as
the magnitude of the outlier becomes noticeable.
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Fig 7. MSE-ratio between the MLE and the M-estimator of the regression coefficient in
Model 3 as c varies, when there are 3 outliers equal to 5 in the explanatory variable.

Table 5

MSE-ratio between the MLE and the M-estimator (c = 1.5) of the regression coefficient in
Model 3 when the outlier varies.

Outlier 3 4 5 6 7 8 9 10

Probit link 2.001 3.923 6.963 10.963 15.650 20.747 26.016 31.276
Logistic link 1.021 1.127 1.283 1.480 1.717 1.992 2.306 2.658

Contaminated Model 4. The contamination considered for Model 4 is given
by two statistical units whose regressors are jointly mis-reported as 5. Hence
the amount of contamination is indeed very mild, that is 1%. Table 6 shows the
Trace and the Determinant criterion, and the MSE-ratios between the MLEs
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and the M -estimators of the regression coefficients when both the probit and
the logistic link are adopted. Also this experiment highlights the considerable
greater efficiency of M -estimators with respect to MLEs.

Table 6

Trace criterion, MSE-ratio for the regression coefficients and Determinant criterion in
Model 4 under 1% contamination of the data (x1 = x2 = 5 for two statistical units).

Trace MSE-ratio Determinant

c Criterion β1 = 1.5 β2 = 0.7 Criterion
Probit link

1.00 10.789 22.287 5.475 1.816
2.00 11.491 22.358 6.453 2.894
3.00 10.927 19.428 6.613 3.100

Logistic link
1.00 1.352 2.300 0.937 1.375
2.00 1.392 2.195 1.011 1.638
3.00 1.306 1.761 1.032 1.467

Contaminated Model 5. Model 5 has been estimated by MLEs and M -
estimators after inserting two extra unnecessary and independent regressors:
X4 ∼ N(0, 1) and X5 ∼ N(0, 1). Hence the overparameterized model assumed
for the latent variable in the estimation process is Y ∗ = β1X1 +β2X2 +β3X3 +
β4X4 + β5X5 + ε, though β4 = β5 = 0. In addition the data have been contam-
inated by changing the value of X1 into 5 for κ statistical units. Table 7 shows
how the Trace criterion varies with κ when c = 1.5 for both the probit and the
logistic link. The gain in efficiency provided by M -estimation is clearly evident.

Table 7

Trace criterion when Model 5 is misspecified by adding two unnecessary regressors, and
there are κ anomalous values in X1 (c = 1.5).

κ 1 2 3 4 5

Probit link 2.051 3.688 5.156 5.311 4.830
Logistic link 1.129 1.754 2.398 2.776 2.888

6. Robust testing procedures

Robust test procedures can be based on robust M -estimators by means of t-type
statistics. As mentioned in Section 4, M -estimators are asymptotically normal,
and the estimator V̂ψ of the asymptotic variance-covariance matrix is consistent
for V (θ, ψ). Hence, under the null hypothesis Hk

0 : βk = 0 for k = 1, . . . p, we
have

tk = (β̂M
k − βk)/

{
V̂ kk
β

}1/2 d⇒ N(0, 1),

where V̂ kk
β is the k-th element on the diagonal of V̂β , in turn V̂β is the submatrix

of V̂ψ related to the regression coefficients and β̂M
k is the k-th element of the

M -estimator β̂M of β.
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Wald type tests can also be carried out. Consider the hypothesis H0 : h(θ) =
0, where h(θ) is a vector of d functions. Under H0 we have

h(θ̂M )′
{
H(θ̂M )′V̂ψH(θ̂M )

}−1

h(θ̂M )
d⇒ χ2

d, (16)

where H(θ̂M ) is the matrix of the derivatives of h(θ) with respect to θ eval-

uated at θ̂M . Following Heritier and Ronchetti (1994), these tests inherit the
robustness of the corresponding M -estimators and exhibit robustness of validity
and robustness of efficiency.

Model 7. This model is similar to Model 3 but the response variable Y , which
still depends on one regressor X ∼ N(0, 1), assumes 4 categories. The latent
variable is Y ∗ = 1.2X + ε, and the cutpoints are α = (−1.5, 0, 1.5)′ for the
probit link, and α = (−2, 0, 2)′ for the logistic one. In the estimation process the
model is misspecified by including a dichotomous regressor D ∼ Bernoulli(0.5)
and its interaction with X. Hence the latent model assumed in the estimation is
Y ∗ = β1D+β2X+β3XD+ ε. In addition there is a mild contamination (0.5%)
of the data: the value of X is changed into 5 for a single statistical unit.

t-tests are carried out on the hypotheses Hk
0 : βk = 0 for k = 1, 3. The

tests are based on both MLEs and M -estimators, and for the latter the tuning
constant is set to c = 1.5. The tests are performed on 1.000 simulated samples
of size n = 200, at the significance level 5% and 10%.

Table 8 shows the percentage of rejections of Hk
0 for k = 1, 3. For the param-

eter β1 the null hypothesis is true and gets generally rejected in a percentage
of cases close to the nominal level. The simulated level of the test based on
M -estimators, rather than on MLEs, is generally slightly closer to the nomi-
nal one. A remarkable difference in the performance of the tests occurs when
testing the hypothesis H3

0 . Despite the parameter being zero, the percentage of
rejections of the test based on the MLEs is high, especially when the probit
link is adopted. In contrast, when the test is derived from M -estimators, the
actual rate of rejection is satisfactorily close to the nominal level.

Table 8

Percentage of rejections in Model 7 of Hk
0 : βk = 0, k = 1, 3, under 0.5% of contamination

in the data (c = 1.5).

Probit link Logistic link

Significance level 5% 10% 5% 10%
β1 β3 β1 β3 β1 β3 β1 β3

MLE 4.2 41.4 9.2 54.1 4.5 8.6 10.3 16.5
M 4.5 5.6 9.7 9.6 4.4 4.8 10.2 9.4

Figure 8 shows the Receiver Operating Characteristics (ROC) curves for the
t-tests based on the MLEs and on the M -estimators for the hypotheses H1

0 and
H3

0 , when the probit link is adopted. The true positive rates have been evaluated
when the model for the latent variable is Y ∗ = 0.7D + 1.2X + 0.5XD + ε. The
curves make evident the better performance of the test based on M -estimators
in terms of power as well as size.
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Fig 8. ROC curves for the t-tests on β1 (top panel) and β3 (bottom panel) based on the MLEs
(dashed line with circles) and on the M-estimators (solid line with squares) when the probit
link is adopted - n = 200. The knots correspond to the nominal significance levels 0.1%, 1%,
5%, 10% and 20%.

Finally, the hypothesis HD
0 : β1 = β3 = 0, to check whether D is a useful

explanatory variable, is considered. When the model is estimated by MLEs,
the tests are based on the Likelihood Ratio (LR) statistic, whereas when M -
estimation is performed the tests are carried out through the Wald-type statistic
introduced in (16).

Table 9 shows the percentage of rejections of the hypothesis HD
0 . The results

are consistent with those of the t-tests. The percentage of rejections by the LR
test are much higher than the nominal level, and this test becomes markedly
too liberal when the probit link is adopted.
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Table 9

Percentage of rejections in Model 7 of HD
0 : β1 = β3 = 0 under 0.5% of contamination in

the data (c = 1.5).

Probit link Logistic link

Significance level 5% 10% 5% 10%
MLE (LR) 32.9 44.5 7.8 14.5
M (Wald) 5.2 10.5 5.5 11.0

The ROC curves for the LR test and the Wald test based onM -estimators for
HD

0 - when the probit link is adopted - are shown in Figure 9. In the comparison
between the Wald robust test and the LR test, these curves confirm that the
former test has an actual significance level closer to the nominal one and it more
powerful. To summarize:

Fig 9. ROC curves for LR test (dashed line with circles) and the robust Wald test (solid line
with squares) on HD

0 when the probit link is adopted - n = 200. The knots correspond to the
nominal significance levels 0.1%, 1%, 5%, 10% and 20%.

• Both t and Wald type tests based on M -estimators are considerably more
accurate (in terms of actual significance level) and more powerful than
tests based on MLEs.

• If the MLEs are to be applied, the logistic link is to be recommended. It
is more robust than the probit link, as it is reflected in the more reliable
testing procedures.

Finally, the goodness of link test (Atkinson and Riani, 2000, p. 200-201) could
be used as a complementary tool for guidance in the choice between alternative
links.
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7. Concluding remarks

The paper highlights that robustness is a relevant issue in modelling ordinal
responses, and proposes robust estimation and testing procedures based on M -
estimators. Such procedures provide reliable inference when data are contami-
nated and outperform procedures based on the MLEs.

Another relevant result developed in the paper concerns the impact of the
link function. Actually, although there is a general agreement about the use and
interpretation of estimated parameters with different link functions (logistic
and probit link give practically equivalent results), our analyses point out that
the behaviour of alternative links is completely different from the robustness
viewpoint. In particular, analytical results as well as numerical experiments
support the preference for the logistic link as a more robust link.

Finally the role of generalized residuals obtained by the estimated models
with covariates is also investigated. The operational suggestion is to consider
their plots as a fundamental diagnostic tool in the framework of ordinal response
models.

8. Appendix

This appendix includes an extended version of the results of Section 5 related
to numerical experiments intended to identify appropriate values of the tun-
ing constant of M -estimators for ordered response models and to assess their
robustness when data contamination occurs.

8.1. Computational details

The first step in the estimation process is the computation of the norm ‖xi‖ of
the covariates through a robust estimation of location and scale. In Model 3,
since there is only one regressor, the norm ‖xi‖ is computed as
|xi − Med(X)|/MAD(X), where Med(X) and MAD(X) are the median and
the normalized median absolute deviation of X. The same procedure is used
in Model 6, where the norm is a function of the continuous variable only. In
the other two models (4 and 5), the norm of the regressors is given by the

Mahalanobis distance ||xi|| =
{
(xi − μ̂X)′Σ̂−1

X (xi − μ̂X)
}1/2

, after estimating
location and scale of X through the Stahel-Dohono procedure (Stahel, 1981;
Donoho, 1982; see also Maronna and Yohai, 1995). Given a direction a ∈ R

p

with ‖a‖ = 1, denote by a′xi the projection of xi along a. The outlyingness of
xi with respect to the sample X = (x1,x2, . . .xn) along a is defined by

t(xi,a) =
a′xi −Med(a′X)

MAD(a′X)
.
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The outlyingness of xi is given by t(xi) = maxa t(xi,a). The robust estimators
of location and scatter are given by

μ̂X =
1

n∑
i=1

WX
{
t(xi)

}
n∑

i=1

xiW
X
{
t(xi)

}

and

Σ̂X =
1

n∑
i=1

WX
{
t(xi)

}
n∑

i=1

(xi − μ̂X)(xi − μ̂X)′WX
{
t(xi)

}

where WX(t) is a non-increasing function of t such as the Huber weights used
by Maronna and Yohai (1995), that is WX(t) = min

{
1, (cX/t)2

}
with tuning

constant cX =
√

χ2
p,0.95, where χ

2
p,0.95 is the 95-th percentile of a χ2

p distribution.

Then, for a given c, the solution of (10) is obtained by the Newton-Raphson
algorithm.

Since

a(θ) = EX

[
EY

{
s(Y,X;θ)w(Y,X;θ)|X

}]
,

where

EY

{
s(Y,X;θ)w(Y,X;θ)|X = xi

}
=

m∑
r=1

∂Pr(Y = r|xi)

∂θ
w(r,xi,θ), (17)

at each iteration the value of a(θ) can be approximated as follows. For every xi

and the current value of the estimate θ̂k at the k-th iteration, we approximate
(17) by

m∑
r=1

∂Pr(Y = r|xi)

∂θ

∣∣∣∣
θ=θ̂k

w(r,xi, θ̂k) (18)

and then compute a(θ) by taking the sample average of (18) with respect to
x1, . . . ,xn.

One important issue, which at the moment is still unsolved, is the choice of
a good starting point for the Newton-Raphson algorithm. In the numerical ex-
periments, the MLEs are used with satisfactory results. Indeed, the difficulties
in finding alternative starting points provide a sound motivation for using the
Huber weights, which correspond to a monotone ψ function. Alternative weights
may be derived by considering redescending ψ functions, but it is well known
that they would lead to multiple solutions of (10).

In order to evaluate the loss of efficiency produced by M -estimation at the
model or the gain in efficiency achieved when data contamination occurs, simu-
lated versions of the efficiency criteria are computed. Initially, the Mean Square
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Error (MSE) matrix of the estimators is obtained from simulation; its generic
element is

MSEij =
1

B

B∑
b=1

(θ̂ib − θi)(θ̂Jb − θj)

where B is the number of samples drawn, θ̂ib is the estimate obtained from the
b-th sample and θi is the i-th parameter. Then the Trace criterion is computed
as the ratio between the trace of the MSE matrix of the MLEs and that of the
M -estimators,

eff Trace(θ̂M , θ̂ML; c) =
tr(MSEML)

tr(MSEM )
.

The Minimum MSE ratio is obtained as the minimum among the ratios of the
MSEs of the MLEs and those of the M -estimators for each parameter,

effMin(MSE−ratio)(θ̂M , θ̂ML; c) = min
i

{
MSEML

ii

MSEM
ii

}
.

The Determinant criterion is obtained as the ratio between the determinant of
the MSE matrices of the ML and M -estimators,

eff Det(θ̂M , θ̂ML; c) =
det(MSEML)

det(MSEM )
.

Finally the Maximum MSE ratio is computed as

effMax(MSE−ratio)(θ̂M , θ̂ML; c) = max
i

{
MSEML

ii

MSEM
ii

}
.

Briefly, in any criterion, the asymptotic variance-covariance matrices are re-
placed by the simulated MSE matrices.

8.2. Tuning constant and loss of efficiency at the model

In Subection 5.1, the minimum values of the tuning constant c such that the
loss of efficiency at the model due to M -estimation does not exceed 5% are
illustrated when the sample size is n = 200. Here some more extensive results
are provided by considering also a smaller sample size n = 100 and by identifyng
values of c suitable to keep the loss of efficiency below a larger threshold i.e.
10%. All the results are based on 1.000 simulated samples.

The minimum values of c such that the loss of efficiency of M -estimators is
not larger than 5% or 10%, for n = 100 and n = 200, are shown in Tables 10,
11 and 12 for the probit link, the logistic one, and the logistic link with weights
(15), respectively.
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Table 10

Values of the tuning constant required to achieve a given efficiency of the M-estimator
under no contamination in the data when the probit link is adopted.

Trace Min(MSE-ratio) Determinant

Model n = 100 n = 200 n = 100 n = 200 n = 100 n = 200
Efficiency loss smaller than 5%

1 1.2 1.1 1.3 1.2 1.7 1.6
2 1.6 1.2 1.9 1.4 2.4 2.0
3 1.3 1.1 2.2 1.7 2.3 2.2
4 1.8 1.7 2.3 2.3 2.6 3.1
5 1.1 1.7 1.3 2.1 1.8 2.7
6 1.5 1.1 1.9 1.4 2.2 2.0

Efficiency loss smaller than 10%
1 0.7 0.7 0.9 0.8 1.5 1.4
2 1.0 0.7 1.1 0.8 2.0 1.7
3 0.8 0.7 1.6 1.2 1.8 1.7
4 1.3 1.2 1.7 1.7 2.3 2.5
5 0.9 1.2 1.0 1.6 1.7 2.4
6 1.1 0.9 1.4 1.1 1.9 1.7

Table 11

Values of the tuning constant required to achieve a given efficiency of the M-estimator
under no contamination in the data when the logistic link is adopted.

Trace Min(MSE-ratio) Determinant

Model n = 100 n = 200 n = 100 n = 200 n = 100 n = 200
Efficiency loss smaller than 5%

3 0.7 0.6 1.1 0.8 1.3 0.9
4 1.0 0.9 1.3 1.0 1.5 1.4
5 1.2 0.9 1.4 1.1 2.0 1.4
6 0.8 0.7 1.0 0.8 1.3 1.1

Efficiency loss smaller than 10%
3 < 0.5 < 0.5 0.8 0.6 1.0 0.7
4 0.7 0.6 0.9 0.7 1.3 1.2
5 0.9 0.7 1.0 0.8 1.7 1.3
6 0.6 0.5 0.6 0.7 1.0 0.9

Some remarks follow.

• By comparing the values of c when the sustainable loss of efficiency is 5% or
10%, we notice that the larger is the loss of efficiency, the smaller can be the
value of c. Actually when c decreases the distance between the estimating
function of the MLEs and that of the M -estimators increases, so that a
smaller values of c implies a lower efficiency of the latter estimators at the
model.

• For a given c, the loss of efficiency at the model measured by the Trace
criterion is smaller than that measured by the MinimumMSE ratio, which
in turn is smaller than that measured by the Determinant criterion. On
the whole, the value of c does not seem to be largely affected by the nature
(dichotomous or continuous) and the number of regressors.

• The values of c needed to keep the loss of efficiency under a given thresh-
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Table 12

Values of the tuning constant required to achieve a given efficiency of the M- estimators
under no contamination in the data when the logistic link with weights (15).

Trace Min(MSE-ratio) Determinant

Model n = 100 n = 200 n = 100 n = 200 n = 100 n = 200
Efficiency loss smaller than 5%

3 1.0 0.8 1.2 1.1 1.6 1.2
4 1.2 1.1 1.4 1.4 1.8 1.9
5 1.3 1.0 1.5 1.3 2.2 1.9
6 < 0.5 0.8 0.6 0.9 < 0.5 0.8

Efficiency loss smaller than 10%
3 0.7 0.6 1.0 0.8 1.3 1.1
4 0.9 0.8 1.0 1.0 1.6 1.6
5 0.9 0.7 1.0 0.9 2.0 1.7
6 < 0.5 0.7 0.5 0.8 < 0.5 0.8

old are always smaller for the logistic link than for the probit link, since
the generalized residuals produced by the former link tend to be smaller
(having a limited range) and therefore yield a smaller argument for the
Huber weights. As a consequence the convergence of the efficiency of the
M -estimators to 1 (when c increases) is faster when the logistic link is
adopted, as is also made evident by Figure 6.

• When the probit link is adopted (Table 10) and the Trace criterion is
considered, c needs to be between 1.1 and 1.8 to ensure a loss of efficiency
below 5% and between 0.7 and 1.3 to ensure a loss below 10%. When the
Minimum MSE ratio is considered, suitable values of c are between 1.2
and 2.3 when the maximum admissible loss of efficiency is 5% and between
0.9 and 1.7 when it is 10%. The Determinant criterion can require c ≥ 3.1
for a loss below 5% and c ≥ 2.5 for a loss below 10%. In short, when the
target is a 5% loss at the model, c needs to be greater than 1, but a value
of c ≥ 3 might be too conservative.

• When the logistic link is adopted (Table 11) and the evaluation of the
M -estimators is carried out through the Trace criterion, c needs to be
between 0.6 and 1.2 if the maximum admissible loss of efficiency is 5% and
smaller than 0.9 when it is 10%. The Minimum MSE criterion requires
0.8 ≤ c ≤ 1.4 to keep the loss below 5% and 0.6 ≤ c ≤ 1 to keep the loss
below 10%. The Determinant criterion for the small sample size n = 100
can require also c = 2 to guarantee that the loss does not exceed 5%
and c = 1.7 in order not to exceed 10%. c = 2 is the largest value of
the tuning constant which ensures an efficiency loss not greater than 5%
whatever criterion is used, but according to the first two criteria c can be
even smaller, say roughly c < 1.5.

• When estimation with the logistic link is carried out with weights (15)
(Table 12), the value of the tuning is generally slightly higher than what
required by weights (14). As already pointed out in the paper, these results
provide evidence in favour of weights (14) also for the logistic link despite
the limited range of the generalized residuals. In order to reduce the loss of
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efficiency, two statistical units, such that ‖xi‖ takes the same value, should
be treated differently according to the size of the associated generalized
residuals.

8.3. Tuning constant and robustness

In order to investigate the gain in efficiency achieved by M -estimation in a
neighborhood of the model, three types of deviations are taken into account:
gross errors in the response variable, outliers in continuous covariates and model
misspecification. The following examples provide the results of numerical exper-
iment based on 1.000 samples of size n = 200.

Contaminated Model 2. Here we consider the case, in Model 2, when 2 ob-
servations of the response Y , which should correspond to the fourth category, are
erroneously recorded as belonging to the first one. The amount of contamination
in the data due to gross errors is 1%.

Table 13 shows the values of the various criteria when M -estimation is per-
formed with the probit link and c varies between 1 and 3.5. The gain in efficiency
measured by the Trace criterion is remarkable and varies between 17.8% for a
very large value of the tuning constant (c = 3.5) and over 100% when c ≤ 1.25.
The gain measured by the Determinant criterion varies between 2.9% when
c = 3.5 and 42.9% when c = 1.5. According to the Minimum MSE criterion
the minimum gain in efficiency varies between 2.4% and 7.5%. However the
maximum gain in efficiency which can be obtained in the estimation of a single
parameter varies between 21.8% and over 160%. The behaviour of the Minimum
MSE ratio and that of the Determinant criterion are not monotone, indicating
that c should not be too small (downweighting should not be excessive with
respect to the amount of contamination). On the whole, suitable values of c ap-
pear those between 1 and 1.5, which are also consistent with a loss of efficiency
smaller than 5% at the model according to the first two criteria.

Table 13

Efficiency criteria for M-estimation performed in Model 2 with the probit link when data
are contaminated by 1% of gross errors in Y .

c 1 1.25 1.5 1.75 2 2.5 3 3.5

Trace 2.027 2.002 1.965 1.898 1.802 1.572 1.347 1.178

Determinant 1.269 1.402 1.429 1.389 1.318 1.190 1.079 1.029

Min(MSE-ratio) 1.050 1.065 1.075 1.072 1.068 1.067 1.045 1.024

Max(MSE-ratio) 2.606 2.538 2.438 2.303 2.139 1.767 1.442 1.218

Contaminated Model 2 (Shelter Effect). This kind of contamination has al-
ready been considered in the paper, and deals with the case when - due to a
shelter effect (Iannario, 2012) - five Yi, which originally take values 1, 2 or 3,
are changed into 4. For sake of completeness, in addition to the Minimum and
Maximum MSE ratio criterion, here we report (in Table 14) also the value of
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the Trace and Determinant Criterion. Whatever criterion is used, the gain in ef-
ficiency produced by M -estimation is clearly evident, especially for 1 ≤ c ≤ 1.5.

Table 14

Efficiency criteria when M-estimation is performed in Model 2 with the probit link and a
shelter effect occurs.

c 1 1.25 1.5 1.75 2 2.5 3 3.5

Trace 2.247 2.156 2.043 1.898 1.734 1.437 1.224 1.087

Determinant 1.572 1.585 1.505 1.390 1.255 1.114 1.036 0.999

Min(MSE-ratio) 1.354 1.376 1.373 1.342 1.299 1.201 1.124 1.064

Max(MSE-ratio) 2.556 2.398 2.227 2.029 1.819 1.485 1.253 1.099

Contaminated Model 3. The contamination of Model 3 lies in the value of
the regressor which is erroneously recorded as 5, for κ statistical units, where
κ = 1, . . . , 5. In the paper the efficiency of the M -estimator of the regression
coefficient is investigated when c = 1.5. The efficiency of the M -estimators for
a larger set of values of c is evaluated in Tables 15 and 16 for the probit and
the logistic link respectively. Recall that, to keep the loss of efficiency at the
model below 5%, c needs to be between 1.1 (for Trace criterion) and 2.2 (for the
Determinant criterion) when the probit link is adopted, and between 0.6 and
0.9 when the logistic link is adopted.

Some remarks follow.

• M -estimation produces a gain in efficiency even for c ≥ 2.5 when the
probit link is adopted and for c > 1 when the logistic link is adopted,
though such values are much higher than those necessary to keep the loss
of efficiency below 5% at the model.

• According to the Trace and the Determinant criterion,M -estimation large-
ly outperforms ML estimation whatever the amount of contamination,
and the gain in efficiency increases remarkably with the number of out-
liers.

• Occasionaly M -estimation can produce a small loss of efficiency in the
estimation of the cutpoints, which is however largely offset by the gain
achieved in the estimation of the other parameters and especially of the
regression coefficient. This is why the global efficiency measures (Trace
and the Determinant criterion) provide outstanding evidence in favour of
M -estimators.

• Although M -estimation is definitely more efficient when both the probit
and the logistic link are adopted, in the former case the gain in efficiency
is remarkably higher. This result is due to the intrinsic robustness of the
logistic link, which - unlike the probit one - produces generalized residuals
with a limited range. The unboundness of the generalized residuals of the
probit link can generate huge loss of efficiency in ML estimation when
data contamination occurs.
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Table 15

Trace criterion, MSE ratio for each parameter and Determinant criterion in Model 3 with
the probit link when there are κ outliers equal to 5 in the explanatory variable.

MSE-ratio

c Trace α1 = −1.7 α2 = −0.5 α3 = 0.5 α4 = 1.7 β = 1.5 Determinant

κ = 1

1.00 2.577 2.365 1.304 0.803 1.723 6.472 2.740

1.50 2.679 2.440 1.334 0.827 1.787 6.963 3.223

2.00 2.734 2.483 1.355 0.837 1.822 7.238 3.526

2.50 2.767 2.508 1.367 0.844 1.848 7.371 3.724

3.00 2.788 2.525 1.375 0.851 1.868 7.403 3.838

3.50 2.798 2.540 1.381 0.856 1.880 7.358 3.898

4.00 2.802 2.554 1.387 0.861 1.886 7.249 3.919

κ = 2

1.00 5.194 4.667 1.923 0.778 2.979 15.147 3.998

1.50 5.394 4.837 1.980 0.804 3.100 15.912 4.693

2.00 5.476 4.923 2.018 0.817 3.160 15.928 5.035

2.50 5.492 4.956 2.039 0.828 3.198 15.499 5.162

3.00 5.463 4.956 2.051 0.837 3.217 14.769 5.134

κ = 3

1.00 7.800 7.130 2.657 0.765 4.185 23.071 4.496

1.50 8.017 7.344 2.734 0.795 4.341 23.146 5.134

2.00 8.016 7.387 2.782 0.811 4.402 21.955 5.309

2.50 7.876 7.310 2.799 0.825 4.411 20.093 5.204

κ = 4

1.00 9.991 9.250 3.308 0.759 5.225 28.263 4.529

1.50 10.087 9.390 3.394 0.792 5.393 26.697 4.946

2.00 9.832 9.236 3.431 0.811 5.403 23.725 4.869

2.50 9.371 8.875 3.427 0.829 5.329 20.428 4.558

κ = 5

1.00 11.951 11.114 3.968 0.784 6.181 31.617 4.376

1.50 11.777 11.047 4.042 0.821 6.339 28.012 4.587

2.00 11.136 10.568 4.056 0.841 6.261 23.490 4.332

2.50 10.255 9.838 4.007 0.859 6.054 19.240 3.913

• The optimal value of the tuning constant seems to depend on the amount
of contamination; when κ is small c can be as large as 3, nevertheless when
the number of outliers increases low values of c are to be preferred.

In regard to the last point it is to be noticed that the behaviour of the
efficiency measures, as in previous examples, is not monotone with respect to
c. However some light on this issue is provided by Figure 10 which shows the
Trace and the Maximum MSE ratio criterion when c varies for any value of
κ. The plots make evident that when the amount of contamination in the data
is mild, different values of c yield small changes in efficiency, whereas when
the amount of contamination is large, the efficiency quickly decreases when c
increases. Consequently c should be chosen as small as possible, say c ≤ 2 for
the probit link and c ≤ 1.5 for the logistic one.
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Table 16

Trace criterion, MSE ratio for each parameter and Determinant criterion in Model 3 with
the logistic link when there are κ outliers equal to 5 in the explanatory variable.

MSE-ratio

c Trace α1 = −2.1 α2 = −0.6 α3 = 0.6 α4 = 2.1 β = 1.5 Determinant

κ = 1

1.00 1.022 0.993 0.998 0.959 0.966 1.262 1.094

1.50 1.030 1.008 0.999 0.962 0.971 1.283 1.139

2.00 1.034 1.016 0.999 0.968 0.976 1.280 1.157

2.50 1.036 1.019 1.001 0.974 0.981 1.259 1.160

3.00 1.034 1.021 1.002 0.979 0.986 1.222 1.146

κ = 2

1.00 1.225 1.143 1.022 0.922 0.998 2.273 1.774

1.50 1.228 1.159 1.026 0.930 1.004 2.212 1.796

2.00 1.218 1.161 1.027 0.941 1.008 2.063 1.731

κ = 3

1.00 1.589 1.449 1.130 0.897 1.038 3.795 2.669

1.50 1.566 1.451 1.130 0.910 1.048 3.401 2.529

2.00 1.513 1.422 1.123 0.925 1.053 2.884 2.253

κ = 4

1.00 2.055 1.875 1.233 0.866 1.135 5.330 3.306

1.50 1.973 1.829 1.232 0.884 1.140 4.377 2.931

2.00 1.836 1.728 1.217 0.904 1.136 3.407 2.447

κ = 5

1.00 2.526 2.287 1.394 0.848 1.205 6.470 3.629

1.50 2.352 2.176 1.375 0.870 1.208 4.930 3.042

2.00 2.107 1.986 1.338 0.894 1.197 3.618 2.442

Contaminated Model 3 (continued). The paper considers a further contam-
ination of Model 3, produced by a gross error which replaces the value of xi

for one statistical unit by an outlier, whose value varies between 3 and 10. Fig-
ure 11 shows the various efficiency criteria when the value of the outlier varies
(notice that the maximum gain in efficincy is achieved in the estimation of the
regression coefficient). All criteria consistently point out an increasing gain in
efficiency as the outlier moves away from the bulk of data.

Contaminated Model 4. The contamination of Model 4 (already consid-
ered in the paper) is given by two statistical units whose regressors are jointly
mis-reported as 5. Figure 12 shows the efficiency of M -estimators measured by
the four criteria. A loss of efficiency can be incurred in the estimation of the
cutpoints (this is why the Minimum MSE criterion is below 1), which is nev-
ertheless largely offset by the gain in efficiency obtainable in the estimation of
the regression coefficients. Values of c between 1.5 and 2 seem to be optimal
to achieve a robust estimation according to the Trace and the Maximum MSE
criterion for both links, and also for the Determinant criterion in the case of the
logistic link.
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Fig 10. Efficiency Criteria in Model 3 when c varies for κ = 1 (squares), κ = 2 (circles),
κ = 3 (triangles), κ = 4 (diamonds) and κ = 5 (stars).

Contaminated Model 5. To investigate the robustness properties of M -
estimation in Model 5, the paper considers both a misspecification of the model,
obtained by inserting two unnecessary regressors in the estimation process, and
a mild contamination produced by changing the value of X1 into 5 for κ statisti-
cal units. Table 17 shows how the Trace and the Determinant criterion vary with
κ when c = 1.5 for both the probit and the logistic link. The gain in efficiency
provided by M -estimation is clearly evident.
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Fig 11. Trace Criterion (circles), Minimum MSE-ratio criterion (squares), Maximum MSE
ratio criterion (diamonds) and Determinant criterion (triangles) in Model 3 contaminated
by an outlier with value between 3 and 10.

Fig 12. Trace Criterion (circles), Minimum MSE-ratio criterion (squares), Maximum MSE
ratio criterion (diamonds) and Determinant criterion (triangles) in Model 4 under 1% con-
tamination of the data (x1 = x2 = 5 for two statistical units).
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Table 17

Trace and Determinant criterion when Model 5 is misspecified by adding two unnecessary
regressors, and there are κ anomalous values in X1 (c = 1.5).

Trace

κ 1 2 3 4 5

Probit link 2.051 3.688 5.156 5.311 4.830

Logistic link 1.129 1.754 2.398 2.776 2.888

Determinant

Probit link 0.993 1.256 1.301 1.335 1.237

Logistic link 1.294 2.094 2.665 2.603 2.453

In addition Figure 13 shows the MSEs of the M -estimators versus those of
the MLEs when κ varies. As the amount of contamination increases, the MLEs
lose progressively more efficiency, whereas the MSEs of the M -estimators keep
pretty stable.

Fig 13. MSEs of MLEs and M-estimators in Model 5, misspecified by adding two unnec-
essary regressors, and there are κ = 1 (squares), κ = 2 (bullet), κ = 3 (triangles), κ = 4
(diamonds) and κ = 5 (stars) anomalous values in X1 (c = 1.5).
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