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1. Introduction

Quantile regression is widely applied in various scientific fields such as economics
(Koenker and Hallock, 2001), biology (Briollais and Durrieu, 2014) and ecology
(Cade and Noon, 2003). By focusing on a collection of conditional quantiles
instead of a single conditional mean, quantile regression allows to describe the
impact of predictors on the entire conditional distribution of the response. A
properly scaled and centered version of these estimated curves form an under-
lying (conditional) quantile regression process (QRP, see Section 2 for a formal
definition). The weak convergence of QRP is useful in developing statistical infer-
ence procedures, such as hypothesis testing on Hadamard differentiable M and
L estimators (Fernholz, 1983, Chapter 7), testing on conditional distributions
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(Bassett and Koenker, 1982) and Wilcoxon test (van der Vaart and Wellner,
1996, Example 3.9.18). Applications in econometrics include detection of treat-
ment effect on the conditional distribution after an intervention (Koenker and
Xiao, 2002; Qu and Yoon, 2015) and testing Gini indices (Barrett and Donald,
2009). Please see Remark 4.2 for more details.

The asymptotic behavior of QRP depends on the model imposed for quantile
regression. Existing literature on QRP is either concerned with models of fixed
dimension (Koenker and Xiao, 2002; Angrist et al., 2006), or with a linearly
interpolated version based on kernel smoothing (Qu and Yoon, 2015). How-
ever, this excludes many important cases such as linear models with growing
dimension and partial linear models. For such models, establishing weak conver-
gence of QRP becomes non-trivial since classical Donsker theorems (e.g. those
in van der Vaart and Wellner (1996)) may not be directly applied. An additional
challenge for partial linear models comes from the fact that their parametric and
non-parametric components converge at different rates.

In this paper we consider a general model which is of the following (approx-
imate) form

Q(x; τ) ≈ Z(x)�γn(τ), (1.1)

where Q(x; τ) denotes the τ -th quantile of the distribution of Y conditional on
X = x ∈ R

d and Z(x) ∈ R
m is a transformation vector of x. As noted by Belloni

et al. (2016), the above framework incorporates a variety of estimation proce-
dures such as parametric (Koenker and Bassett, 1978), non-parametric (He and
Shi, 1994) and semi-parametric (He and Shi, 1996) ones. For example, Z(x) = x
corresponds to a linear model (with potentially increasing dimension), while
Z(x) can be chosen as powers, trigonometrics or local polynomials in the non-
parametric basis expansion (where m diverges at a proper rate). Partially linear
and additive models are also covered by (1.1). Therefore, our weak convergence
results are developed in a very broad context.

Models that can be expressed in the form (1.1) were previously studied by
Belloni et al. (2016) in a very general setting, which we also consider here. In
the following, we provide a detailed description of the main contributions in the
present paper, and compare them with Belloni et al. (2016).

1. Partially linear models: A key result in the present paper is obtained
for partially linear models

Q(X; τ) = V �α(τ) + h(W ; τ), (1.2)

where X = (V �,W )� ∈ R
k+k′

, α(τ) is an unknown Euclidean vector and
h(W ; τ) is an unknown smooth function. Here, k and k′ are both fixed. In
the spirit of (1.1), we can estimate (α(τ), h(·; τ)) based on the following
series approximation

h(W ; τ) ≈ Z̃(W )�β†
n(τ),

where Z̃(W ) is a transformation vector of W . We provide joint asymp-
totic results for the parametric and non-parametric part in partially linear
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models [see Section 3 and Section 5.3], with a n1/2 scaling for the para-
metric part and a scaling with slower rate for the non-parametric part [see
Theorem 3.1 and Theorem 5.4].
To the best of our knowledge, this is the first time that the joint asymptotic
as processes in τ for quantile regression is established – in fact, even the
pointwise result is new. In particular, we prove that the “joint asymptotics
phenomenon” discovered by Cheng and Shang (2015) even holds for non-
smooth loss functions with multivariate nonparametric covariates.
This joint asymptotic result does not follow directly from the results of
Belloni et al. (2016), because of the specific centering sequence (defined in
their equation (2.2)) they consider and the matrix J−1(u) in their Theorem
2 where J(u) is non-diagonal with increasing dimension. To derive our
Theorem 3.1, it is necessary to choose an appropriate centering sequence
(see Remark 3.3), apply our new Bahadur representations in Section 5,
and provide a detailed analysis of the matrix J−1(u).

2. Centering and tail bounds on remainder terms in Bahadur rep-
resentations: Theorem 2 in Belloni et al. (2016) provides a Bahadur
representation for the estimated coefficients γ̂n centering at βn with an
OP term on the remainders, where βn minimizes a QR series approxima-
tion problem [see equation (2.2) in their paper]. In Section 5 we provide
similar expansions, with a main difference that we allow for more general
centering sequences that satisfy certain approximation conditions. This is
important in Section 3 of our paper where we consider partially linear
models. Moreover, we provide explicit exponential tail bounds on corre-
sponding remainders which is a somewhat stronger result compared to the
OP bounds in Belloni et al. (2016). This result is, for instance, utilized
in Volgushev et al. (2017). The findings in that paper cannot be obtained
from the OP bounds in Belloni et al. (2016).

3. Approximation by a sequence of Gaussian processes v.s. conver-
gence to a fixed limiting process: All results in Belloni et al. (2016)
which are uniform in the quantile index τ are stated in terms of approx-
imating the quantile regression process and weighted versions thereof by
a sequence of Gaussian processes which depend on n [see their Theorem
5, Theorem 11, Theorem 12]. In contrast, we show that there exists a
single Gaussian process which is the (weak) limit of the leading term in
the Bahadur representation. Showing convergence to this weak limit re-
quires proving asymptotic tightness of the leading term, which is a major
challenge in our proof [see Section A.4] and does not follow from the ap-
proximation by a series of Gaussian processes as in Belloni et al. (2016).
This is also a key ingredient in our Section 4 where we utilize the functional
delta method together with compact differentiability of the rearrangement
operator [established in Chernozhukov et al. (2010)]. Note that the appli-
cation of the delta method requires convergence to a fixed limit, which does
not follow directly from the results in Belloni et al. (2016). On the other
hand, Belloni et al. (2016) provide approximations which are uniform in
x and τ while we only consider results that are pointwise in x.
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4. New bounds for local basis functions: Last but not the least, in Sec-
tions 2.2 and 5.2, we provide results for models with “local basis structure”
(for instance B-splines). For such basis functions, we show that the con-
ditions on model dimension can be relaxed from m4 = o(n1−ε) [required
by Theorem 12 of Belloni et al. (2016)] to m2(logn)6 = o(n) in the case
of B-splines [see the discussion below Assumption (B1)].

Given the discussions above, we would also like to point out that Belloni et al.
(2016) discuss other aspects such as bootstrap approximations which are not
covered in our paper. In summary, both Belloni et al. (2016) and the present
paper consider the same model setup, but focus on different aspects of the
resulting theory, and none of the two papers is more general than the other.

The rest of this paper is organized as follows. Section 2 presents the weak
convergence of QRP under general series approximation framework. Section 3
discusses the QRP in quantile partial linear models. As an application of our
weak convergence theory, Section 4 considers various functionals of the quantile
regression process. A detailed discussion on our novel Bahadur representations
is given in Section 5, and all proofs are deferred to the appendix.

Notation. Denote {(Xi, Yi)}ni=1 i.i.d. samples in X × R where X ⊂ Rd. Here,
the distribution of (Xi, Yi) and the dimension d can depend on n, i.e. triangular
arrays. For brevity, let Z = Z(X) and Zi = Z(Xi). Define the empirical measure
of (Yi,Zi) by Pn, and the true underlying measure by P with the corresponding
expectation as E. Note that the measure P depends on n for triangular array
cases, but this dependence is omitted in the notation. Denote by ‖b‖ the L2-
norm of a vector b. λmin(A) and λmax(A) are the smallest and largest eigenvalue
of a matrix A. 0k denotes a k-dimensional 0 vector, and Ik be the k-dimensional
identity matrix for k ∈ N. Define

ρτ (u) := (τ − 1(u ≤ 0))u,

where 1(·) is the indicator function. Cη(X ) denotes the class of η-continuously
differentiable functions on a set X . C(0, 1) denotes the class of continuous func-
tions defined on (0, 1). Define

ψ(Yi,Zi;b, τ) := Zi(1{Yi ≤ Z�
i b} − τ),

μ(b, τ) := E
[
ψ(Yi,Zi;b, τ)

]
= E

[
Zi

{
FY |X(Z�

i b|X)− τ
}]
,

and for a vector γn(τ) ∈ R
m, we define the following quantities

gn := gn(γn) := sup
τ∈T

‖μ(γn(τ), τ)‖ = sup
τ∈T

∥∥∥E[Zi

{
FY |X(Z�

i γn(τ)|X)− τ
}]∥∥∥
(1.3)

Let Sm−1 := {u ∈ R
m : ‖u‖ = 1} denote the unit sphere in R

m. For a set
I ⊂ {1, ...,m}, define

R
m
I := {u = (u1, ..., um)� ∈ R

m : uj �= 0 if and only if j ∈ I}
Sm−1
I := {u = (u1, ..., um)� ∈ Sm−1 : uj �= 0 if and only if j ∈ I}
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Finally, consider the class of functions

Λη
c (X , T ) :=

{
fτ ∈ C�η�(X ) :τ ∈ T , sup

|j|≤�η�
sup

x,τ∈T
|Djfτ (x)| ≤ c,

sup
|j|=�η�

sup
x �=y,τ∈T

|Djfτ (x)−Djfτ (y)|
‖x− y‖η−�η� ≤ c

}
, (1.4)

where 	η
 denotes the integer part of a real number η, and |j| = j1 + ... +
jd for d-tuple j = (j1, ..., jd). For simplicity, we sometimes write supτ (infτ )
and supx(infx) instead of supτ∈T (infτ∈T ) and supx∈X (infx∈X ) throughout the
paper.

2. Weak convergence results

In this section, we first present our weak convergence results of QRP in a gen-
eral series approximation framework that covers linear models with increas-
ing dimension, nonparametric models and partial linear models. Furthermore,
we demonstrate that the use of polynomial splines with local support, such as
B-splines, significantly weakens the sufficient conditions required in the above
general framework.

2.1. General series estimator

Consider a general series estimator Q̂(x; τ) := γ̂(τ)�Z(x), where for each fixed
τ

γ̂(τ) := argmin
γ∈Rm

n∑
i=1

ρτ (Yi − γ�Zi), (2.1)

and m is allowed to grow as n → ∞, and assume the following conditions:

(A1) Assume that ‖Zi‖ ≤ ξm = O(nb) almost surely with b > 0, and that
1/M ≤ λmin(E[ZZ

�]) ≤ λmax(E[ZZ
�]) ≤ M holds uniformly in n for

some fixed constant M > 0.
(A2) The conditional distribution FY |X(y|x) is twice differentiable w.r.t. y. De-

note the corresponding derivatives by fY |X(y|x) and f ′
Y |X(y|x). Assume

that f̄ := supy,x |fY |X(y|x)| < ∞ and f ′ := supy,x |f ′
Y |X(y|x)| < ∞ uni-

formly in n.
(A3) Assume that uniformly in n, there exists a constant fmin > 0 such that

inf
τ∈T

inf
x

fY |X(Q(x; τ)|x) ≥ fmin.

In the above assumptions, uniformity in n is necessary as we consider triangular
arrays. Assumptions (A2) and (A3) are fairly standard in the quantile regres-
sion literature. Hence, we only make a few comments on Assumption (A1). In
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linear models where Z(X) = X and m = d, it holds that ξm � √
m if each

component of X is bounded almost surely. If B-splines B̃(x) defined in Section
4.3 of Schumaker (1981) are adopted, then one needs to use its re-scaled version

B(x) = m1/2B̃(x) as Z(x) such that (A1) holds (cf. Lemma 6.2 of Zhou et al.
(1998)). In this case, we have ξm � √

m. In addition, Assumptions (A1) and
(A3) imply that for any sequence of Rm-valued (non-random) functions γn(τ)
satisfying supτ∈T supx |γn(τ)

�Z(x) − Q(x; τ)| = o(1), the smallest eigenvalues
of the matrices

J̃m(τ) := E[ZZ�fY |X(γn(τ)
�Z|X)], Jm(τ) := E[ZZ�fY |X(Q(X; τ)|X)]

are bounded away from zero uniformly in τ for all n.
Define for any u ∈ Rm,

χγn(u,Z) := sup
τ∈T

∣∣∣u�Jm(τ)−1
E

[
Zi

(
1{Yi ≤ Q(Xi; τ)} − 1{Yi ≤ Z�

i γn(τ)}
)]∣∣∣.

We are now ready to state our weak convergence result for QRP based on
the general series estimators.

Theorem 2.1. Suppose (A1)-(A3) hold and m3ξ2m(log n)3 = o(n). Let γn(·) :
T → R

m be a sequence of functions such that gn := gn(γn(τ)) = o(n−1/2) (see
(1.3)), cn = cn(γn) := supx,τ∈T |Q(x; τ) − Z(x)�γn(τ)| and mcn logn = o(1).

Then for any un ∈ R
m satisfying χγn(un,Z) = o(‖un‖n−1/2) and γ̂(τ) defined

in (2.1),

u�
n (γ̂(τ)−γn(τ)) = − 1

n
u�
n Jm(τ)−1

n∑
i=1

Zi(1{Yi ≤ Q(Xi; τ)}− τ)+ oP

(
‖un‖√

n

)
(2.2)

where the remainder term is uniform in τ ∈ T . In addition, if the following
limit

H(τ1, τ2;un) := lim
n→∞

‖un‖−2u�
n J

−1
m (τ1)E[ZZ

�]J−1
m (τ2)un(τ1 ∧ τ2 − τ1τ2)

(2.3)

exists for any τ1, τ2 ∈ T , then

√
n

‖un‖
(
u�
n γ̂(·)− u�

n γn(·)
)
� G(·) in 	∞(T ), (2.4)

where G(·) is a centered Gaussian process with the covariance function H defined
as (2.3). In particular, there exists a version of G with almost surely continuous
sample paths.

The proof of Theorem 2.1 is given in Section A.1. Theorem 2.1 holds un-
der very general conditions. For transformations Z that have a specific local
structure, the assumptions on m, ξm can be relaxed considerably. Details are
provided in Section 2.2.
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In the end, we illustrate Theorem 2.1 in linear quantile regression models
with increasing dimension, in which gn, cn and χγn(u,Z) are trivially zero. As
far as we are aware, this is the first quantile process result for linear models
with increasing dimension.

Corollary 2.2. (Linear models with increasing dimension) Suppose (A1)-(A3)
hold with Z(X) = X and Q(x; τ) = x�γn(τ) for any x and τ ∈ T . Assume that
m3ξ2m(logn)3 = o(n). In addition, if un ∈ Rm is such that the following limit

H1(τ1, τ2;un) := lim
n→∞

‖un‖−2u�
n J

−1
m (τ1)E[XX�]J−1

m (τ2)un(τ1 ∧ τ2 − τ1τ2)

(2.5)

exists for any τ1, τ2 ∈ T , then (2.4) holds with the covariance function H1

defined in (2.5). Moreover, by setting un = x0, we have for any fixed x0

√
n

‖x0‖
{
Q̂(x0; ·)−Q(x0; ·)

}
� G(x0; ·) in 	∞(T ),

where G(x0; ·) is a centered Gaussian process with the covariance function in
(2.5). In particular, there exists a version of G with almost surely continuous
sample paths.

2.2. Local basis series estimator

In this section, we assume that Z(·) corresponds to a basis expansion with
“local” support. Our main motivation for considering this setting is that it allows
to considerably weaken assumptions on m, ξm made in the previous section. To
distinguish such basis functions from the general setting in the previous section,
we shall use the notation B instead of Z. Let β̂(τ) be defined as

β̂(τ) := argmin
b∈Rm

∑
i

ρτ
{
Yi − b�Bi

}
, (2.6)

where Bi = B(Xi). The notion of “local support” is made precise in the follow-
ing sense.

(L) For each x, the basis vector B(x) has zeroes in all but at most r consecu-

tive entries, where r is fixed. Moreover, supx,τ E[|B(x)�J̃m(τ)−1B(X)|] =
O(1).

The above assumption holds for certain choices of basis functions, e.g., uni-
variate B-splines.

Example 2.3. Let X = [0, 1], assume that (A2)-(A3) hold and that the density
of X over X is uniformly bounded away from zero and infinity. Consider the
space of polynomial splines of order q with k uniformly spaced knots 0 = t1 <
... < tk = 1 in the interval [0, 1]. The space of such splines can be represented
through linear combinations of the basis functions B1, ..., Bk−q−1 with each basis
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function Bj having support contained in the interval [tj , tj+q+1). Let B(x) :=
(B1(x), ..., Bk−q−1(x))

�. Then the first part of assumption (L) holds with r = q.

The condition supx,τ E[|B(x)�J̃−1
m (τ)B(X)|] = O(1) is verified in the Appendix,

see Section A.2.

Condition (L) ensures that the matrix J̃m(τ) has a band structure, which is

useful for bounding the off-diagonal entries of J̃−1
m (τ). See Lemma 6.3 in Zhou

et al. (1998) for additional details.
Throughout this section, consider the specific centering

βn(τ) := argmin
b∈Rm

E
[
(B�b−Q(X; τ))2fY |X(Q(X; τ)|X)

]
, (2.7)

where B = B(X). For basis functions satisfying condition (L), assumptions in
Theorem 2.1 in the previous section can be replaced by the following weaker
version.

(B1) Assume that ξ4m(log n)6 = o(n) and letting c̃n := supx,τ |βn(τ)
�B(x) −

Q(x; τ)| with c̃2n = o(n−1/2), where ‖B(Xi)‖ ≤ ξm almost surely.

Note that the condition ξ4m(log n)6 = o(n) in (B1) is less restrictive than
m3ξ2m(logn)3 = o(n) required in Theorem 2.1 under many situations. For
instance, in the setting of Example 2.3 where ξm � √

m, we only require
m2(log n)6 = o(n), which is weaker than m4(log n)3 = o(n) in Theorem 2.1.
This improvement is made possible based on the local structure of the spline
basis.

In the setting of Example 2.3, bounds on c̃n can be obtained provided that
the function x �→ Q(x; τ) is smooth for all τ ∈ T . For instance, recall the class
of functions Λη

c (X , T ) defined in (1.4). Assuming that Q(·; ·) ∈ Λη
c (X , T ) with

X = [0, 1] and a positive integer η, Remark B.1 shows that c̃n = O(m−�η�).
Thus the condition c̃2n = o(n−1/2) holds provided that m−2�η� = o(n1/2). Since
for splines we have ξm ∼ m1/2, this is compatible with the restrictions imposed
in assumption (B1) provided that η ≥ 1.

Theorem 2.4. (Nonparametric models with local basis functions) Assume that
conditions (A1)-(A3) hold with Z = B, (L) holds for B and (B1) for βn(τ).
Assume that the set I consists of at most L consecutive integers, where L ≥ 1 is
fixed. Then for any un ∈ R

m
I , (2.2) holds with γ̂(τ), γn(τ) and Z being replaced

by β̂(τ), βn(τ) and B. In addition, if the following limit

H̃(τ1, τ2;un) := lim
n→∞

‖un‖−2u�
n J

−1
m (τ1)E[BB�]J−1

m (τ2)un(τ1∧τ2−τ1τ2) (2.8)

exists for any τ1, τ2 ∈ T , then (2.4) holds with the same replacement as above,

and the limit G is a centered Gaussian process with covariance function H̃ de-
fined as (2.8). Moreover, for any x0, let Q̂(x0; τ) := B(x0)

�β̂(τ) and assume
that c̃n = o(‖B(x0)‖n−1/2). Then

√
n

‖B(x0)‖
{
Q̂(x0; ·)−Q(x0; ·)

}
� G(x0; ·) in 	∞(T ), (2.9)
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where G(x0; ·) is a centered Gaussian process with the covariance function in
(2.8). In particular, there exists a version of G with almost surely continuous
sample paths.

The proof of Theorem 2.4 is given in Section A.2.

Remark 2.5. The proof of Theorem 2.4 and the related Bahadur representation
result in Section 5.2 crucially rely on the fact that the elements of J̃m(τ)−1 decay
exponentially fast in their distance from the diagonal, i.e. a bound of the form
|(J̃m(τ)−1)i,j | ≤ Cγ|i−j| for some γ < 1. Assumption (L) provides one way
to guarantee such a result. We conjecture that similar results can be obtained
for more general classes of basis functions as long as the entries of J̃m(τ)−1

decay exponentially fast in their distance from suitable subsets of indices in
(j, j′) ∈ {1, ...,m}2. This kind of result can be obtained for matrices J̃m(τ) with
specific sparsity patterns, see for instance Demko et al. (1984). In particular,
we conjecture that such arguments can be applied for tensor product B-splines,
see Example 1 in Section 5 of Demko et al. (1984). A detailed investigation of
this interesting topic is left to future research.

We conclude this section by discussing a special case where the limit in (2.9)
can be characterized more explicitly.

Remark 2.6. The covariance function H̃ can be explicitly characterized under
un = B(x) and univariate B-splines B(x) on x ∈ [0, 1], with an order r and
equidistant knots 0 = t1 < ... < tk = 1. Assume additional to (A3) that

sup
t∈X ,τ∈T

∣∣∣∂x|x=tfY |X
(
Q(x; τ)|x

)∣∣∣ < C, where C > 0 is a constant, (2.10)

and the density fX(x) forX is bounded above, then under c̃n = o(‖B(x0)‖n−1/2),
(2.9) in Theorem 2.4 can be rewritten as√

n

B(x0)�E[BB�]−1B(x0)

(
B(x0)

�β̂(·)−Q(x0; ·)
)
� G(·;x0) in 	∞(T ),

(2.11)
where the Gaussian process G(·;x0) is defined by the following covariance func-
tion

H̃(τ1, τ2;x0) =
τ1 ∧ τ2 − τ1τ2

fY |X(Q(x0; τ1)|x0)fY |X(Q(x0; τ2)|x0)
.

Although we only show the univariate case here, the same arguments are ex-
pected to hold for tensor-product B-spline based on the same reasoning. See
Section A.2 for a proof of this remark.

3. Joint weak convergence for partial linear models

In this section, we consider partial linear models of the form

Q(X; τ) = V �α(τ) + h(W ; τ), (3.1)



3282 S.-K. Chao et al.

where X = (V �,W�)� ∈ R
k+k′

and k, k′ ∈ N are fixed. An interesting joint

weak convergence result is obtained for (α̂(τ), ĥ(w0; τ)) at any fixed w0. More

precisely, α̂(τ) and ĥ(w; τ) (after proper scaling and centering) are proved to
be asymptotically independent at any fixed τ ∈ T . Therefore, the “joint asymp-
totics phenomenon” first discovered in Cheng and Shang (2015) persists even
for non-smooth quantile loss functions. Such a theoretical result is practically
useful for joint inference on α(τ) and h(W ; τ); see Cheng and Shang (2015).

Expanding w �→ h(w; τ) in terms of basis vectors w �→ Z̃(w), we can ap-
proximate (3.1) through the series expansion Z(x)�γ†

n(τ) by setting Z(x) =

(v�, Z̃(w)�)�. In this section, Z̃ : Rk′ → R
m is regarded as a general basis ex-

pansion that does not need to satisfy the local support assumptions in Section
2.2. Estimation is performed in the following form

γ̂†(τ) = (α̂(τ)�, β̂†(τ)�)� := argmin
a∈Rk,b∈Rm

∑
i

ρτ
(
Yi − a�Vi − b�Z̃(Wi)

)
. (3.2)

For a theoretical analysis of γ̂†, define the population coefficients γ†
n(τ) :=

(α(τ)�,β†
n(τ)

�)�, where

β†
n(τ) := argmin

β∈Rm

E[fY |X(Q(X; τ)|X)(h(W ; τ)− β�Z̃(W ))2] (3.3)

similar to (2.7); see Remark 3.3 for additional explanations.
To state our main result, we need to define a class of functions

Uτ :=
{
w �→ g(w)

∣∣∣g measurable and E[g2(W )fY |X(Q(X; τ)|X)]<∞, w∈R
k′
}
.

For V ∈ R
k, define for j = 1, ..., k,

hVW,j(·; τ) := argmin
g∈Uτ

E[(Vj − g(W ))2fY |X(Q(X; τ)|X)] (3.4)

where Vj denotes the j-th entry of the random vector V . By the definition of
hVW,j , we have for all τ ∈ T and g ∈ Uτ ,

E[(V − hVW (W ; τ))g(W )fY |X(Q(X; τ)|X)] = 0k. (3.5)

The matrix A is defined as coefficent matrix of the best series approximation of
hVW (W ; τ):

A(τ) := argmin
A

E[fY |X(Q(X; τ)|X)‖hVW (W ; τ)−AZ̃(W )‖2]. (3.6)

The following two assumptions are needed in our main results.

(C1) Define c†n := supτ,w |Z̃(w)�β†
n(τ)− h(w; τ)| and assume that

ξmc†n = o(1); (3.7)

sup
τ∈T

E[fY |X(Q(X; τ)|X)‖hVW (W ; τ)−A(τ)Z̃(W ))‖2] = O(λ2
n), (3.8)

where λn satisfies ξmλ2
n = o(1).
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(C2) We have maxj≤k |Vj | < C almost surely for some constant C > 0.

Bounds on c†n can be obtained under various assumptions on the basis ex-
pansion and smoothness of the function w �→ h(w; τ). Assume for instance

that W = [0, 1]k
′
, that h(·; ·) ∈ Λη

c (W , T ) and that Z̃ corresponds to a ten-
sor product B-spline basis of order q on W with m1/k′

equidistant knots in
each coordinate. Assuming that (V,W ) has a density fV,W such that 0 <
infv,w fV,W (v, w) ≤ supv,w fV,W (v, w) < ∞ and q > η, we show in Remark B.1

that c†n = O(m−�η�/k′
).

Assumption (3.8) essentially states that hVW can be approximated by a series
estimator sufficiently well. This assumption is necessary to ensure that α(τ) is
estimable at a parametric rate without under-smoothing when estimating h(·; τ).
In general, (3.8) is a non-trivial high-level assumption. It can be verified under
smoothness conditions on the joint density of (X,Y ) by applying arguments
similar to those in Appendix S.1 of Cheng et al. (2014).

In addition to (C1)-(C2), we need the following condition.

(B1’) Assume that (
mξ

2/3
m logn

n

)3/4

+ c†2n ξm = o(n−1/2).

Moreover, assume that c†nλn = o(n−1/2) and mc†n logn = o(1).

We now are ready to state the main result of this section.

Theorem 3.1. Let Conditions (A1)-(A3) hold with Z = (V �, Z̃(W )�)�, (B1’)
and (C1)-(C2) hold for β†

n(τ) defined in (3.3). For any sequence wn ∈ R
m with

E
[
|w�

nM2(τ2)
−1Z̃(W )|

]
= o(‖wn‖) where

M2(τ) := E
[
Z̃(W )Z̃(W )�fY |X(Q(X; τ)|X)

]
.

If

Γ22(τ1, τ2) = lim
n→∞

‖wn‖−2w�
nM2(τ1)

−1
E[Z̃(W )Z̃(W )�]M2(τ2)

−1wn (3.9)

exists, then( √
n(α̂(·)−α(·))√

n
‖wn‖w

�
n

(
β̂†(·)− β†

n(·)
) )� (G1(·), ...,Gk(·),Gh(·))� in (	∞(T ))k+1,

(3.10)

and the multivariate process (G1(·), ...,Gk(·),Gh(·)) has the covariance function

Γ(τ1, τ2;wn) = (τ1 ∧ τ2 − τ1τ2)

(
Γ11(τ1, τ2) 0k

0�
k Γ22(τ1, τ2)

)
(3.11)

with

Γ11(τ1, τ2) = M1,h(τ1)
−1

E
[
(V − hVW (W ; τ1))(V − hVW (W ; τ2))

�]M1,h(τ2)
−1

(3.12)
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where M1,h(τ) = E
[
(V − hVW (W ; τ))(V − hVW (W ; τ))�fY |X(Q(X; τ)|X)

]
. In

addition, at any fixed w0 ∈ Rk′
, let wn = Z̃(w0) satisfy the above conditions,

ĥ(w0; τ) = Z̃(w0)
�β̂†(τ), c†n = o(‖Z̃(w0)‖n−1/2), then( √

n
{
α̂(·)−α(·)

}
√
n

‖Z̃(w0)‖

{
ĥ(w0; ·)− h(w0; ·)

} )�
(
G1(·), ...,Gk(·),Gh(w0; ·)

)�
in (	∞(T ))k+1, (3.13)

where (G1(·), ...,Gk(·),Gh(w0; ·)) are centered Gaussian processes with joint co-
variance function Γw0(τ1, τ2) of the form (3.11) where Γ22(τ1, τ2) is defined

through the limit in (3.9) with wn replaced by Z̃(w0). In particular, there exists
a version of Gh(w0; ·) with almost surely continuous sample paths.

The proof of Theorem 3.1 is presented in Section A.3. The invertibility of the
matrices M1,h(τ) and M2(τ) is discussed in Remark 5.5. In general, α̂(τ) is not
semiparametric efficient, as its covariance matrix τ(1 − τ)Γ11 does not achieve
the efficiency bound given in Section 5 of Lee (2003).

The joint asymptotic process convergence result (in 	∞(T )) presented in
Theorem 3.1 is new in the quantile regression literature. The block structure
of covariance function Γ defined in (3.11) implies that α̂(τ) and ĥ(w0; τ) are
asymptotically independent for any fixed τ . This effect was recently discovered
by Cheng and Shang (2015) in the case of mean regression, named as joint
asymptotics phenomenon.

Remark 3.2. We point out that E
[
|w�

nM2(τ2)
−1Z̃(W )|

]
= o(‖wn‖) is a crucial

sufficient condition for asymptotic independence between the parametric and
nonparametric parts. We conjecture that this condition is also necessary. This
condition holds, for example, for wn = Z̃(w0) or wn = ∂wj Z̃(w0) at a fixed w0,

j = 1, ..., k′, where Z̃(w) is a vector of B-spline basis. However, this condition
may not hold for other estimators. Consider for instance the case W = [0, 1],

B-splines of order zero Z̃ and the vector wn =
∫ λ

0
Z̃(w)dw for some λ > 0. In

this case ‖wn‖ � 1, and one can show that E
[
|w�

nM2(τ2)
−1Z̃(W )|

]
� 1 instead.

A more detailed investigation of related questions is left to future research.

Remark 3.3. A seemingly more natural choice for the centering vector, which
was also considered in Belloni et al. (2016), is

γ∗
n(τ) = (α∗

n(τ),β
∗
n(τ)) := arg min

(a,b)
E[ρτ (Y − a�V − b�Z̃(W ))], (3.14)

which gives gn(γ
∗
n(τ)) = 0. However, a major drawback of centering with γ∗

n(τ)
is that it is impossible to find a good bound for the difference α∗

n(τ) − α(τ)
without imposing restrictive assumptions. However, such a bound is needed to
show that the bias of α∗

n(τ) is of order o(n−1/2) which is required establish
(3.10) in Theorem 3.1.
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4. Applications of weak convergence results

In this section, we consider applications of the process convergence results to
the estimation of conditional distribution functions and non-crossing quantile
curves via rearrangement operators. For the former estimation, define the func-
tional (see Dette and Volgushev (2008), Chernozhukov et al. (2010) or Volgushev
(2013) for similar ideas)

Φ :

{
	∞((τL, τU )) → 	∞(R)

Φ(f)(y) := τL +
∫ τU
τL

1{f(τ) < y}dτ.

A simple calculation shows that

Φ(Q(x; ·))(y) =

⎧⎨⎩
τL if FY |X(y|x) < τL
FY |X(y|x) if τL ≤ FY |X(y|x) ≤ τU
τU if FY |X(y|x) > τU .

The latter identity motivates the following estimator of the conditional distri-
bution function

F̂Y |X(y|x) := τL +

∫ τU

τL

1{Q̂(x; τ) < y}dτ,

where Q̂(x; τ) denotes the estimator of the conditional quantile function in any
of the three settings discussed in Sections 2 and 3. By following the arguments in
Chernozhukov et al. (2010), one can easily show that under suitable assumptions
the functional Φ is compactly differentiable (see Section A.5 for more details).
Hence, the general process convergence results in Sections 2 and 3 allow to easily
establish the asymptotic properties of F̂Y |X - see Corollary 4.1 at the end of this
section.

The second functional of interest is the monotone rearrangement operator,
defined as follows

Ψ :

{
	∞((τL, τU )) → 	∞((τL, τU ))
Ψ(f)(τ) := inf

{
y : Φ(Q(x; ·))(y) ≥ τ

}
.

The main motivation for considering Ψ is that the function τ �→ Ψ(f)(τ) is

by construction non-decreasing. Thus for any initial estimator Q̂(x; ·), its rear-
ranged version Ψ(Q̂(x; ·))(τ) is an estimator of the conditional quantile function
which avoids the issue of quantile crossing. For more detailed discussions of
rearrangement operators and their use in avoiding quantile crossing, we refer
the interested readers to Dette and Volgushev (2008) and Chernozhukov et al.
(2010).

Corollary 4.1 (Convergence of F̂ (y|x) and Ψ(Q̂(x; τ))). For any fixed x0 and

an initial estimator Q̂(x0, ·), we have for any compact sets [τU , τL] ⊂ T ,Y ⊂
Y0,T := {y : FY |X(y|x0) ∈ T }

an
{
F̂Y |X(·|x0)− FY |X(·|x0)

}
� −fY |X(·|x0)G

(
x0;FY |X(·|x0)

)
in 	∞(Y),



3286 S.-K. Chao et al.

an
{
Ψ(Q̂(x0; ·))(·)−Q(x0; ·)

}
� G(x0; ·) in 	∞((τU , τL)),

where Q̂(x0, ·), the normalization an, and the process G(x0; ·) are stated as fol-
lows

1. (Linear model with increasing dimension) Suppose Z(X) = X, Q̂(x0, ·) =
γ̂(·)�x0 and the conditions in Corollary 2.2 hold. In this case, we have
an =

√
n/‖x0‖. G(x0; ·) is a centered Gaussian process with covariance

function H1(τ1, τ2;x0) defined in (2.5).

2. (Nonparametric model) Suppose Q̂(x0, ·) = β(·)�B(x0) and the conditions
in Theorems 2.4 hold. In this case, we have an =

√
n/‖B(x0)‖. G(x0; ·)

is a centered Gaussian process with covariance function H̃(τ1, τ2;B(x0))
defined in (2.8).

3. (Partial linear model) Let x�
0 = (v�0 , w

�
0 ), Q̂(x0, ·) = γ̂†(τ)�(v�, Z̃(w0)

�)�

and the conditions in Theorem 3.1 hold. In this case, we have an =√
n/‖Z̃(w0)‖. G(x0; ·) is a centered Gaussian process with covariance func-

tion Γ22(τ1, τ2; Z̃(w0)) defined in (3.9).

The proof of Corollary 4.1 is a direct consequence of the functional delta method,
combined with the process convergence results established in Section 2 and Sec-
tion 3 and Hadamard differentiability results of certain functionals established
in Chernozhukov et al. (2010). Details can be found in Section A.5.

Remark 4.2 (More Statistical Applications of Corollary 4.1). In practice, many
quantities of interest can be written as Hadamard differentiable functionals of
distribution functions such as some M and L estimators (Fernholz, 1983, Chap-
ter 7), conditional distributions (Bassett and Koenker, 1982), the Wilcoxon test
statistics (van der Vaart and Wellner, 1996, Example 3.9.18) and Gini indices
(Barrett and Donald, 2009). Based on the chain rule of Hadamard derivative,
Corollary 4.1 can be applied to prove the asymptotic normality of these sta-
tistical estimators. Moreover, detection of treatment effect on the conditional
distribution after an intervention (Koenker and Xiao, 2002; Qu and Yoon, 2015)
is often based on Kolmogorov-Smirnov or Cramér-von Mises statistics, whose
asymptotic distribution can also be found by applying Corollary 4.1.

5. Bahadur representations

In this section, we provide Bahadur representations for the estimators discussed
in Sections 2 and 3. In Sections 5.1 and 5.2, we state Bahadur representations
for general series estimators and a more specific choice of local basis function, re-
spectively. In particular, the latter representation is developed with an improved
remainder term. Section 5.3 contains a special case of the general theorem in
Section 5.1 that is particularly tailored to partial linear models. The remain-
ders in these representations are shown to have exponential tail probabilities
(uniformly over T ).
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5.1. A fundamental Bahadur representation

Our first result gives a Bahadur representation for γ̂(τ) − γn(τ) for centering
functions γn satisfying certain conditions. Recall the definition of γ̂(τ) in (2.1).
This kind of representation for quantile regression with an increasing number of
covariates has previously been established in Theorem 2 of Belloni et al. (2016).
Compared to their results, the Bahadur representation given in Theorem 5.1 has
several advantages. First, we allow for a more general centering. This is helpful
for the analysis of partial linear models (see Sections 3 and C.2). Second, we
provide exponential tail bounds on remainder terms, which is much more explicit
and sharper than those in Belloni et al. (2016).

Theorem 5.1. Suppose Conditions (A1)-(A3) hold and that mξ2m logn = o(n).
Then, for any γn(·) satisfying gn(γn) = o(ξ−1

m ) and cn(γn) = o(1), we have

γ̂(τ)− γn(τ) = − 1

n
Jm(τ)−1

n∑
i=1

ψ(Yi,Zi;γn(τ), τ)

+ rn,1(τ) + rn,2(τ) + rn,3(τ) + rn,4(τ).

The remainder terms rn,j’s can be bounded as follows:

sup
τ∈T

‖rn,1(τ)‖ ≤ 1

infτ∈T λmin(Jm(τ))

mξm
n

a.s. (5.1)

Moreover, we have for any κn � n/ξ2m, sufficiently large n, and a constant C
independent of n

P
(
sup
τ∈T

‖rn,j(τ)‖ ≤ C�j(κn)
)
≥ 1− 2e−κn , j = 2, 3, 4,

where

�2(κn) := ξm

((m
n

logn
)1/2

+
(κn

n

)1/2
+ gn

)2
, (5.2)

�3(κn) :=
((m logn

n

)1/2
+
(κn

n

)1/2
+ gn

)1/2((mξm logn

n

)1/2
+
(ξmκn

n

)1/2)
,

(5.3)

�4(κn) := cn

((m
n

logn
)1/2

+
(κn

n

)1/2)
+ gn. (5.4)

The proof for Theorem 5.1 can be found in Section C.1.

5.2. Bahadur representation for local basis series estimator

In this section, we focus on basis expansions B satisfying (L) and derive a

Bahadur representation for linear functionals of the form u�
n (β̂(τ) − βn(τ)),

where the vector un can have at most a finite number of consecutive non-zero
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entries. Such linear functionals are of interest since the estimator of the quantile
function itself as well as estimators of derivatives can be represented in exactly
this form - see Remark 5.3 for additional details. The advantage of concentrating
on vectors with this particular structure is that we can substantially improve
the rates of remainder terms compared to the general setting in Theorem 5.1.

Theorem 5.2. Suppose Conditions (A1)-(A3) and (L) hold with Z(x) = B(x).
Assume additionally that mξ2m(logn)2 = o(n) and that c̃n = o(1) and that
I ⊂ {1, ...,m} consists of at most L consecutive integers. Then, for βn(τ) defined
as (2.7) and un ∈ Sm−1

I we have

u�
n (β̂(τ)− βn(τ)) = −u�

n J̃m(τ)−1n−1
n∑

i=1

Bi(1{Yi ≤ βn(τ)
�Bi} − τ)

+

4∑
k=1

rn,k(τ,un), (5.5)

where the remainder terms rn,j’s can be bounded as follows:

sup
un∈Sm−1

I

sup
τ∈T

|rn,1(τ,un)| � ξm logn

n
a.s. (5.6)

sup
un∈Sm−1

I

sup
τ∈T

|rn,4(τ,un)| ≤ 1

n
+

1

2
f ′c̃2n sup

un∈Sm−1
I

Ẽ(un,B) a.s. (5.7)

where Ẽ(un,B) := supτ E|unJ̃m(τ)−1B|. Moreover, we have for any κn �
n/ξ2m, all sufficiently large n, and a constant C independent of n

P
(

sup
un∈Sm−1

I

sup
τ∈T

|rn,j(τ,un)| ≤ C�̃j(κn)
)
≥ 1− n2e−κn , j = 2, 3

where

�̃2(κn) := C sup
un∈Sm−1

I

Ẽ(un,B)
(ξm(logn+ κ

1/2
n )

n1/2
+ c̃2n

)2
, (5.8)

�̃3(κn) := C
(
c̃n

κ
1/2
n ∨ logn

n1/2
+

ξ
1/2
m (κ

1/2
n ∨ logn)3/2

n3/4

)
. (5.9)

Theorem 5.2 is proved in Section C.2. We note that by Hölder’s inequality and
assumptions (A1)-(A3), we have a simple bound for

sup
un∈Sm−1

I

Ẽ(un,B) ≤ sup
un∈Sm−1

sup
τ

(
u�
n J

−1
m (τ)E[BB�]J−1

m (τ)un

)1/2
= O(1).

Remark 5.3. Theorem 5.2 enables us to study several quantities associated
with the quantile function Q(x; τ). For instance, consider the spline setting of
Example 2.3. Setting un = B(x)/‖B(x)‖ in the Theorem 5.2 yields a repre-

sentation for Q̂(x; τ), while setting un = B′(x)/‖B′(x)‖ yields a representation
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for the estimator of the derivative ∂xQ(x; τ). Uniformity in x follows once we
observe that for different values of x, the support of the vector B(x) is always
consecutive so that there is at most nl, l > 0, number of different sets I that
we need to consider.

5.3. Bahadur representation for partial linear models

In this section, we provide a joint Bahadur representation for the parametric and
non-parametric part of this model. Recall the partial linear model Q(X; τ) =
h(W ; τ) +α(τ)�V .

Theorem 5.4. Let (A1)-(A3), (C1)-(C2) hold with Z = (V �, Z̃(W )�)� and
assume mξ2m(logn)2 = o(n). Then(

α̂(τ)−α(τ)

β̂†(τ)− β†
n(τ)

)
= −Jm(τ)−1n−1

n∑
i=1

Zi(1{Yi ≤ {γn(τ)
†}�Zi} − τ)

+

4∑
j=1

rn,j(τ),

where the remainder terms rn,j’s satisfy the bounds stated in Theorem 5.1 with
gn = ξmc†2n . Additionally, the matrix J−1

m (τ) can be represented as

J−1
m (τ) =

(
M1(τ)

−1 −M1(τ)
−1A(τ)

−A(τ)�M1(τ)
−1 M2(τ)

−1 +A(τ)�M1(τ)
−1A(τ)

)
(5.10)

where

M1(τ) := E[fY |X(Q(X; τ)|X)(V −A(τ)Z̃(W ))(V −A(τ)Z̃(W ))�],

M2(τ) = E
[
Z̃(W )Z̃(W )�fY |X(Q(X; τ)|X)

]
,

and A(τ) is defined in (3.6).

See Section C.3 for the proof of Theorem 5.4.

Remark 5.5. We discuss the positive definiteness of M1(τ) and M2(τ). Fol-

lowing Condition (A1) with Z = (V �, Z̃(W )�)�, we have

1/M ≤ inf
τ∈T

λmin(M1(τ)) ≤ sup
τ∈T

λmax(M1(τ)) ≤ M ; (5.11)

1/M ≤ inf
τ∈T

λmin(M2(τ)) ≤ sup
τ∈T

λmax(M2(τ)) ≤ M, (5.12)

for all n. To see this, observe that M1(τ) = (Ik| − A(τ))Jm(τ)(Ik| − A(τ))�

where Ik is the k-dimensional identity matrix, [A|B] denotes the block matrix
with A in the left block and B in the right block, and

Jm(τ) =

(
M1(τ) +A(τ)M2(τ)A(τ)

� A(τ)M2(τ)
M2(τ)A(τ)

� M2(τ)

)
,
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whose form follows from the definition and the condition (3.5) (see the proof for
Theorem 5.4 for more details). Thus, for an arbitrary nonzero vector a ∈ R

k,
by Condition (A1),

0 < 1/M ≤ a�M1(τ)a = a�
[
Ik
∣∣−A(τ)

]
Jm(τ)

[
Ik
∣∣−A(τ)

]�
a ≤ M < ∞

by the strictly positive definiteness of Jm(τ) for some M > 0.
The strictly positive definiteness of M2(τ) follows directly from the observa-

tion that

0 < 1/M ≤ b�M2(τ)b = (0�
k ,b

�)Jm(τ)(0�
k ,b

�)� ≤ M < ∞,

for all nonzero b ∈ R
m and some M > 0.

Appendix

This appendix gives technical details of the results shown in the main text. Ap-
pendix A contains all the proofs for weak convergence results in Theorems 2.1,
2.4 and 3.1. Appendix B discusses basis approximation errors with full technical
details.

Additional Notations. Define for a function x �→ f(x) that

Gn(f) := n1/2

∫
f(x)(dPn(x)− dP (x))

and ‖f‖Lp(P ) = (
∫
|f(x)|pdP (x))1/p for 0 < p < ∞. For a class of functions

G, let ‖Pn − P‖G := supf∈G |Pnf − Pf |. For any ε > 0, the covering number
N(ε,G, Lp) is the minimal number of balls of radius ε (under Lp-norm) that is
needed to cover G. The bracketing number N[ ](ε,G, Lp) is the minimal number
of ε-brackets that is needed to cover G. An ε-bracket refers to a pair of functions
within an ε distance: ‖u − l‖Lp < ε. Throughout the proofs, C,C1, C2 etc. will
denote constants which do not depend on n but may have different values in
different lines.

Appendix A: Proofs for process convergence

A.1. Proof of Theorem 2.1

A.1.1. Proof of (2.2)

Under conditions (A1)-(A3) and those in Theorem 2.1 it follows from Theorem
5.1 applied with κn = c logn for a suitable constant c (note that the conditions
gn = o(ξ−1

m ) and cn = o(1) in Theorem 5.1 follow under the assumptions of
Theorem 2.1) that

u�
n (γ̂(τ)− γ(τ)) +

1

n
u�
n Jm(τ)−1

n∑
i=1

Zi(1{Yi ≤ Q(Xi; τ)} − τ)

= I(τ) + oP (‖un‖n−1/2),



Quantile processes for semi and nonparametric regression 3291

where the remainder term is uniform in T and

I(τ) := −n−1u�
n Jm(τ)−1

n∑
i=1

Zi

(
1{Yi ≤ Z�

i γn(τ)} − 1{Yi ≤ Q(Xi; τ)}
)
.

Under the assumption χγn(un,Z) = o(‖un‖n−1/2), we have supτ∈T |E[I(τ)]| =
o(‖un‖n−1/2) and moreover

sup
τ∈T

|I(τ)− E[I(τ)]| ≤ ‖un‖[ inf
τ∈T

λmin(Jm(τ))]−1‖Pn − P‖G5 ,

where the class of functions G5 is defined as

G5(Z,γn) :=
{
(X,Y ) �→ a�Z(X)

(
1{Y ≤ Z(X)�γn(τ)} − 1{Y ≤ Q(X; τ)}

)
1{‖Z(X)‖ ≤ ξm}

∣∣τ ∈ T ,a ∈ Sm−1
}
.

It remains to bound ‖Pn − P‖G5 . For any f ∈ G5 and a sufficiently large C, we
obtain

|f | ≤ |a�Z| ≤ ξm,

‖f‖2L2(P ) ≤ 2f̄ cnλmax(E[ZZ
�]) ≤ Ccn.

By Lemma 21 of Belloni et al. (2016), the VC index of G5 is of the order O(m).
Therefore, we obtain from (D.2)

E‖Pn − P‖G5 ≤ C̃
[(mcn

n
log

ξm√
cn

)1/2
+

mξm
n

log
ξm√
cn

]
. (A.1)

For any κn > 0, let

r′N,3(κn) = C

[(mcn
n

log
ξm√
cn

)1/2
+

mξm
n

log
ξm√
cn

+

(
cn
n
κn

)1/2

+
ξm
n

κn

]
for a sufficiently large constant C > 0. We obtain from (D.3) combined with
(A.1)

P

{
sup
τ∈T

|I(τ)| ≥ ‖un‖r′N,3(κn) + sup
τ∈T

∣∣E[I(τ)]∣∣} ≤ e−κn .

Finally, note that under condition mcn logn = o(1) and

m3ξ2m(logn)3 = o(n)

we have that r′N,3(logn) = o(n−1/2). This completes the proof of (2.2).
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A.1.2. Proof of (2.4)

Throughout this subsection assume without loss of generality that ‖un‖ = 1. It
suffices to prove finite dimensional convergence and asymptotic equicontinuity.
Asymptotic equicontinuity follows from (A.33). The existence of a version of
the limit with continuous sample paths is a consequence of Theorem 1.5.7 and
Addendum 1.5.8 in van der Vaart and Wellner (1996).

So, we only need to focus on finite dimensional convergence.
Let

Gn(τ) :=
1√
n
u�
n Jm(τ)−1

n∑
i=1

Zi(1{Yi ≤ Q(Xi; τ)} − τ),

and G be the Gaussian process defined in (2.4). From Cramér-Wold theorem,
the goal is to show for arbitrary set of {τ1, ..., τL} and {λ1, ..., λL} ∈ R

L, we
have

L∑
l=1

λlGn(τl)
d→

L∑
l=1

λlG(τl).

Let the triangular array Vn,i(τ) := n−1/2u�
n Jm(τ)−1Zi(1{Yi ≤ Q(Xi; τ)} − τ).

Then for all τ ∈ T , we have E[Vn,i(τ)] = 0, |Vn,i| ≤ n−1/2ξm and var(Vn,i(τ)) =
n−1u�

n Jm(τ)−1
E[ZiZ

�
i ]Jm(τ)−1unτ(1 − τ) < ∞ by Conditions (A1)-(A3). We

can express Gn(τ) =
∑n

i=1 Vn,i(τ) and
∑L

l=1 λlGn(τl) =
∑n

i=1

∑L
l=1 λlVn,i(τl).

Observe that var(
∑n

i=1

∑L
l=1 λlVn,i(τl)) =: σ2

n,L where

σ2
n,L =

L∑
l,l′=1

λlλl′u
�
n Jm(τl)

−1
E[ZiZ

�
i ]Jm(τl′)

−1un(τl ∧ τl′ − τlτl′).

If 0 = limn→∞ σ2
n,L =

∑L
l,l′=1 λlλl′H(τl, τl′ ;un) = var(

∑L
l=1 λlG(τl)), then by

Markov’s inequality
∑n

i=1

∑L
l=1 λlVn,i(τl) → 0 in probability, which coincides

with the distribution of
∑L

l=1 λlG(τl), which is a single point mass at 0. Next,
consider the case σ2

n,L → σ2
L > 0. For sufficiently large n and arbitrary v > 0,

Markov’s inequality implies

σ−2
n,L

n∑
i=1

E

[( L∑
l=1

λlVn,i(τl)

)2

1

( L∑
l=1

λlVn,i(τl) > v

)]

� ξ2mn−1σ−2
n,L

n∑
i=1

E

[
1

( L∑
l=1

λlVn,i(τl) > v

)]

� ξ2mn−1σ−2
n,Lv

−2
L∑

l,l′=1

λlλl′u
�
n Jm(τl)

−1
E[ZiZ

�
i ]Jm(τl′)

−1un(τl ∧ τl′ − τlτl′)

= o(1)

since ξ2mn−1 = o(1) by the assumption mξ2m logn = o(n). Hence the Lindeberg
condition is verified. The finite dimensional convergence follows from Cramér-
Wold devise. This completes the proof.
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A.2. Proofs of Theorem 2.4, Example 2.3 and Remark 2.6

We begin by introducing some notations and useful preliminary results. For a
vector u = (u1, ..., um)� and a set I ⊂ {1, ...,m}, let u(I) ∈ R

m denote the
vector that has entries ui for i ∈ I and zero otherwise. For a vector a ∈ R

m,
let ka denote the position of the first non-zero entry of a with ‖a‖0 non-zero
consecutive entries

I(a, D) := {i : |i− ka| ≤ ‖a‖0 +D}, (A.2)

I ′(a, D) := {1 ≤ j ≤ m : ∃i ∈ I(a, D) such that |j − i| ≤ ‖a‖0}, (A.3)

Lemma A.1. Under (L), for an arbitrary vector a ∈ R
m with at most ‖a‖0

non-zero consecutive entries we have for a constant γ ∈ (0, 1) independent of
n, τ

|(a�J̃−1
m (τ))j | ≤ C1‖a‖∞

ka+‖a‖0∑
q=ka

γ|q−j|. (A.4)

‖a�J̃−1
m (τ)− (a�J̃−1

m (τ))(I(a,D))‖ � ‖a‖∞‖a‖0γD (A.5)

‖a�J−1
m (τ)− (a�J−1

m (τ))(I(a,D))‖ � ‖a‖∞‖a‖0γD (A.6)

Proof for Lemma A.1. Under (L) the matrix Z(x)Z(x)� has no non-zero entries

that are further than r away from the diagonal. Thus J̃−1
m is a band matrix with

band width no larger that 2r. Apply similar arguments as in the proof of Lemma
6.3 in Zhou et al. (1998) to find that under (L) the entries of J̃−1

m (τ) satisfy

sup
τ,m

|(J̃−1
m (τ))j,k| ≤ C1γ

|j−k|

for some γ ∈ (0, 1) and a constant C1 where both γ and C1 do not depend on
n, τ . It follows that

|(a�J̃−1
m (τ))j | ≤ C1‖a‖∞

ka+‖a‖0∑
q=ka

γ|q−j|.

and thus (A.4) is established. For a proof of (A.5) note that by (A.4) we have

|(a�J̃−1
m (τ))j | ≤ C1‖a‖∞

ka+‖a‖0∑
q=ka

γ|q−j| ≤ C1‖a‖∞‖a‖0γ|ka−j|−‖a‖0 .

By the definition of I(a, D) we find

‖a�J̃−1
m (τ)− (a�J̃−1

m (τ))(I(a,D))‖ ≤ C‖a‖∞‖a‖0γD

for a constant C independent of n. The proof of (A.6) is similar to the proof of
(A.5).
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Proof for Theorem 2.4. By Theorem 5.2 and Condition (B1), we first obtain

u�
n

(
β̂(τ)− β(τ)

)
= − 1

n
u�
n J̃m(τ)−1

n∑
i=1

Bi(1{Yi ≤ B(x)�βn(τ)} − τ)

+ oP (‖un‖n−1/2). (A.7)

Let Ũ1,n(τ) := n−1u�
n J̃m(τ)−1

∑n
i=1 Bi(1{Yi ≤ B(x)�βn(τ)} − τ). We claim

that

u�
n

(
Ũ1,n(τ)−Un(τ)

)
= oP (‖un‖n−1/2), (A.8)

where Un(τ) := n−1u�
n Jm(τ)−1

∑n
i=1 Bi(1{Yi ≤ Q(Xi; τ)} − τ). Given (A.8),

the process convergence of u�
n

(
β̂(τ)−β(τ)

)
and continuity of the sample paths

of the limiting process follows from process convergence of u�
nUn(τ), which can

be shown via exactly the same steps as in Section A.1.2 by replacing Z by B
given assumptions (A1)-(A3).

To show (A.8), we proceed in two steps. Given un ∈ Sm−1
I , let U1,n(τ) :=

n−1u�
n J̃m(τ)−1

∑n
i=1 Bi(1{Yi ≤ Q(Xi; τ)} − τ).

Step 1: supτ∈T
∣∣u�

n

(
Ũ1,n(τ)−U1,n(τ)

)∣∣ = oP (n
−1/2), for all un ∈ Sm−1

I .

Let Ĩ0(τ) := E
[
u�
n

(
Ũ1,n(τ)−U1,n(τ)

)]
and observe the decomposition

u�
n

(
Ũ1,n(τ)−U1,n(τ)

)
= Ĩ1(τ) + Ĩ2(τ) + Ĩ0(τ).

where

Ĩ1(τ) :=
(
u�
n J̃

−1
m (τ)−

(
u�
n J̃

−1
m (τ)

)(I(un,D))
)

(Pn − P )
{
Bi(1{Yi ≤ B(x)�βn(τ)} − 1{Yi ≤ Q(Xi; τ)})

}
,

Ĩ2(τ) :=

(Pn − P )
{(

u�
n J̃

−1
m (τ)

)(I(un,D))
Bi(1{Yi ≤ B(x)�βn(τ)} − 1{Yi ≤ Q(Xi; τ)})

}
.

For supτ∈T |Ĩ0(τ)|, by the construction of βn(τ) in (2.7),

sup
τ∈T

∣∣Ĩ0(τ)∣∣
≤ sup

τ∈T

∣∣∣u�
n J̃

−1
m (τ)E

[
Bi

(
1{Yi ≤ Q(Xi; τ)} − 1{Yi ≤ B�

i βn(τ)}
)]∣∣∣

≤ c̃2nf̄
′ sup
u∈Sm−1

E|u�J̃−1
m (τ)B| ≤ c̃2nf̄

′ sup
u∈Sm−1

(
u�J̃−1

m (τ)E[BB�]J̃−1
m (τ)u

)1/2
= o(n−1/2),

where the final rate follows from assumptions (A2) and c̃2n = o(n−1/2) in (B1).
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By (A.5) in Lemma A.1, let D = c logn for large enough c > 0, we have
almost surely

sup
τ∈T

∣∣Ĩ1(τ)∣∣ ≤ sup
τ∈T

∥∥u�
n J̃

−1
m (τ)− (u�

n J̃
−1
m (τ))(I(un,D))

∥∥ξm
≤ ‖un‖∞‖un‖0nc log γξm = o(n−1/2).

For bounding supτ∈T |Ĩ2(τ)|, observe that

n∑
i=1

(u�
n J̃

−1
m (τ))(I(un,D))Bi(1{Yi ≤ B�

i βn(τ)} − 1{Yi ≤ Q(Xi; τ)})

=

n∑
i=1

u�
n J̃

−1
m (τ)B

(I(un,D))
i (1{Yi ≤ B�

i βn(τ)} − 1{Yi ≤ Q(Xi; τ)})

=
∑

{i:supp(Bi)∩
I(un,D) �=∅}

u�
n J̃

−1
m (τ)B

(I(un,D))
i (1{Yi ≤ B�

i βn(τ)} − 1{Yi ≤ Q(Xi; τ)})

=
∑

{i:B(I′(un,D)c)
i =0}

u�
n J̃

−1
m (τ)B

(I(un,D))
i (1{Yi ≤ B�

i βn(τ)} − 1{Yi ≤ Q(Xi; τ)})

=

n∑
i=1

u�
n J̃

−1
m (τ)B

(I(un,D))
i (1{Yi ≤

(
B

(I′(un,D))
i

)�
βn(τ)} − 1{Yi ≤ Q(Xi; τ)}),

=

n∑
i=1

u�
n J̃

−1
m (τ)B

(I(un,D))
i (1{Yi ≤ B�

i βn(τ)
(I′(un,D))} − 1{Yi ≤ Q(Xi; τ)}),

(A.9)

where the third equality follows from the fact that B
(I(un,D))
i �= 0 can only

happen for i ∈ {i : B
(I′(un,D)c)
i = 0}, because B can only be nonzero in r

consecutive entries by assumption (L), where I ′(un, D)c = {1, ...,m}−I ′(un, D)
is the complement of I ′(un, D) in {1, ...,m}. By restricting ourselves on set

{i : B(I′(un,D)c)
i = 0}, it is enough to look at the coefficient βn(τ)

(I′(un,D)) in
the last equality in (A.9). Hence,

sup
τ∈T

∣∣Ĩ2(τ)∣∣ ≤ ∥∥Pn − P
∥∥
G̃5(I(un,D),I′(un,D))

where for any two index sets I1 and I ′
1

G̃5(I1, I ′
1) =

{
(X,Y ) �→ a�B(X)(I1)

(
1{Y ≤ B(X)�b(I′

1)} − 1{Y ≤ Q(X; τ)}
)∣∣τ ∈ T ,b ∈ R

m,a ∈ Sm−1
}
.

With the choice of D = c logn, the cardinality of both I(un, D) and I ′(un, D)

is of order O(log n). Hence, the VC index of G̃5(I(un, D), I ′(un, D)) is bounded

by O(logn). Note that for any f ∈ G̃5(I(un, D), I ′(un, D)), |f | � ξm and
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‖f‖L2(P ) � c̃n. Applying (D.3) yields

P

(
sup
τ∈T

∣∣Ĩ2(τ)∣∣ ≤ C
[( c̃n(log n)2

n

)1/2
+

ξm(logn)2

n
+
( c̃nκn

n

)1/2
+

κnξm
n

])
≥ 1− eκn .

Taking κn = C logn, c̃2n = o(n−1/2) and ξ4m(log n)6 = o(n) in (B1) implies that

supτ∈T
∣∣Ĩ2(τ)∣∣ = oP (n

1/2).

Step 2: supτ∈T
∣∣u�

n

(
U1,n(τ)−Un(τ)

)∣∣ = oP (n
−1/2), for all un ∈ Sm−1

I .
Observe that

u�
n

(
Ũ1,n(τ)−Un(τ)

)
=

1

n

({
u�
n

(
J̃m(τ)−1 − Jm(τ)−1

)}
−
{
u�
n

(
J̃m(τ)−1 − Jm(τ)−1

)}(I(un,D))
)

n∑
i=1

Bi(1{Yi ≤ Q(Xi; τ)} − τ)

+
1

n

{
u�
n

(
J̃m(τ)−1 − Jm(τ)−1

)}(I(un,D))
n∑

i=1

Bi(1{Yi ≤ Q(Xi; τ)} − τ)

=: Ĩ3(τ) + Ĩ4(τ).

Applying (A.5) and (A.6) in Lemma A.1 with D = c logn where c > 0 is chosen
sufficiently large, we have almost surely

sup
τ∈T

∣∣Ĩ3(τ)∣∣ ≤ ( sup
τ∈T

∥∥u�
n J̃

−1
m (τ)− (u�

n J̃
−1
m (τ))(I(un,D))

∥∥
+ sup

τ∈T

∥∥u�
n J

−1
m (τ)− (u�

n J
−1
m (τ))(I(un,D))

∥∥)ξm
≤ 2‖un‖∞‖un‖0nc log γξm = o(n−1/2). (A.10)

Now it is left to bound supτ∈T
∣∣Ĩ4(τ)∣∣. We have

Ĩ4(τ) =
1

n

n∑
i=1

{
u�
n

(
J̃m(τ)−1 − Jm(τ)−1

)}(I(un,D))
Bi(1{Yi ≤ Q(Xi; τ)} − τ)

=
1

n

n∑
i=1

u�
n

(
J̃m(τ)−1 − Jm(τ)−1

)
B

(I(un,D))
i (1{Yi ≤ Q(Xi; τ)} − τ).

Hence,

sup
τ∈T

∣∣Ĩ4(τ)∣∣ ≤ sup
τ∈T

∥∥u�
n

(
J̃m(τ)−1 − Jm(τ)−1

)∥∥∥∥Pn − P
∥∥
G0(I(un,D))·G4

where for any I,

G0(I) :=
{
(B, Y ) �→ a�B(I)1{‖B‖ ≤ ξm}

∣∣a ∈ Sm−1
}
,
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G4 :=
{
(X,Y ) �→ 1{Yi ≤ Q(X; τ)} − τ

∣∣τ ∈ T
}
.

The cardinality of the set I(un, c logn) is of order O(log n). Thus, the VC index
for G0(I(un, D)) is of order O(log n). The VC index of G4 is 2 (see Lemma D.4).
By Lemma D.2,

N(G0(I(un, D)) · G4, L2(Pn); ε) ≤
(
A‖F‖L2(Pn)

ε

)v0(n)

,

where v0(n) = O(log n). In addition, for any f ∈ G0(I(un, D)) · G4, |f | � ξm
and ‖f‖L2(P ) = O(1) by (A1). Furthermore, by assumptions (A1)-(A2) and the
definition of c̃n,∥∥u�

n

(
J̃m(τ)−1 − Jm(τ)−1

)∥∥ ≤ c̃nλmax(E[B(X)B(X)�])f̄ ′ � c̃n. (A.11)

By (D.3), we have for some constant C > 0,

P

(
sup
τ∈T

∣∣Ĩ2(τ)∣∣ ≤ Cc̃n

[( (logn)2
n

)1/2
+

ξm(logn)2

n
+
(κn

n

)1/2
+

κnξm
n

])
≥ 1− eκn .

Taking κn = C logn, an application of (B1) completes the proof.

Proof for Example 2.3. As J̃m(τ) is a band matrix, applying similar arguments
as in the proof of Lemma 6.3 in Zhou et al. (1998) gives

sup
τ,m

|(J̃−1
m (τ))j,j′ | ≤ C1γ

|j−j′|, (A.12)

for some γ ∈ (0, 1) and C1 > 0. Let kB(x) be the index of the first nonzero
element of the vector B(x). Then by (A.12), we have

sup
τ,m

|(B(x)�J̃−1
m (τ))j | ≤ C1‖B(x)‖∞

kB(x)+‖B(x)‖0∑
j′=kun

γ|j′−j|,

and also

sup
τ,m

E|B(x)�J̃−1
m (τ)B(X)| ≤ C1‖B(x)‖∞ max

l≤m
E|Bl(X)|

m∑
j=1

kB(x)+‖B(x)‖0∑
j′=kB(x)

γ|j′−j|.

(A.13)

Since ‖B(x)‖0 is bounded by a constant, the sum in (A.13) is bounded uni-
formly. Moreover, in the present setting we have ‖B(x)‖∞ = O(m1/2) and
maxl≤m E|Bl(X)| = O(m−1/2). Therefore, for each m we have

sup
τ∈T ,x∈X

E|B(x)�J̃−1
m (τ)B(X)| = O(1).
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Proof of Remark 2.6. Consider the product Bj(x)Bj′(x) of two B-spline func-
tions. The fact that Bj(x) is locally supported on [tj , tj+r] implies that for all
j′ satisfying |j − j′| ≥ r, Bj(x)Bj′(x) = 0 for all x, where r ∈ N is the degree
of spline. This also implies Jm(τ) and E[BB�] are a band matrices with each
column having at most Lr := 2r + 1 nonzero elements and each non-zero ele-
ment is at most r entries away from the main diagonal. Recall also the fact that
maxj≤m supt∈R

|Bj(t)| � m1/2 (by the discussion following assumption (A1)).
Define Jm,D(τ) := Dm(τ)E[BB�], where matrix

Dm(τ) := diag(fY |X(Q(tj ; τ)|tj), j = 1, ...,m),

and Rm(τ) := Jm(τ)− Jm,D(τ). Both Jm,D(τ) and Rm(τ) have the same band
structure as Jm(τ). For arbitrary j, j′ = 1, ...,m, τ ∈ T and a universal constant
C > 0,

|(Rm(τ))j,j′ |
=
∣∣E[Bj(X)Bj′(X)

{
fY |X(Q(X; τ)|X)− fY |X(Q(tj ; τ)|tj)

}]∣∣
≤ 2max

j≤m
sup
t∈R

|Bj(t)|2∫ 1

0

1

{
|x− tj | ≤ C

r

m

}∣∣fY |X(Q(x; τ)|x)− fY |X(Q(tj ; τ)|tj)
∣∣fX(x)dx

≤ 2Cm

∫ 1

0

1

{
|x− tj | ≤ C

r

m

}
|x− tj |dx

= O(m−1), (A.14)

where the second inequality is an application of the upper bound of

max
j≤m

sup
t∈R

|Bj(t)| � m1/2

and the local support property of Bj ; the third inequality follows by the as-
sumption (2.10) and bounded fX(x). This shows that

max
j,j′=1,...,m

sup
τ∈T

|(Rm(τ))j,j′ | = O(m−1).

Now we show a stronger result that supτ∈T ‖Rm(τ)‖ = O(m−1/2) for later
use. Let v = (v1, ..., vm). Denote kj the index with the first nonzero entry in the
jth column of Rm(τ). By the band structure of Rm(τ),

sup
τ∈T

‖Rm(τ)‖2

= sup
τ∈T

sup
v∈Sm−1

‖Rm(τ)v‖22 = sup
τ∈T

sup
v∈Sm−1

m∑
j=1

( kj+Lr−1∑
i=kj

vi(Rm(τ))i,j

)2

� sup
τ∈T

max
j,j′

|(Rm(τ))j,j′ |2m = O(m−1), (A.15)
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where the last equality follows by (A.14). Note that from assumptions (A1)-(A3)
that

fminM
−1 < λmin(Jm,D(τ)) ≤ λmax(Jm,D(τ)) < f̄M (A.16)

uniformly in τ ∈ T , where the constant M > 0 is defined as in Assumption
(A1). Using (A.16), assumptions (A1)-(A3) and (A.15),

‖J−1
m (τ)− J−1

m,D(τ)‖ ≤ ‖J−1
m,D(τ)‖‖Jm,D(τ)− Jm(τ)‖‖J−1

m (τ)‖
� sup

τ∈T
‖Rm(τ)‖ = O(m−1/2)

uniformly in τ ∈ T .

Without loss of generality, from now on we drop the term τ1 ∧ τ2 − τ1τ2
out of our discussion and focus on the matrix part in the covariance function
H̃(τ1, τ2;un) defined in (2.8). From (A1) we have ‖E[BB�]‖ < M for some
constant M > 0 so for any τ1, τ2 ∈ T ,

‖un‖−2
∣∣∣u�

n J
−1
m (τ1)E[BB�]J−1

m (τ2)un − u�
n Jm,D(τ1)

−1
E[BB�]Jm,D(τ2)

−1un

∣∣∣
� sup

τ∈T

∥∥Rm(τ)
∥∥ sup

τ∈T

∥∥E[BB�]Jm,D(τ)−1
∥∥

+ sup
τ∈T

∥∥Rm(τ)
∥∥ sup

τ∈T

∥∥E[BB�]Jm(τ)−1
∥∥

= O(m−1/2). (A.17)

Moreover, note that

u�
n Jm,D(τ1)

−1
E[BB�]Jm,D(τ2)

−1un = u�
nDm(τ1)

−1
E[BB�]−1Dm(τ2)

−1un

(A.18)

If un = B(x), observe that for l = 1, ...,m, as suggested by the local support
property, we only need to focus on the index l satisfying |x− tl| ≤ Cr/m, for a
universal constant C > 0. We have

(B(x)�Dm(τ)−1)l = Bl(x)fY |X(Q(tl; τ)|tl)−1

= Bl(x)fY |X(Q(x; τ)|x)−1 +R′(tl), (A.19)

where by assumption (2.10), |R′(tl)| ≤ maxj≤m supt∈R
|Bj(t)|Cf−2

min|x − tl| =
O(m−1/2). Therefore, the sparse vector

B(x)�Dm(τ)−1 = fY |X(Q(x; τ)|x)−1B(x)� + aB(x),

where aB(x) ∈ Rm is a vector with the same support as B(x) (only r < ∞
nonzero components) and with nonzero components of order O(m−1/2). Hence,
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‖aB(x)‖ = O(m−1/2). Continued from (A.18), for any x ∈ [0, 1],

‖B(x)‖−2

∣∣∣∣B(x)�Dm(τ1)
−1

E[BB�]−1Dm(τ2)
−1B(x)

− B(x)�E[BB�]−1B(x)

fY |X(Q(x; τ1)|x)fY |X(Q(x; τ2)|x)

∣∣∣∣
≤
∥∥B(x)

∥∥−1∥∥aB(x)

∥∥ sup
τ∈T

∥∥E[BB�]−1Dm(τ)−1
∥∥

+
∥∥B(x)‖−1‖aB(x)

∥∥∥∥E[BB�]−1
∥∥/fmin

= O(m−1).

We observe that B(x)�E[BB�]−1B(x) does not depend on τ1 and τ2 and can be
treated as a scaling factor and shifted out of the covariance function as (2.11).
Therefore, we finish the proof.

A.3. Proof of Theorem 3.1

Observe that
α̂j(·)−αj(·) = e�j (γ̂

†(·)− γ†
n(·))

where ej denotes the j-th unit vector in R
m+k for j = 1, ..,m+ k, and

w�
n

(
β̂†(τ)− β†

n(τ)
)
= (0�

k ,w
�
n )(γ̂

†(·)− γ†
n(·)).

Let h†
n(w, τ) = Z̃(w)�β†

n(τ). The following results will be established at the end
of the proof.

sup
τ∈T ,

j=1,...,k

∣∣∣E[e�j Jm(τ)−1Z
(
1{Y ≤ Q(X; τ)} − 1{Y ≤ α(τ)�V + h†

n(W, τ)}
)]∣∣∣,

= o(n−1/2) (A.20)

sup
τ∈T

∣∣∣(0�
k ,w

�
n /‖wn‖)Jm(τ)−1

E
[
Z(1{Y ≤ Q(X; τ)}

− 1{Y ≤ α(τ)�V + h†
n(W, τ)})

]∣∣∣ = o(n−1/2). (A.21)

From Theorem 5.4, we obtain that under Condition (B1’)

e�j (γ̂
†(τ)− γ†

n(τ)) = −n−1/2e�j Jm(τ)−1
Gn(ψ(·;γ†

n(τ), τ))

+ oP (n
−1/2), j = 1, ..., k; (A.22)

(0�
k ,w

�
n )(γ̂

†(τ)− γ†
n(τ)) = −n−1/2(0�

k ,w
�
n )Jm(τ)−1

Gn(ψ(·;γ†
n(τ), τ))

+ oP (n
−1/2) (A.23)

uniformly in τ ∈ T . Equation (A.20) implies that for j = 1, ..., k

e�j Jm(τ)−1
E[ψ(Yi,Zi;γ

†
n(τ), τ)]

= e�j Jm(τ)−1
E[1{Yi ≤ Q(Xi; τ)} − τ ] + o(n−1/2)

= o(n−1/2).
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Following similar arguments as given in the proof of (2.2) in Section A.1.1,
(A.20) and (A.22) imply that

e�j (γ̂
†(τ)−γ†

n(τ)) = −n−1e�j Jm(τ)−1
n∑

i=1

Zi(1{Yi ≤ Q(Xi; τ)}−τ)+oP (n
−1/2),

for j = 1, ..., k uniformly in τ ∈ T . Similarly, by (A.21) and (A.23) we have

‖wn‖−1w�
n (β̂

†(τ)− β†
n(τ))

= −n−1(0�
k , ‖wn‖−1w�

n )Jm(τ)−1
n∑

i=1

Zi(1{Yi ≤ Q(Xi; τ)} − τ) + oP (n
−1/2).

Thus, the claim will follow once we prove

GGGn(·) := (Gn,1(·), ...,Gn,k(·),Gn,h(·)) � GGG(·) in (	∞(T ))k+1

where

Gn,j(τ) := −n−1/2e�j Jm(τ)−1
n∑

i=1

Zi(1{Yi ≤ Q(Xi; τ)} − τ), j = 1, ..., k

and

Gn,h(τ) := −‖wn‖−1n−1/2(0�
k ,w

�
n )Jm(τ)−1

n∑
i=1

Zi(1{Yi ≤ Q(Xi; τ)} − τ).

We need to establish tightness and finite dimensional convergence. By Lemma
1.4.3 of van der Vaart and Wellner (1996), it is enough to show the tightness of
Gn,j ’s and Gn,h individually. Tightness follows from asymptotic equicontinuity
which can be proved by an application of Lemma A.3. More precisely, apply
Lemma A.3 with un = ej to prove tightness of Gn,j(·) for j = 1, ..., k, and
Lemma A.3 with u�

n = (0�
k ,w

�
n ) to prove tightness of Gn,h(w0; ·). Continuity

of the sample paths of Gn,h(w0; ·) follows by the same arguments as given at
the beginning of Section A.1.2.

Next, we prove finite-dimensional convergence. Observe the decomposition

GGGn(τ) = −n−1/2
n∑

i=1

{(
M1(τ)

−1(Vi −A(τ)Z̃(Wi))

‖wn‖−1w�
nM2(τ)

−1Z̃(Wi)

)(
1{Yi ≤ Q(Xi; τ)} − τ

)
+

(
0

ϕi(τ)

)}
where

ϕi(τ) := −‖wn‖−1w�
nA(τ)

�M1(τ)
−1(Vi −A(τ)Z̃(Wi))

(
1{Yi ≤ Q(Xi; τ)} − τ

)
.

By definition, we have E[ϕi(τ)] = 0 and moreover

E[ϕ2
i (τ)] �‖wn‖−2w�

nA(τ)
�M1(τ)

−1

E[(Vi −A(τ)Z̃(Wi))(Vi −A(τ)Z̃(Wi))
�]M1(τ)

−1A(τ)wn.
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Since fY |X(Q(Xi; τ)|X) is bounded away from zero uniformly, it follows that

‖E[(Vi −A(τ)Z̃(Wi))(Vi −A(τ)Z̃(Wi))
�]‖ ≤ fminλmax(M1(τ)) < ∞,

by Remark 5.5. Moreover, by Lemma A.2 proven later, ‖A(τ)wn‖ = O(1) uni-
formly in τ , and thus by ‖wn‖ → ∞, supτ∈T E[ϕ2

i (τ)] = o(1). This implies that
n−1/2

∑n
i=1 ϕi(τ) = oP (1) for every fixed τ ∈ T . Hence it suffices to prove finite

dimensional convergence of

−n−1/2
n∑

i=1

(
M1(τ)

−1(Vi −A(τ)Z̃(Wi))

‖wn‖−1w�
nM2(τ)

−1Z̃(Wi)

)(
1{Yi ≤ Q(Xi; τ)} − τ

)
.

Observe that E[M1(τ)
−1(hVW (Wi; τ)−A(τ)Z̃(Wi))

(
1{Yi ≤ Q(Xi; τ)}−τ

)
] =

0 and by assumptions (A1)-(A3), (C1)

sup
τ∈T

E[‖M1(τ)
−1(hVW (W ; τ)−A(τ)Z̃(W ))‖2]

≤ sup
τ∈T

1

fminλmin(M1(τ))
E[‖fY |X(Q(X; τ)|X)(hVW (w; τ)−A(τ)Z̃(W ))‖2] = o(1).

Thus, n−1/2
∑n

i=1 M1(τ)
−1(hVW (Wi; τ)−A(τ)Z̃(Wi))

(
1{Yi ≤ Q(Xi; τ)}−τ

)
=

oP (1) for every fixed τ ∈ T . So, now we only need to consider finite dimensional
convergence of

n∑
i=1

ψi(τ) :=

− n−1/2
n∑

i=1

(
M1(τ)

−1(Vi − hVW (Wi; τ))

‖wn‖−1w�
nM2(τ)

−1Z̃(Wi)

)(
1{Yi ≤ Q(Xi; τ)} − τ

)
. (A.24)

Note that

E[ψi(τ1)ψi(τ2)
�] = (τ1 ∧ τ2 − τ1τ2)

(
Γ11(τ1, τ2) + o(1) Γ12(τ1, τ2)

Γ12(τ1, τ2)
� Γ22(τ1, τ2) + o(1)

)
,

where Γ12(τ1, τ2) := ‖wn‖−1E[M1(τ2)
−1(Vi−hVW (Wi; τ1))w

�
nM2(τ2)

−1Z̃(Wi)].
We shall now show that Γ12(τ1, τ2) = o(1) uniformly in τ1, τ2. Note that from
the definition of hVW (W ; τ) in (3.4), by standard argument we can write

hVW (W ; τ) = E[f(Q(X; τ)|X)|W ]−1
E[V f(Q(X; τ)|X)|W ]. (A.25)

From (A3) we obtain E[f(Q(X; τ)|X)|W ] ≥ fmin > 0, and from (C1), (A2)
it follows that |E[V (j)f(Q(X; τ)|X)|W ]| ≤ Cf̄ = O(1), i.e. the components of
hVW (W ; τ) are bounded by a constant almost surely. Hence,

‖Γ12(τ1, τ2)‖ = ‖wn‖−1‖M1(τ1)
−1

E[(Vi − hVW (Wi; τ))w
�
nM2(τ2)

−1Z̃(Wi)]‖
≤ ‖wn‖−1‖M1(τ1)

−1‖‖E[(Vi − hVW (Wi; τ1))w
�
nM2(τ2)

−1Z̃(Wi)]‖
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� ‖wn‖−1
E
[
‖Vi − hVW (Wi; τ1)‖|w�

nM2(τ2)
−1Z̃(Wi)|

]
� ‖wn‖−1

E
[
|w�

nM2(τ2)
−1Z̃(Wi)|

]
= o(1),

where the third inequality applies the lower bound for infτ∈T λmin(M1(τ)) in Re-

mark 5.5; the fourth inequality follows from sup1≤j≤k,τ |V (j)|+ |h(j)
VW (W ; τ)| <

∞ a.s., while the last equality follows by the assumptions of the Theorem.

Now we prove the finite dimensional convergence (A.24). Taking arbitrary
collections {τ1, ..., τJ} ⊂ T , c1, .., cJ ∈ R

k+1, we need to show that

J∑
j=1

c�j GGGn(τj) =

J∑
j=1

n∑
i=1

c�j ψi(τj)
d→

J∑
j=1

c�j GGG(τj).

Define Vi,J =
∑J

j=1 c
�
j ψi(τj). Note that E[Vi,J ] = 0 and |Vi,J | � n−1/2ξm.

Using the results derived above, we have

var(Vi,J) = o(n−1) + n−1
J∑

j,j′=1

(τj ∧ τj′ − τjτj′)c
�
j Γ(τj , τj′)cj′ ,

where Γ(τj , τj′) is defined as (3.11). If
∑J

j,j′=1(τj ∧ τj′ − τjτj′)c
�
j Γ(τj , τj′)cj′ =

0, then the distribution of
∑J

j=1 c
�
j GGG(τj) is a single point mass at 0, and∑J

j=1 c
�
j GGGn(τj) =

∑J
j=1

∑n
i=1 c

�
j ψi(τj) converges to 0 in probability by Mar-

kov’s inequality.

If n−1
∑J

j,j′=1(τj∧τj′−τjτj′)c
�
j Γ(τj , τj′)cj′ > 0 define s2n,J =

∑n
i=1 var(Vi,J).

We will now verify that the triangular array of random variables (Vi,J)i=1,...,n

satisfies the Lindeberg condition. For any v > 0 and sufficiently large n, Markov’s
inequality gives

s−2
n,J

n∑
i=1

E
[
V 2
i,J1(Vi,J ≥ v)

]
� ξ2ms−2

n,JE
[
1(V1,J ≥ v)

]
� ξ2ms−2

n,Jv
−2n−1s2n,J ,

where ξ2mn−1 = o(1) by (B1’). Thus the Lindeberg condition holds and it follows
that ∑n

i=1 Vi,J

sn,J

d→ N (0, 1).

Finally, it remains to prove (A.20) and (A.21). Begin by observing that∥∥∥E[(V −A(τ)Z̃(W ))
(
FY |X(Q(X; τ)|X)− FY |X(α(τ)�V + h†

n(W, τ)|X)
)]∥∥∥

�
∥∥∥E[(V −A(τ)Z̃(W ))fY |X(Q(Xi; τ)|X)

(
h(W, τ)− β†

n(τ)
�Z̃(W )

)]∥∥∥
+
∥∥∥E[(V −A(τ)Z̃(W ))f ′

Y |X(Q̄†(Xi, τ)|X)
(
h(W, τ)− β†

n(τ)
�Z̃(W )

)2]∥∥∥
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�
∥∥∥E[(hVW (W, τ)−A(τ)Z̃(W ))fY |X(Q(Xi; τ)|X)

(
h(W, τ)− β†

n(τ)
�Z̃(W )

)]∥∥∥
+ c†2n

� c†nE
[∥∥∥hVW (W, τ)−A(τ)Z̃(W )

∥∥∥fY |X(Q(Xi; τ)|X)
]
+ c†2n

= O(c†nλn + c†2n ), (A.26)

where the first inequality is an application of Taylor expansion, with Q̄†(Xi, τ)
lying on the line segment of Q(X; τ) and α(τ)�Vi + h†

n(Wi, τ); the second in-
equality is the result of the orthogonality condition (3.5), Condition (A2), Con-
ditions (C1)-(C2); the third inequality follows from Conditions (A2), (C1), and
the last line follows from condition (C1) and the Hölder inequality. For a proof

of (A.20) observe that by (5.10) e�j Jm(τ)−1Z = e�j M1(τ)
−1(V − A(τ)Z̃(W ))

for j = 1, ..., k. Thus we obtain from Remark 5.5∣∣∣E[e�j Jm(τ)−1Z
(
1{Y ≤ Q(X; τ)} − 1{Y ≤ α(τ)�V + h†

n(W, τ)}
)
]
∣∣∣

=
∣∣∣e�j M1(τ)

−1

E
[
(V −A(τ)Z̃(W ))

(
FY |X(Q(X; τ)|X)− FY |X(α(τ)�V + h†

n(W, τ)|X)
)]∣∣∣

= O(c†nλn + c†2n ),

To prove (A.21), without loss of generality, let ‖wn‖ = 1. We note that by (5.10)

(0�
k ,w

�
n )Jm(τ)−1Zi

= −w�
nA(τ)

�M1(τ)
−1(Vi −A(τ)Z̃(Wi)) +w�

nM2(τ)
−1Z̃(Wi).

From (A.26), (5.11) in Remark 5.5 and Lemma A.2 we obtain∣∣∣E[w�
nA(τ)

�M1(τ)
−1(Vi −A(τ)Z̃(Wi))(
1{Yi ≤ Q(Xi; τ)} − 1{Yi ≤ α(τ)�Vi + h†

n(Wi, τ)}
)]∣∣∣

= O(c†nλn + c†2n ). (A.27)

Moreover,∣∣∣E[w�
nM2(τ)

−1Z̃(Wi)
(
1{Yi ≤ Q(Xi; τ)} − 1{Yi ≤ α(τ)�Vi + h†

n(Wi, τ)}
)]∣∣∣

�
∣∣∣w�

nM2(τ)
−1

E
[
Z̃(Wi)fY |X(Q(Xi; τ)|X)

(
h(W, τ)− β†

n(τ)
�Z̃(W )

)]∣∣∣
+
∣∣∣w�

nM2(τ)
−1

E
[
Z̃(Wi)f

′
Y |X(Q̄†(Xi, τ)|X)

(
h(W, τ)− β†

n(τ)
�Z̃(W )

)2}]∣∣∣
=
∣∣∣E[w�

nM2(τ)
−1Z̃(Wi)f

′
Y |X(Q̄†(Xi, τ)|X)

(
h(W, τ)− β†

n(τ)
�Z̃(W )

)2}]∣∣∣
� E

[
|w�

nM2(τ2)
−1Z̃(Wi)|

]
c†2n = o(‖wn‖c†2n ), (A.28)

where the first inequality follows from the Taylor expansion with Q̄†(Xi, τ) lying
on the line segment of Q(X; τ) and α(τ)�Vi + h†

n(Wi, τ); the second equality



Quantile processes for semi and nonparametric regression 3305

follows from the first order condition of (3.3), and the last line follows Conditions
(A2), (C1) and the conditions of the theorem. Combining (A.27) and (A.28),
and (B1’) we obtain (A.21).

Lemma A.2. Under Assumptions (A1)-(A3), (C2) and

sup
τ∈T

E[|Z̃(W )�M2(τ)
−1wn|] = o(‖wn‖),

we have

sup
τ

‖A(τ)wn‖2 = o(‖wn‖) (A.29)

Proof for Lemma A.2. By the first order condition for obtaining A(τ),

A(τ) = E[hVW (W ; τ)Z̃(W )�fY |X(Q(X; τ)|X)]M2(τ)
−1.

By the orthogonality condition (3.5),

‖A(τ)wn‖ =
∥∥E[hVW (W ; τ)Z̃(W )�fY |X(Q(X; τ)|X)]M2(τ)

−1wn

∥∥
=
∥∥E[(hVW (W ; τ)− V + V )Z̃(W )�fY |X(Q(X; τ)|X)]M2(τ)

−1wn

∥∥
=
∥∥E[V Z̃(W )�fY |X(Q(X; τ)|X)]M2(τ)

−1wn

∥∥.
By the assumption that at fixed j, |Vj | ≤ C, the uniform boundedness of the con-

ditional density in (A2), and the hypothesis supτ∈T E[|Z̃(W )�M2(τ)
−1wn|] =

o(‖wn‖),

sup
τ∈T

E[|VjZ̃(W )�M2(τ)
−1wn|fY |X(Q(X; τ)|X)]

≤ f̄C sup
τ∈T

E[|Z̃(W )�M2(τ)
−1wn|] = o(‖wn‖). (A.30)

This completes the proof of (A.29) by noting that supτ∈T ‖M2(τ)
−1‖ = O(1).

A.4. Asymptotic tightness of quantile process

In this section we establish the asymptotic tightness of the process n1/2u�
nUn(τ)

in 	∞(T ) with un ∈ Rm being an arbitrary vector, where

Un(τ) = n−1J−1
m (τ)

n∑
i=1

Zi

(
1{Yi ≤ Q(Xi; τ)} − τ

)
. (A.31)

Note that the results obtained in this section, in particular Lemma A.3, apply
to any series expansion Z = Z(Xi) satisfying Assumptions (A1).

The following definition is only used in this subsection: For any non-decreasing,
convex function Ψ : R+ → R

+ with Φ(0) = 0, the Orlicz norm of a real-valued
random variable Z is defined as (see e.g. Chapter 2.2 of van der Vaart and
Wellner (1996))

‖Z‖Ψ = inf
{
C > 0 : EΦ(|Z|/C) ≤ 1

}
. (A.32)
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Lemma A.3 (Asymptotic Equicontinuity of Quantile Process). Under (A1)-
(A3) and ξ2m(log n)2 = o(n), we have for any ε > 0 and vector un ∈ R

m,

lim
δ→0

lim sup
n→∞

P
(
‖un‖−1n1/2 sup

τ1,τ2∈T ,|τ1−τ2|≤δ

∣∣∣u�
nUn(τ1)− u�

nUn(τ2)
∣∣∣ > ε

)
= 0,

(A.33)
where Un(τ) is defined in (A.31).

Proof of Lemma A.3. Without loss of generality, we will assume that un is a
sequence of vectors with ‖un‖ = 1, which can always be achieved by rescaling.
Define

Gn(τ) := n1/2u�
nUn(τ).

Consider the decomposition

u�
nUn(τ1)− u�

nUn(τ2)

= n−1u�
n (J

−1
m (τ1)− J−1

m (τ2))
∑
i

Zi(1{Yi ≤ Q(Xi; τ1)} − τ1)

+ n−1u�
n J

−1
m (τ2)

∑
i

ZiΔi(τ1, τ2),

where

Δi(τ1, τ2) := 1{Yi ≤ Q(Xi; τ1)} − τ1 − (1{Yi ≤ Q(Xi; τ2)} − τ2).

Note that for any L ≥ 2,

E

[∣∣u�
n J

−1
m (τ2)ZiΔi(τ1, τ2)

∣∣L] � ξL−2
m E

[∣∣u�
n J

−1
m (τ2)ZiΔi(τ1, τ2)

∣∣2]
= ξL−2

m u�
n J

−1
m (τ2)E

[
ZiZ

�
i Δi(τ1, τ2)

2
]
J−1
m (τ2)un

� ξL−2
m |τ1 − τ2|. (A.34)

By the Lipschitz continuity of τ �→ J−1
m (τ) (cf. Lemma 13 of Belloni et al.

(2016)) and positive definiteness of J−1
m (τ), we have

‖J−1
m (τ1)− J−1

m (τ2)
∥∥ =

∥∥J−1
m (τ2)

{
Jm(τ1)− Jm(τ2)

}
J−1
m (τ1)

∥∥
≤ f̄ ′

fmin
|τ1 − τ2|

(
inf
τ∈T

λmin(Jm(τ))
)−2

λmax(E[ZZ
�]),

where ‖ · ‖ denotes the operator norm of a matrix. Thus, we have for L ≥ 2,

E

[∣∣u�
n

{
J−1
m (τ1)− J−1

m (τ2)
}
Zi(1(Yi ≤ Q(Xi; τ))− τ)

∣∣L]
� ξL−2

m E

[∣∣u�
n

{
J−1
m (τ1)− J−1

m (τ2)
}
Zi(1(Yi ≤ Q(Xi; τ))− τ)

∣∣2]
≤ ξL−2

m E

[∣∣u�
n

{
J−1
m (τ1)− J−1

m (τ2)
}
Zi

∣∣2]
= ξL−2

m u�
n

{
J−1
m (τ1)− J−1

m (τ2)
}
E
[
ZiZ

�
i

]{
J−1
m (τ1)− J−1

m (τ2)
}
un
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≤ ξL−2
m

∥∥{J−1
m (τ1)− J−1

m (τ2)
}
E
[
ZiZ

�
i

]{
J−1
m (τ1)− J−1

m (τ2)
}∥∥

� ξL−2
m |τ1 − τ2|2. (A.35)

To simplify notations, define

Ṽn,i(τ1, τ2)

:= u�
n

{
J−1
m (τ1)− J−1

m (τ2)
}
Zi(1(Yi ≤ Q(Xi; τ))− τ) + u�

n J
−1
m (τ2)ZiΔi(τ1, τ2).

Combining the bounds (A.34) and (A.35) yields

E
[
|Ṽn,i(τ1, τ2)|2L

]1/2L
≤ E

[
|u�

n J
−1
m (τ2)ZiΔi(τ1, τ2)|2L

]1/2L
+ E

[
|u�

n

{
J−1
m (τ1)− J−1

m (τ2)
}
Zi(1(Yi ≤ Q(Xi; τ))− τ)|2L

]1/2L
�
(
ξ2(L−1)
m |τ1 − τ2|

)1/2L
. (A.36)

Note that (A.36) holds for all positive integers L ≥ 1. By the fact that Gn(τ1)−
Gn(τ2) = n−1/2

∑n
i=1 Ṽn,i(τ1, τ2) and EṼn,i(τ1, τ2) = 0, we obtain from (A.36)

that

E[|Gn(τ1)−Gn(τ2)|2L]

= n−L
E

[( n∑
i=1

Ṽn,i(τ1, τ2)

)2L]

= n−L

( n∑
i=1

E
[
Ṽn,i(τ1, τ2)

2L
]

+

L−1∑
l=1

∑
1≤i1,i2≤n

i1 �=i2

E
[
Ṽn,i1(τ1, τ2)

2L−2l
]
E
[
Ṽn,i2(τ1, τ2)

2l
]

+
∑

l1+l2<L
l1=1,l2=1

∑
1≤i1,i2,i3≤n

i1 �=i2 �=i3

E
[
Ṽn,i1(τ1, τ2)

2L−2(l1+l2)
]

E
[
Ṽn,i2(τ1, τ2)

2l1
]
E
[
Ṽn,i3(τ1, τ2)

2l2
]

+ ...+
∑

1≤i1,...,iL≤n
i1 �=... �=iL

L∏
j=1

E
[
Ṽn,ij (τ1, τ2)

2
])

≤ CLn
−L

(
nξ2(L−1)

m |τ1 − τ2|+
(
n

2

)
ξ2(L−1−1)
m |τ1 − τ2|2

+

(
n

3

)
ξ2(L−1−2)
m |τ1 − τ2|3 + ...+

(
n

L

)
|τ1 − τ2|L

)
�

L−1∑
k=0

ξ
2(L−k−1)
m

n(L−k−1)
|τ1 − τ2|k+1.
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In particular we obtain for |τ1 − τ2| ≥ ξ2m/n,

E[|Gn(τ1)−Gn(τ2)|2L] � |τ1 − τ2|L. (A.37)

For Ψ(z) = z2L, the above equation implies that the Orlicz norm (defined in
(A.32)) of Gn(τ1)−G(τ2) satisfies

‖Gn(τ1)−G(τ2)‖Ψ � |τ1 − τ2|1/2.

Let d(τ, τ ′) =
√
|τ − τ ′|, which is a metric on T . The packing number D(ε, d)

of T with respect to d satisfiesD(ε, d) � 1/ε2. Let ω̄n = 2ξm/
√
n → 0 as n → ∞.

We have∫ ω

ω̄n/2

Ψ−1(D(ε, d))dε �
∫ ω

ω̄n/2

ε−1/Ldε =
ω1−L−1

1− L−1
− (ω̄n/2)

1−L−1

1− L−1
. (A.38)

For ω > 0,

Ψ−1(D2(ω, d)) � Ψ−1

(
1

ω4

)
= ω−2/L. (A.39)

Therefore, applying Lemma D.1 yields for any δ > 0

sup
|τ1−τ2|≤δ

|Gn(τ1)−Gn(τ2)| = sup
|τ1−τ2|1/2≤δ1/2

|Gn(τ1)−Gn(τ2)|

≤ S1,n(δ) + 2 sup
|τ ′−τ |1/2≤ω̄n,τ∈T̃

|Gn(τ
′)−Gn(τ)|,

(A.40)

where T̃ ⊂ T has at most D(ω̄n, d) � ω̄−2
n points and S1,n(δ) is a random

variable that satisfies

P (|S1,n(δ)| > z)

≤
(
z
[
8K
(∫ ω

ω̄n/2

Ψ−1
(
D(ε, d)

)
dε+ (δ1/2 + 2ω̄n)Ψ

−1
(
D2(ω, d)

))]−1
)−2L

�
( ω1−L−1

1−L−1 − (ω̄n/2)
1−L−1

1−L−1 + (δ1/2 + 2ω̄n)ω
−2/L

z

)2L

. (A.41)

for a constant K > 0. Let ω = δ and L = 6. As n → ∞, ω > ω̄n. We obtain
limδ→0 lim supn→∞ P (|S1,n(δ)| > z) = 0 for any z > 0.

To bound the remaining term in (A.40), observe that

sup
d(τ,τ ′)≤ω̄n,τ∈T̃

|Gn(τ
′)−Gn(τ)| = sup

|τ−τ ′|≤ω̄2
n,τ∈T̃

|Gn(τ
′)−Gn(τ)|

≤ sup
|τ−τ ′|≤ω̄2

n,τ,τ
′∈T

|Gn(τ
′)−Gn(τ)|.
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Now by Lemma A.4 we have

P
(

sup
|τ ′−τ |≤ω̄2

n,τ,τ
′∈T

|Gn(τ
′)−Gn(τ)| > rn(κn)

)
< e−κn ,

where

rn(κn) := C

[
ω̄n log

1/2 ξm
ω̄n

+
ξm√
n
log

ξm
ω̄n

+ κ1/2
n ω̄n +

ξm√
n
κn

]
, (A.42)

for a sufficiently large constant C > 0. Take κn = log n. Since ω̄n(logn)
1/2 =

2ξm(log n)1/2/
√
n = o(1) and ξm log(n)/

√
n = o(1) by assumption, it follows

that rn(log n) → 0. Therefore, we conclude from Lemma A.4 that

sup
d(τ,τ ′)≤ω̄n,τ∈T̃

∣∣Gn(τ
′)−Gn(τ)

∣∣ = oP (1). (A.43)

Applying bounds (A.41) and (A.43) to (A.40) verifies the asymptotic equicon-
tinuity

lim
δ→0

lim sup
n→∞

P

(
sup

|τ1−τ2|≤δ

|Gn(τ1)−Gn(τ2)| > z

)
= 0

for all z > 0.

The following result is applied in the proof of Lemma A.3.

Lemma A.4. Under (A1)-(A3), we have for any κn > 0, 1/n � δ < 1,

P

(
sup

0≤h≤δ
sup

τ∈[ε,1−ε−h]

|u�
nUn(τ + h)− u�

nUn(τ)| ≥ Crn(δ, κn)

)
≤ 3e−κn ,

(A.44)

where κn > 0, Un(τ) is defined in (A.31) and un ∈ R
m is arbitrary, and

rn(δ, κn)

= ‖un‖
( δ
n
log

ξm√
δ

)1/2
+

‖un‖ξm
n

log
ξm√
δ
+ ‖un‖

(
κnδ

n

)1/2

+
‖un‖ξm

n
κn.

To prove Lemma A.4, we need to establish some preliminary results. For any
fixed vector u ∈ R

m and δ > 0, define the function classes

G3(u) :=
{
(Z, Y ) �→ u�Jm(τ)−1Z1{‖Z‖ ≤ ξm}

∣∣τ ∈ T
}
,

G4 :=
{
(X,Y ) �→ 1{Yi ≤ Q(X; τ)} − τ

∣∣τ ∈ T
}
,

G6(u, δ) :=
{
(Z, Y ) �→ u�{Jm(τ1)

−1 − Jm(τ2)
−1}Z1{‖Z‖ ≤ ξm}∣∣τ1, τ2 ∈ T , |τ1 − τ2| ≤ δ

}
,

G7(δ) :=
{
(X,Y ) �→ 1{Yi ≤ Q(X, τ1)} − 1{Yi ≤ Q(X, τ2)} − (τ1 − τ2)∣∣τ1, τ2 ∈ T , |τ1 − τ2| ≤ δ

}
.
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Denote G3, G6 and G7 as the envelope functions of G3, G6 and C7, respectively.
The following covering number results will be shown in Section D.2: for any
probability measure Q,

N(ε‖G3‖L2(Q),G3(u), L2(Q)) ≤ C0

ε
, (A.45)

N(ε‖G6‖L2(Q),G6(u, δ), L2(Q)) ≤ 2

(
C0

ε

)2

, (A.46)

N(ε‖G7‖L2(Q),G7(δ), L2(Q)) ≤
(
A7

ε

)2

, (A.47)

where C0 := f̄ ′

fmin

λmax(E[ZZ�])
infτ∈T λmin(Jm(τ)) < ∞ given Assumptions (A1)-(A3), and

A7 > 0 is a constant. Also, G4 has VC index 2 according to Lemma D.4.

Proof of Lemma A.4. Observe the decomposition

u�
nUn(τ1)− u�

nUn(τ2) = I1(τ1, τ2) + I2(τ1, τ2),

where

I1(τ1, τ2) := n−1u�
n

{
Jm(τ1)

−1 − Jm(τ2)
−1
} n∑

i=1

Zi

(
1{Yi ≤ Q(Xi, τ1)} − τ1

)
,

I2(τ1, τ2) := n−1u�
n Jm(τ2)

−1

n∑
i=1

Zi

(
1{Yi ≤ Q(Xi, τ1)} − 1{Yi ≤ Q(Xi, τ2)} − (τ1 − τ2)

)
.

Step 1: bounding I1(τ1, τ2).

Note that supτ1,τ2∈T ,|τ1−τ2|<δ |I1(τ1, τ2)| ≤ ‖Pn − P‖G6(un,δ)·G4
, where

G6(un, δ) · G4 =
{
u�
n

{
Jm(τ1)

−1 − Jm(τ2)
−1
}
Zi

(
1{Yi ≤ Q(Xi, τ3)} − τ3

)
∣∣∣τ1, τ2, τ3 ∈ T , |τ1 − τ2| ≤ δ

}
.

Theorem 2.6.7 of van der Vaart and Wellner (1996) and Part 1 of Lemma D.4
give

N(ε‖G4‖L2(Pn),G4, L2(Pn)) ≤
A4

ε

where the envelope for G4 is G4 = 2 and A4 is a universal constant. Part 2 of
Lemma D.4 and Part 2 of Lemma D.2 imply that

N(ε‖G6G4‖L2(Pn),G6(un, δ) · G4, L2(Pn)) ≤
2A4

ε

(
2C0

ε

)2

≤
(
2A

1/3
4 C

2/3
0

ε

)3

,

(A.48)
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where 2A
1/3
4 C

2/3
0 ≤ C for a large enough universal constant C > 0. To bound

supf∈G6(un,δ)·G4
‖f‖L2(P ), note that

E
(
u�
n

{
Jm(τ1)

−1 − Jm(τ2)
−1
}
Zi

(
1{Yi ≤ Q(Xi, τ3)} − τ3

))2
≤4‖un‖2λmax(E[ZZ

�])[ inf
τ∈T

λmin(Jm(τ))]−2C2
0δ

2 ≤ C‖un‖2δ2,

for a large enough constant C. In addition, an upper bound for the functions in
G6(un, δ) · G4 is

2ξm‖un‖[ inf
τ∈T

λmin(Jm(τ))]−1C0δ ≤ Cδξm‖un‖,

and we can take this upper bound as envelope.

Applying the bounds (D.2) and (D.3) and taking into account (A.48), for any
un and δ > 0,

E‖Pn − P‖G6(un,δ)·G4
≤ c1

[
‖un‖δ

( log(ξm)

n

)1/2
+

δ‖un‖ξm
n

log(ξm)
]
. (A.49)

Finally, for any κn > 0, let

rn,1(δ, κn) =

C̃

[
‖un‖δ

( 1
n
log(ξm)

)1/2
+

δ‖un‖ξm
n

log(ξm) +
(κn

n

)1/2
‖un‖δ +

δ‖un‖ξm
n

κn

]
for a sufficiently large constant C̃ > 0. From this, we obtain

P

{
sup

τ1,τ2∈T ,|τ1−τ2|<δ

|I1(τ1, τ2)| ≥ rn,1(δ, κn)

}
≤ P

{
‖Pn − P‖G6(un,δ)·G4

≥ rn,1(δ, κn)
}
≤ e−κn .

Step 2: bounding I2(τ1, τ2).

Note that supτ1,τ2∈T ,|τ1−τ2|<δ |I2(τ1, τ2)| ≤ ‖Pn − P‖G3(un)·G7(δ), where

G3(un) · G7(δ)

=
{
u�
n Jm(τ3)

−1Zi

(
1{Yi ≤ Q(Xi, τ1)} − 1{Yi ≤ Q(Xi, τ2)} − (τ1 − τ2)

)∣∣∣
τ1, τ2, τ3 ∈ T , |τ1 − τ2| ≤ δ

}
.

Lemma D.3, Part 2 of Lemma D.4 and Part 2 of Lemma D.2 imply that

N(ε‖G3G7‖L2(Pn),G3(un) · G7(δ), L2(Pn)) ≤
2C0

ε

(
2A7

ε

)2

≤
(
2C

1/3
0 A

2/3
7

ε

)3

,

(A.50)
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where 2C
1/3
0 A

2/3
7 ≤ C for a large enough constant C > 0. In order to bound

supf∈G3(un)·G7(δ) ‖f‖L2(P ) note that

E
(
u�
n Jm(τ3)

−1Zi

(
1{Yi ≤ Q(Xi, τ1)} − 1{Yi ≤ Q(Xi, τ2)} − (τ1 − τ2)

))2
≤ 3‖un‖2λmax(E[ZZ

�])[ inf
τ∈T

λmin(Jm(τ))]−2δ ≤ C‖un‖2δ.

Moreover

sup
f∈G3(un)·G7(δ)

sup ‖f‖∞ ≤ 2‖un‖ξm[ inf
τ∈T

λmin(Jm(τ))]−1 ≤ C‖un‖ξm

for some constant C. Applying the bounds (D.2) and (D.3) and taking into
account (A.50)

E‖Pn − P‖G3(un)·G7(δ) ≤ c1

[
‖un‖

( δ
n
log

ξm√
δ

)1/2
+

‖un‖ξm
n

log
ξm√
δ

]
. (A.51)

For any κn > 0, let

rn,2(δ, κn)

= C

[
‖un‖

( δ
n
log

ξm√
δ

)1/2
+

‖un‖ξm
n

log
ξm√
δ
+ ‖un‖

(
κnδ

n

)1/2

+
‖un‖ξm

n
κn

]
for a constant C > 0 sufficiently large, we obtain

P

{
sup

τ1,τ2∈T ,|τ1−τ2|<δ

|I2(τ1, τ2)| ≥ rn,2(δ, κn)

}
≤ P

{
‖Pn − P‖G3(un)·G7(δ) ≥ rn,2(δ, κn)

}
≤ e−κn .

Finally, rn,1(δ, κn) ≤ rn,2(δ, κn) when δ < 1. Hence, we conclude (A.44).

A.5. Proof of Corollary 4.1

As the argument x0 in Q(x0; τ) and FY |X(y|x0) is fixed, simplify notations by

writingQ(x0; τ) = Q(τ), Q̂(x0; τ) = Q̂(τ) and FY |X(y|x0) = F (y), F̂Y |X(y|x0)=

F̂ (y) as functions of the single arguments in τ and y, respectively. From Theo-
rems 2.4, 3.1 or Corollary 2.2, we have

an
(
Q̂(·)−Q(·)

)
� G(·) in 	∞([τL, τU ]), (A.52)

where an and G depend on the model for Q(x; τ) and G has continuous sample
paths almost surely. Next, note that for y ∈ Y

an
(
F̂ (y)− F (y)

)
= an

(
Φ(Q̂)(y)− Φ(Q)(y)

)
.

Finally, observe that Φ(f)(y) = τL+(τU − τL)(Φ
∗ ◦R)(f)(y) where Φ∗(f)(y) :=∫ 1

0
1{f(u) < y}du and R(f)(y) := f(τL+y(τU −τL)). The map R : 	∞((τL, τU ))
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→ 	∞((0, 1)) is linear and continuous, hence compactly differentiable with de-
rivative R. The map Φ∗ is compactly differentiable tangentially to C(0, 1) at any
strictly increasing, differentiable function f0 and the derivative of Φ at f0 is given
by dΦ∗

f0
(h)(y) = −h(f−1

0 (y))/f ′
0(f

−1
0 (y)) - see Corollary 1 in Chernozhukov

et al. (2010). Hence the map Φ∗ ◦ R is compactly differentiable at any strictly
increasing function f0 ∈ 	∞((τL, τU )) tangentially to C(τL, τU ). Combining this
with the representation Φ(f)(y) = τL+(τU −τL)(Φ

∗ ◦R)(f)(y) it follows that Φ
is compactly differentiable at any strictly increasing function f0 ∈ 	∞((τL, τU ))
with derivative dΦf0(h)(y) = −h(f−1

0 (y))/f ′
0(f

−1
0 (y)). Thus weak convergence

of an
(
F̂ (y)− F (y)

)
follows from the functional delta method.

Next, observe that Ψ(f) = Θ ◦ Φ(f) where Θ(f)(τ) = inf{y : f(y) ≥ τ}
denotes the generalized inverse. Compact differentiability of Θ at differentiable,
strictly increasing functions f0 tangentially to the space of contunuous functions
is established in Lemma 3.9.23 of van der Vaart and Wellner (1996), and the
derivative of Θ at f0 is given by dΘf0(h)(y) = −h(f−1

0 (y))/f ′
0(f

−1
0 (y)). By the

chain rule for Hadamard derivatives this implies compact differentiability of Ψ
tangentially to C(τL, τU ). Thus the second weak convergence result again follows
by the functional delta method.

Appendix B: Technical remarks on estimation bias

Remark B.1. In this remark we show the bound c̃n = o(m−�η�) for univariate
spline models discussed in Example 2.3, as well as c†n = O(m−�η�/k′

) for partial
linear model in Section 3. We first show the latter.

Assume that W = [0, 1]k
′
, that h(·; ·) ∈ Λη

c (W , T ) and that Z̃ corresponds to
a tensor product B-spline basis of order q on W with m1/k′

equidistant knots
in each coordinate. Moreover, assume that (V,W ) has a density fV,W such that
0 < infv,w fV,W (v, w) ≤ supv,w fV,W (v, w) < ∞. We shall show that in this case

c†n = O(m−�η�/k′
) where c†n is defined in Assumption (C1). Define

βn,g(τ)

:= argmin
β∈Rm

∫ (
Z̃(w)�β − h(w; τ)

)2 ∫
fY |X(Q(v, w; τ)|(v, w))fV,W (v, w)dvdw.

(B.1)

Note that w �→ Z̃(w)�βn,g(τ) can be viewed as a projection of a function

g : W → R onto the spline space Bm(W) := {w �→ Z̃(w)�b : b ∈ R
m}, with

respect to the inner product 〈g1, g2〉 =
∫
g1(w)g2(w)dν(w), where dν(w) :=( ∫

v
fY |X(Q(v, w; τ)|v, w)fV,W (v, w)dv

)
dw.

We first apply Theorem A.1 on p.1630 of Huang (2003). To do so, we need
to verify Condition A.1-A.3 of Huang (2003). Condition A.1 can be verified by
invoking (A2)-(A3) in our paper and using the bounds on fW . The choice of
basis functions and knots ensures that Conditions A.2 and A.3 hold (see the
discussion on p.1630 of Huang (2003)). Thus, Theorem A.1 on p.1630 of Huang
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(2003) implies there exists a constant C independent of n such that for any
function on W ,

sup
w∈W

∣∣Z̃(w)�βn,g(τ)
∣∣ ≤ C sup

w∈W

∣∣g(w)∣∣.
Recall that W is a compact subset of R

d and h(w; τ) ∈ Λη
c (W , T ). Since

Bm(W) is a finite dimensional vector space of functions, by a compactness ar-
gument there exists g∗(·; τ) ∈ Bm(W) such that supw∈W |h(w; τ) − g∗(w; τ)| =
infg∈Bm(W) supw∈W |h(w; τ)−g(w)| for each fixed τ . With m > η, the inequality
in the proof for Theorem 12.8 in Schumaker (1981), with their ”mi” being our
η and Δi � m−1/k′

yields

c̃n = sup
w,τ

∣∣Z̃(w)�βn,h(w;τ)(τ)− h(w; τ)
∣∣

= sup
w,τ

∣∣Z̃(w)�βn,h(w;τ)(τ)− g∗(w; τ) + g∗(w; τ)− h(w; τ)
∣∣

≤ sup
w,τ

∣∣Z̃(w)�βn,h(w;τ)−g∗(w;τ)(τ)
∣∣+ sup

w,τ

∣∣g∗(w; τ)− h(w; τ)
∣∣

≤ (C + 1) sup
τ∈T

inf
g∈B(W)

sup
x

∣∣h(w; τ)− g(w)
∣∣

� m−�η�/k′
k′ max

|j|≤η
sup
τ∈T

sup
w∈W

|Djh(w; τ)|,

where 	η
 is the greatest integer less than η,

max
|j|≤η

sup
τ∈T

sup
x∈W

|Djh(w; τ)| = O(1)

by the assumption that h(w; τ) ∈ Λη
c (W , T ) and fixed k′. An extension of Theo-

rem 12.8 of Schumaker (1981) to Besov spaces (see Example 6.29 of Schumaker
(1981)) in similar manner as Theorem 6.31 of Schumaker (1981) could refine the
rate to c̃n � m−η/k′

, but we do not pursue this direction here.
Next we show the bound c̃n = o(m−�η�) in the setting of Example 2.3. As-

sume the density fX(x) of X exists and 0 < infx∈X fX(x) ≤ supx∈X fX(x) <
∞. Define the measure ν(u) by dν(u) = f(Q(u; τ)|u)fX(u)du. Thus, x �→
B(x)�βn,g(τ) with βn,g defined similarly to (B.1) is now viewed as a projection
of a function g : X → R onto the space B(X ) with respect to the inner product
〈g1, g2〉 =

∫
g1(u)g2(u)dν(u). The remaining proof is similar to the partial linear

model, with h(w; τ) being replaced by Q(x; τ), and we omit the details.

Appendix C: Proofs for Bahadur representations

C.1. Proof of Theorem 5.1

Some rearranging of terms yields

Pnψ(·; γ̂(τ), τ)
= n−1/2

Gn(ψ(·; γ̂(τ), τ))− n−1/2
Gn(ψ(·;γn(τ), τ))
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+ J̃m(τ)(γ̂(τ)− γn(τ)) + n−1/2
Gn(ψ(·;γn(τ), τ))

+ μ(γn(τ), τ) +
(
μ(γ̂(τ), τ)− μ(γn(τ), τ)− J̃m(τ)(γ̂(τ)− γn(τ))

)
.

In other words

γ̂(τ)− γn(τ) =− n−1/2Jm(τ)−1
Gn(ψ(·;γn(τ), τ)) + rn,1(τ) + rn,2(τ)

+ rn,3(τ) + rn,4(τ) (C.1)

where

rn,1(τ) := J̃m(τ)−1
Pnψ(·; γ̂(τ), τ),

rn,2(τ) :=− J̃m(τ)−1
(
μ(γ̂(τ), τ)− μ(γn(τ), τ)− J̃m(τ)(γ̂(τ)− γn(τ))

)
,

rn,3(τ) :=− n−1/2J̃m(τ)−1
(
Gn(ψ(·; γ̂(τ), τ))−Gn(ψ(·;γn(τ), τ))

)
,

rn,4(τ) :=− n−1/2(Jm(τ)−1 − J̃m(τ)−1)Gn(ψ(·;γn(τ), τ))

− J̃m(τ)−1μ(γn(τ), τ)).

The remaining proof consists in bounding the individual remainder terms.

The bound on rn,1 follows from results on duality theory for convex opti-
mization, see Lemma 26 on page 66 in Belloni et al. (2016) for a proof.

To bound rn,2 and rn,3, define the class of functions

G1 :=
{
(Z, Y ) �→a�Z(1{Y ≤ Z�b} − τ)1{‖Z‖≤ ξm}

∣∣τ ∈T ,b∈R
m,a∈Sm−1

}
.

(C.2)
Moreover, let

sn,1 := ‖Pn − P‖G1 .

Observe that by Lemma C.2 with t = 2 we have

Ω1,n :=
{
sup
τ∈T

‖γ̂(τ)− γn(τ)‖ ≤ 4(sn,1 + gn)

infτ∈T λmin(J̃m(τ))

}
⊇
{
sn,1 + gn <

infτ∈T λ2
min(J̃m(τ))

8ξmf ′λmax(E[ZZ�])

}
=: Ω2,n.

Define the event

Ω3,n :=
{
sn,1 ≤ C

[(m
n

logn
)1/2

+
mξm
n

logn+
(κn

n

)1/2
+

ξmκn

n

]}
.

Now it follows from Lemma C.3 that P (Ω3,n) ≥ 1−e−κn [note that ξm = O(nb)
yields log ξm = O(log n)]. Moreover, the assumption mξ2m logn = o(n), ξm =
O(nb), ξmgn = o(1) implies that for κn � n/ξ2m and large enough n,

C
[(m

n
logn

)1/2
+

mξm
n

logn+
(κn

n

)1/2
+

ξmκn

n

]
+ gn ≤ infτ∈T λ2

min(J̃m(τ))

8ξmf ′λmax(E[ZZ�])
(C.3)
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for n large enough. Thus, for all n for which (C.3) holds, Ω3,n ⊆ Ω2,n ⊆ Ω1,n.
From this we obtain that on Ω3,n, for a constant C2 which is independent of n,
we have

sup
τ∈T

‖γ̂(τ)− γn(τ)‖ ≤ C2

[(m
n

logn
)1/2

+
mξm
n

logn+
(κn

n

)1/2
+

ξmκn

n
+ gn

]
.

In particular, for all n for which (C.3) holds,

P
(
sup
τ∈T

‖γ̂(τ)− γn(τ)‖ ≤

C2

[(m
n

logn
)1/2

+
mξm
n

logn+
(κn

n

)1/2
+

ξmκn

n
+ gn

])
≥ 1− e−κn .

(C.4)

The bound on rn,2 is now a direct consequence of Lemma C.1 and the fact that

n−1mξm logn = o((n−1m logn)1/2) and ξmκnn
−1 = o(κ

1/2
n n−1/2). The bound

on rn,4 follows once we observe that for any a ∈ Sm−1

|a�(Jm(τ)− J̃m(τ))a| ≤ f ′cnλmax(E[ZZ
�]). (C.5)

Together with the identity A−1 −B−1 = B−1(B − A)A−1 this implies that for
sufficiently large n we have supτ∈T ‖rn,4(τ)‖ ≤ C1(cnsn,1 + gn) for a constant
C1 which does not depend on n.

Thus, it remains to bound rn,3. Observe that on the set {supτ∈T ‖γ̂(τ) −
γn(τ)‖ ≤ δ} we have the bound

sup
τ∈T

‖rn,3(τ)‖ ≤ 1

infτ∈T λmin(J̃m(τ))
‖Pn − P‖G2(δ),

where the class of functions G2(δ) is defined as follows

G2(δ) :=
{
(Z, Y ) �→ a�Z(1{Y ≤ Z�b1} − 1{Y ≤ Z�b2})1{‖Z‖ ≤ ξm}

∣∣
b1,b2 ∈ R

m, ‖b1 − b2‖ ≤ δ,a ∈ Sm−1
}
. (C.6)

It thus follows that for any δ, α > 0

P
(
sup
τ∈T

‖rn,3(τ)‖ ≥ α
)
≤P

(
sup
τ∈T

‖γ̂(τ)− γn(τ)‖ ≥ δ
)

+ P
( ‖Pn − P‖G2(δ)

infτ∈T λmin(J̃m(τ))
≥ α

)
.

Letting δ := C((n−1m logn)1/2 + (κn/n)
1/2 + gn) and

α := Cζn(δn, κn)

= C

{((m logn

n

)1/2
+
(κn

n

)1/2
+ gn

)1/2((mξm log n

n

)1/2
+
(ξmκn

n

)1/2)
+

mξm logn

n
+

ξmκn

n

}
, (C.7)
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where ζn is defined in (C.12) in the statement of Lemma C.3, with a suitable con-
stant C. Observe that the assumption mξ2m logn = o(n) implies (mn−1 logn)1/4

> (mξmn−1 logn)1/2 and (κn/n)
1/4 > (ξmκn/n)

1/2 for sufficiently large n, so
the last two terms are less than the first term in (C.7). Hence, for some large
enough constant C > 0,

α ≤ C

((m logn

n

)1/2
+
(κn

n

)1/2
+ gn

)1/2((mξm logn

n

)1/2
+
(ξmκn

n

)1/2)
Finally, the bounds in Lemma C.3 and (C.4) yield the desired bound.

C.1.1. Technical details for the proof of Theorem 5.1

Lemma C.1. Under assumptions (A1)-(A3) we have for any δ > 0,

sup
τ∈T

sup
‖b−γn(τ)‖≤δ

‖μ(b, τ)− μ(γn(τ), τ)− J̃m(τ)(b− γn(τ))‖

≤ λmax(E[ZZ
�])f ′δ2ξm,

Proof of Lemma C.1. Note that μ′(γn(τ), τ) = E[ZZ�fY |X(Z�γn(τ)|X)] =

J̃m(τ) where we use the notation μ′(b, τ) := ∂bμ(b, τ). Additionally, we have

μ(b, τ) = μ(γn(τ), τ) + μ′(γ̄n, τ)(b− γn(τ)),

where γ̄n = b+λb,τ (γn(τ)−b) for some λb,τ ∈ [0, 1]. Moreover, for any a ∈ R
m,

a�[μ(b, τ)− μ(γn(τ), τ)−μ′(γn(τ), τ)(b− γn(τ))]

= a�[(μ′(γ̄n, τ)− μ′(γn(τ), τ))(b− γn(τ))]

and thus we have for any ‖b− γn(τ)‖ ≤ δ∥∥μ(b, τ)− μ(γn(τ), τ)− μ′(γn(τ), τ)(b− γn(τ))
∥∥

≤ sup
‖a‖=1

∣∣E[(a�Z)Z�(b− γn(τ)
)(
fY |X(Z�γ̄n|X)− fY |X(Z�γn(τ)|X)

)]∣∣
≤ f ′ sup

‖a‖=1

E
[∣∣a�Z∣∣∣∣Z�(γ̄n − γn(τ))

∣∣∣∣Z�(b− γn(τ))
∣∣]

≤ f ′ξmE
[∣∣Z�(γ̄n − γn(τ))

∣∣∣∣Z�(b− γn(τ))
∣∣]

≤ ξmδ2f ′ sup
‖a‖=1

E[|a�Z|2],

here the last inequality follows by Chauchy-Schwarz. Since the last line does not
depend on τ,b, this completes the proof.

Lemma C.2. Let assumptions (A1)-(A3) hold. Then, for any t > 1{
sup
τ∈T

‖γ̂(τ)− γn(τ)‖ ≤ 2t(sn,1 + gn)

infτ∈T λmin(J̃m(τ))

}
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⊇
{
(sn,1 + gn) <

infτ∈T λ2
min(J̃m(τ))

4tξmf ′λmax(E[ZZ�])

}
,

where sn,1 := ‖Pn − P‖G1 and G1 is defined in (C.2).

Proof of Lemma C.2. Observe that f : b �→ Pnρτ (Yi −Z�
i b) is convex, and the

vector Pnψ(·;b, τ) is a subgradient of f at the point b. Recalling that γ̂(τ) is a
minimizer of Pnρτ (Yi − Z�

i b), it follows that for any a > 0,

{sup
τ∈T

‖γ̂(τ)− γn(τ)‖ ≤ a(sn,1 + gn)}

⊇ {inf
τ

inf
‖δ‖=1

δ�Pnψ
(
·;γn(τ) + a(sn,1 + gn)δ, τ

)
> 0}. (C.8)

To see this, define δ := (γ̂(τ)−γn(τ))/‖γ̂(τ)−γn(τ)‖ and note that by definition

of the subgradient we have for any ζ̃n > 0

Pnρτ (Yi − Z�
i γ̂(τ)) ≥Pnρτ (Yi − Z�

i (γn(τ)

+ζ̃nδ)) + (‖γ̂(τ)− γn(τ)‖ − ζ̃n)δ
�
Pnψ(·;γn(τ) + ζ̃nδ, τ).

Set ζ̃n = a(sn,1 + gn). By the definition of γ̂(τ) as minimizer, the inequality

above can only be true if (‖γ̂(τ) − γn(τ)‖ − ζ̃n)δ
�
Pnψ(·;γn(τ) + ζ̃nδ, τ) ≤ 0,

which yields (C.8).
The proof is finished once we minorize the empirical score δ�Pnψ

(
·;γn(τ) +

a(sn,1 + gn)δ, τ
)
in (C.8) in terms of sn,1 + gn. To proceed, observe that under

assumptions (A1)-(A3) we have by Lemma C.1

sup
‖δ‖=1

∣∣∣E[δ�{ψ(Y,Z;b, τ)− ψ(Y,Z;γn(τ), τ)

− ZZ�fY |X(γn(τ)
�Z|X)(b− γn(τ))}]

∣∣∣
≤ ξmf ′λmax(E[ZZ

�])‖b− γn(τ)‖2. (C.9)

Therefore, we have for arbitrary ‖δ‖ = 1, τ ∈ T that

δ�Pnψ(·;γn(τ) + a(sn,1 + gn)δ, τ)

≥ −sn,1 − gn + δ�
(
E
[
ψ(Y,Z;γn(τ)+ a(sn,1 + gn)δ, τ)

]
−E

[
ψ(Y,Z;γn(τ), τ)

])
≥ a(sn,1 + gn) inf

τ∈T
λmin(J̃m(τ))− sn,1 − gn − ξmf ′λmax(E[ZZ

�])a2(sn,1 + gn)
2,

where for the first inequality we recall gn = supτ∈T ‖E
[
ψ(Y,Z;γn(τ), τ)

]
‖

and sn,1 = ‖Pn − P‖G1 ; the second inequality follows by (C.9). Setting a =

2t/ infτ∈T λmin(J̃m(τ)) in ζ̃n, we see that the right-hand side of the display
above is positive when

sn,1 + gn <
(2t− 1) infτ∈T λ2

min(J̃m(τ))

4t2ξmf ′λmax(E[ZZ�])
.

Observing that for t > 1, we have (2t − 1)/t2 ≥ 1/t, and plugging a =

2t/ infτ∈T λmin(J̃m(τ)) in equation (C.8) completes the proof.
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Lemma C.3. Consider the classes of functions G1,G2(δ) defined in (C.2) and
(C.6), respectively. Under assumptions (A1)-(A3) we have for some constant C
independent of n and all κn > 0 provided that ξm = O(nb) for some fixed b

P
(
‖Pn−P‖G1 ≥ C

[(m
n

log ξm

)1/2
+

mξm
n

log ξm+
(κn

n

)1/2
+

ξmκn

n

])
≤ e−κn .

(C.10)
For any δn satisfying ξmδn � n−1, we have for sufficiently large n and arbitrary
κn > 0

P
(
‖Pn − P‖G2(δn) ≥ Cζn(δn, κn)

)
≤ e−κn , (C.11)

where

ζn(t, κn) :=t1/2
(mξm

n
log(ξm ∨ n)

)1/2
+

mξm
n

log(ξm ∨ n) + t1/2
(ξmκn

n

)1/2
+

ξmκn

n
. (C.12)

Proof of Lemma C.3. Observe that for each f ∈ G1 we have |f(x, y)| ≤ ξm, and
the same holds for G2(δ) for any value of δ. Additionally, similar arguments as
those in the proof of Lemma 18 in Belloni et al. (2016) imply together with
Theorem 2.6.7 in van der Vaart and Wellner (1996) that, almost surely,

N(G2(δ), L2(Pn); ε) ≤
(A‖F‖L2(Pn)

ε

)v1(m)

,

N(G1, L2(Pn); ε) ≤
(A‖F‖L2(Pn)

ε

)v2(m)

,

where A is some constant and v1(m) = O(m), v2(m) = O(m). Finally, for each
f ∈ G1 we have

E[f2] ≤ sup
‖a‖=1

a�E[ZZ�]a = λmax(E[ZZ
�]).

On the other hand, each f ∈ G2(δn) satisfies

E[f2] ≤ sup
‖a‖=1

sup
‖b1−b2‖≤δn

E
[
(a�Z)21

{
|Y − Z�b1| ≤ |Z�(b1 − b2)|

}]
≤ sup

b∈Rm

sup
‖a‖=1

E
[
(a�Z)21{|Y − Z�b| ≤ ξmδn}

]
≤ 2fξmδnλmax(E[ZZ

�]).

Note that under assumptions (A1)-(A3) the right-hand side is bounded by cξmδn
where c is a constant that does not depend on n. Thus the bound in (D.2) implies
that for ξmδn � n−1 we have for some constant C which is independent of n,

E‖Pn − P‖G1 ≤ C
[(m

n
log(ξm ∨ n)

)1/2
+

mξm
n

log(ξm ∨ n)
]
,

E‖Pn − P‖G2(δn) ≤ C
[
ξ1/2m δ1/2n

(m
n

log(ξm ∨ n)
)1/2

+
mξm
n

log(ξm ∨ n)
]
.

Thus (C.10) and (C.11) follow from the bound in (D.3) by setting t = κn.
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C.2. Proof of Theorem 5.2

We begin with the following useful decomposition

β̂(τ)− βn(τ) = −n−1/2J̃−1
m (τ)Gn(ψ(·;βn(τ), τ)) + J̃−1

m (τ)

4∑
k=1

Rn,k(τ) (C.13)

where

Rn,1(τ) := Pnψ(·; β̂(τ), τ),

Rn,2(τ) := −
(
μ(β̂(τ), τ)− μ(βn(τ), τ)− J̃m(τ)(β̂(τ)− βn(τ))

)
,

Rn,3(τ) := −n−1/2
(
Gn(ψ(·; β̂(τ), τ))−Gn(ψ(·;βn(τ), τ))

)
,

Rn,4(τ) := −μ(βn(τ), τ)).

Define

rn,2(τ,un) := u�
n J̃

−1
m (τ)Rn,2(τ), rn,k(τ,un) := (u�

n J̃
−1
m (τ))(I(un,D))Rn,k(τ)

for k = 1, 3 and

rn,4(τ,un) :=u�
n J̃

−1
m (τ)Rn,4(τ)

+
(
u�
n J̃

−1
m (τ)− (u�

n J̃
−1
m (τ))(I(un,D))

)(
Rn,1(τ) +Rn,3(τ)

)
.

With those definitions we obtain

u�
n

(
β̂(τ)− βn(τ)

)
= −n−1/2u�

n J̃
−1
m (τ)Gn(ψ(·;βn(τ), τ)) +

4∑
k=1

rn,k(τ,un).

We will now show that the terms rn,k(τ,un) defined above satisfy the bounds
given in the statement of Theorem 5.2 if we let D = c logn for a sufficiently
large constant c.

The bound on rn,1 follows from Lemma C.7. To bound rn,2 apply Lemma
C.4 and Lemma C.6. To bound rn,3 observe that by Lemma C.4 the probability
of the event

Ω1 :=
{
sup
τ,x

|B(x)�β̂(τ)−B(x)�βn(τ)| ≤ C
(
c̃2n +

ξm(logn+ κ
1/2
n )

n1/2

)}
.

is at least 1 − (m + 1)e−κn . Letting δn := C
(
c̃2n +

ξm(logn∨κ1/2
n )

n1/2

)
we find that

on Ω1

sup
un∈Sm−1

I

sup
τ

|rn,3(τ,un)| � ‖Pn − P‖G2(δn,I(un,D),I′(un,D)),
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this follows since

n−1/2(u�
n J̃

−1
m (τ))(I(un,D))

Gn(ψ(·; β̂(τ), τ))
= n−1/2(u�

n J̃
−1
m (τ))(I(un,D))

Gn(ψ
(I′(un,D))(·; β̂(τ), τ))

and a similar identity holds with βn instead of β̂.
Note that max{|I(un, D)|, |I ′(un, D)|} � L+ c logn. Hence, for any ωn > 0,

P

(
sup

un∈Sm−1
I

sup
τ

|rn,3(τ,un)| > ωn

)
≤ P

(
sup
τ,x

|B(x)�β̂(τ)−B(x)�βn(τ)| > δn
)

+ P
(
‖Pn − P‖G2(δn,I(un,D),I′(un,D)) > ωn

)
.

The bound on rn,3 now follows form the bound for the event Ωc
1, Lemma C.5

under ωn := Cζ(δn, I(un, D), I ′(un, D), κn) and the observation from the as-

sumption mξ2m(logn)2 = o(n) that ξmn−1(logn)2 < ξ
1/2
m n−3/4(logn)3/2 when

n is sufficiently large. To bound the first part of rn,4(τ,un), we proceed as in
the proof of equation (C.17) to obtain∣∣∣(u�

n J̃
−1
m (τ))μ(βn(τ), τ)

∣∣∣ ≤ 1

2
f ′c̃2nẼ(un,B)

where the last line follows after a Taylor expansion. To bound the second part of
rn,4(τ,un) note that supτ ‖Rn,1(τ)‖+ ‖Rn,3(τ)‖ ≤ 3ξm almost surely and thus

choosing D = c logn with c sufficiently large yields ‖(u�
n J̃

−1
m (τ))(I(un,D)) −

u�
n J̃

−1
m (τ)‖ ≤ n−13−1ξ−1

m where we used (A.5). This completes the proof.

C.2.1. Technical details for the proof of Theorem 5.2

Lemma C.4. Under the assumptions of Theorem 5.2 we have for sufficiently
large n and any κn � n/ξ2m,

P
(
sup
τ,x

|B(x)�(β̂(τ)− βn(τ))| ≥ C
(ξm logn+ ξmκ

1/2
n

n1/2
+ c̃2n

))
≤ (m+ 1)e−κn .

where the constant C does not depend on n.

Proof of Lemma C.4. Apply (A.5) with a = B(x) to obtain

‖B(x)�J̃−1
m (τ)− (B(x)�J̃−1

m (τ))(I(B(x),D))‖ � mξmγD,

where I(B(x), D) is defined as (A.2), and γ ∈ (0, 1) is a constant independent
of n. Next observe the decomposition

B(x)�(β̂(τ)− βn(τ)) =− n−1/2(B(x)�J̃−1
m (τ))(I(B(x),D))

Gn(ψ(·; β̂(τ), τ))

+

4∑
k=1

rn,k(τ, x)
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where

rn,1(τ, x) := (B(x)�J̃−1
m (τ))(I(B(x),D))

Pnψ(·; β̂(τ), τ),
rn,2(τ, x) := − (B(x)�J̃−1

m (τ))(
μ(β̂(τ), τ)− μ(βn(τ), τ)− J̃m(τ)(β̂(τ)− βn(τ))

)
,

rn,3(τ, x) := − (B(x)�J̃−1
m (τ))μ(βn(τ), τ)).

and

rn,4(τ, x) :=
(
B(x)�J̃−1

m (τ)− (B(x)�J̃−1
m (τ))(I(B(x),D))

)
(
Pnψ(·; β̂(τ), τ)− n−1/2

Gn(ψ(·; β̂(τ), τ))
)
.

Letting D = c logn for a sufficiently large c, (C.13) yields supτ,x |rn,4(τ, x)| ≤
n−1 almost surely. Lemma C.7 yields the bound

sup
x,τ

|rn,1(τ, x)| �
ξ2m logn

n
a.s. (C.14)

Let δn := supx,τ |B(x)�β̂(τ)−B(x)�βn(τ)|. From Lemma C.6 we obtain under
(L)

sup
x,τ

|rn,2(τ, x)| ≤ δ2n sup
x,τ

E
[
|B(x)�J̃−1

m (τ)B|
]
� δ2n, (C.15)

where supx,τ E
[
|B(x)�J̃−1

m (τ)B|
]
= O(1) by assumption (L). Finally, note that

n−1/2(B(x)�J̃−1
m (τ))(I(B(x),D))

Gn(ψ(·; β̂(τ), τ))
= n−1/2(B(x)�J̃−1

m (τ))(I(B(x),D))
Gn(ψ

(I′(B(x),D))(·; β̂(τ), τ))

where I ′(B(x), D) is defined as (A.3). This yields

sup
τ,x

∣∣∣n−1/2(B(x)�J̃−1
m (τ))(I(B(x),D))

Gn(ψ(·; β̂(τ), τ))
∣∣∣

� ξm sup
x∈X

‖Pn − P‖G1(I(B(x),D),I′(B(x),D))

By the definition of I(B(x), D), I ′(B(x), D), the supremum above ranges over
at most m distinct terms. Additionally,

sup
x∈X

|I(B(x), c log n)|+ |I ′(B(x), c logn)| � log n.

Thus Lemma C.5 yields

P
{
sup
τ,x

∣∣∣n−1/2(B(x)�J̃−1
m (τ))(I(B(x),c logn))

Gn(ψ(·; β̂(τ), τ))
∣∣∣

≥ C
(ξ2m(logn)2

n

)1/2
+ C

ξmκ
1/2
n

n1/2

}
≤ me−κn .

(C.16)
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Finally, from the definition of βn as minimizer we obtain

|rn,3(τ, x)| =
∣∣∣(B(x)�J̃−1

m (τ))μ(βn(τ), τ))
∣∣∣

=
∣∣∣(B(x)�J̃−1

m (τ))E[B(1{Y ≤ βn(τ)
�B} − τ)]

∣∣∣
=
∣∣∣(B(x)�J̃−1

m (τ))E[B(FY |X(βn(τ)
�B|X)− FY |X(Q(X; τ)|X))]

∣∣∣
≤ 1

2
f ′c̃2nO(1) (C.17)

where the last line follows after a Taylor expansion, and the fact that the ex-
pectation E[BfY |X(Q(X; τ)|X)(β�

n B−Q(X; τ))] = 0 from the definition of βn

and making use of (L). Combining this with (C.14) - (C.16) yields

δn ≤ C
[(ξ2m(logn)2

n

)1/2
+

ξmκ
1/2
n

n1/2
+

ξ2m logn

n
+ δ2n + c̃2n

]
with probability at least me−κn . By Lemma C.2 we have P (δn ≥ 1/(2C)) ≤
e−κn for any κn satisfying ξmκn � n−1 This yields the assertion.

Lemma C.5. Let Z := {B(x)|x ∈ X} where X is the support of X. For
I1, I ′

1 ⊂ {1, ...,m}, define the classes of functions

G̃1(I1, I ′
1) :=

{
(Z, Y ) �→ a�Z(I1)(1{Y ≤ Z�b(I′

1)} − τ)1{‖Z‖ ≤ ξm}∣∣τ ∈ T ,b ∈ R
m,a ∈ Sm−1

}
, (C.18)

G̃2(δ, I1, I ′
1) :=

{
(Z, Y ) �→ a�Z(I1)(1{Y ≤ Z�b

(I′
1)

1 } − 1{Y ≤ Z�b
(I′

1)
2 })

1{Z ∈ Z}
∣∣b1,b2 ∈ R

m, sup
v∈Z

‖v�b1 − v�b2‖ ≤ δ,a ∈ Sm−1
}
.

(C.19)

Under assumptions (A1)-(A3) we have

P
(
‖Pn −P‖G̃1(I1,I′

1)
≥C

[(max(|I1|, |I ′
1|)

n
log ξm

)1/2
+

max(|I1|, |I ′
1|)ξm

n
log ξm

+
(κn

n

)1/2
+

ξmκn

n

])
≤ e−κn (C.20)

and for any δn satisfying ξmδn � n−1 we have for sufficiently large n and
arbitrary κn > 0

P
(
‖Pn − P‖G̃2(δ,I1,I′

1)
≥ Cζn(δ, I1, I ′

1, κn)
)
≤ e−κn , (C.21)

where

ζn(t, I1, I ′
1, κn) := t1/2

(max(|I1|, |I ′
1|)

n
log(ξm ∨ n)

)1/2
+

max(|I1|, |I ′
1|)ξm

n
log(ξm ∨ n) + n−1/2(tκn)

1/2 + n−1ξmκn.
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Proof of Lemma C.5. We begin by observing that

N
(
G̃2(δ, I1, I ′

1), L2(Pn); ε
)
≤
(A‖F‖L2(Pn)

ε

)v1(m)

,

N
(
G̃1(I1, I ′

1), L2(Pn); ε
)
≤
(A‖F‖L2(Pn)

ε

)v2(m)

,

where v1(m) = O(max(|I1|, |I ′
1|)), v2(m) = O(max(|I1|, |I ′

1|)). The proof of the

bound for G̃1(I1, I ′
1) now follows by similar arguments as the proof of Lemma

C.3. For a proof of the second part, note that for f ∈ G̃2 we have

E[f2] ≤ sup
‖a‖=1

sup
b1,b2∈R(δn)

E

[
(a�B(I1))21

{
|Y −B�b

(I′
1)

1 | ≤ |B�(b
(I′

1)
1 −b

(I′
1)

2 )|
}]

≤ sup
b∈Rm

sup
‖a‖=1

E

[(
(a(I

′
1))�BB�a(I

′
1)
)2

1{|Y −B�b(I′
1)| ≤ δn}

]
≤ 2fδnλmax(E[BB�])

where we defined R(δ) :=
{
b1,b2 ∈ R

m, supv∈Z ‖v�b1−v�b2‖ ≤ δ
}
. The rest

of the proof follows by similar arguments as the proof of Lemma C.3.

Lemma C.6. Under assumptions (A1)-(A3) we have for any a,b ∈ R
m∣∣∣a�J̃m(τ)−1μ(b, τ)− a�J̃m(τ)−1μ(βn(τ), τ)− a�(b− βn(τ))
∣∣∣

≤ f ′ sup
x

|B(x)�b−B(x)�βn(τ)|2E[|a�J̃m(τ)−1B|].

Proof of Lemma C.6. Note that μ′(βn(τ), τ) = E[BB�fY |X(B�βn(τ)|X)] =

J̃m(τ). Additionally, we have

μ(b, τ) = μ(βn(τ), τ) + μ′(b̄, τ)(b− βn(τ)),

where b̄ = b+ λb,τ (βn(τ)− b) for some λb,τ ∈ [0, 1]. Moreover,

a�[J̃m(τ)−1μ(b, τ)− J̃m(τ)−1μ(βn(τ), τ)− (b− βn(τ))]

= a�J̃m(τ)−1[μ′(b̄, τ)− J̃m(τ)](b− βn(τ))

and thus∣∣∣a�J̃m(τ)−1μ(b, τ)− a�J̃m(τ)−1μ(βn(τ), τ)− a�(b− βn(τ))
∣∣∣

=
∣∣∣E[a�J̃m(τ)−1BB�(fY |X(B�b̄|X)− fY |X(B�βn(τ)|X)

)(
b− βn(τ)

)]∣∣∣
≤ f ′E

[∣∣∣a�J̃m(τ)−1B
∣∣∣{B�(b− βn(τ))

}2]
≤ f ′ sup

x
|B(x)�b−B(x)�βn(τ)|2E[|a�J̃m(τ)−1B|].
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Lemma C.7. Under assumptions (A1)-(A3) and (L) we have for any a ∈ R
m

having zero entries everywhere except at L consecutive positions:∣∣a�Pnψ(·; β̂(τ), τ)
∣∣ ≤ (L+ 2r)‖a‖ξm

n
.

Proof of Lemma C.7. From standard arguments of the optimization condition
of quantile regression (p.35 of Koenker (2005), also see equation (2.2) on p.224
of Knight (2008)), we know that for any τ ∈ T ,

Pnψ(·; β̂(τ), τ) =
1

n

n∑
i=1

Bi

(
1{Yi ≤ B�

i β̂(τ)} − τ
)
=

1

n

∑
i∈Hτ

viBi

where vi ∈ [−1, 1] and Hτ = {i : Yi = B�
i β̂(τ)}. Since a has at most L non-zero

entries, the dimension of the subspace spanned by {Bi : a
�Bi �= 0} is at most

L + 2r [each vector Bi by construction has at most r nonzero entries and all
of those entries are consecutive]. Since the conditional distribution of Y given
covariates has a density, the data are in general position almost surely, i.e. no
more than k of the points (Bi, Yi) lie in any k-dimensional linear space, it follows
that the cardinality of the set Hτ ∩ {i : a�Bi �= 0} is bounded by L + 2r. The
assertion follows after an elementary calculation.

C.3. Proof of Theorem 5.4

The statement follows from Theorem 5.1 if we prove that the vector γ†
n(τ)

satisfies
sup
τ∈T

∥∥μ(γ†
n(τ); τ)

∥∥ = O(ξmc†2n ) (C.22)

as c†n = o(ξ−1
m ) in Condition (C1), and establish the identity in (5.10). For the

identity (5.10), we first observe the representation

Jm(τ) =

(
M1(τ) +A(τ)M2(τ)A(τ)

� A(τ)M2(τ)
M2(τ)A(τ)

� M2(τ)

)
, (C.23)

which follows from (3.5) and

E[(V −A(τ)Z̃(W ))Z̃(W )�fY |X(Q(X; τ)|X)] = 0, for all τ ∈ T .

To simplify the notations, we suppress the argument in τ in the following matrix
calculations. Recall the following identity for the inverse of 2 × 2 block matrix
(see equation (6.0.8) on p.165 of Puntanen and Styan (2005))(

A B
C D

)−1

=

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

)
.
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Identifying the blocks in the representation (C.23) with the blocks in te above
representation yields the result after some simple calculations. For a proof of
(C.22) observe that

μ(γ†
n(τ); τ) = E[(V �, Z̃(W )�)�(FY |X(γ†

n(τ)
�Z|X)− τ)]

Now on one hand we have, uniformly in τ ∈ T ,∥∥∥E[V (FY |X(α(τ)�V + β†
n(τ)

�Z̃(W )|X)− τ)]
∥∥∥

=
∥∥∥E[V fY |X(Q(X; τ)|X)(Q(X; τ)−α(τ)�V − β†

n(τ)
�Z̃(W ))]

∥∥∥+O(c†2n )

=
∥∥∥E[V fY |X(Q(X; τ)|X)(h(W ; τ)− β†

n(τ)
�Z̃(W ))]

∥∥∥+O(c†2n )

=
∥∥∥E[(V − hVW (W ; τ) + hVW (W ; τ))fY |X(Q(X; τ)|X)(h(W ; τ)

− β†
n(τ)

�Z̃(W ))]
∥∥∥+O(c†2n )

=
∥∥∥E[hVW (W ; τ)fY |X(Q(X; τ)|X)(h(W ; τ)− β†

n(τ)
�Z̃(W ))]

∥∥∥+O(c†2n )

=
∥∥∥E[(hVW (W ; τ)−A(τ)Z̃(W ) +A(τ)Z̃(W ))fY |X(Q(X; τ)|X)(h(W ; τ)

− β†
n(τ)

�Z̃(W ))]
∥∥∥+O(c†2n )

=
∥∥∥E[(hVW (W ; τ)−A(τ)Z̃(W ))fY |X(Q(X; τ)|X)(h(W ; τ)− β†

n(τ)
�Z̃(W ))]

∥∥∥
+O(c†2n )

= O(c†2n + λnc
†
n).

Here, the first equation follows after a Taylor expansion taking into account that,
by the definition of the conditional quantile function, FY |X(Q(X; τ)|X) ≡ τ .
The fourth equality is a consequence of (3.5), the sixth equality follows since

E[Z̃(W )fY |X(Q(X; τ)|X)(h(W ; τ)− β†
n(τ)

�Z̃(W ))] = 0 (C.24)

by the definition of β†
n(τ) as minimizer. The last line follows by the Cauchy-

Schwarz inequality. On the other hand

E[Z̃(W )(FY |X(α(τ)�V + β†
n(τ)

�Z̃(W )|X)− τ)]

= E[Z̃(W )fY |X(Q(X; τ)|X)(h(W ; τ)− β†
n(τ)

�Z̃(W ))]

+
1

2
E[Z̃(W )f ′

Y |X(ζ(X; τ)|X)(h(W ; τ)− β†
n(τ)

�Z̃(W ))2].

By (C.24), the first term in the representation above is zero, and the norm of
the second term is of the order O(ξmc†2n ). This completes the proof.
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Appendix D: Auxiliary results

D.1. Results on empirical process theory

In this section, we collect some basic results from empirical process theory
needed in our proofs. Denote by G a class of functions that satisfies |f(x)| ≤
F (x) ≤ U for every f ∈ G and let σ2 ≥ supf∈G Pf2. Additionally, let for some
A > 0, V > 0 and all ε > 0,

N(ε,G, L2(Pn)) ≤
(A‖F‖L2(Pn)

ε

)V
. (D.1)

Note that if G is a VC-class, then V is the VC-index of the set of subgraphs of
functions in G. In that case, the symmetrization inequality and inequality (2.2)
from Koltchinskii (2006) yield

E‖Pn − P‖G ≤ c0

[
σ
(V
n
log

A‖F‖L2(P )

σ

)1/2
+

V U

n
log

A‖F‖L2(P )

σ

]
(D.2)

for a universal constant c0 > 0 provided that 1 ≥ σ2 > const× n−1 [in fact, the
inequality in Koltchinskii (2006) is for σ2 = supf∈G Pf2. However, this is not a

problem since we can replace G by Gσ/(supf∈G Pf2)1/2]. The second inequality
(a refined version of Talagrand’s concentration inequality) states that for any
countable class of measurable functions F with elements mapping into [−M,M ]

P
{
‖Pn − P‖F ≥ 2E‖Pn − P‖F + c1n

−1/2
(
sup
f∈F

Pf2
)1/2√

t+ n−1c2Mt
}
≤ e−t,

(D.3)
for all t > 0 and universal constants c1, c2 > 0. This is a special case of Theorem
3 in Massart (2000) [in the notation of that paper, set ε = 1].

Lemma D.1 (Lemma 7.1 of Kley et al. (2016)). Let {Gt : t ∈ T} be a separable
stochastic process with ‖Gs − Gt‖Ψ ≤ Cd(s, t) (‖ · ‖Ψ is defined in (A.32)) for
all s, t satisfying d(s, t) ≥ ω̄/2 ≥ 0. Denote by D(ε, d) the packing number of the
metric space (T, d). Then, for any δ > 0, ω ≥ ω̄, there exists a random variable
S1 and a constant K < ∞ such that

sup
d(s,t)≤δ

|Gs −Gt| ≤ S1 + 2 sup
d(s,t)≤ω̄,t∈T̃

|Gs −Gt|, (D.4)

where the set T̃ contains at most D(ω̄, d) points, and S1 satisfies

‖S1‖Ψ ≤ K

[ ∫ ω

ω̄/2

Ψ−1
(
D(ε, d)

)
dε+ (δ + 2ω̄)Ψ−1

(
D2(ω, d)

)]
(D.5)

P (|S1| > x) ≤(
Ψ

{
x
[
8K
(∫ ω

ω̄/2

Ψ−1
(
D(ε, d)

)
dε+ (δ + 2ω̄)Ψ−1

(
D2(ω, d)

))]−1
})−1

.

(D.6)
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D.2. Covering number calculation

A few useful lemmas on covering number are given in this section.

Lemma D.2. Suppose F and G are two function classes with envelopes F
and G.

1. The class F − G := {f − g|f ∈ F , g ∈ G} with envelope F +G and

sup
Q

N
(
ε‖F +G‖Q,2,F − G, L2(Q)

)
≤ sup

Q
N

(
ε
‖F‖Q,2√

2
,F , L2(Q)

)
sup
Q

N

(
ε
‖G‖Q,2√

2
,G, L2(Q)

)
, (D.7)

2. The class F · G := {fg : f ∈ F , g ∈ G} with envelope FG and

sup
Q

N
(
ε‖FG‖Q,2,F · G, L2(Q)

)
≤ sup

Q
N

(
ε‖F‖Q,2

2
,F , L2(Q)

)
sup
Q

N

(
ε‖G‖Q,2

2
,G, L2(Q)

)
, (D.8)

where the suprema are taken over the appropriate subsets of all finitely
discrete probability measures Q.

Proof of Lemma D.2. 1. It is obvious that |f − g| ≤ |f | + |g| ≤ F + G for
any f ∈ F and g ∈ G. Hence, F + G is an envelop for the function class
F − G. Suppose that A = {f1, ...fJ} and B = {g1, ..., gK} are the centers

of
ε‖F‖Q,2√

2
-net for F and

ε‖G‖Q,2√
2

-net for F and G respectively. For any

f − g, there exists fj and gk such that

‖(fj − gk)− (f − g)‖2Q,2 = ‖(fj − f)− (gk − g)‖2Q,2

≤ 2
(
‖fj − f‖2Q,2 + ‖gk − g‖2Q,2

)
≤ ε2(‖F‖2Q,2 + ‖G‖2Q,2) ≤ ε2‖F +G‖2Q,2,

where the last inequality follows from the fact that both F and G are
nonnegative. Hence, {fj + gk : 1 ≤ j ≤ J, 1 ≤ k ≤ K} forms an ε‖F +
G‖Q,2-net for the class F − G, with cardinality JK.

2. See Lemma 6 of Belloni et al. (2016).

For any fixed vector u ∈ R
m and δ > 0, recall the function classes

G3(u) :=
{
(Z, Y ) �→ u�Jm(τ)−1Z1{‖Z‖ ≤ ξm}

∣∣τ ∈ T
}
,

G4 :=
{
(X,Y ) �→ 1{Yi ≤ Q(X; τ)} − τ

∣∣τ ∈ T
}
,

G6(u, δ) :=
{
(Z, Y ) �→ u�{Jm(τ1)

−1 − Jm(τ2)
−1}Z1{‖Z‖ ≤ ξm}∣∣τ1, τ2 ∈ T , |τ1 − τ2| ≤ δ

}
,

G7(δ) :=
{
(X,Y ) �→ 1{Yi ≤ Q(X, τ1)} − 1{Yi ≤ Q(X, τ2)} − (τ1 − τ2)∣∣τ1, τ2 ∈ T , |τ1 − τ2| ≤ δ

}
.
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Recall the following Lipschitz continuity property of J−1
m (τ) by Lemma 13 of

Belloni et al. (2016): for τ1, τ2 ∈ T ,

‖J−1
m (τ1)− J−1

m (τ2)
∥∥ ≤ f̄ ′

fmin
|τ1 − τ2|

(
inf
τ∈T

λmin(Jm(τ))
)−2

λmax(E[ZZ
�])

:= C0 inf
τ∈T

λmin(Jm(τ))−1|τ1 − τ2|. (D.9)

where C0 = f̄ ′

fmin

λmax(E[ZZ�])
infτ∈T λmin(Jm(τ)) .

Lemma D.3. G3(u) has an envelope G3(Z) = ‖u‖ξm[infτ∈T λmin(Jm(τ))]−1

and

N(ε‖G3‖L2(Q),G3(u), L2(Q)) ≤ C0

ε
,

where C0 = f̄ ′

fmin

λmax(E[ZZ�])
infτ∈T λmin(Jm(τ)) < ∞, for any probability measure Q and u.

Proof of Lemma D.3. By (D.9), for any τ1, τ2 ∈ T and u,∣∣u�Jm(τ1)
−1Z− u�Jm(τ2)

−1Z
∣∣

≤ ‖u‖ξm
f̄ ′

fmin
λmax(E[ZZ

�])[ inf
τ∈T

λmin(Jm(τ))]−2|τ1 − τ2|

= C0‖G3‖L2(Q)|τ1 − τ2|.

Applying the relation of the covering and bracketing number on p.84 and The-
orem 2.7.11 of van der Vaart and Wellner (1996) yields for each u and any
probability measure Q,

N
(
ε‖G3‖L2(Q),G3(u), L2(Q)

)
≤ N[ ]

(
2ε‖G3‖L2(Q),G3(u), L2(Q)

)
≤ N

(
ε, T , | · |

)
≤ C0

ε
.

Lemma D.4. We have the following results:

1. G4 is a VC-class with VC index 2.
2. The envelopes for G6(u, δ) and G7 are G6 = ξ2m[infτ∈T λmin(Jm(τ))]−1C0δ

and G7 = 2. Furthermore, it holds for any fixed x and δ ≤ |T | that

N(ε‖G6‖L2(Q),G6(u, δ), L2(Q)) ≤ 2

(
C0

ε

)2

, (D.10)

N(ε‖G7‖L2(Q),G7(δ), L2(Q)) ≤
(
A7

ε

)4

, (D.11)

where A7 is a universal constant and Q is an arbitrary probability measure.

Proof of Lemma D.4.

1. Due to the fact that Q(X; τ) is monotone in τ , it can be argued with basic
VC subgraph argument that G4 has VC index 2, under the definition given
in p.135 of van der Vaart and Wellner (1996).
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2. By (D.9), the envelope for G6(un, δ) is ‖u‖ξmλmin(Jm(τ))−1C0δ. The en-
velope for G7(δ) is obvious. By the fact that G7(δ) ⊂ G4 − G4 and the
covering number of G4 (implied by Theorem 2.6.7 of van der Vaart and
Wellner (1996)), (D.11) thus follows by (D.7) of Lemma D.2. As for (D.10),
we note that G6(u, δ) ⊂ G3(u) − G3(u). Then, (D.7) of Lemma D.2 and
Lemma D.3 imply

N(ε‖G6‖L2(Q),G6(u, δ), L2(Q)) ≤ N

(
ε√
2
‖G3‖L2(Q),G3(u), L2(Q)

)2

≤ 2

(
C0

ε

)2

,

where Q is an arbitrary probability measure.
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