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Abstract: We consider the problems of detection and support recovery
of a contiguous block of weak activation in a large matrix, from noisy,
possibly adaptively chosen, compressive (linear) measurements. We pre-
cisely characterize the tradeoffs between the various problem dimensions,
the signal strength and the number of measurements required to reliably
detect and recover the support of the signal, both for passive and adaptive
measurement schemes. In each case, we complement algorithmic results
with information-theoretic lower bounds. Analogous to the situation in the
closely related problem of noisy compressed sensing, we show that for detec-
tion neither adaptivity, nor structure reduce the minimax signal strength
requirement. On the other hand we show the rather surprising result that,
contrary to the situation in noisy compressed sensing, the signal strength
requirement to recover the support of a contiguous block-structured signal
is strongly influenced by both the signal structure and the ability to choose
measurements adaptively.
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1. Introduction

The estimation of a sparse signal from noisy observations is a problem of cen-
tral interest in statistics and signal processing. In this paper, we consider the
problems of detecting the presence of and estimating the support of a small con-
tiguous block of signal that is embedded in a large data matrix, given access to
noisy compressive measurements, i.e., linear combinations of the matrix entries
corrupted with noise. Such problems arise in a variety of applications, including
remote sensing [23, 43], computational biology [47], image processing [14] and
anomaly detection [4, 44].

Broadly, our work is part of a large body of literature on estimating a high-
dimensional structured matrix from noisy measurements. This problem has re-
ceived widespread attention in applications such as community detection, mul-
tiple linear regression, sparse PCA and ranking problems (see for instance the
paper [18] and references therein). Our focus in this paper is on highly struc-
tured matrices for which a sparse set of consecutive rows and columns are active.
Data matrices with sparse, contiguous block-structured signal components form
an idealized model for signals arising in several real-world applications. For
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instance, the expression pattern resulting from genes, grouped by pathways, ex-
pressed under the influence of drugs, grouped by similarity. The block structure
in this case arises from the fact that groups of genes (belonging to common
pathways, say) are co-expressed under the influence of sets of similar drugs [47].

As an illustrative example consider Figure 1. The figure considers an appli-
cation of object detection and localization via compressive sensing. The illus-
trated application further shares similarities with other applications including
search and rescue in open areas, and gas leak or radiation detection [32, 22].
We consider two problems in this context: the hypothesis testing problem of
detecting the presence of an object, and the localization or support recovery
problem of precisely locating the object in the matrix. Additionally, we com-
pare and contrast two measurement paradigms: a passive measurement scheme
where the measurement vectors are chosen non-adaptively and in advance of
observing measurement outcomes, and an adaptive or sequential scheme where
each measurement vector can be chosen after observing the outcome of previous
measurements.

1.1. Our contributions

Our primary contributions are to establish the fundamental limits for adaptive
and passive measurement schemes for detection and localization of a contiguous
block of positive activation. In this direction, our first contribution (Theorem 1)
establishes the fundamental limits for detection of a contiguous block of activa-
tion. Similar to situation of detecting a sparse vector, as studied by Arias-Castro
[2], we show that neither structure, nor the ability to choose measurements se-
quentially, help in the detection problem. In this setting, analogous to the sparse
vector setting, a fairly naive passive scheme is optimal. Our proof technique fol-
lows that of Arias-Castro [2]: however, we require a slightly more refined analysis
here in order to show that the lower bound on adaptive schemes continues to
hold despite the additional signal structure.

Our second contribution, is to determine upper and lower bounds for the
problem of localization from passive measurements. In the sparse vector setting
this problem has been considered in a variety of papers with fundamental lim-
its, for Gaussian measurement ensembles, appearing in the work of Wainwright
[45]. In Theorem 2, we establish analogous results for the case of a contiguous
block of activation. Our lower bounds follow from the construction of two pack-
ing sets, that respectively capture the difficulty of approximately and exactly
localizing the support of the signal, combined with classical information theo-
retic techniques involving Fano’s inequality. For our upper bound we build on
the techniques of Wainwright [45], refining them to account for the much lower
cardinality of the class of signals under consideration in this paper.

Our third contribution is to establish upper and lower bounds for the problem
of localization from adaptive, sequentially chosen measurements. In the sparse
vector case upper and lower bounds for adaptive measurement schemes follow
from a sequence of past work [3, 34, 33, 19, 15]. We use techniques of Arias-
Castro [2] in order to develop modifications to the classical Fano argument to
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Fig 1. An illustrative application of object detection from Landsat images. Figure (a) shows
the original RGB image, and Figure (b) shows the de-noised blue channel of this image. The
goal is to detect/localize the object (swimming pool) in the image, via a small number of
compressed measurements. Figures (c) and (d) show the (log) energy profile of a passive and
sequential sensing scheme respectively. In this context, adaptive sensing can be accomplished
via a compressive imaging camera whose resolution or field of view is adjusted to zoom in on
specific areas. The passive sensing scheme uses roughly uniform energy on each pixel while
the adaptive scheme adaptively allocates its sensing budget, and spends a considerable amount
of sensing energy in precisely localizing the signal.

account for adaptive measurements: once again we adopt multiple constructions
to capture the difficulty of approximately and precisely localizing the block of
activation. For our upper bounds we build on the work of Malloy and Nowak
[33, 34] (see also [19]), and analyze a compressive binary search algorithm. At
a high-level, as illustrated in Figure 1, the compressive binary search algorithm
sequentially invests its sensing energy on quadrants that are likely to contain
the block of activation. This coarse localization is then followed by a novel
boundary detection algorithm to exactly identify the signal support. We provide
an analysis of this algorithm together with an information-theoretic lower bound
in Theorem 3.

These results taken together give a sharp characterization of the fundamental
limits for detection and localization of a contiguous block of signal from passive
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and adaptive compressive measurements. At a conceptual level while previous
results for the sparse vector case indicate that adaptivity offers no improve-
ment in a minimax sense, our results indicate that for localizing a contiguous
block adaptivity and structure play a key role and that significant improvements
are possible by using adaptive measurement schemes. More broadly, our results
suggest that adaptive measurements can offer significant gains in highly struc-
tured settings and that further developments may be possible (see the papers
[16, 31, 39] for some recent progress) in this direction.

The rest of the paper is organized as follows: In Section 2 we set up the
measurement model, formally introduce the problems of detection and support
recovery, and discuss related work. In Section 3 we present our main results and
discuss their consequences. Section 4 is devoted to the proofs our main theorems,
with the remaining technical details deferred to the Appendix. In Section 5 we
provide a variety of simulation results, and we conclude with a discussion of
extensions in Section 6.

Notation: We use [n] to denote the set {1, . . . , n}. I{E} denotes the 0/1 indi-
cator function for the event E . For a vector a ∈ R

d, supp(a) := {j : aj �= 0}
denotes its support (with an analogous definition for matrices Θ ∈ R

d1×d2),
‖a‖q, q ∈ [1,∞). The �q-norm is defined as ‖a‖q = (

∑
i∈[d] |ai|q)1/q with the

standard extensions for q ∈ {0,∞}. For a matrix Θ ∈ R
d1×d2 , we use the no-

tation vec(Θ) to denote the vector in R
d1d2 formed by stacking the columns of

Θ. We denote the Frobenius norm of Θ by |||Θ|||fro and its operator norm by
|||Θ|||op. For two matrices Θ1 and Θ2 of identical dimensions, 〈〈Θ1, Θ2〉〉 denotes
the trace inner product, i.e. 〈〈Θ1, Θ2〉〉 = trace(ΘT

1 Θ2).

2. Background and problem setup

In this section, we provide some background on our measurement model, the
problems of detection and support recovery, and the adaptive and passive mea-
surement schemes we consider in this paper. Finally, we conclude this section
with a survey of related work.

2.1. The measurement model

Throughout, we will assume that we collect n noisy linear measurements,
{y1, . . . , yn} of an unknown signal matrix Θ∗ ∈ R

d1×d2 using measurement
matrices {X1, . . . , Xn}. The measurement outcomes yi are related to the mea-
surement matrices Xi via the linear model:

yi = 〈〈Θ∗, Xi〉〉+ εi, i = 1, . . . , n, (2.1)

where ε1, . . . , εn are Gaussian with mean zero and variance σ2. Following the
convention of the majority of the literature on compressive sensing we normal-
ize the sensing matrices Xi to satisfy one of the following two conditions: 1)
|||Xi|||2fro ≤ 1 or 2) E|||Xi|||2fro ≤ 1, for every i ∈ [n]. This normalization ensures
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that every measurement is made with the same amount of energy (possibly in ex-
pectation). Typically, the first condition is enforced when the measurements are
non-random while the second condition is enforced for random measurements.

We are interested in a highly structured setting where the true matrix Θ∗

contains a contiguous block of positive activation of size k1 × k2. Formally, a
contiguous block B ∈ B is a collection of indices:

B =

{
Ir × Ic :

Ir and Ic are contiguous subsets of [d1] and [d2],
|Ir| = k1, |Ic| = k2

}
. (2.2)

We let B∗ denote the contiguous block of activation in Θ∗, and we denote the
minimum signal strength by θmin:

θmin := min
(i,j)∈B∗

Θ∗
ij > 0.

We note in passing that this measurement model could be equivalently vec-
torized. We maintain the matrix representation of Equation (2.1) in order to
emphasize that the support of the signal is a contiguous block. We focus on the
case when the size of the contiguous block, i.e, k1, k2 are known, but indicate in
Section 6 methods that adapt to these parameters. In Section 6 we also briefly
consider the case when the signal has mixed sign. Finally, in order to concisely
present our results we focus on the case when

k1 ≤ d1/2 and k2 ≤ d2/2. (2.3)

Our results consider two types of measurements schemes: passive measurement
schemes where the measurement matrices {X1, . . . , Xn} are chosen a priori,
possibly from a random ensemble, and adaptive measurement schemes which
may be implemented in a sequential fashion. Formally, in an adaptive scheme
each measurement matrix Xi is a possibly randomized function of the prior
measurement matrices and their corresponding outcomes (yj , Xj)j∈[i−1].

2.2. Detection

The detection problem consists of deciding whether a contiguous block of signal
exists in Θ∗. Studying the detection problem has multiple benefits: typically we
can detect the presence of a signal using significantly fewer measurements and
the detection problem is thus a natural precursor to the problems of estimation
and support recovery. Furthermore, in this paper we build on algorithms for
detection, and use them for approximate localization.

The detection problem involves hypothesis testing with a composite alterna-
tive. As a preliminary, for a given value θmin > 0 we define the class of matrices:

Θ(θmin) =

{
Θ : ∃ B ∈ B, such that supp(Θ) = B, min

(i,j)∈B
Θij ≥ θmin

}
.
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With this definition in place, the detection problem is to reliably distinguish the
following hypotheses:

H0 : Θ∗ = 0d1×d2

H1 : Θ∗ ∈ Θ(θmin).
(2.4)

A test T is a function that takes (yi, Xi)i∈[n] as an input and outputs either 1,
if the null hypothesis H0 is rejected, and 0 otherwise. We denote by P0 and PΘ∗

the joint probability distributions of (yi, Xi)i∈[n] under the null hypothesis and
alternative hypothesis respectively. For any test T , we define its risk as

Rdet(T ) := P0

[
T
(
(yi, Xi)i∈[n]

)
= 1
]
+ sup

Θ∗∈Θ(θmin)

PΘ∗
[
T
(
(yi, Xi)i∈[n]

)
= 0
]
.

(2.5)

The risk Rdet(T ) measures the sum of type I and maximal type II errors over the
set of alternatives. The overall difficulty of the detection problem is quantified
by the minimax detection risk:

Rdet := inf
T

Rdet(T ),

where the infimum is taken over all measurable test functions. In Section 3.1 (see
Theorem 1) we characterize necessary and sufficient conditions for distinguishing
H0 and H1 as a function of θmin.

2.3. Support recovery

The problem of identifying the support of the signal Θ∗ is that of determining
the exact location of the non-zero elements of Θ∗. We refer to this problem as
that of support recovery or localization. Formally, we let Ψ be an estimator of
B∗, i.e., a function that takes (yi, Xi)i∈[n] as input and outputs an element of
B. We define the risk of any such estimator as

Rsup(Ψ) := sup
Θ∗∈Θ(θmin)

PΘ∗
[
Ψ
(
(yi, Xi)i∈[n]

)
�= supp(Θ∗)

]
,

while the minimax support recovery risk is

Rsup := inf
Ψ

Rsup(Ψ), (2.6)

where the infimum is taken over all estimators Ψ. Like in the detection task, the
minimax risk specifies the minimal risk of any support identification procedure.
We focus in this paper on exact support recovery, and defer a discussion of
recovery in, for instance, the Hamming metric to Section 6.

2.4. Related work

We conclude this section by highlighting some related work. In past work sev-
eral researchers have analyzed statistical limits and proposed computation-
ally tractable algorithms for using compressive measurements for the detection
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Table 1

Summary of known results for the sparse vector case. θmin is the minimum (absolute) signal
amplitude over all non-zero coordinates, and σ is the standard deviation of the noise. We

use C to denote universal constants independent of the problem parameters.

Detection Localization

Passive
θmin
σ

≥ C
√

d
nk2 for positive signals. n ≥ Ck log(d/k)

Wainwright [45]

θmin
σ

≥ C
√

d
nk

for arbitrary signals.
θmin
σ

≥ C
√

d log d
n

Adaptive Arias-Castro [2]
n ≥ Ck log(d/k) Arias-Castro et al. [3]

θmin
σ

≥ C
√

d log k
n

Malloy and Nowak [33]

[21, 26, 2, 5, 28], estimation [20, 12, 13] and support recovery [46, 45, 1, 36] of
sparse vectors. While these previous works focused on passive measurements,
more recent work has considered adaptive compressive measurements [11, 3, 25,
33, 34, 2]. In more detail, the work of Haupt et al. [25] considers the estimation
of a sparse vector using a procedure called compressive distilled sensing while
Arias-Castro et al. [3] provide complementary lower bounds. Arias-Castro [2]
provides both upper and lower bounds for adaptive detection of sparse vectors
while the papers of Malloy and Nowak [33, 34] address the problem of support
recovery.

In order to facilitate a subsequent comparison with the results that we present
in this work, Table 1 summarizes known results for the detection and support re-
covery of a sparse vector using passive and adaptive compressive measurements.
In each case we only provide sufficient conditions, and the corresponding refer-
ences detail the precise assumptions under which these results hold. In Table 1,
we follow the standardization used throughout this paper (and various others
on this topic), i.e., the length of the vector is d and the number of non-zero
coordinates in the vector is k. The number of measurements is n and each mea-
surement is assumed to have unit �2 norm (in expectation, if the measurement
is random).

The prior work described so far has been focused on inference for sparse, but
otherwise unstructured, data vectors. We also note in passing the significant lit-
erature on estimation of structured matrices [18]: particularly low-rank matrices
[35, 30, 37, 24], and those with cluster structured activations [40, 9, 10, 8, 29].
In this paper we focus on the relatively unexplored problems of detection and
support recovery for highly structured signals from compressive measurements.
The works of Baraniuk et al. [7], Huang et al. [27] have analyzed estimation
under different forms of structured sparsity in the vector setting, for example,
when the non-zero locations in a data vector form non-overlapping or partially-
overlapping groups. These works do not however do not address the problems of
detection and support recovery and do not consider the adaptive setting. Cas-
tro [15] and Tánczos and Castro [41] study support recovery of unstructured
and structured signals from adaptive measurements when the signal is observed
directly, i.e., not from compressive measurements. Most closely related to our
own work is the work of Soni and Haupt [38]. They consider the case of adaptive
sensing of tree-structured signals. However, the class of tree-structured signals is
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quite different from the class of signals we consider, and the gains from adaptive
sensing for the tree-structured signals are relatively limited (to a log factor as
in the unstructured vector setting).

Finally, since the initial posting of our paper [6], several papers have consid-
ered adaptive compressed sensing with different signal structures using similar
techniques. Concretely, the work of Castro and Tánczos [16] investigates vari-
ous combinatorial signal structures, Soni and Haupt [39] consider tree-structured
signals, while Krishnamurthy et al. [31] consider graph-structured signals.

3. Main results

In this section we present our main results concerning the detection and sup-
port recovery of contiguous block structured signals from passive and adaptive
measurements. In more detail, Theorem 1 gives upper and lower bounds on
the minimax testing risk Rdet defined in Equation (2.5) for both passive and
adaptive measurements, Theorem 2 gives upper and lower bounds on the min-
imax support recovery risk Rsup defined in Equation (2.6) when using passive
measurements. Finally, Theorem 3 gives upper and lower bounds on Rsup when
using adaptive measurements.

3.1. Detection of contiguous blocks

In this section we consider the detection problem of distinguishing between the
null and alternate hypotheses defined in Equation (2.4). In order to establish an
upper bound we consider the testing procedure proposed by Arias-Castro [2].
The measurement vectors are chosen passively as

Xi = (d1d2)
−1/21d11

′
d2

i ∈ {1, . . . , n},

where 1d is used to denote the vector of ones in R
d. With these measurement

vectors, the test is described as:

T
(
(yi)i∈[n]

)
= I

{ n∑
i=1

yi > τ
}
, (3.1)

where τ is a threshold whose value will be prescribed to appropriately balance
the probability of Type I and Type II errors. With the testing procedure in
place, we have the following result that applies to measurements that may be
chosen either passively or adaptively.

Theorem 1. Fix any 0 < α < 1.

1. If

θmin

σ
≤ 8(1− α)

√
d1d2
nk21k

2
2

,

then the minimax detection risk, based on n possibly adaptive measure-
ments, is: Rdet ≥ α.
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2. Conversely, there is a universal constant C > 0 such that if,

θmin

σ
≥ C

√
d1d2
nk21k

2
2

log

(
1

α

)
,

then the testing procedure described in Equation (3.1) with
τ = σ

√
2n log(α−1) has Rdet(T ) ≤ α.

Remarks:

• The proof of this theorem is given in Section 4. The upper bound follows
essentially verbatim from the result of Arias-Castro [2]. The lower bound
requires careful modification of the classical Fano argument in order to
allow for adaptive measurements. Once again we follow the basic recipe
outlined in [2], but we use a more refined analysis in order to show that
the lower bound continues to hold despite the additional signal structure.

• It is worth noting that the contiguous block structure of the activation
pattern does not play any role in the minimax detection problem. Indeed
the rate established matches the known bounds for detection in the un-
structured vector case (see Table 1). We will contrast this to the problem
of support recovery below. Furthermore, the procedure that achieves the
adaptive lower bound (up to constants) is non-adaptive, indicating that
adaptivity does not help much in the detection problem.

• Finally, we also note that the procedure does not require measurement
errors to be Gaussian. Via an application of Chebyshev’s inequality, it
suffices if the errors have finite second moment. We discuss this aspect
further in Section 6.

3.2. Support recovery from passive measurements

In this section, we address the problem of estimating the support set B∗ of the
signal Θ∗ from noisy linear measurements of the form specified in Equation (2.1).
We provide a minimax lower bound on the support recovery risk for the case
when the measurement matrices (Xi)i∈[n] are independent with jointly Gaussian

entries drawn from a mean zero, spherical Gaussian, with variance 1
d1d2

, i.e. each,

Xi ∼ N

(
0,

I

d1d2

)
i ∈ [n]. (3.2)

For our upper bounds we consider the case when the measurement matrices
are drawn from a Σ-Gaussian ensemble. Here for a fixed Σ ∈ R

d1d2×d1d2 , each
measurement matrix is distributed according to,

Xi ∼ N

(
0,

Σ

tr(Σ)

)
i ∈ [n]. (3.3)
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In both cases the normalization ensures that E|||Xi|||2fro = 1. In order to capture
the difficulty of support recovery from correlated measurements we consider the
following quantity introduced in the work of Wainwright [45]:

ρB∗(Σ) = min
B �=B∗,B∈B

λmin

(
Σ(B∗\B)B∗\B − Σ(B∗\B)B(ΣBB)

−1ΣB(B∗\B)

)
, (3.4)

where λmin(·) denotes the minimum eigenvalue of its argument. In essence, the
quantity ρB∗(Σ) captures the maximal correlation between the measurement
ensemble on the unknown true block B∗ and any other block B ∈ B. For the
case of the standard Gaussian ensemble in Equation (3.2) we have that ρB∗(Σ) =
ρB∗(I) = 1.

For our upper bounds we study the performance of a simple least-squares
decoder. For a given block B, we denote by ΘB a matrix in R

d1×d2 whose
support is restricted to be contained within B. With this definition in place and
recalling the definition of B in Equation (2.2), we consider the following support
estimator:

B̂ = arg min
B∈B

min
ΘB

1

2n

n∑
i=1

(yi − 〈〈ΘB , Xi〉〉)2. (3.5)

Computing this estimator requires solving roughly d1d2 least squares programs
over k1k2 variables. With these preliminaries in place we have the following
result:

Theorem 2. Fix any 0 < α ≤ 1/4.

1. Consider sensing matrices Xi drawn from the ensemble in Equation (3.2).
There exists a positive universal positive constant C such that if,

θmin

σ
≤ C(1− 2α)

√
d1d2
n

max

(
1

min(k1, k2)
,
log(d1d2)

k1k2

)
,

then the minimax support recovery risk Rsup ≥ α > 0.
2. Conversely, for sensing matrices drawn from the ensemble in Equa-

tion (3.3) there exist universal positive constants C1, C2 > 0 such that,
if n ≥ C1 max{k1k2 + ρB∗(Σ)−1θ−2

minσ
2, logmax(d1, d2)} and

θmin

σ
≥ C2

√
tr(Σ) log(2/α)

nρB∗(Σ)
max

(
logmax(k1, k2)

min(k1, k2)
,
logmax(d1, d2)

k1k2

)
,

then for the estimator in Equation (3.5) we have that Rsup(B̂) ≤ α.

Remarks:

• We can verify that in the case when Σ = I we have that tr(Σ) = d1d2,
and that ρB∗(Σ) = 1 so that the upper and lower bounds match upto
a logmax(k1, k2) factor in the worst case. More generally, the upper and
lower bounds match upto a logarithmic factor for sufficiently well-condi-
tioned designs, as captured by ρB∗(Σ).
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Algorithm 1 Approximate support recovery

input Measurement budget n ≥ log
(

d1d2

4k1k2

)
, a collection of size d1d2/(4k1k2)

of blocks D each of size 2k1 × 2k2.

Initial support: J
(1)
0 := {1, . . . , d1d2

4k1k2
}, s0 := log d1d2

4k1k2
.

For each s in 1, . . . , log2
d1d2

4k1k2

1. Allocate: ns := �(n− s0)s2
−s−1+ 1.

2. Split: Partition J
(s)
0 into two collections of blocks of equal size, J

(s)
1

contains the first d1d2

2s+2k1k2
blocks and J

(s)
2 the remainder.

3. Sensing matrix: Xs =
√

2−(s0−s+1)

4k1k2
on J

(s)
1 , Xs = −

√
2−(s0−s+1)

4k1k2
on J

(s)
2

and 0 otherwise.

4. Measure: y
(s)
i = 〈〈Θ∗, Xs〉〉+ ε

(s)
i for i ∈ [1, . . . , ns].

5. Update support: J
(s+1)
0 = J

(s)
1 if

∑ns

i=1 y
(s)
i > 0 and J

(s+1)
0 = J

(s)
2

otherwise.

output The single block in J
(s0+1)
0 .

• The proof of this theorem is given in Section 4. The lower bound in this
case follows from the construction of two packing sets, and an application
of Fano’s inequality. The two packing sets capture the difficulty of precisely
localizing the signal and approximately localizing the signal. These diffi-
culties are reflected in the two terms in the lower bound. The upper bound
uses a technical result of Wainwright [45] in order to bound the probability
that the least squares estimator picks a fixed incorrect block. This result is
then combined with a counting argument to control the overall probability
of error. We note that our results generalize in a straightforward manner
to sub-Gaussian designs. A direct application of results for sparse vector
localization (see Table 1) would lose a factor of 1/

√
min(k1, k2), which we

gain by refining prior arguments to exploit the contiguous block structure.
In the next section we show that even more substantial gains are possible
when we choose measurements adaptively.

• While the decoder we analyze assumes knowledge of k1, k2 one can also
use a similar procedure to adapt to the unknown size of the activation
block. In particular, one can perform exhaustive search procedure for
all possible sizes of activation blocks. Small modifications to our proof
can be used to show that this procedure adapts to the unknown block
size while still achieving the same risk. We omit the details but note
that similar modifications have been detailed in [9] for a related prob-
lem.

• Finally, we note that the least squares decoder achieves the same result
when the signal has mixed sign provided we define θmin to be the smallest
absolute value of Θ∗ over B∗. This is contrary to the testing procedure
considered previously, and we re-visit this issue in Section 6.
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3.3. Support recovery from adaptive measurements

In this section, we consider the problem of identifying the support set B∗, using
adaptive linear measurements. To be clear, in this setting each measurement
matrix Xi may be a function of (yj , Xj)j∈[i−1]. To simplify the exposition, in
this section we assume that d1 is a multiple of 2k1 and that d2 is a multiple
of 2k2. We provide an upper bound by analyzing the procedures described in
Algorithms 1 and 2:

• Algorithm 1: At a high-level, Algorithm 1 takes as input a collection of
non-overlapping blocks of size 2k1×2k2 and collects compressive measure-
ments of these blocks following a compressed binary search procedure [19].
The compressed binary search procedure essentially divides the collection
of blocks recursively into halves and uses a small modification of the de-
tection procedure described in Section 3.1 in order to decide which half to
measure further (see Figure 1). As output, Algorithm 1 produces a single
candidate block which we take further measurements of in Algorithm 2.
In order to further simplify the analysis we repeat Algorithm 1 on four
staggered collections of blocks, one of which is guaranteed to have a block
that fully contains B∗. In more detail, we run Algorithm 1 on the four
collections:

D1 := {B1,1 := [1, . . . , 2k1]× [1, . . . , 2k2],

B1,2 := [2k1 + 1, . . . , 4k1]× [1, . . . , 2k2],

. . . , B1,d1d2/4k1k2
:= [d1 − 2k1, . . . , d1]× [d2 − 2k2, . . . , d2]

}
D2 := {B2,1 := [k1, . . . , 3k1]× [k2, . . . , 3k2],

B2,2 := [3k1 + 1, . . . , 5k1]× [k2, . . . , 3k2],

. . . , B2,d1d2/4k1k2
:= [d1 − k1, . . . , d1, 1, . . . , k1]×

[d2 − k2, . . . , d2, 1, . . . , k2]}
D3 := {B3,1 := [k1, . . . , 3k1]× [1, . . . , 2k2],

B3,2 := [3k1 + 1, . . . , 5k1]× [1, . . . , 2k2]

. . . , B3,d1d2/4k1k2
:= [d1 − k1, . . . , d1, 1, . . . , k1]× [d2 − 2k2, . . . , d2]

}
,

and

D4 := {B4,1 := [1, . . . , 2k1]× [k2, . . . , 3k2],

B4,2 := [2k1 + 1, . . . , 4k1]× [k2, . . . , 3k2]

. . . , B4,d1d2/4k1k2
:= [d1 − 2k1, . . . , d1]× [d2 − k2, . . . , d2, 1, . . . , k2]

}
.

Figure 2 illustrates the four collections. Effectively, upon completion of
Algorithm 1 we have a collection of 8k1 row indices and 8k2 column in-
dices that with high-probability contain B∗, i.e., we have approximately
localized B∗.

• Algorithm 2: We use Algorithm 2 to precisely identify the k1 row in-
dices and k2 column indices that compose B∗, from the 8k1 row indices
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Algorithm 2 Exact recovery (of columns)

input Measurement budget n, a sub-matrix B ∈ R
8k1×8k2 , success probability

α. Set ñ = n/36.

1. Measure selected columns: yci = (8k1)
−1/2

∑8k1

l=1 Blc+εci , for c = {1, k2+
1, 2k2 + 1, . . . , 7k2 + 1}, each ñ times.

2. Let l = argmaxc
∑ñ

i=1 y
c
i , r = l + k2, nb = � ñ

3 log2 k2
.

3. While r − l ≥ 1

(a) Let c = � r+l
2 .

(b) Measure yci = (8k1)
−1/2

∑8k1

l=1 Blc + εci for i = {1, . . . , nb}.

(c) Ifa
∑nb

i=1 y
c
i ≥ O

(√
nbσ2 log

(
log k2

α

))
then l = c, otherwise r =

c.

output Set of columns {l − k2 + 1, . . . , l}.

aThe exact constants appear in the proof of Theorem 3.

and 8k2 column indices output by Algorithm 1. In the first stage of Al-
gorithm 2 we measure repeatedly a small number of columns, exactly one
of which is contained in B∗, in order to identify an active column with
high probability. The next stage finds the first non-active column to the
left and right by testing columns using a binary search procedure. In this
way, all the active columns are located. Finally, Algorithm 2 is repeated
on rows in order to completely localize B∗.

In summary, our support recovery estimator runs Algorithm 1 on the 4 col-
lections described above, and then runs Algorithm 2 on the set of 8k2 indices
returned by Algorithm 1 in order to identify k2 columns. Algorithm 2 is then
repeated mutatis mutandis to identify k1 rows. The following result charac-
terizes both the fundamental limits on any adaptive procedure as well as the
performance of the estimator we have described:

Theorem 3. Fix any 0 < α ≤ 1/4.

1. There is a universal constant C1 > 0 such that if

θmin

σ
< C1(1− 2α)max

(√
d1d2
nk21k

2
2

,

√
1

nmin(k1, k2)

)
then Rsup ≥ α, for any adaptive procedure using n measurements.

2. Conversely, there is a universal constant C2 > 0 such that if n ≥ log(d1d2)
and if

θmin

σ
≥ C2

√
log

1

α

(
max

(√
d1d2
nk21k

2
2

,

√
log (max(k1, k2)) log log(k1k2)

nmin(k1, k2)

))

then the estimator described above has risk Rsup(B̂) ≤ α.
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Remarks:

• Once again for our lower bound we construct specific pairs of hypotheses
that are hard to distinguish. The two terms in the lower bound reflect the
hardness of estimating the support of the signal in two important cases.
The first term reflects the difficulty of approximately estimating B∗. This
term grows at the same rate as the detection lower bound, and its proof
is similar. Given a coarse estimate of the support, we still need to identify
the exact support of the signal. The hardness of this task gives rise to
the second term in the lower bound. This term is independent of d1 and
d2, as is to be expected, but has a considerably worse dependence on k1
and k2. From a technical standpoint we note that since the lower bounds
need to account for possibly adaptive strategies, we cannot apply Fano’s
inequality (see for instance Arias-Castro et al. [3] for a discussion) in a
straightforward way. Instead we rely on direct arguments based on pairs
of hypotheses as opposed to packing sets.

• The upper bound matches the lower bound up to a logarithmic

O
(√

log (max(k1, k2)) log log(k1k2)
)

factor. It is worth noting that for

small k1 and k2, when the first term of the upper bound dominates, our
adaptive support recovery procedure achieves the detection limits (see
Theorem 1). When the support is larger, the lower bound indicates that
no procedure can achieve the detection rate.

• We can further compare the results of this theorem to the best possible
result for passive procedures given in Theorem 2. Our adaptive procedure
is significantly more efficient than any passive procedure, and is able to
recover the support of signals that are weaker by a

√
d1d2 factor. Unlike in

the weakly structured sparse vector case, the great potential for gains from
adaptive measurements is clearly seen in the highly structured contiguous
block setting. This in turn highlights the fundamental interplay between
structure and adaptivity.

4. Proofs of main results

In this section, we prove our three main theorems, while deferring more technical
aspects of the proofs to the Appendix. Throughout the proofs, we will denote
by c1, c2, . . . positive constants that may change their value from line to line.

4.1. Proof of Theorem 1

Proof of the lower bound: We first reduce the space of alternatives to only
include matrices whose entries are exactly θmin, i.e., for a given value θmin > 0
we define the class of matrices:

Θ̃(θmin) = {Θ : ∃ B ∈ B, such that supp(Θ) = B,Θij = θmin ∀ (i, j) ∈ B} ,
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Fig 2. The collection of blocks D1 is shown in solid lines and the collection D2 is shown
in dashed lines. The collections D3 and D4 overlap with these and are not illustrated in the
figure. The (k1 × k2) block of activation B∗ is shown in red.

and consider the hypothesis testing problem:

H0 : Θ∗ = 0d1×d2

H1 : Θ∗ ∈ Θ̃(θmin).

This hypothesis testing problem does not a have a simple alternative. We use
a classical reduction to a simple versus simple hypothesis testing problem by
considering a prior π over the alternatives, and noting that the Bayes detection
risk under any prior π lower bounds the minimax detection risk. In our setting
a uniform prior over the alternatives will suffice. Concretely, letting π denote
the uniform measure over Θ̃(θmin) we focus on the following hypothesis testing
problem:

H0 : Θ∗ = 0d1×d2

H1 : Θ∗ ∼ π.

Appealing to the classical Neyman-Pearson lemma, it suffices to consider the op-
timal likelihood-ratio test and its risk is lower bounded via a standard argument
(see for instance Arias-Castro [2]) as:

Rdet ≥ 1− 1

2

√
KL(P0((yi, Xi)i∈[n]),EΘ∼πPΘ((yi, Xi)i∈[n]))

2
,

where KL denotes the KL divergence. It thus remains to upper bound the KL
divergence. We note that care is needed in upper bounding the KL divergence
since our bound needs to apply to both passive and adaptive sensing schemes
and thus for instance standard tensorization arguments are invalid. We have the
following technical lemma:
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Lemma 1. Under the uniform measure π over Θ̃(θmin) for any possibly adaptive
sensing scheme we have that,

KL(P0((yi, Xi)i∈[n]),EΘ∼πPΘ((yi, Xi)i∈[n])) ≤
nθ2mink

2
1k

2
2

8σ2d1d2
.

We prove this lemma in the Appendix. Taking this claim as given, we can now
complete the proof of the theorem. Some simple algebra shows that,

Rdet ≥ 1− θmink1k2
σ

√
n

64d1d2
,

which in turn is at least α when,

θmin

σ
≤ (1− α)

√
64d1d2
nk21k

2
2

,

as claimed. Finally, we conclude the proof of the theorem by noting that the
upper bound follows directly from Proposition 1 of Arias-Castro [2].

4.2. Proof of Theorem 2

Proof of the lower bound: Our proof proceeds via the construction of two
packing sets. At a high level, the first construction is intended to capture the
difficulty of distinguishing between the true block and blocks that that overlap
with the true block on all but one row/column. The second construction deals
with distinguishing between the true block and the large collection of blocks
that do not overlap with the first one. Without loss of generality we assume
k1 ≤ k2.

Construction 1: We consider two distributions PΘ1 and PΘ2 , where B1 =
supp(Θ1) = [1, . . . , k1]×[1, . . . , k2] andB2 = supp(Θ2) = [1, . . . , k1]×[2, . . . , k2+
1] and every non-zero element of Θ1 and Θ2 are equal to θmin. Observe that the
two supports differ in only one column. As in the detection problem we use
a classical reduction to testing, and lower bound the testing error via the KL
divergence:

Rsup(Ψ) = sup
Θ∈Θ(θmin)

PΘ

[
Ψ
(
(yi, Xi)i∈[n]

)
�= supp(Θ)

]
,

≥ max
j∈{1,2}

PΘj

[
Ψ
(
(yi, Xi)i∈[n]

)
�= Bj

]
≥ 1

2

(
1−
√

KL(PΘ1 ,PΘ2)

8

)
.

Therefore, we need to compute an upper bound on the KL divergence. The first
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bound in the theorem follows from the following calculation

KL(PΘ1 ,PΘ2) = EPΘ1
log

PΘ1

PΘ2

=
1

2σ2
EPΘ1

n∑
i=1

(〈〈Θ2, Xi〉〉 − 〈〈Θ1, Xi〉〉)2

=
n

σ2

|||Θ1 −Θ2|||2fro
d1d2

=
nθ2mink1
σ2d1d2

,

(4.1)

where we have used the fact that Xi is a Gaussian random matrix with inde-
pendent entries of variance 1

d1d2
. Using this upper bound on the KL divergence

in the expression above leads to the first term in the lower bound.

Construction 2:We consider a collection of distributions PΘ1 , . . . ,PΘt+1 where
t = (d1− k1)(d2− k2). The distribution PΘ1 is the same as in the first construc-
tion, while supports of signals Θ2, . . . ,Θt+1 do not overlap with the support of
the signal Θ1. In order to obtain a lower bound on the risk, we use Fano’s in-
equality (see, for example, Theorem 2.5 in [42]). In order to apply the inequality,
we need to upper bound the KL divergence between PΘ1 and every PΘj . As in
the case of Construction 1, we now obtain:

KL(PΘ1 ,PΘj ) ≤
θ2min

σ2

nk1k2
d1d2

∀ j ∈ {2, . . . , t+ 1}. (4.2)

Via an application of Fano’s inequality we have that if:

θ2
min

σ2
nk1k2

d1d2
+ log 2

log((d1 − k1)(d2 − k2))
≤ (1− 2α),

then the support recovery risk is at least α. This leads to the second term in
the lower bound of the theorem.

Proof of the upper bound: At a high-level we follow the technique of Wain-
wright [45] to analyze the performance of the least squares decoder. This involves
first establishing an upper bound on the probability of incorrectly selecting a
certain block B �= B∗ in terms of the size of their non-overlap |B∗\B|, and then
combining these via a counting argument.

For a given block B we denote by XB ∈ R
n×|B|, the measurement matrices

restricted to the block B. We can then define the projection operator:

ΠB = XB(X
T
BXB)

−1XT
B ,

and the excess error of a subset B relative to the true subset B∗:

Δ(B;B∗) = ‖(I −ΠB)y‖22 − ‖(I −ΠB∗)y‖22.
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It is then straightforward to see that the least squares decoder fails if Δ(B;B∗) <
0 for any B �= B∗. For a block B we further define a measure of its overlap with
B∗ that takes into account the correlations in the measurements. Recalling, the
definition of ρB∗(Σ) in Equation (3.4) we define:

Φ(B) :=
ρB∗(Σ)|B∗\B|θ2min

tr(Σ)σ2
.

Finally, throughout the rest of this proof we denote ñ = n − k1k2. With these
definitions in place we now state a technical lemma from Wainwright [45] (see
Lemma 2):

Lemma 2. There is a universal constant C such that as long as ñ ≥
ρB∗(Σ)−1θ−2

minσ
2, for any fixed block B we have that:

P(Δ(B;B∗) < 0) ≤ 4 exp

(
− ñΦ(B)

64(Φ(B) + 8)

)
.

With this lemma in place it remains to analyze the error probability of the least
squares decoder. Due to the contiguous block structure of our signal we do this
analysis differently from previous work and this leads to sharp results in our
setting.

Our first step is to count the number of blocks in B which have a specified
non-overlap with B∗. We denote by N(t) the number of blocks B that have
non-overlap |B∗\B| = t. In order to upper bound the failure probability of the
least squares decoder we combine the above calculation and Lemma 2 via the
union bound. Concretely, we can write the probability of error as:

pe := P(∃ B ∈ B, B �= B∗ such that Δ(B;B∗) < 0)

≤ 4
∑

B∈B,B �=B∗

exp

(
− ñΦ(B)

64(Φ(B) + 8)

)
.

This is turn can be written as:

pe ≤ 4
∑
t

N(t) exp

(
− ñtρB∗(Σ)θ2min

64(tρB∗(Σ)θ2min + 8tr(Σ)σ2)

)
.

Observe that due to the highly structured nature of our class of signals N(t)
can only take a limited number of values, particularly it is easy to see that

N(k1k2) = (d1 − k1)(d2 − k2).

Furthermore for each value of the form (i, j) with i ∈ {1, . . . , k1} and j ∈
{1, . . . , k2} with (i, j) �= (1, 1) we have that

N(k1k2 − (k1 − i+ 1)(k2 − j + 1)) ≤ 4.
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Using this we have that,

pe ≤ 16

k1∑
i=1

k2∑
j=1

I((i, j) �= (1, 1))×

exp

(
− ñ(k1k2 − (k1 − i+ 1)(k2 − j + 1))ρB∗(Σ)θ2min

64((k1k2 − (k1 − i+ 1)(k2 − j + 1))ρB∗(Σ)θ2min + 8tr(Σ)σ2)

)
+4(d1 − k1)(d2 − k2) exp

(
− ñk1k2ρB∗(Σ)θ2min

64(k1k2ρB∗(Σ)θ2min + 8tr(Σ)σ2)

)
.

We can treat these two terms separately. First, observe that if

θmin

σ
≥ C

√
tr(Σ) log(1/α)

ρB∗(Σ)ñ

log(d1d2)

k1k2
,

then under the conditions on the sample-size we have that the second term
< α/2. It remains to analyze the first term. Without loss of generality we can
assume that k1 ≤ k2. By upper bounding each term in the sum with the largest
term we have that,

k1∑
i=1

k2∑
j=1

I((i, j) �= (1, 1))×

exp

(
−ñ

(k1k2 − (k1 − i+ 1)(k2 − j + 1))ρB∗(Σ)θ2min

64((k1k2 − (k1 − i+ 1)(k2 − j + 1))ρB∗(Σ)θ2min + 8tr(Σ)σ2)

)
≤ k22 exp

(
− ñk1ρB∗(Σ)θ2min

64(k1ρB∗(Σ)θ2min + 8tr(Σ)σ2)

)
,

which is smaller than α/2 when

θmin

σ
≥ C

√
tr(Σ) log(1/α)

ρB∗(Σ)ñ

log(max(k1, k2))

min(k1, k2)
,

and this completes the proof.

4.3. Proof of Theorem 3

Proof of the lower bound: The proof will proceed via two separate con-
structions. Motivated by similar considerations as in the passive measurements
setting we use different constructions to capture the difficulty of approximately
and exactly localizing the support of the signal. However in this setting further
care is needed to deal with adaptive measurement schemes.

Construction 1: We assume that d1 and d2 are multiples of two to simplify
the exposition. We first define two sets:

B1 =

{
Ir × Ic :

Ir and Ic are contiguous subsets of [d1/2] and [d2/2],
|Ir| = k1, |Ic| = k2

}
,



Recovering block-structured activations 2667

B2 =

{
Ir × Ic :

Ir and Ic are contiguous subsets of {d1/2, . . . , d1}
and {d2/2, . . . , d2}, |Ir| = k1, |Ic| = k2

}
.

Now, we define two distributions which correspond to the cases when B∗ ∈ B1

and when B∗ ∈ B2 respectively. Let π1 and π2 denote the uniform measure on
B1 and B2 respectively. Then, P1 = EΘ∼π1PΘ and P2 = EΘ∼π2PΘ. The following
lemma proved in the Appendix upper bounds the KL divergence between the
two distributions (allowing for adaptive sensing schemes):

Lemma 3. For any possibly adaptive sensing scheme we have that,

KL(P1((yi, Xi)i∈[n]),P2((yi, Xi)i∈[n])) ≤
nθ2mink

2
1k

2
2

4σ2d1d2
.

With this lemma in place we obtain the desired lower bound by noting that
the minimax risk Rsup for distinguishing P1 from P2 is lower bounded as:

Rsup ≥ 1

2

(
1− 1

2

√
KL(P1,P2)

2

)
.

From this we obtain that if

θmin

σ
≤ c1(1− 2α)

√
d1d2
nk21k

2
2

,

then Rsup ≥ α as desired.

Construction 2: Consider, two distributions P1 and P2, where P1 is induced
by matrix Θ1 with support B = B1 = [1, . . . , k1][1, . . . , k2], and P2 is induced
by matrix Θ2 with support B = B2 = [1, . . . , k1][2, . . . , k2 + 1]. We set matrices
Θ1 and Θ2 to have non-zero elements all equal to θmin.

Once again we need to upper bound the KL divergence between these two
distributions while allowing for adaptive sensing schemes. We prove the following
lemma in the Appendix:

Lemma 4. For any possibly adaptive sensing scheme we have that,

KL(P1((yi, Xi)i∈[n]),P2((yi, Xi)i∈[n])) ≤
nθ2min min(k1, k2)

4σ2d1d2
.

Once again we can use our earlier lower bound on the minimax risk together
with this lemma to obtain:

Rsup ≥ 1

2

(
1−
√

KL(P1,P2)

8

)
≥ 1

2

(
1−
√

nmin(k1, k2)θ2min

8σ2

)
.

This gives that if

θmin

σ
≤ c2(1− 2α)

√
1

min(k1, k2)
,
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then Rsup ≥ α. The proof of the lower bound is completed by combining the
lower bounds from the two constructions.

Proof of the upper bound: As a preliminary, we note a standard Gaussian
tail bound that we will use repeatedly in our proof: Let Z ∼ N (0, 1) be a
standard Normal random variable. Then for t > 0

P(Z > t) ≤ 1√
2π

1

t
exp(−t2/2). (4.3)

In the sequel we analyze the performance of the two algorithms that constitute
our support estimator. To ease presentation we will assume d1 is a dyadic mul-
tiple of 2k1 and d2 a dyadic multiple of 2k2. Straightforward modifications are
possible when this is not the case. Further, we suppose that the measurement
budget is divided equally between the two Algorithms, i.e., each of Algorithm 1
and 2 use n/2 samples.

Algorithm 1 is run on the four collections of blocks introduced in Section 3.3.
Of these four collections, at least one collection contains a block that completely
contains B∗. Algorithm 1 succeeds if when run on that particular collection it
returns the block that completely contains B∗, irrespective of its output on the
remaining three collections. The following lemma gives sufficient conditions for
the success of Algorithm 1:

Lemma 5. For any 0 < α < 1, Algorithm 1 succeeds with probability at least
1− α if,

θmin

σ
≥
√

128d1d2
n1k21k

2
2

log

(
16

α

)
.

We prove this lemma in the Appendix by analyzing the performance of the
binary search procedure used by Algorithm 1. In the analysis of Algorithm 2,
we condition on the success of Algorithm 1, and note in passing that there
are no dependence issues since each Algorithm collects its own measurements.
Algorithm 2 is run twice, once on the collection of 8k1 row indices and once
on the collection of 8k2 column indices returned by Algorithm 1. We say that
Algorithm 2 succeeds when it outputs the correct support B∗.

Lemma 6. For any 0 < α < 1, Algorithm 2 succeeds with probability at least
1− α if,

θmin

σ
≥
√

1152 logmax(k1, k2)

nmin(k1, k2)
log

(
24 logmax(k1, k2)

α

)
.

We give a detailed proof of this lemma in the Appendix. The result follows from
a careful analysis of the two phases of Algorithm 2. The first phase measures
a selected set of rows/columns repeatedly in order to find a single row/column
contained in B∗ while the second phase then uses binary search in order to
locate the first and last indices of the row/column support. The theorem follows
by combining Lemma 5 and 6 via the union bound.
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Fig 3. Probability of success with passive measurements (averaged over 100 simulation runs).

5. Simulations

In this section we provide some simulation results to illustrate the finite sample
performance of our proposed procedures. Concretely, Theorem 2 and Theorem 3
characterize the signal amplitude needed for the passive and adaptive identifi-
cation of a contiguous block, respectively. We demonstrate that the scalings
predicted by these theorems are sharp by plotting the probability of successful
recovery against an appropriately rescaled signal amplitude and showing that, as
predicted, these curves for line up for different values of the problem parameters.
For simplicity, we let d1 = d2 = d and k1 = k2 = k.

5.1. Support recovery from passive measurements

In our first set of simulations, we plot the probability of success of the least
squares decoder against d−1

√
kn∗ (θmin/σ), where the number of measurements

n = 100, averaged over 100 simulation runs. Each plot in Figure 3 represents
different relationship between k and d; in the first plot, k = Θ(log d), in the
second k = Θ(

√
d), while in the third plot k = Θ(d). The dashed vertical

line denotes the scaled signal-to-noise ratio at which the probability of success
is larger than 0.95. We observe that irrespective of the problem size and the
relationship between d and k, Theorem 2 accurately characterizes the minimum
signal amplitude needed for successful identification.

5.2. Support recovery from adaptive measurements

In our second set of simulations, we consider the probability of successful local-
ization of B∗ using the procedure outlined in Section 3.3, and n = 500 adaptively
chosen measurements. The signal-to-noise ratio (θmin/σ) is scaled by d−1

√
nk2

in the first two plots where k = Θ(log d) and k = Θ(
√
d) respectively, while in

the third plot the amplitude is scaled by
√

nk/ log k since k = Θ(d). In the first
two regimes, the cost of approximate localization dominates the rate, while in
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Fig 4. Probability of success with adaptive measurements (averaged over 100 simulation runs).

the third regime the cost of exact localization dominates the rate. Once again
we observe that Theorem 3 sharply characterizes the minimum signal amplitude
needed for successful identification.

6. Extensions and discussion

In this paper, we establish the fundamental limits for the problem of detecting
and localizing a contiguous block of weak activation in a data matrix from either
adaptive or non-adaptive compressive measurements. Our bounds characterize
the tradeoffs between the signal amplitude, size of the matrix, size of the non-
zero block and number of measurements. We also demonstrate computationally
efficient estimators that achieve these bounds.

There are several extensions of the work presented in this paper that would
be interesting to consider in future work. It should be possible to extend our
analysis from the preceding sections so as to obtain similar results for the case
when the size of B∗ is unknown. The problem of designing adaptive estimators
in structured passive settings have been considered for instance by Butucea and
Ingster [9]. Throughout this paper we focussed on the setting where θmin > 0,
i.e., on positive signals. In the passive setting, the least squares estimator has the
same rate for mixed sign signals. In the adaptive setting one can use techniques
from the work of Arias-Castro [2] to deal with mixed sign signals, albeit at the
cost of an unavoidable

√
k1k2 factor. While our paper focused on exact support

recovery it would also be interesting to consider support recovery for instance in
the Hamming metric. An examination of our proofs for detection and for support
recovery from adaptive measurements reveals that these algorithms rely on the
sub-Gaussian behaviour of simple averages of the matrix Θ∗. These algorithms
can be modified to use robust estimates of these quantities (see for instance [17])
in order to deal with possibly heavy-tailed noise.

Finally, the contiguous block model we consider is one useful form of the more
general class of structured sparse signals, where adaptivity helps considerably.
Techniques developed in this work have since been applied to the problems of
adaptive compressive sensing of other structured signals in the works of Soni
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and Haupt [39], Krishnamurthy et al. [31] and Castro and Tánczos [16]. We
expect a full characterization of structured signals for which adaptive sensing
can be useful will be a fruitful path for future investigation.

Appendix A: Additional technical results

In this supplementary section, we provide proofs of the remaining technical
claims.

A.1. Proof of Lemma 1

We define the likelihood ratio as:

L ≡
EΘ∼πPΘ[(yi, Xi)i∈[n]]

P0[(yi, Xi)i∈[n]]
=

EΘ∼π

∏n
i=1 PΘ[yi|Xi]∏n

i=1 P0[yi|Xi]
,

where the second equality follows by decomposing the probabilities by the chain
rule and observing that P0[Xi|(yj , Xj)j∈[i−1]] = PΘ[Xi|(yj , Xj)j∈[i−1]], since the
sampling strategy (whether active or passive) cannot depend on the (unknown)
true hypothesis. This in turn can be written as:

L = EΘ∼π exp

(
m∑
i=1

2yi〈〈Θ, Xi〉〉 − 〈〈Θ, Xi〉〉2
2σ2

)
.

The likelihood ratio is in turn related to the KL divergence as:

KL(P0,EΘ∼πPΘ) = −E0 logL

≤ −EΘ∼π

n∑
i=1

E0
2yi〈〈Θ, Xi〉〉 − 〈〈Θ, Xi〉〉2

2σ2

= EΘ∼π

n∑
i=1

E0
〈〈Θ, Xi〉〉2

2σ2

≤ n

2σ2
sup

|||X|||fro≤1

EΘ∼π〈〈Θ, X〉〉2

≤ n

2σ2
|||EΘ∼πvec(Θ)vec(Θ)T |||op,

where the first inequality follows by applying the Jensen’s inequality followed
by Fubini’s theorem, the intermediate equality follows by observing that under
the null yi = εi irrespective of Xi and the second inequality follows using the
fact that |||Xi|||fro = 1. Denote by C ∈ R

d1d2×d1d2 the matrix:

C := EΘ∼πvec(Θ)vec(Θ)T .

It remains only to bound the operator norm of C. The matrix C has diago-
nal elements Cii = θ2minEΘ∼πPΘ[Θτ(i) = 1] and off-diagonal elements Cij =



2672 S. Balakrishnan et al.

θ2minEΘ∼πPΘ[Θτ(i) = 1,Θτ(j) = 1], where τ is an invertible map from a linear
index in {1, . . . , d1d2} to an entry of Θ. A bound on the operator norm of C
follows from the following two observations. The support of the signal forms a
contiguous block and therefore in any row of C there are at most k1k2 non-
zero entries. Furthermore, each non-zero entry in C is of magnitude at most
θ2mink1k2/(d1 − k1)(d2 − k2). Combining these two observations, we have

|||C|||op ≤ max
j

∑
k

|Cjk| ≤
θ2mink

2
1k

2
2

(d1 − k1)(d2 − k2)
≤ θ2mink

2
1k

2
2

4d1d2

where the last inequality follows from the assumption we maintain throughout
the paper that k1 ≤ d1/2 and k2 ≤ d2/2. This completes the proof of the lemma.

A.2. Proof of Lemma 3

We first introduce another distribution P0 corresponding to the case when we
have no signal (Θ∗ = 0). Now notice that using the triangle inequality for TV
and Pinsker’s inequality we obtain:

‖P1 − P2‖2TV ≤ 2‖P0 − P1‖2TV + 2‖P0 − P2‖2TV

≤ KL(P0,P1) + KL(P0,P2).

Notice that KL(P0,P1) is exactly the quantity we would have to upper bound to
produce a lower bound on the signal strength for detecting whether a support
of the signal is in the left half of the matrix or not (see Theorem 1). We can
now apply a slight modification of the proof of Lemma 1 to obtain that

KL(P0,P1) = KL(P0,P2) ≤
nθ2mink

2
1k

2
2

8σ2d1d2
,

which in turn gives the desired result.

A.3. Proof of Lemma 4

Without loss of generality we assume k1 ≤ k2. Following the same argument as
in the proof of Theorem 1, we have

KL(P1,P2) = EP1

n∑
i=1

(
− 1

2σ2

[
(yi − 〈〈Θ1, Xi〉〉)2 − (yi − 〈〈Θ2, Xi〉〉)2

] )
=

1

2σ2
EP1

n∑
i=1

[
〈〈Θ2, Xi〉〉2 − 〈〈Θ1, Xi〉〉2

+2yi〈〈Θ1, Xi〉〉 − 2yi〈〈Θ2, Xi〉〉]

=
1

2σ2
EP1

n∑
i=1

(
〈〈Θ2, Xi〉〉 − 〈〈Θ1, Xi〉〉︸ ︷︷ ︸

ti

)2
=

1

2σ2
EP1

n∑
i=1

t2i .
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We further find that,

ti = θmin

⎛⎝ ∑
j∈B1\B2

Xij −
∑

j∈B2\B1

Xij

⎞⎠
≤ θmin

⎛⎝ ∑
j∈B1ΔB2

|Xij |

⎞⎠ .

Cauchy-Schwarz gives us

t2i ≤ 2θ2mink1
∑

j∈B1ΔB2

X2
ij ≤ 2θ2mink1,

since |||Xi|||2fro ≤ 1. Combining the results, we have that

KL(P1,P2) ≤
nk1θ

2
min

σ2
.

Together with a similar construction for the case when k2 ≤ k1 we obtain

KL(P1,P2) ≤
nmin(k1, k2)θ

2
min

σ2
.

A.4. Proof of Lemma 5

The true support B∗ is always fully contained in one of the blocks defined in
Section 3.2 (see Figure 2). Without loss of generality we assume that the support
B∗ is fully contained in one block from the first collection. Once we have fixed
the collection of blocks Algorithm 1 is invariant to reordering of the blocks, so
without loss of generality we can consider the case when B∗ is contained in B11.
Algorithm 1 on the first collection of blocks proceeds for

s0 := log

(
d1d2
4k1k2

)
rounds, and in each round we use ns measurements. It is straightforward to
verify that Algorithm 1 errs in the sth round if we have that ws < 0, where

P(ws < 0) ≤ P

(
N

(
ns2

(s−1)/2k1k2θmin√
d1d2

, nsσ
2

)
< 0

)
.

A union bound over the rounds gives us a bound on the probability of error as

pe ≤
s0∑
s=1

P[ws < 0].
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Recalling the allocation scheme: for n ≥ 2s0, ns ≡ �(n − s0)s2
−s−1 + 1 and

observing that
∑s0

s=1 ns ≤ n, we have

pe ≤
1

2

s0∑
s=1

exp

(
−ns2

sk21k
2
2θ

2
min

4d1d2σ2

)

using the Gaussian tail bound in Equation (4.3). Since ns ≥ (n−s0)s2
−s−1 and

n ≥ 2s0, we have that ns ≥ ns2−s−2. Using this, it is straightforward to verify
that if

θmin

σ
≥
√

16d1d2
nk21k

2
2

log

(
1

2α
+ 1

)
,

we have Pe ≤ α. We apply this procedure 4 times (once on each collection), and
this gives us the desired lemma.

A.5. Proof of Lemma 6

We collect all the rows and columns returned by the 4 runs of Algorithm 1, and
condition on the success of Algorithm 1, i.e., we have a set of indices of size at
most (8k1×8k2), which contains the true support B∗. Without loss of generality
we assume these indices are [8k1] and [8k2].

Algorithm 2 first identifies one column in B∗. Notice that exactly one of
the following columns: {1, k2 + 1, 2k2 + 1, . . . , 7k2 + 1} is contained in B∗. We
devote 8ñ measurements to identify that particular column, where we select ñ
at the end of lemma to ensure that the total number of measurements used by
Algorithm 2 is n/2. The procedure is straightforward: measure each column ñ
times, and pick the one that has the largest total signal.

Verify that for the column in B∗ we the total signal we measure is a draw from

N(
√

k1

8 θminñ, ñσ
2), while for the other columns we have draws from a Gaussian

N(0, ñσ2). Using the Gaussian tail bound from Equation (4.3) it follows that if

θmin

σ
≥
√

64

k1ñ
log(16/α),

the procedure will identify the column in B∗ with probability at least 1− α/4.

So far, we have identified a column in B∗. This information tells us which
2k1 columns contain B∗. We will use ñ more measurements to exactly identify
the remaining columns. Rather, than test each of the 2k2 columns we will do
a binary search. This will require us to test at most t ≡ 2�log k2� ≤ 3 log k2
columns, and we will devote ñ/(3 log k2) measurements to each column. We will
need to threshold these measurements at the threshold:√

log

(
12 log k2

α

)
2ñσ2

3 log k2
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and declare that a column belongs to B∗ if its average is larger than this thresh-
old. This binary search procedure successfully finds all columns of the block B∗

with probability at least 1− α/4 if

θmin

σ
≥
√

32 log k2
ñk1

log

(
3 log k2

α

)
We repeat the above procedure to exactly identify the rows of the block B∗.
In order to complete the proof of the lemma we need to choose ñ. Concretely,
the choice ñ = n/36, ensures that the total number of measurements used by
Algorithm 2 is n/2, and this yields the lemma.
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