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1. Introduction

For a normally distributed observable X ∼ N(μ, σ2) we consider the restricted
parameter space point estimation problem with μ ∈ Θ(m) = {μ ∈ R : |μ| ≤
mσ}. Both m and σ2 are known. We provide analysis for symmetric and strict
bowled-shaped loss functions

L(μ, d) = F (|d− μ|) , d, μ ∈ Θ(m), (1.1)

with F strictly increasing and absolutely continuous on [0, 2mσ], but otherwise
general. The simple model addressed here still remains relevant and influential.
It is relevant to various situations, namely via limit theorems, where all the
uncertainty lies in the mean signal with the noise controlled and X is a normally
distributed summary statistic (that may be sufficient as well). The other aspect
of the model is the boundedness to an interval assumption on the mean, centered
here about 0 without loss of generality. It is indeed often the case that bounds
on the parameters can be stipulated and arise from a given practical context.

A central objective is to study the efficiency of estimators that take values
on or close to the boundary of the parameter space, such as the benchmark
maximum likelihood estimator

δmle(X) = (mσ ∧ |X|) sgn(X) , (1.2)

and to provide dominating estimators δ(X), including Bayes estimators, when-
ever δmle is inadmissible, in terms of frequentist risk

R(μ, δ) = Eμ F (|δ(X)− μ|) ;μ ∈ Θ(m) . (1.3)

With much previous work focussed on squared-error loss (i.e., F (t) = t2), our
findings encompass many other alternative convex losses, but alternatively loss
function features that may well be more attractive for the decision-maker such
as boundedness and non-convexity. These include for instance reflected normal
loss (e.g., Spiring, 1993) given by

Lγ(μ, d) = 1− e−
|d−μ|2

2γ , (1.4)
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γ being a positive constant. It is useful to observe that limγ→∞ 2γLγ(d, μ) =
|d− μ|2, so that we can reasonably anticipate that results relative to Lγ with γ
large mimic those for squared-error loss. Furthermore, as described in Section
6, additional sources of motivation and connections with reflected normal loss
Lγ arise from a predictive density estimation perspective.

Remark 1.1. Other classes of loss functions for which our findings apply, and
which also arise in a predictive density estimation setting (see Lemma 6.3),
are cases where F is generated by a cdf on R+, such as a half-normal F (t) =
Φ(t) − 1/2, Φ being the N(0, 1) cdf. Our results also apply to a vast collection

of losses F which are reflected densities of the form F (t) = 1− ψ(t)
ψ(0) , t > 0, with

ψ a decreasing density on R+, which include reflected normal loss, as well as
losses F (t) = 1 − e−tα/2γ , α, γ > 0, which are reflections of exponential power
densities and which we will study. Alternatively, these latter losses are generated
by Weibull distribution functions which relate to the other losses of this example.

Using various conditional risk decompositions, including a technique intro-
duced by Moors (1985), Marchand and Perron (2001) obtained estimators that
dominate δmle under squared-error loss, including Bayesian dominators for
small enough m. Namely, one of their results, which duplicates an earlier find-
ing by Casella and Strawderman (1981), establishes that δBU (X) dominates
δmle(X) for m ≤ σ , where δBU (X) = mσ tanh(mX

σ ) is the Bayes estimator
with respect to the two-point uniform prior on the boundary {−m,m} of Θ(m).
Otherwise for larger m, the projection δp(X) = (|δBU (X)| ∧ |δmle(X)|) sgn(X)
was shown by Moors (1985) to dominate δmle(X) under squared-error loss.
For other losses, the situation may differ. Indeed, for absolute value loss (i.e.,
F (t) = t), Iwasa and Moritani (1997), as well as Kucerovsky et al. (2009), show
that δmle is a proper Bayes estimator and is thus admissible. On the other hand,
Iwasa and Moritani (1997) establish the inadmissibility of δmle for a large class
of convex losses, including Ls losses (F (t) = ts) with s > 1.

As for squared-error loss and as shown below using a conditional risk decom-
position, we establish that δmle, as well as others estimator taking values on the
boundary of the parameter space, are inadmissible under reflected normal loss
Lγ and for a large class of losses. For such situations, an improvement is always
provided by the above-defined projection δp(X), with δBU (X) the corresponding
boundary uniform Bayes estimator. Moreover, despite not having in general an
explicit expression for δBU (X), we obtain a simple sufficient condition (Theorem
3.4), applicable to a large class of losses F , for δBU (X) to dominate δmle(X),

namely m ≤ c0σ, with c0 the unique solution in c of c f(c)
f ′(c) = 1 and f = F ′ a.e..

For Ls loss F (t) = ts with s > 1, this reduces to m ≤ σ
√
s− 1 (Example 4.1),

extending the L2 result mentioned above. For reflected normal loss, the above

condition for δBU (X) to dominate δmle(X) reduces to m ≤ σ
√

γ
1+γ (Example

4.2). In contrast to such losses; conditions of which are presented in Section 3
and which include strictly convex losses; we show in Section 3.1 that losses in
(1.1) with concave F do not imply the deficiency of boundary taking estimators
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such as δmle(X). In fact, in such cases, we show that the boundary uniform
Bayes estimator is given by δBU (X) = mσsgn(X).

The organization of the manuscript is as follows. Section 2 deals with prelim-
inary results and definitions, namely those relative to the conditional risk where
the conditioning is on |X| = r, as well as first properties of the best equivariant
estimator δg∗

λ
when |μ| = λ. Section 3 begins with a further description of the op-

timization problem of determining g∗λ (Theorem 3.1), while Subsection 3.1 deals
with concave F , a non-shrinking property, and the lack of inefficiency of estima-
tors that take values on the boundary of the parameter space. Subsections 3.2,
3.3 establish properties of δg∗

λ
and namely a shrinkage property for a wide class

of losses, including convex losses. Subsection 3.4 contains dominance findings,
while Section 4 is dedicated to examples, illustrations, numerical evaluations,
and further observations. Finally, we expand on connections and implications
for predictive density estimation in an Appendix (Section 6).

2. Notations, definitions, and preliminary results

For our model X ∼ N(μ, σ2) with |μ| ≤ mσ, we assume σ = 1 without loss of
generality and we set λ = |μ|, R = |X|, r = |x|, and φ as the N(0, 1) pdf. With

F absolutely continuous, we can write F (t) =
∫ t

0
f(x) dx , t ≥ 0, f representing

(throughout) the Radon-Nikodym derivative of F and with f = F ′ a.e. The
problem is invariant under sign changes and equivariant estimators are even
functions of X. Equivariant estimators will thus possess constant risk on orbits
Sλ = {−λ, λ}, and we can therefore extract a best equivariant estimator for
(what we will refer to as) the local problem where |μ| = λ. This can be done by
conditioning on the maximal invariant statistic R (e.g., Eaton, 1989). We hence
study the conditional risks

ρ(λ, g(r), r) = Eμ (F (|δg(X)− μ|)|R = r)) , r > 0 , (2.1)

for equivariant estimators δg of the form

δg(x) = g(r) sgn(x) , (2.2)

with defining multiplier function g : [0,∞) → R.
The decomposition leads to the evaluation of the unconditional frequentist

risk
R(μ, δg) = Eμ (F (|δg(X)− μ|)) = Eλ(ρ(λ, g(R), R)) , (2.3)

where R2 ∼ χ2
1(λ

2) and λ ∈ [0,m]. Such inferences are summarized with the
following Lemma and will be further applied in Section 3.4. The main idea
used here to obtain dominance results, which goes back to the work of Moors
(e.g., Moors, 1985), is that estimator δg will dominate estimator δg1 whenever
it lowers the conditional risk for all r > 0 and for all λ (also see Marchand and
Strawderman, 2004, for a presentation).

Lemma 2.1. (a) For the local problem |μ| = λ, an equivariant estimator δg∗
λ

such that g∗λ(r) = argminy∈R
{ρ(λ, y, r)} is best equivariant;
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(b) For the local problem |μ| = λ, a sufficient condition for δg to dominate δg1
is

ν{r > 0 : ρ(λ, g(r), r) > ρ(λ, g1(r), r)} = 0 ,

and ν{r > 0 : ρ(λ, g(r), r) < ρ(λ, g1(r), r)} > 0 , (2.4)

with ν the Lebesgue measure on R;
(c) For the full restricted parameter space |μ| ≤ m, a sufficient condition for

δg to dominate δg1 is

ν{r > 0 : ρ(λ, g(r), r) > ρ(λ, g1(r), r)} = 0 for all λ ∈ [0,m] ,

and ν{r > 0 : ρ(λ0, g(r), r) < ρ(λ0, g1(r), r)} > 0 , for some λ0 ∈ [0,m] .
(2.5)

Here is a useful expression for the conditional risk, accompanied by a further
specification of a best equivariant estimator.

Lemma 2.2. (a) For λ, r > 0, the conditional risk in (2.1) is given by

ρ(λ, y, r) = αλ(r)F (|y − λ|) + (1− αλ(r))F (y + λ) , (2.6)

= F (λ) +

∫ y

0

ψ(λ, t, r) dt, if 0 ≤ y ≤ λ, (2.7)

with αλ(r) = eλr

eλr+e−λr and ψ(λ, t, r) = (1−αλ(r)) f(λ+t)−αλ(r) f(λ−t).
(b) An equivariant estimator δg∗

λ
with g∗λ(r) = argmin0≤y≤λ {ρ(λ, y, r)} is

best equivariant.

Proof. Equation (2.6) follows since, conditional on |X| = r, X takes values
r and −r with probabilities αλ(r) and 1 − αλ(r) respectively where αλ(r) =

φ(r−λ)
φ(r−λ)+φ(r+λ) = eλr

eλr+e−λr . Expression (2.7) is a rewriting of (2.6) making use of

the representation F (t) =
∫ t

0
f(x)dx. For part (b), given part (a) of Lemma 2.1

and the continuity of ρ, it suffices to show, for a fixed (r, λ), that: (i) ρ(λ, y, r) ≥
ρ(λ, λ, r) for y ≥ λ, and (ii) ρ(λ, y, r) ≥ ρ(λ,−y, r) for y < 0. These inequalities
are readily established with the nondecreasing property of F , with the additional
observation for (ii) that: ρ(λ, y, r) − ρ(λ,−y, r) = (2αλ(r) − 1) {F (|λ − y|) −
F (|λ+y|)} ≥ 0, given that αλ(r) ≥ 1/2 and that |λ−y| ≥ |λ+y| for y < 0, λ ≥
0.

Remark 2.1. Alternatively and equivalently, the estimator δg∗
λ
is Bayes with

respect to the two-point uniform prior P (μ = λ) = P (μ = −λ) = 1/2, which we
denote as πλ. This can be checked directly1, but it also must be the case based
on the fact that the best equivariant estimator can be represented as the Bayes
estimator associated with the corresponding Haar measure, which is here the
two-point uniform prior on {−λ, λ} (e.g., Eaton, 1989).

1Expanding on this, first observe that the expected posterior loss of the estimate δ is given
by ρ(λ, δ, x) and that

δπλ (−x) = argminδ{ρ(λ, δ,−x)} = argminδ{ρ(λ,−δ, x)} = −argminδ{ρ(λ, δ, x)} = −δπλ (x) ,

working with (2.6). We thus infer that δπλ (x) is an odd function of x and that δπλ (x) =
argminy{ρ(λ, y, |x|} sgn(x) = δg∗

λ
(x) for all x.
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3. Main results

The main objective here is to study the efficiency of the maximum likelihood
estimator δmle, as well as other boundary-valued estimators for losses F (|d−μ|)
as measured by the corresponding risk in (1.3). In particular, there is the issue
of inadmissibility and the question of providing dominating estimators of δmle,
whenever possible. In this regard, we will be particularly interested in the per-
formance of the boundary uniform Bayes estimator δBU (X) and conditions on
(m,F ) for which δBU (X) dominates δmle. Other inferences, not only are useful,
but also turn out to be of interest. These include monotonicity conditions, as
well as conditions for which the best equivariant estimator for the local problem
|μ| = λ takes values on {−λ, λ}.

Subsection 3.1 deals with losses, which include concave F , where the best
equivariant estimator takes values on the boundary of the parameter space, and
where improvement by shrinkage is not possible. Afterwards, we study losses
where improvement by shrinkage is possible. Subsection 3.2 provides conditions
and examples, while subsection 3.3 establishes key monotonicity conditions.
These lead to dominance results presented in subsection 3.4, and examples and
illustrations then follow in Section 4.

Before proceeding, we present the following general result which addresses
the minimization problem of the conditional risks ρ(λ, y, r) as a function of y
for fixed (λ, r).

Theorem 3.1. Let λ, r > 0 be fixed.

(i) Suppose that

min

(
e−2λr,

f(λ− y)

f(λ+ y)

)
is nonincreasing in y almost everywhere on [0, λ] .

(3.1)
If ess inf{f(λ − y)/f(λ + y) : y ∈ [0, λ]} < exp(−2λr), then ρ(λ, ·, r) is
nonincreasing on [0, y0(λ, r)], nondecreasing on [y0(λ, r), λ] where y0(λ, r)

is such that f(λ−y)
f(λ+y) ≤ e−2λr for almost all y ≥ y0(λ, r), and

f(λ−y)
f(λ+y) ≥ e−2λr

for almost all y ≤ y0(λ, r) and 0 ≤ y0(λ, r) < λ;
(ii) If f(λ− y) ≥ exp(−2λr)f(λ+ y) for almost all y ∈ [0, λ], then ρ(λ, ·, r) in

nonincreasing on [0, λ].

Consequently, a best equivariant estimator for the local problem |μ| = λ is given
by δg∗

λ
(X) = g∗λ(|X|) sgn(X), with g∗λ(r) = y0(λ, r) for case (i), and g∗λ(r) = λ

for case (ii). Also,

(iii) If F is concave on [0, 2λ], then ρ(λ, λ, r) ≤ ρ(λ, t, r) for all t ∈ [0, λ], and
g∗λ(r) = λ.

(iv) If F is convex on [0, 2λ] and F ′(0) < exp(−2λr)F ′(2λ), then ρ(λ, ·, r)
is nonincreasing on [0, y0(λ, r)], nondecreasing on [y0(λ, r), λ], with 0 ≤
y0(λ, r) < λ and y0(λ, r) as given in part (i) above;

(v) If F is convex on [0, 2λ] and F ′(0) ≥ exp(−2λr)F ′(2λ), then ρ(λ, ·, r) is
nonincreasing on [0, λ] and g∗λ(r) = λ.
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Proof. The proof of parts (i) and (ii) is based on equation (2.7). Under
condition (i), there exists 0 < δ ≤ λ such that ψ(λ, ·, r) > 0 almost everywhere
on (λ−δ, λ] showing that ρ(λ, ·, r) is increasing on [λ−δ, λ]. Assumption (3.1) is
then used to show that y0(λ, r) < λ exists. Under condition (ii), we obtain that
ψ(λ, ·, r) ≤ 0 almost everywhere on [0, λ] showing that ρ(λ, ·, r) is nondecreasing
on [0, λ].

Parts (iii), (iv), and (v) are established by using equation (2.6). For part
(iii) the concavity of F on [0, 2λ] implies the concavity of ρ(λ, ·, r) on [0, λ].
Since ρ(λ, ·, r) is concave on [0, λ] the function ρ(λ, ·, r) reaches its minimum at
0 or λ. Since

ρ(λ, 0, r) = F (λ)

> F (2(1− αλ(r))λ), (as F is increasing and 1/2 < αλ(r) < 1)

≥ αλ(r)F (0) + (1− αλ(r))F (2λ), (F is concave )

= ρ(λ, λ, r) ,

we obtain that the function ρ(λ, ·, r) reaches its minimum at λ. For parts (iv)
and (v), the convexity of F on [0, 2λ] implies the convexity of ρ(λ, ·, r) on [0, λ].
For ρ′(λ, λ, r) = d

dyρ(λ, y, r)|y=λ, we have ρ′(λ, λ, r) = (1 − αλ(r))F
′(2λ) −

αλ(r)F
′(0). If ρ′(λ, λ, r) ≤ 0, then the function ρ(λ, ·, r) is nonincreasing on

[0, λ], which is (v). Finally, if ρ′(λ, λ, r) > 0, then the function ρ(λ, ·, r) is
increasing in a neighbourhood of λ, which leads to (iv).

Example 3.1. Theorem 3.1 covers a wide class of loss functions F identifying
the best point estimate of μ for fixed λ, r. Several developments below deal with
rather smooth choices of F , but Theorem 3.1 covers many more cases. Suppose,
for the sake of an illustration that F (t) = max(t, t2) for t ∈ [0, 2λ]. We consider
separately cases: (A) λ > 1, (B) 1/2 < λ ≤ 1, (C) 0 < λ ≤ 1/2.

(A) Observe that F is not differentiable at 1, but convex on [0, 2λ], so that we
can focus on parts (iv) and (v) of Theorem 3.1 and its discriminating
inequality. For λ > 1, we obtain

F ′(0) ≥ exp(−2λr)F ′(2λ) ⇐⇒ 1 ≥ 4λ exp(−2λr) ⇐⇒ r ≥ r0 =
log(4λ)

2λ
.

Therefore, we have that g∗λ(r) = λ for r ≥ r0 and g∗λ(r) = y0(λ, r) as
defined in part (i) for r < r0. With the choice f(t) = 1+(2t− 1) I[1,2λ](t),
we obtain

f(λ− y)

f(λ+ y)
=

{
λ−y
λ+y for 0 ≤ y ≤ λ− 1

1
2(λ+y) for λ− 1 < y ≤ 2λ .

From this, we obtain for 0 < r < r0:

y0(λ, r) =

⎧⎪⎨
⎪⎩

λ tanh(λr) for r ≤ log(2λ−1)
2λ

1
2 exp(2λr)− λ for r ≥ log(4λ−2)

2λ

λ− 1 for r ∈ ( log(2λ−1)
2λ , log(4λ−2)

2λ ) .
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(B) For 1/2 < λ ≤ 1, we obtain, as in part (A), g∗λ(r) = λ for r ≥ r0 = log(4λ)
2λ .

But here, with the choice f(t) = 1 + (2t− 1) I[1,2λ](t), we have

f(λ− y)

f(λ+ y)
=

{
1 for 0 ≤ y ≤ 1− λ
1

2(λ+y) for 1− λ < y ≤ 2λ .

From this, we obtain from part (iv) of Theorem 3.1, for 0 < r < r0:

g∗λ = y0(λ, r) =

{
1− λ for r ≤ log 2

2λ
1
2 exp(2λr)− λ for r ≥ log 2

2λ .

We point out that parts (i) and (ii) of Theorem 3.1 can also be applied
directly for the above analysis.

(C) Finally, for 0 < λ ≤ 1/2, F is concave on [0, 2λ], so that g∗λ(r) = λ for all
r > 0 as indicated by part (iii) of Theorem 3.1. Alternatively, F is still
convex as well on [0, 2λ] and an application of part (iv) of Theorem 3.1
leads to the same evaluation of gλ.

3.1. Situations where the best equivariant estimator is not a
shrinker

Building on Theorem 3.1, we expand here on situations where the best equiv-
ariant estimator for |μ| = λ is not a shrinker. These include cases where F is a
concave function on [0, 2λ].

Theorem 3.2. Assume that f(λ−y) ≥ f(λ+y) for almost all y ∈ [0, λ]. Then,

(a) the function ρ(λ, ·, r) is nonincreasing on [0, λ] for all fixed r > 0, λ > 0
and, consequently, g∗λ(r) = λ ; for all fixed (r, λ) ;

(b) The estimator δ∗gλ(x) = λ sgn(x) with 0 ≤ λ ≤ m is, for the full problem
μ ∈ Θ(m), a Bayes and admissible estimator of μ.

Proof. In view of Remark 2.1 and part (a), estimators δ∗gλ(x) are (essentially)
unique Bayes with finite Bayes risk, and thus admissible. This establishes part
(b). Part (a) is a corollary of Theorem 3.1. Indeed, given that f(λ−y) ≥ f(λ+y)
for almost all y ∈ [0, λ], part (ii) of Theorem 3.1 yields the result.

The above result tells us that estimators taking values on the boundary
{−m,m} of the parameter space [−m,m], such as δmle, cannot be dominated
by making use of the conditional risk method of Moors (1985), or Marchand and
Perron (2001), for a large class of losses F , which include concave F on [0, 2λ].
Of course, for the specific case of absolute-value loss, we have the stronger result
that δmle is admissible (Iwasa and Moritani, 1997; Kucerovsky et al., 2009), but
the result here applies to a whole range of losses.

Remark 3.1. Examples of losses with concave F in (1.1) for which Theorem
3.2 include Ls loss F (t) = ts with 0 < s ≤ 1; F (t) = 1 − e−t/γ with γ > 0;

F (t) = Φ(t/γ) with γ > 0; F (t) =
(

t
t+a

)c

with a > 0, 0 < c ≤ 1; and more

generally cases where F is the cdf associated with a decreasing density F ′ on R+,
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such as the additional examples F (t) = 2
π arctan( t

γ ), γ > 0, (i.e, half-Cauchy),

and F (t) = e
t
γ −1

e
t
γ +1

, γ > 0, (i.e., half-Logistic).

3.2. Situations where the best equivariant estimator is a shrinker

We now turn to situations where the best equivariant estimator δg∗
λ
for |μ| = λ

takes values on the interior of the interval [−λ, λ]. As a consequence of Theorem
3.1, we obtain the following description of δg∗

λ
.

Corollary 3.1. Let λ > 0, r > 0 be fixed. Assume that condition (3.1) holds,
that F is differentiable at 0 and 2λ, with F ′(0) = 0 and F ′(2λ) > 0. Then
part (i) of Theorem 3.1 applies and the best equivariant estimator for |μ| = λ is
given by δg∗

λ
(X) = g∗λ(|X|) sgn(X), with g∗λ(r) = y0(λ, r) = y0, with y0 satisfying

f(λ−y)
f(λ+y) ≤ e−2λr for y ≥ y0, and

f(λ−y)
f(λ+y) ≥ e−2λr for y ≤ y0. In cases where f is

continuous, y0 is a solution in y ∈ [0, λ] of

e2λr
f(λ− y)

f(λ+ y)
= 1 . (3.2)

Proof. Equation (2.6) is used to show that ρ′(λ, λ, r) > 0 so there exists
0 < ε < λ such that ρ(λ, λ − ε, r) < ρ(λ, λ, r). To justify that part (i) of
Theorem 3.1 applies, we use equation (2.7) to derive

0 < ρ(λ, λ, r)− ρ(λ, λ− ε, r) =

∫ λ

λ−ε

ψ(λ, t, r)dt ,

which shows that the set {t : ψ(λ, t, r) > 0} has positive Lebesgue measure, so
that ess inf{f(λ− y)/f(λ+ y) : y ∈ [0, λ]} < exp(−2λr).

Specific instances where condition (3.1) holds, and Corollary 3.1 is applicable,
includes cases where f is continuous on [0, 2λ] and where either: (I) F is convex

on [0, 2λ], or (II) f(λ−y)
f(λ+y) is nonincreasing in y for y ∈ [0, λ], or (III) f(λ−y)

f(λ+y) is

nondecreasing in y for y ≥ y1, and is nonincreasing in y for y < y1 for some y1 ∈
(0, λ). In such cases, in contrast to concave F cases, best equivariant estimators
for the local problem |μ| = λ are shrinkers, i.e., |δg∗

λ
(x)| < λ for almost all

x. This finding, along with further monotonicity properties still to establish,
will be exploited below to identify complete classes of estimators and obtain
dominating estimators of boundary-taking estimators such as δmle(X) for the
global problem with |μ| ≤ m. Our formulation highlights namely conditions (I)
and (II), as these will play a key role later on for monotonicity and dominance
results. We pursue with illustrations.

Example 3.2. As mentioned in the previous paragraph, the shrinkage con-
clusion of Corollary 3.1 applies to loss functions in (1.1) with F convex on
[0, 2λ] (condition I), such as Ls loss F (t) = ts, with s > 1, and such as
F (t) = eβt − βt − 1 with β �= 0 (i.e., a symmetrized Linex loss function),
among many other examples. For Ls loss with F (t) = ts, s > 1, the best equiv-
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ariant multiplier g∗λ(r) is obtained from (3.2) as the solution in y ∈ [0, λ) of

e2λr (λ−y
λ+y )

s−1 = 1. For L2 loss, we recover the familiar g∗λ(r) = λ tanh(λr) and

δg∗
λ
(x) = λ tanh(λx) (e.g., Casella and Strawderman, 1981).

Example 3.3. Investigating the conditions of Corollary 3.1 for reflected normal

loss and more generally to loss functions (1.1) with F (t) = 1 − e−
tα

2γ , γ > 0,
α > 1, we have that F is differentiable, F ′(0) = 0, F ′(2λ) > 0, and convexity

of F on [0, 2λ] if and only if λ ≤ 1
2 (

2γ(α−1)
α )1/α. However, we can show that

condition (III) above, and thus condition (3.1) required for Corollary 3.1 to
apply, holds for all γ > 0, α ∈ (1, 3], λ > 0, telling us that the best equivariant
estimator for the local problem |μ| = λ is a shrinker in such cases. Indeed, a
calculation permits us to write

∂

∂y
log(

f(λ− y)

f(λ+ y)
) =

1

λ2 − y2

(
−2λ(α− 1) +

α

2γ
Tα(y)

)
,

with Tα(y) = (λ−y) (λ+y)α+(λ+y) (λ−y)α. Since limy→λ− Tα(y) = −2λ(α−
1) < 0, condition (III) above is satisfied as long as Tα(y) is nonincreasing in y
for y ∈ [0, λ]. We can then write

∂

∂y
Tα(y) = (λ+ y)α G(ρ, α) ,

with G(ρ, α) = ρα − αρα−1 + αρ− 1, and ρ = λ−y
λ+y ∈ [0, 1].

We conclude by showing that G(ρ, α) ≤ 0 for all ρ ∈ [0, 1], α ∈ (1, 3]. Observe
that: (a) G(0, α) = −1, (b) G(1, α) = 0, (c) ∂

∂ρG(ρ, α)|ρ=1 = α(3− α) ≥ 0 for

all α ∈ (1, 3]. Furthermore, it is easy to see that: (d) G(·, α) is convex on [0, 1]
whenever α ≤ 2 and (e) G(·, α) is convex on [0, α−2], then concave on (α−2, 3)
whenever α ∈ (2, 3]. Finally, observe that both possibilities (a), (b) and (d),
which is the case for α ∈ (1, 2], and (a), (b), (c) and (e), which is the case for
α ∈ (2, 3], imply G(ρ, α) ≤ 0 for all ρ ∈ [0, 1]. 2 Condition (III) is thus satisfied

for all losses F (t) = 1 − e−
tα

2γ , for all λ > 0, γ > 0, and α ∈ (1, 3]. Finally,

we point out that stronger condition (II), that the ratio f(λ−y)
f(λ+y) is nonincreasing

in y ∈ [0, λ], is seen to be satisfied with the above analysis virtue if and only if
∂
∂y log( f(λ−y)

f(λ+y) ) is negative at y = 0+, which is equivalent to λ ≤ ( 2γ(α−1)
α )1/α.

As an example of the best equivariant estimator δg∗
λ
, consider reflected normal

loss Lγ (with α = 2 above), for which we obtain from (3.2) that g∗λ(r) is the
solution in y ∈ [0, λ) of

e2λ(r+
y
γ ) (

λ− y

λ+ y
) = 1 . (3.3)

We conclude this example by pointing out that the Bayes estimator δg∗
λ
and its

defining equation (3.2) were studied by Towhidi and Behboodian (2002) with the
objective of determining conditions for minimaxity (also see van Eeden, 2006;
pp. 48-49). We will comment on this below in Example 4.3.

2For α > 3, we see that G(ρ, α) is positive for ρ close to 1 which implies that Tα(y) is
nondecreasing for small y in such cases, and that condition (3.1) required for Corollary 3.1
does not hold.
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3.3. Monotonicity properties of g∗
λ(r)

We require the following monotonicity properties of the best equivariant multi-
plier g∗λ(r).

Lemma 3.1. Consider the context of Corollary 3.1, the best equivariant esti-
mator δg∗

λ
under loss F (|d − μ|) for |μ| = λ, g∗λ(r) being the solution in y of

equation (3.2). Suppose that f is continuous on [0, 2m], f(0) = 0, and f > 0 on
(0, 2m].

(a) Let r > 0 be fixed. A sufficient condition for g∗λ(r) to be nondecreasing as
a function of λ ∈ (0,m] is the logconcavity of f on [0, 2m] and that the

ratio f(λ−y)
f(λ+y) be nonincreasing in y ∈ [0, λ] for all λ ∈ (0,m].

(b) Let λ > 0 be fixed. A sufficient condition for g∗λ(r) to be nondecreasing in

r for r > 0 is that the ratio f(λ−y)
f(λ+y) be nonincreasing in y ∈ [0, λ].

Proof. For part (a), the logconcavity assumption on f implies that f(λ−y)
f(λ+y)

is nondecreasing in λ for λ > y and fixed y > 0. Therefore the left-hand side
of (3.2) also is nondecreasing in λ for λ > y and fixed y > 0. Now, in view

of this and the monotone decreasing condition for the ratio f(λ−y)
f(λ+y) , it must be

the case that g∗λ(r) is nondecreasing in λ for λ ∈ (0,m) given the equilibrium
in (3.2). Part (b) is established analogously as equation (3.2), along with the

given monotonicity condition on f(λ−y)
f(λ+y) , imply that

f(λ−g∗
λ(r))

f(λ+g∗
λ(r))

is nonincreasing

in both r and g∗λ(r), whence the monotone increasing property of g∗λ(r) in r.

Example 3.4 (Ls losses and other convex losses - continuation of Example
3.2). The logconcavity condition on f in part (a) of Lemma 3.1 is quite weak
and satisfied by all the losses studied up to now, as well as many more. It may be
interpreted as a condition stipulating that the loss does not rise too steeply from
the origin as a function of the error of estimation d − μ. An example of a loss
in (1.1) that does not satisfy such a condition, and penalizes severely error of

estimation, is F (t) = et
2 −1. Among loss functions satisfying the condition, are

included Ls loss with s > 1 and symmetrized Linex loss given in Example 3.2.

Furthermore, losses in (1.1) with convex F have ratios f(λ−y)
f(λ+y) which decrease in

y since f = F ′ is increasing. We thus conclude that the monotonicity properties
of Lemma 3.1 hold for all Ls losses with s > 1, symmetrized Linex losses, and
more generally all strictly convex losses in (1.1) with log concave F ′.

Example 3.5 (Reflected normal loss and extensions-continuation of Example

3.3). As seen in Example 3.3, for loss functions in (1.1) with F (t) = 1− e−
tα

2γ ,

γ > 0 and α ∈ (1, 3], the ratio f(λ−y)
f(λ+y) decreases in y ∈ [0, λ] for all λ ∈ (0,m], if

and only if m ≤ ( 2γ(α−1)
α )1/α. For reflected normal loss (α = 2), this simplifies

to m ≤ √
γ. Since F ′ is logconcave on R+, these conditions are sufficient for

the monotonicity properties of Lemma 3.1 to hold.

Remark 3.2. The monotonicity properties of Lemma 3.1 need not hold in the
absence of the given conditions. An illustration is given by Example 3.1 where,



Estimating a bounded normal mean 2013

for 1/2 < λ ≤ 1 and small enough values of r (r < r0 as given), we have
g∗λ(r) = 1− λ which is strictly decreasing in λ for 1/2 < λ ≤ 1.

3.4. Dominance results

With the conditional risk properties of Corollary 3.1 and Lemma 3.1’s condi-
tions for monotonicity, Lemma 2.1 specializes to the following dominance results
applicable to estimators that take values on or too close to boundary of the pa-
rameter space.

Theorem 3.3. Consider estimating the mean μ of X ∼ N(μ, 1) under loss
F (|d− μ|) as in (1.1).

(a) Let λ ≥ 0, r > 0 be fixed and suppose that the conditions of Corollary 3.1
hold. Suppose g1 is such that g1(r) > g∗λ(r). Define a(λ, g1(r), r) = 0 if
ρ(λ, 0, r) < ρ(λ, g1(r), r), and otherwise define a(λ, g1(r), r) as the solution
in a ∈ [0, g∗λ(r)) of ρ(λ, a, r) = ρ(λ, g1(r), r). Then, for g(r) �= g1(r), we
have ρ(λ, g(r), r) ≤ ρ(λ, g1(r), r) if and only if a(λ, g1(r), r) ≤ g(r) <
g1(r), with equality occurring only for g(r) = a(λ, g1(r), r) > 0, or g(r) = 0
and ρ(λ, 0, r) = ρ(λ, g1(r), r).

(b) Consider the parameter space μ ∈ [−m,m], set ḡm(r) = supλ∈[0,m]{g∗λ(r)},
and suppose that g1 is such that Ag1 = {r ≥ 0 : g1(r) > ḡm(r)} �= ∅ .
Then, if the conditions of Corollary 3.1 are satisfied for all λ ∈ (0,m], δg
dominates δg1 whenever g(r) = g1(r) IAc

g1
(r) + g0(r) IAg1

(r) with g0(r) ∈[
supλ∈[0,m] a(λ, g1(r), r), g1(r)

)
.

(c) Further, assume that f is logconcave on [0, 2m] and that the ratio f(λ−y)
f(λ+y)

is nonincreasing in y ∈ [0, λ] for all λ ∈ (0,m]. Then, part (b) applies
with ḡm ≡ g∗m.

Proof. Part (a) follows as a direct application of part (b) of Lemma 2.1 and
part (a) of Theorem 3.1 which tells us that the conditional local risk ρ(λ, y, r)
is nonincreasing in y for 0 < y < g∗λ(r), and nondecreasing for y > g∗λ(r). Part
(c) follows from part (b) since the additional assumptions and an application
of Lemma 3.1 imply that ḡm ≡ g∗m. For part (b), Theorem 3.1 applies and tells
us that g1(r) > g∗λ(r) for all λ ∈ [0,m] whenever r ∈ Ag1 . An application of part
(a) implies for the conditional risks that

ρ(λ, y, r) ≤ ρ(λ, g1(r), r)

for all λ ∈ [0,m], r ∈ Ag1 , y ∈
[

sup
λ∈[0,m]

a(λ, g1, r), g1(r)

)
,

and the dominance result follows.

The previous result is as a complete class result in the spirit as those obtained
by Moors (1985), as well as Marchand and Perron (2001, 2005, 2009), applicable
to squared error loss. The novelty here is that the results are presented for a
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class of loss functions, which include strictly convex loss functions, as well as
for reflected normal loss Lγ ; the study of the latter having also been motivated
by connections with predictive density estimation (see Section 6). Practically
speaking, equivariant estimators δg1 that take values on or too close to the
boundary {−m,m}, are inadmissible and improved by projecting towards δgm ,
and even beyond δgm , as specified in the previous Theorem.

Remark 3.3. Among the dominating estimators δg of Theorem 3.3, a complete

subclass of estimators is obtained by taking g0(r)∈
[
supλ∈[0,m] a(λ, g1, r), ḡm(r)

]
.

We now apply the dominance results to the restricted maximum likelihood
estimator of μ given in (1.2). For the loss functions satisfying the required con-
ditions, dominating estimators can be determined by applying part (b) of
Theorem 3.3.

Corollary 3.2. Consider estimating the mean μ of X ∼ N(μ, 1) under loss
F (|d − μ|) as in (1.1) under the parametric restriction μ ∈ [−m,m]. Suppose
that the conditions of Corollary 3.1 are satisfied for all λ ∈ (0,m]. Then δmle
is inadmissible. Dominating estimators include δg with g(r) = ḡm(r) ∧ gmle(r),
as well as other estimators given by part (b) of Theorem 3.3.

We seek more and search for conditions under which the Bayes boundary
estimator δBU satisfies the dominance conditions. For this, we will require that
δBU shrinks δmle towards 0, but we obtain a quite simple condition on m for
such a shrinkage and dominance to occur.

Theorem 3.4. Consider estimating the mean μ of X ∼ N(μ, 1) under loss
F (|d − μ|) as in (1.1) under the parametric restriction μ ∈ [−m,m]. Suppose
that f is twice-differentiable and f(0) = 0. Suppose f = F ′ is logconcave on

[0, 2m] (C1), f(λ−y)
f(λ+y) is nonincreasing in y ∈ [0, λ] for all λ ∈ (0,m] (C2), and

(log f)′ is convex on (0,m] (C3). Then δBU dominates δmle for m ≤ c0 where

c0
f(c0)
f ′(c0)

= 1.

Proof. With the given assumptions, we can apply Corollary 3.2, as well as
part (c) of Theorem 3.3 for δg ≡ δg∗

m
(i.e., δg ≡ δBU ). There remains to further

show, under the given condition m ≤ c0, that δBU shrinks δmle towards 0, which

is equivalent to
g∗
m(r)
r ≤ 1 for all 0 < r < m. Set h(t) = log f(t), so that defining

equation (3.2) for m = λ is written as

2mr + h(m− g∗m(r))− h(m+ g∗m(r)) = 1 . (3.4)

Differentiate the above twice with respect to r to obtain

2m =
∂g∗m(r)

∂r
(h′(m− g∗m(r)) + h′(m+ g∗m(r))) , (3.5)

∂2g∗m(r)

∂2r
(h′(m− g∗m(r)) + h′(m+ g∗m(r))) = (3.6)

(
∂g∗m(r)

∂r
)2 (h′′(m− g∗m(r))− h′′(m+ g∗m(r))) . (3.7)



Estimating a bounded normal mean 2015

Now, observe that the right-hand side of (3.6) is negative by virtue of convexity
condition C3 on h′ = (log f)′. With h′(m−g∗m(r))+h′(m+g∗m(r)) ≥ 0 following
from condition C2 and the monotone increasing in r property of g∗m(r) (Lemma
3.1), we conclude that g∗m(r) must be a concave function of r > 0 under the
given assumptions.

The concavity of g∗m(r) implies that
g∗
m(r)
r is decreasing in r > 0 since g∗m(r)

is increasing in r and since g∗m(0) = 0 (equation (3.4)). Therefore a necessary
and sufficient condition for the shrinkage property g∗m(r) ≤ r, for r > 0, to occur
is

∂g∗m(r)

∂r
|r=0+ ≤ 1

⇐⇒ 2m

h′(m− g∗m(0)) + h′(m+ g∗m(0))
≤ 1

⇐⇒ m
f(m)

f ′(m)
≤ 1 ,

where we have further made use of (3.5). To conclude the proof, there remains to

justify that c f(c)
f ′(c) = c 1

h′(c) increases in c, for 0 < c ≤ m. But, this is indeed the

case since 1
h′(c) increases in c, c ∈ (0,m], given condition C1, and since h′(c) > 0

for 0 < c ≤ m given condition C2, which tells us that h′(c− y) + h′(c+ y) ≥ 0
for all y ∈ (0, c), and namely for y → 0+.

4. Examples and numerical comparisons

We illustrate here how our dominance results apply for various loss functions,
providing also numerical risk function comparisons for reflected normal loss.

Example 4.1 (Ls loss with s > 1). As seen in Example 3.4, conditions (C1)
and (C2) of Theorem 3.4 hold for loss |d − μ|s with s > 1. Condition (C3)

also holds as (log f(t))′ = (s−1)
t is convex on (0,m]. With m f(m)

f ′(m) = m2

s−1 , we

conclude that the boundary uniform Bayes estimator δBU dominates δmle for

m ≤
√
s− 1. For s = 2 (i.e., squared error loss), this becomes m ≤ 1 thus

recovering a dominance result first obtained by Casella and Strawderman (1981),
and with the entire proof an Ls loss extension of Marchand and Perron’s (2001)
univariate squared error loss result.

Example 4.2 (Reflected normal loss and extensions; continuation of Examples
3.3 and 3.5). Consider again the class of loss functions F (|d− μ|) with F (t) =

1− e−
tα

2γ , γ > 0 and α > 1 and label these as Fα,γ .

• As seen in Example 3.3, the conditions of Corollary 3.1 are satisfied for all
γ > 0, 1 < α ≤ 3. It thus follows (Corollary 3.2) that the estimator δmle
is inadmissible for all such losses with dominating estimators provided by
part (b) of Theorem 3.3, and including δg with g(r) = ḡm(r) ∧ gmle(r).
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• As seen in Example 3.5, conditions C1 and C2 of Theorem 3.4 are sat-
isfied, and equivalently Theorem 3.3(c)’s conditions, as long as m ≤ c1 =

( 2γ(α−1)
α )1/α, 1 < α ≤ 3. Consequently, part (c) of Theorem 3.3, as well

as Corollary 3.2, apply with ḡm = g∗m whenever m ≤ c1.
• For applying Theorem 3.4, consider m ≤ c1 (as above) so that condi-

tions C1 and C2 are satisfied. For condition C3, we have that h′(t) =

(log f(t))′ = α−1
t − αtα−1

2γ is convex on (0,m) iff 1 < α ≤ 2, or α > 2

and m ≤ c2 = ( 4γ
α(α−2) )

1/α. For δBU to dominate δmle, we further require

m ≤ c0, where

c0
h′(c0)

= 1 ⇐⇒ c0
α−1
c0

− αcα−1
0

2γ

= 1 ⇐⇒ 2γc20 + αcα0 = 2γ(α− 1) .

Observe that 2γc21+αcα1 > 2γ(α−1), which implies that c0 ≤ c1. Theorem
3.4 thus implies that δBU dominates δmle: (i) under loss Fα,γ with 1 <
α ≤ 2 whenever m ≤ c0; and (ii) under loss Fα,γ with 2 < α ≤ 3, whenever
m ≤ c0 ∧ c2. Since c0 ≤ c2 ⇐⇒ c22 +

2
α−2 ≥ α− 1 ⇐= 2 < α ≤ 3 , this last

condition simply reduces to m ≤ c0.

• For reflected normal loss with α = 2, we obtain explicitly c0 =
√

γ
1+γ , and

thus the dominance of δBU over δmle whenever m ≤
√

γ
1+γ . Observe that

this cut-off point approaches 1 for large γ, which corresponds to the cut-off
point for dominance under squared error loss (see Example 4.1) and which
is plausible given the heuristic argument following (1.4).

Remark 4.1. It is of interest to assess how a Bayes estimator relative to a loss
function performs for other loss functions. Some of the theoretical developments
are useful for addressing such a question. As an illustration, consider reflected
normal loss Lγ in (1.4) and the corresponding boundary uniform Bayes estima-
tor δBU,γ(x) = gBU,γ(|x|)sgn(x), where gBU,γ(r) solves (3.3) for λ = m. Taking
logarithms on both sides and since 1

2 log 1+u
1−u = tanh−1(u) for u ∈ (0, 1), we

obtain alternatively

gBU,γ(r) = m tanh

(
m(r +

gBU,γ(r)

γ
)

)
, for all m, r, γ > 0 .

Clearly then, we have gBU,γ(r) ≥ m tanh(mr) for all m, r, γ > 0 which, in other
words, tells us that δBU,γ always expands on the squared error loss boundary
uniform Bayes estimator δBU (x) = m tanh(m|x|) sgn(x). It thus follows that

m tanh(mr) < gBU,γ(r) < gmle(r)

for all r > 0 whenever m ≤
√

γ
1+γ . An application of Corollary 3.2 and Corol-

lary 3.1 for squared error loss (d − μ)2 therefore implies that δBU,γ dominates

δmle under squared error loss when m ≤
√

γ
1+γ . A summary of inferences under

reflected normal loss is as follows.
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Theorem 4.1. Consider estimating the mean μ of X ∼ N(μ, 1) under the
parametric restriction μ ∈ [−m,m]. Under reflected normal loss Lγ in (1.4),

the estimator δBU,γ dominates δmle under the condition m ≤
√

γ
1+γ . Otherwise

for m >
√

γ
1+γ , δg with g(r) = gBU,γ ∧ gmle(r) dominates δmle. Finally, these

dominance results persist for squared error loss.

Example 4.3. As a continuation of Example 4.2, Figure 1 represents the com-
parative performance of δBU and δmle in terms of ratio of reflected normal
risks (loss Lγ in 1.4) as a function of λ = |μ| ∈ [0,m] for m = 0.5, 0.75 and

γ = 1, 2, 4. For m = 0.5, the sufficient condition m ≤
√

γ
1+γ for dominance

is satisfied for the γ’s here and the gains in risk are quite important, and even
more so for larger the value of γ. For m = 0.75, the gains in risk are significant,
but more modest. For m = 1.0 (see Figure 2) comparison is more nuanced with
relatively poor performance of δBU for small values of |μ|. This is due to the
fact to large values of |δBU | (i.e., it does not shrink much).

In such cases where δBU does not dominate δmle, its truncation onto δmle
given by δg1(x) = (gBU (r)∧ gmle(r))sgn(x) necessarily dominates δmle (Corol-
lary 3.2). However, gains in risk as witnessed by Figure 2 are quite slim. The
Bayes estimator under L2 loss, none other than the posterior mean given by
δg2(x) = m tanh(mx), remains an interesting benchmark. As seen above in Re-
mark 4.1, it shrinks more than δBU with corresponding good relative risk perfor-
mance for small of moderate values of |μ| as suggested by numerical evaluations
such as those illustrated by Figure 2.

To conclude, Figure 2 suggests that the risk of δBU attains its maximum
on the boundary of the parameter space [−m,m] and that, consequently, it is
minimax for m = 0.75 and γ = 1 (among other values of (m, γ) where m is
small). This is not predicted by Towhidi and Behboodian’s (2002) minimaxity

condition m ≤ (
√
γ

2 ∧
√

γ
1+γ ) = 1/2 (for γ = 1), but still plausible nevertheless.

Example 4.4 (Gamma cdf loss function). Let us illustrate how the results above
apply for loss functions F (|d−μ|) with F given by a Gamma(α, β) cdf on R+ such

that f(t) = F ′(t) = tα−1e−t/β

Γ(α)βα , α, β > 0. For α ≤ 1, Theorem 3.2, or part (iii) of

Theorem 3.1, apply and estimators such as λ0sgn(x) with λ0 ∈ [0,m], such as
the boundary valued msgn(x) are admissible Bayes estimators. For α > 1, the
situation is reversed and the best equivariant estimator is a shrinker as either
condition (II) or (III), that follow Corollary 3.1, is satisfied. This is confirmed
by the calculation

∂

∂y
log

f(λ− y)

f(λ+ y)
= 2

(
1

β
− λ(α− 1)

λ2 − y2

)
,

which is less or equal than 0 for all y ∈ [0, λ] whenever λ ≤ (α − 1)β (i.e.,
condition (II)), and otherwise varies from positive to negative as y varies on
[0, λ] (i.e., condition (III)). The conditions of Theorem 3.3 are thus verified
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Fig 1. Ratio
R(μ,δmle)
R(μ,δBU,γ)

of risks for reflected normal loss Lγ

and estimators that take values on the boundary {−m,m} of the parameter
space (with positive probability for all μ), such as δmle, are inadmissible.

Turning to Theorem 3.4, take m ≤ (α− 1)β so that condition C2 is verified,
observe that f is logconcave (i.e., C1 holds) and that (log f(t))′ = α−1

t − 1
β is

convex on (0,m) for all m > 0 (i.e., condition C3 is satisfied). We thus have that
the Bayes estimator δBU dominates δmle whenever we further have m ≤ c0 with

c0
h′(c0)

= 1 ⇐⇒ c0
α−1
c0

− 1
β

= 1 ⇐⇒ c0 =
1

2β

(√
1 + 4β2(α− 1)2 − 1

)
.

Finally, since c0 ≤ (α − 1)β, the condition m ≤ c0 is sufficient for δBU to
dominate δmle under the corresponding Gamma cdf loss and μ ∈ [−m,m].

5. Concluding remarks

This paper relates to the estimation of a bounded normal mean with a distinctive
feature being the analysis provided for a large class of strict bowled-shaped
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Fig 2. Risk comparisons for reflected normal loss Lγ of various estimators: δmle, δBU,γ ,
δg1 (x) = m tanh(mx), δg2 with g2 = gmle ∧ gBU,γ

losses, including convex, non-convex or concave choices, Lq and reflected normal
losses. Non-convex penalties, as well as various strict bowled-shaped losses, are
appealing and relevant to a wide class of statistical problems (e.g., penalized
regression, penalized variable selection). The latter arise precisely in predictive
density estimation problems as further expanded upon in the Appendix.

In assessing the frequentist risk efficiency of the restricted mle, as well as other
estimators taking values on the boundary of the parameter space, our findings
clearly highlight the role of the loss, as well as the width of the parameter space.
In many cases, which include convex choices of loss like Lq loss, as well as others
like reflected normal loss, we establish the inadmissibility of the mle and provide
improvements. Namely, we establish using conditional risk techniques conditions
for which the Bayes boundary uniform prior δBU dominates the mle, despite the
absence of explicit expressions for δBU and the risks of the estimators. Further



2020 É. Marchand et al.

progress relative to the risk performance of other Bayes estimators, such as the
fully uniform Bayes estimator, as well as to multivariate versions of the problem,
are challenging and pertinent propositions for future work.

6. Appendix: Connections and implications for predictive density
estimation

Additional motivation for the point estimation problem considered here stems
from further connections with predictive density estimation. There has been
much recent Bayesian and decision theory analysis of predictive density estima-
tors, in particular for multivariate normal or spherically symmetric settings, as
witnessed by the work cited in this section, as well as Komaki (2001), George,
Liang and Xu (2006), Brown, George and Xu (2008), Kato (2009), Maruyama
and Strawderman (2012), Boisbunon and Maruyama (2014), Maruyama and
Ohnishi (2016), among others.

We describe here several such problems where the risk evaluation of a subclass
of predictive density estimators, including plug-in density estimators, is equiv-
alent to the risk evaluation of a point estimator under a dual loss. Consider
spherically symmetric and independently distributed

Y1|μ ∼ p(‖y1 − μ‖2) , Y2|μ ∼ q(‖y2 − μ‖2) , y1, y2, μ ∈ R
d ; (6.1)

with p and q known Lebesgue densities. 3 For predictive analysis purposes, one
wishes to obtain a predictive density q̂(y2; y1), based on observed y1, as an
estimate of q(‖y2 − μ‖2), y2 ∈ R

d. Several loss functions are at our disposal to
measure efficiency and these include the class of α−divergence loss functions
(e.g., Csiszár, 1967) given by

Lhα(μ, q̂(·, y1)) =

∫
Rd

hα

(
q̂(y2; y1)

q(‖y2 − μ‖2)

)
q(‖y2 − μ‖2) dy2 , (6.2)

with

hα(z) =

⎧⎨
⎩

4
1−α2 (1− z(1+α)/2) for |α| ≤ 1

z log(z) for α = 1
− log(z) for α = −1.

Notable examples in this class include Kullback-Leibler (h−1), reverse Kullback-
Leibler (h1), and Hellinger (h0/4). Integrated absolute error and squared error
losses, referred hereafter as L1 and L2 losses, provide other choices. These are
Ls losses, s = 1, 2, given by

L(μ, q̂(·, y1)) =

∫
Rd

|q̂(y2; y1) − q(‖y2 − μ‖2)|s dy2 . (6.3)

3The predictive density estimation-point estimation relationship which we exploit in this
paper relates to the univariate d = 1 case, but we present here the general d−variate case for
sake of interest.
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For all of the above losses, the performance of predictive densities q̂(·;Y1) may
be measured by the frequentist risk

R(μ, q̂) =

∫
Rd

L(μ, q̂(·; y1)) p(‖y1 − μ‖2) dy1 . (6.4)

The dual relationships which we describe apply to predictive densities of the
form

1

cd
q(
‖y2 − μ̂(Y1)‖2

c
) , y2 ∈ R

d , (6.5)

where μ̂(Y1) is an estimator of μ. Cases c = 1 correspond to plug-in predictive
density estimators, while cases c > 1 correspond to scale expanded variants. As
discussed in Fourdrinier et al. (2011) for Kullback-Leibler loss, and Kubokawa,
Marchand & Strawderman (2015; 2016) for L2 and L1 losses, such scale expan-
sions are interesting to consider and can provide significant risk improvement
on plug-in procedures. As an illustration, consider the following multivariate
normal version of (6.1):

Y1|μ ∼ Nd(μ, σ
2
Y1
Id) , Y2|μ ∼ Nd(μ, σ

2
Y2
Id) , (6.6)

for which the minimum risk equivariant MRE (under changes of location) predic-
tive density estimator, or equivalently the generalized Bayes predictive density
estimator with respect to the prior π(μ) = 1, is given by a Nd(Y1, ((

1−α
2 )σ2

Y1
+

σ2
Y2
)Id) density for α-divergence loss Lhα (e.g., Ghosh, Mergel and Datta, 2008).

With the exception of reverse Kullback-Leibler loss, all the above MRE predic-
tive density estimators are, for α ∈ [−1, 1), indeed scale expansion variants and
dominate the plug-in Nd(Y1, σ

2
Y2
) density under the corresponding loss.

Here is an adapted version of Kubokawa, Marchand and Strawderman (2015,
Theorem 3.1, part a).

Lemma 6.1 (Duality between integrated L2 and reflected normal losses). For
normal model (6.6), the frequentist risk of a predictive density estimator q̂c,μ̂ ∼
Nd(μ̂(Y1), c

2σ2
Y2
Id) of the density of Y2 ∼ Nd(μ, σ

2
Y2
Id) under integrated L2 loss

is dual to the frequentist risk of μ̂(Y1) for estimating μ under reflected normal
loss Lγ0 with γ0 = (c2 + 1)σ2

Y2
. Namely, q̂c,μ̂1 ∼ Nd(μ̂1(Y1), c

2σ2
Y2
Id) dominates

q̂c,μ̂2 ∼ Nd(μ̂2(Y1), c
2σ2

Y2
Id) under integrated L2 loss iff μ̂1(Y1) dominates μ̂2(Y1)

under loss Lγ0 as in (1.4).

In the context of Lemma 6.1, it turns out that both Kullback-Leibler and
reverse Kullback-Leibler losses have squared error as a dual point estimation
loss (e.g., Fourdrinier et al., 2011 for KL loss). For other α−divergence losses,
it is again reflected normal loss which is dual for plug-in predictive density
estimators and for scale expansion variants as in (6.5) (also see Ghosh, Mergel
and Datta, 2008 for related work).

Lemma 6.2 (Duality between α−divergence and reflected normal losses). For
normal model (6.6), the frequentist risk of a predictive density estimator q̂c,μ̂ ∼
Nd(μ̂(Y1), c

2σ2
Y2
Id) of the density of Y2 ∼ Nd(μ, σ

2
Y2
Id) under α−divergence
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loss (6.2), with |α| < 1, is dual to the frequentist risk of μ̂(Y1) for estimating

μ under reflected normal loss Lγ0 with γ0 = ( c2

1+α + 1
1−α )σ

2
Y2
. Namely, q̂c,μ̂1 ∼

Nd(μ̂1(Y1), c
2σ2

Y2
Id) dominates q̂c,μ̂2 ∼ Nd(μ̂2(Y1), c

2σ2
Y2
Id) under α−divergence

loss iff μ̂1(Y1) dominates μ̂2(Y1) under loss Lγ0 .

Proof. From (6.2), we obtain that the α-divergence loss incurred by the
predictive density estimate q̂c,μ̂ ∼ Nd(μ̂, c

2σ2
Y2
Id) of the Nd(μ, σ

2
Y2
Id) density is

equal to

4

1− α2

⎛
⎜⎝1 −

∫
Rd

⎛
⎝φ( t−μ̂

cσY2
)

(cσY2)
d

⎞
⎠

β (
φ( t−μ

σY2
)

σd
Y2

)1−β

dt

⎞
⎟⎠ , (6.7)

where we have set β = 1+α
2 . With the identity φk(z) = (2π)

d
2 (1−k) φ(z

√
k),

k > 0, the above loss reduces to

1

β(1− β

⎛
⎝1 − (2π)d/2

∫
Rd φ(

(t−μ̂)
√
β

cσY2
)φ( (t−μ)

√
1−β

σY2
) dt

(cβσY2)
d

⎞
⎠ . (6.8)

Finally, using the identity∫
Rd

φ(
t− μ1

σ1
)φ(

t− μ2

σ2
) dt

= (
σ2
1 σ

2
2

σ2
1 + σ2

2

)d/2 φ(
μ1 − μ2√
σ2
1 + σ2

2

) , μi ∈ R
d, σi ∈ R+, i = 1, 2, (6.9)

for μ1 = μ̂, μ2 = μ, σ1 =
cσY2√

β
, σ2 =

σY2√
1−β

, the above loss reduces to 1
β(1−β){1−

b + bLγ0(μ, μ̂)} with b =
(

c2(1−β)

c2(1−β)+β

)d/2

and γ0 = c2(1−β)+β
β(1−β) σ2

Y2
, thus estab-

lishing the result.

Example 6.1. As a follow-up to the duality results above, we illustrate how our
dominance findings lead to predictive density estimation results for α−divergence
losses with |α| < 1. Consider normal model (6.6), the restriction μ ∈ [−m,m],
and predictive density estimators q̂c2,δmle

∼ N(δmle(Y1), c
2σ2

Y2
) of the density

of Y2 ∼ N(μ, σ2
Y2
), where δmle(Y1) is the restricted mle of μ and c2 is a fixed

constant. The case c2 = 1 corresponds to the predictive mle density. It follows
from Lemma 6.2 and the inadmissibility of δmle(Y1) under reflected normal
loss (Example 4.2) that q̂c2,δmle

is inadmissible for all c2,m > 0, with pre-
dictive density improvements given by q̂c2,δg ∼ N(δg(Y1), c

2σ2
Y2
) and δg(Y1) a

dominating estimator given in Corollary 3.2 for reflected normal loss Lγ0 with

γ0 = ( c2

1+α + 1
1−α )σ

2
Y2
. In particular, if one chooses δg as the boundary uniform

Bayes point estimator of μ, dominance follows for m ≤
√

γ0

1+γ0
σY2 (using the

result of Example 4.2). Finally, we point out that a similar development for
integrated L2 loss, via Lemma 6.1, holds as well.
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The last duality result for integrated L1 loss, due to Kubokawa, Marchand
and Strawderman (2016), is limited to plug-in predictive density estimators,
but applies not only for normal models, but also quite generally for unimodal
spherically symmetric models.

Lemma 6.3 (General spherically symmetric model duality for integrated L1

losses). For estimating a unimodal spherically symmetric Lebesgue density of
Y2 ∼ q(‖y2 − μ‖2), y2 ∈ R

d, under integrated L1 loss and based on Y1 ∼
p(‖y1−μ‖2), the frequentist risk of the plug-in density estimator q(‖y2−μ̂(X)‖2)
is equal to the frequentist risk of the point estimator μ̂(X) of μ under loss

4Q(‖μ̂−μ‖
2 ) − 2 , with Q being the common univariate marginal cdf associated

with q. Consequently, q(‖y2 − μ̂1(Y1)‖2) dominates q(‖y2 − μ̂2(Y1)‖2) iff μ̂1(Y1)

dominates μ̂2(Y1) under loss 2Q(‖μ̂−μ‖
2 )− 1 .

With regards to the last result, the findings of this paper apply for d = 1,
X = Y1 ∼ N(μ, σ2), but general cdf Q. We obtain the following as a consequence
of Theorem 3.2 for integrated L1 loss.

Corollary 6.1. For univariate model (6.1) with Y1 ∼ N(μ, σ2
Y1
), unimodal q

and parametric constraint μ ∈ [−m,m], and for estimating the density q(|y2 −
μ|2), y2 ∈ R, under integrated L1 loss, plug-in predictive density estimators
q(|y − λ0sgn(Y1)|2) , y ∈ R, with 0 ≤ λ0 ≤ m, are admissible among plug-in
density estimators q(|y − μ̂(Y1)|2), y ∈ R.

Proof. From Lemma 6.3, we have that q(|y − μ̂(Y1)|2) dominates q(|y −
λ0sgn(Y1)|2) under L1 loss for μ ∈ [−m,m] iff μ̂(Y1) dominates λ0 sgn(Y1) with
loss F (t) = Q( t2 ) − 1, Q being the cdf of Y2 ∼ q(|y2 − μ|2). The unimodality
assumption implies that Q, and thus F , are concave on R+. Finally, Theorem
3.2 (see as well discussion that follows) implies that the estimator λ0 sgn(Y1) is
admissible for the point estimation problem which implies the result.

Remark 6.1. In the predictive density estimation context of Corollary 6.1,
we can also establish the stronger result that q(|y − λ0sgn(Y1)|2) , y ∈ R, is
admissible among all predictive density estimators. Indeed, as pointed out by
Kubokawa, Marchand and Strawderman (2016), the predictive density estima-
tor q(|y − med(μ|y1)|2), where med(μ|y1) is the posterior median, is Bayes
for two-point priors. Since med(μ|y1) = λ0sgn(y1) for all y1 �= 0 and the
prior π(λ0) = π(−λ0) = 1/2, we conclude that the predictive density estima-
tor q(|y − λ0sgn(Y1)|2) is Bayes (essentially unique), and admissible in view of
the finiteness of the Bayes risk.
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