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1. Introduction

Let us consider the following general factorial design introduced by Pauly et al.
[20]. We consider independent observations

Xij = pi + €ij, (1.1)

i =1,...,d, j = 1,...,n4, where g;5,j = 1,...,n; are ii.d. random errors
satisfying the following conditions:

E(e) =0, E(e})=02>0, E(})<oo, i=1,...,d.  (1.2)

The total sample size is denoted by N = Zle n;. In order to derive asymptotic
results, we will make the following assumption:

]\}Enoo%:ﬁi>07 i=1,....d (1.3)
It is worth noting that different variances, samples sizes as well as distributions
of error terms are allowed as long as assumptions in (1.2) hold.

Let I,, be the n x n identity matrix and let 1,, be the n x 1 vector of ones. In
matrix notation, (1.1) can be written as X = diag(1,,, ..., 1,,)pu+e, where X =
(X115 Xany)'s b= (1,...,pa) and € = (e11,.-.,€dn,)" Wwith E(e) = 0 and
Cov(e) = diag(ciL,,,...,02L,,) > 0. In our general design, a factorial structure
within the components of the vector p by splitting up the indices is allowed (the
index i is appropriately split in subindices i1, @2, . . . ). In this way, we can consider
for example the one-way layout and crossed and hierarchically nested designs
(see [20] and Section 5, for more detail and some real data examples).

To formulate a general hypothesis testing problem, we need a contrast matrix
H, i.e., H1 = 0, where 1 is the column vector of ones of the appropriate size.
We are interested in testing the null hypothesis Hy : Hu = 0. This hypothesis
is equivalent to Hy : Tpu = 0, where T = H'(HH’) H is the unique projec-
tion matrix (M~ denotes a generalized inverse of M), which is symmetric and
idempotent. For instance, in the one-way layout where factor A has a levels, the
centring matrix T =P, =1, — (1/a)1,1}, is used for testing the hypothesis of
no treatment effect Hg' : p1 = --- = 1. Other examples of contrast matrix H
and projection matrix T are given in [20] and in Section 5.
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For testing Hy, there exist many inference methods for normal or homoscedas-
tic models (see [20] and the references therein). Nevertheless, such assumptions
are often not met or it is difficult to check them in practice. To avoid these limi-
tations, Pauly et al. [20] proposed the testing procedures based on the Wald-type
statistic (WTS)

Qn(T) = NX'T(TVNT)TTX.,

where X. = (Xi.,...,Xg.) is the vector of the means X; = 1/n; Z;“:l Xij,
Vy = N -diag(63/n1,...,63/na), 67 = 1/(ni — 1) 301, (Xi; — Xi)? is the
empirical variance of X; = (X;1,...,Xi,), i = 1,...,d, and M denotes the
Moore-Penrose inverse of M [11]. The asymptotic WT'S test is given by on =
{Qn(T) > Xfank(T),ka}v where x2 , is the a-quantile from the x2-distribution.
This test is asymptotically exact, but it requires large sample sizes to keep the
nominal type I error level.

Pauly et al. [20] proposed a permutation test based on WTS to overcome this
problem. They applied a modified permutation principle [12, 18]. This principle
can be used in situations where exchangeability of the data does not hold. The
test retains the finite exactness property under exchangeability. Moreover, it is
even asymptotically exact and consistent when the data are not exchangeable.
From simulations, the Wald-type permutation statistic (WTPS) test tends to
result in accurate test decision for small sample sizes in many cases, but it is
also more or less liberal for extremely skewed distributions (like log-normal one)
in the case of unequal variances. Small sample sizes usually means that there
are a few or over a dozen observations in each sample, which of course depends
on the number of groups.

In the Wald-type statistic proposed by Pauly et al. [20], the Moore-Penrose
inverse of TV 5T is used as a so-called weight matrix. However, it can be chosen
in other way resulting in a modified Wald-type statistic. The choice of a weight
matrix may be significant for performance of a test (see, for example, Duchesne
and Francq [7]). Smaga [23] considered the asymptotic and permutation tests
based on modified WTS, where the Moore-Penrose inverse is replaced by a
{2}-inverse, i.e., a matrix satisfying the second relation defining the Moore-
Penrose inverse [7, 9]. Under some assumptions, these testing procedures are
also asymptotically valid but, however, consistent for a smaller class of fixed
alternatives than the tests based on WTS and WTPS. For extremely skewed
distributions, heteroscedastic designs and small sample sizes, the methods based
on {2}-inverses seem to be a more conservative replacement for the WTPS.
However, they may perform worse under symmetric distributions, i.e., they may
be more conservative or more liberal than the WTPS test.

The testing procedures of Pauly et al. [20] and Smaga [23] are constructed
without assumption of equal sample sizes, equal variances and a particular dis-
tribution of the errors. However, no one of them is better than the other and in
general they do not perform satisfactory well for extremely skewed distributions,
heteroscedastic designs and small sample sizes. In this paper, we propose new in-
ference methods based on the ideas from tests for problems in high-dimensional
data analysis. More precisely, we consider modified Wald-type statistics, where
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a weight matrix is a certain diagonal matrix, which may be related to TVNT,
or not. In such a way, the singularity problem of the matrix TV T is circum-
vented. We consider the asymptotic and permutation methods to approximate
null distribution of a test statistic. Simulation studies show that some of our
new solutions perform comparable to or even better in certain scenarios than
existing competitors.

The remainder of the paper is organized as follows. New testing procedures
are introduced in Sections 2 and 3. Their properties are also given there. Section
4 contains a Monte Carlo simulation study providing an idea of the size control
and power of the tests. Illustrative real data examples are presented in Section
5. Some conclusions are given in Section 6. Proofs are outlined in the Appendix.

2. Diagonal Wald-type test

For high-dimensional low sample size data, the Hotelling’s T? test suffers from
a singularity problem in the covariance matrix estimation and therefore is not
valid in that setting. To overcome this problem, some remedies are proposed
in the literature. One of them is the assumption of diagonal covariance matrix.
This idea was first considered by Wu et al. [29] and further investigated by
Dong et al. [6], Park and Nag Ayyala [19], Srivastava [25], Srivastava and Du
[26], Srivastava et al. [27]. Here, we use this idea to handle with the problem
of singularity of the matrix TV nT. Specifically, we propose the following test
statistic

QR(T) = NX'T{diag(TVxT)} !'TX,

where diag(M) denotes the diagonal matrix with diagonal entries of the quadrat-
ic matrix M, and the vector X. and the matrix Vn were defined in Section 1.
To methods based on QX (T), we refer as the diagonal Wald-type tests. The null
hypothesis is rejected for large values of QX (T).

For small sample sizes, the sample variances in Vy are perhaps not reliable
estimators. This may have a negative effect on testing procedures which use
this matrix. Since the tests based on QX (T) only use the diagonal elements of
TV ~n'T, a negative effect of unreliable estimation seems to be smaller for these
tests than for the WTS and WTPS ones, where whole matrix TV T is used. On
the other hand, the diagonal Wald-type tests do not use the information from
the off-diagonal elements of the matrix TV y'T, in contrast to the WTS and
WTPS testing procedures. However, our results indicate that negative effect of
the off-diagonal elements of TVNT is stronger than the information from them
(see Section 4), which is favourable for the diagonal Wald-type tests.

We should check that the statistic Q& (T) is well defined. By definition of the
estimator VN7 the ith diagonal element of TV T is of the form TZ-VNTQ =
N Z;l:l E%&?/nj, where T; = (T;1, . .., T;q) is the ith row of the projection ma-
trix T. Since 6]2- > 0,5 =1,...,d with probability one, the ith diagonal element

TZ-VNT; of the matrix TV T is equal to zero if and only if T; = 0/,. However,



Diagonal and unscaled Wald-type tests 2617

this is impossible, because T is a projection matrix. Hence, {diag(T\A/'J\;T)}‘1
exists with probability one and the diagonal Wald-type statistic is well defined.

First, we construct the asymptotic test based on the diagonal Wald-type
statistic. The asymptotic null distribution of QR (T) is given in the following
theorem. Throughout the paper, % and & denote convergence in distribution
and probability, respectively.

Theorem 2.1. Under assumptions (1.2)—(1.3) and the null hypothesis Hy :
Tp = 0, if r = rank(T), then QX(T) 4 Y1 ApiZp,; as N — oo, where
AD1s- -, AD are the nonzero eigenvalues of the matriz {diag(TVT)}~1TVT,
V = diag(6}/k1,...,02/ka), and Zp,...,Zp, are the independent N(0,1)
random variables.

By Theorem 2.1, the asymptotic null distribution of the diagonal Wald-type
statistic is a central x2-type mixture distribution (see [30]). This distribution
can be approximated by a scaled x2-distribution, i.e., by the distribution of
gD X?‘D such that the first two moments coincide [2, 31]. The asymptotic critical
value is then given by kp o = ngchyl_a. It is easy to see that

Var(z::l )\Dflz%l) 2 (E(Z::1 )\D7'LZ%,’L))2

= . 2.1
2E(ZZ‘:1 AD#'LZ2D,’L) ’ fD Var(z::l )\DﬂZ%,Z) ( )

The expected value and variance of Y ;_; A DJ-ZJQN are established in the
following lemma.
Lemma 2.1. Under notation of Theorem 2.1, we have E (}.|_; )‘D,iZ%),i) =d
and Var (3_, )\DJ‘ZJQDJ) = 2trace ([{diag(TVT)}'TVT]?).

By (2.1) and Lemma 2.1, we obtain gp = trace ([{diag(TVT)}'TVT]?) /d
and fp = d*/trace ([{diag(TVT)}~'TVT]?). Since gp and fp involve some

unknown quantities, they have to be estimated. The matrix V is estimated
by its consistent estimator Vy, so we consider the following simple estima-

tors of gp, fp and kpo: gp = trace ([{diag(TVNT)}_lTVNT]2> /d, fD =
d? /trace ([{diag(TvNT)}_lTvNT]2) and kpo = gDX%D \_o- The consis-

tency of these estimators as well as the consistency of the test with critical
region R = {QX(T) > kp o} are established in the following theorem.

gdp =

Theorem 2.2. Under assumptions (1.2)-(1.3), 4p i g, o £ fp and

IACD,Q R kp,o as N — oo. Moreover, under the alternative hypothesis Hy :
Tp=a+#04 P(QY(T) > kpo|H1) = 1 as N — co.

Theorem 2.2 shows that the asymptotic testing procedure based on Q¥ (T) is
consistent for all fixed alternatives, as the WTS test. Unfortunately, the asymp-
totic diagonal Wald-type test is also similar to the WTS test in the sense that it
also requires large sample sizes to obtain a satisfactory approximation (see Sec-
tion 4). As Pauly et al. [20], we consider a permutation testing procedure based
on QK (T) to improve the small sample behavior of the diagonal Wald-type test.
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2.1. Diagonal Wald-type permutation test

Let m be a random permutation of N indices (uniformly distributed on the
symmetric group of order N) that is independent from all other occurring ran-
dom variables. Then, X™ = 7(X11,..., Xan,) = (XJ,..., X7, ) denotes the

- 2 dnd -
permutation of the vector of observations X. Let X7 = (XT,...,X7)’ be the
vector of the means and Y}{, = N - diag(67 /n1,...,65 . /na) be the empirical
covariance matrix of v/ NX™. The value of Q% (T) computed from the permuted
observations is of the form

D (T) = NX™ T{diag(TV%T)} ' TX".

A diagonal Wald-type permutation test is obtained by comparing Q% (T) with
the (1—a)-quantile of the conditional distribution of Q'™ (T) given the observed
data X. The asymptotic conditional permutation distribution of Q][\),’”(T) is pre-
sented in the following theorem. The permutation distribution is the empirical
distribution of a given test statistic recomputed over all permutations of the
data.

Theorem 2.3. Under assumptions (1.2)—(1.3), if r = rank(T), then the permu-
tation distribution of Qﬁ’ﬂ (T) conditioned on the observed data X weakly con-

verges to Y ., >\D77T;iZ%,7T,i as N — oo in probability, where Ap x.1,- .y AD,xr
are the nonzero eigenvalues of {diag(TDT)}'TDT, D = diag(1/k1,...,1/Kkaq),
and Zp x1,---,4Dx,r are the independent standard normal random variables.

From Theorem 2.3, it follows that the asymptotic conditional permutation
distribution of Qﬁ’W(T) is independent of T . Moreover, it does not depend on
the variances, unlike the asymptotic null distribution of QX (T) (see Theorem
2.1). For this reason, these distributions are not generally the same. The follow-
ing result shows the case where they are the same. It is a direct consequence of
Theorems 2.1 and 2.3.

Corollary 2.1. Under assumptions and notation of Theorems 2.1 and 2.3, if
0? = --- = g3, then the unconditional null distribution of QX (T) is the same

as the permutation distribution of Qﬁ’W(T) conditioned on the observed data X,
as N — oo.

Remark 2.1.

1. Under the assumptions of Corollary 2.1, the asymptotic conditional per-
mutation distribution of Qﬁ’ﬂ (T) always approzimates the asymptotic null
distribution of QR (T). This property is desirable for resampling procedures
(see [4, 13, 14, 20, 23, 24], for other examples of such results). Thus, the
test based on Q%”(T) asymptotically maintains the nominal type I error
level under the null hypothesis and is consistent for any fixed alternative
(by Theorem 2.2 and Corollary 2.1).

2. Pauly et al. [20] proved the conditional distribution of the Wald-type per-
mutation statistic (WTPS) Q7% (T) = NX™ T(TVELT)tTX"™ always ap-
prozimates the null distribution of QN (T). Unfortunately, for the diagonal
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Wald-type statistic, such result does not hold. The asymptotic conditional
distribution of Qg’ﬁ(T) s the same as the asymptotic unconditional null
distribution of QX (T) for homoscedastic designs only. Although these dis-
tributions are not the same for heteroscedastic designs, simulations suggest
that they are quite close to each other when the variances are not extremely
different. As we will see in Section 4, for small sample sizes, the permuta-
tion test based on Qg’” (T) behaves quite well (even better than the Q% (T)
test) in the case of different variances. For these reasons, it seems sensible
to consider this test as a possible testing procedure in general framework
introduced in Section 1.

2.2. Diagonal Wald-type tests based on standardized test statistic

Although the Qﬁ’”(T) test works quite well for small sample sizes, we con-
sider another procedure, which controls the nominal type I error level bet-
ter than this test under very different variances, and both testing procedures
have very similar empirical power (see Section 4). More precisely, we consider
the standardized version of QY'V~(T) = NX/T{diag(TVyT)} 'TX., where
Vy = N -diag(0?/n1,...,02/nq) (see, for instance, [21]), namely

QY (T) — Bny (@Y (T)
\Vars, @RV (T))

To simplify the analysis, we assume normality of the observations, i.e., ;1 ~
N(0,04), i = 1,...,d. Then, VNX. ~ Nyg(v/Nu,Vy). Hence, under Hy :
Tp =0, VNTX. ~ Nyg(04, TVNT). By analysis similar to that in the proof of
Lemma 2.1, we conclude that Ep,( ﬁ’VN(T)) =d and Varg,( ﬁ’VN (T)) =
2trace([{diag(TV yT)} " 'TVyT]?). To estimate V, we use Vy, which is an
Ly-consistent estimator of it in the sense that \A/'NV;,1 L3 I; (see [20]). There-
fore, we consider the following test statistic:

) QR(T) —d |
\/2trace([{diag(TVNT)}_1TVNT]2)

N (T)

By Zhang [30], we approximated the distribution of QZ’S(T) by a sequence of
standardized y2-distributions (X,%D,S — hps)/+/2hp s. Unfortunately the Qg’s

test works similar to or even worse than the QX test for small sample sizes,
i.e., it is too liberal (see Section 4). This follows from the simulation results not
included in the paper, but available from the author. The reason for this is that
the speed of convergence of distribution of the Q]E\),’s statistic to its asymptotic
distribution is too slow. So, we do not consider this test in the paper, but the
construction and asymptotic properties of it are given in the Appendix B for
completeness. For this reason, we consider a permutation test based on
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ﬁ’s’ﬂ-(T) ]?IJ(T) —d

N \/Qtrace( [{diag(TVE,T)}~1TVZ,T]?)

only. This test performs better than the Q%”(T) test for very small sample
sizes or under very different variances. The asymptotic validity of this test in
homoscedastic case is shown in the following theorem, which follows immediately
from Theorems 2.1 and 2.3 and from V 5V and \Af} 5 oD (see Lemma
2 in the supplement to Pauly et al. [20]) as N — oo, where o2 is given by
(3.1). Although we assumed normality to construct the standardized diagonal
Wald-type statistic (more precisely to establish the expected value and variance
of Qﬁ’VN (T)), the asymptotic properties of the tests based on it are proved
without this assumption.

Theorem 2.4. Under assumptions (1.2)-(1.3):
1. Under the null hypothesis Hy : T = 0, if r = rank(T), then
22:1 AD,iZ/%,i —d

D,s d,
N = V/2trace([{diag(TVT)}1TVT]?)

as N — oo, where A\p 1,...,Apr, Vand Zp1,...,Zp, are as in Theorem
2.1.

2. Ifr = rank(T), then the permutation distribution on][\),’s’w(T) conditioned
on the observed data X weakly converges to

22:1 )‘Dﬂr,iZ%),w,z‘ —d
V/2trace([{diag(TDT)}~1TDT]?)

as N — oo in probability, where Ap x1,...,ADxr, D and Zp1,...,
Zp xr are as in Theorem 2.3.
3. If 0} = .-+ = o2, then the unconditional null distribution of Qg’S(T) is
D,s,m

the same as the permutation distribution of Q"™ (T) conditioned on the
observed data X, as N — oo.

Apart from the diagonal Wald-type testing procedures, in the next section,
we also consider the unscaled Wald-type tests where we use the identity matrix
as a weight matrix.

3. Unscaled Wald-type test

The other idea to improve the performance of the WTS is removing from it
the Moore-Penrose inverse of TVNT, i.e., we consider the unscaled Wald-type
statistic of the form

Q% (T) = NX'TX..
Bai and Saranadasa [1] considered this idea as the first for the Hotelling’s T2
statistic. Chen and Qin [3] and Zhang and Xu [32] extended this method for high-
dimensional data. Recently, Duchesne and Francq [7] and Pauly et al. [21] used
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this idea for multivariate hypothesis testing and to analyze high-dimensional
one sample repeated measures designs, respectively.

The following result gives the asymptotic distribution of the unscaled Wald-
type statistic under Hy.

Theorem 3.1. Under assumptions (1.2)-(1.3) and the null hypothesis Hy :
Tp = 0, if r = rank(T), then Q¥ (T) 4 Yoic1 M\viZi; as N — oo, where
AU, -« Au,r are the nonzero eigenvalues of TVT, V = diag(o}/k1,...,02/kKd),
and Zy,..., Ly are the independent standard normal variables.

To construct the asymptotic test based on Q%(T), we use the approxi-
mation by scaled y2-distribution similarly as in Section 2, say gUxfo. Then,
kvo = QUX%U,pa is the asymptotic critical value. In much the same way
as in the proof of Lemma 2.1, we obtain E (Y ;_; Av,iZ¢,) = trace(TVT)
and Var (3;_, )\U’Z-Z?M) = 2trace([TVT]?) (by Theorem 3.1). Hence, gy =
trace([TVT]?) /trace(TVT) and fyy = [trace(TVT)]?/trace([TVT]?). The es-
timators of gy, fr and ky o are of the form gy = trace([TV yT]?) /trace(TV 5'T),
fo = [trace(TV yT))? /trace([TV yT]?) and kyo = QUX;U’PQ. In the following
result, the properties of them and of the asymptotic test based on Q% (T) are
given. Its proof is similar to that of Theorem 2.2, and therefore it is omitted.

Theorem 3.2. Under assumptions (1.2)—(1.3), ju LY Ju, fU LY fu and I%U’a £
ku,o as N = oco. Furthermore, under the alternative hypothesis Hy : Tu = a #

04, P(QY(T) > kyolH1) = 1 as N — oo.

The finite sample behavior of the asymptotic unscaled Wald-type test is much
better than that of the WTS test and the testing procedure based on Q% (T).
However, it shows a tendency of conservativity in some situations. To overcome
this problem, the first our idea was to consider a permutation test based on

%’ﬂ(T) = NX™TX™. In the following theorem, the asymptotic conditional

permutation distribution of Q]l\],’7r (T) is established.

Theorem 3.3. Under assumptions (1.2)-(1.3), if r = rank(T), then the per-
mutation distribution of Q%’”(T) conditioned on the observed data X weakly
converges t0 Y1y AuxiZr 5. a8 N — 00 in probability, where Ay z 1, -, AUz r
are the nonzero eigenvalues of the matriz o>TDT,

d d d 2
0'2 = Z:‘iia'i2 + Z/ﬁ?i (Mz - Z Hm,“fm) y (31)

D = diag(1/k1,...,1/ka), and Zy x1,..., Zyxr are the independent N(0,1)
random variables.

Unfortunately, Theorems 3.1 and 3.3 indicate that the Q][\],’ﬂ(T) test may

not work well. First of all, the asymptotic permutation distribution of Q%’”(T)
depends on the vector p. Secondly, this distribution is rarely the same as the
asymptotic null distribution of Q¥ (T). For example, they are the same when
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0% =---=02and pg =+ = pg. In fact, the simulations in Section 4 suggest
that the unscaled Wald-type permutation test is too conservative or too liberal
in certain cases. So, we further tried to improve this test. For this purpose, we

consider the standardized version of Q% (T), i.e.,

QN (T) — En, (QX(T))
Varg, (Q%(T))

similarly as in Section 2. Under normality assumption, theorem on the moments
of quadratic forms (see, for instance, [15], p. 55), shows that Ep,(Q%(T)) =
trace(TVNT) and Varg, (QY(T)) = 2trace([TVyT]?). Estimating Vy by
Vv, we define

L QR(T) - trace(TV yT)

- \/Qtrace([TVNT]z)

~'(T) :
By simulation results not included in the paper, but available from the author,
the approximation by a sequence of standardized y2-distributions for Q%’s (T)
(see Appendix B) resulted in test that has similar finite sample behavior to the
Q% (T) test and is even slightly more conservative than this test (see Section
4). So we do not consider it here. However, the permutation test based on

%(T) behaves very well (better than the QY (T) and QY™ (T) tests) for small
sample sizes. The permutation version of Q%*(T) is denoted by Q%*™(T).
Theoretically, it is also better than the Q%’ﬂ(T) test in the sense of the following
theorem (compare with Corollary 2.1, Remark 2.1 and Theorem B.2 in the
Appendix B). This result was obtained similarly to Theorem 2.4.

Theorem 3.4. Under assumptions (1.2)—(1.3):

1. Under the null hypothesis Hy : T = 0, if r = rank(T), then
U.s d 22:1 )\U,iZ,QJ’i — trace(TV'T)
Gem) 4 2

2trace([TVT)?)

as N — oo, where Ay,1,..., vy, V and Zy 1, ..., Zy, are as in Theorem
3.1.
2. Ifr = rank(T), then the permutation distribution of Q%’S’W(T) conditioned
on the observed data X weakly converges to
2;1 )\*U,WZ?JJ,Z- — trace(TDT)
2trace([TDT)?)

as N — oo in probability, where Aj; . 1, ..., Al . are the nonzero eigenval-
ues of the matric TDT, and D and Zy x1,..., Zu - are as in Theorem
3.3.

3. If 0} = --- = 02, then the unconditional null distribution of Q%’S(T) is
the same as the permutation distribution of QII{;S’W(T) conditioned on the
observed data X, as N — oo.
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Almost all of the new solutions considered have very similar asymptotic prop-
erties at least under homoscedastic designs. However as we will see in the next
section they behave very differently for finite sample.

4. Simulation experiments

In this section, a simulation study is carried out in order to evaluate the finite
sample performance of the testing procedures proposed in Sections 2 and 3, i.e.,
an idea of the size control and power of these tests is provided. The new methods
are compared with the WTS and WTPS tests by Pauly et al. [20]. The simulation
experiments as well as the illustrative examples of Section 5 were performed in
the R programming language [22]. For the asymptotic and permutation tests
proposed by Pauly et al. [20], we used the functions implemented in the R
package GFD [8].

4.1. Simulation design

Similarly to Pauly et al. [20] and Smaga [23], we restrict our simulation studies
to the one-way layout. We consider factor A with a = 8 levels. The data were
generated from (1.1), ie., X;; = p; +¢e45, where ¢ = 1,...,8,5 = 1,...,n,,
e; = 0;(Yy; — E(Y1))/v/Var(Y;1), o; > 0 and the distributions of random vari-
ables Y;; are taken from normal, Laplace, X3o-» log-normal, different symmetric
(Yij,i¢ = 1,...,4 are normally distributed, and Y;;,4 = 5,...,8 are of Laplace
distribution) and different skewed (Y;;,i = 1,...,4 are of x3-distribution, and
Yij,i = 5,...,8 are of log-normal one) distributions. To investigate balanced,
unbalanced, homoscedastic and heteroscedastic settings, we chose the follow-
ing vectors of sample sizes n = (ny,...,ng)" and standard deviations o =
(o1,...,08): my + mlg, Il = 1,2, n; = 51g, ny = (5,6,8,10,12,14,16,17)’,
m = 5,10,15,20,25, 1 = 13, 02 = (1,1.1,1.3,1.5,1.7,1.9,2.1,2.2)" and o35 =
(2.2,2.1,1.9,1.7,1.5,1.3,1.1,1)’. These settings contain the so-called positive
(increasing sample sizes are combined with increasing variances) and negative
(increasing sample sizes are combined with decreasing variances) pairings (see,
for example, [20]). The behavior of the procedures under these two settings is a
major assessment criterion for the accuracy of them.

We consider g = 0g (resp. the alternatives py; = (1,0%), puy = (1,1,05),
ps = (1,1,1,0f) and n = n; + 101s, [ = 1,2) to investigate the type I error
level (resp. power) of the tests. To estimate empirical sizes and powers, we used
simulation consisting of 1000 runs. The p-values for the permutation testing
procedures were estimated from nperm = 10000 replications. We also used the
significance level o = 0.05 for simplicity.

For the nominal level o = 5%, the binomial proportion confidence interval
implies the empirical size over the 1000 independent replications should belong
to the interval [3.6%, 6.4%] (resp. [3.2%, 6.8%]) with probability 95% (resp.
99%) (see [7]). Thus the reported empirical sizes are displayed in bold (resp.
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underlined) when they are outside the 95% (resp. 99%) significance limits (see
Tables 3—7 and 10 in the Appendix D).

4.2. Simulation results

Now, we discuss the behavior of the empirical sizes and powers of the tests
under consideration. The following observations are confirmed by the results of
multiple comparisons of tests using the Nemenyi post hoc test [5, 17], which are
available from the author (see [10], for a similar statistical comparison of tests).
For readability, in the remainder of the paper, we omit the indication of the test
statistic’s dependency on the projection matrix T, e.g., we write (Qy instead of

Qn(T).

4.2.1. Size control

Figure 1 and Tables 3-5 in the Appendix D depict the empirical sizes of the
testing procedures considered in Sections 2 and 3. We immediately observe that
the asymptotic tests based on Qx and QX do not keep the preassigned type
I error in almost all settings except the Laplace model with n = n; + 2515,
[ =1, 2. They are usually more or less liberal even with larger sample sizes than
considered ones. Therefore, these methods can not be recommended either. On
the other hand, the asymptotic unscaled Wald-type test usually demonstrates
quite accurate control of the nominal type I error level under symmetric and
moderately skewed (x?,-distribution in our simulations) distributions. However,
for extremely skewed (the log-normal and x3-log-normal models) and also some-
times for Laplace distributions, this method seems to have conservative char-
acter. When the sample sizes or standard deviations are equal, the unscaled
permutation test based on Q%”T works quite well and its behavior seems to
be only a little worse than that of the best test among the other permutation
tests. Nevertheless, this testing procedure is conservative in the case of positive
pairing, and it does not maintain the nominal type I error level in the case of
negative one. Our simulations confirm the results of Pauly el al. [20] and Smaga
[23] about the WTPS test, which seems to be an adequate testing procedure
except for the extremely skewed distribution with unequal variances, where it
tends to highly over-reject the null hypothesis. In all investigated situations, the
tests based on Q%’S’”, ﬁ’” and Qﬁ’s’ﬂ demonstrate the most accurate control
of the preassigned type I error level.

Summarising the above results, we conclude that: The @y and Qﬁ tests are
much more liberal than the other testing procedures in almost all scenarios.
Under the null, the test based on QY seems to perform well similarly as the
permutation tests under normal and y3,- distributions. However, the asymp-
totic unscaled Wald-type testing procedure is conservative in the other settings.
The permutation tests except eventually the test based on Q%’” behave quite
similarly under symmetric and x?,- distributions. It is also true under extremely
skewed distributions when the standard deviations are equal. However, under
extremely skewed distributions and unequal variances, the WTPS test and pos-
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sibly the test based on Q%’” do not keep the nominal type I error level in contrast
to the other permutation testing procedures.

Since the asymptotic unconditional null and conditional permutation dis-
tributions of the diagonal and unscaled test statistics are not in general the
same for heteroscedastic designs (see Sections 2 and 3), we additionally inves-
tigated the behavior of the tests under the null when the differences between
variances are greater. For this purpose, we conducted the simulations in the
case of negative pairing with the following vectors of standard deviations: o4 =
(4.4,4.2,3.8,3.5,3.2,2.9,2.6,2.4)" and o5 = (5.0,4.5,4.0,3.5,2.0,1.7,1.3,1.0)".
The resulting empirical sizes are given in Tables 6 and 7 in the Appendix D. For
o = o4, the conclusions are similar to those given when o = 3. The WTPS
(except under extremely skewed distributions), ﬁ’”, ﬁ’s’” and Q%’S’” tests
behave very satisfactorily. For o = o5, the situation changes a little bit. The
tests based on Q% and Qg’ﬂ have a more or less liberal character in almost all

scenarios. The Qﬁ’s’”, [1{,’5’” and QY tests seem to work best. However, under
log-normal distribution, the first two tests are too liberal and the last one is con-

servative. Nevertheless, the Qg’s’w and Q%’S’ﬂ tests decrease their liberality with

increasing sample sizes much faster than the WTPS and diagonal permutation
tests. Therefore, under very different variances, we may observe the advantage
for the Qﬁ’s’” and Q%’S’” tests over the other permutation ones.

4.2.2. Power

In Figure 2 and Tables 8-9 in the Appendix D, we present the empirical powers
of the tests under consideration. Since the Qn and QX tests (resp. the test
based on Q7% and Q%’”) in all settings (resp. in some cases discussed in the
paper) are too liberal, their empirical powers are not really comparable (resp.
in those cases). However, they are included for illustration and completeness. In
fact, the Qn and QX tests appear to have the best power in most cases owing
to their extremely liberal behavior.

Under homoscedastic settings, the empirical powers of the asymptotic un-
scaled Wald-type test are comparable with those of the permutation tests for
symmetric and x?,- distributions, while for the other ones they are a few percent
smaller. Moreover, the empirical powers of the permutation testing procedures
are very similar. However, the Q%’” and Q][{,’S’” tests may be more powerful under
symmetric and x?%,- distributions, while the opposite is true under skewed ones.

Under heteroscedastic designs and symmetric and x%,- distributions, the Q¥;
and QK,’S’W tests have quasi identical power. This power is much less than that

of the other permutation tests except the QK,’” test for o = 5. However, the
situation may change a little for & = o3 and some alternatives.

Under extremely skewed distributions and heteroscedastic settings, the Q][{,’S’W
test is evidently more powerful than the unscaled Wald-type test. However, it
has still less power than the permutation tests based on Q%, Qﬁ’” and Qﬁ’“
for o = o3. The empirical powers of the unscaled Wald-type permutation test

o U
are very similar to these of the Q™" test for & = o3 and n; = ny. Moreover,
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TABLE 1
Recommended test statistics for different scenarios and small sample sizes. Star = (resp.
LP) denotes that given test controls the nominal type I error (resp. the lower power of the
test was observed).

Test

U D,n D,s,m U,nm U,s,m
Qy QN @y Qn Qn  Qy

Distribution Setting

symmetric homoscedastic  balanced * * * * * *
unbalanced  * * * * * *
heteroscedastic balanced * LP * * * * LP  x LP
unbalanced * LP * * * * LP
modetately  homoscedastic  balanced * * * * * *
skewed unbalanced * * * * * *
heteroscedastic balanced * LP * * * * LP  x LP
unbalanced * LP * * * * LP
extremely homoscedastic  balanced * * * * *
skewed unbalanced * * * * *
heteroscedastic balanced * * * LP % LP
unbalanced * * * LP

they also emphasize the conservativity and liberality of the Q]I{,’W test under
positive and negative pairing, respectively.

For o = o2 and symmetric and x?3,- distributions, the Q7, Q]I:\),’Tr and Qg’s’”
tests have similar power, possibly except for p = pq, where the WTPS test
may be a little more powerful. Since the Q7 test tends to highly over-reject
the null hypothesis in the extremely skewed distributions, its empirical powers
are greater than those of the diagonal Wald-type permutation tests for o =
o>. Interestingly, under negative pairing, the Qg’ﬂ and Qﬁ’s’” tests are more
powerful than the WTPS test (even for extremely skewed distributions where
the WTPS test is too liberal). It seems that there are no significant differences

in the empirical powers of the tests based on Qf/w and Qﬁ’s’” in all scenarios.

4.2.3. Summary

Summarizing, it seems that the diagonal Wald-type permutation testing proce-
dures perform best in size control and power for small sample sizes (m < 10).
The WTPS test and the test based on QY™™ also work well in many sce-
narios, but are too liberal or have less power in some cases. For the conve-
nience of the Reader, we provide Table 1 to indicate the recommended test
statistics for different scenarios and small sample sizes based on our simula-
tion studies. The Qy and le\), tests are not considered, since they do not keep
the type I error for small sample sizes. For large sample sizes, all testing pro-
cedures seem to work equally well, but the permutation tests may be time-
consuming.

In simulations of this section, we considered only ¢ = 8. The comparison of
the tests under different numbers of levels and observations is presented in the
Appendix C, as a supplement to the above considerations.



Diagonal and unscaled Wald-type tests 2629
5. Real data illustrative examples

In this section, we express three known experimental designs in terms of the
general framework of factorial designs presented in Section 1 (see also Section 4
in [20]). For each design, an application of the tests to certain real data examples
is also given.

5.1. One-way layout

In the one-way layout where factor A has a levels, X = (Xi1,...,Xan, )" and
w = (u1,...,pa), we are interested in testing the hypothesis of no treatment
effect Hy : 11 = - -+ = pq. This hypothesis is equivalent to Hy : T = 0, where
T=P,=1,—-(1/a)1,1,. As an example we consider the startup data from
the R package GFD [8]. This dataset contains the startup costs (in thousands of
dollars) of five companies. The company is treated as a factor with five levels
(a = 5): bakery, gifts, pets, pizza and shoes (n; = 11, ne = 10, n3 = 16, ny = 13,
ns = 10). We would like to check statistically whether the type of the company
has an effect on the startup costs. To solve this problem, we applied all of the
tests considered in Section 4, obtaining the results given in Table 2. For o = 5%,
all of the tests reject the null hypothesis that the startup costs under the five
types of companies do not differ significantly. However, the p-values differ from
one another. These of the Qx and Qﬁ tests are the smallest, while these of the
unscaled Wald-type permutation tests are the largest (compare with the results
of Section 4).

5.2. Two-way cross-classification design

In the cross-classification with two factors A (with a levels) and B (with b
levels), we have X = (X111,--., Xabn,,) and g = (p11, .., fap). We consider
the following hypotheses: of no main effect A, i.e., H§' : fiy. = --- = [iq.; of
no main effect B, i.e., H : iy = -+ = [ip; and of no interaction between
A and B. To express these hypotheses in the model of Section 1, we use the
following contrast matrices P, ®(1/0)1;, (1/a)1,@P} and P, Py, respectively,
where ® denotes the Kronecker product of matrices. For illustrative purposes,
we use the batteries data ([16], Table 5-1 p. 176). In this dataset, the life (in
hours) of batteries is compared by three material types and three operating
temperatures (low - 15°F, medium - 70°F, high - 125°F). From each material
type, twelve batteries are randomly selected. Then, they are randomly allocated
to each temperature level. The research questions concern possible difference in
mean life of the batteries for differing material types and operating temperature
levels. To answer these questions, the new tests and those from Pauly et al.
[20] were used (p-values are given in Table 2). All testing procedures, except
possibly the Q%’” test, reject the null hypotheses, and hence we conclude that
there are significant differences in mean battery life for the three material types
and temperature levels, and there is interaction between them. As we observed
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TABLE 2
P-values (as percentages) of the tests for the startup, batteries and curdies data.

Test

D oD U oUs,
Qn QR QF Q% Q8" QT QyT Q¥

Data set Hy

startup  p1 =---=ps 046 0.70 4.00 283 296 2.94 4.63 4.91

batteries fi1. = fi2. = fi3.  0.14 0.08 0.06 1.04 0.46 0.46 8.52 0.24
.1 =p.2=jp3 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00
interaction 026 0.61 1.19 491 296 3.00 38.08 2.39

curdies 1. = fio. 2.00 2.00 2.00 0.00 0.00 0.00 0.00 0.00
il = Mi2 = M3 26.73  40.92 2453 33.12 51.82 51.98 27.30 19.62
1=1,2

in Section 4, the unscaled Wald-type permutation test is conservative in some
situations, what is evident here.

5.3. Nested hierarchical design

We can also consider nested hierarchical designs. As an example, we present
that with two fixed factors. Suppose that the factor A (categories) has a levels
and the factor B (subcategories) has b; levels within level ¢ of factor A. The

vector of observations is X = (X111, -+, X1bynyy, s -+ » Xabals - -+ Xabanas, )" and
= (11, o s Blbyy - -5 Haly-- -5 Hab, ) 18 the vector of expected values. The hy-
pothesis of no category effect A, ie., H' : fiy. = --- = [i,. and that of no
subcategory effect B(A), i.e., H(?(A) Dl = = W, © = 1,..., a, are equiv-
alently written as Hg' : P,Qu = 0 and Hf(A) : Bu = 0, respectively, where

Q = diag((1/b1)1},,-..,(1/bs)1}, ) and B = diag(Py,, ..., Py,). Here, we con-
sider the curdies data containing the number of flatworms (dugesia) sampled
in two seasons at different sites in the Curdies River in Western Victoria. This
dataset is available in the R package GFD [8]. Season is a factor A with levels
“summer” and “winter”, while site is a factor B with levels 1 to 6, nested un-
der A. The total number of observations is 36. To test the hypotheses H{' and
Hf “ for this data, we used the testing procedures under consideration. Table
2 contains the obtained p-values. For H({‘, the p-values of all tests are less than
the significance level o = 5%, and hence we reject this null hypothesis. On the
other hand, the opposite situation is true for Hf(A). So, site of the river does
not have a significant effect on the number of flatworms.

6. Concluding remarks

Compared to other test statistics, the Wald-type one has the advantage that it
is applicable in general factorial designs without assuming homoscedasticity or
a particular error distribution. We have proposed the asymptotic and permu-
tation tests based on the modified Wald-type statistics where a weight matrix
is a certain diagonal matrix, i.e., diagonal and unscaled Wald-type tests. The
new methods do not perform equally well when small sample sizes are apparent.
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By extensive simulation studies, we conclude that the diagonal and standard-
ized unscaled Wald-type permutation testing procedures perform best. These
tests are comparable with or superior to the WTPS test of Pauly et al. [20]
under finite samples. Interestingly, the best of our new solutions perform even
better than the WTPS test under small sample sizes and heteroscedastic de-
signs, where the new permutation methods are not in general asymptotically
valid. So, the resampling procedures may perform well for finite sample without
property of asymptotic validity. Except possibly the unscaled Wald-type permu-
tation test, the other new permutation methods are asymptotically valid under
homoscedastic designs, which means that they maintain the same asymptotic
properties as the corresponding tests based on asymptotic null distribution of
their test statistics.

In the case of very different variances in samples, the new tests and the
WTPS test of Pauly et al. [20] may fail to keep the prescribed type I error at
least under extremely skewed distributions and small sample sizes. When the
number of observations is small, the sample variances are perhaps not reliable
estimators, which has a negative effect on the behavior of the tests considered.
Therefore, an improved variance estimation may result in better performance of
the testing procedures [6, 28]. This seems to be an interesting direction of the
future research.

Appendix A: Proofs
Proof of Theorem 2.1. From Pauly et al. [20], we obtain

VNTX. Y ~ Ny(04, TVT) (A.1)

as N — oo, under the null. The consistency of the estimators 67,i = 1,....,d
and the assumption (1.3) imply diag(TV yT) Eis diag(TVT) as N — oo. As we
noticed in Section 2, the diagonal elements of TV y'T are positive with prob-
ability one. By (1.2), the diagonal elements of TVT are also positive. Hence,
{diag(TVyT)} ! R {diag(TVT)}~! as N — oo. Therefore, Slutsky’s theo-
rem and the continuous mapping theorem yield Q% (T) 4 Y'{diag(TVT)} 'Y
as N — oo. From the representation theorem of the quadratic forms in nor-
mal variables, it follows that Y'{diag(TVT)}~'Y = Y7, ApiZ},;, where
AD.1,- -+, Ap,, are the nonzero eigenvalues of V/2T{diag(TVT)} ' TV'/2, and
Zpi,---,Zpy are the independent standard normal variables (see, for example,

[15], p. 90). Theorem 21.10.1 in [11] implies Ap 1,...,Ap , are also the nonzero
eigenvalues of {diag(TVT)}~!TVT, which completes the proof. O

Proof of Lemma 2.1. From the proof of Theorem 2.1, we obtain
T
> Ap.iZp,; =Y'{diag(TVT)}"'Y,
i=1

where Y ~ Ny(04, TVT). Hence, by theorem on the moments of quadratic
forms (see, for instance, [15], p. 55), we conclude that
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i=1
r
Var (Z /\D7iZ,237i> = 2trace ([{diag(TVT)} '"TVT]?). O
i=1

Proof of Theorem 2.2. The consistency of the estimators follows immediately
from the consistency of V for V. Under H; : Tp = a # 0, we have TX. Ea
as N — oo. From the proof of Theorem 2.1, it follows that {diag(TV xT)} KA
{diag(TVT)}~" as N — oo. Thus, we obtain X'T{diag(TVyT)} 'TX. £
a’{diag(TVT)}'a > 0 as N — oo. Hence QR (T) L5 o0 as N — oo. Since
l%D,a LS kp,a, the proof is complete. O

Proof of Theorem 2.3. From Lemma 1 in the supplement to Pauly et al. [20],

it follows that conditional convergence in distribution given X, v NTX™ 4
Ny(04,0°TDT) as N — oo, in probability, where o2 is given by (3.1). More-

over, Lemma 2 in that supplement shows that T\A/'QT £ o2TDT as N — .

Therefore, {diag(TV%T)} R (1/02){diag(TDT)} ! as N — co. The rest of
the proof runs as in the proof of Theorem 2.1. O

Proof of Theorem 3.1. Under the null hypothesis, we have vV NTX. Y ~
Na(04, TVT) as N — oo [20]. From the continuous mapping theorem and the
representation theorem of the quadratic forms in normal variables, it follows

that Q{(T) % Y'Y = X1 Avi 2, as N — cc. O

Proof of Theorem 3.3. The result may be proved in much the same way as The-
orem 3.1 using the fact that conditional convergence in distribution given X,
VNTX™ 4 N;y(04,0°TDT) as N — oo, in probability (see the proof of Theo-
rem 2.3). d

Remark A.1. It is worth noting that the theoretical results of Sections 2 and
3 (Theorems 2.1-2.4 and 3.1-3.4, Lemma 2.1 and Corollary 2.1) are also valid
under the assumptions of finite variances. This is also true for the results of
Pauly et al. [20] and Smaga [23]. It follows from that the results, which we
mainly use, i.e., (A.1), the consistency of Vi and Lemmas 1 and 2 in the
supplement to Pauly et al. [20] (see Remark 8.1 in this supplement), hold under
these weaker assumptions than those of existing fourth moments. We present
the results under stronger assumptions, since we want to be consistent with the
results of Pauly et al. [20] and Smaga [23].

Appendix B: Asymptotic standardized diagonal and unscaled
Wald-type tests

In this section, we briefly present the constructions of the asymptotic tests
based on the standardized diagonal and unscaled Wald-type statistics. Their
asymptotic properties are also investigated.
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Theorem 2.4 shows that under the null hypothesis Hy : Tp = 0, if r =
rank(T), then
QR (T) —
\/2trace([{diag(TV 5T)} 1TV 5 T]?)

i) 22:1 )‘D,iZJZD,i —d
/2trace([{diag(TVT)}1TVTJ?)

QN (T) =

as N — oo, where Ap1,...,Ap, are the nonzero eigenvalues of the matrix
{diag(TVT)}~'TVT, V = diag(c}/k1,...,05/ka), and Zp 1,...,Zp,, are the
independent standard normal variables. By Zhang [30], the asymptotic null dis-
tribution of the standardized diagonal Wald-type statistic can be approximated

by that of (X%D - hp.s)/\/2hp,s, where

T trace?®([{diag(TVT)}'TVT)?)
D.s = trace?([{diag(TVT)}1TVT)3)’

The value hp , is selected such that the first three moments of the variables
coincide. The asymptotic critical value is then given by kp 5o = (X}%D_S,l—a —

hp.s)/\/2hp,s. We estimate V by Vv, and hence we have the following simple
estimators of hp s and kp s .q:

NI} ITVNT])

[ trace® ([{diag(TVNT)} ' TVNT]?)
trace?([{diag

(TV
'IA{:D,S,(X = (X}%D,SJ_ —hp )/ 2hD,s-

Theorem B.1. Under assumptions (1.2)-(1.3), iLD75 LS hp,s and IAcD,Sya LS
kpsa as N — oo. Moreover, under the alternative hypothesis Hy : Ty = a #
04, P(QN*(T) > kpsalH1) =1 as N — co.

The proof of this result follows from similar arguments to those in the proof
of Theorem 2.2.

By Theorem 3.4, under the null hypothesis Hy : Ty = 0, if » = rank(T),
then

QY (T) — trace(TVyT) q > ie1 AviZg; — trace(TVT)

U,s

N (T) = N 2
\/Qtrace([TVNTP) 2trace([TVT] )

as N — oo, where Ay 1, ..., Ay, are the nonzero eigenvalues of the matrix TV'T,
V = diag(c}/k1,...,0%/ka), and Zya, ..., Zy, are the independent standard
normal variables. The asymptotic null distribution of the standardized unscaled
Wald-type statistic can be approximated by that of (X%U .—hus)/\/2hu s, where

hys = trace3([TVT)?)/trace?([TVT]?) [30]. The asymptotic critical value is
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then given by kv sa = (Xj, . 1o — Pv.s)/+/2hv.s. The estimators of hy, and
ky.s,o are of the form Y

h trace®([TVy'T]?) ; 2 3 F
ho.a = ; o kusa = (G, — hu.e) /2 200 .
v trace? ([TV yT]?3) ve, (XhU,s,lfa v,s)/ U,

Theorem B.2. Under assumptions (1.2)-(1.3), hy. it hu.s and ky s £
ku.s,a as N — oo. Moreover, under the alternative hypothesis Hy : Tu = a #
04, P(QV°(T) > kus.alHi) — 1 as N — co.

Proof. The consistency of Vo for V implies the consistency of the estimators
iLU,S and I%U,s’a. Under H; : Tu =a # 0, TX. f) a as N — oco. Hence, we have
X'TX. B a’a>0as N = co. Since Vy 5 Vv, QJ[{,’S(T) B xoas N = co. By

the result that ch,&a LS ku,s,a, the proof is complete. O

Appendix C: Additional simulation studies

The simulations presented were performed to analyse how the power of the tests
jointly depends on the sample sizes and the number of levels of treatment factor.
Simulation design was very similar to that of Subsection 4.1. We considered the
normal, x?, and log-normal models, and n = (m+5)1,, 0 = 1,, m = 5,10, 15,20
and a = 6, 8,10, 12. We chose balanced and homoscedastic settings to fairly show
the behavior of the power under increasing number of levels and observations.
To investigate the type I error level (resp. power) of the tests, we considered
@ = 0, (resp. the alternative p; = (1,0, _;)").

The resulting empirical sizes and powers are depicted in Tables 10 and 11 in
the Appendix D, respectively. For given sample sizes, the Qx and Q¥ tests be-
come more and more liberal with growth of the number of levels. The empirical
sizes of the other testing procedures are very similar for all numbers of obser-
vations and levels. Moreover, they are quite close to significance level, except
these for the QY; test in case of the extremely skewed distribution. The empirical
powers of the Qn and QX tests are usually at the same level for different values
of a. However, they slightly increase or decrease in some cases, when the number
of levels increases. This can be explained by unacceptable behavior of these tests
under the null hypothesis. The empirical powers of the other testing procedures
decrease as the number of levels increases, which seems to be natural as most of
these tests keep the nominal type I error level. This decrease, however, usually
decreases as the number of observations increases. Of course, for given number
of levels, the empirical powers of these testing procedures increase quite fast as
the number of observations increases.

Appendix D: Simulation results tables

Tables 3—-11 contain the results of simulation studies considered in Section 4 and
the Appendix C.
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Empirical sizes (as percentages) of the tests obtained in the normal and Laplace models.

Model o n; m Test
QN Qg Q% QWN Qﬁ,ﬂ' Qg,s,‘n’ Q][{],ﬂ' Q]l\/],s,ﬂ'
Normal o1 ng 5 12.8 10.9 5.5 3.6 4.1 4.0 5.2 5.2
10 8.7 8.2 4.8 4.0 4.3 4.3 4.7 4.6
15 7.0 6.3 4.6 4.2 4.1 4.1 4.4 4.5
20 7.5 6.9 5.0 5.3 5.1 5.1 4.9 4.8
25 8.1 7.5 5.4 5.9 5.8 5.8 5.4 5.4
ng 5 11.4 10.3 4.8 5.0 5.1 5.0 4.7 4.2
10 8.7 7.6 4.5 4.5 4.4 4.4 4.5 4.1
15 7.9 7.5 40 4.8 4.5 4.5 4.0 3.9
20 6.8 6.3 4.8 4.2 4.0 4.0 4.7 4.7
25 7.0 6.5 5.0 4.0 4.4 4.4 5.1 5.2
o2 N 5 14.0 10.7 6.2 4.5 4.9 4.4 6.9 6.0
10 8.3 7.3 5.0 4.7 4.3 4.2 5.9 4.9
15 7.2 5.8 4.6 4.1 4.0 4.0 5.5 4.6
20 7.5 6.8 5.4 5.1 4.7 4.6 6.8 5.1
25 7.8 7.3 4.9 5.5 5.6 5.5 6.4 5.2
ng 5 11.0 10.5 64 5.1 4.9 4.8 1.1 6.1
10 8.7 7.9 5.8 4.6 4.9 4.8 1.3 5.6
15 7.2 6.5 4.6 4.8 4.5 4.4 2.6 4.6
20 6.6 5.7 4.5 3.7 4.3 4.2 2.3 4.4
25 7.1 7.0 5.8 4.9 5.3 5.3 3.6 5.8
o3 N2 5 11.6 9.0 5.7 5.1 5.3 4.5 16.9 5.3
10 8.2 7.3 5.2 5.2 4.9 4.5 14.0 5.2
15 7.5 6.6 4.6 5.4 5.2 4.9 10.8 4.6
20 7.2 6.8 4.5 4.5 5.3 4.9 10.9 4.7
25 6.6 6.3 5.1 4.5 4.6 4.6 10.7 5.3
Laplace o1 ni 5 11.9 10.0 5.1 4.0 4.0 4.1 5.2 5.2
10 8.8 8.1 4.0 5.9 5.3 5.3 4.3 4.3
15 7.0 6.1 3.6 4.0 4.4 4.4 4.2 3.9
20 7.2 7.0 4.8 5.3 5.2 5.2 5.3 5.4
25 5.5 5.3 3.9 4.0 3.9 3.9 4.2 4.1
ng 5 7.9 6.5 3.3 43 4.2 4.2 3.8 3.7
10 6.3 5.6 3.7 43 4.0 4.0 4.2 4.1
15 8.3 7.6 4.5 5.9 5.5 5.5 5.0 4.6
20 7.8 71 54 6.1 5.8 5.9 5.6 5.7
25 5.7 5.2 4.3 4.5 4.5 4.5 4.6 4.6
o2 N 5 11.1 8.8 4.1 4.9 5.1 5.1 5.7 4.9
10 8.7 7.5 4.6 5.8 5.2 5.1 5.4 5.0
15 6.8 5.1 3.9 4.4 4.2 4.2 5.0 4.6
20 74 6.8 4.9 5.6 5.5 5.3 5.8 5.2
25 5.4 5.2 4.6 4.1 4.4 4.1 5.3 4.6
ng 5 7.7 6.4 3.3 4.7 3.9 3.8 0.5 3.9
10 6.5 5.9 44 4.6 4.5 4.5 1.3 5.1
15 7.9 7.3 5.0 5.8 5.8 5.8 2.7 5.6
20 7.8 6.8 5.6 6.2 6.3 6.1 3.5 5.9
25 5.8 4.5 3.8 4.6 4.0 3.8 3.0 4.2
o3 N2 5 7.9 6.6 4.6 5.2 4.4 4.1 14.4 5.6
10 6.7 4.7 3.1 438 4.2 3.9 11.5 3.8
15 7.8 7.0 4.9 5.8 5.4 5.0 12.3 5.7
20 7.5 6.3 4.7 6.2 5.8 5.6 12.2 4.9
25 6.0 5.1 4.8 5.0 4.4 4.2 9.9 5.3
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TABLE 4
Empirical sizes (as percentages) of the tests obtained in the X%O and log-normal models.

Model o n; m Test
Qv QR Q¥ Q% Qy" Qy°T QYT QR
X1o o1 nj 5 16.1 15.9 4.9 4.7 5.4 5.5 5.2 5.4
10 10.8 10.5 3.4 45 4.0 4.0 3.6 3.6
15 9.6 9.6 3.8 4.9 4.6 4.6 3.9 4.0
20 9.8 9.8 5.8 6.0 6.0 6.0 6.2 6.1
25 8.3 8.3 5.4 5.5 5.3 5.4 5.5 5.3
no 5 11.2 10.6 4.5 4.8 4.7 4.7 4.0 4.3
10 8.1 7.9 5.0 4.4 4.6 4.6 5.0 5.0
15 7.6 8.0 4.4 4.1 4.3 4.3 4.9 4.8
20 75 7.5 45 5.0 4.5 4.4 5.0 4.8
25 8.2 7.8 5.8 5.6 5.4 5.4 5.9 5.8
o2 ni 5 15,9 13.8 64 6.3 6.5 6.3 74 7.0
10 11.0 10.6 3.4 58 4.5 4.3 4.1 3.4
15 9.4 9.5 4.4 5.4 5.0 4.8 5.5 4.9
20 9.9 9.7 50 64 5.9 5.8 6.7 5.5
25 8.3 7.6 4.9 5.3 5.4 5.3 6.1 5.2
n 5 104 10.0 38 44 4.2 4.1 0.9 4.0
10 83 7.5 40 48 4.4 4.4 1.7 4.0
15 7.4 7.7 5.1 4.6 4.9 4.9 2.5 5.7
20 7.9 75 49 55 4.9 4.9 3.0 5.5
25 7.9 7.9 5.4 5.7 6.0 6.0 4.1 5.7
o3 N2 5 12.2 10.5 5.3 6.2 5.3 4.9 15.5 5.3
10 88 7.5 49 53 4.4 4.3 11.2 5.3
15 7.6 7.7 5.4 4.9 4.4 4.2 11.5 5.7
20 7.9 7.2 53 5.7 4.6 4.3 10.4 5.8
25 8.1 7.2 5.2 6.1 5.4 5.3 10.2 5.7
Log- o1 ni 5 19.0 24.7 1.8 4.5 5.3 5.2 5.1 5.1
normal 10 13.6 21.2 1.1 4.8 4.0 4.0 4.8 5.1
15 13.7 21.2 1.7 5.2 4.3 4.2 4.4 4.6
20 14.0 19.6 2.0 6.2 5.8 5.8 5.0 5.1
25 12.7 18.2 2.6 5.3 5.2 5.2 5.8 5.8
no 5 18.1 24.0 1.8 4.0 4.3 4.0 5.2 5.0
10 16.6 21.7 1.8 58 5.9 5.8 4.8 5.0
15 14.1 19.1 1.3 5.3 4.0 4.2 4.2 3.4
20 12.2 17.1 1.8 5.2 5.7 5.7 4.4 4.4
25 9.6 16.3 1.5 4.3 3.7 4.0 4.6 5.5
o2 1nj 5 25.2 227 3.1 12.7 8.6 8.3 6.4 5.9
10 19.3 18.0 2.0 8.3 5.3 4.8 6.7 5.9
15 17,9 18.6 2.1 8.2 5.2 4.6 5.7 5.4
20 18.3 18.2 2.3 103 63 5.9 6.9 6.1
25 14.8 15.7 3.6 7.8 5.0 4.6 7.0 6.3
no 5 16.5 21.6 1.9 5.4 4.9 4.5 1.7 4.6
10 159 193 28 7.1 59 5.9 2.9 5.8
15 13.3 15.5 1.5 6.2 4.6 4.4 2.3 3.5
20 12.8 15.8 1.6 5.9 4.4 4.3 2.7 4.7
25 12.5 14.6 2.8 7.0 4.7 4.7 3.7 7.1
o3 ng 5 274 21.7 3.4 13.8 64 5.5 12.8 7.4
10 19.3 16.5 2.4 100 53 5.0 10.3 6.1
15 19.2 17.2 2.3 11.1 6.3 5.6 9.6 5.6
20 16.8 14.9 2.1 9.9 5.2 4.9 9.1 4.8
25 12.1 12.7 2.6 6.4 5.0 4.5 11.0 6.1
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TABLE 5
Empirical sizes (as percentages) of the tests obtained in the normal-Laplace and
X3-log-normal models.
Model o n m Test
Qv QF OF 0F Q" QT Qv QT

Normal- o1 m 5 14.8 12.0 4.8 4.9 4.8 4.7 4.7 5.1
Laplace 10 8.7 8.6 45 49 4.8 4.6 4.7 4.7
15 6.8 6.2 3.8 46 4.5 4.4 4.0 3.9
20 7.3 7.0 4.3 4.8 5.1 5.0 4.5 4.5
25 6.8 6.7 46 5.1 5.3 5.3 4.5 4.4
np 5 9.8 9.2 46 5.0 4.8 4.7 4.9 4.3
10 8.2 7.1 5.3 4.6 4.8 4.9 4.5 5.1
15 6.8 6.3 44 4.6 4.7 4.7 4.3 4.4
20 6.6 6.8 46 4.6 4.2 4.2 4.6 4.7
25 7.4 7.2 58 59 5.6 5.6 6.1 5.9
o2 nj 5 13.8 11.3 46 54 4.8 4.6 6.8 6.1
10 9.0 7.4 44 55 4.5 4.4 5.8 5.4
15 6.7 6.4 5.0 5.3 5.2 5.0 6.1 5.4
20 6.4 6.0 5.0 4.8 5.2 5.2 5.7 5.2
25 6.8 6.2 46 54 5.4 5.2 5.7 5.3
ns 5 10.0 9.1 5.2 5.5 5.4 5.4 1.2 5.1
10 7.7 7.2 5.2 5.2 5.0 4.9 1.6 5.9
15 6.5 6.4 4.7 49 4.8 4.9 2.3 5.6
20 6.9 6.7 5.0 5.0 5.2 5.2 3.0 5.4
25 7.7 7.6 6.1 6.2 6.1 6.0 4.2 6.6
o3 N2 5 9.8 8.0 6.2 5.3 5.6 5.3 18.1 5.8
10 8.4 6.9 5.9 4.7 4.9 4.8 13.0 6.0
15 7.1 5.9 48 52 4.9 4.8 11.4 4.8
20 6.6 6.2 52 4.3 4.0 3.7 10.1 5.4
25 7.4 7.2 59 59 5.6 5.6 12.2 6.3
X%-Log- o1 np 5 17.3 22.0 3.5 56 5.5 5.3 5.8 5.3
normal 10 134 18.0 3.1 4.7 5.9 5.6 4.8 4.7
15 12.5 16.7 3.7 6.3 6.5 6.4 5.4 5.3
20 13.1 16.7 3.6 6.7 6.2 5.9 5.4 5.8
25 10.0 13.5 2.8 4.1 4.8 4.8 4.7 4.6
ng 5 14.2 17.3 4.2 5.8 5.2 5.5 8.3 6.0
10 12.1 15.0 2.7 44 5.0 4.9 5.2 4.1
15 10.0 12.7 3.2 4.1 4.7 4.6 5.2 4.7
20 10.1 129 2.9 6.0 5.7 5.8 5.3 5.2
25 10,9 144 38 5.1 5.9 5.9 6.9 6.0
o2 ni 5 24.2 239 36 8.8 7.3 7.2 6.3 6.1
10 19.4 20.0 3.8 8.8 6.6 6.3 6.7 6.4
15 174 17.1 39 9.8 6.9 6.8 6.2 6.0
20 15.8 16.2 3.4 8.5 6.5 6.3 6.6 5.7
25 14.2 144 2.8 7.7 5.2 5.0 5.4 5.3
ng 5 16.0 19.2 2.7 6.0 5.9 6.4 1.6 5.0
10 13.8 16.3 2.7 6.5 5.5 5.8 3.1 5.6
15 12.2 13.9 2.9 6.0 4.7 4.9 2.4 5.5
20 12.6 13.8 3.5 7.0 6.0 6.0 3.2 6.2
25 13.2 13.7 3.2 7.1 5.8 6.0 4.2 6.7
o3 ny 5 15.6 14.2 48 8.4 6.7 5.7 19.6 7.3
10 13.3 11.6 38 74 4.7 3.9 13.6 5.7
15 11.6 10.2 43 6.5 5.5 4.9 13.8 6.6
20 10.8 10.2 43 7.2 5.3 4.7 11.7 6.1
25 10.8 10.8 4.7 6.2 4.8 4.3 11.9 7.0
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TABLE 6

Model m Test
Qv QR QF QF Q¥ Q¥ QF" oy
Normal 5 11.5 94 5.7 4.8 5.2 4.8 14.2 5.3
10 8.5 7.9 4.8 4.8 4.4 4.3 11.8 4.8
15 7.6 7.2 4.1 5.0 5.1 5.0 9.4 4.3
20 7.0 6.9 4.5 4.4 4.8 4.4 9.6 4.6
25 6.6 6.5 5.3 4.2 4.7 4.4 9.1 5.1
Laplace 5 7.8 6.9 4.8 5.0 4.3 4.0 12.5 5.6
10 6.5 5.1 3.4 4.8 4.1 4.0 9.1 3.7
15 8.0 6.9 4.8 5.8 5.5 5.3 10.2 5.4
20 7.5 6.6 4.8 6.4 5.9 5.7 10.6 5.0
25 5.9 4.8 4.7 4.8 4.3 4.3 8.5 5.2
X%o 5 11.7 10.6 5.2 5.6 5.3 5.0 12.6 5.1
10 8.8 7.8 5.0 5.1 4.6 4.5 9.2 5.1
15 7.3 7.4 5.3 4.7 4.4 4.1 9.6 5.7
20 7.7 7.1 5.5 5.0 4.6 4.4 8.7 5.7
25 8.1 7.8 5.5 6.0 5.5 5.4 9.1 5.8
Log-normal 5 24.8 22.2 2.9 10.8 5.2 4.8 10.5 6.9
10 19.9 20.1 2.6 10.9 6.7 6.7 10.1 6.3
15 17.7 17.7 1.9 8.7 5.7 5.4 7.9 5.0
20 15.7 15.7 2.0 7.6 4.6 4.3 7.8 4.5
25 109 134 2.3 5.5 4.6 4.2 9.0 6.1
Normal-Laplace 5 10.1 8.8 5.8 5.3 5.1 5.1 13.8 5.6
10 8.1 6.8 5.8 4.8 4.7 4.6 11.0 5.9
15 6.8 6.2 4.6 4.9 4.9 4.8 9.3 4.4
20 6.7 6.4 5.0 4.1 3.9 3.7 8.7 5.1
25 7.4 7.3 5.9 5.8 5.4 5.3 11.0 6.0
X3-Log-normal 5 14.7 14.3 46 7.3 6.2 5.7 15.9 7.0
10 12.7 12.1 3.1 6.4 4.7 4.0 11.3 5.1
15 10.7 10.6 4.3 5.5 5.0 4.6 11.3 6.1
20 11.0 10.6 4.0 6.8 5.3 4.9 9.8 5.5
25 104 11.4 4.6 5.8 4.9 4.5 10.8 6.9
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TABLE 7
Empirical sizes (as percentages) of the tests obtained for o = o5 and n; = na.

Model m Test
QN Qﬁ Q% Q}T\] Q]?]Jr Qg,s,rr Q%,ﬂ' Q]l\/],s,ﬂ'
Normal 5 11.6 7.8 5.4 7.2 7.3 4.8 27.9 6.2
10 8.7 6.4 4.9 5.9 6.6 4.8 19.8 5.4
15 8.1 6.1 5.0 6.0 6.5 4.9 17.2 5.2
20 7.2 6.3 4.9 4.9 6.4 5.0 16.5 5.4
25 6.7 5.6 5.3 5.2 6.0 5.0 15.1 5.6
Laplace 5 8.0 6.2 4.7 6.0 6.9 4.7 25.5 6.3
10 7.1 4.5 3.6 6.0 5.7 3.9 174 4.5
15 7.4 6.1 5.0 6.2 7.3 6.0 18.8 6.1
20 74 6.0 5.2 6.8 7.1 5.7 17.9 6.3
25 6.5 5.6 5.2 5.5 6.6 5.1 14.7 6.0
X%o 5 13.5 8.6 6.0 9.3 7.9 6.3 26.3 6.8
10 9.8 7.5 4.9 6.5 6.7 5.5 18.1 5.9
15 7.9 7.2 5.2 5.9 6.8 5.1 17.4 6.0
20 8.2 6.0 5.1 6.1 5.6 4.7 17.1 6.0
25 8.5 6.8 5.3 6.6 6.4 5.0 14.8 6.1
Log-normal 5 35.8 19.5 52 28.5 13.6 11.1 25.4  10.2
10 276 16.4 40 22.2 11.3 9.8 20.2 8.5
15 26.6 14.3 3.6 208 9.7 8.2 18.7 8.0
20 22.2 13.0 3.5 16.5 8.6 7.3 16.5 6.9
25 18.0 10.2 36 11.2 6.2 5.0 16.3 7.2
Normal-Laplace 5 9.8 8.2 7.1 6.3 7.4 5.7 27.1 7.7
10 7.9 7.1 5.8 5.3 6.8 5.4 19.8 6.3
15 7.2 5.9 4.8 5.4 6.1 4.6 17.3 5.3
20 7.2 5.5 5.5 5.2 6.0 4.9 14.9 5.8
25 7.4 6.4 5.9 6.4 7.4 5.7 17.1 6.6
X3Logmormal 5 18.7 11.0 56 152 9.8 7.6  29.0 8.1
10 17.0 94 40 11.4 7.8 5.3 20.4 6.6
15 145 9.8 51 11.0 7.1 5.2 19.6 7.2
20 13.1 9.0 5.1 9.5 6.8 5.3 18.1 6.7
25 13.2 8.3 5.0 .2 6.3 4.4 17.6 7.1
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TABLE 8

Empirical powers (as percentages) of the tests obtained in the normal, Laplace and X%o
models (m =mn; +101g, I = 1,2, py = (1,0%)’, py = (1,1,07), py = (1,1,1,0%)").

Model o n; n Test
Qv QF Q% QF QN QvT Oy @y
Normal o1 mni p; 782 783 743 664 682 68.2 73.4 73.3
By 961 963 94.8 89.8 90.8 90.9 94.3 94.4
py 984 984 979 96.7 96.9 96.9 97.7 97.8
ny py 779 804 838 706 73.7 73.7 83.6 82.6
po 977 98.0 982 96.1 96.8 96.8 98.3 98.2
ps 998 99.8 99.6 99.2 99.5 99.5 99.7 99.6
o2 niy pu; 729 653 232 60.0 534 53.2 26.1 23.2
pmy 820 809 452 734 725 71.9 48.7 44.7
ps 809 817 546 704 735 73.3 57.9 54.6
ny py 743 699 434 654 63.2 63.2 25.9 42.2
pmy 897 889 T71.0 839 844 84.3 52.8 70.6
py 897 903 81.7 859 87.0 87.0 67.3 81.3
o3 n2 py 258 280 31.7 182 23.0 22.5 48.3 31.9
py 440 521 490 35.2 45.3 44.3 67.1 48.5
py 672 751 61.6 59.5 69.7 68.4 77.8 61.6
Laplace o1 mn1  p; 80.0 804 723 734 743 74.5 74.9 73.7
po 96.6 967 925 944 949 95.0 93.2 92.7
ps 989 987 97.3 982 984 98.4 97.7 97.6
ny p; 789 81.0 833 745 775 77.3 84.8 84.3
po 974 979 969 96.5 97.2 97.2 97.9 97.1
py 999 998 995 99.7  99.7 99.7 99.6 99.5
o2 niy p; 751 670 21.2 669 60.2 59.5 25.6 24.1
pny 889 846 432 835 813 80.9 50.5 46.5
ps 855 853 555 810 821 81.4 60.2 57.3
n, py 755 717 40.7 70.8 67.3 67.2 24.3 42.7
po 922 913 702 899 89.1 89.1 54.6 71.9
py 945 942 81.0 925 92.7 92.6 70.0 82.4
o3 n2 oy 269 294 295 218 26.6 25.5 47.2 31.1
By 51.0 571 49.1 44.0 543 53.2 66.9 51.6
ps 737 79.0 60.3 67.9 77.1 76.1 78.7 62.8
A o1 ni p, 838 836 719 723 712 715 724 729
po 982 978 948 947 949 95.0 94.8 94.9
py 987 984 97.7 973 973 97.3 97.7 97.7
ny pu; 843 870 84.0 727 76.4 76.4 85.1 84.4
By 994 995 99.1 981 988 98.8 98.9 99.3
pns 100 100 99.7 99.5 99.4 99.5 99.7 99.7
o2 ni py 784 697 254 675 58.0 57.1 28.7 26.1
By 89.0 852 476 803 76.2 76.0 51.4 48.5
pns 848 832 58.6 77.6 78.2 78.0 62.3 59.0
np p; 800 750 415 685 628 62.8 25.2 42.3
By 925 911 710 872 855 85.5 53.4 71.1
py 931 928 81.3 889 894 89.4 67.7 81.6
o3 n2 puy 225 279 26.5 145 17.9 16.6 45.3 28.1
py 434 55.0 444 289 425 41.3 65.2 46.4
py  66.1  76.8 59.0 51.2 66.3 65.2 77.8 61.2
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TABLE 9
Empirical powers (as percentages) of the tests obtained in the log-normal, normal-Laplace
and X%—log—normal models (mn =mn; +101g, 1 =1,2, p; = (1,0%)’, py = (1,1,05),
l‘L3 = (17 ]-7 17 Og'))/)

Model o n; " Test

Qv QY Q% Q% QT QntT QYT QY%
Log- o1 n; ey 96.1 974 689 91.5 91.2 92.3 81.3 82.3
normal py  99.8 99.7 87.7 99.8 99.0 99.1 94.0 94.0

psz 999 995 91.8 99.8  99.6 99.6 97.5 97.5

np py 972 988 79.6 90.7 934 94.0 86.2 90.0
py 100 999 93.0 99.8 99.7 99.6 95.9 98.2
psz 100 999 96.0 100 99.9 99.8 97.7 99.3

o2 niy pu 956 887 30.1 913 745 73.9 42.9 42.4
py 984 949 495 96.6 88.9 88.1 63.5 62.2
pnsz 969 939 571 955 90.1 89.1 69.7 68.9

ny puy 971 933 433 913 798 80.4 39.1 56.6
pny 994 974 673 98.0 922 92.4 63.4 78.0
pnsz  98.0 955 728 959 92.1 92.2 70.5 82.0

o3 n2 puy 484 56.2 29.7 254 275 26.0 51.3 42.2
py 740 816 49.3 486 57.0 56.2 73.7 68.6
pny 913 92.0 640 76.6 778 78.1 82.8 79.7

Normal- o1 ni1 p; 751 754 699 635 659 65.8 70.8 70.6
Laplace pmy 949 952 93.0 90.1 91.0 91.0 93.1 93.0
pny 986 98.6 974 974 973 97.3 97.6 97.4

n, puy 77.0 786 828 713 747 74.7 83.5 82.7
py 983 99.0 988 96.7 974 97.4 98.8 98.8
ps 997 99.7 99.6 99.6 99.6 99.6 99.6 99.6

o2 ni; puy 684 606 224 581 53.8 53.5 26.9 24.4
pny 836 80.0 444 755 744 74.1 49.8 46.9
pns 848 838 56.1 772 788 78.5 62.0 58.9

ny py 732 698 402 66.2 650 65.0 24.2 42.1
pny 902 889 692 857 85.1 85.4 54.6 70.6
pns 919 920 794 87.7 88.8 88.8 66.1 80.5

o3 n2 pup 236 250 27.1 182 213 20.6 46.0 28.0
py 431 50.3 46.3 354 455 44.0 65.8 46.4
pns 668 758 589 56.2 704 69.1 79.3 59.9

x3-Log- o1 m p; 949 944 687 821 779 78.1 76.9 78.3
normal Mo 99.7 99.0 885 98.0 96.9 97.0 94.2 94.0
My 99.9 99.7 933 995 987 98.7 96.6 96.9

ny py 933 949 809 818 816 82.3 84.5 87.9
py 997 99.8 95.7 986 97.9 98.0 96.3 98.1
ps 100 100  97.3 99.8  99.6 99.6 98.0 99.3

oz ny pup 933 824 293 802 598 59.5 37.9 36.9
pny 964 922 504 924  80.1 79.9 61.2 59.6
pnsy 952 91.3 588 91.1 844 84.2 69.0 67.7

ny gy 916 848 43.7 799 654 66.7 38.2 53.8
py 972 948 683 93.7 86.1 86.5 62.5 77.3
pnsz  96.8 949 756 94.0 89.0 89.2 70.6 83.2

o3 n2 puy 301 395 250 16.7 21.1 18.4 47.2 32.2
pny 526 684 46.5 289 46.3 43.7 67.3 53.0
pns 767 89.1 60.1 519 71.0 69.8 80.1 68.9
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TABLE 10
Empirical sizes (as percentages) of the tests obtained in the normal, X%O and log-normal
models (m = (m +5)1q, 0 = 14, m = 5,10,15,20, a = 6,8,10,12).

Model m a Test
Qv QF Q% QF @yT QT @y QT
Normal 5 6 11.2 9.9 56 4.2 44 4.4 5.1 49
8 14.5 13.1 56 5.7 5.4 5.4 5.3 5.1
10 14.1 12.6 4.8 3.9 4.1 4.1 4.7 4.7
12 17.8 16.0 49 5.0 5.0 5.0 4.4 4.4
10 6 9.6 84 60 52 5.2 5.2 5.6 5.6
8 87 82 48 40 4.3 4.3 4.7 4.6
10 11.7 11.0 53 5.0 4.9 4.9 4.9 5.0
12 10.7 9.8 4.8 47 4.8 4.8 5.0 4.8
15 6 6.8 6.4 54 49 4.6 4.7 5.1 5.2
8 7.0 6.3 46 4.2 4.1 4.1 4.4 4.5
10 9.9 9.5 56 6.1 5.9 5.9 5.4 5.3
12 10.1 9.8 6.1 5.1 4.9 4.9 6.0 5.9
20 6 6.0 54 44 47 4.5 45 4.3 4.2
8 7.5 6.9 50 5.3 5.1 5.1 4.9 4.8
10 7.2 6.8 44 4.0 4.0 4.0 4.5 4.5
12 81 7.3 47 43 4.2 4.2 4.8 4.7
X710 5 6 12.0 104 49 54 5.4 5.4 5.0 4.8
8 16.1 15.9 4.9 4.7 5.4 5.5 5.2 5.4
10 18.4 18.2 51 4.4 5.0 5.0 5.7 5.7
12 20.8 21.9 52 5.0 4.8 4.8 5.6 5.6
10 6 103 9.6 50 5.7 5.2 5.2 5.3 5.2
8 10.8 10.5 3.4 45 4.0 4.0 3.6 3.6
10 12.1 13.4 43 4.4 4.3 4.3 4.6 4.5
12 14.1 14.8 51 5.5 5.6 5.6 5.6 5.7
15 6 81 83 54 4.9 5.0 5.0 5.3 5.5
8 9.6 9.6 38 49 4.6 4.6 3.9 4.0
10 10.7 11.6 44 53 5.2 5.2 4.7 4.8
12 10.2 10.8 44 5.0 5.0 5.0 4.9 4.6
20 6 87 81 59 55 5.5 5.5 5.9 5.8
8 9.8 9.8 58 6.0 6.0 6.0 6.2 6.1
10 9.9 104 56 59 5.6 5.6 5.9 5.7
12 10.4 10.6 56 5.7 5.6 5.6 6.1 6.1
Log- 5 6 12.7 13.3 2.6 4.2 4.7 4.6 5.1 5.5
normal 8 19.0 24.7 1.8 45 5.3 5.2 5.1 5.1
10 21.2 35.1 1.8 4.4 4.7 4.7 5.6 5.0
12 23.2 43.9 1.2 42 4.6 4.7 3.8 3.7
10 6 13.6 14.1 1.8 6.1 4.6 4.8 4.0 4.0
8 13.6 21.2 1.1 438 4.0 4.0 4.8 5.1
10 20.2 32.6 2.2 6.3 5.3 5.6 6.4 6.8
12 21.2 41.2 0.8 53 4.7 4.6 4.2 3.8
15 6 10.9 11.8 1.8 49 4.6 45 4.1 4.4
8 137 21.2 1.7 5.2 4.3 4.2 4.4 4.6
10 15.2 27.5 1.5 45 4.1 4.2 4.4 4.3
12 17.9 357 1.7 4.1 4.5 4.3 5.6 5.6
20 6 10.5 13.0 2.2 5.7 4.7 5.0 5.4 5.2
8 14.0 19.6 2.0 6.2 5.8 5.8 5.0 5.1
10 12.4 23.2 1.5 5.0 5.3 5.3 4.3 4.0
12 16.9 31.1 1.4 4.9 4.6 4.6 4.9 5.1
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TABLE 11
Empirical powers (as percentages) of the tests obtained in the normal, X%O and log-normal
)/, m =5,10,15,20, a = 6,8,10,12).
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a—1
Model m a Test
Qv Q¥ Q¥ Q% QuT QT QYT QR

Normal 5 6 65.1 64.1 56.9 47.0 50.7 50.7 53.2 53.5
8 61.9 60.7 51.3 41.2 43.4 43.4 49.9 50.1
10 62.7 61.4 48.1 37.2 39.3 39.2 47.4 47.6
12 60.3 59.9 44.6 34.4 36.1 36.3 43.4 43.6
10 6 78.8 78.8 74.2 70.0 71.3 71.3 73.6 73.5
8 78.1 77.8 72.5 66.4 68.8 68.8 72.0 71.9
10 77.1 77.3 71.0 62.4 64.2 64.3 70.8 70.6
12 73.1 73.2 65.6 56.8 58.5 58.5 65.4 65.5
15 6 90.8 91.0 90.2 86.1 87.5 87.5 89.3 89.1
8 87.1 87.1 84.9 80.8 82.3 82.3 84.9 84.6
10 87.5 87.6 84.8 79.2 81.0 81.0 84.8 84.6
12 85.7 85.5 81.9 73.8 75.1 75.1 81.3 81.5
20 6 95.9 96.0 95.4 93.6 93.9 93.9 95.1 95.1
8 95.5 95.7 95.1 91.7 93.0 93.0 94.9 95.0
10 92.4 92.8 91.6 89.0 89.7 89.7 91.6 91.5
12 91.5 92.0 90.6 87.0 87.6 87.6 90.4 90.5
X%O 5 6 70.9 68.1 54.6 48.9 49.9 50.1 53.5 54.2
8 69.9 68.1 48.9 44.1 44.5 44.8 49.2 49.2
10 70.0 69.3 45.8 42.6 42.9 43.0 46.9 47.0
12 68.9 69.2 43.0 36.2 36.1 36.1 43.7 44.2
10 6 86.4 86.4 77.1 77.0 7.2 77.3 7.2 77.1
8 83.8 83.6 71.9 72.3 71.2 71.5 72.4 72.9
10 84.5 84.6 69.8 66.5 65.9 66.1 70.9 70.5
12 80.1 81.5 65.8 60.1 59.1 59.2 66.3 66.6
15 6 94.3 94.6 88.9 90.4 90.4 90.4 88.7 88.9
8 94.5 94.3 88.2 89.0 87.4 87.4 88.7 88.7
10 93.7 93.5 85.1 84.6 84.0 84.0 85.1 85.4
12 92.2 91.7 82.9 82.1 81.0 81.0 83.1 83.3
20 6 98.6 98.6 96.6 96.8 96.6 96.7 96.0 96.0
8 98.1 98.1 95.1 96.3 96.1 96.1 95.4 95.3
10 97.1 96.8 93.2 93.4 93.2 93.2 93.5 93.6
12 97.0 97.3 92.7 93.2 92.6 92.7 93.0 93.1
Log- 5 6 92.8 90.6 60.6 84.7 83.6 83.9 70.8 71.4
normal 8 95.1 95.1 53.6 79.5 78.0 78.6 64.7 64.9
10 93.6 96.1 44.5 76.5 72.0 72.7 58.2 58.8
12 92.9 98.5 41.0 71.7 66.7 67.8 57.5 57.9
10 6 96.9 96.2 73.1 93.3 93.6 94.0 82.2 83.2
8 96.1 97.4 68.9 91.5 91.2 92.3 81.3 82.3
10 95.9 98.6 61.9 90.3 88.4 89.0 76.2 77.1
12 96.9 98.4 56.0 86.3 84.1 85.0 73.9 74.9
15 6 98.5 99.0 85.9 97.1 97.8 98.3 92.4 92.8
8 98.0 99.1 81.1 94.8 96.0 96.2 88.8 89.5
10 97.8 99.5 78.4 93.7 94.4 95.0 88.6 89.4
12 96.9 99.0 72.0 92.2 90.9 91.8 85.8 86.6
20 6 98.4 99.2 89.2 97.6 99.0 99.3 94.7 95.1
8 98.4 99.6 87.9 97.4 97.9 98.0 94.9 95.2
10 98.6 99.8 85.0 96.5 97.8 98.1 93.6 93.8
12 97.7 99.7 82.1 94.9 95.2 95.5 92.6 93.1
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