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1. Introduction

Let us consider the following general factorial design introduced by Pauly et al.
[20]. We consider independent observations

Xij = μi + εij , (1.1)

i = 1, . . . , d, j = 1, . . . , ni, where εij , j = 1, . . . , ni are i.i.d. random errors
satisfying the following conditions:

E(εi1) = 0, E(ε2i1) = σ2
i > 0, E(ε4i1) < ∞, i = 1, . . . , d. (1.2)

The total sample size is denoted by N =
∑d

i=1 ni. In order to derive asymptotic
results, we will make the following assumption:

lim
N→∞

ni

N
= κi > 0, i = 1, . . . , d. (1.3)

It is worth noting that different variances, samples sizes as well as distributions
of error terms are allowed as long as assumptions in (1.2) hold.

Let In be the n×n identity matrix and let 1n be the n× 1 vector of ones. In
matrix notation, (1.1) can be written asX = diag(1n1 , . . . ,1nd

)μ+ε, whereX =
(X11, . . . , Xdnd

)′, μ = (μ1, . . . , μd)
′ and ε = (ε11, . . . , εdnd

)′ with E(ε) = 0 and
Cov(ε) = diag(σ2

1In1 , . . . , σ
2
dInd

) > 0. In our general design, a factorial structure
within the components of the vector μ by splitting up the indices is allowed (the
index i is appropriately split in subindices i1, i2, . . . ). In this way, we can consider
for example the one-way layout and crossed and hierarchically nested designs
(see [20] and Section 5, for more detail and some real data examples).

To formulate a general hypothesis testing problem, we need a contrast matrix
H, i.e., H1 = 0, where 1 is the column vector of ones of the appropriate size.
We are interested in testing the null hypothesis H0 : Hμ = 0. This hypothesis
is equivalent to H0 : Tμ = 0, where T = H′(HH′)−H is the unique projec-
tion matrix (M− denotes a generalized inverse of M), which is symmetric and
idempotent. For instance, in the one-way layout where factor A has a levels, the
centring matrix T = Pa = Ia − (1/a)1a1

′
a is used for testing the hypothesis of

no treatment effect HA
0 : μ1 = · · · = μa. Other examples of contrast matrix H

and projection matrix T are given in [20] and in Section 5.
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For testingH0, there exist many inference methods for normal or homoscedas-
tic models (see [20] and the references therein). Nevertheless, such assumptions
are often not met or it is difficult to check them in practice. To avoid these limi-
tations, Pauly et al. [20] proposed the testing procedures based on the Wald-type
statistic (WTS)

QN (T) = NX̄′
·T(TV̂NT)+TX̄·,

where X̄· = (X̄1·, . . . , X̄d·)
′ is the vector of the means X̄i· = 1/ni

∑ni

j=1 Xij ,

V̂N = N · diag(σ̂2
1/n1, . . . , σ̂

2
d/nd), σ̂

2
i = 1/(ni − 1)

∑ni

j=1(Xij − X̄i·)
2 is the

empirical variance of Xi = (Xi1, . . . , Xini)
′, i = 1, . . . , d, and M+ denotes the

Moore-Penrose inverse of M [11]. The asymptotic WTS test is given by ϕN =
{QN (T) > χ2

rank(T),1−α}, where χ2
p,α is the α-quantile from the χ2

p-distribution.
This test is asymptotically exact, but it requires large sample sizes to keep the
nominal type I error level.

Pauly et al. [20] proposed a permutation test based on WTS to overcome this
problem. They applied a modified permutation principle [12, 18]. This principle
can be used in situations where exchangeability of the data does not hold. The
test retains the finite exactness property under exchangeability. Moreover, it is
even asymptotically exact and consistent when the data are not exchangeable.
From simulations, the Wald-type permutation statistic (WTPS) test tends to
result in accurate test decision for small sample sizes in many cases, but it is
also more or less liberal for extremely skewed distributions (like log-normal one)
in the case of unequal variances. Small sample sizes usually means that there
are a few or over a dozen observations in each sample, which of course depends
on the number of groups.

In the Wald-type statistic proposed by Pauly et al. [20], the Moore-Penrose
inverse of TV̂NT is used as a so-called weight matrix. However, it can be chosen
in other way resulting in a modified Wald-type statistic. The choice of a weight
matrix may be significant for performance of a test (see, for example, Duchesne
and Francq [7]). Smaga [23] considered the asymptotic and permutation tests
based on modified WTS, where the Moore-Penrose inverse is replaced by a
{2}-inverse, i.e., a matrix satisfying the second relation defining the Moore-
Penrose inverse [7, 9]. Under some assumptions, these testing procedures are
also asymptotically valid but, however, consistent for a smaller class of fixed
alternatives than the tests based on WTS and WTPS. For extremely skewed
distributions, heteroscedastic designs and small sample sizes, the methods based
on {2}-inverses seem to be a more conservative replacement for the WTPS.
However, they may perform worse under symmetric distributions, i.e., they may
be more conservative or more liberal than the WTPS test.

The testing procedures of Pauly et al. [20] and Smaga [23] are constructed
without assumption of equal sample sizes, equal variances and a particular dis-
tribution of the errors. However, no one of them is better than the other and in
general they do not perform satisfactory well for extremely skewed distributions,
heteroscedastic designs and small sample sizes. In this paper, we propose new in-
ference methods based on the ideas from tests for problems in high-dimensional
data analysis. More precisely, we consider modified Wald-type statistics, where
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a weight matrix is a certain diagonal matrix, which may be related to TV̂NT,
or not. In such a way, the singularity problem of the matrix TV̂NT is circum-
vented. We consider the asymptotic and permutation methods to approximate
null distribution of a test statistic. Simulation studies show that some of our
new solutions perform comparable to or even better in certain scenarios than
existing competitors.

The remainder of the paper is organized as follows. New testing procedures
are introduced in Sections 2 and 3. Their properties are also given there. Section
4 contains a Monte Carlo simulation study providing an idea of the size control
and power of the tests. Illustrative real data examples are presented in Section
5. Some conclusions are given in Section 6. Proofs are outlined in the Appendix.

2. Diagonal Wald-type test

For high-dimensional low sample size data, the Hotelling’s T 2 test suffers from
a singularity problem in the covariance matrix estimation and therefore is not
valid in that setting. To overcome this problem, some remedies are proposed
in the literature. One of them is the assumption of diagonal covariance matrix.
This idea was first considered by Wu et al. [29] and further investigated by
Dong et al. [6], Park and Nag Ayyala [19], Srivastava [25], Srivastava and Du
[26], Srivastava et al. [27]. Here, we use this idea to handle with the problem
of singularity of the matrix TV̂NT. Specifically, we propose the following test
statistic

QD
N (T) = NX̄′

·T{diag(TV̂NT)}−1TX̄·,

where diag(M) denotes the diagonal matrix with diagonal entries of the quadrat-
ic matrix M, and the vector X̄· and the matrix V̂N were defined in Section 1.
To methods based on QD

N (T), we refer as the diagonal Wald-type tests. The null
hypothesis is rejected for large values of QD

N (T).

For small sample sizes, the sample variances in V̂N are perhaps not reliable
estimators. This may have a negative effect on testing procedures which use
this matrix. Since the tests based on QD

N (T) only use the diagonal elements of

TV̂NT, a negative effect of unreliable estimation seems to be smaller for these
tests than for the WTS and WTPS ones, where whole matrixTV̂NT is used. On
the other hand, the diagonal Wald-type tests do not use the information from
the off-diagonal elements of the matrix TV̂NT, in contrast to the WTS and
WTPS testing procedures. However, our results indicate that negative effect of
the off-diagonal elements of TV̂NT is stronger than the information from them
(see Section 4), which is favourable for the diagonal Wald-type tests.

We should check that the statistic QD
N (T) is well defined. By definition of the

estimator V̂N , the ith diagonal element of TV̂NT is of the form TiV̂NT′
i =

N
∑d

j=1 T
2
ij σ̂

2
j /nj , where Ti = (Ti1, . . . , Tid) is the ith row of the projection ma-

trix T. Since σ̂2
j > 0, j = 1, . . . , d with probability one, the ith diagonal element

TiV̂NT′
i of the matrix TV̂NT is equal to zero if and only if Ti = 0′

d. However,
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this is impossible, because T is a projection matrix. Hence, {diag(TV̂NT)}−1

exists with probability one and the diagonal Wald-type statistic is well defined.
First, we construct the asymptotic test based on the diagonal Wald-type

statistic. The asymptotic null distribution of QD
N (T) is given in the following

theorem. Throughout the paper,
d→ and

P→ denote convergence in distribution
and probability, respectively.

Theorem 2.1. Under assumptions (1.2)–(1.3) and the null hypothesis H0 :

Tμ = 0, if r = rank(T), then QD
N (T)

d→
∑r

i=1 λD,iZ
2
D,i as N → ∞, where

λD,1, . . . , λD,r are the nonzero eigenvalues of the matrix {diag(TVT)}−1TVT,
V = diag(σ2

1/κ1, . . . , σ
2
d/κd), and ZD,1, . . . , ZD,r are the independent N(0, 1)

random variables.

By Theorem 2.1, the asymptotic null distribution of the diagonal Wald-type
statistic is a central χ2-type mixture distribution (see [30]). This distribution
can be approximated by a scaled χ2-distribution, i.e., by the distribution of
gDχ2

fD
such that the first two moments coincide [2, 31]. The asymptotic critical

value is then given by kD,α = gDχ2
fD,1−α. It is easy to see that

gD =
V ar(

∑r
i=1 λD,iZ

2
D,i)

2E(
∑r

i=1 λD,iZ2
D,i)

, fD =
2
(
E(

∑r
i=1 λD,iZ

2
D,i)

)2
V ar(

∑r
i=1 λD,iZ2

D,i)
. (2.1)

The expected value and variance of
∑r

i=1 λD,iZ
2
D,i are established in the

following lemma.

Lemma 2.1. Under notation of Theorem 2.1, we have E
(∑r

i=1 λD,iZ
2
D,i

)
= d

and V ar
(∑r

i=1 λD,iZ
2
D,i

)
= 2trace

(
[{diag(TVT)}−1TVT]2

)
.

By (2.1) and Lemma 2.1, we obtain gD = trace
(
[{diag(TVT)}−1TVT]2

)
/d

and fD = d2/trace
(
[{diag(TVT)}−1TVT]2

)
. Since gD and fD involve some

unknown quantities, they have to be estimated. The matrix V is estimated
by its consistent estimator V̂N , so we consider the following simple estima-

tors of gD, fD and kD,α: ĝD = trace
(
[{diag(TV̂NT)}−1TV̂NT]2

)
/d, f̂D =

d2/trace
(
[{diag(TV̂NT)}−1TV̂NT]2

)
and k̂D,α = ĝDχ2

f̂D,1−α
. The consis-

tency of these estimators as well as the consistency of the test with critical
region ϕD

N = {QD
N (T) > k̂D,α} are established in the following theorem.

Theorem 2.2. Under assumptions (1.2)–(1.3), ĝD
P→ gD, f̂D

P→ fD and

k̂D,α
P→ kD,α as N → ∞. Moreover, under the alternative hypothesis H1 :

Tμ = a �= 0d, P (QD
N (T) > k̂D,α|H1) → 1 as N → ∞.

Theorem 2.2 shows that the asymptotic testing procedure based on QD
N (T) is

consistent for all fixed alternatives, as the WTS test. Unfortunately, the asymp-
totic diagonal Wald-type test is also similar to the WTS test in the sense that it
also requires large sample sizes to obtain a satisfactory approximation (see Sec-
tion 4). As Pauly et al. [20], we consider a permutation testing procedure based
on QD

N (T) to improve the small sample behavior of the diagonal Wald-type test.



2618 �L. Smaga

2.1. Diagonal Wald-type permutation test

Let π be a random permutation of N indices (uniformly distributed on the
symmetric group of order N) that is independent from all other occurring ran-
dom variables. Then, Xπ = π(X11, . . . , Xdnd

)′ = (Xπ
11, . . . , X

π
dnd

)′ denotes the

permutation of the vector of observations X. Let X̄π
· = (X̄π

1·, . . . , X̄
π
d·)

′ be the

vector of the means and V̂π
N = N · diag(σ̂2

1,π/n1, . . . , σ̂
2
d,π/nd) be the empirical

covariance matrix of
√
NX̄π

· . The value of Q
D
N (T) computed from the permuted

observations is of the form

QD,π
N (T) = NX̄π′

· T{diag(TV̂π
NT)}−1TX̄π

· .

A diagonal Wald-type permutation test is obtained by comparing QD
N (T) with

the (1−α)-quantile of the conditional distribution ofQD,π
N (T) given the observed

data X. The asymptotic conditional permutation distribution of QD,π
N (T) is pre-

sented in the following theorem. The permutation distribution is the empirical
distribution of a given test statistic recomputed over all permutations of the
data.

Theorem 2.3. Under assumptions (1.2)–(1.3), if r = rank(T), then the permu-

tation distribution of QD,π
N (T) conditioned on the observed data X weakly con-

verges to
∑r

i=1 λD,π,iZ
2
D,π,i as N → ∞ in probability, where λD,π,1, . . . , λD,π,r

are the nonzero eigenvalues of {diag(TDT)}−1TDT, D = diag(1/κ1, . . . , 1/κd),
and ZD,π,1, . . . , ZD,π,r are the independent standard normal random variables.

From Theorem 2.3, it follows that the asymptotic conditional permutation
distribution of QD,π

N (T) is independent of Tμ. Moreover, it does not depend on
the variances, unlike the asymptotic null distribution of QD

N (T) (see Theorem
2.1). For this reason, these distributions are not generally the same. The follow-
ing result shows the case where they are the same. It is a direct consequence of
Theorems 2.1 and 2.3.

Corollary 2.1. Under assumptions and notation of Theorems 2.1 and 2.3, if
σ2
1 = · · · = σ2

d, then the unconditional null distribution of QD
N (T) is the same

as the permutation distribution of QD,π
N (T) conditioned on the observed data X,

as N → ∞.

Remark 2.1.

1. Under the assumptions of Corollary 2.1, the asymptotic conditional per-
mutation distribution of QD,π

N (T) always approximates the asymptotic null
distribution of QD

N (T). This property is desirable for resampling procedures
(see [4, 13, 14, 20, 23, 24], for other examples of such results). Thus, the

test based on QD,π
N (T) asymptotically maintains the nominal type I error

level under the null hypothesis and is consistent for any fixed alternative
(by Theorem 2.2 and Corollary 2.1).

2. Pauly et al. [20] proved the conditional distribution of the Wald-type per-
mutation statistic (WTPS) Qπ

N (T) = NX̄π′

· T(TV̂π
NT)+TX̄π

· always ap-
proximates the null distribution of QN (T). Unfortunately, for the diagonal
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Wald-type statistic, such result does not hold. The asymptotic conditional
distribution of QD,π

N (T) is the same as the asymptotic unconditional null
distribution of QD

N (T) for homoscedastic designs only. Although these dis-
tributions are not the same for heteroscedastic designs, simulations suggest
that they are quite close to each other when the variances are not extremely
different. As we will see in Section 4, for small sample sizes, the permuta-
tion test based on QD,π

N (T) behaves quite well (even better than the Qπ
N (T)

test) in the case of different variances. For these reasons, it seems sensible
to consider this test as a possible testing procedure in general framework
introduced in Section 1.

2.2. Diagonal Wald-type tests based on standardized test statistic

Although the QD,π
N (T) test works quite well for small sample sizes, we con-

sider another procedure, which controls the nominal type I error level bet-
ter than this test under very different variances, and both testing procedures
have very similar empirical power (see Section 4). More precisely, we consider

the standardized version of QD,VN

N (T) = NX̄′
·T{diag(TVNT)}−1TX̄·, where

VN = N · diag(σ2
1/n1, . . . , σ

2
d/nd) (see, for instance, [21]), namely

QD,VN

N (T)− EH0(Q
D,VN

N (T))√
V arH0(Q

D,VN

N (T))
.

To simplify the analysis, we assume normality of the observations, i.e., εi1 ∼
N(0, σi), i = 1, . . . , d. Then,

√
NX̄· ∼ Nd(

√
Nμ,VN ). Hence, under H0 :

Tμ = 0,
√
NTX̄· ∼ Nd(0d,TVNT). By analysis similar to that in the proof of

Lemma 2.1, we conclude that EH0(Q
D,VN

N (T)) = d and V arH0(Q
D,VN

N (T)) =

2trace([{diag(TVNT)}−1TVNT]2). To estimate VN , we use V̂N , which is an

L2-consistent estimator of it in the sense that V̂NV−1
N

L2→ Id (see [20]). There-
fore, we consider the following test statistic:

QD,s
N (T) =

QD
N (T)− d√

2trace([{diag(TV̂NT)}−1TV̂NT]2)
.

By Zhang [30], we approximated the distribution of QD,s
N (T) by a sequence of

standardized χ2-distributions (χ2
hD,s

− hD,s)/
√

2hD,s. Unfortunately the QD,s
N

test works similar to or even worse than the QD
N test for small sample sizes,

i.e., it is too liberal (see Section 4). This follows from the simulation results not
included in the paper, but available from the author. The reason for this is that
the speed of convergence of distribution of the QD,s

N statistic to its asymptotic
distribution is too slow. So, we do not consider this test in the paper, but the
construction and asymptotic properties of it are given in the Appendix B for
completeness. For this reason, we consider a permutation test based on
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QD,s,π
N (T) =

QD,π
N (T)− d√

2trace([{diag(TV̂π
NT)}−1TV̂π

NT]2)

only. This test performs better than the QD,π
N (T) test for very small sample

sizes or under very different variances. The asymptotic validity of this test in
homoscedastic case is shown in the following theorem, which follows immediately

from Theorems 2.1 and 2.3 and from V̂N
P→ V and V̂π

N
P→ σ2D (see Lemma

2 in the supplement to Pauly et al. [20]) as N → ∞, where σ2 is given by
(3.1). Although we assumed normality to construct the standardized diagonal
Wald-type statistic (more precisely to establish the expected value and variance

of QD,VN

N (T)), the asymptotic properties of the tests based on it are proved
without this assumption.

Theorem 2.4. Under assumptions (1.2)–(1.3):

1. Under the null hypothesis H0 : Tμ = 0, if r = rank(T), then

QD,s
N (T)

d→
∑r

i=1 λD,iZ
2
D,i − d√

2trace([{diag(TVT)}−1TVT]2)

as N → ∞, where λD,1, . . . , λD,r, V and ZD,1, . . . , ZD,r are as in Theorem
2.1.

2. If r = rank(T), then the permutation distribution of QD,s,π
N (T) conditioned

on the observed data X weakly converges to∑r
i=1 λD,π,iZ

2
D,π,i − d√

2trace([{diag(TDT)}−1TDT]2)

as N → ∞ in probability, where λD,π,1, . . . , λD,π,r, D and ZD,π,1, . . . ,
ZD,π,r are as in Theorem 2.3.

3. If σ2
1 = · · · = σ2

d, then the unconditional null distribution of QD,s
N (T) is

the same as the permutation distribution of QD,s,π
N (T) conditioned on the

observed data X, as N → ∞.

Apart from the diagonal Wald-type testing procedures, in the next section,
we also consider the unscaled Wald-type tests where we use the identity matrix
as a weight matrix.

3. Unscaled Wald-type test

The other idea to improve the performance of the WTS is removing from it
the Moore-Penrose inverse of TV̂NT, i.e., we consider the unscaled Wald-type
statistic of the form

QU
N (T) = NX̄′

·TX̄·.

Bai and Saranadasa [1] considered this idea as the first for the Hotelling’s T 2

statistic. Chen and Qin [3] and Zhang and Xu [32] extended this method for high-
dimensional data. Recently, Duchesne and Francq [7] and Pauly et al. [21] used
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this idea for multivariate hypothesis testing and to analyze high-dimensional
one sample repeated measures designs, respectively.

The following result gives the asymptotic distribution of the unscaled Wald-
type statistic under H0.

Theorem 3.1. Under assumptions (1.2)–(1.3) and the null hypothesis H0 :

Tμ = 0, if r = rank(T), then QU
N (T)

d→
∑r

i=1 λU,iZ
2
U,i as N → ∞, where

λU,1, . . . , λU,r are the nonzero eigenvalues of TVT, V = diag(σ2
1/κ1, . . . , σ

2
d/κd),

and ZU,1, . . . , ZU,r are the independent standard normal variables.

To construct the asymptotic test based on QU
N (T), we use the approxi-

mation by scaled χ2-distribution similarly as in Section 2, say gUχ
2
fU

. Then,

kU,α = gUχ
2
fU ,1−α is the asymptotic critical value. In much the same way

as in the proof of Lemma 2.1, we obtain E
(∑r

i=1 λU,iZ
2
U,i

)
= trace(TVT)

and V ar
(∑r

i=1 λU,iZ
2
U,i

)
= 2trace([TVT]2) (by Theorem 3.1). Hence, gU =

trace([TVT]2)/trace(TVT) and fU = [trace(TVT)]2/trace([TVT]2). The es-

timators of gU , fU and kU,α are of the form ĝU =trace([TV̂NT]2)/trace(TV̂NT),

f̂U = [trace(TV̂NT)]2/trace([TV̂NT]2) and k̂U,α = ĝUχ
2
f̂U ,1−α

. In the following

result, the properties of them and of the asymptotic test based on QU
N (T) are

given. Its proof is similar to that of Theorem 2.2, and therefore it is omitted.

Theorem 3.2. Under assumptions (1.2)–(1.3), ĝU
P→ gU , f̂U

P→ fU and k̂U,α
P→

kU,α as N → ∞. Furthermore, under the alternative hypothesis H1 : Tμ = a �=
0d, P (QU

N (T) > k̂U,α|H1) → 1 as N → ∞.

The finite sample behavior of the asymptotic unscaled Wald-type test is much
better than that of the WTS test and the testing procedure based on QD

N (T).
However, it shows a tendency of conservativity in some situations. To overcome
this problem, the first our idea was to consider a permutation test based on
QU,π

N (T) = NX̄π′

· TX̄π
· . In the following theorem, the asymptotic conditional

permutation distribution of QU,π
N (T) is established.

Theorem 3.3. Under assumptions (1.2)–(1.3), if r = rank(T), then the per-

mutation distribution of QU,π
N (T) conditioned on the observed data X weakly

converges to
∑r

i=1 λU,π,iZ
2
U,π,i as N → ∞ in probability, where λU,π,1, . . . , λU,π,r

are the nonzero eigenvalues of the matrix σ2TDT,

σ2 =

d∑
i=1

κiσ
2
i +

d∑
i=1

κi

(
μi −

d∑
m=1

κmμm

)2

, (3.1)

D = diag(1/κ1, . . . , 1/κd), and ZU,π,1, . . . , ZU,π,r are the independent N(0, 1)
random variables.

Unfortunately, Theorems 3.1 and 3.3 indicate that the QU,π
N (T) test may

not work well. First of all, the asymptotic permutation distribution of QU,π
N (T)

depends on the vector μ. Secondly, this distribution is rarely the same as the
asymptotic null distribution of QU

N (T). For example, they are the same when
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σ2
1 = · · · = σ2

d and μ1 = · · · = μd. In fact, the simulations in Section 4 suggest
that the unscaled Wald-type permutation test is too conservative or too liberal
in certain cases. So, we further tried to improve this test. For this purpose, we
consider the standardized version of QU

N (T), i.e.,

QU
N (T)− EH0(Q

U
N (T))√

V arH0(Q
U
N (T))

,

similarly as in Section 2. Under normality assumption, theorem on the moments
of quadratic forms (see, for instance, [15], p. 55), shows that EH0(Q

U
N (T)) =

trace(TVNT) and V arH0(Q
U
N (T)) = 2trace([TVNT]2). Estimating VN by

V̂N , we define

QU,s
N (T) =

QU
N (T)− trace(TV̂NT)√

2trace([TV̂NT]2)
.

By simulation results not included in the paper, but available from the author,
the approximation by a sequence of standardized χ2-distributions for QU,s

N (T)
(see Appendix B) resulted in test that has similar finite sample behavior to the
QU

N (T) test and is even slightly more conservative than this test (see Section
4). So we do not consider it here. However, the permutation test based on

QU,s
N (T) behaves very well (better than the QU

N (T) and QU,π
N (T) tests) for small

sample sizes. The permutation version of QU,s
N (T) is denoted by QU,s,π

N (T).

Theoretically, it is also better than the QU,π
N (T) test in the sense of the following

theorem (compare with Corollary 2.1, Remark 2.1 and Theorem B.2 in the
Appendix B). This result was obtained similarly to Theorem 2.4.

Theorem 3.4. Under assumptions (1.2)–(1.3):

1. Under the null hypothesis H0 : Tμ = 0, if r = rank(T), then

QU,s
N (T)

d→
∑r

i=1 λU,iZ
2
U,i − trace(TVT)√

2trace([TVT]2)

as N → ∞, where λU,1, . . . , λU,r, V and ZU,1, . . . , ZU,r are as in Theorem
3.1.

2. If r = rank(T), then the permutation distribution of QU,s,π
N (T) conditioned

on the observed data X weakly converges to∑r
i=1 λ

∗
U,π,iZ

2
U,π,i − trace(TDT)√

2trace([TDT]2)

as N → ∞ in probability, where λ∗
U,π,1, . . . , λ

∗
U,π,r are the nonzero eigenval-

ues of the matrix TDT, and D and ZU,π,1, . . . , ZU,π,r are as in Theorem
3.3.

3. If σ2
1 = · · · = σ2

d, then the unconditional null distribution of QU,s
N (T) is

the same as the permutation distribution of QU,s,π
N (T) conditioned on the

observed data X, as N → ∞.
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Almost all of the new solutions considered have very similar asymptotic prop-
erties at least under homoscedastic designs. However as we will see in the next
section they behave very differently for finite sample.

4. Simulation experiments

In this section, a simulation study is carried out in order to evaluate the finite
sample performance of the testing procedures proposed in Sections 2 and 3, i.e.,
an idea of the size control and power of these tests is provided. The new methods
are compared with the WTS andWTPS tests by Pauly et al. [20]. The simulation
experiments as well as the illustrative examples of Section 5 were performed in
the R programming language [22]. For the asymptotic and permutation tests
proposed by Pauly et al. [20], we used the functions implemented in the R
package GFD [8].

4.1. Simulation design

Similarly to Pauly et al. [20] and Smaga [23], we restrict our simulation studies
to the one-way layout. We consider factor A with a = 8 levels. The data were
generated from (1.1), i.e., Xij = μi + εij , where i = 1, . . . , 8, j = 1, . . . , ni,

εi = σi(Yij −E(Yi1))/
√
V ar(Yi1), σi > 0 and the distributions of random vari-

ables Yij are taken from normal, Laplace, χ2
10-, log-normal, different symmetric

(Yij , i = 1, . . . , 4 are normally distributed, and Yij , i = 5, . . . , 8 are of Laplace
distribution) and different skewed (Yij , i = 1, . . . , 4 are of χ2

3-distribution, and
Yij , i = 5, . . . , 8 are of log-normal one) distributions. To investigate balanced,
unbalanced, homoscedastic and heteroscedastic settings, we chose the follow-
ing vectors of sample sizes n = (n1, . . . , n8)

′ and standard deviations σ =
(σ1, . . . , σ8)

′: nl + m18, l = 1, 2, n1 = 518, n2 = (5, 6, 8, 10, 12, 14, 16, 17)′,
m = 5, 10, 15, 20, 25, σ1 = 18, σ2 = (1, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.2)′ and σ3 =
(2.2, 2.1, 1.9, 1.7, 1.5, 1.3, 1.1, 1)′. These settings contain the so-called positive
(increasing sample sizes are combined with increasing variances) and negative
(increasing sample sizes are combined with decreasing variances) pairings (see,
for example, [20]). The behavior of the procedures under these two settings is a
major assessment criterion for the accuracy of them.

We consider μ = 08 (resp. the alternatives μ1 = (1,0′
7)

′, μ2 = (1, 1,0′
6)

′,
μ3 = (1, 1, 1,0′

5)
′ and n = nl + 1018, l = 1, 2) to investigate the type I error

level (resp. power) of the tests. To estimate empirical sizes and powers, we used
simulation consisting of 1000 runs. The p-values for the permutation testing
procedures were estimated from nperm = 10000 replications. We also used the
significance level α = 0.05 for simplicity.

For the nominal level α = 5%, the binomial proportion confidence interval
implies the empirical size over the 1000 independent replications should belong
to the interval [3.6%, 6.4%] (resp. [3.2%, 6.8%]) with probability 95% (resp.
99%) (see [7]). Thus the reported empirical sizes are displayed in bold (resp.
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underlined) when they are outside the 95% (resp. 99%) significance limits (see
Tables 3–7 and 10 in the Appendix D).

4.2. Simulation results

Now, we discuss the behavior of the empirical sizes and powers of the tests
under consideration. The following observations are confirmed by the results of
multiple comparisons of tests using the Nemenyi post hoc test [5, 17], which are
available from the author (see [10], for a similar statistical comparison of tests).
For readability, in the remainder of the paper, we omit the indication of the test
statistic’s dependency on the projection matrix T, e.g., we write QN instead of
QN (T).

4.2.1. Size control

Figure 1 and Tables 3–5 in the Appendix D depict the empirical sizes of the
testing procedures considered in Sections 2 and 3. We immediately observe that
the asymptotic tests based on QN and QD

N do not keep the preassigned type
I error in almost all settings except the Laplace model with n = nl + 2518,
l = 1, 2. They are usually more or less liberal even with larger sample sizes than
considered ones. Therefore, these methods can not be recommended either. On
the other hand, the asymptotic unscaled Wald-type test usually demonstrates
quite accurate control of the nominal type I error level under symmetric and
moderately skewed (χ2

10-distribution in our simulations) distributions. However,
for extremely skewed (the log-normal and χ2

3-log-normal models) and also some-
times for Laplace distributions, this method seems to have conservative char-
acter. When the sample sizes or standard deviations are equal, the unscaled
permutation test based on QU,π

N works quite well and its behavior seems to
be only a little worse than that of the best test among the other permutation
tests. Nevertheless, this testing procedure is conservative in the case of positive
pairing, and it does not maintain the nominal type I error level in the case of
negative one. Our simulations confirm the results of Pauly el al. [20] and Smaga
[23] about the WTPS test, which seems to be an adequate testing procedure
except for the extremely skewed distribution with unequal variances, where it
tends to highly over-reject the null hypothesis. In all investigated situations, the
tests based on QU,s,π

N , QD,π
N and QD,s,π

N demonstrate the most accurate control
of the preassigned type I error level.

Summarising the above results, we conclude that: The QN and QD
N tests are

much more liberal than the other testing procedures in almost all scenarios.
Under the null, the test based on QU

N seems to perform well similarly as the
permutation tests under normal and χ2

10- distributions. However, the asymp-
totic unscaled Wald-type testing procedure is conservative in the other settings.
The permutation tests except eventually the test based on QU,π

N behave quite
similarly under symmetric and χ2

10- distributions. It is also true under extremely
skewed distributions when the standard deviations are equal. However, under
extremely skewed distributions and unequal variances, the WTPS test and pos-
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sibly the test based on QU,π
N do not keep the nominal type I error level in contrast

to the other permutation testing procedures.
Since the asymptotic unconditional null and conditional permutation dis-

tributions of the diagonal and unscaled test statistics are not in general the
same for heteroscedastic designs (see Sections 2 and 3), we additionally inves-
tigated the behavior of the tests under the null when the differences between
variances are greater. For this purpose, we conducted the simulations in the
case of negative pairing with the following vectors of standard deviations: σ4 =
(4.4, 4.2, 3.8, 3.5, 3.2, 2.9, 2.6, 2.4)′ and σ5 = (5.0, 4.5, 4.0, 3.5, 2.0, 1.7, 1.3, 1.0)′.
The resulting empirical sizes are given in Tables 6 and 7 in the Appendix D. For
σ = σ4, the conclusions are similar to those given when σ = σ3. The WTPS
(except under extremely skewed distributions), QD,π

N , QD,s,π
N and QU,s,π

N tests
behave very satisfactorily. For σ = σ5, the situation changes a little bit. The
tests based on Qπ

N and QD,π
N have a more or less liberal character in almost all

scenarios. The QD,s,π
N , QU,s,π

N and QU
N tests seem to work best. However, under

log-normal distribution, the first two tests are too liberal and the last one is con-
servative. Nevertheless, the QD,s,π

N and QU,s,π
N tests decrease their liberality with

increasing sample sizes much faster than the WTPS and diagonal permutation
tests. Therefore, under very different variances, we may observe the advantage
for the QD,s,π

N and QU,s,π
N tests over the other permutation ones.

4.2.2. Power

In Figure 2 and Tables 8–9 in the Appendix D, we present the empirical powers
of the tests under consideration. Since the QN and QD

N tests (resp. the test

based on Qπ
N and QU,π

N ) in all settings (resp. in some cases discussed in the
paper) are too liberal, their empirical powers are not really comparable (resp.
in those cases). However, they are included for illustration and completeness. In
fact, the QN and QD

N tests appear to have the best power in most cases owing
to their extremely liberal behavior.

Under homoscedastic settings, the empirical powers of the asymptotic un-
scaled Wald-type test are comparable with those of the permutation tests for
symmetric and χ2

10- distributions, while for the other ones they are a few percent
smaller. Moreover, the empirical powers of the permutation testing procedures
are very similar. However, theQU,π

N andQU,s,π
N tests may be more powerful under

symmetric and χ2
10- distributions, while the opposite is true under skewed ones.

Under heteroscedastic designs and symmetric and χ2
10- distributions, the Q

U
N

and QU,s,π
N tests have quasi identical power. This power is much less than that

of the other permutation tests except the QU,π
N test for σ = σ2. However, the

situation may change a little for σ = σ3 and some alternatives.
Under extremely skewed distributions and heteroscedastic settings, theQU,s,π

N

test is evidently more powerful than the unscaled Wald-type test. However, it
has still less power than the permutation tests based on Qπ

N , QD,π
N and QD,s,π

N

for σ = σ2. The empirical powers of the unscaled Wald-type permutation test
are very similar to these of the QU,s,π

N test for σ = σ2 and nl = n1. Moreover,
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Fig 1. Empirical sizes (as percentages) of the tests obtained for cases of (σ,n,m): 1. (σ1,n1, 5), 2. (σ1,n1, 10), 3. (σ1,n1, 15), 4. (σ1,n1, 20),
5. (σ1,n1, 25), 6. (σ1,n2, 5), 7. (σ1,n2, 10), 8. (σ1,n2, 15), 9. (σ1,n2, 20), 10. (σ1,n2, 25), 11. (σ2,n1, 5), 12. (σ2,n1, 10), 13. (σ2,n1, 15), 14.
(σ2,n1, 20), 15. (σ2,n1, 25), 16. (σ2,n2, 5), 17. (σ2,n2, 10), 18. (σ2,n2, 15), 19. (σ2,n2, 20), 20. (σ2,n2, 25), 21. (σ3,n2, 5), 22. (σ3,n2, 10), 23.
(σ3,n2, 15), 24. (σ3,n2, 20), 25. (σ3,n2, 25).
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Fig 2. Empirical powers (as percentages) of the tests obtained for cases of (σ,n,μ): 1. (σ1,n1,μ1), 2. (σ1,n1,μ2), 3. (σ1,n1,μ3), 4. (σ1,n2,μ1),
5. (σ1,n2,μ2), 6. (σ1,n2,μ3), 7. (σ2,n1,μ1), 8. (σ2,n1,μ2), 9. (σ2,n1,μ3), 10. (σ2,n2,μ1), 11. (σ2,n2,μ2), 12. (σ2,n2,μ3), 13. (σ3,n2,μ1),
14. (σ3,n2,μ2), 15. (σ3,n2,μ3) (n = nl + 1018, l = 1, 2, μ1 = (1,0′

7)
′, μ2 = (1, 1,0′

6)
′, μ3 = (1, 1, 1,0′

5)
′).
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Table 1

Recommended test statistics for different scenarios and small sample sizes. Star ∗ (resp.
LP) denotes that given test controls the nominal type I error (resp. the lower power of the

test was observed).

Distribution Setting
Test

QU
N Qπ

N QD,π
N QD,s,π

N QU,π
N QU,s,π

N

symmetric homoscedastic balanced ∗ ∗ ∗ ∗ ∗ ∗
unbalanced ∗ ∗ ∗ ∗ ∗ ∗

heteroscedastic balanced ∗ LP ∗ ∗ ∗ ∗ LP ∗ LP

unbalanced ∗ LP ∗ ∗ ∗ ∗ LP

modetately homoscedastic balanced ∗ ∗ ∗ ∗ ∗ ∗
skewed unbalanced ∗ ∗ ∗ ∗ ∗ ∗

heteroscedastic balanced ∗ LP ∗ ∗ ∗ ∗ LP ∗ LP

unbalanced ∗ LP ∗ ∗ ∗ ∗ LP

extremely homoscedastic balanced ∗ ∗ ∗ ∗ ∗
skewed unbalanced ∗ ∗ ∗ ∗ ∗

heteroscedastic balanced ∗ ∗ ∗ LP ∗ LP

unbalanced ∗ ∗ ∗ LP

they also emphasize the conservativity and liberality of the QU,π
N test under

positive and negative pairing, respectively.

For σ = σ2 and symmetric and χ2
10- distributions, the Q

π
N , QD,π

N and QD,s,π
N

tests have similar power, possibly except for μ = μ1, where the WTPS test
may be a little more powerful. Since the Qπ

N test tends to highly over-reject
the null hypothesis in the extremely skewed distributions, its empirical powers
are greater than those of the diagonal Wald-type permutation tests for σ =
σ2. Interestingly, under negative pairing, the QD,π

N and QD,s,π
N tests are more

powerful than the WTPS test (even for extremely skewed distributions where
the WTPS test is too liberal). It seems that there are no significant differences

in the empirical powers of the tests based on QD,π
N and QD,s,π

N in all scenarios.

4.2.3. Summary

Summarizing, it seems that the diagonal Wald-type permutation testing proce-
dures perform best in size control and power for small sample sizes (m ≤ 10).

The WTPS test and the test based on QU,s,π
N also work well in many sce-

narios, but are too liberal or have less power in some cases. For the conve-
nience of the Reader, we provide Table 1 to indicate the recommended test
statistics for different scenarios and small sample sizes based on our simula-
tion studies. The QN and QD

N tests are not considered, since they do not keep
the type I error for small sample sizes. For large sample sizes, all testing pro-
cedures seem to work equally well, but the permutation tests may be time-
consuming.

In simulations of this section, we considered only a = 8. The comparison of
the tests under different numbers of levels and observations is presented in the
Appendix C, as a supplement to the above considerations.
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5. Real data illustrative examples

In this section, we express three known experimental designs in terms of the
general framework of factorial designs presented in Section 1 (see also Section 4
in [20]). For each design, an application of the tests to certain real data examples
is also given.

5.1. One-way layout

In the one-way layout where factor A has a levels, X = (X11, . . . , Xana)
′ and

μ = (μ1, . . . , μa)
′, we are interested in testing the hypothesis of no treatment

effect H0 : μ1 = · · · = μa. This hypothesis is equivalent to H0 : Tμ = 0, where
T = Pa = Ia − (1/a)1a1

′
a. As an example we consider the startup data from

the R package GFD [8]. This dataset contains the startup costs (in thousands of
dollars) of five companies. The company is treated as a factor with five levels
(a = 5): bakery, gifts, pets, pizza and shoes (n1 = 11, n2 = 10, n3 = 16, n4 = 13,
n5 = 10). We would like to check statistically whether the type of the company
has an effect on the startup costs. To solve this problem, we applied all of the
tests considered in Section 4, obtaining the results given in Table 2. For α = 5%,
all of the tests reject the null hypothesis that the startup costs under the five
types of companies do not differ significantly. However, the p-values differ from
one another. These of the QN and QD

N tests are the smallest, while these of the
unscaled Wald-type permutation tests are the largest (compare with the results
of Section 4).

5.2. Two-way cross-classification design

In the cross-classification with two factors A (with a levels) and B (with b
levels), we have X = (X111, . . . , Xabnab

)′ and μ = (μ11, . . . , μab)
′. We consider

the following hypotheses: of no main effect A, i.e., HA
0 : μ̄1· = · · · = μ̄a·; of

no main effect B, i.e., HB
0 : μ̄·1 = · · · = μ̄·b; and of no interaction between

A and B. To express these hypotheses in the model of Section 1, we use the
following contrast matrices Pa⊗(1/b)1′

b, (1/a)1
′
a⊗Pb and Pa⊗Pb, respectively,

where ⊗ denotes the Kronecker product of matrices. For illustrative purposes,
we use the batteries data ([16], Table 5-1 p. 176). In this dataset, the life (in
hours) of batteries is compared by three material types and three operating
temperatures (low - 15oF, medium - 70oF, high - 125oF). From each material
type, twelve batteries are randomly selected. Then, they are randomly allocated
to each temperature level. The research questions concern possible difference in
mean life of the batteries for differing material types and operating temperature
levels. To answer these questions, the new tests and those from Pauly et al.
[20] were used (p-values are given in Table 2). All testing procedures, except

possibly the QU,π
N test, reject the null hypotheses, and hence we conclude that

there are significant differences in mean battery life for the three material types
and temperature levels, and there is interaction between them. As we observed
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Table 2

P -values (as percentages) of the tests for the startup, batteries and curdies data.

Data set H0
Test

QN QD
N QU

N Qπ
N QD,π

N QD,s,π
N QU,π

N QU,s,π
N

startup μ1 = · · · = μ5 0.46 0.70 4.00 2.83 2.96 2.94 4.63 4.91
batteries μ̄1· = μ̄2· = μ̄3· 0.14 0.08 0.06 1.04 0.46 0.46 8.52 0.24

μ̄·1 = μ̄·2 = μ̄·3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
interaction 0.26 0.61 1.19 4.91 2.96 3.00 38.08 2.39

curdies μ̄1· = μ̄2· 2.00 2.00 2.00 0.00 0.00 0.00 0.00 0.00
μi1 = μi2 = μi3 26.73 40.92 24.53 33.12 51.82 51.98 27.30 19.62
i = 1, 2

in Section 4, the unscaled Wald-type permutation test is conservative in some
situations, what is evident here.

5.3. Nested hierarchical design

We can also consider nested hierarchical designs. As an example, we present
that with two fixed factors. Suppose that the factor A (categories) has a levels
and the factor B (subcategories) has bi levels within level i of factor A. The
vector of observations is X = (X111, . . . , X1b1n1b1

, . . . , Xaba1, . . . , Xabanaba
)′ and

μ = (μ11, . . . , μ1b1 , . . . , μa1, . . . , μaba)
′ is the vector of expected values. The hy-

pothesis of no category effect A, i.e., HA
0 : μ̄1· = · · · = μ̄a· and that of no

subcategory effect B(A), i.e., H
B(A)
0 : μi1 = · · · = μibi , i = 1, . . . , a, are equiv-

alently written as HA
0 : PaQμ = 0 and H

B(A)
0 : Bμ = 0, respectively, where

Q = diag((1/b1)1
′
b1
, . . . , (1/ba)1

′
ba
) and B = diag(Pb1 , . . . ,Pba). Here, we con-

sider the curdies data containing the number of flatworms (dugesia) sampled
in two seasons at different sites in the Curdies River in Western Victoria. This
dataset is available in the R package GFD [8]. Season is a factor A with levels
“summer” and “winter”, while site is a factor B with levels 1 to 6, nested un-
der A. The total number of observations is 36. To test the hypotheses HA

0 and

H
B(A)
0 for this data, we used the testing procedures under consideration. Table

2 contains the obtained p-values. For HA
0 , the p-values of all tests are less than

the significance level α = 5%, and hence we reject this null hypothesis. On the

other hand, the opposite situation is true for H
B(A)
0 . So, site of the river does

not have a significant effect on the number of flatworms.

6. Concluding remarks

Compared to other test statistics, the Wald-type one has the advantage that it
is applicable in general factorial designs without assuming homoscedasticity or
a particular error distribution. We have proposed the asymptotic and permu-
tation tests based on the modified Wald-type statistics where a weight matrix
is a certain diagonal matrix, i.e., diagonal and unscaled Wald-type tests. The
new methods do not perform equally well when small sample sizes are apparent.
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By extensive simulation studies, we conclude that the diagonal and standard-
ized unscaled Wald-type permutation testing procedures perform best. These
tests are comparable with or superior to the WTPS test of Pauly et al. [20]
under finite samples. Interestingly, the best of our new solutions perform even
better than the WTPS test under small sample sizes and heteroscedastic de-
signs, where the new permutation methods are not in general asymptotically
valid. So, the resampling procedures may perform well for finite sample without
property of asymptotic validity. Except possibly the unscaled Wald-type permu-
tation test, the other new permutation methods are asymptotically valid under
homoscedastic designs, which means that they maintain the same asymptotic
properties as the corresponding tests based on asymptotic null distribution of
their test statistics.

In the case of very different variances in samples, the new tests and the
WTPS test of Pauly et al. [20] may fail to keep the prescribed type I error at
least under extremely skewed distributions and small sample sizes. When the
number of observations is small, the sample variances are perhaps not reliable
estimators, which has a negative effect on the behavior of the tests considered.
Therefore, an improved variance estimation may result in better performance of
the testing procedures [6, 28]. This seems to be an interesting direction of the
future research.

Appendix A: Proofs

Proof of Theorem 2.1. From Pauly et al. [20], we obtain
√
NTX̄·

d→ Y ∼ Nd(0d,TVT) (A.1)

as N → ∞, under the null. The consistency of the estimators σ̂2
i , i = 1, . . . , d

and the assumption (1.3) imply diag(TV̂NT)
P→ diag(TVT) as N → ∞. As we

noticed in Section 2, the diagonal elements of TV̂NT are positive with prob-
ability one. By (1.2), the diagonal elements of TVT are also positive. Hence,

{diag(TV̂NT)}−1 P→ {diag(TVT)}−1 as N → ∞. Therefore, Slutsky’s theo-

rem and the continuous mapping theorem yield QD
N (T)

d→ Y′{diag(TVT)}−1Y
as N → ∞. From the representation theorem of the quadratic forms in nor-
mal variables, it follows that Y′{diag(TVT)}−1Y =

∑r
i=1 λD,iZ

2
D,i, where

λD,1, . . . , λD,r are the nonzero eigenvalues ofV
1/2T{diag(TVT)}−1TV1/2, and

ZD,1, . . . , ZD,r are the independent standard normal variables (see, for example,
[15], p. 90). Theorem 21.10.1 in [11] implies λD,1, . . . , λD,r are also the nonzero
eigenvalues of {diag(TVT)}−1TVT, which completes the proof.

Proof of Lemma 2.1. From the proof of Theorem 2.1, we obtain

r∑
i=1

λD,iZ
2
D,i = Y′{diag(TVT)}−1Y,

where Y ∼ Nd(0d,TVT). Hence, by theorem on the moments of quadratic
forms (see, for instance, [15], p. 55), we conclude that
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E

(
r∑

i=1

λD,iZ
2
D,i

)
= trace

(
{diag(TVT)}−1TVT

)
= d,

V ar

(
r∑

i=1

λD,iZ
2
D,i

)
= 2trace

(
[{diag(TVT)}−1TVT]2

)
.

Proof of Theorem 2.2. The consistency of the estimators follows immediately

from the consistency of V̂N for V. Under H1 : Tμ = a �= 0, we have TX̄·
P→ a

as N → ∞. From the proof of Theorem 2.1, it follows that {diag(TV̂NT)}−1 P→
{diag(TVT)}−1 as N → ∞. Thus, we obtain X̄′

·T{diag(TV̂NT)}−1TX̄·
P→

a′{diag(TVT)}−1a > 0 as N → ∞. Hence QD
N (T)

P→ ∞ as N → ∞. Since

k̂D,α
P→ kD,α, the proof is complete.

Proof of Theorem 2.3. From Lemma 1 in the supplement to Pauly et al. [20],

it follows that conditional convergence in distribution given X,
√
NTX̄π

·
d→

Nd(0d, σ
2TDT) as N → ∞, in probability, where σ2 is given by (3.1). More-

over, Lemma 2 in that supplement shows that TV̂π
NT

P→ σ2TDT as N → ∞.

Therefore, {diag(TV̂π
NT)}−1 P→ (1/σ2){diag(TDT)}−1 as N → ∞. The rest of

the proof runs as in the proof of Theorem 2.1.

Proof of Theorem 3.1. Under the null hypothesis, we have
√
NTX̄·

d→ Y ∼
Nd(0d,TVT) as N → ∞ [20]. From the continuous mapping theorem and the
representation theorem of the quadratic forms in normal variables, it follows

that QU
N (T)

d→ Y′Y =
∑r

i=1 λU,iZ
2
U,i as N → ∞.

Proof of Theorem 3.3. The result may be proved in much the same way as The-
orem 3.1 using the fact that conditional convergence in distribution given X,√
NTX̄π

·
d→ Nd(0d, σ

2TDT) as N → ∞, in probability (see the proof of Theo-
rem 2.3).

Remark A.1. It is worth noting that the theoretical results of Sections 2 and
3 (Theorems 2.1–2.4 and 3.1–3.4, Lemma 2.1 and Corollary 2.1) are also valid
under the assumptions of finite variances. This is also true for the results of
Pauly et al. [20] and Smaga [23]. It follows from that the results, which we

mainly use, i.e., (A.1), the consistency of V̂N and Lemmas 1 and 2 in the
supplement to Pauly et al. [20] (see Remark 8.1 in this supplement), hold under
these weaker assumptions than those of existing fourth moments. We present
the results under stronger assumptions, since we want to be consistent with the
results of Pauly et al. [20] and Smaga [23].

Appendix B: Asymptotic standardized diagonal and unscaled
Wald-type tests

In this section, we briefly present the constructions of the asymptotic tests
based on the standardized diagonal and unscaled Wald-type statistics. Their
asymptotic properties are also investigated.
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Theorem 2.4 shows that under the null hypothesis H0 : Tμ = 0, if r =
rank(T), then

QD,s
N (T) =

QD
N (T)− d√

2trace([{diag(TV̂NT)}−1TV̂NT]2)

d→
∑r

i=1 λD,iZ
2
D,i − d√

2trace([{diag(TVT)}−1TVT]2)

as N → ∞, where λD,1, . . . , λD,r are the nonzero eigenvalues of the matrix
{diag(TVT)}−1TVT, V = diag(σ2

1/κ1, . . . , σ
2
d/κd), and ZD,1, . . . , ZD,r are the

independent standard normal variables. By Zhang [30], the asymptotic null dis-
tribution of the standardized diagonal Wald-type statistic can be approximated
by that of (χ2

hD,s
− hD,s)/

√
2hD,s, where

hD,s =
trace3([{diag(TVT)}−1TVT]2)

trace2([{diag(TVT)}−1TVT]3)
.

The value hD,s is selected such that the first three moments of the variables
coincide. The asymptotic critical value is then given by kD,s,α = (χ2

hD,s,1−α −
hD,s)/

√
2hD,s. We estimate V by V̂N , and hence we have the following simple

estimators of hD,s and kD,s,α:

ĥD,s =
trace3([{diag(TV̂NT)}−1TV̂NT]2)

trace2([{diag(TV̂NT)}−1TV̂NT]3)
,

k̂D,s,α = (χ2
ĥD,s,1−α

− ĥD,s)/

√
2ĥD,s.

Theorem B.1. Under assumptions (1.2)–(1.3), ĥD,s
P→ hD,s and k̂D,s,α

P→
kD,s,α as N → ∞. Moreover, under the alternative hypothesis H1 : Tμ = a �=
0d, P (QD,s

N (T) > k̂D,s,α|H1) → 1 as N → ∞.

The proof of this result follows from similar arguments to those in the proof
of Theorem 2.2.

By Theorem 3.4, under the null hypothesis H0 : Tμ = 0, if r = rank(T),
then

QU,s
N (T) =

QU
N (T)− trace(TV̂NT)√

2trace([TV̂NT]2)

d→
∑r

i=1 λU,iZ
2
U,i − trace(TVT)√

2trace([TVT]2)

as N → ∞, where λU,1, . . . , λU,r are the nonzero eigenvalues of the matrix TVT,
V = diag(σ2

1/κ1, . . . , σ
2
d/κd), and ZU,1, . . . , ZU,r are the independent standard

normal variables. The asymptotic null distribution of the standardized unscaled
Wald-type statistic can be approximated by that of (χ2

hU,s
−hU,s)/

√
2hU,s, where

hU,s = trace3([TVT]2)/trace2([TVT]3) [30]. The asymptotic critical value is
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then given by kU,s,α = (χ2
hU,s,1−α − hU,s)/

√
2hU,s. The estimators of hU,s and

kU,s,α are of the form

ĥU,s =
trace3([TV̂NT]2)

trace2([TV̂NT]3)
, k̂U,s,α = (χ2

ĥU,s,1−α
− ĥU,s)/

√
2ĥU,s.

Theorem B.2. Under assumptions (1.2)–(1.3), ĥU,s
P→ hU,s and k̂U,s,α

P→
kU,s,α as N → ∞. Moreover, under the alternative hypothesis H1 : Tμ = a �=
0d, P (QU,s

N (T) > k̂U,s,α|H1) → 1 as N → ∞.

Proof. The consistency of V̂N for V implies the consistency of the estimators

ĥU,s and k̂U,s,α. Under H1 : Tμ = a �= 0, TX̄·
P→ a as N → ∞. Hence, we have

X̄′
·TX̄·

P→ a′a > 0 as N → ∞. Since V̂N
P→ V, QU,s

N (T)
P→ ∞ as N → ∞. By

the result that k̂U,s,α
P→ kU,s,α, the proof is complete.

Appendix C: Additional simulation studies

The simulations presented were performed to analyse how the power of the tests
jointly depends on the sample sizes and the number of levels of treatment factor.
Simulation design was very similar to that of Subsection 4.1. We considered the
normal, χ2

10 and log-normal models, and n = (m+5)1a, σ = 1a,m = 5, 10, 15, 20
and a = 6, 8, 10, 12. We chose balanced and homoscedastic settings to fairly show
the behavior of the power under increasing number of levels and observations.
To investigate the type I error level (resp. power) of the tests, we considered
μ = 0a (resp. the alternative μ1 = (1,0′

a−1)
′).

The resulting empirical sizes and powers are depicted in Tables 10 and 11 in
the Appendix D, respectively. For given sample sizes, the QN and QD

N tests be-
come more and more liberal with growth of the number of levels. The empirical
sizes of the other testing procedures are very similar for all numbers of obser-
vations and levels. Moreover, they are quite close to significance level, except
these for the QU

N test in case of the extremely skewed distribution. The empirical
powers of the QN and QD

N tests are usually at the same level for different values
of a. However, they slightly increase or decrease in some cases, when the number
of levels increases. This can be explained by unacceptable behavior of these tests
under the null hypothesis. The empirical powers of the other testing procedures
decrease as the number of levels increases, which seems to be natural as most of
these tests keep the nominal type I error level. This decrease, however, usually
decreases as the number of observations increases. Of course, for given number
of levels, the empirical powers of these testing procedures increase quite fast as
the number of observations increases.

Appendix D: Simulation results tables

Tables 3–11 contain the results of simulation studies considered in Section 4 and
the Appendix C.
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Table 3

Empirical sizes (as percentages) of the tests obtained in the normal and Laplace models.

Model σ nl m
Test

QN QD
N QU

N Qπ
N QD,π

N QD,s,π
N QU,π

N QU,s,π
N

Normal σ1 n1 5 12.8 10.9 5.5 3.6 4.1 4.0 5.2 5.2
10 8.7 8.2 4.8 4.0 4.3 4.3 4.7 4.6
15 7.0 6.3 4.6 4.2 4.1 4.1 4.4 4.5
20 7.5 6.9 5.0 5.3 5.1 5.1 4.9 4.8
25 8.1 7.5 5.4 5.9 5.8 5.8 5.4 5.4

n2 5 11.4 10.3 4.8 5.0 5.1 5.0 4.7 4.2
10 8.7 7.6 4.5 4.5 4.4 4.4 4.5 4.1
15 7.9 7.5 4.0 4.8 4.5 4.5 4.0 3.9
20 6.8 6.3 4.8 4.2 4.0 4.0 4.7 4.7
25 7.0 6.5 5.0 4.0 4.4 4.4 5.1 5.2

σ2 n1 5 14.0 10.7 6.2 4.5 4.9 4.4 6.9 6.0
10 8.3 7.3 5.0 4.7 4.3 4.2 5.9 4.9
15 7.2 5.8 4.6 4.1 4.0 4.0 5.5 4.6
20 7.5 6.8 5.4 5.1 4.7 4.6 6.8 5.1
25 7.8 7.3 4.9 5.5 5.6 5.5 6.4 5.2

n2 5 11.0 10.5 6.4 5.1 4.9 4.8 1.1 6.1
10 8.7 7.9 5.8 4.6 4.9 4.8 1.3 5.6
15 7.2 6.5 4.6 4.8 4.5 4.4 2.6 4.6
20 6.6 5.7 4.5 3.7 4.3 4.2 2.3 4.4
25 7.1 7.0 5.8 4.9 5.3 5.3 3.6 5.8

σ3 n2 5 11.6 9.0 5.7 5.1 5.3 4.5 16.9 5.3
10 8.2 7.3 5.2 5.2 4.9 4.5 14.0 5.2
15 7.5 6.6 4.6 5.4 5.2 4.9 10.8 4.6
20 7.2 6.8 4.5 4.5 5.3 4.9 10.9 4.7
25 6.6 6.3 5.1 4.5 4.6 4.6 10.7 5.3

Laplace σ1 n1 5 11.9 10.0 5.1 4.0 4.0 4.1 5.2 5.2
10 8.8 8.1 4.0 5.9 5.3 5.3 4.3 4.3
15 7.0 6.1 3.6 4.0 4.4 4.4 4.2 3.9
20 7.2 7.0 4.8 5.3 5.2 5.2 5.3 5.4
25 5.5 5.3 3.9 4.0 3.9 3.9 4.2 4.1

n2 5 7.9 6.5 3.3 4.3 4.2 4.2 3.8 3.7
10 6.3 5.6 3.7 4.3 4.0 4.0 4.2 4.1
15 8.3 7.6 4.5 5.9 5.5 5.5 5.0 4.6
20 7.8 7.1 5.4 6.1 5.8 5.9 5.6 5.7
25 5.7 5.2 4.3 4.5 4.5 4.5 4.6 4.6

σ2 n1 5 11.1 8.8 4.1 4.9 5.1 5.1 5.7 4.9
10 8.7 7.5 4.6 5.8 5.2 5.1 5.4 5.0
15 6.8 5.1 3.9 4.4 4.2 4.2 5.0 4.6
20 7.4 6.8 4.9 5.6 5.5 5.3 5.8 5.2
25 5.4 5.2 4.6 4.1 4.4 4.1 5.3 4.6

n2 5 7.7 6.4 3.3 4.7 3.9 3.8 0.5 3.9
10 6.5 5.9 4.4 4.6 4.5 4.5 1.3 5.1
15 7.9 7.3 5.0 5.8 5.8 5.8 2.7 5.6
20 7.8 6.8 5.6 6.2 6.3 6.1 3.5 5.9
25 5.8 4.5 3.8 4.6 4.0 3.8 3.0 4.2

σ3 n2 5 7.9 6.6 4.6 5.2 4.4 4.1 14.4 5.6
10 6.7 4.7 3.1 4.8 4.2 3.9 11.5 3.8
15 7.8 7.0 4.9 5.8 5.4 5.0 12.3 5.7
20 7.5 6.3 4.7 6.2 5.8 5.6 12.2 4.9
25 6.0 5.1 4.8 5.0 4.4 4.2 9.9 5.3
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Table 4

Empirical sizes (as percentages) of the tests obtained in the χ2
10 and log-normal models.

Model σ nl m
Test

QN QD
N QU

N Qπ
N QD,π

N QD,s,π
N QU,π

N QU,s,π
N

χ2
10 σ1 n1 5 16.1 15.9 4.9 4.7 5.4 5.5 5.2 5.4

10 10.8 10.5 3.4 4.5 4.0 4.0 3.6 3.6
15 9.6 9.6 3.8 4.9 4.6 4.6 3.9 4.0
20 9.8 9.8 5.8 6.0 6.0 6.0 6.2 6.1
25 8.3 8.3 5.4 5.5 5.3 5.4 5.5 5.3

n2 5 11.2 10.6 4.5 4.8 4.7 4.7 4.0 4.3
10 8.1 7.9 5.0 4.4 4.6 4.6 5.0 5.0
15 7.6 8.0 4.4 4.1 4.3 4.3 4.9 4.8
20 7.5 7.5 4.5 5.0 4.5 4.4 5.0 4.8
25 8.2 7.8 5.8 5.6 5.4 5.4 5.9 5.8

σ2 n1 5 15.9 13.8 6.4 6.3 6.5 6.3 7.4 7.0
10 11.0 10.6 3.4 5.8 4.5 4.3 4.1 3.4
15 9.4 9.5 4.4 5.4 5.0 4.8 5.5 4.9
20 9.9 9.7 5.0 6.4 5.9 5.8 6.7 5.5
25 8.3 7.6 4.9 5.3 5.4 5.3 6.1 5.2

n2 5 10.4 10.0 3.8 4.4 4.2 4.1 0.9 4.0
10 8.3 7.5 4.0 4.8 4.4 4.4 1.7 4.0
15 7.4 7.7 5.1 4.6 4.9 4.9 2.5 5.7
20 7.9 7.5 4.9 5.5 4.9 4.9 3.0 5.5
25 7.9 7.9 5.4 5.7 6.0 6.0 4.1 5.7

σ3 n2 5 12.2 10.5 5.3 6.2 5.3 4.9 15.5 5.3
10 8.8 7.5 4.9 5.3 4.4 4.3 11.2 5.3
15 7.6 7.7 5.4 4.9 4.4 4.2 11.5 5.7
20 7.9 7.2 5.3 5.7 4.6 4.3 10.4 5.8
25 8.1 7.2 5.2 6.1 5.4 5.3 10.2 5.7

Log- σ1 n1 5 19.0 24.7 1.8 4.5 5.3 5.2 5.1 5.1
normal 10 13.6 21.2 1.1 4.8 4.0 4.0 4.8 5.1

15 13.7 21.2 1.7 5.2 4.3 4.2 4.4 4.6
20 14.0 19.6 2.0 6.2 5.8 5.8 5.0 5.1
25 12.7 18.2 2.6 5.3 5.2 5.2 5.8 5.8

n2 5 18.1 24.0 1.8 4.0 4.3 4.0 5.2 5.0
10 16.6 21.7 1.8 5.8 5.9 5.8 4.8 5.0
15 14.1 19.1 1.3 5.3 4.0 4.2 4.2 3.4
20 12.2 17.1 1.8 5.2 5.7 5.7 4.4 4.4
25 9.6 16.3 1.5 4.3 3.7 4.0 4.6 5.5

σ2 n1 5 25.2 22.7 3.1 12.7 8.6 8.3 6.4 5.9
10 19.3 18.0 2.0 8.3 5.3 4.8 6.7 5.9
15 17.9 18.6 2.1 8.2 5.2 4.6 5.7 5.4
20 18.3 18.2 2.3 10.3 6.3 5.9 6.9 6.1
25 14.8 15.7 3.6 7.8 5.0 4.6 7.0 6.3

n2 5 16.5 21.6 1.9 5.4 4.9 4.5 1.7 4.6
10 15.9 19.3 2.8 7.1 5.9 5.9 2.9 5.8
15 13.3 15.5 1.5 6.2 4.6 4.4 2.3 3.5
20 12.8 15.8 1.6 5.9 4.4 4.3 2.7 4.7
25 12.5 14.6 2.8 7.0 4.7 4.7 3.7 7.1

σ3 n2 5 27.4 21.7 3.4 13.8 6.4 5.5 12.8 7.4
10 19.3 16.5 2.4 10.0 5.3 5.0 10.3 6.1
15 19.2 17.2 2.3 11.1 6.3 5.6 9.6 5.6
20 16.8 14.9 2.1 9.9 5.2 4.9 9.1 4.8
25 12.1 12.7 2.6 6.4 5.0 4.5 11.0 6.1
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Table 5

Empirical sizes (as percentages) of the tests obtained in the normal-Laplace and
χ2
3-log-normal models.

Model σ nl m
Test

QN QD
N QU

N Qπ
N QD,π

N QD,s,π
N QU,π

N QU,s,π
N

Normal- σ1 n1 5 14.8 12.0 4.8 4.9 4.8 4.7 4.7 5.1
Laplace 10 8.7 8.6 4.5 4.9 4.8 4.6 4.7 4.7

15 6.8 6.2 3.8 4.6 4.5 4.4 4.0 3.9
20 7.3 7.0 4.3 4.8 5.1 5.0 4.5 4.5
25 6.8 6.7 4.6 5.1 5.3 5.3 4.5 4.4

n2 5 9.8 9.2 4.6 5.0 4.8 4.7 4.9 4.3
10 8.2 7.1 5.3 4.6 4.8 4.9 4.5 5.1
15 6.8 6.3 4.4 4.6 4.7 4.7 4.3 4.4
20 6.6 6.8 4.6 4.6 4.2 4.2 4.6 4.7
25 7.4 7.2 5.8 5.9 5.6 5.6 6.1 5.9

σ2 n1 5 13.8 11.3 4.6 5.4 4.8 4.6 6.8 6.1
10 9.0 7.4 4.4 5.5 4.5 4.4 5.8 5.4
15 6.7 6.4 5.0 5.3 5.2 5.0 6.1 5.4
20 6.4 6.0 5.0 4.8 5.2 5.2 5.7 5.2
25 6.8 6.2 4.6 5.4 5.4 5.2 5.7 5.3

n2 5 10.0 9.1 5.2 5.5 5.4 5.4 1.2 5.1
10 7.7 7.2 5.2 5.2 5.0 4.9 1.6 5.9
15 6.5 6.4 4.7 4.9 4.8 4.9 2.3 5.6
20 6.9 6.7 5.0 5.0 5.2 5.2 3.0 5.4
25 7.7 7.6 6.1 6.2 6.1 6.0 4.2 6.6

σ3 n2 5 9.8 8.0 6.2 5.3 5.6 5.3 18.1 5.8
10 8.4 6.9 5.9 4.7 4.9 4.8 13.0 6.0
15 7.1 5.9 4.8 5.2 4.9 4.8 11.4 4.8
20 6.6 6.2 5.2 4.3 4.0 3.7 10.1 5.4
25 7.4 7.2 5.9 5.9 5.6 5.6 12.2 6.3

χ2
3-Log- σ1 n1 5 17.3 22.0 3.5 5.6 5.5 5.3 5.8 5.3

normal 10 13.4 18.0 3.1 4.7 5.9 5.6 4.8 4.7
15 12.5 16.7 3.7 6.3 6.5 6.4 5.4 5.3
20 13.1 16.7 3.6 6.7 6.2 5.9 5.4 5.8
25 10.0 13.5 2.8 4.1 4.8 4.8 4.7 4.6

n2 5 14.2 17.3 4.2 5.8 5.2 5.5 8.3 6.0
10 12.1 15.0 2.7 4.4 5.0 4.9 5.2 4.1
15 10.0 12.7 3.2 4.1 4.7 4.6 5.2 4.7
20 10.1 12.9 2.9 6.0 5.7 5.8 5.3 5.2
25 10.9 14.4 3.8 5.1 5.9 5.9 6.9 6.0

σ2 n1 5 24.2 23.9 3.6 8.8 7.3 7.2 6.3 6.1
10 19.4 20.0 3.8 8.8 6.6 6.3 6.7 6.4
15 17.4 17.1 3.9 9.8 6.9 6.8 6.2 6.0
20 15.8 16.2 3.4 8.5 6.5 6.3 6.6 5.7
25 14.2 14.4 2.8 7.7 5.2 5.0 5.4 5.3

n2 5 16.0 19.2 2.7 6.0 5.9 6.4 1.6 5.0
10 13.8 16.3 2.7 6.5 5.5 5.8 3.1 5.6
15 12.2 13.9 2.9 6.0 4.7 4.9 2.4 5.5
20 12.6 13.8 3.5 7.0 6.0 6.0 3.2 6.2
25 13.2 13.7 3.2 7.1 5.8 6.0 4.2 6.7

σ3 n2 5 15.6 14.2 4.8 8.4 6.7 5.7 19.6 7.3
10 13.3 11.6 3.8 7.4 4.7 3.9 13.6 5.7
15 11.6 10.2 4.3 6.5 5.5 4.9 13.8 6.6
20 10.8 10.2 4.3 7.2 5.3 4.7 11.7 6.1
25 10.8 10.8 4.7 6.2 4.8 4.3 11.9 7.0
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Table 6

Empirical sizes (as percentages) of the tests obtained for σ = σ4 and nl = n2.

Model m
Test

QN QD
N QU

N Qπ
N QD,π

N QD,s,π
N QU,π

N QU,s,π
N

Normal 5 11.5 9.4 5.7 4.8 5.2 4.8 14.2 5.3
10 8.5 7.9 4.8 4.8 4.4 4.3 11.8 4.8
15 7.6 7.2 4.1 5.0 5.1 5.0 9.4 4.3
20 7.0 6.9 4.5 4.4 4.8 4.4 9.6 4.6
25 6.6 6.5 5.3 4.2 4.7 4.4 9.1 5.1

Laplace 5 7.8 6.9 4.8 5.0 4.3 4.0 12.5 5.6
10 6.5 5.1 3.4 4.8 4.1 4.0 9.1 3.7
15 8.0 6.9 4.8 5.8 5.5 5.3 10.2 5.4
20 7.5 6.6 4.8 6.4 5.9 5.7 10.6 5.0
25 5.9 4.8 4.7 4.8 4.3 4.3 8.5 5.2

χ2
10 5 11.7 10.6 5.2 5.6 5.3 5.0 12.6 5.1

10 8.8 7.8 5.0 5.1 4.6 4.5 9.2 5.1
15 7.3 7.4 5.3 4.7 4.4 4.1 9.6 5.7
20 7.7 7.1 5.5 5.0 4.6 4.4 8.7 5.7
25 8.1 7.8 5.5 6.0 5.5 5.4 9.1 5.8

Log-normal 5 24.8 22.2 2.9 10.8 5.2 4.8 10.5 6.9
10 19.9 20.1 2.6 10.9 6.7 6.7 10.1 6.3
15 17.7 17.7 1.9 8.7 5.7 5.4 7.9 5.0
20 15.7 15.7 2.0 7.6 4.6 4.3 7.8 4.5
25 10.9 13.4 2.3 5.5 4.6 4.2 9.0 6.1

Normal-Laplace 5 10.1 8.8 5.8 5.3 5.1 5.1 13.8 5.6
10 8.1 6.8 5.8 4.8 4.7 4.6 11.0 5.9
15 6.8 6.2 4.6 4.9 4.9 4.8 9.3 4.4
20 6.7 6.4 5.0 4.1 3.9 3.7 8.7 5.1
25 7.4 7.3 5.9 5.8 5.4 5.3 11.0 6.0

χ2
3-Log-normal 5 14.7 14.3 4.6 7.3 6.2 5.7 15.9 7.0

10 12.7 12.1 3.1 6.4 4.7 4.0 11.3 5.1
15 10.7 10.6 4.3 5.5 5.0 4.6 11.3 6.1
20 11.0 10.6 4.0 6.8 5.3 4.9 9.8 5.5
25 10.4 11.4 4.6 5.8 4.9 4.5 10.8 6.9
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Table 7

Empirical sizes (as percentages) of the tests obtained for σ = σ5 and nl = n2.

Model m
Test

QN QD
N QU

N Qπ
N QD,π

N QD,s,π
N QU,π

N QU,s,π
N

Normal 5 11.6 7.8 5.4 7.2 7.3 4.8 27.9 6.2
10 8.7 6.4 4.9 5.9 6.6 4.8 19.8 5.4
15 8.1 6.1 5.0 6.0 6.5 4.9 17.2 5.2
20 7.2 6.3 4.9 4.9 6.4 5.0 16.5 5.4
25 6.7 5.6 5.3 5.2 6.0 5.0 15.1 5.6

Laplace 5 8.0 6.2 4.7 6.0 6.9 4.7 25.5 6.3
10 7.1 4.5 3.6 6.0 5.7 3.9 17.4 4.5
15 7.4 6.1 5.0 6.2 7.3 6.0 18.8 6.1
20 7.4 6.0 5.2 6.8 7.1 5.7 17.9 6.3
25 6.5 5.6 5.2 5.5 6.6 5.1 14.7 6.0

χ2
10 5 13.5 8.6 6.0 9.3 7.9 6.3 26.3 6.8

10 9.8 7.5 4.9 6.5 6.7 5.5 18.1 5.9
15 7.9 7.2 5.2 5.9 6.8 5.1 17.4 6.0
20 8.2 6.0 5.1 6.1 5.6 4.7 17.1 6.0
25 8.5 6.8 5.3 6.6 6.4 5.0 14.8 6.1

Log-normal 5 35.8 19.5 5.2 28.5 13.6 11.1 25.4 10.2
10 27.6 16.4 4.0 22.2 11.3 9.8 20.2 8.5
15 26.6 14.3 3.6 20.8 9.7 8.2 18.7 8.0
20 22.2 13.0 3.5 16.5 8.6 7.3 16.5 6.9
25 18.0 10.2 3.6 11.2 6.2 5.0 16.3 7.2

Normal-Laplace 5 9.8 8.2 7.1 6.3 7.4 5.7 27.1 7.7
10 7.9 7.1 5.8 5.3 6.8 5.4 19.8 6.3
15 7.2 5.9 4.8 5.4 6.1 4.6 17.3 5.3
20 7.2 5.5 5.5 5.2 6.0 4.9 14.9 5.8
25 7.4 6.4 5.9 6.4 7.4 5.7 17.1 6.6

χ2
3-Log-normal 5 18.7 11.0 5.6 15.2 9.8 7.6 29.0 8.1

10 17.0 9.4 4.0 11.4 7.8 5.3 20.4 6.6
15 14.5 9.8 5.1 11.0 7.1 5.2 19.6 7.2
20 13.1 9.0 5.1 9.5 6.8 5.3 18.1 6.7
25 13.2 8.3 5.0 8.2 6.3 4.4 17.6 7.1
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Table 8

Empirical powers (as percentages) of the tests obtained in the normal, Laplace and χ2
10

models (n = nl + 1018, l = 1, 2, μ1 = (1,0′
7)

′, μ2 = (1, 1,0′
6)

′, μ3 = (1, 1, 1,0′
5)

′).

Model σ nl μ
Test

QN QD
N QU

N Qπ
N QD,π

N QD,s,π
N QU,π

N QU,s,π
N

Normal σ1 n1 μ1 78.2 78.3 74.3 66.4 68.2 68.2 73.4 73.3
μ2 96.1 96.3 94.8 89.8 90.8 90.9 94.3 94.4
μ3 98.4 98.4 97.9 96.7 96.9 96.9 97.7 97.8

n2 μ1 77.9 80.4 83.8 70.6 73.7 73.7 83.6 82.6
μ2 97.7 98.0 98.2 96.1 96.8 96.8 98.3 98.2
μ3 99.8 99.8 99.6 99.2 99.5 99.5 99.7 99.6

σ2 n1 μ1 72.9 65.3 23.2 60.0 53.4 53.2 26.1 23.2
μ2 82.0 80.9 45.2 73.4 72.5 71.9 48.7 44.7
μ3 80.9 81.7 54.6 70.4 73.5 73.3 57.9 54.6

n2 μ1 74.3 69.9 43.4 65.4 63.2 63.2 25.9 42.2
μ2 89.7 88.9 71.0 83.9 84.4 84.3 52.8 70.6
μ3 89.7 90.3 81.7 85.9 87.0 87.0 67.3 81.3

σ3 n2 μ1 25.8 28.0 31.7 18.2 23.0 22.5 48.3 31.9
μ2 44.0 52.1 49.0 35.2 45.3 44.3 67.1 48.5
μ3 67.2 75.1 61.6 59.5 69.7 68.4 77.8 61.6

Laplace σ1 n1 μ1 80.0 80.4 72.3 73.4 74.3 74.5 74.9 73.7
μ2 96.6 96.7 92.5 94.4 94.9 95.0 93.2 92.7
μ3 98.9 98.7 97.3 98.2 98.4 98.4 97.7 97.6

n2 μ1 78.9 81.0 83.3 74.5 77.5 77.3 84.8 84.3
μ2 97.4 97.9 96.9 96.5 97.2 97.2 97.9 97.1
μ3 99.9 99.8 99.5 99.7 99.7 99.7 99.6 99.5

σ2 n1 μ1 75.1 67.0 21.2 66.9 60.2 59.5 25.6 24.1
μ2 88.9 84.6 43.2 83.5 81.3 80.9 50.5 46.5
μ3 85.5 85.3 55.5 81.0 82.1 81.4 60.2 57.3

n2 μ1 75.5 71.7 40.7 70.8 67.3 67.2 24.3 42.7
μ2 92.2 91.3 70.2 89.9 89.1 89.1 54.6 71.9
μ3 94.5 94.2 81.0 92.5 92.7 92.6 70.0 82.4

σ3 n2 μ1 26.9 29.4 29.5 21.8 26.6 25.5 47.2 31.1
μ2 51.0 57.1 49.1 44.0 54.3 53.2 66.9 51.6
μ3 73.7 79.0 60.3 67.9 77.1 76.1 78.7 62.8

χ2
10 σ1 n1 μ1 83.8 83.6 71.9 72.3 71.2 71.5 72.4 72.9

μ2 98.2 97.8 94.8 94.7 94.9 95.0 94.8 94.9
μ3 98.7 98.4 97.7 97.3 97.3 97.3 97.7 97.7

n2 μ1 84.3 87.0 84.0 72.7 76.4 76.4 85.1 84.4
μ2 99.4 99.5 99.1 98.1 98.8 98.8 98.9 99.3
μ3 100 100 99.7 99.5 99.4 99.5 99.7 99.7

σ2 n1 μ1 78.4 69.7 25.4 67.5 58.0 57.1 28.7 26.1
μ2 89.0 85.2 47.6 80.3 76.2 76.0 51.4 48.5
μ3 84.8 83.2 58.6 77.6 78.2 78.0 62.3 59.0

n2 μ1 80.0 75.0 41.5 68.5 62.8 62.8 25.2 42.3
μ2 92.5 91.1 71.0 87.2 85.5 85.5 53.4 71.1
μ3 93.1 92.8 81.3 88.9 89.4 89.4 67.7 81.6

σ3 n2 μ1 22.5 27.9 26.5 14.5 17.9 16.6 45.3 28.1
μ2 43.4 55.0 44.4 28.9 42.5 41.3 65.2 46.4
μ3 66.1 76.8 59.0 51.2 66.3 65.2 77.8 61.2
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Table 9

Empirical powers (as percentages) of the tests obtained in the log-normal, normal-Laplace
and χ2

3-log-normal models (n = nl + 1018, l = 1, 2, μ1 = (1,0′
7)

′, μ2 = (1, 1,0′
6)

′,
μ3 = (1, 1, 1,0′

5)
′).

Model σ nl μ
Test

QN QD
N QU

N Qπ
N QD,π

N QD,s,π
N QU,π

N QU,s,π
N

Log- σ1 n1 μ1 96.1 97.4 68.9 91.5 91.2 92.3 81.3 82.3
normal μ2 99.8 99.7 87.7 99.8 99.0 99.1 94.0 94.0

μ3 99.9 99.5 91.8 99.8 99.6 99.6 97.5 97.5

n2 μ1 97.2 98.8 79.6 90.7 93.4 94.0 86.2 90.0
μ2 100 99.9 93.0 99.8 99.7 99.6 95.9 98.2
μ3 100 99.9 96.0 100 99.9 99.8 97.7 99.3

σ2 n1 μ1 95.6 88.7 30.1 91.3 74.5 73.9 42.9 42.4
μ2 98.4 94.9 49.5 96.6 88.9 88.1 63.5 62.2
μ3 96.9 93.9 57.1 95.5 90.1 89.1 69.7 68.9

n2 μ1 97.1 93.3 43.3 91.3 79.8 80.4 39.1 56.6
μ2 99.4 97.4 67.3 98.0 92.2 92.4 63.4 78.0
μ3 98.0 95.5 72.8 95.9 92.1 92.2 70.5 82.0

σ3 n2 μ1 48.4 56.2 29.7 25.4 27.5 26.0 51.3 42.2
μ2 74.0 81.6 49.3 48.6 57.0 56.2 73.7 68.6
μ3 91.3 92.0 64.0 76.6 77.8 78.1 82.8 79.7

Normal- σ1 n1 μ1 75.1 75.4 69.9 63.5 65.9 65.8 70.8 70.6
Laplace μ2 94.9 95.2 93.0 90.1 91.0 91.0 93.1 93.0

μ3 98.6 98.6 97.4 97.4 97.3 97.3 97.6 97.4

n2 μ1 77.0 78.6 82.8 71.3 74.7 74.7 83.5 82.7
μ2 98.3 99.0 98.8 96.7 97.4 97.4 98.8 98.8
μ3 99.7 99.7 99.6 99.6 99.6 99.6 99.6 99.6

σ2 n1 μ1 68.4 60.6 22.4 58.1 53.8 53.5 26.9 24.4
μ2 83.6 80.0 44.4 75.5 74.4 74.1 49.8 46.9
μ3 84.8 83.8 56.1 77.2 78.8 78.5 62.0 58.9

n2 μ1 73.2 69.8 40.2 66.2 65.0 65.0 24.2 42.1
μ2 90.2 88.9 69.2 85.7 85.1 85.4 54.6 70.6
μ3 91.9 92.0 79.4 87.7 88.8 88.8 66.1 80.5

σ3 n2 μ1 23.6 25.0 27.1 18.2 21.3 20.6 46.0 28.0
μ2 43.1 50.3 46.3 35.4 45.5 44.0 65.8 46.4
μ3 66.8 75.8 58.9 56.2 70.4 69.1 79.3 59.9

χ2
3-Log- σ1 n1 μ1 94.9 94.4 68.7 82.1 77.9 78.1 76.9 78.3

normal μ2 99.7 99.0 88.5 98.0 96.9 97.0 94.2 94.0
μ3 99.9 99.7 93.3 99.5 98.7 98.7 96.6 96.9

n2 μ1 93.3 94.9 80.9 81.8 81.6 82.3 84.5 87.9
μ2 99.7 99.8 95.7 98.6 97.9 98.0 96.3 98.1
μ3 100 100 97.3 99.8 99.6 99.6 98.0 99.3

σ2 n1 μ1 93.3 82.4 29.3 80.2 59.8 59.5 37.9 36.9
μ2 96.4 92.2 50.4 92.4 80.1 79.9 61.2 59.6
μ3 95.2 91.3 58.8 91.1 84.4 84.2 69.0 67.7

n2 μ1 91.6 84.8 43.7 79.9 65.4 66.7 38.2 53.8
μ2 97.2 94.8 68.3 93.7 86.1 86.5 62.5 77.3
μ3 96.8 94.9 75.6 94.0 89.0 89.2 70.6 83.2

σ3 n2 μ1 30.1 39.5 25.0 16.7 21.1 18.4 47.2 32.2
μ2 52.6 68.4 46.5 28.9 46.3 43.7 67.3 53.0
μ3 76.7 89.1 60.1 51.9 71.0 69.8 80.1 68.9
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Table 10

Empirical sizes (as percentages) of the tests obtained in the normal, χ2
10 and log-normal

models (n = (m+ 5)1a, σ = 1a, m = 5, 10, 15, 20, a = 6, 8, 10, 12).

Model m a
Test

QN QD
N QU

N Qπ
N QD,π

N QD,s,π
N QU,π

N QU,s,π
N

Normal 5 6 11.2 9.9 5.6 4.2 4.4 4.4 5.1 4.9
8 14.5 13.1 5.6 5.7 5.4 5.4 5.3 5.1

10 14.1 12.6 4.8 3.9 4.1 4.1 4.7 4.7
12 17.8 16.0 4.9 5.0 5.0 5.0 4.4 4.4

10 6 9.6 8.4 6.0 5.2 5.2 5.2 5.6 5.6
8 8.7 8.2 4.8 4.0 4.3 4.3 4.7 4.6

10 11.7 11.0 5.3 5.0 4.9 4.9 4.9 5.0
12 10.7 9.8 4.8 4.7 4.8 4.8 5.0 4.8

15 6 6.8 6.4 5.4 4.9 4.6 4.7 5.1 5.2
8 7.0 6.3 4.6 4.2 4.1 4.1 4.4 4.5

10 9.9 9.5 5.6 6.1 5.9 5.9 5.4 5.3
12 10.1 9.8 6.1 5.1 4.9 4.9 6.0 5.9

20 6 6.0 5.4 4.4 4.7 4.5 4.5 4.3 4.2
8 7.5 6.9 5.0 5.3 5.1 5.1 4.9 4.8

10 7.2 6.8 4.4 4.0 4.0 4.0 4.5 4.5
12 8.1 7.3 4.7 4.3 4.2 4.2 4.8 4.7

χ2
10 5 6 12.0 10.4 4.9 5.4 5.4 5.4 5.0 4.8

8 16.1 15.9 4.9 4.7 5.4 5.5 5.2 5.4
10 18.4 18.2 5.1 4.4 5.0 5.0 5.7 5.7
12 20.8 21.9 5.2 5.0 4.8 4.8 5.6 5.6

10 6 10.3 9.6 5.0 5.7 5.2 5.2 5.3 5.2
8 10.8 10.5 3.4 4.5 4.0 4.0 3.6 3.6

10 12.1 13.4 4.3 4.4 4.3 4.3 4.6 4.5
12 14.1 14.8 5.1 5.5 5.6 5.6 5.6 5.7

15 6 8.1 8.3 5.4 4.9 5.0 5.0 5.3 5.5
8 9.6 9.6 3.8 4.9 4.6 4.6 3.9 4.0

10 10.7 11.6 4.4 5.3 5.2 5.2 4.7 4.8
12 10.2 10.8 4.4 5.0 5.0 5.0 4.9 4.6

20 6 8.7 8.1 5.9 5.5 5.5 5.5 5.9 5.8
8 9.8 9.8 5.8 6.0 6.0 6.0 6.2 6.1

10 9.9 10.4 5.6 5.9 5.6 5.6 5.9 5.7
12 10.4 10.6 5.6 5.7 5.6 5.6 6.1 6.1

Log- 5 6 12.7 13.3 2.6 4.2 4.7 4.6 5.1 5.5
normal 8 19.0 24.7 1.8 4.5 5.3 5.2 5.1 5.1

10 21.2 35.1 1.8 4.4 4.7 4.7 5.6 5.0
12 23.2 43.9 1.2 4.2 4.6 4.7 3.8 3.7

10 6 13.6 14.1 1.8 6.1 4.6 4.8 4.0 4.0
8 13.6 21.2 1.1 4.8 4.0 4.0 4.8 5.1

10 20.2 32.6 2.2 6.3 5.3 5.6 6.4 6.8
12 21.2 41.2 0.8 5.3 4.7 4.6 4.2 3.8

15 6 10.9 11.8 1.8 4.9 4.6 4.5 4.1 4.4
8 13.7 21.2 1.7 5.2 4.3 4.2 4.4 4.6

10 15.2 27.5 1.5 4.5 4.1 4.2 4.4 4.3
12 17.9 35.7 1.7 4.1 4.5 4.3 5.6 5.6

20 6 10.5 13.0 2.2 5.7 4.7 5.0 5.4 5.2
8 14.0 19.6 2.0 6.2 5.8 5.8 5.0 5.1

10 12.4 23.2 1.5 5.0 5.3 5.3 4.3 4.0
12 16.9 31.1 1.4 4.9 4.6 4.6 4.9 5.1
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Table 11

Empirical powers (as percentages) of the tests obtained in the normal, χ2
10 and log-normal

models (n = (m+ 5)1a, σ = 1a, μ1 = (1,0′
a−1)

′, m = 5, 10, 15, 20, a = 6, 8, 10, 12).

Model m a
Test

QN QD
N QU

N Qπ
N QD,π

N QD,s,π
N QU,π

N QU,s,π
N

Normal 5 6 65.1 64.1 56.9 47.0 50.7 50.7 53.2 53.5
8 61.9 60.7 51.3 41.2 43.4 43.4 49.9 50.1

10 62.7 61.4 48.1 37.2 39.3 39.2 47.4 47.6
12 60.3 59.9 44.6 34.4 36.1 36.3 43.4 43.6

10 6 78.8 78.8 74.2 70.0 71.3 71.3 73.6 73.5
8 78.1 77.8 72.5 66.4 68.8 68.8 72.0 71.9

10 77.1 77.3 71.0 62.4 64.2 64.3 70.8 70.6
12 73.1 73.2 65.6 56.8 58.5 58.5 65.4 65.5

15 6 90.8 91.0 90.2 86.1 87.5 87.5 89.3 89.1
8 87.1 87.1 84.9 80.8 82.3 82.3 84.9 84.6

10 87.5 87.6 84.8 79.2 81.0 81.0 84.8 84.6
12 85.7 85.5 81.9 73.8 75.1 75.1 81.3 81.5

20 6 95.9 96.0 95.4 93.6 93.9 93.9 95.1 95.1
8 95.5 95.7 95.1 91.7 93.0 93.0 94.9 95.0

10 92.4 92.8 91.6 89.0 89.7 89.7 91.6 91.5
12 91.5 92.0 90.6 87.0 87.6 87.6 90.4 90.5

χ2
10 5 6 70.9 68.1 54.6 48.9 49.9 50.1 53.5 54.2

8 69.9 68.1 48.9 44.1 44.5 44.8 49.2 49.2
10 70.0 69.3 45.8 42.6 42.9 43.0 46.9 47.0
12 68.9 69.2 43.0 36.2 36.1 36.1 43.7 44.2

10 6 86.4 86.4 77.1 77.0 77.2 77.3 77.2 77.1
8 83.8 83.6 71.9 72.3 71.2 71.5 72.4 72.9

10 84.5 84.6 69.8 66.5 65.9 66.1 70.9 70.5
12 80.1 81.5 65.8 60.1 59.1 59.2 66.3 66.6

15 6 94.3 94.6 88.9 90.4 90.4 90.4 88.7 88.9
8 94.5 94.3 88.2 89.0 87.4 87.4 88.7 88.7

10 93.7 93.5 85.1 84.6 84.0 84.0 85.1 85.4
12 92.2 91.7 82.9 82.1 81.0 81.0 83.1 83.3

20 6 98.6 98.6 96.6 96.8 96.6 96.7 96.0 96.0
8 98.1 98.1 95.1 96.3 96.1 96.1 95.4 95.3

10 97.1 96.8 93.2 93.4 93.2 93.2 93.5 93.6
12 97.0 97.3 92.7 93.2 92.6 92.7 93.0 93.1

Log- 5 6 92.8 90.6 60.6 84.7 83.6 83.9 70.8 71.4
normal 8 95.1 95.1 53.6 79.5 78.0 78.6 64.7 64.9

10 93.6 96.1 44.5 76.5 72.0 72.7 58.2 58.8
12 92.9 98.5 41.0 71.7 66.7 67.8 57.5 57.9

10 6 96.9 96.2 73.1 93.3 93.6 94.0 82.2 83.2
8 96.1 97.4 68.9 91.5 91.2 92.3 81.3 82.3

10 95.9 98.6 61.9 90.3 88.4 89.0 76.2 77.1
12 96.9 98.4 56.0 86.3 84.1 85.0 73.9 74.9

15 6 98.5 99.0 85.9 97.1 97.8 98.3 92.4 92.8
8 98.0 99.1 81.1 94.8 96.0 96.2 88.8 89.5

10 97.8 99.5 78.4 93.7 94.4 95.0 88.6 89.4
12 96.9 99.0 72.0 92.2 90.9 91.8 85.8 86.6

20 6 98.4 99.2 89.2 97.6 99.0 99.3 94.7 95.1
8 98.4 99.6 87.9 97.4 97.9 98.0 94.9 95.2

10 98.6 99.8 85.0 96.5 97.8 98.1 93.6 93.8
12 97.7 99.7 82.1 94.9 95.2 95.5 92.6 93.1
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[5] Demšar, J. (2006). Statistical comparisons of classifiers over multiple data
sets. J. Mach. Learn. Res. 7 1–30. MR2274360

[6] Dong, K., Pang, H., Tong, T. and Genton, M. G. (2016). Shrinkage-
based diagonal Hotelling’s tests for high-dimensional small sample size data.
J. Multivariate Anal. 143 127–142. MR3431423

[7] Duchesne, P. and Francq, C. (2015). Multivariate hypothesis testing
using generalized and {2}-inverses - with applications. Statistics 49 475–
496. MR3349073

[8] Friedrich, S., Konietschke, F. and Pauly, M. (2015). GFD: Tests for
general factorial designs. R package version 0.1.2. http://CRAN.R-project.
org/package=GFD

[9] Getson, A. J. and Hsuan, F. C. (1988). {2}-Inverses and Their Statisti-
cal Application. Lecture Notes in Statistics 47. Springer-Verlag, New York.
MR0971746
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