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1. Introduction

Experimental settings often include dichotomous response data, wherein a
Bernoulli model may be assumed for independent response variables Y1, ..., Yn,
with

Pr(Yi = 1) = πi and Pr(Yi = 0) = 1− πi, i = 1, ..., n.

In many cases, a series of explanatory variables xi0, ..., xik may be associated
with each Yi (xi0 = 1, xij ∈ R, i = 1, ..., n, j = 1, ..., k, k < n). We shall assume

that the binomial parameter, πi, is linked to the linear predictor
∑k

j=0 βjxij via
the logit function, i.e.,

logit (πi) =

k∑
j=0

βjxij , (1.1)

where logit(p) = log(p/(1 − p)). In the following, we shall denote the binomial
parameter πi, by

πi = π(xT
i β) =

ex
T
i β

1 + ex
T
i β

, i = 1, ..., n, (1.2)

where xT
i = (xi0, ..., xik) and β = (β0, ..., βk)

T
is a (k + 1)-dimensional vec-

tor of unknown parameters with βi ∈ (−∞,∞). The “design matrix”, X =

(x1, ...,xn)
T
, is assumed to be full rank (rank(X) = k + 1), without any loss of

generality.
Let M be any matrix of r rows and k + 1 columns with rank(M) = r, and

m a vector of order r with specified constants such that rank(MT ,m) = r. If
we are interested in testing

H0 : MTβ = m, (1.3)

the Wald test statistic is usually used in which β is estimated using the max-
imum likelihood estimator (MLE). Notice that if we consider M = Ik+1 and
m = β0, we get the Wald-type test statistic presented by Bianco and Martinez
(2009) based on a weighted Bianco and Yohai (1996) estimator. It is well known
that the MLE of β can be severely affected by outlying observations. Croux and
Haesbroeck (2003) discuss the breakdown behavior of the MLE in the logistic
regression model and show that the MLE breaks down when several outliers are
added to a data set. In the recent years several authors have attempted to de-
rive robust estimates of the parameters in the logistic regression model; see for
instance Pregibon (1982), Morgenthaler (1992), Carroll and Pederson (1993),
Christmann (1994), Bianco and Yohai (1996), Croux and Haesbroeck (2003),
Bondell (2005; 2008) and Hobza et al. (2008; 2017). Our interest in this paper
is to present a family of Wald-type test statistics based on the robust minimum
density power divergence estimator for testing the general linear hypothesis
given in (1.3).

In Section 2 we present the minimum density power divergence estimator
for β. The Wald-type test statistics, based on the minimum density power di-
vergence estimator, are presented in Section 3, together with their asymptotic
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properties. The theoretical robustness properties are presented in Section 4 and
finally, Section 5 and 6 are devoted to the presentation of a simulation study
and real data examples, respectively.

2. Minimum density power divergence estimator

If we denote by y
1,, ..., yn the observed values of the random variables Y1, ..., Yn,

the likelihood function for the logistic regression model is given by

L (β) =

n∏
i=1

{π(xT
i β)}yi

{
1− π(xT

i β)
}1−yi

. (2.1)

So the MLE of β, β̂, is obtained by minimizing the log-likelihood function over
β belonging to

Θ =
{
(β0, ..., βk)

T
: βj ∈ (−∞,∞) , j = 0, ..., k

}
= Rk+1.

We consider the probability vectors,

p̂ =

(
y1
n
,
1− y1

n
,
y2
n
,
1− y2

n
, ...,

yn
n
,
1− yn

n

)T

and

p (β) =

(
π(xT

1 β)
1

n
,
(
1− π(xT

1 β)
) 1

n
, ..., π(xT

nβ)
1

n
,
(
1− π(xT

nβ)
) 1

n

)T

.

The Kullback-Leibler divergence measure between the probability vectors p̂ and
p (β) is given by

dKL (p̂,p (β)) =

n∑
i=1

2∑
j=1

yij
n

log
yij

πj(xT
i β)

, (2.2)

where

π1(x
T
i β) = π(xT

i β), π2(x
T
i β) = 1− π(xT

i β), yi1 = yi and yi2 = 1− yi.

It is not difficult to establish that

dKL (p̂,p (β)) = c− 1

n
logL (β) . (2.3)

Here c is a constant independent of β. Therefore, the MLE of β can be defined
by

β̂ = arg min
β∈Θ

dKL (p̂,p (β)) . (2.4)

Based on (2.4) we can use any divergence measure d (p̂,p (β)) in order to
define a minimum divergence estimator for β. In this paper we shall use the
density power divergence measure defined by Basu et al. (1998) because the
minimum density power divergence estimators have excellent robustness prop-
erties, see for instance Basu et al. (2011; 2013; 2015; 2016), Ghosh et al. (2015;
2016b). The density power divergence between the probability vectors p̂ and
p (β) is given by
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dλ (p̂,p (β))=
1

n1+λ

⎧⎨⎩
n∑

i=1

⎛⎝ 2∑
j=1

π1+λ
j (xT

i β)−
(
1+

1

λ

) 2∑
j=1

yijπ
λ
j (x

T
i β)

⎞⎠+
n

λ

⎫⎬⎭
(2.5)

for λ > 0. For λ = 0, we have

d0 (p̂,p (β)) = lim
λ→0

dλ (p̂,p (β)) = dKL (p̂,p (β)) .

Based on (2.4) and (2.5), we shall define the minimum density power diver-
gence estimator as follows.

Definition 2.1. The minimum density power divergence estimator for the pa-
rameter β, β̂λ, in the logistic regression model is given by

β̂λ = arg min
β∈Θ

dλ (p̂,p (β)) ,

where dλ (p̂,p (β)) is as defined in (2.5).

In order to obtain the estimating equations we need to get the derivative of
(2.5) with respect to β. First we write expression (2.5) as,

dλ (p̂,p (β)) =
1

n1+λ

{
n∑

i=1

(
π

1+λ

(xT
i β) +

(
1− π(xT

i β)
)1+λ

−
(
1 +

1

λ

)(
yiπ

λ(xT
i β) + (1− yi)

(
1− π(xT

i β)
)λ))

+
n

λ

}
.

Now, taking into account the expressions

∂π(xT
i β)

∂β
= π(xT

i β)
(
1− π(xT

i β)
)
xi and

∂
(
1− π(xT

i β)
)

∂β
= −π(xT

i β)
(
1− π(xT

i β)
)
xi

and after some algebra, we get

∂dλ (p̂,p (β))

∂β
=

1 + λ

nλ+1

n∑
i=1

(eλx
T
i β + ex

T
i β)

ex
T
i β − yi(1 + ex

T
i β)

(1 + ex
T
i β)λ+2

xi.

Therefore, the estimating equations for λ > 0 are given by

n∑
i=1

eλx
T
i β + ex

T
i β

(1 + ex
T
i β)λ+1

(
π(xT

i β)− yi
)
xi = 0, (2.6)

where π(xT
i β) as given in (1.2). Based on the previous results we have estab-

lished the following theorem.

Theorem 2.1. The minimum density power divergence estimator of β, β̂λ, can
be obtained as the solution of the system of equations given in (2.6).

If we consider λ = 0 in (2.6), we get the estimating equations for the MLE
as
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n∑
i=1

(
π(xT

i β)− yi
)
xi = 0.

Based on equation (2.6), we can write the estimating equation for the MDPDE
under the the logistic regression model as

n∑
i=1

Ψλ (xi, yi,β) = 0,

with

Ψλ (xi, yi,β) = (eλx
T
i β + ex

T
i β)

ex
T
i β − yi(1 + ex

T
i β)

(1 + ex
T
i β)λ+2

xi. (2.7)

In order to get the asymptotic distribution of the MDPDE of β, β̂λ, we are
going to assume that not only are the explanatory variables random but they
are also identically distributed and moreover

(X1, Y1) , ...., (Xn, Yn)

are independent and identically distributed. We shall assume that X1, ...,Xn is
a random sample from a random variable X with marginal distribution function
H(x). By following the method given in Maronna et al. (2006), the asymptotic

variance covariance matrix of
√
n β̂λ is

J−1
λ (β0)Kλ (β0)J

−1
λ (β0) ,

where

Kλ (β) = E
[
Ψλ (X, Y,β)ΨT

λ (X, Y,β)
]

=

∫
X
E
[
Ψλ (x, Y,β)Ψ

T
λ (x, Y,β)

]
dH(x),

X is the support of X, and

Jλ (β) = E

[
∂Ψλ (X, Y,β)

∂βT

]
=

∫
X
E

[
∂Ψλ (x, Y,β)

∂βT

]
dH(x).

In relation to the matrix Kλ (β0), we have

E
[
Ψλ (x, Y,β)Ψ

T
λ (x, Y,β)

]
=

(eλx
Tβ + ex

Tβ)2

(1 + exTβ)2(λ+2)
E

[(
ex

Tβ − Y (1 + ex
Tβ)

)2
]
xxT ,

but E
[
Y 2

]
= π(xTβ) and

E

[(
ex

Tβ − Y (1 + ex
Tβ)

)2
]
= ex

Tβ.

Therefore

Kλ (β)=E
[
Ψλ (X, Y,β)ΨT

λ (X, Y,β)
]
=

∫
X

(eλx
Tβ + ex

Tβ)2

(1 + exTβ)2(λ+2)
ex

TβxxT dH(x).

(2.8)
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An estimator of Kλ (β) will be

K̂λ (β) =

∫
X

(eλx
Tβ + ex

Tβ)2

(1 + exTβ)2(λ+2)
ex

TβxxT dHn(x),

where Hn(x) the empirical distribution function associated with the sample
x1, ...,xn. Then

K̂λ (β) =
1

n

n∑
i=1

(eλx
Tβ + ex

Tβ)2

(1 + exTβ)2(λ+2)
ex

T
i βxix

T
i . (2.9)

It is interesting to observe that for λ = 0 we get

K̂0 (β) =
1

n

n∑
i=1

(1 + ex
T
i β)2

(1 + ex
T
i β)4

ex
T
i βxix

T
i

=
1

n
XT diag

(
πi(x

Tβ)
(
1− πi(x

Tβ)
))

i=1,...,n
X

= IF (β) ,

with IF (β) being the Fisher information matrix associated to the logistic re-
gression model.

To compute the matrix Jλ (β), first we need to calculate

∂Ψλ (x, y,β)

∂βT
= L1(x, y,β) + L2(x, y,β),

where

L1(x, y,β) = (λeλx
Tβ + ex

Tβ)
ex

Tβ − y(1 + ex
Tβ)

(1 + exTβ)λ+2
xxT

and

L2(x, y,β) = (eλx
Tβ + ex

Tβ)

×

⎛⎝
(
ex

Tβ − yex
Tβ

)
(1 + exTβ)λ+2

−
(λ+2) ex

Tβ
(
ex

Tβ − y(1+ ex
Tβ)

)
(1 + exTβ)λ+3

⎞⎠xxT ,

and hence

E

[
∂Ψλ (x, Y,β)

∂βT

]
= E [L1(x, Y,β)] + E [L2(x, Y,β)] .

But

E
[
ex

Tβ − Y (1 + ex
Tβ)

]
= ex

Tβ − ex
Tβ

1 + exTβ
(1 + ex

Tβ) = 0.

Therefore
E [L1(x, Y,β)] = 0(k+1)(k+1).
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On the other hand

E [L2(x, Y,β)] =
eλx

Tβ + ex
Tβ

(1 + exTβ)2(λ+2)

(
(1 + ex

Tβ)λ+2E
[
ex

Tβ − Y ex
Tβ

]
+(λ+ 2) (1 + ex

Tβ)λ+1ex
TβE

[
ex

Tβ − Y (1 + ex
Tβ)

])
xxT

=
eλx

Tβ + ex
Tβ

(1 + exTβ)λ+3
ex

TβxxT .

Finally,

Jλ (β) =

∫
X
E

[
∂Ψλ (x, Y,β)

∂βT

]
dH(x) (2.10)

=

∫
X

eλx
Tβ + ex

Tβ

(1 + exTβ)λ+3
ex

TβxxT dH(x),

and an estimator of Jλ (β) is given by

Ĵλ (β) =
1

n

n∑
i=1

eλx
T
i β + ex

T
i β

(1 + ex
T
i β)λ+3

ex
T
i βxix

T
i . (2.11)

In particular, for λ = 0, we have

Ĵ0 (β) =
1

n
XT diag

(
πi(x

Tβ)
(
1− πi(x

Tβ)
))

i=1,...,n
X

= IF (β) .

From the sequence of above results, the next theorem follows.

Theorem 2.2. The asymptotic distribution of the MDPDE for β, β̂λ, is given
by √

n(β̂λ − β0)
L−→

n→∞
N (0,Σλ (β0))

where
Σλ (β0) = J−1

λ (β0)Kλ (β0)J
−1
λ (β0)

and the matrices Jλ (β0) and Kλ (β0) where defined in (2.10) and (2.8), re-
spectively.

Remark 2.1. We have considered that the covariates are random, a crucial as-
sumption to get the asymptotic distribution of the MDPDE by using the standard
asymptotic theory for M-estimators. It is interesting to highlight that whenever
the covariates were non-stochastic (fixed design case), the asymptotic distribu-
tion of the MDPDE could be obtained from Ghosh et al. (2016d) without using
the standard asymptotic theory of M-estimators. In order to present the re-
sults in the most general setting, we shall assume that the random variables Yi

with i = 1, ..., I, are binomial with parameters ni and πi = π(xT
i β) instead

of Bernoulli random variables. We shall denote by N =
∑I

i=1 ni and let ni1

denotes the observed value of Yi. We will assume that I is fixed and for each
i = 1, . . . , I, construct the independent and identically distributed latent obser-
vations zi1, . . . , zini each following a Bernoulli distribution with probability π



2748 A. Basu et al.

and ni1 =
∑ni

j=1 zij . Then, N random observations z11, . . . , z1n1 , z21, . . . , z2n2 ,
. . ., zI1, . . . , zInI

are independent but have possibly different distribution with
zij ∼ Ber(πi). This falls under the general setup of independent but non-
homogeneous observations as considered in Ghosh and Basu (2013) and hence
it is immediately seen that the corresponding estimating equations for the MD-

PDE, β̂
∗
λ in this context, for λ > 0 are given by

I∑
i=1

eλx
T
i β + ex

T
i β

(1 + ex
T
i β)λ+1

(
niπ(x

T
i β)− ni1

)
xi = 0

and for λ = 0, by
I∑

i=1

(
niπ(x

T
i β)− ni1

)
xi = 0. (2.12)

Now, assuming

lim
N→∞

ni

N
= αi ∈ (0, 1) , i = 1, ..., I,

and following Ghosh and Basu (2013), we get the asymptotic distribution of the

MDPDE of β, β̂
∗
λ, as given by

√
N(β̂

∗
λ − β0)

L−→
N→∞

N (0,Σ∗ (β0)) (2.13)

where
Σ∗ (β0) = J∗−1 (β0)K

∗ (β0)J
∗−1 (β0) .

Here, the matrices J∗ (β0) and K∗ (β0) can be obtained directly from the general
results of Ghosh and Basu (2013) or from the simplified results in the context
of Bernoulli logistic regression with fixed design in Ghosh and Basu (2015) and
are given by

J∗ (β0) =

I∑
i=1

αie
xT

i β eλx
T
i β + ex

T
i β

(1 + ex
T
i β)λ+3

xix
T
i ,

and

K∗ (β0) =

I∑
i=1

αie
xT

i β (eλx
T
i β + ex

T
i β)2

(1 + ex
T
i β)2(λ+2)

xix
T
i .

For λ = 0, it is clear, based on (2.12), that we get the classical likelihood esti-
mator. We can observe that in this situation

J∗ (β0) = K∗ (β0) = IF (β0)

and we get the classical result,
√
N(β̂

∗
λ=0 − β0)

L−→
N→∞

N
(
0, I−1

F (β0)
)
.

3. Wald type test statistic for testing linear hypothesis

Based on the asymptotic distribution of β̂λ we are going to define a family of
Wald-type test statistics for testing the null hypothesis
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H0 : MTβ = m, (3.1)

where MT is any matrix of r rows and k + 1 columns and m a vector of order
r of specified constant. We assume that the matrix MT has full row rank, i.e.,
rank (M) = r.

Definition 3.1. Let β̂λ be the minimum power divergence estimator. The family
of Wald type test statistics for testing the null hypothesis given in (3.1) is given
by

Wn = n(MT β̂λ −m)T
(
MTJ−1

λ (β̂λ)Kλ(β̂λ)J
−1
λ (β̂λ)M

)−1

(MT β̂λ −m)

= n(MT β̂λ −m)T (MTΣλ(β̂λ)M)−1(MT β̂λ −m). (3.2)

In the particular case of λ = 0, i.e. β̂ is the MLE, we get the classical Wald
test statistic because in this case

J−1
λ=0 (β0)Kλ=0 (β0)J

−1
λ=0 (β0) = I−1

F (β0) .

Theorem 3.1. The asymptotic distribution of the Wald type test statistic, Wn,
defined in (3.2), under the null hypothesis given in (3.1), is a chi-square distri-
bution with r degrees of freedom.

Proof. We have MT β̂λ− m = MT (β̂λ − β0) and
√
n(β̂λ − β0)

L−→
n→∞

N (0,

Σλ(β0)). Therefore

√
n(MT β̂λ −m)

L−→
n→∞

N
(
0,MTΣλ (β0)M

)
and since MTΣλ (β0)M

(
MTJ−1

λ (β0)Kλ (β0)J
−1
λ (β0)M

)−1

= Ir×r, the

asymptotic distribution of Wn is a chi-square distribution with r degrees of
freedom.

Remark 3.1. If we consider

MT =
(
0k×1 Ik×k

)
k×(k+1)

(3.3)

we have
MTβ = 0,

if and only if βi = 0, i = 1, ..., k. Therefore, we can consider the Wald-type test
statistics with MT defined in (3.3) for testing

H0 : β1 = β2 = · · · = βk = 0.

In this case, the asymptotic distribution of the Wald type test statistic is a chi
square distribution with k degrees of freedom. If we consider MT to be a vector
with all elements equal zero except for the (i+ 1)-th term, equals 1, we can test

H0 : βi = 0.

Based on the previous theorem the null hypothesis given in (3.1) will be
rejected if we have that

Wn > χ2
r,α, (3.4)
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where χ2
r,α is the quantile of order 1 − α.for a chi-square with r degrees of

freedom Let us consider β∗ ∈ Θ such that MTβ∗ �= m, i.e., β∗ does not belong
to the null hypothesis. We denote

qβ1
(β2) =

(
MTβ1 −m

)T (
MTΣλ (β2)M

)−1 (
MTβ1 −m

)
and we are going to get an approximation to the power function for the test
statistics given in (3.4).

Theorem 3.2. Let β∗ ∈ Θ, with MTβ∗ �= m, be the true value of the parameter

so that β̂λ
P−→

n→∞
β∗. The power function of the test statistic given in (3.4), in

β∗, is given by

ξ (β∗) = 1− Φn

(
1

σ (β∗)

(
χ2
r,α√
n

−
√
nqβ∗(β∗)

))
, (3.5)

where Φn (x) tends uniformly to the standard normal distribution Φ (x) and
σ (β∗) is given by

σ2 (β∗) =
∂qβ(β

∗)

∂βT

∣∣∣∣
β=β∗

Σλ (β0)
∂qβ(β

∗)

∂β

∣∣∣∣
β=β∗

.

Proof. We have

ξ (β∗) = Pr
(
Wn > χ2

r,α

)
= Pr

(
n
(
qβ̂λ

(β̂λ)− qβ∗(β∗)
)
> χ2

r,α − nqβ∗(β∗)
)

= Pr

(
√
n
(
qβ̂λ

(β̂λ)− qβ∗(β∗)
)
>

χ2
r,α√
n

−
√
nqβ∗(β∗)

)
.

Now we are going to get the asymptotic distribution of the random variable√
n(qβ̂λ

(β̂λ) − qβ∗(β∗)). It is clear that qβ̂λ
(β̂λ) and qβ̂λ

(β∗) have the same

asymptotic distribution because β̂λ
P−→

n→∞
β∗. A first order Taylor expansion of

qβ̂λ
(β∗) at β̂λ around β∗ gives

qβ̂λ
(β∗)− qβ∗(β∗) =

∂qβ(β
∗)

∂βT

∣∣∣∣
β=β∗

(β̂λ − β∗) + op

(∥∥∥β̂λ − β∗
∥∥∥) .

Therefore it holds

√
n
(
qβ̂λ

(β̂λ)− qβ∗(β∗)
)

L−→
n→∞

N
(
0, σ2 (β∗)

)
,

where

σ2 (β∗) =
∂qβ(β

∗)

∂βT

∣∣∣∣
β=β∗

J−1
λ (β0)Kλ (β0)J

−1
λ (β0)

∂qβ(β
∗)

∂β

∣∣∣∣
β=β∗

.

Now the result follows.
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Remark 3.2. Based on the previous theorem we can obtain the sample size
necessary to get a fix power ξ (β∗) = ξ0. From (3.5), we must solve the equation

1− ξ0 = Φ

(
1

σ (β∗)

(
χ2
r,α√
n

−
√
nqβ∗(β∗)

))

and we get that n = [n∗] + 1 with

n∗ =
A+B +

√
A(A+ 2B)

2q2β∗(β
∗)

being

A = σ2 (β∗)
(
Φ−1 (1− ξ0)

)2
and B = 2qβ∗(β∗)χ2

r,α.

In the following theorem we present an approximation to the power function
at the contiguous alternative hypothesis

βn = β0 + n−1/2d, (3.6)

with d satisfying β0 + n−1/2d ∈ Θ.

Theorem 3.3. An approximation of the power function for the test statistic
given in (3.4), in βn = β0 + n−1/2d is given by

ξ (βn) = 1− Fχ2
r(δ)

(
χ2
r,α

)
,

where Fχ2
r(δ)

is the distribution function of a non-central chi-square with p de-

grees of freedom and non-centrality parameter δ given by δ = dTΣλ (β0)d.

4. Robustness analysis

4.1. Influence function of the MDPDE

We will consider the influence function analysis of Hampel et al. (1986) to study
the robustness of our proposed MDPDE and the corresponding Wald-type test
of general linear hypothesis in the logistic regression model. Since the MDPDE
can be written in term of a M -estimator as shown in Section 2 with ψ-function
given by (2.7), we can apply directly the results of the M-estimation theory
of Hampel et al. (1986) in order to get the influence function of the proposed
MDPDE.

However, we first need to re-define the minimum density power divergence
estimator β̂λ from Definition 1 in terms of a statistical functional. Let us
assume the stochastic nature of the covariates X and that the observations
(X1, Y1), . . . , (Xn, Yn) are i.i.d. with some joint distribution G. Then we define

the required statistical functional corresponding to β̂λ as follows.
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Definition 4.1. The minimum DPD functional Tλ(G), corresponding to the

minimum DPD estimator β̂λ, at the joint distribution G is defined as the solu-
tion of the system of equations

EG [Ψλ(X, Y,β)] = 0

with respect to β, whenever the solution exists.

Now, if G0 denotes the joint model distribution with the true parameter value
β0 under which

PG0(Yi = 1|Xi = xi) = π(xT
i β0),

then it is easy to see that EG0 [Ψλ(X, Y,β0)] = 0 and hence T λ(G0) =β0.
Therefore, the minimum DPD functional T λ is Fisher consistent.

Next, we can easily obtain the influence function for our MDPDE at the model
distribution G0 as presented in the following theorem. This can be derived either
through a straightforward calculation or by applying the corresponding results
from M-estimation theory of Hampel et al. (1986) and hence the proof of the
theorem is omitted.

Theorem 4.1. The influence function of the minimum DPD functional Tλ, as
defined in Definition 4.1 with tuning parameter λ, at the model distribution G0

is given by

IF((xt, yt), Tλ, G0) = J−1
λ (β0) (Ψλ(xt, yt,β0)− EG0 [Ψλ(X, Y,β0)])

= J−1
λ (β0)Ψλ(xt, yt,β0),

where Jλ(β) is as defined in Section 2 of the paper and (xt, yt) is the point of
contamination.

Before studying the above influence function, let us first recall different types
of outliers in logistic regression model following the discussion in Croux and
Haesbroeck (2003). A contamination point (xt, yt) will be a leverage point if xt

is outlying in the covariates space and will be a vertical outlier (in response)
if it is not a leverage point but the residual yt − π(xT

t β) is large. Croux and
Haesbroeck (2003) also noted that, for the maximum likelihood estimator of β,
a vertical outlier or a “good” leverage point (for which the residual is small) has
bounded influence whereas a bad leverage point (e.g., misclassified observation
etc.) has infinite influence for ||xt|| → ∞.

Next, in order to study the similar nature of the influence function of the
MDPDE having different λ, note that the influence function given in Theorem
4.1 can be factored into two components as

IF((xt, yt), Tλ, G0) = Ψ̃λ(x
T
t β0, yt)J

−1
λ (β0)xt,

where the first part Ψ̃λ depends on the score, s = xT
t β0, and the response, yt,

and is defined as

Ψ̃λ(s, y) =

(
eλs + es

)
(es − y(1 + es))

(1 + es)
λ+2

.
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Figure 1 shows the nature of this function over the score input at y = 0, 1 for
different values of λ. Clearly, the function Ψ̃λ corresponding to λ = 0 (MLE)
is unbounded as s → ∞, illustrating the well-known non-robust nature of the
MLE. However, for λ > 0 the function Ψ̃λ is bounded in s and becomes more re-
descending as λ increase, which implies the increasing robustness of our proposed
MDPDEs with increasing λ > 0.

Fig 1. Plots of Ψ̃λ(s; y) over s for different λ and y = 0, 1.

Further, to examine the effect of different types of leverage points more
clearly, following Croux and Haesbroeck (2003), in Figure 2, we present the
influence function of the MDPDE of the first slope parameter β1 over the co-
variates values in a logistic regression model with two independent standard
normal covariates and β0 = (0, 1, 1)T fixing yt = 0 (without loss of generality).
We can see that when both covariates tend to −∞ the influence function be-
comes zero for all MDPDEs including the MLE (at λ = 0). These are the “good”
leverage points, as noted in Croux and Haesbroeck (2003), and all MDPDEs are
robust with respect to such good leverages as in the case of MLE. However,
when the covariates approach to ∞ they yield bad leverage points (generally
corresponding to misclassified points) and have large influence for the MLE
(λ = 0). But in this case the influence function values of the MDPDEs with
λ > 0 are quite small even for these bad leverages and get progressively smaller
as λ increases. This phenomenon gain indicates the increasing robustness of our
proposed MDPDEs with larger positive λ.

Remark 4.1. Under the setup of Remark 2.1, even when the covariates are non-
stochastic, we can derive the influence function of the corresponding MDPDE,

β̂
∗
λ, following Ghosh and Basu (2013). Whenever the covariates xis are fixed,

the contamination needs to be considered over the conditional distribution of
the response given the covariates which are not identical for each groups with
given fixed covariates. Hence, as in Ghosh and Basu (2013), we can consider the
contamination in any one group or in all the group. This leads to the influence

function of β̂
∗
λ under contamination only in one group (i0-th, say) with covariate

xi0 as given by

IF i0(yti0 , Tλ, G0) = J∗−1
λ (β0)Ψλ(xi0 , yti0 ,β0),
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Fig 2. Influence function of the MDPDE of the first slope parameter β1 for different λ
(yt = 0).

where yti0 is the contamination point in the contaminated distribution of Y
given X = xi0 . Similarly, if there is contamination in all the groups with co-
variates x1, . . . ,xI , respectively, at the contamination points yt1 , . . . , ytI , then
the resulting influence function has the form

IF((yt1 , . . . , ytI ), Tλ, G0) = J∗−1
λ (β0)

I∑
i=1

Ψλ(xi, yti ,β0),

Note that, since the response in a logistic regression takes only values 0 and 1, the
contamination points yti all take values only in {0, 1} (misclassification errors)
and hence all the above influence functions are bounded with respect to contam-
ination in response for all λ ≥ 0. Hence, the effect of these (misclassification)
error in response cannot be clearly inferred only from these influence functions;
see Pregibon (1982), Copas (1988) and Victoria-Feser (2000) for more examples
such analysis of misclassification error in logistic regression with a fixed design.
However, the above influence functions are bounded in the values of given fixed
covariates only for λ > 0, implying the robustness of the MDPDEs with λ > 0
and non-robust nature of MLE (at λ = 0) with respect to the extreme values of
the fixed design in any one group.

4.2. Influence function of the Wald-Type test statistics

We will now study the robustness of the proposed Wald-type test of Section 3
through the influence function of the corresponding test statistics Wn defined
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in Definition 5. Ignoring the multiplier n, let us define the associated statistical
functional for the test statistics Wn evaluated at any joint distribution G as
given by

Wλ(G) =
(
MTT λ(G)−m

)T

(MTΣλ(β̂λ)M)−1
(
MTT λ(G)−m

)
. (4.1)

Now, considering the ε-contaminated joint distribution Gε = (1− ε)G+ ε∧w

with respect to the point mass contamination distribution ∧w at the contami-
nation point w = (xt, yt), the influence function of Wλ(·) is defined as

IF(w,Wλ, G) =
∂Wλ(Gε)

∂ε

∣∣∣∣
ε=0

=
(
MTTλ(G)−m

)T (
MTΣλ (β0)M

)−1

MTIF(w, Tλ, G).

Now, assuming the null hypothesis to be true, let G0 denote the joint model
distribution with true parameter value β0 satisfying MTβ0 = m. Then, under
G0, we have T λ(G0) = β0 and hence IF(w,Wλ, G0) = 0. Therefore, the first
order influence function analysis is not adequate to quantify the robustness of the
proposed Wald-type test statisticsWλ. It is bounded in the contamination points
w = (xt, yt) for all λ ≥ 0 but does not necessarily imply the robustness of the
tests since it includes the well-known non-robust MLE based Wald-test at λ = 0.
This fact is consistent with the robustness analysis of different other Wald-type
tests under different setups (See, for example, Rousseeuw and Ronchetti, 1979;
Toma and Broniatowski, 2011; Ghosh et al., 2016b etc.) and we need to consider
the second order influence analysis to asses the robustness of Wλ.

The second order influence function of the Wald-type test statistics Wn at
the joint distribution G is defined as

IF2(w,Wλ, G) =
∂2Wλ(Gε)

∂ε2

∣∣∣∣
ε=0

=
(
MTT λ(G)−m

)T (
MTΣλ (β)M

)−1

MTIF2(w,T λ, G)

+ IFT (w,T λ, G)M
(
MTΣλ (β)M

)−1

MTIF(w,T λ, G).

Again, under the null hypothesis H0 with β0 being the corresponding true pa-
rameter value, this second order influence function simplifies further as presented
in the following theorem and yields the possibility of studyng the robustness of
our proposed tests through its boundedness.

Theorem 4.2. The second order influence function of the proposed Wald-type
test statistics Wn, given in Definition 5, at the null model distribution G0 having
true parameter value β0 is given by

IF2(w,Wλ, G0)

= IFT (w,T λ, G0)M
(
MTΣλ (β0)M

)−1

MTIF(w,T λ, G0).
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= Ψ̃2
λ(x

T
t β0, yt)x

T
t J

−1
λ (β0)M

(
MTΣλ (β0)M

)−1

MTJ−1
λ (β0)xt.

Note that, the influence function of the Wald-type test statistic is directly
a quadratic function of the corresponding MDPDE used. Hence, as described
in the previous subsection, the influence function for the proposed tests with
λ > 0 will be small and bounded for all kinds of outliers in a logistic regression
model, whereas the classical MLE based Wald-type test will have an unbounded
influence function for large “bad” leverage points. Figure 3 shows the plots
of these second order influence functions for the Wald-type test statistics for
different λ for testing the significance of the first slope parameter in a logistic
regression model with two independent standard normal covariates and β0 =
(0, 1, 1)T fixing yt = 0. The behavior of the influence functions are again similar
to those observed for the corresponding MDPDE in Figure 3, which shows the
greater robustness of our proposal at larger positive λ over the non-robust MLE
based Wald test at λ = 0.

Fig 3. Second order Influence function of the Wald-type test statistics for testing significance
of the first slope parameter β1 for different λ (yt = 0).

4.3. Level and power influence functions

We now study the robustness of the proposed tests through the stability of
their Type-I and Type-II error which are the two basic components for measur-
ing the performance of any testing procedure. In particular, we will study the
local stability of level and power of the proposed tests through the correspond-
ing influence function analysis. Note that the finite sample level and power of
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our proposed Wald-type tests are difficult to compute and has no general form;
on the other hand, the tests are consistent having asymptotic power equal one
against any fixed alternative. So, we will study the influence function of the
asymptotic level under the null β = β0 and asymptotic power under the se-
quence of contiguous alternatives βn = β0 + n−1/2d as defined in, for example,
Hampel et al. (1986) and Ghosh et al. (2016b) among others. In particular,
assuming that the contamination proportion tends to zero at the same rate in
which the contiguous alternatives approaches to the null, here we consider the
following contaminated joint distribution for the power stability calculation as

GP
n,ε,w = (1− ε√

n
)Gβn

+ ε√
n
∧w, (4.2)

where w denote the contamination point w = (xT
t , yt)

T , and Gβn
denote the

joint model distribution with true parameter value β = βn. The contamination
distribution to be considered for the level stability check can be obtained by
substituting d = 0 in (4.2), which yields

GP
n,ε,w = (1− ε√

n
)Gβ0

+ ε√
n
∧w .

Then, the level and power influence functions are defined in terms of the follow-
ing quantities

α(ε,w) = lim
n→∞

PGL
n,ε,w

(Wn > χ2
r,α),

and
π(βn, ε,x) = lim

n→∞
PGP

n,ε,w
(Wn > χ2

r,α).

Definition 4.2. The level influence function (LIF) and the power influence
function (PIF) for the Wald-type test statistics Wn are defined respectively as

LIF(w;Wn, Gβ0
)=

∂

∂ε
α(ε,w)

∣∣∣∣
ε=0

, PIF(x;Wn, Gβ0
)=

∂

∂ε
π(βn, ε,w)

∣∣∣∣
ε=0

.

See Ghosh et al. (2016b) for an extensive discussion on the interpretations
of the level and power influence functions and their relations with the influence
function of the test statistics in the context of a general Wald-type test.

Next, we will derive the forms of the LIF and PIF for our proposed tests in
logistic regression model assuming the conditions required for the derivation of
asymptotic distributions of the MDPDE hold.

Theorem 4.3. Assume that the conditions of Theorem 6 hold and consider the
contiguous alternatives βn = β0 + n−1/2d along with the contaminated model
in (4.2). Then we have the following results:

(i) The asymptotic distribution of the test statistics Wn under GP
n,ε,w is non-

central chi-square with r degrees of freedom and the non-centrality param-
eter

δ = d̃
T

ε,w,λ(β0)M
(
MTΣλ (β0)M

)−1

MT d̃ε,w,λ(β0),

where d̃ε,w,λ(β0) = d+ εIF(w,T λ, Gβ0
).



2758 A. Basu et al.

(ii) The asymptotic power under GP
n,ε,w can be approximated as

π(βn, ε,w) ∼= P
(
χ2
r(δ) > χ2

r,α

)
∼=

∞∑
v=0

Cv

(
MT d̃ε,w,λ(β0),

(
MTΣλ (β0)M

)−1
)

× P
(
χ2
r+2v > χ2

r,α

)
, (4.3)

where

Cv (t,A) =

(
tTAt

)v
v!2v

e−
1
2 t

TAt,

χ2
p(δ) denotes a non-central chi-square random variable with p degrees

of freedom and δ as non-centrality parameter and χ2
q = χ2

q(0) denotes
a central chi-square random variable having degrees of freedom q.

Proof. Let us denote β∗
n = T λ(G

P
n,ε,w). Then, we get

Wn = n(MT β̂λ −m)T
(
MTΣλ (β0)M

)−1

(MT β̂λ −m)

= n
(
MTβ∗

n −m
)T (

MTΣλ (β0)M
)−1 (

MTβ∗
n −m

)
+ n(β̂λ − β∗

n)
TM

(
MTΣλ (β0)M

)−1

MT (β̂λ − β∗
n)

+ n(β̂λ − β∗
n)

TM
(
MTΣλ (β0)M

)−1

(MT β̂λ −m)

= S1,n + S2,n + S3,n. (4.4)

Next, one can show that
√
n(β∗

n − β0) = d+ εIF
(
w,T λ, Gβ0

)
+ op(1p)

= d̃ε,w,λ(θ0) + op(1p). (4.5)

Thus, we get
√
n(MTβ∗

n −m) = MT d̃ε,w,λ(θ0) + op(1p). (4.6)

Further, under GP
n,ε,w, the asymptotic distribution of MDPDE yields

√
n(β̂λ − β∗

n)
L−→

n→∞
N (0,Σλ (β0)) . (4.7)

Thus, we get

S3,n
L−→

n→∞
χ2
r.

Combining (4.4), (4.6) and (4.7), we get

Wn = ZT
n

(
MTΣλ (β0)M

)−1

Zn + op(1),

where
Zn =

√
nMT (β̂λ − β∗

n) +MT d̃ε,w,λ(θ0).

By (4.7),

Zn
L−→

n→∞
N

(
MT d̃ε,w,λ(θ0),M

TΣλ (β0)M
)
,
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and hence we get that

Wn
L−→

n→∞
χ2
r(δ),

where δ is as defined in Part (i) of the theorem.
Part (ii) of the theorem follows from Part (i) using the infinite series expansion

of a non-central chi-square distribution function in terms of that of the central
chi-square variables:

π(βn, ε,w) = lim
n→∞

PGP
n,ε,w

(Wn > χ2
r,α)

∼= P (χ2
r,δ > χ2

r,α)

=

∞∑
v=0

Cv

(
MT d̃ε,w,λ(β0),

(
MTΣλ (β0)M

)−1
)
P
(
χ2
r+2v >χ2

r,α

)
.

Corollary 4.1. Putting ε = 0 in Theorem 4.3, we get the asymptotic power of
the proposed Wald-type tests under the contiguous alternative hypotheses βn =
β0 + n−1/2d as

π(βn) = π(βn, 0,w) ∼=
∞∑
v=0

Cv

(
MTd,

(
MTΣλ (β0)M

)−1
)
P
(
χ2
r+2v >χ2

r,α

)
.

This is identical with the results obtained earlier in Theorem 10 independently.

Corollary 4.2. Putting d = 0 in Theorem 4.3, we get the asymptotic distri-
bution of Wn under GL

n,ε,w as the non-central chi-square distribution having r
degrees of freedom and non-centrality parameter

ε2IF(w;T λ, Gβ0
)TM

(
MTΣλ (β0)M

)−1

MTIF(w;T λ, Gβ0
).

Then, the asymptotic level under contiguous contamination is given by

α(ε,w) = π(β0, ε,w)

∼=
∞∑
v=0

Cv

(
εMTIF(w;T λ, Gβ0

),
(
MTΣλ (β0)M

)−1
)
P
(
χ2
r+2v > χ2

r,α

)
.

In particular, as ε → 0,β∗
n → β0 and the non-centrality parameter of the above

asymptotic distribution tends to zero leading to the null distribution of Wn.

Now we can easily obtain the the power and level influence functions of the
Wald-type test statistics from Theorem 4.3 and Corollary 4.2 and these have
been presented in the following theorem.

Theorem 4.4. Under the assumptions of Theorem 4.3, the power and level
influence functions of the proposed Wald-type test statistic Wn is given by

PIF(w,Wn, Gβ0
) ∼= K∗

r

(
sT (β0)d

)
sT (β0)IF(w,T λ, Gβ0

), (4.8)
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with sT (β0) = dTM
(
MTΣλ (β0)M

)−1

MT and

K∗
r (s) = e−

s
2

∞∑
v=0

sv−1

v!2v
(2v − s)P

(
χ2
r+2v > χ2

r,α

)
,

and

LIF(w,Wn, Gβ0
) = 0.

Further, the derivative of α(ε,w) of any order with respect to ε will be zero at
ε = 0, implying that the level influence function of any order will be zero.

Proof. We start with the expression of π(βn, ε,w) from Theorem 4.3. Clearly,
by definition of PIF and using the chain rule of derivatives, we get

PIF(w,Wn, Gβ0
) =

∂

∂ε
π(βn, ε,w)|ε=0

∼=
∞∑
v=0

∂

∂ε
Cv

(
MT d̃ε,w,λ(β0),

(
MTΣλ (β0)M

)−1
)∣∣∣∣

ε=0

P
(
χ2
r+2v > χ2

r,α

)
∼=

∞∑
v=0

∂

∂tT
Cv

(
MT t,

(
MTΣλ (β0)M

)−1
)∣∣∣∣

t=d̃0,w,λ(β0)

× ∂

∂ε
d̃ε,w,λ(β0)

∣∣∣
ε=0

P
(
χ2
r+2v > χ2

r,α

)
.

Now d̃0,w,λ(β0) = d and standard differentiations give

∂

∂ε
d̃ε,w,λ(β0) = IF(w,T λ, Gβ0

),

and

∂

∂t
Cv (t,A) =

(
tTAt

)v−1

v!2v
(
2v − tTAt

)
Ate−

1
2 t

TAt.

Combining above results and simplifying, we get the required expression of PIF
as presented in the theorem.

It is clear from the above theorem that, the asymptotic level of the proposed
Wald-type test statistic will be unaffected by a contiguous contamination for
any values of the tuning parameter λ, whereas the power influence function will
be bounded whenever the influence function of the MDPDE is bounded (which
happens for all λ > 0). Thus, the robustness of the power of the proposed tests
again turns out to be directly dependent on the robustness of the MDPDE βλ

used in constructing the test. In particular, the asymptotic contiguous power of
the classical MLE based Wald-type test (at λ = 0) will be non-robust whereas
that for the Wald-type tests with λ > 0 will be robust under contiguous con-
tamination and this robustness increases as λ increases further.
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Fig 4. (a) Simulated levels of different tests for pure data; (b) simulated levels of different tests
for contaminated data; (c) simulated powers of different tests for pure data; (d) simulated
powers of different tests for contaminated data.

5. Simulation study

In this section we have empirically demonstrated some of the strong robustness
properties of the density power divergence tests for the logistic regression model.
We considered two explanatory variables x1 and x2 in this study, so k = 2.
These two variables are distributed according to a standard normal distribution
N (0,I2×2). The response variables Yi are generated following the logit model
as given in (1.1). The true value of the parameter is taken as β0 = (0, 1, 1)T .
We considered the null hypothesis H0 : (β1, β2)

T = (1, 1)T . It can be written in
the form of the general hypothesis given in (1.3), where m = (1, 1)T and

M =

⎛⎝ 0 0
1 0
0 1

⎞⎠ .

Our interest was in studying the observed level (measured as the proportion of
test statistics exceeding the corresponding chi-square critical value in a large
number – here 1000 – of replications) of the test under the correct null hypoth-
esis. The result is given in Figure 4(a) where the sample size n varies from 20 to
100. We have used several Wald-type test statistics, corresponding to different
minimum density power divergence estimators. We have used, λ = 0, 0.1, 0.5
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and 1, in this particular study. As it is previously mentioned, λ = 0 is the
classical Wald test for the logistic regression model. The horizontal lines in
the figure represents the nominal level of 0.05. It may be noticed that all the
tests are slightly conservative for small sample sizes and lead to somewhat de-
flated observed levels. In particular, the Wald-type tests with higher values of
λ are relatively more conservative. However, this discrepancy decreases rapidly
as sample size increases.

To evaluate the stability of the level of the tests under contamination, we
repeated the tests for the same null hypothesis by adding 3% outliers in the
data. For the outlying observations we first introduced the leverage points where
x1 and x2 are generated from N (μc, σI2×2) with μc = (5, 5)T and σ = 0.01.
Then the values of the response variable corresponding to those leverage points
were altered to produce vertical outliers (yt = 1 was converted to yt = 0). Figure
4(b) shows that the levels of the classical Wald test as well as DPD(0.1) test
break down, whereas Wald-type test statistics for λ = 0.5 and λ = 1 present
highly stable levels.

To investigate the power of the tests we changed the null hypothesis to H∗
0 :

(β1, β2)
T = (0, 0)T , and kept the data generating distributions as before, as

well as the true value of the parameter as β0 = (0, 1, 1)T . In terms of the null
hypothesis in (1.3) the value of m is changed to (0, 0)T whereas M remained
unchanged from the previous experiment. The empirical power functions are
calculated in the same manner as the levels of the tests, and plotted in Figure
4(c). The Wald test is the most powerful under pure data. The power of the
Wald-type test statistic for λ = 0.1 almost coincides with the classical Wald
test in this case. The performances of the Wald-type test statistics for λ = 0.5
and λ = 1 are relatively poor, however, as the sample size increases to 60 and
beyond, the powers are practically identical.

Finally, we calculated the power functions under contamination for the above
hypothesis under the same setup as that of the level contamination. The ob-
served powers of that the tests are given in Figure 4(d). The Wald-type test
statistics for λ = 0.5 and λ = 1 show stable powers under contamination, but
the classical Wald test and the Wald-type test for λ = 0.1 exhibit a drastic loss
in power. In very small sample sizes the classical Wald test and the Wald-type
test for λ = 0.1 have slightly higher power than the other tests, but this advan-
tage quickly disppears with increasing sample size. On the whole, the proposed
Wald-type test statistics corresponding to moderately large λ appear to be quite
competitive to the classical Wald test for pure normal data, but they are far
better in terms of robustness properties under contaminated data.

6. Real data examples

In this section we will explore the performance of the proposed Wald-type tests
in logistic regression models by applying it on different interesting real data sets.
The estimators are computed by minimizing the corresponding density power
divergence through the software R, and the minimization is performed using
“optim” function.
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6.1. Students data

As an interesting data example leading to the logistic regression model, we
consider the students data set from Muñoz-Garcia et al. (2006). The data set
consists of 576 students of the University of Seville. The response variable is
the students aim to graduate after three years. The explanatory variables are
gender (xi1 = 0 if male; xi1 = 1 if female), entrance examination (EE) in
University (xi2 = 1 if the first time; xi2 = 0 otherwise) and sum of marks
(xi3) obtained for the courses of first term. There were 61 distinct cases (i.e.
n = 61) in this study. We assume that the response variable follows a binomial
logistic regression model as mentioned in Remark 2.1. We are interested to test
the null hypothesis that the gender of student does not play any role on their
aim. So the null hypothesis is given by H0 : β1 = 0. Figure 5 shows p-values of
Wald-type tests for different values of λ. Muñoz-Garcia et al. (2006) mentioned
that the 32nd observation is the most influential point as it has a large residual
and a high leverage value. If we use the classical Wald test or Wald-type tests
with small λ under the full data, the null hypothesis is rejected at 10% level
of significance. But this result is clearly a false positive as the outlier deleted
p-values for all λ are close to 0.35. On the other hand, Wald-type tests with
large λ give robust p-values in both situations.

Fig 5. P-values of Wald-type tests for testing H0 : β1 = 0 in Students data.

6.2. Lymphatic cancer data

Brown (1980), Mart́ın and Pardo (2009) and Zelterman (2005, Section 3.3) stud-
ied the data that focused on the evidence of lymphatic cancer in prostate cancer
patients for predicting lymph nodal involvement of cancer. There were five co-
variates (three dichotomous and two continuous): the X-ray finding (xi1 = 1 if
present; xi1 = 0 if absent), size of the tumor by palpation (xi2 = 1 if serious;
xi2 = 0 if not serious), pathology grade by biopsy (xi3 = 1 if serious; xi3 = 0
if not serious), the age of the patient at the time of diagnosis (xi4) and serum
acid phosphatase level (xi5). The diagnostics was associated with 53 individ-
uals. An ordinary logistic model is assumed here. We are interested in testing
the significance of the size of the tumor on the response variable, so the null
hypothesis is taken as H0 : β2 = 0. The p-values of Wald-type tests for different
values of λ are given in Figure 6. Mart́ın and Pardo (2009) noticed that the
24th observation is an influential point. The p-value of the classical Wald test
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under the full data is 0.0430, but if the outlier is deleted it becomes 0.0668. So
if we consider a test at 5% level of significance, the decision of the test changes
when we delete just one outlying observation. However, Wald-type tests with
high values of λ always produce high p-values.

Fig 6. P-values of Wald-type tests for testing H0 : β2 = 0 in Lymphatic Cancer data.

6.3. Vasoconstriction data

Finney (1947), Pregibon (1981) and Mart́ın and Pardo (2009) studied the data
where the interest is in the occurrence of vasoconstriction in the skin of the
finger. The covariates of the study were the logarithm of volume (xi1) and the
logarithm of rate (xi2) of inspired air measured in liters. Pregibon (1981) has
shown that two observations, the 4th and 18th, are not fitted well by the logistic
model as they have large residuals. However, it can be checked easily that these
observations are only outliers in the y-space and are not leverage points. Here
we want to test that there is no effect of the covariates, so the null hypothesis is
given by H0 : β1 = β2 = 0. The p-value of the classical Wald test under the full
data is 0.0194, and in the outlier deleted data it becomes 0.0371. But, Figure 7
shows that Wald-type tests with large λ produce large p-values.

Fig 7. P-values of Wald-type tests for testing H0 : β1 = β2 = 0 in Vasoconstriction data.

6.4. Leukemia data

This data set consists of 33 cases on the survival of individuals diagnosed with
leukemia. The explanatory variables are white blood cell count (xi1) and another
variable which indicates the presence or absence of a certain morphological
characteristic in the white cells (xi2 = 1 if present; xi2 = 0 if absent). This data
set was also studied by Cook and Weisberg (1982), Johnson (1985) and Mart́ın
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and Pardo (2009). They defined a success to be patient survival in excess of 52
weeks. We are interested to test the significance of two covariates, i.e. the null
hypothesis is H0 : β1 = β2 = 0. The plot of the p-values of Wald-type tests for
different values of λ is given in Figure 8. Mart́ın and Pardo (2009) noticed that
the 15th observation is an influential point. The p-value of the classical Wald
test under the full data is 0.0226, but if the outlier is deleted it becomes 0.0683.
Thus, at 5% level of significance, the decision of the test depends on only one
outlying observation. In this case also Wald-type tests with high values of λ
always produce high p-values.

Fig 8. P-values of Wald-type tests for testing H0 : β1 = β2 = 0 in Leukemia data.

7. On the choice of tuning parameter λ

In this paper, we have proposed a robust family of Wald-type test statistics
for testing general linear hypothesis under the logistic regression model, which
depend crucially on a tuning parameter λ involved in its definition. We have seen
from all the theoretical results and numerical illustrations throughout the paper
that the power for contiguous alternative hypotheses for the proposed Wald-type
tests decrease slightly with increasing λ under pure data with no contamination
but, on the other hand, in presence of contamination in data the stability of both
power and level increases drastically with increasing λ. In particular, it can be
noted from Figure 4 that the loss in power is not very significant even for λ ≈ 0.5
under moderate sample size and this loss becomes almost zero for larger sample
sizes; however levels of the tests are highly stable in presence of contamination
for any sample size with λ ≈ 0.5. Further, from the real data examples (Figures
5–8), we can also see that the p-values and the resulting inferences are highly
robust for λ ≥ 0.4. All this empirical evidences suggest the use of λ ≈ 0.5 as an
ad-hoc choice of tuning parameter while applying the proposed method in any
practical problem and is expected to produce a fair enough trade-off between
the power under pure data and robustness under contamination.

Although this ad-hoc choice of λ works quite well in practice, many practi-
tioner may believe that the level of contamination is different for each practical
data set and hence we should have different trade-off for each of them. This can
be done through an appropriate algorithm to obtain an data-driven choice of λ
separately for each sample, which provides a trade-off between true power and
robustness against outliers for the test based on only the given data at hand.
To develop such a method for our proposed Wald-type test statistics, we note
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that their performances are directly dependent on that of the MDPDE having
the same tuning parameter λ. The power of our proposed Wald-type tests at
contiguous alternatives, as obtained in Theorem 10, increases whenever the non-
centrality parameter δ = dTΣλ (β0)d of the associated chi-square distribution
decreases, i.e., whenever the asymptotic variance Σλ (β0) of the MDPDE used
decreases and its asymptotic efficiency increases. Hence, as λ increases, both
the asymptotic power of the Wald-type test at contiguous alternatives and the
asymptotic efficiency of the MDPDE decreases slightly. On the other hand the
influence function of the Wald-type test statistics as well as its power influ-
ence functions are a direct function of the influence function of the MDPDE
with the same tuning parameter. Therefore the robustness of both the test and
the MDPDE are equivalently dependent of their respective tuning parameter λ;
in particular, their robustness increases significantly with increasing λ. There-
fore, the problem of a suitable data-driven selection of the tuning parameter λ
for the proposed Wald-type test statistics through proper trade-off between its
power under true data and robustness can be equivalently solved by obtaining
a data-driven tuning parameter with proper trade-off of asymptotic efficiency
and robustness of the MDPDE used in constructing the test statistics.

There are a few existing approaches of selection of data-driven tuning param-
eter of the general MDPDE under i.i.d. setup; among them the popular one is
the method of Warwick and Jones (2005) who proposed the minimization of an
estimator of the MSE of the MDPDE to get optimum λ. The approach has been
recently studied in many contexts with suitable extensions (Ghosh and Basu,
2013; 2015; Ghosh et al., 2016a, 2016c) and shown to provide satisfactory per-
formances in selecting proper tuning parameter for any given data set. Here, we
will use their approach to propose a data-driven selection of the tuning param-
eter λ of the MDPDE and hence for the proposed Wald-type tests under the
present logistic regression model. Following Warwick and Jones (2005), we need

to minimize an estimate of the MSE of the MDPDE β̂λ as an function of the
tuning parameter λ given by

MSE(λ) = (βλ − β∗)
T
(βλ − β∗) +

1

n
Trace

(
J−1

λ (βλ)Kλ(βλ)J
−1
λ (βλ)

)
,

(7.1)
where β∗ is the true value of the target parameter and βλ is the best fitting
parameter that minimizes the DPD measure (with tuning parameter λ) between
the true and the (model density. Note that, although we have considered the
model to be correct in the previous parts of the paper, the above construction
gives us more flexibility to work with true densities outside the model family
also. In particular, the first term in (7.1) indicates the model misspecification
bias and becomes zero whenever the true density belongs to the assumed model
family. On the other hand, the second term in (7.1) simply gives the variance of
the MDPDE. We need to get an estimate of this MSE based on the given data
without assuming that the model is true and then minimize this suitable oven
λ ∈ [0, 1] (may be through a grid search) to get the optimum λ for the data at
hand.
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In order to estimate the MSE in (7.1), let us first consider the (second)
variance term. We have already provided estimator of Jλ(βλ) and Kλ(βλ) in
Section 2 but assuming that the model is true. One can easily obtain their model
free estimators also in a similar way, which could be given by

Ĵ
∗
λ =

1

n

n∑
i=1

[
L1(xi, yi, β̂λ) + L2(xi, yi, β̂λ)

]
,
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where L1 and L2 are defined in Section 2. Next, in order to estimate the (first)

bias term in (7.1), we can estimate βλ by the MDPDE β̂λ but there is no
obvious choice for β∗. Warwick and Jones (2005) suggested to use suitable pilot
estimator βP in place of β∗ and use the following estimate of the MSE:

M̂SE(λ) =
(
β̂λ − βP

)T (
β̂λ − βP

)
+

1

n
Trace

(
Ĵ

∗−1

λ K̂
∗
λĴ

∗−1

λ

)
.

Note that, this selection procedure clearly depends on the pilot estimator used.
When we take the pilot estimator βP = β̂λ, it corresponds to the assumption
of no model bias and the approach coincides with that of Hong and Kim (2001);
this is clearly more restrictive and we lose generality of the procedure against
outliers due to model misspecification. Alternatively, Warwick and Jones (2005)

suggested, through an extensive simulation study, that the choice βP = β̂1

works well enough for the case of MDPDE under i.i.d. data. Later Ghosh and
Basu (2015) empirically concluded, while extending to the non-homogeneous

setup, the choice βP = β̂0.5 often works better. Here, we will first empirically
examine a good choice of the pilot estimator for the present case of random
design logistic regression and illustrate that this method works in practice for
choosing a data-driven choice of tuning parameter λ.

Let us reconsider the simulation study discussed in Section 5, but now we
perform the selection of λ following the above proposal for each iteration with
different possible pilot estimators. Figure 9 gives the simulated level and power
in the same setup of Figure 4. The average optimum values of λ for the pure
data as well as the contaminated data are plotted in Figure 10. Pilot(λ) in
these plots refers to the Wald-type test statistic where MDPDE with the tuning
parameter λ is used as a pilot estimator. Figure 9 (a) and (c) show that in the
pure data there is no significant effect of the pilot estimator to the level and
power of the tests. In fact, Figure 10 (a) shows that the optimum λ turns out
to be small (less than 0.25) in case of the pure data. This result is consistent
with the result in Figure 4 (a) and (c) as we noticed almost no difference in the
level or power of the tests with small values of λ. However, in the contaminated
data the tuning parameter plays a vital role in the robustness of the test. This
is also true for the pilot estimator. Figure 10 (b) shows that the optimum value
of λ is still small if a pilot estimator with small λ is chosen. As a result, the
level of the test breaks down and the power of the test is not sufficiently high.
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Fig 9. (a) Simulated level and power using the optimum λ for different values of the pilot
estimator: (a) simulated levels for pure data, (b) simulated levels for contaminated data; (c)
simulated powers for pure data; (d) simulated powers contaminated data.

Fig 10. The average optimum values of λ for different values of the pilot estimator for (a)
the pure data and (b) the contaminated data.

On the other hand, a pilot estimator with large λ produces a large optimum λ
(more than 0.5), so the corresponding test gives a stable level and high power,
see Figure 9 (b) and (d). The simulation results indicate that the performance
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Students Data
Pilot λ 0 0.1 0.25 0.5 0.75 1
Optimum λ 1 1 1 1 1 1
Optimum MSE 10.21 10.21 10.11 10.03 9.97 9.98

Lymphatic Cancer Data
Pilot λ 0 0.1 0.25 0.5 0.75 1
Optimum λ 0 0 0 0 0 0
Optimum MSE 13.57 13.57 13.59 13.65 13.71 13.75

Vasoconstriction Data
Pilot λ 0 0.1 0.25 0.5 0.75 1
Optimum λ 1 1 1 1 1 1
Optimum MSE 50.76 45.41 24.51 15.04 15.05 15.04

Leukemia Data
Pilot λ 0 0.1 0.25 0.5 0.75 1
Optimum λ 0.47 0.47 0.47 0.47 0.47 0.47
Optimum MSE 5.14 4.98 3.01 2.98 2.98 2.98

Table 1

The optimum values of λ and MSE using different pilot estimators for different data sets.

Data Set Optimum λ p-value1 p-value2

Students Data 1 0.1992 0.3539
Lymphatic Cancer Data 0 0.0430 0.0668
Vasoconstriction Data 1 0.3506 0.3506
Leukemia Data 0.47 0.0900 0.0903

Table 2

The optimum values of λ and the corresponding p-values in full data (p-value1) and in
outliers deleted data (p-value2).

of the tests with pilot estimators λ = 0.5 and 1 both give sufficient robustness
properties, moreover, λ = 1 gives slightly better results in this simulation setup.
The similar scenario is observed in case of the DPD test with a fixed value of λ.

Now, we apply the proposed method of optimal selection of tuning parameter
λ to all our real data examples of Section 6. We use several pilot estimators,
but finally, they produced almost same optimal λ; see in Table 1 the detailed
results. We have also computed the p-values corresponding to these optimum
value of λ in the full data and in outliers deleted data for each examples, which
are reported in Table 2. Note that, the p-values do not change significantly in
the presence of outliers when the tuning parameter λ is chosen optimally for
each example following the proposed algorithm. The interpretation of the result
remains the same as we discussed in the previous section; however, as it is based
on the optimum choice of λ, it eliminates the subjective choice of the tuning
parameter for the DPD tests.

8. Concluding remarks

Logistic regression for binary outcomes is one of the most popular and successful
tools in the statisticians toolbox. It is frequently used by applied scientists of
many disciplines to solve problems of real interest in their domain of applica-
tion. However, in the present age of big data, the need for protection against
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data contamination and other modeling errors is paramount, and, wherever pos-
sible, strong robustness qualities should be a default requirement for statistical
methods used in practice. In this paper we have presented one such class of
inference procedures. We have provided a thorough theoretical evaluation of the
proposed class of tests for testing the linear hypothesis in the logistic regression
model highlighting their robustness advantages. We have also produced substan-
tial numerical evidence, including simulation results and a large number of real
problems, to demonstrate how these theoretical advantages translate in practice
to real gains. On the whole, we feel that the proposed tests will turn out to be
an useful set of tools with significant practical application.
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Muñoz-Garcia, J., Muñoz-Pichardo, J. M. and Pardo, L. (2006). Cressie and
Read power-divergences as influence measures for logistic regression models.
Comput. Statist. Data Anal., 50, 3199–3221. MR2239664

Morgenthaler, S. (1992), Least-absolute-deviations fits for generalized linear
models. Biometrika, 79, 747–754.

Pregibon, D. (1981). Logistic regression diagnostics. Annals of Statistics, 9,
705–724. MR0619277

Pregibon, D. (1982), Resistant lits for some commonly used logistic models with
medical applications, Biometrics, 38, 485–498.

Rousseeuw, P. J. and Christmann, A. (2003), Robustness against separation and
outliers in logistic regression. Computational Statistics and Data Analysis, 43,
315–332. MR1996815

Rousseeuw, P. J. and Ronchetti, E. (1979) The influence curve for tests. Research
Report 21, Fachgruppe fur Statistik, ETH Zurich.

Toma, A. and Broniatowski, M. (2011). Dual divergence estimators and tests:
Robustness results. Journal of Multivariate Analysis, 102, 20–36. MR2729417

Victoria-Feser, M. (2000). Robust Logistic Regression for Binomial Re-
sponses. Available at SSRN: https://ssrn.com/abstract=1763301 or
http://dx.doi.org/10.2139/ssrn.1763301

Yohai, V. J. (1987). High breakdown-point and high efficiency robust estimates
for regression. Annals Statistics, 15, 692–656. MR0888431

Warwick, J. and Jones, M. C. (2005). Choosing a robustness tuning parameter.
Journal of Statistical Computation and Simulation, 75, 581–588. MR2162547

Zelterman, D. (2005). Models for Discrete Data. Oxford University Press, New
York. MR1707334

http://www.ams.org/mathscinet-getitem?mr=1895987
http://www.ams.org/mathscinet-getitem?mr=2238141
http://www.ams.org/mathscinet-getitem?mr=2744128
http://www.ams.org/mathscinet-getitem?mr=2239664
http://www.ams.org/mathscinet-getitem?mr=0619277
http://www.ams.org/mathscinet-getitem?mr=1996815
http://www.ams.org/mathscinet-getitem?mr=2729417
https://ssrn.com/abstract=1763301
http://dx.doi.org/10.2139/ssrn.1763301
http://www.ams.org/mathscinet-getitem?mr=0888431
http://www.ams.org/mathscinet-getitem?mr=2162547
http://www.ams.org/mathscinet-getitem?mr=1707334

	Introduction
	Minimum density power divergence estimator
	Wald type test statistic for testing linear hypothesis
	Robustness analysis
	Influence function of the MDPDE
	Influence function of the Wald-Type test statistics
	Level and power influence functions

	Simulation study
	Real data examples
	Students data
	Lymphatic cancer data
	Vasoconstriction data
	Leukemia data

	On the choice of tuning parameter 
	Concluding remarks
	References

