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1. Introduction

This work is motivated by research goals arise from studies such as the Co-
operative Huntington’s Observational Research Trial (COHORT, Dorsey and
the Huntington Study Group COHORT Investigators, 2012 [3]). Huntington’s
disease (HD) is a fatal neurodegenerative disease caused by expanded C-A-G
repeats in the huntingtin gene (Huntington Study Group, 1993 [6]). Subjects
with expanded CAG repeats at the huntingtin gene will be affected by HD and
the distribution of age-at-onset of HD in individuals with mutation is charac-
terized in Langbehn et al. (2004) [8] and Ma and Wang (2012) [10]. However,
less discussed in the literature is the effect of CAG expansion status on patient
survival. Here, we aim to estimate the age-at-death distribution function for
the HD gene expanded individuals. In COHORT, the phenotype information
(age-at-death or age at study baseline) in relatives from the same families was
collected. One challenge is that the genotype information in a relative is not
collected and thus the gene expansion status in some relatives are unknown.
Nevertheless, a relative’s probability of carrying the huntingtin gene mutation
can be obtained from external information (see for example, Ma and Wang 2012
[10]).

Other challenges for the COHORT as well as other family studies include
handling of the correlation among the relatives in the same family and the right
censoring. Using the probability of carrying a mutation associated with each
relative and assuming that the observations are independent given the mutation
status, the distribution of any trait of interest for both the mutation carrier and
non-carrier populations can be estimated efficiently (Ma and Wang, 2012 [10]) in
the absence of censoring. When data are also subject to censoring, Ma and Wang
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(2014) [11] further developed effective methods to perform the estimation and
inference through a weighted-least-squares formulation. However, both methods
assume that relatives in the same family are independent given their genotypes
(i.e., no residual familial correlation), and hence it is unclear how to properly
handle the potential correlation due to shared life style or causal genes at other
loci to improve estimation efficiency.

In this work, we address the within-family correlation for censored mixture
data where the subjects’ population group identifiers (i.e., mutation carriers or
non-carriers) are only known up to the probabilities. Since the familial correla-
tion can be a result of similar life style or shared biological markers other than
the gene under study, it may be challenging to choose a satisfactory paramet-
ric model for the distribution of the shared latent effects, and therefore we do
not make such attempts. We provide two different modeling approaches, and
subsequently two estimation procedures. In the first approach, we leave the dis-
tribution of the unobserved latent familial effects and their correlation structure
completely unspecified. We first eliminate the need to handle the familial corre-
lation by using only one member per family to form a base estimator, and then
construct an optimal new estimator that takes advantage of multiple members in
a family by resampling and minimizing the variance of the combined estimator.
When forming the base estimator, we use the approach by Ma and Wang (2014)
[11], which is simple and practically as effective as the efficient estimator. This
first proposed method can handle arbitrary distribution functions and arbitrary
correlation structures without imposing parametric assumptions or modeling
the correlation. In addition, it is easy to compute and flexible. In the second
approach, we assume exchangeable correlation structure between family mem-
bers to improve estimation accuracy but leave the distribution function of the
phenotype unspecified to protect against misspecification. In this case, we pro-
ceed with a modified weighted least square estimator that takes full advantage
of the assumed correlation structure.

The rest of the paper is organized as follows. We present the methods, de-
scribe implementation, and demonstrate their optimality property in Section 2.
Simulations are carried out in Section 3 to illustrate the performance of the esti-
mators in both simple and complex settings. Finally, we analyze the COHORT
data which motivated this work in Section 4 and conclude the paper with some
discussions in Section 5. All the technical derivations are in an Appendix.

2. Methodologies

We first define some notations. Suppose there are N families in the study, and
the ith family has ni members, i = 1, . . . , N. The random event time for the
jth member of the ith family is Sij . Further, the event is subject to random
censoring at time Cij . Let Yij = min(Sij , Cij) and the censoring indicator Δij =
I(Sij ≤ Cij). Furthermore, we assume there are p different populations, and
their event times have cumulative distribution functions F1(t), F2(t), . . . , Fp(t)
respectively. Write F(t) = {F1(t), F2(t), . . . , Fp(t)}T. We assume the p event
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processes associated with the p populations are independent of the censoring
process. Assume for all i = 1, . . . , N , j = 1, . . . , ni, Sij is a random sample from
one of the p populations, but the exact population identifier is not known. We
use qijk to denote the probability of Sij belonging to the kth population, for
k = 1, . . . , p. Let qij = (qij1, qij2, . . . , qijp)

T. Obviously,
∑p

k=1 qijk = 1. Using
these notations, the observed data can be written as O = {(qij , Yij ,Δij), i =
1, . . . , N, j = 1, . . . , ni}.

The above data structure typically arises from kin-cohort and quantitative
trait locus (QTL) studies, where qij only has finitely many, say m, m < ∞,
possible values, denoted as u1,u2, . . . ,um. We write the frequencies of the oc-
currences of u1,u2, . . . ,um as d1, d2, . . . , dm. Obviously,

∑m
i=1 di =

∑N
i=1 ni. For

l = 1, . . . ,m, we write the m mixture distributions as Hl(t) = uT
l F(t), and let

H(t) = {H1(t), H2(t), . . . , Hm(t)}T.

2.1. Independent case

We consider a special case where the observations O = {(qij , Yij ,Δij), i =
1, . . . , N, j = 1, . . . , ni} are independent of each other. Obviously, this happens
when each family has only one observation, i.e. ni = 1 for i = 1, . . . , N . This
also happens when there is no within-family correlation. In this case, following
Ma and Wang (2014) [11], we use the relation

F(t) =

(
m∑
l=1

dlulu
T
l

)−1{ m∑
l=1

dlulHl(t)

}
, (2.1)

and estimate F(t) through

F̂(t) =

(
m∑
l=1

dlulu
T
l

)−1{ m∑
l=1

dlulĤl(t)

}
. (2.2)

Here Ĥl(t) is the Kaplan-Meier (KM) estimate (Kaplan and Meier (1958) [7]) for
Hl(t). Kaplan and Meier (1958) [7] has established the consistency for the KM
estimator, while Breslow and Crowley (1974) [2] has shown that it converges

weakly to a Gaussian process. Since F̂(t) is a linear transformation of Ĥ(t), it
is also consistent and converges weakly to a Gaussian process when N → ∞.
These observations will be used in our following derivation when within family
correlation exists.

2.2. Arbitrary correlation 1: Best Linear Resampled Estimator
(BLRE)

In the general situation when members from a same family may be correlated, we
propose a two stage procedure that utilizes the results described in Section 2.1.
In the first stage, we randomly sample one member from each family, regardless
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of the family size, and then use (2.2) to obtain a crude estimation of F(t).
Repeat this process multiple, say R, times to collect multiple estimators for
F(t), denoting these estimators F̂1(t), . . . , F̂R(t). In the second stage, we aim to
combine the multiple estimators from the first stage in an optimal way.

Since each F̂r(t), r = 1, . . . , R is a consistent estimator of F(t), it is natural to
use a weighted average of these estimators to form an estimator that is not only
consistent but also more efficient. In general, we write the combined estimator

F̂(t) = AF̂L(t), (2.3)

where

F̂L(t) =
[
{F̂1(t)}T, {F̂2(t)}T, . . . , {F̂R(t)}T

]T
, (2.4)

and A is a p×pR weight matrix. The consistent requirement mandates AJ = Ip,
where Ip is the size p identity matrix, and J is a pR× p matrix formed by Ip’s,
i.e. J = (Ip, . . . , Ip)

T. In the Appendix, we further show that the optimal choice

of A in terms of minimizing the variance of F̂(t) is (JTU−1J)−1JTU−1, where

U is the asymptotic variance-covariance matrix of
√
N F̂L(t). We summarize the

above results in Theorem 1 and give the proof in the Appendix.

Theorem 1. Let F̂(t) be given in (2.3). Then as long as AJ = Ip, F̂(t) is a con-
sistent estimator of F(t) and is asymptoticlly normally distributed. In addition,

var{F̂(t)} is minimized when

Aopt = (JTU−1J)−1JTU−1. (2.5)

The resulting optimal variance of
√
N F̂(t) is

Vopt
1 = (JTU−1J)−1.

To take advantage of the result in Theorem 1, we still need to obtain U.
Because of our construction of F̂(t), U is naturally an R×R block matrix with
each block size p× p. Although the diagonal blocks of U can be approximated
using results in Section 2.1, the analysis of the off-diagonal blocks is intractable
due to the unspecified correlation structure among family members and the
potentially complex pattern resulting from the sampling procedure. Thus, we
resort to a bootstrap procedure (Efron (1981) [4] and Akritas (1986) [1]) to assess
U. Here, caution needs to be taken in performing the bootstrap procedure.
In particular, although our interest is to repeatedly draw family members to
form estimators, we need to bootstrap families, not members of the families.
Specifically, for b = 1, . . . , B, we randomly draw N families with replacement
and with equal probability, and denote the bootstrap sampleO∗

b . We then repeat

the estimation procedure described above on O∗
b to obtain F̂∗b

L (t). The sample

variance of F̂∗1
L (t), F̂∗2

L (t), . . . , F̂∗B
L (t) is then used to estimate U.

The complete procedure of our BLRE is the following.
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Algorithm 1.

Step 1. Randomly draw one member from each family, assume the resulting
sample contains m different q values, written as u1, . . . ,um, with fre-
quency d1, . . . , dm. Form

F̂r(t) =

(
m∑
l=1

dlulu
T
l

)−1{ m∑
l=1

dlulĤ
r
l (t)

}
.

Step 2. Repeat Step 1 R times (r = 1, . . . , R), and form F̂L(t) using (2.4).
Step 3. Randomly sample N families with replacement from the original fami-

lies. Perform Steps 1 and 2 on the sampled data, obtain the correspond-
ing F̂∗b

L (t).

Step 4. Repeated Step 3 B times (b = 1, . . . , B) to obtain F̂∗1
L (t), . . . , F̂∗B

L (t).

Step 5. Calculate the sample variance Û of F̂∗1
L (t), . . . , F̂∗B

L (t). Form the esti-

mator F̂(t) ≡ (JTÛ−1J)−1JTÛ−1F̂L(t).

2.3. Arbitrary correlation 2: Best Quadratic Inference Function
Estimator (BQIF)

We now investigate the issue of familial correlation from a different perspective.
The basic idea is that every time when we collect one member from each family,
we can construct an estimating equation using Ma and Wang (2014) [11] because
the observations are now iid. If we repeat this procedure multiple times, we then
have multiple estimating equations. It is natural to consider combining these
estimating equations optimally to obtain a final estimator. Specifically, when
there is only one member per family, we rewrite the relation in (2.1) as

N∑
i=1

{
qi1Hi(t)− qi1q

T
i1F(t)

}
= 0, (2.6)

and view F̂(t) as the root that solves

N∑
i=1

{
qi1Ĥi(t)− qi1q

T
i1F(t)

}
= 0, (2.7)

where Ĥi(t) is the same KM estimator as before.
We use the sampling scheme in the first stage of BLRE in section 2.2 to sample

R data sets, and write the estimating equation (2.7) based on the rth sampled

data
∑N

i=1 g
r
i (t) =

∑N
i=1

{
qr
i Ĥ

r
i (t)− qr

i (q
r
i )

TF(t)
}

= 0, r = 1, . . . , R. Here,

qr
i denotes the q value of the member from the ith family in the rth sample.

Because the number of equations, pR, can be much larger than the number of
the parameters p, we resort to the Quadratic Inference Function (QIF) method
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(Lindsay and Qu 2003 [9]). Write

N∑
i=1

gi(t) =

N∑
i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g1
i (t)

g2
i (t)
...

gR
i (t)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

N∑
i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q1
i Ĥ

1
i (t)− q1

i (q
1
i )

TF(t)

q2
i Ĥ

2
i (t)− q2

i (q
2
i )

TF(t)
...

qR
i Ĥ

R
i (t)− qR

i (q
R
i )

TF(t)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (2.8)

we minimize the quadratic form{
N∑
i=1

gi(t)

}T

W

{
N∑
i=1

gi(t)

}
, (2.9)

where W is a weight matrix. In a typical QIF construction, gi(t)’s are func-
tions of the ith observation and are hence independent of each other, and the
subsequent root-N consistency and asymptotic normality of the resulting es-
timator have been established in Lindsay and Qu (2003) [9]. However here, it
is important to recognize that gi(t)’s are not independent since they contain

Ĥr
i (t)’s, which are estimated based on all the observations from the rth sample

for r = 1, . . . , R. Nevertheless, in Theorem 2, we show that the resulting esti-
mator still enjoys the usual asymptotic normality property. The proof is in the
Appendix.

Theorem 2. Let F̂(t) be the minimizer of the quadratic form in (2.9).√
N{F̂(t)− F(t)} → Normal(0,V2) in distribution when N → ∞, where V2 is

a p × p positive-definite matrix. Let M be the asymptotic variance-covariance
matrix of N− 1

2

∑N
i=1 gi(t). When Wopt = M−1,

√
N{F̂(t)−F(t)} achieves the

efficiency bound

Vopt
2 =

[
E

{
∂gi(t)

∂FT(t)

}T

M−1E

{
∂gi(t)

∂FT(t)

}]−1

. (2.10)

Theorem 2 prescribes the choice of the optimal weight matrix. To achieve
efficiency, it is essential to estimate M. Because no correlation structure is mod-
eled for members from the same family, we resort to the bootstrap procedure
mentioned in Section 2.2 to approximate M. Using the bth bootstrap sample
O∗

b , we follow the procedure described above to construct estimation equation∑N
i=1 g

∗b
i (t). The sample variance of

∑N
i=1 g

∗1
i (t), . . . ,

∑N
i=1 g

∗B
i (t) is then used

to estimate M.
The detailed algorithm based on BQIF is the following.

Algorithm 2.

Step 1. Randomly draw one member from each family. Form

N∑
i=1

gr
i (t) =

N∑
i=1

{
qr
i Ĥ

r
i (t)− qr

i (q
r
i )

TF(t)
}
.
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Step 2. Repeat Step 1 R times (r = 1, . . . , R), and form
∑N

i=1 gi(t) using (2.8).
Step 3. Randomly sample N families with replacement from the original fami-

lies. Perform Steps 1 and 2 on the sampled data, obtain the correspond-
ing

∑N
i=1 g

∗b
i (t).

Step 4. Repeated Step 3 B times (b = 1, . . . , B) to obtain

N∑
i=1

g∗1
i (t), . . . ,

N∑
i=1

g∗B
i (t).

Step 5. Calculate the sample variance M̂ of
∑N

i=1 g
∗1
i (t), . . . ,

∑N
i=1 g

∗B
i (t). Let

W = M̂−1. Obtain the estimator F̂(t) from minimizing (2.9).

In “step 2” of both algorithms (BLRE and BQIF), we need to repeat “step
1” R times. As we repeat, more combinations of family members are formed
and included in data analysis. In total there are

∏N
i=1 ni ways to form different

estimating equations in “step 1” (BQIF). However, in practice, we suggest set-
ting R to be the largest family size initially, and increasing it gradually until
no significant improvement can be seen. If the process of increasing R continues
and costs substantial computation time, the method described in section 2.5
will be an alternative to consider.

2.4. Equivalence of BLRE and BQIF

To understand the advantages and disadvantages of BLRE and BQIF introduced
respectively in Section 2.2 and 2.3, we perform further analysis to compare their
relative performance. Given that BLRE is a combination of the estimators from
R samples, while BQIF results from solving a combination of estimating equa-
tions from the same R samples, it is not surprising that these two procedures
are in fact equivalent. In the following, we formally establish that there is a
one-to-one mapping between the estimators in the two classes, and in partic-
ular, the optimal estimation variances from the two estimators are identical
asymptotically.

Because the BLRE is uniquely determined by the weight matrix choice A,
while the BQIF is uniquely decided by the weight matrix W, we only need
to establish the one-to-one mapping between A and W in order to show our
results. Define a pR× pR block diagonal matrix

D = diag
[{

E
(
qijq

T
ij

)}−1
, . . . ,

{
E
(
qijq

T
ij

)}−1
]
.

For any weight matrix W defined in the BQIF estimator, consider

A = (JTD−1WD−1J)−1JTD−1WD−1 (2.11)

as the weight matrix in BLRE. Obviously, AJ = Ip. We now investigate the
resulting BLRE and BQIF from the corresponding A and W. Let the BLRE
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estimator F̂(1)(t) = AF̂L(t), where F̂L(t) is defined in (2.4). Define FL(t) anal-

ogously as F̂L(t) and recall the definition of gi(t) in (2.8). We can write

√
N{F̂L(t)− FL(t)} = N−1/2D

N∑
i=1

gi(t) + op(1), (2.12)

which leads to

F̂(1)(t) = ADN−1
N∑
i=1

gi(t) + F(t) + op(N
−1/2). (2.13)

On the other hand, the BQIF, denoted F̂(2)(t), is obtained from minimizing
(2.9), thus standard Taylor expansion leads to

F̂(2)(t)

= −
[
E

{
∂gi(t)

∂FT(t)

}T

WE

{
∂gi(t)

∂FT(t)

}]−1

E

{
∂gi(t)

∂FT(t)

}T

WN−1
N∑
i=1

gi(t)

+F(t) + op(N
−1/2)

= (JTD−1WD−1J)−1JTD−1WN−1
N∑
i=1

gi(t) + F(t) + op(N
−1/2) (2.14)

where the last equality follows from the relation

E

{
∂gi(t)

∂FT(t)

}
= −1R ⊗ E

{
qij(qij)

T
}
= −D−1J.

Further using the connection between A and W in (2.11), we immediately have

F̂(1)(t) = F̂(2)(t) + op(N
−1/2). Conversely, if F̂(1)(t) = F̂(2)(t) + op(N

−1/2),
subtraction of (2.14) from (2.13) yields (2.11).

Having established the one-to-one mapping between BLRE and BQIF via
(2.11), it is not surprising to expect that the optimal weight matrix choices in
the two estimator classes, Aopt and Wopt, also satisfy (2.11). This can be easily
verified through using the equality U = DMD, which follows from (2.12). Fur-
thermore, we can explicitly verify that the two optimal asymptotic estimation
variances are identical, i.e.

Vopt
1 = (JTU−1J)−1 = (JTD−1M−1D−1J)−1

=

[
E

{
∂gi(t)

∂FT(t)

}T

M−1E

{
∂gi(t)

∂FT(t)

}]−1

= Vopt
2 .

2.5. Structured correlation

The estimators proposed in Section 2.2 rely on resampling because we do not
impose any assumption on the familial correlation structure. Here, we consider
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a special case where the correlation between family members are identical. The
assumption is natural when the data do not contain information that allows us
to differentiate various levels of correlation among relatives such as those due
to shared life style when living together. We denote the common correlation as
ρ.

Recall that in Section 2.1, we demonstrate that in the independent case,
the estimator of Ma and Wang (2014) [11] is based on (2.2) where Ĥl(t) is a

KM estimator for Hl(t). We can view this as Ĥl(t) = uT
l F(t) + εl, where εl ∼

N(0, Vl/dl) for l = 1, . . . ,m. Ma and Wang (2014) [11] advocates to replace the
Vl’s with a common value V and use a weighted least square withm observations
to recover F(t).

However, when familial correlation is ρ instead of zero, when estimatingHl(t),
we effectively have fewer than dl observations. The effective number of observa-
tions is

d̃l =
d2l

dl + 2
{(

dl1

2

)
+ · · ·+

(
dlN

2

)}
ρ
,

based on the relation

V

d̃l
=

dlV + 2
{(

dl1

2

)
+ · · ·+

(
dlN

2

)}
ρV

d2l
.

Here dli is defined as the number of members in family i that belong to the
same group l, i = 1, . . . , N. Note that some dli’s may be zero by its definition.
Further taking into account the correlations between the m groups in a similar
way, we propose to estimate F(t) through

F̂(t) = (UWUT)−1{UWĤ(t)}, (2.15)

where W−1 has diagonal elements d̃−1
1 , . . . , d̃−1

m , and the (l, l′) entry is

(dl1dl′1 + · · ·+ dlNdl′N )ρ

dldl′
.

In matrix W, the only unknown quantity is ρ. We estimate ρ through using
the large sample properties of Ĥl(t) under correlated data as described in the
following.

We first sort the observed time Y(1) ≤ Y(2) ≤ . . . ≤ Y(dl) in the l-th group and
obtain ordered data [{Y(1),Δ(1),q(1) = ul}, . . . , {Y(dl),Δ(dl),q(dl) = ul}]. Note
that they are from the same group, and hence have the same q value. Following
Breslow & Crowley (1974) [2], for correlated observations, KM estimator has
the property

√
dl{Ĥl(t)−Hl(t)} =

1√
dl

dl∑
i=1

ali +Op(
1√
dl
),
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where

ali = Hl(t)

[
−
∫ t

0

I{Y(i) < u}
{1−Gl(u)}Hl(u)

dHl(u)−
∫ t

0

Gl(u){1−Gl(u)}−2dG̃l(u)

−
∫ t

0

I{Y(i) < u,Δ(i) = 1}{1−Gl(u)}−2dGl(u)

+

∫ t

0

G̃l(u){1−Gl(u)}−2dGl(u)

+I{Y(i) < t,Δ(i) = 1}{1−Gl(t)}−1 − G̃l(t){1−Gl(t)}−1

]
is a function of {Y(i),Δ(i),q(i) = ul}. Here Gl(t) is the cumulative distribution

functions of Y(i) and G̃l(t) = Pr{Y(i) ≤ t,Δ(i) = 1}.
Because some {Y(i),Δ(i),q(i) = ul}’s are from a same family, there may exist

an in-group correlation ρ between ali and alj in the l-th group. Furthermore, the

calculation of cov{Ĥl(t), Ĥl′(t)} may also involve a between-group correlation
between ali and al

′

j if the observations are also from a same family. Since a
common correlation ρ is assumed among family members, the between-group
correlation is also ρ. We match ρ with the sample correlation from the in-group
and between-groups pairs to obtain ρ̂, the detailed procedure contains three
steps described in the following.

i. Approximate the integrals in ali and re-organize the summation. For no-
tational simplicity, we still write the result as ali. This gives

ali = Ĥl(t)(B
l
(i) − Cl −Dl

(i) + El
(i)),

where

Bl
(i) = dl

∑
Y(j)≤t

I{Y(i) ≤ Y(j)}
Δ(j)

(dl − j)(dl − j + 1)

Cl = dl
∑

Y(j)≤t

Δ(j)

(dl − j)(dl − j + 1)

Dl
(i) = dl

∑
Y(j)≤t

I{Y(i) ≤ Y(j),Δ(i) = 1} 1

(dl − j)(dl − j + 1)

El
(i) = I(Y(i) < t,Δ(i) = 1)

⎡⎣1− 1

dl

dl∑
j=1

I{Y(j) < t}

⎤⎦−1

.

ii. Form pair (ali, a
l′

j ) if data {Y(i),Δ(i),q(i) = ul} and {Y(j),Δ(j),q(j) = ul′}
are from a same family for i = 1, . . . , dl, j = 1, . . . , dl′ and l, l′ = 1, . . . ,m.
Denote the total number of pairs by v. We know that v =

∑N
i=1

(
ni

2

)
. Stack

all the pairs to create a v × 2 matrix Z = (Zij).
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iii. Calculate

ρ̂ =

∑v
i=1(Zi1 − Ẑ·1)(Zi2 − Ẑ·2)√∑v

i=1(Zi1 − Ẑ·1)2
∑v

i=1(Zi2 − Ẑ·2)2
,

where Ẑ·j = (
∑v

i=1 Zij)/v for j = 1, 2.

Once W is obtained, we form estimator F̂(t) from (2.15). Standard calculation
shows that it has a Gaussian limiting distribution with variance (UWUT)−1.
We denote this estimator as the correlated weighted least square (CWLS) esti-
mator.

3. Simulation studies

We now demonstrate the finite sample performance of the BLRE, BQIF and
CWLS methods via two simulation studies. The first simulation is a relatively
simple one used to illustrate the effectiveness of the theoretical properties de-
rived in Section 2. In the second simulation, we generated a more complex data,
where we increased the number of event distributions, considered larger families
and varied family sizes. For both simulations, we generated 1000 data sets.

In the first simulation, we set the sample size N = 1000, p = 2, m = 5 and
ni = 4 for i = 1, . . . , N . The two (p = 2) true functions F1(t) and F2(t) are re-
spectively the distribution functions of two truncated exponential densities, with
rate 3 and 5 respectively. The support is [0, 10]. To generate correlated survival
times for members from a same family, we implement the following procedure.
For the ith family, we construct a multivariate distribution, that is, we generate
a random vector (S1

i1, . . . , S
1
i4, S

2
i1, . . . , S

2
i4) from a Clayton copula with param-

eter 10. It provides the jth member of the ith family with possible survival
time S1

ij or S2
ij , corresponding to the two functions F1(t) and F2(t). We select

Sij = S1
ij or S

2
ij with probabilities in the qij vector, where qij is assigned to five

(m = 5) different vector values (0.9, 0.1)T,(0.6, 0.4)T,(0.4, 0.6)T, (0.2, 0.8)T and
(0.15, 0.85)T, with probabilities 0.3, 0.3, 0.2, 0.1 and 0.1 respectively. Lastly, we
generate the censoring time from a uniform distribution on (0, 5.4), resulting in
a censoring rate of 50% approximately. We then create Yij = min(Sij , Cij) and
Δij = I(Sij ≤ Cij).

We implement CWLS method in section 2.5, and use Algorithms 1 and 2 to
carry out the BLRE and BQIF methods, and consider R = 6. We implement
B = 500 bootstrap repetitions to estimate the variance-covariance matrices U
in BLRE and M in BQIF respectively. We summarize the results of our analysis
at t = 2.5 in Table 1. As a comparison, we also implemented the method from
Ma and Wang (2014) [11], which we named “MW” method. From Table 1, it
is clear that Algorithms 1 and 2 produce very similar results. This fact concurs
with our theoretical results on the asymptotic equivalence of the two methods
in Section 2.4. For all methods considered here, the mean of the 1000 estimates
are very close to the true function values, the sample standard deviations of
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Table 1

Simulation 1 summary statistics of the survival mixture distribution estimators at t = 2.5 in
the MW (Assuming independence as in Ma and Wang (2014) [11]), CWLS, BLRE and

BQIF models (n = 1000, B = 500). ‘emp se’ is the empirical standard error and ‘est se’ is
the average of the estimated standard error.

est mean emp se mse est se 95% cov
F1(t) (true=0.5863)

MW 0.5860 0.0274 0.0015 0.0277 95.2%
CWLS 0.5863 0.0236 0.0011 0.0232 94.8%
BLRE 0.5863 0.0241 0.0011 0.0234 94.2%
BQIF 0.5863 0.0241 0.0011 0.0234 94.2%

F2(t)(true=0.4551)
MW 0.4562 0.0339 0.0023 0.0337 94.0%

CWLS 0.4559 0.0281 0.0016 0.0276 93.5%
BLRE 0.4558 0.0289 0.0016 0.0281 93.4%
BQIF 0.4557 0.0289 0.0016 0.0280 93.7%

the 1000 estimates are very close to the average of the estimated standard
deviations, and coverage rate of the 95% confidence interval is indeed close to
the nominal value. BLRE, BQIF and CWLS reduce the mean squared error
(MSE) by 27% for F1(t) and 30% for F2(t), indicating large improvement in
estimation efficiency. The estimation result of the entire functions F1(t) and
F2(t) is given in Figure 1, where the mean estimated curves almost overlap with
the true curves. The lower and upper bound of the 95% confidence bands of
F1(t) and F2(t) can be separated in our proposed methods, while they overlap
with each other in the Ma and Wang (2014) [11] method.

In the second simulation, we set N = 800, m = 5, p = 3 and generate 50,
250,150,100,150,50 and 50 families with sizes ni = 8, 10, 12, 14, 15, 16 and 18 re-
spectively. We set F1(t), F2(t) and F3(t) as truncated exponential densities with
rates 5, 9 and 11 on [0, 10]. As in simulation 1, we generate correlated survival
time for members in a same family from a multivariate distribution. Specifically,
for the ith family, we first generate a vector (S1

i1,. . .,S
1
ini

,S2
i1,. . .,S

2
ini

,S3
i1,. . .,S

3
ini

)

Fig 1. Simulation study 1 on F1(t) and F2(t). True CDFs (solid grey) and mean (F1(t)
dashed, F2(t) dotted), 95% confidence band (F1(t) dashed, F2(t) dotted) of the estimated
CDFs. Left: Assuming independence as in Ma and Wang (2014) [11]; Middle: CWLS; Right:
BLRE.
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Table 2

Simulation 2 summary statistics of the survival mixture distribution estimators at t = 1.0 in
the MW (Assuming independence as in Ma and Wang (2014) [11]), CWLS, BLRE and
BQIF models (n = 800, B = 600). ‘emp se’ is the empirical standard error and ‘est se’ is

the average of the estimated standard error.

est mean emp se mse est se 95% cov
F1(t) (true=0.2997)

MW 0.2989 0.0291 0.001695 0.0291 94.2%
CWLS 0.2984 0.0206 0.000808 0.0196 93.4%
BLRE 0.2978 0.0248 0.001153 0.0231 93.0%
BQIF 0.2977 0.0250 0.001155 0.0229 92.5%

F2(t)(true=0.2289)
MW 0.2276 0.0242 0.001337 0.0246 95.2%

CWLS 0.2278 0.0171 0.000733 0.0173 94.9%
BLRE 0.2266 0.0215 0.000888 0.0205 93.0%
BQIF 0.2265 0.0216 0.000891 0.0204 92.4%

F3(t)(true=0.2135)
MW 0.2122 0.0228 0.001069 0.0220 93.4%

CWLS 0.2127 0.0166 0.000600 0.0163 93.4%
BLRE 0.2113 0.0204 0.000772 0.0188 92.6%
BQIF 0.2116 0.0203 0.000764 0.0187 92.6%

from a Clayton copula with parameter 20. The survival time Sij of the jth mem-
ber in the ith family is then assigned to S1

ij , S
2
ij or S3

ij , corresponding to F1(t),

F2(t) and F3(t) with probabilities qij1, qij2 and qij3. Here qij = (qij1, qij2, qij3)
T

is set to be (1.00, 0.00, 0.00)T, (0.60, 0.40, 0.00)T, (0.0, 0.20, 0.80)T, (0.20, 0.00, 0.80)T

and (0.30, 0.70, 0.00)T. The mixing percentages are 15.92%, 15.92%, 26.37%,
20.90% and 20.90%. We generate censoring time from a uniform distribution
on (0, 5.4), resulting in a censoring rate around 37%. Finally we let Yij =
min(Sij , Cij) and Δij = I(Sij ≤ Cij).

We implement Algorithms 1 (BLRE) and 2 (BQIF) with R = 15, CWLS
method and the method from Ma and Wang (2014) [11]. We use B = 600 boot-
straps to estimate U and M. The simulation results at t = 1.5 are summarized
in Table 2. From the results in Table 2, we find that Algorithms 1 and 2 pro-
duce similar results. It again validates our theoretical discovery in Section 2.4,
regardless of which distribution and correlation structure we use to generate
the data. The mean of the 1000 estimates are fairly close to the true values.
The average of the 1000 estimated standard errors are also close to the sample
standard errors of the 1000 estimates. The coverage rates of the 95% confidence
intervals are close to the nominal level. Compared with the method in Ma and
Wang (2014) [11], the CWLS method reduces the MSE by 52.3%, 45.2% and
43.9% for F1(t), F2(t) and F3(t) respectively, while BLRE and BQIF reduce the
MSE by 32.0% for F1(t), 33.6% for F2(t) and 27.8% for F3(t), indicating quite
large improvement. The estimation results of the entire functions F1(t), F2(t)
and F3(t) are given in Figure 2. The mean curves of 1000 simulations and the
true distribution curves of F1(t), F2(t) and F3(t) overlay. The 95% confidence
bands of F1(t)(red) and F2(t)(blue) in the left panel have an overlapped area,
while in middle and right panels, they are better separated. In addition, there
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Fig 2. Simulation study 2. Curves of F1(t)(red), F2(t)(blue) and F3(t)(green) are displayed.
True CDFs (solid grey) and mean (F1(t) dashed, F2(t) dotted, F3(t) long-dashed), 95% con-
fidence band (F1(t) dashed, F2(t) dotted, F3(t) long-dashed) of the estimated CDFs. Left:
Assuming independence as in Ma and Wang (2014) [11]; Middle: CWLS; Right: BLRE.

is a gap between 95% confidence bands of F1(t)(red) and F3(t)(green) in the
middle and right panels, but not in the left panel.

4. Real data example

In the Cooperative Huntington’s Observational Research Trial (COHORT,
Dorsey and the Huntington Study Group COHORT Investigators, 2012 [3]),
initial participants (probands) were sequenced for huntingtin gene expansion
status: subjects with C-A-G repeats length greater than 36 are the HD mu-
tation carriers and will eventually develop HD. The proband participants also
provided their relatives’ phenotype information such as age-at-death if deceased.
However, the relatives were not genotyped due to practical difficulties in col-
lecting blood samples (especially for deceased individuals). It is of interest to
estimate the distribution functions using the relatives phenotypes only, while
avoid potential ascertainment bias when recruiting proband participants. Com-
paring survival functions of gene-expanded and non-expanded subjects is essen-
tial for understanding the disease risk associated with a causal mutation, for
timing intervention in the disease progression course, and for genetic counsel-
ing.

The COHORT data includes 771 families with different numbers of first-
degree relatives within each family. There are a total of 3661 individuals. The
barplot in Figure 3 characterizes the distribution of the family sizes. Using the
available relationship (parents, children, siblings) between each family member
and his/her proband, we calculated the probability of the family member car-
rying the huntingtin gene mutation. We obtained three (m = 3) different qij

values in total, (1.0, 0.0)T, (0.5, 0.5)T and (0.0, 1.0)T, with frequency 558, 1805
and 1298, respectively. Denote the distribution function of age-at-death in mu-
tation carrier population to be F1(t) and in non-carrier group to be F2(t). Our
goal is to estimate F(t) = {F1(t), F2(t)}T. The COHORT data has approxi-
mately 29% censoring, and we assume the censoring time is independent of the
event time.



Familial correlation estimation 1943

Fig 3. Barplot of the size of families in COHORT. The highest percentage 16.86% happens
when ni = 3. The largest family has ni = 20 members with the smallest percentage 0.13%.

We implemented Algorithm 1 (BLRE), Algorithm 2 (BQIF), and CWLS
developed in section 2. We performed B = 500 bootstraps to estimate the
variance-covariance U in BLRE and M in BQIF. The results corresponding to
R = 16 are reported. The distribution curve based on four methods at life span
0− 90 are depicted in Figure 4. The estimated F1(t) and F2(t), and their 95%
confidence bands are provided. It is clear that the huntingtin gene mutation
carriers have a much lower survival rates than non-carriers, especially in the age
range 50 to 90. This indicates that the detrimental effect of the Huntington’s
disease on survival is most severe in the mid- to old age range. The difference
in survival probability starts to be present as early as age 40, which is the same
age as the mean of HD disease onset age (Foroud et al. 1999 [5]). The result
is also consistent clinical observation that majority of gene carriers die between
age 45 and 70 (Foroud et al. 1999 [5]).

As a comparison, we also performed the analysis of Ma and Wang (2014)
[11], where the within-family correlation is ignored. We present the estimated
curves of F1(t) and F2(t), and their 95% pointwise confidence bands in the
upper left panel of Figure 4. From these plots, we can see that for estimat-
ing the distribution function in the carrier population, the confidence band of
MW appears wider than all other three methods. To quantify this observa-
tion, we calculated the integrated confidence interval width and obtained the
values 0.0577, 0.04, 0.0544 and 0.0545 for MW, CWLS, BLRS and BQIF, re-
spectively. This corresponds to a reduction of 30.6%, 5.6% and 5.5% of the
three methods in comparison with MW, indicating improved efficiency of the
three proposed methods. Our methods here also provide an assessment of the
familial correlation, which is estimated to be smaller than 0.1 across all ages
and has a general decreasing trend. Specifically, the correlation is 0.0822 at
age t = 40, decreases to 0.046 by age 65, and almost diminishes beyond age
70.
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Fig 4. Distribution of the age-at-death for huntingtin gene mutation carriers and non-carriers
in COHORT: estimated CDFs (solid) and the 95% confidence band (upper band dot-dashed,
lower band dashed). Upper Left: Ignore within-family correlation (MW; Assuming indepen-
dence as in Ma and Wang (2014) [11]); Upper Right: Treat within-family correlation (CWLS);
Lower left: BLRE.

5. Discussion

In this paper, we propose various methods to account for within-family corre-
lation for mixture data from multiple populations, while the population label
is only known up to a probability. Such data arise from kin-cohort studies,
such as COHORT study of HD and other disorders, for instance, breast cancer
(Wacholder et al. 1998 [12]) or Parkinson’s disease (Wang et al. 2008 [13]). The
proposed estimators are easy to implement, and assume unstructured correlation
or exchangeable correlation. The finite sample efficiency of the estimators under
unstructured correlation relies on both the number of resamples and the boot-
strap size. Although in theory, large values of both are preferable, in practice,
one can always gradually increase these values and stop when the improvement
becomes sufficiently small. Comparing with ignoring correlation information,
the proposed estimators provide efficiency gain as observed in simulation stud-
ies and real data analysis (Section 3 and 4).

The relative performance of the proposed BLRE, BQIF and CWLS meth-
ods in terms of variance reduction depends on many factors such as sample
size, family sizes, true underlying model and covariate values. The practical ef-
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ficiency gain of accounting for the correlation by the optimal estimator could
be somewhat limited in a real data example especially when the sample size of
the data is large. However, other studies with smaller sample sizes and lower
expected number of diseased subjects in carrier group could potentially benefit
more from our method by improving estimation efficiency.

Here, p denotes the number of latent distributions and it is typically small in
practice. In our application example, the goal is to estimate the survival func-
tion in HD-gene mutation carriers, as compared to non-carriers. For HD, which
is an autosomal dominant disease, p = 2. In general, mode of inheritance is
specified as autosomal dominant (p = 2), autosomal recessive (p = 2), or addi-
tive model (p = 3), depending on the nature of an inherited disorder. Thus, p
is often rather small in these applications. However, when p becomes large in
other settings, the proposed model and methods are not suitable because not
enough information is available in the data to estimate many latent distribu-
tions without stronger parametric assumptions. Parametric or semi-parametric
models and methods are needed to enable estimation under reasonable sample
size.

Lastly, we point out that one way to relax the exchangeable correlation as-
sumption is to break large extended families into nuclear families and assume a
hierarchical model for the correlation structure for the members in the nuclear
family and in the extended family.

Appendix

A.1. Proof of Theorem 1

Write A as A = (A1, . . . ,AR). Under the constraint AJ = Ip, we have

E{F̂(t)} = E{AF̂L(t)} =

R∑
r=1

ArE{F̂r(t)}

=

R∑
r=1

ArF(t) + op(1) = AJF(t) + op(1) = F(t) + op(1).

This shows that F̂(t) is a consistent estimator. In addition, because F̂L(t) has

normal distribution (Ma and Wang 2012 [10]), as linear combination, F̂(t) is
also normally distributed.

The variance of F̂(t) = AF̂L(t) is AUAT for a general A matrix. For any A
that satisfies AJ = Ip, we have

AUAT −AoptUAT
opt

= AUAT − (JTU−1J)−1

= (JTATAJ)−1JTATAUATAJ(JTATAJ)−1 − (JTU−1J)−1

= (JTATAJ)−1
{
JTATAUATAJ− JTATAJ(JTU−1J)−1JTATAJ

}
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(JTATAJ)−1

= (JTATAJ)−1JTATAU
1
2

{
I −U− 1

2J(JTU−1J)−1JTU− 1
2

}
U

1
2ATAJ(JTATAJ)−1.

It is easy to verify that I−U− 1
2J(JTU−1J)−1JTU− 1

2 is an idempotent matrix,
hence it is semi-positive definite. Therefore, AUAT− (JTU−1J)−1 is also semi-
positive definite.

A.2. Proof of Theorem 2

Taking derivative of the quadratic form (2.9) with respect to F(t) and omit the
higher order terms, we obtain

E

{
∂gi(t)

∂FT(t)

}T

W

N∑
i=1

gi(t) = 0. (A.1)

In the following, we first investigate N− 1
2

∑N
i=1 gi(t).

For r = 1, . . . , R, write the observations in the rth sample as {Or
i : Or

i =
(qr

i , Y
r
i ,Δ

r
i ), i = 1, . . . , N}. Because there are m possible values for qr

i ’s, we can
divide these N observations into m groups Or

1, . . .O
r
m, where

Or
l =

{
Or

l,k : Or
l,k = (ul, Y

r
l,k,Δ

r
l,k), k = 1, . . . , drl

}
,

and the Kaplan-Meier estimator in the respective group is denoted Ĥr
l (t) for

l = 1, . . . ,m.
From Breslow and Crowley (1974) [2], we have the asymptotic expansion

√
drl {Ĥr

l (t)−Hl(t)} = (drl )
−1/2

dr
l∑

k=1

a(Or
l,k) + op(1),

where a(Or
l,k) is a function of the kth observation Or

l,k and E{a(Or
l,k)} = 0.

Inserting this relation into (2.8), we have

N− 1
2

N∑
i=1

gi(t) = N− 1
2

m∑
l=1

⎡⎢⎢⎣
√
d1l ul

√
d1l {Ĥ1

l (t)−Hl(t)}
...√

dRl ul

√
dRl {ĤR

l (t)−Hl(t)}

⎤⎥⎥⎦

= N− 1
2

m∑
l=1

⎡⎢⎢⎣
ul

∑d1
l

k=1 a(O
1
l,k)

...

ul

∑dR
l

k=1 a(O
R
l,k)

⎤⎥⎥⎦+ op(1)

= N− 1
2

N∑
i=1

⎡⎢⎣ q1
i a(O

1
i )

...
qR
i a(O

R
i )

⎤⎥⎦+ op(1), (A.2)
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where the first equality is obtained through rewriting the summation in (2.8),
and the last equality is obtained similarly. Viewing qr

i ’s as random quantities,

we have that N− 1
2

∑N
i=1 gi(t) is the average of independently identically dis-

tributed mean zero random quantities hence it converges to a mean zero normal
distribution with variance denoted M.

Standard Taylor expansion of (A.1) then yields

√
N{F̂(t)− F(t)} → N{0,B−1C(B−1)T}

in distribution when N → ∞, where

B = E

{
∂gi(t)

∂FT(t)

}T

WE

{
∂gi(t)

∂FT(t)

}
,

C =

[
E

{
∂gi(t)

∂FT(t)

}T

WMWE

{
∂gi(t)

∂FT(t)

}]
.

Similar derivation as in the proof of Theorem 1 can be used to show that the
optimal choice of the weight matrix is W = M−1, and the resulting variance is[

E

{
∂gi(t)

∂FT(t)

}T

M−1E

{
∂gi(t)

∂FT(t)

}]−1

.
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