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Abstract: Suppose that we observe y ∈ Rn and X ∈ Rn×m in the follow-
ing errors-in-variables model:

y = X0β
∗ + ε

X = X0 +W

where X0 is an n × m design matrix with independent subgaussian row
vectors, ε ∈ Rn is a noise vector and W is a mean zero n × m random
noise matrix with independent subgaussian column vectors, independent
of X0 and ε. This model is significantly different from those analyzed in
the literature in the sense that we allow the measurement error for each
covariate to be a dependent vector across its n observations. Such error
structures appear in the science literature when modeling the trial-to-trial
fluctuations in response strength shared across a set of neurons.

Under sparsity and restrictive eigenvalue type of conditions, we show
that one is able to recover a sparse vector β∗ ∈ Rm from the model given
a single observation matrix X and the response vector y. We establish
consistency in estimating β∗ and obtain the rates of convergence in the
�q norm, where q = 1, 2 for the Lasso-type estimator, and for q ∈ [1, 2]
for a Dantzig-type Conic programming estimator. We show error bounds
which approach that of the regular Lasso and the Dantzig selector in case
the errors in W are tending to 0. We analyze the convergence rates of the
gradient descent methods for solving the nonconvex programs and show
that the composite gradient descent algorithm is guaranteed to converge
at a geometric rate to a neighborhood of the global minimizers: the size of
the neighborhood is bounded by the statistical error in the �2 norm. Our
analysis reveals interesting connections between computational and statis-
tical efficiency and the concentration of measure phenomenon in random
matrix theory. We provide simulation evidence illuminating the theoretical
predictions.
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1. Introduction

The matrix variate normal model has a long history in psychology and social
sciences. In recent years, it is becoming increasingly popular in biology and
genomics, neuroscience, econometric theory, image and signal processing, wire-
less communication, and machine learning; see for example [15, 22, 17, 52, 5,
54, 18, 2, 26] and references therein. We call the random matrix X, which
contains n rows and m columns a single data matrix, or one instance from
the matrix variate normal distribution. We say that an n × m random ma-
trix X follows a matrix normal distribution with a separable covariance matrix
ΣX = A⊗B and mean M ∈ R

n×m, which we write Xn×m ∼ Nn,m(M,Am×m⊗
Bn×n). This is equivalent to say vec {X } follows a multivariate normal dis-
tribution with mean vec {M } and covariance ΣX = A ⊗ B. Here, vec {X }
is formed by stacking the columns of X into a vector in R

mn. Intuitively,
A describes the covariance between columns of X, while B describes the co-
variance between rows of X. See [15, 22] for more characterization and exam-
ples.

In this paper, we introduce the related sum of Kronecker product models to
encode the covariance structure of a matrix variate distribution. The proposed
models and methods incorporate ideas from recent advances in graphical models,
high-dimensional regression model with observation errors, and matrix decom-
position. Let Am×m, Bn×n be symmetric positive definite covariance matrices.
Denote the Kronecker sum of A = (aij) and B = (bij) by
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Σ = A⊕B := A⊗ In + Im ⊗B

=

⎡⎢⎢⎣
a11In +B a12In . . . a1mIn

a21In a22In +B . . . a2mIn
. . .

am1In am2In . . . ammIn +B

⎤⎥⎥⎦
(mn)×(mn)

where In is an n × n identity matrix. This covariance model arises naturally
from the context of errors-in-variables regression model defined as follows.

Suppose that we observe y ∈ R
n and X ∈ R

n×m in the following model:

y = X0β
∗ + ε (1.1a)

X = X0 +W (1.1b)

where X0 is an n×m design matrix with independent row vectors, ε ∈ R
n is a

noise vector and W is a mean zero n×m random noise matrix, independent of
X0 and ε, with independent column vectors ω1, . . . , ωm.

In particular, we are interested in the additive model of X = X0 +W such
that

vec {X } ∼ N (0,Σ) where Σ = A⊕ B := A⊗ In + Im ⊗ B (1.2)

where we use one covariance component A ⊗ In to describe the covariance of
matrix X0 ∈ R

n×m, which is considered as the signal matrix, and the other
component Im ⊗ B to describe that of the noise matrix W ∈ R

n×m, where
Eωj⊗ωj = B for all j, where ωj denotes the jth column vector of W . Our focus
is on deriving the statistical properties of two estimators for estimating β∗ in
(1.1a) and (1.1b) despite the presence of the additive error W in the observation
matrix X. We will show that our theory and analysis works with a model much
more general than that in (1.2), which we will define in Section 1.1.

Before we go on to define our estimators, we now use an example to motivi-
ate (1.2) and its subgaussian generalization in (1.4). Suppose that there are n
patients in a particular study, for which we use X0 to model the “systolic blood
pressure” and W to model the seasonal effects. In this case, X models the fact
that among the n patients we measure, each patient has its own row vector of
observed set of blood pressures across time, and each column vector inW models
the seasonal variation on top of the true signal at a particular day/time. Thus
we consider X as measurement of X0 with W being the observation error. That
is, we model the seasonal effects on blood pressures across a set of patients in a
particular study with a vector of dependent entries. Thus W is a matrix which
consists of repeated independent sampling of spatially dependent vectors, if we
regard the individuals as having spatial coordinates, for example, through their
geographic locations. We will come back to discuss this example in Section 1.4.

1.1. The model and the method

We first need to define an independent isotropic vector with subgaussianmargin-
als as in Definition 1.1. For a vector y = (y1, . . . , yp) in R

p, denote by ‖y‖2 =√∑
j y

2
j the length of y.
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Definition 1.1. Let Y be a random vector in R
p

1. Y is called isotropic if for every y ∈ R
p, E

(
| 〈Y, y 〉 |2

)
= ‖y‖22.

2. Y is ψ2 with a constant α if for every y ∈ R
p,

‖ 〈Y, y 〉 ‖ψ2
:= inf{t : E

(
exp( 〈Y, y 〉 2/t2)

)
≤ 2} ≤ α ‖y‖2 . (1.3)

The ψ2 condition on a scalar random variable V is equivalent to the subgaussian
tail decay of V , which means P (|V | > t) ≤ 2 exp(−t2/c2), for all t > 0.

Throughout this paper, we use ψ2 vector, a vector with subgaussian marginals
and subgaussian vector interchangeably.
The model. Let Z be an n ×m random matrix with independent entries Zij

satisfying EZij = 0, 1 = EZ2
ij ≤ ‖Zij‖ψ2

≤ K. Let Z1, Z2 be independent copies
of Z. Let

X = X0 +W (1.4)

such that X0 = Z1A
1/2 is the design matrix with independent subgaussian

row vectors, and W = B1/2Z2 is a random noise matrix with independent
subgaussian column vectors.

Assumption (A1) allows the covariance model in (1.2) and its subgaussian
variant in (1.4) to be identifiable.

(A1) We assume tr(A) = m is a known parameter, where tr(A) denotes the
trace of matrix A.

In the Kronecker sum model, we could assume we know tr(B), in order not to
assume knowing tr(A). Assuming one or the other is known is unavoidable as
the covariance model is not identifiable otherwise. Moreover, by knowing tr(A),
we can construct an estimator for tr(B):

t̂r(B) = 1
m

(
‖X‖2F − ntr(A)

)
+

and define τ̂B := 1
n t̂r(B) ≥ 0 (1.5)

where (a)+ = a ∨ 0 and ‖X‖2F :=
∑

i

∑
j X

2
ij . We first introduce the corrected

Lasso estimator, adapted from those as considered in [30].
Suppose that t̂r(B) is an estimator for tr(B); for example, as constructed

in (1.5). Let

Γ̂ =
1

n
XTX − 1

n
t̂r(B)Im and γ̂ = 1

nX
T y. (1.6)

For a chosen penalization parameter λ ≥ 0, and parameters b0 and d, we consider
the following regularized estimation with the 
1-norm penalty,

β̂ = argmin
β:‖β‖1≤b0

√
d

1

2
βT Γ̂β − 〈 γ̂, β 〉 + λ‖β‖1, (1.7)

which is a variation of the Lasso [48] or the Basis Pursuit [12] estimator. Al-
though in our analysis, we set b0 ≥ ‖β∗‖2 and d = |supp(β∗)| :=

∣∣{j : β∗
j = 0}

∣∣
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for simplicity, in practice, both b0 and d are understood to be parameters chosen
to provide an upper bound on the 
2 norm and the sparsity of the true β∗.

For a vector β ∈ R
m, denote by ‖β‖∞ := maxj |βj |. Recently, [3] discussed the

following conic programming compensated matrix uncertainly (MU) selector,
which is a variant of the Dantzig selector [6, 35, 36]. Adapted to our setting, it
is defined as follows. Let λ, μ, τ > 0,

β̂ = argmin
{
‖β‖1 + λt : (β, t) ∈ Υ

}
where (1.8)

Υ =
{
(β, t) : β ∈ R

m,
∥∥∥γ̂ − Γ̂β

∥∥∥
∞

≤ μt+ ω, ‖β‖2 ≤ t
}

where γ̂ and Γ̂ are as defined in (1.6) with μ ∼
√

logm
n , ω ∼

√
logm
n . We refer

to this estimator as the Conic programming estimator from now on.

1.2. Gradient descent algorithms

In order to obtain fast, approximate solutions to the optimization goal as
in (1.10), we adopt the computational framework of [1, 30], namely, the compos-
ite gradient descent method due to Nesterov [34] to analyze our computational
and statistical errors in an integrated manner. First we denote the population
and empirical loss functions by

L(β) = 1

2
βTΣxβ − β∗TΣxβ and Ln(β) =

1

2
βT Γ̂β − γ̂Tβ (1.9)

respectively. We consider regularizers that are separable across all coordinates
and write

ρλ(β) =

m∑
i=1

ρλ(βi).

Throughout this paper, we denote by

φ(β) =
1

2
βT Γ̂β − γ̂Tβ + ρλ(β).

From the formulation (1.7), the corrected linear regression estimator is given
by minimizing the penalized loss function φ(β) subject to the constraint that
g(β) ≤ R:

β̂ ∈ argmin
β∈Rm,g(β)≤R

{
1

2
βT Γ̂β − γ̂Tβ + ρλ(β)

}
(1.10)

where g(β) is a convex function, which is allowed to be identical to ‖β‖1 and

R is a second tuning parameter that is chosen to confine the solution β̂ within
the 
1 ball of radius R, while at the same time ensuring that β∗ is a feasible
solution.



Errors-in-variables models with dependent measurements 1705

The gradient descent method generates a sequence {βt}∞t=0 of iterates by first
initializing to some parameter β0 ∈ R

m and then for t = 0, 1, 2, . . ., applying
the recursive updates:

βt+1 = (1.11)

argmin
β∈Rm,g(β)≤R

{
Ln(β

t) + 〈∇Ln(β
t), β − βt 〉 +

ζ

2

∥∥β − βt
∥∥2
2
+ ρλ(β)

}
where ζ is the step size parameter.

More generally, we consider loss function Ln : Rm → R and ρλ which are
possibly nonconvex and consider the regularized M-estimator of the form

β̂ ∈ argmin
β∈Rm,g(β)≤R

{Ln(β;X) + ρλ(β)} (1.12)

where ρλ : Rm → R is a regularizer depending on a tuning parameter λ > 0.
Because of this potential nonconvexity, we also include a side constraint in the
form of g(β) ≤ R, where

g(β) :=
1

λ

{
ρλ(β) +

μ

2
‖β‖22

}
(1.13)

so that this choice of g is convex for properly chosen parameter μ ≥ 0 for
a class of weakly convex penalty functions ρ [51]; See Assumption 1 in [31]
where properties of g and ρλ are stated in terms of the univariate function
ρλ : R → R and the parameter μ ≥ 0. While our results hold for the general
nonconvex penalty ρλ that is weakly convex in the sense that (1.13) holds for
some parameter μ > 0, we focus our discussion to the choice of ρλ(β) = λ ‖β‖1
and μ = 0 in the present paper.

1.3. Our contributions

We provide a unified analysis of the rates of convergence for both the corrected
Lasso estimator (1.7) and the Conic programming estimator (1.8), which is a
Dantzig selector-type, although under slightly different conditions. We will show
the rates of convergence in the 
q norm for q = 1, 2 for estimating a sparse vector
β∗ ∈ R

m in the model (1.1a) and (1.1b) using the corrected Lasso estimator (1.7)
in Theorems 3 and 6, and the Conic programming estimator (1.8) in Theorems 4
and 7 for 1 ≤ q ≤ 2. We also show bounds on the predictive errors for the Conic
programming estimator. The bounds we derive in Theorems 3 and 4 focus on
cases where the errors in W are not too small in their magnitudes in the sense
that τB := tr(B)/n is bounded from below. For the extreme case when τB
approaches 0, one hopes to recover bounds close to those for the regular Lasso
or the Dantzig selector since the effect of the noise in matrixW on the procedure
becomes negligible. We show in Theorems 6 and 7 that this is indeed the case.
These results are new to the best of our knowledge.

Let Z1, Z2 be independent subgaussian random matrices with independent
entries (cf. (1.4)). In Theorems 3 to 7, we consider the regression model in
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(1.1a) and (1.1b) with subgaussian random design, where X0 = Z1A
1/2 is a

subgaussian random matrix with independent row vectors, and W = B1/2Z2 is
an n×m random noise matrix with independent column vectors, This model is
significantly different from those analyzed in the literature. For example, unlike
the present work, the authors in [30] apply Theorem 16 which states a general
result on statistical convergence properties of the estimator (1.7) to cases where
W is composed of independent subgaussian row vectors, when the row vectors of
X0 are either independent or follow a Gaussian vector auto-regressive model. See
also [35, 36, 3] for the corresponding results on the compensated MU selectors,
variations on the Conic programming estimator (1.8).

The second key difference between our framework and the existing work
is that we assume that only one observation matrix X with the single mea-
surement error matrix W is available. Assuming (A1) allows us to estimate
EWTW as required in the estimation procedure (1.6) directly, given the knowl-
edge that W is composed of independent column vectors. In contrast, existing
work needs to assume that the covariance matrix ΣW := 1

nEW
TW of the in-

dependent row vectors of W or its functionals are either known a priori, or
can be estimated from a dataset independent of X, or from replicated X mea-
suring the same X0; see for example [35, 36, 3, 30, 10]. Although the model
we consider is different from those in the literature, the identifiability issue,
which arises from the fact that we observe the data under an additive er-
ror model, is common. Such repeated measurements are not always available
or costly to obtain in practice [10]. We will explore such tradeoffs in future
work.

A noticeable exception is the work of [11], which deals with the scenario
when the noise covariance is not assumed to be known. We now elaborate on
their result, which is a variant of the orthogonal matching pursuit (OMP) al-
gorithm [49, 50]. Their support recovery result, that is, recovering the sup-
port set of β∗, applies only to the case when both signal matrix and the mea-
surement error matrix have isotropic subgaussian row vectors. In other words,
they assume independence among both rows and columns in X (X0 and W ).
Moreover, their algorithm requires the knowledge of the sparsity parameter d,
which is the number of non-zero entries in β∗, as well as a βmin condition:

minj∈supp β∗
∣∣β∗

j

∣∣ = Ω

(√
logm
n (‖β∗‖2 + 1)

)
. Under these conditions, they re-

cover essentially the same 
2-error bounds as in the current work, and [30],
where the covariance ΣW is assumed to be known.

Finally, we present in Theorems 2 and 9 the optimization error for the gradi-
ent descent algorithms in solving (1.12) and more specifically (1.7). Let β̂ be a
global optimizer of (1.12). Let λmax(A) and λmin(A) be the largest and smallest
eigenvalues, and κ(A) be the condition number for matrix A. Let 0 < κ < 1 be a
contraction factor to be defined in (2.6). Similar to the work of [1, 30], we show
that the geometric convergence is not guaranteed to an arbitrary precision, but
only to an accuracy related to statistical precision of the problem, measured by
the 
2 error: ‖β̂ − β∗‖22 =: ε2stat between the global optimizer β̂ and the true
parameter β∗.
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More precisely, our analysis guarantees geometric convergence of the sequence
{βt}∞t=0 to a parameter β∗ up to a neighborhood of radius defined through the
statistical error bound ε2stat

δ2 � ε2stat
1− κ

d logm

n
,

where κ is a contraction coefficient to be defined (2.6), so that for all t ≥ T ∗(δ)
as in (2.12), α� � λmin(A) and αu � λmax(A),∥∥∥βt − β̂

∥∥∥2
2
≤ 4δ2

α�
+

α�ε
2
stat

4
+

4δ4

b20α�λmax(A)
= O(ε2stat)

for λ, ζ ≥ αu appropriately chosen, R = Õ(
√

n
logm ) and n = Ω̃ (d logm), where

the Õ(·) and Ω̃(·) symbols hide spectral parameters regarding A and B. To
quantify such results, we first need to introduce some conditions in Section 2.
See Theorem 2 and Corollary 10 for the precise conditions and statements.

1.4. Discussion

The theory on matrix variate normal data show that having replicates will allow
one to estimate more complicated graphical structures and achieve faster rates
of convergence under less restrictive assumptions [56]. Our consistency results
in the present work deal with only a single random matrix following the model
(1.4), assuming that tr(A) is known. With replicates, this assumption can be
lifted off immediately. Assume there exists a replicate

X̃ = X0 + W̃ , (1.14)

then we can use X̃ −X = W̃ −W to estimate B using existing methods. The
rationale for considering such an option is one may have a repeated measurement
of X0 for which the errors W and W̃ follow the same error distribution. Such
external data or knowledge of the noise distribution is needed in order to do
inference under such additive measurement error model [10].

The second key modeling question is: would each row vector in W for a
particular patient across all time points be a correlated normal or subgaussian
vector as well? It is our conjecture that combining the newly developed tech-
niques, namely, the concentration of measure inequalities we have derived in the
current framework with techniques from existing work [56], we can handle the
case when W follows a matrix normal distribution with a separable covariance
matrix ΣW = C ⊗ B, where C is an m × m positive semi-definite covariance
matrix. Moreover, for this type of “seasonal effects” as the measurement errors,
the time varying covariance model would make more sense to model W , which
we elaborate in the second example.

In neuroscience applications, population encoding refers to the information
contained in the combined activity of multiple neurons [27]. The relationship
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between population encoding and correlations is complicated and is an area of
active investigation, see for example [40, 13]. It becomes more often that re-
peated measurements (trials) simultaneously recorded across a set of neurons
and over an ensemble of stimuli are available. In this context, one can use a
random matrix X0 ∼ Nn,m(μ,A ⊗ B) which follows a matrix-variate normal
distribution, or its subgaussian correspondent, to model the ensemble of mean
response variables, e.g., the membrane potential, corresponding to the cross-trial
average over a set of experiments. Here we use A to model the task correlations
and B to model the baseline correlation structure among all pairs of neurons
at the signal level. It has been observed that the onset of stimulus and task
events not only change the cross-trial mean response in μ, but also alter the
structure and correlation of the noise for a set of neurons, which correspond
to the trial-to-trial fluctuations of the neuron responses. We use W to model
such task-specific trial-to-trial fluctuations of a set of neurons recorded over
the time-course of a variety of tasks. Models as in (1.1a) and (1.1b) are use-
ful in predicting the response of set of neurons based on the current and past
mean responses of all neurons. Moreover, we could incorporate non-i.i.d. non-
Gaussian W = [w1, . . . , wm] with wt = B1/2(t)z(t), where z(1), . . . , z(m) are
independent isotropic subgaussian random vectors and B(t) � 0 for all t, to
model the time-varying correlated noise as observed in the trial-to-trial fluctu-
ations. It is possible to combine the techniques developed in the present paper
with those in [57, 56] to develop estimators for A, B and the time varying B(t),
which is itself an interesting topic, however, beyond the scope of the current
work.

In summary, oblivion in ΣW and a general dependency condition in the data
matrix X are not simultaneously allowed in existing work. In contrast, while
we assume that X0 is composed of independent subgaussian row vectors, we
allow rows of W to be dependent, which brings dependency to the row vectors
of the observation matrix X. In the current paper, we focus on the proof-of-the-
concept on using the Kronecker sum covariance and additive model to model
two way dependency in data matrix X, and derive bounds in statistical and
computational convergence for (1.7) and (1.8). In some sense, we are considering
a parsimonious model for fitting observation data with two-way dependencies:
we use the signal matrix to encode column-wise dependency among covariates
in X, and error matrix W to explain its row-wise dependency. When replicates
of X or W are available, we are able to study more sophisticated models and
inference problems, some of which are described earlier in this section.

We leave the investigation of this more general modeling framework and rele-
vant statistical questions to future work. We refer to [10] for an excellent survey
of the classical as well as modern developments in measurement error models. In
future work, we will also extend the estimation methods to the settings where
the covariates are measured with multiplicative errors which are shown to be
reducible to the additive error problem as studied in the present work [36, 30].
Moreover, we are interested in applying the analysis and concentration of mea-
sure results developed in the current paper and in our ongoing work to the more
general contexts and settings where measurement error models are introduced
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and investigated; see for example [16, 8, 44, 24, 20, 45, 9, 7, 14, 46, 25, 28, 47,
53, 23, 29, 32, 2, 43, 41, 42] and references therein.
Notation. Let e1, . . . , ep be the canonical basis of Rp. For a set J ⊂ {1, . . . , p},
denote EJ = span{ej : j ∈ J}. For a matrix A, we use ‖A‖2 to denote its
operator norm. For a set V ⊂ R

p, we let conv V denote the convex hull of V .
For a finite set Y , the cardinality is denoted by |Y |. Let Bp

1 , B
p
2 and Sp−1 be

the unit 
1 ball, the unit Euclidean ball and the unit sphere respectively. For a
matrix A = (aij)1≤i,j≤m, let ‖A‖max = maxi,j |aij | denote the entry-wise max
norm. Let ‖A‖1 = maxj

∑m
i=1 |aij | denote the matrix 
1 norm. The Frobenius

norm is given by ‖A‖2F =
∑

i

∑
j a

2
ij . Let |A| denote the determinant and tr(A)

be the trace of A. The operator or 
2 norm ‖A‖22 is given by λmax(AA
T ). For a

matrix A, denote by r(A) the effective rank tr(A)/ ‖A‖2. Let ‖A‖
2
F /‖A‖

2
2 denote

the stable rank for matrix A. We write diag(A) for a diagonal matrix with the
same diagonal as A. For a symmetric matrix A, let Υ(A) = (υij) where υij =
I(aij = 0), where I(·) is the indicator function. Let I be the identity matrix.
For two numbers a, b, a ∧ b := min(a, b) and a ∨ b := max(a, b). For a function
g : Rm → R, we write ∇g to denote a gradient or subgradient, if it exists. We
write a � b if ca ≤ b ≤ Ca for some positive absolute constants c, C which are
independent of n,m or sparsity parameters. Let (a)+ := a∨0. We write a = O(b)
if a ≤ Cb for some positive absolute constants C which are independent of n,m
or sparsity parameters. The absolute constants C,C1, c, c1, . . . may change line
by line.

2. Assumptions and preliminary results

We will now define some parameters related to the restricted and sparse eigen-
value conditions that are needed to state our main results. We also state a
preliminary result in Lemma 1 regarding the relationships between the two con-
ditions in Definitions 2.1 and 2.2.

Definition 2.1. (Restricted eigenvalue condition RE(s0, k0, A)). Let 1 ≤
s0 ≤ p, and let k0 be a positive number. We say that a q × p matrix A satisfies
RE(s0, k0, A) condition with parameter K(s0, k0, A) if for any υ = 0,

1

K(s0, k0, A)
:= min

J⊆{1,...,p},
|J|≤s0

min
‖υJc‖1≤k0‖υJ‖1

‖Aυ‖2
‖υJ‖2

> 0.

where υJ represents the subvector of υ ∈ R
p confined to a subset J of {1, . . . , p}.

It is clear that when s0 and k0 become smaller, this condition is easier to
satisfy. We also consider the following variation of the baseline RE condition.

Definition 2.2. (Lower-RE condition) [30] The matrix Γ satisfies a Lower-RE
condition with curvature α > 0 and tolerance τ > 0 if

θTΓθ ≥ α ‖θ‖22 − τ ‖θ‖21 ∀θ ∈ R
m.
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where ‖θ‖1 :=
∑

j |θj |. As α becomes smaller, or as τ becomes larger, the Lower-
RE condition is easier to be satisfied.

Lemma 1. Suppose that the Lower-RE condition holds for Γ := ATA with
α, τ > 0 such that τ(1 + k0)

2s0 ≤ α/2. Then the RE(s0, k0, A) condition holds
for A with

1

K(s0, k0, A)
≥
√

α

2
> 0.

Assume that RE((k0 + 1)2, k0, A) holds. Then the Lower-RE condition holds for
Γ = ATA with

α =
1

(k0 + 1)K2(s0, k0, A)
> 0

where s0 = (k0 + 1)2, and τ > 0 which satisfies

λmin(Γ) ≥ α− τs0/4.

The condition above holds for any τ ≥ 4
(k0+1)3K2(s0,k0,A) −

4λmin(Γ)
(k0+1)2 .

The first part of Lemma 1 means that, if k0 is fixed, then smaller values of
τ guarantee RE(s0, k0, A) holds with larger s0, that is, a stronger RE condition.
The second part of the Lemma implies that a weak RE condition implies that
the Lower-RE (LRE) holds with a large τ . On the other hand, if one assumes
RE((k0 + 1)2, k0, A) holds with a large value of k0 (in other words, a strong RE
condition), this would imply LRE with a small τ . In short, the two conditions
are similar but require tweaking the parameters. Weaker RE condition implies
LRE condition holds with a larger τ , and Lower-RE condition with a smaller τ ,
that is, stronger LRE implies stronger RE. We prove Lemma 1 in Section 9.

Definition 2.3. (Upper-RE condition) [30] The matrix Γ satisfies an upper-RE
condition with smoothness α̃ > 0 and tolerance τ > 0 if

θTΓθ ≤ α̃ ‖θ‖22 + τ ‖θ‖21 ∀θ ∈ R
m.

Definition 2.4. Define the largest and smallest d-sparse eigenvalue of a p× q
matrix A to be

ρmax(d,A) := max
t �=0;d−sparse

‖At‖22/ ‖t‖
2
2 , where d < p,

and ρmin(d,A) := min
t �=0;d−sparse

‖At‖22/ ‖t‖
2
2 .

Before stating some general result for the optimization program (1.12) and
its implications for the Lasso-type estimator (1.7) in terms of statistical and
optimization errors, we need to introduce some more notation and the following
assumptions. Let amax = maxi aii and bmax = maxi bii be the maximum diag-
onal entries of A and B respectively. In general, under (A1), one can think of
λmin(A) ≤ 1 and for s ≥ 1,

1 ≤ amax ≤ ρmax(s,A) ≤ λmax(A), (2.1)

where λmax(A) denotes the maximum eigenvalue of A.
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(A2) The minimal eigenvalue λmin(A) of the covariance matrix A is bounded:
1 ≥ λmin(A) > 0.

(A3) Moreover, we assume that the condition number κ(A) is upper bounded

by O
(√

n
logm

)
and τB = O(λmax(A)).

Throughout the rest of the paper, s0 ≥ 32 is understood to be the largest integer
chosen such that the following inequality still holds:

√
s0�(s0) ≤

λmin(A)

32C

√
n

logm
where �(s0) := ρmax(s0, A) + τB (2.2)

where we denote by τB = tr(B)/n and C is to be defined. Denote by

MA =
64C�(s0)

λmin(A)
≥ 64C. (2.3)

Throughout this paper, we denote by A0 the event that the modified gram
matrix Γ̂ as defined in (1.6) satisfies the Lower as well as Upper RE conditions
with

curvature α =
5

8
λmin(A), smoothness α̃ =

11

8
λmax(A)

and tolerance
384C2�(s0)

2

λmin(A)

logm

n
≤ τ :=

λmin(A)− α

s0

≤ 396C2�2(s0 + 1)

λmin(A)

logm

n

for α, α̃ and τ as defined in Definitions 2.2 and 2.3, and C, s0, �(s0) in (2.2).
To bound the optimization errors, we show that the corrected linear regression

loss function (1.9) satisfies the following Restricted Strong Convexity (RSC) and
Restricted Smoothness (RSM) conditions when the sample size and effective rank
of matrix B satisfy certain lower bounds (cf. Theorem 3); namely, for all vectors
β0, β1 ∈ R

m and

T (β1, β0) := Ln(β1)− Ln(β0)− 〈∇Ln(β0), β1 − β0 〉 ,

we show that for some parameters (α�, τ�(Ln)) and (αu, τu(Ln)),

T (β1, β0) ≥ α�

2
‖β1 − β0‖22 − τ�(Ln) ‖β1 − β0‖21 and (2.4)

T (β1, β0) ≤ αu

2
‖β1 − β0‖22 + τu(Ln) ‖β1 − β0‖21 . (2.5)

Applied to (1.12), the composite gradient descent procedure of [34] produces a
sequence of iterates {βt}∞t=0 via the updates

βt+1 = argmin
β∈Rm,g(β)≤R

{
1

2

∥∥∥∥β −
(
βt − ∇Ln(β

t)

ζ

)∥∥∥∥2
2

+
ρλ(β)

ζ

}
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where 1
ζ is the step size. Let ν� = 64dτ�(Ln) and ᾱ� := α�−ν�. We show that the

composite gradient updates exhibit a type of globally geometric convergence in
terms of the compound contraction coefficient

κ =
1− ᾱ�

4ζ + �

1− �
, where � :=

2ν(d,m, n)

α� − ν�
:=

128dτu(Ln)

ᾱ�
(2.6)

where ν� < α�/C for some C > 1 to be specified. Let τ(Ln) = τ�(Ln) ∨ τu(Ln).
Define

ξ :=
2τ(Ln)

1− �

(
ᾱ�

4ζ
+ 2�+ 5

)
> 10τ(Ln). (2.7)

For simplicity, we present in Theorem 2 the case for ρλ(β) = λ ‖β‖1 only.

Theorem 2. Consider the optimization program (1.12) for a radius R such that
β∗ is feasible. Let g(β) = 1

λρλ(β) where ρλ(β) = λ ‖β‖1. Suppose that the loss
function Ln satisfies the RSC/RSM conditions (2.4) and (2.5) with parameters
(α�, τ�(Ln)) and (αu, τu(Ln)) respectively. Let �, κ and ξ be defined as in (2.6)
and (2.7) respectively. Suppose that the regularization parameter is chosen such
that for ζ ≥ αu

λ ≥ max

{
12 ‖∇Ln(β

∗)‖max ,
16Rξ

(1− κ)

}
. (2.8)

Suppose that κ < 1. Suppose that β̂ is a global minimizer of (1.12). Then for
any step size parameter ζ ≥ αu and tolerance parameter

δ2 ≥ cε2stat
1− κ

d logm

n
=: δ̄2, where ε2stat =

∥∥∥β̂ − β∗
∥∥∥2
2
, (2.9)

the following hold for all t ≥ T ∗(δ)

φ(βt)− φ(β̂) ≤ δ2, and for ε2 =
16δ4

λ2
∧ 4R2, (2.10)∥∥∥βt − β̂

∥∥∥2
2

≤ 2

ᾱ�

(
δ2 + 4νε2stat + 4τ(Ln)ε

2
)
, (2.11)

where ν = 64dτ(Ln), τ(Ln) � logm
n , and

T ∗(δ) =
2 log(φ(β

0)−φ(β̂)
δ2 )

log(1/κ)
+ log log

(
λR

δ2

)(
1 +

log 2

log(1/κ)

)
. (2.12)

We prove Theorem 2 in Section B. Theorem 2 is similar in spirit to the main
result Theorem 2 in [1] that deals with a convex loss function, and Theorem 3
in [31] on a similar setting to the present work. Compared to [31], we simplified
the condition on λ by not imposing an upper bound. Moreover, we present
refined analysis on the sample requirement and illuminate its dependence upon



Errors-in-variables models with dependent measurements 1713

the condition number κ(A) and the tolerance parameter τ when applied to
the corrected linear regression problem (1.10). It is understood throughout the
paper that for the same C as in (2.3),

τ � τ0
logm

n
, where τ0 � 400C2�(s0 + 1)2

λmin(A)
≈ M2

Aλmin(A)/10 (2.13)

and it is helpful to consider MA as being upper bounded by O(κ(A)) in view of
(2.1) and (A3). Toward this end, we prove in Section 5 that under event A0∩B0,
the RSC and RSM conditions as stated in Theorem 2 hold with α� � λmin(A)
and αu � λmax(A) and τ�(Ln) = τu(Ln) � τ ; then we have for all t ≥ T ∗(δ) as

defined in (2.12) and for δ2 � ε2stat
1−κ

d logm
n ,

∥∥∥βt − β̂
∥∥∥2
2

≤ 4

α�
δ2 +

α�

4
ε2stat +O

(
δ2ε2stat
b20

)
, (2.14)

where 0 < κ < 1 so long as ζ � λmax(A) and n = Ω(κ(A)M2
Ad logm).

We now check the conditions on λ in Theorem 2. First, we note that both
types of conditions on λ are also required in the present paper for the statistical
error bounds shown in Theorems 3 and 6. We state in Theorem 16 a deterministic
result from [30] on the statistical error for the corrected linear model, which
requires that

λ ≥ 2 ‖∇Ln(β
∗)‖max and λ ≥ 4b0

√
dτ � 4Rτ for τ := τ0

logm

n
(2.15)

as defined in (2.13) and dτ ≤ α�

32 in order to obtain the statistical error bound
for the corrected linear model at the order of

ε2stat =
∥∥∥β̂ − β∗

∥∥∥2
2
� 400

α2
�

λ2d.

Under suitable conditions on the sample size n and the effective rank of matrix
B to be stated in Theorem 3, we show that for the loss function (1.9), the RSC
and RSM conditions hold under event A0 (cf. Lemma 15) following the Lower
and Upper-RE conditions as derived in Lemma 15,

ᾱ� ≈ α� �
λmin(A)

2
, αu � 3λmax(A)

2
, and τ(Ln) � τ.

Compared with the lower bound imposed on λ as in (2.15) that we use to derive
statistical error bounds, the penalty now involves a term ξ

1−κ that crucially
depends on the condition number κ(A) in (2.8); Assuming that ζ ≥ αu, then
the second condition in (2.8) on λ implies that

λ = Ω(Rτ(Ln)κ(A)) given

ξ

1− κ
≥ 40τ(Ln)

ζ

ᾱ�
+ 2τ(Ln) � τκ(A), (2.16)
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which now depends explicitly on the condition number κ(A) in addition to the
radius R � b0

√
d and the tolerance parameter τ . This is expected given that

both RSC and RSM conditions are needed in order to derive the computational
convergence bounds, while for the statistical error, we only require the RSC
(Lower RE) condition to hold.
Remarks. Consider the regression model in (1.1a) and (1.1b) with independent
random matrices X0,W as in (1.4), and an error vector ε ∈ R

n independent
of X0,W , with independent entries εj satisfying Eεj = 0 and ‖εj‖ψ2

≤ Mε.
Theorem 12 and its corollaries provide an upper bound on the 
∞ norm of the
gradient ∇Ln(β

∗) = Γ̂β∗ − γ̂ of the loss function in the corrected linear model,

where Γ̂ and γ̂ are as defined in (1.6). Let

D′
0 = ‖B‖1/22 + a1/2max, and Doracle = 2(‖A‖1/22 + ‖B‖1/22 ). (2.17)

Specializing to the case of corrected linear models, we have by Corollary 14, on
event B0 as defined therein,

‖∇Ln(β
∗)‖∞ =

∥∥∥Γ̂β∗ − γ̂
∥∥∥
∞

≤ ψ

√
logm

n

where ψ := C0D
′
0K
(
Mε + τ

+/2
B K ‖β∗‖2

)
and τ

+/2
B = τ

1/2
B + Doracle√

m
for D′

0,

Doracle as defined in (2.17).

The bound (2.10) characterizes the excess loss φ(βt)− φ(β̂) for solving (1.7)
using the composite gradient algorithm; moreover, for any iterate βt such that
(2.10) holds, the following bound on the optimization error βt − β̂ follows im-
mediately: ∥∥∥βt − β̂

∥∥∥2
2

≤ 2

ᾱ�

(
δ2 + 4νε2stat +

64τ�(Ln)δ
4

λ2

)
,

where ν = 64dτ(Ln) and 4τ(Ln)ε
2 = 64τ(Ln)

δ4

λ2 by definition of ε2 in view
of (2.11). Finally, we note that Theorem 2 holds for a class of weakly convex
penalties as considered in [31] with suitable adaptation of RSC and parameters
and conditions to involve μ, following exactly the same sequence of arguments.
Notable examples of such weakly convex penalty functions are SCAD [19] and
MCP [55].

The rest of the paper is organized as follows. In Section 3, we present two
main results in Theorems 3 and 4. In Section 4, we state more precise results
which improve upon Theorems 3 and 4; these results are more precise in the
sense that our bounds and penalty parameters now take tr(B), the parameter
that measures the magnitudes of errors in W , into consideration. In Section 5,
we show that the RSC and RSM conditions hold for the corrected linear loss
function and present our computational convergence bounds with regard to (1.7)
in Theorem 9 and Corollary 10. In Section 6, we outline the proof of the main
theorems. In particular, we outline the proofs for Theorems 3, 4, 6 and 7 in
Section 6, 6.4 and 6.6 respectively. In Section 7, we show a deterministic result
as well as its application to the random matrix Γ̂ − A for Γ̂ as in (1.6) with
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regards to the upper and Lower RE conditions. In Section 8, we present results
from numerical simulations designed to validate the theoretical predictions in
previous sections. The technical details of proofs are collected at the end of the
paper. We prove Theorem 3 in Section 10. We prove Theorem 4 in Section 11.
We prove Theorems 6 and 7 in Section 12 and Section 13 respectively. We defer
the proof of Theorem 2 to Section B. The paper concludes with a discussion
of the results in Section 16. We list a set of symbols we use throughout the
paper in Table 1. Additional proofs and theoretical results are collected in the
Appendix.

Table 1

Symbols we used throughout the proof

Symbol Definition

α curvature: α := 5
8
λmin(A)

α� Lower RE/ RSC curvature parameter: α� = α
αu Upper RE/ RSM parameter αu � 3

2
λmax(A)

ε̄stat ε̄stat = 8
√
dεstat where εstat =

∥∥∥β̂ − β∗
∥∥∥
2

τ0 τ0 � 400C2�(s0+1)2

λmin(A)

τ =
λmin(A)−α

s0
tolerance parameter τ = τ0

logm
n

in Lower/Upper RE conditions

τB τB = tr(B)/n
s0 ≥ 1 the largest integer chosen such that the following inequality still holds:

√
s0	(s0) ≤ λmin(A)

32C

√
n

logm

	(s0) ρmax(s0, A) + τB
τ�(Ln) tolerance parameter in RSC condition: τ�(Ln) � τ0 logm/n
τu(Ln) tolerance parameters in RSM condition: τu(Ln) � τ0 logm/n
ν� ν� = 64dτ�(Ln) <

α�
60

ν(d,m, n) ν(d,m, n) = 64dτu(Ln)
ᾱ� effective RSC coefficient ᾱ� = α� − ν�
φ(β) loss function: φ(β) = 1

2
βT Γ̂β − γ̂T + ρλ(β)

∇Ln(β) Gradient of the loss function Γ̂β − γ̂

ρn ρn = C0K
√

logm
n

rm,n rm,n = 2C0K2
√

logm
mn

ζ step size parameter: ζ ≥ αu = 11λmax/8

� contraction parameter � :=
2ν(d,m,n)

ᾱ�
=

128dτu(Ln)
ᾱ�

< ᾱ�
8ζ

κ contraction coefficient as κ := (1− ᾱ�
4ζ

+ �)(1− �)−1 < 1

δ2 tolerance parameter in computational errors δ2 ≥ cε2stat
1−κ

d log p
n

MA MA =
64C�(s0)
λmin(A)

where 	(s0) = ρmax(s0, A) + τB .

M+ M+ =
32C�(s0+1)

λmin(A)
where 	(s0 + 1) = ρmax(s0 + 1, A) + τB .

ξ ξ = 2(τ�(Ln) ∨ τu(Ln))
(

ᾱ�
4ζ

+ 2�+ 5
)
(1− �)−1

V V = 3eM3
A/2

3. Main results on the statistical error

In this section, we will state our main results in Theorems 3 and 4 where
we consider the regression model in (1.1a) and (1.1b) with random matrices
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X0,W ∈ R
n×m as defined in (1.4). For the corrected Lasso estimator, we are in-

terested in the case where the smallest eigenvalue of the column-wise covariance
matrix A does not approach 0 too quickly and the effective rank of the row-wise
covariance matrix B is bounded from below (cf. (3.2)). More precisely, (A2)
thus ensures that the Lower-RE condition as in Definition 2.2 is not vacuous.
(A3) ensures that (2.2) holds for some s0 ≥ 1. Throughout this paper, for the
corrected Lasso estimator, we will use the expression

τ :=
λmin(A)− α

s0
, where α =

5

8
λmin(A) and s0 � 4n

M2
A logm

where MA is as defined in (2.3). Let

D0 =
√
τB + a1/2max and D2 = 2(‖A‖2 + ‖B‖2). (3.1)

Theorem 3. (Estimation for the corrected Lasso estimator) Consider
the regression model in (1.1a) and (1.1b) with independent random matrices
X0,W as in (1.4), and an error vector ε ∈ R

n independent of X0,W , with
independent entries εj satisfying Eεj = 0 and ‖εj‖ψ2

≤ Mε. Set n = Ω(logm).

Suppose n ≤ (V/e)m logm, where V is a constant which depends on λmin(A),
ρmax(s0, A) and tr(B)/n. Suppose m is sufficiently large.

Suppose (A1), (A2) and (A3) hold. Let C0, c
′, c2, c3 > 0 be some absolute

constants. Suppose that ‖B‖2F / ‖B‖22 ≥ logm. Suppose that c′K4 ≤ 1 and

r(B) :=
tr(B)

‖B‖2
≥ 16c′K4 n

logm
log

Vm logm

n
. (3.2)

Let b0, φ be numbers which satisfy

M2
ε

K2b20
≤ φ ≤ 1. (3.3)

Assume that the sparsity of β∗ satisfies for some 0 < φ ≤ 1

d := |supp(β∗)| ≤ c′φK4

40M2
+

n

logm
< n/2, (3.4)

where M+ =
32C�(s0 + 1)

λmin(A)

for �(s0 + 1) = ρmax(s0 + 1, A) + τB.

Let β̂ be an optimal solution to the corrected Lasso estimator as in (1.7) with

λ ≥ 4ψ

√
logm

n
where ψ := C0D2K (K ‖β∗‖2 +Mε) . (3.5)

Then for any d-sparse vectors β∗ ∈ R
m, such that

φb20 ≤ ‖β∗‖22 ≤ b20, (3.6)



Errors-in-variables models with dependent measurements 1717

we have ∥∥∥β̂ − β∗
∥∥∥
2
≤ 20

α
λ
√
d and

∥∥∥β̂ − β∗
∥∥∥
1
≤ 80

α
λd,

with probability at least 1−4 exp
(
− c3n

M2
A logm

log
(

Vm logm
n

))
−2 exp

(
− 4c2n

M2
AK4

)
−

22/m3.

We give an outline of the proof of Theorem 3 in Section 6.3. We prove The-
orem 3 in Section 10. We defer discussions on conditions appearing Theorem 3
in Section 3.2.

For the Conic programming estimator, we impose a restricted eigenvalue
condition as formulated in [4, 38] on A and assume that the sparsity of β∗ is
bounded by o(

√
n/ logm). These conditions will be relaxed in Section 4 where

we allow τB to approach 0.

Theorem 4. Suppose (A1) holds. Set 0 < δ < 1. Suppose that n < m � exp(n)
and 1 ≤ d0 < n. Let λ > 0 be the same parameter as in (1.8). Suppose that

‖B‖2F / ‖B‖22 ≥ logm. Suppose that the sparsity of β∗ is bounded by

d0 := |supp(β∗)| ≤ c0
√
n/ logm (3.7)

for some constant c0 > 0. Suppose

n ≥ 2000dK4

δ2
log

(
60em

dδ

)
where (3.8)

d = 2d0 + 2d0amax
16K2(2d0, 3k0, A

1/2)(3k0)
2(3k0 + 1)

δ2
. (3.9)

Consider the regression model in (1.1a) and (1.1b) with X0, W as in (1.4)
and an error vector ε ∈ R

n, independent of X0,W , with independent entries εj
satisfying Eεj = 0 and ‖εj‖ψ2

≤ Mε. Let β̂ be an optimal solution to the Conic

programming estimator as in (1.8) with input (γ̂, Γ̂) as defined in (1.6). Recall
τB := tr(B)/n. Choose for D0, D2 as in (3.1) and

μ � D2K
2

√
logm

n
and ω � D0KMε

√
logm

n
.

Then with probability at least 1− c′

m2 − 2 exp(−δ2n/2000K4),∥∥∥β̂ − β∗
∥∥∥
q
≤ CD2K

2d
1/q
0

√
logm

n

(
‖β∗‖2 +

Mε

K

)
(3.10)

for 2 ≥ q ≥ 1. Under the same assumptions, the predictive risk admits the
following bounds with the same probability as above,

1

n

∥∥∥X(β̂ − β∗)
∥∥∥2
2
≤ C ′D2

2K
4d0

logm

n

(
‖β∗‖2 +

Mε

K

)2

where c′, C0, C, C
′ > 0 are some absolute constants.

We give an outline of the proof of Theorem 4 in Section 6 while leaving the
detailed proof in Section 11.
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3.1. Regarding the MA constant

Denote by

MA =
64C�(s0)

λmin(A)
� ρmax(s0, A) + τB

λmin(A)

• (A3) ensures that MA and M+ are upper bounded by the condition num-

ber of A: κ(A) := λmax(A)
λmin(A) = O

(√
n

logm

)
given that τB := tr(B)/n =

O(λmax(A)).
• So the condition (3.4) in Theorem 3 allows d � n/ logm in the optimal

setting when the condition number κ(A) is understood to be a constant.
As κ(A) increases, the conservative worst case upper bound on d needs to
be adjusted correspondingly. Moreover, this adjustment is also crucial in
order to ensure the composite gradient algorithm to converge in the sense
of Theorem 2. We will illustrate such dependencies on κ(A) in numerical
examples in Section 8.

• The condition τB = O(λmax(A)) puts an upper bound on how large the
measurement error in W can be. We do not allow the measurement error
to overwhelm the signal entirely. When τB → 0, we recover the ordinary
Lasso bound in [4], which we elaborate in the next two sections.

Throughout this paper, we assume that MA � M+, where recall M+ =
32C�(s0+1)

λmin(A) .

3.2. Discussions

Throughout our analysis, we set the parameter b0 ≥ ‖β∗‖2 and d= |supp(β∗)| :=∣∣{j : β∗
j = 0}

∣∣ for the corrected Lasso estimator. In practice, both b0 and d are
understood to be parameters chosen to provide an upper bound on the 
2 norm
and the sparsity of the true β∗. The parameter 0 < φ < 1 is a parameter that
we use to describe the gap between ‖β∗‖22 and its upper bound b20. Denote the
Signal-to-noise ratio by

S/N := K2 ‖β∗‖22/M2
ε , where N := M2

ε and φK2b20 ≤ S := K2 ‖β∗‖22 ≤ K2b20.

The two conditions (3.3) and (3.6) on b0 and φ imply that N ≤ K2φb20 ≤ S.
Notice that this could be restrictive if φ is small. We will show in Section 6.3
that condition (3.3) is not needed in order for the 
p, p = 1, 2 errors as stated
in the Theorem 3 to hold. It was indeed introduced so as to further simplify
the expression for the condition on d as shown in (3.4). Therefore we provide
slightly more general conditions on d in (6.6) in Lemma 17, where (3.3) is not
required. We introduce the parameter φ so that the conditions on d depend on
φ and b20 rather than the true signal ‖β∗‖2 (cf. Proof of Lemmas 17 and 18). It
will also become clear in the sequel from the proof of Lemma 17 (cf. (H.4)) that
we could use ‖β∗‖2 rather than its the lower bound b20φ in the expression for d.
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However, we choose to state the condition on d as in Theorem 3 for clarity of
our exposition. See also Theorem 6 and Lemma 18.

In fact, we prove that Theorem 3 holds with N = M2
ε and S = φK2b20 in

arbitrary orders, so long as conditions (3.2) and (3.4) or (6.6) hold. For both

cases, we require that λ � (‖A‖2+‖B‖2)K
√
S+ N

√
logm
n as expressed in (3.5).

That is, when either the noise level Mε or the signal strength K ‖β∗‖ increases,
we need to increase λ correspondingly; moreover, when N dominates the signal
K2 ‖β∗‖22, we have for d � 1

M2
A

n
logm as in (3.4),

∥∥∥β̂ − β∗
∥∥∥
2
/ ‖β∗‖2 = OP

(
D2K

2

√
N

S

1

�(s0 + 1)

)
,

which eventually becomes a vacuous bound when N � S. This bound appears
a bit crude as it does not entirely discriminate between the noise, measurement
error, and the signal strength. We further elaborate on the relationships among
these three elements in Section 4. We will then present an improved bound in
Theorem 6.

1. The choice of λ for the Lasso estimator and parameters μ, ω for the DS-
type estimator satisfy

λ � μ ‖β∗‖2 + ω.

This relationship is made clear through Theorem 16 regarding the cor-
rected Lasso estimator, which follows from Theorem 1 by [30], and Lem-
mas 19 and 22 for the Conic programming estimator. The penalty pa-

rameter λ is chosen to bound
∥∥∥γ̂ − Γ̂β∗

∥∥∥
∞

from above, which is in turn

bounded in Theorem 12. See Corollaries 13 and 14, which are the key
results in proving Theorems 3, 4, 6, and 7.

2. Throughout our analysis of Theorems 3 and 4, our error bounds are stated
in a way assuming the errors in W are sufficiently large in the sense that
these bounds are optimal only when τB is bounded from below by some
absolute constant. For example, when ‖B‖2 is bounded away from 0, the
lower bound on the effective rank r(B) = tr(B)/ ‖B‖2 implies that τB
must also be bounded away from 0. More precisely, by the condition on
the effective rank as in (3.2), we have

τB =
tr(B)

n
≥ 16c′K4 ‖B‖2

logm
log

Vm logm

n
where V = 3eM3

A/2.

Later, we will state our results with τB = tr(B)/n > 0 being explicitly
included in the error bounds as well as the penalization parameters and
sparsity constraints.

3. In view of the main Theorems 3 and 4, at this point, we do not really
think one estimator is preferable to the other. While the 
q error bounds
we obtain for the two estimators are at the same order for q = 1, 2, the
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conditions under which these error bounds are obtained are somewhat
different. In Theorem 4, we only require that RE(2d0, 3k0, A

1/2) holds for
k0 = 1+λ where λ � 1, while in Theorem 3 we need the minimal eigenvalue
of A to be bounded from below, namely, we need to assume that (A2)
holds. As mentioned earlier, (A2) ensures that the Lower-RE condition as
in Definition 2.2 is not vacuous while (A3) ensures that (2.2) holds for
some s0 ≥ 1. Th condition (3.2) on the effective rank of the row-wise
covariance matrix B is also needed to establish the Lower and Upper RE
conditions in Lemma 15 for the corrected Lasso estimator. Moreover, for
the sparsity parameter d0 in (3.7), we show in Lemma 34 that (A2) is a
sufficient condition for a type of RE(2d0, 3k0) condition to hold on non

positive definite Γ̂ as defined in (1.6). See also Theorem 26.
4. In some sense, the assumptions in Theorem 3 appear to be slightly stronger,

while at the same time yielding correspondingly stronger results in the fol-
lowing sense: The corrected Lasso procedure can recover a sparse model
using O(logm) number of measurements per nonzero component despite
the measurement error in X and the stochastic noise ε, while the Conic
programming estimator allows only d �

√
n/ logm to achieve the error

rate at the same order as the corrected Lasso estimator. Hence, while
Conic programming estimator is conceptually more adaptive by not fixing
an upper bound on ‖β∗‖2 a priori, the price we pay seems to be a more
stringent upper bound on the sparsity level.

5. We note that following Theorem 2 as in [3], one can show that with-
out the relatively restrictive sparsity condition (3.7), a bound similar to
that in (3.10) holds, however, with ‖β∗‖2 being replaced by ‖β∗‖1, so
long as the sample size satisfies the condition as in (3.8). However, we
show in Theorem 7 in Section 6.6 that this restriction on the sparsity
can be relaxed for the Conic programming estimator (1.8), when we make
a different choice for the parameter μ based on a more refined analy-
sis.

Results similar to Theorems 3 and 4 have been derived in [30, 3], however,
under different assumptions on the distribution of the noise matrix W . When
W is a random matrix with i.i.d. subgaussian noise, our results in Theorems 3
and 4 will essentially recover the results in [30] and [3]. We compare with their
results in Section 4 in case B = τBI after we present our improved bounds in
Theorems 6 and 7. We refer to the paper of [3] for a concise summary of these
and some earlier results.

Finally, one reviewer asked about the dependence of the tuning parameter on

properties of A and B, namely parameters D0 =
√
τB + a

1/2
max, D′

0 = ‖B‖1/22 +

a
1/2
max and D2 = ‖A‖2 + ‖B‖2. We now state in Lemma 5 a sharp bound on

estimating τB using τ̂B as in (1.5), which will provide a natural plug-in estimate
for parameters such as D0 that involve τB .

Lemma 5. Let m ≥ 2. Let X be defined as in (1.4) and τ̂B be as defined in (1.5).
Denote by τB = tr(B)/n and τA = tr(A)/m. Suppose that n ∨ (r(A)r(B)) >
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logm. Denote by B6 the event such that

|τ̂B − τB | ≤ 2C0K
2

√
logm

mn

(‖A‖F√
m

+
‖B‖F√

n

)
=: D1rm,m,

where D1 =
‖A‖F√

m
+

‖B‖F√
n

and rm,m = 2C0K
2
√

logm
mn . Then P (B6) ≥ 1− 3

m3 .

If we replace
√
logm with logm in the definition of event B6, then we can

drop the condition on n or r(A)r(B) = tr(A)
‖A‖2

tr(B)
‖B‖2

to achieve the same bound on

event B6.

In an earlier version of the present work by the same authors [39], we pre-

sented the rate of convergence for using the corrected gram matrix B̂ :=
1
mXXT − tr(A)

m Im to estimate B and proved isometry properties in the op-
erator norm once the effective rank of A is sufficiently large compared to n; one
can then use such estimated B̂ and its operator norm in D2 and D′

0. See The-
orem 21 and Corollary 22 therein. As mentioned, we use the estimated τ̂B (cf.
Lemma 5) in D0. The dependencies on A, ‖β∗‖2 and ε are known problems in
the Lasso and corrected Lasso literature; see [4, 30]. For example, the RE con-
dition as stated in Definition 2.1 and its subgaussian concentration properties
as shown [38] clearly depend on unknown parameter amax related to covariance
matrix A. See Theorem 27 in the present paper. We prove Lemma 5 in Sec-
tion C.1. Lemma 5 provides the powerful technical insight and one of the key
ingredients leading to the tight analysis in Theorems 6 and 7 for the corrected
Lasso estimator (1.7) as well as the Conic programming estimator (1.8) in Sec-
tion 4, where we also present theory for which the dependency on ‖A‖2 becomes
extremely mild.

4. Improved bounds when the measurement errors are small

Although the conclusions of Theorems 3 and 4 apply to cases when ‖B‖2 → 0,
the error bounds are not as tight as the bounds we are about to derive in this
section. So far, we have used more crude approximations on the error bounds in

terms of estimating
∥∥∥γ̂ − Γ̂β∗

∥∥∥
∞

for the sake of reducing the amount of unknown

parameters we need to consider. The bounds we derive in this section take the
magnitudes of the measurement errors in W into consideration. As such, we
allow the error bounds to depend on the parameter τB explicitly, which become
much tighter as τB becomes smaller. For the extreme case when τB approaches
0, one hopes to recover a bound close to the regular Lasso or the Dantzig selector
as the effect of the noise on the procedure should become negligible. We show
in Theorems 6 and 7 that this is indeed the case. Denote by

τ
+/2
B :=

√
τB +

Doracle√
m

, where Doracle = 2(‖A‖1/22 + ‖B‖1/22 ). (4.1)
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We first state a more refined result for the Lasso-type estimator, for which we
now only require that

λ � (a1/2max + ‖B‖1/22 )K
√

N+ τBS

√
logm

n
.

That is, we replace
√
N+ S in λ (3.5) now with

√
N+ τBS, which leads to

significant improvement on the rates of convergence for estimating β∗ when
τB → 0.

Theorem 6. Suppose all conditions in Theorem 3 hold, except that we drop
(3.3) and replace (3.5) with

λ ≥ 4ψ

√
logm

n
, where ψ := C0D

′
0K
(
Mε + τ

+/2
B K ‖β∗‖2

)
(4.2)

for D′
0 and τ

+/2
B as defined in (2.17) and (4.1) respectively. Let c′, φ, b0,Mε, K

and M+ be as defined in Theorem 3. Let τ+B = (τ
+/2
B )2.

Suppose that for 0 < φ ≤ 1 and CA := 1
160M2

+
,

d := |supp(β∗)| ≤ CA
n

logm
{c′c′′Dφ ∧ 8} =: d̄0, where (4.3)

c′′ =
‖B‖2 + amax

�(s0 + 1)2
and Dφ =

K2M2
ε

b20
+ τ+BK4φ (4.4)

Then for any d-sparse vectors β∗ ∈ R
m, such that φb20 ≤ ‖β∗‖22 ≤ b20, we have∥∥∥β̂ − β∗

∥∥∥
2
≤ 20

α
λ
√
d and

∥∥∥β̂ − β∗
∥∥∥
1
≤ 80

α
λd (4.5)

with probability at least 1−4 exp
(
− c3n

M2
A logm

log
(

Vm logm
n

))
−2 exp

(
− 4c2n

M2
AK4

)
−

22/m3.

We give an outline for the proof of Theorem 6 in Section 6.4, and show the
actual proof in Section 12.

We next state in Theorem 7 an improved bounds for the Conic programming
estimator (1.8), which dramatically improve upon those in Theorem 4 when τB
is small, where an “oracle” rate for estimating β∗ with the Conic programming
estimator β̂ (1.8) is defined and the predictive error ‖Xv‖22 when τB = o(1) is
derived.

Let C0 satisfy (H.6) for c as defined in Theorem 31. Throughout the rest of
the paper, we denote by:

ρn = C0K

√
logm

n
and rm,m = 2C0K

2

√
logm

mn
; (4.6)

τ
†/2
B = (τ

1/2
B +

3

2
C6r

1/2
m,m) and τ ‡B � 2τB + 3C2

6rm,m. (4.7)
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Theorem 7. Let D0 =
√
τB+a

1/2
max, and D′

0, Doracle be as defined in (2.17). Let
C6 ≥ Doracle. Let ρn and rm,m be as defined in (4.6). Suppose all conditions in
Theorem 4 hold, except that we replace the condition on d as in (3.7) with the
following.

Suppose that the sample size n and the size of the support of β∗ satisfy the
following requirements:

d0 = O

(
τ−B

√
n

logm

)
, where τ−B ≤ 1

τ
1/2
B + 2C6r

1/2
m,m

, (4.8)

and n ≥ 2000dK4

δ2
log

(
60em

dδ

)
, where (4.9)

d = 2d0 + 2d0amax
16K2(2d0, 3k0, A

1/2)(3k0)
2(3k0 + 1)

δ2
.

Let τ̂B be as defined in defined in (1.5). Let β̂ be an optimal solution to the

Conic programming estimator as in (1.8) with input (γ̂, Γ̂) as defined in (1.6).
Suppose

ω � D0Mερn and μ � D′
0τ̃

1/2
B Kρn, (4.10)

where τ̃
1/2
B := τ̂

1/2
B + C6r

1/2
m,m.

Then with probability at least 1− c′′

m2 − 2 exp(−δ2n/2000K4), for 2 ≥ q ≥ 1,

∥∥∥β̂ − β∗
∥∥∥
q
≤ C ′D′

0K
2d

1/q
0

√
logm

n

(
τ
†/2
B ‖β∗‖2 +

Mε

K

)
; (4.11)

Under the same assumptions, the predictive risk admits the following bound

1
n

∥∥∥X(β̂ − β∗)
∥∥∥2
2
≤ C ′′(‖B‖2 + amax)K

2d0
logm
n

(
τ ‡BK

2 ‖β∗‖22 +M2
ε

)
,

with the same probability as above, where c′′, C ′, C ′′ > 0 are some absolute
constants.

We give an outline for the proof of Theorem 7 in Section 6.6, and show the
actual proof in Section 13.

4.1. Oracle results on the Lasso-type estimator

We now discuss the improvement being made in Theorem 6 and Theorem 7.
The Signal-to-noise ratio. Let us redefine the Signal-to-noise ratio by

S/M :=
K2 ‖β∗‖22

τ+BK2 ‖β∗‖22 +M2
ε

, where

S := K2 ‖β∗‖22 and M := M2
ε + τ+BK2 ‖β∗‖22 .
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When either the noise level Mε or the measurement error strength in terms

of τ
+/2
B K ‖β∗‖2 increases, we need to increase the penalty parameter λ corre-

spondingly; moreover, when d � 1
M2

A

n
logm , we have∥∥∥β̂ − β∗

∥∥∥
2

‖β∗‖2
= OP

(
D′

0K
2

√
M

S

1

�(s0 + 1)

)
,

which eventually becomes a vacuous bound when M � S.

Finally, suppose B = σ2
wI, we have ‖B‖1/22 = σw and τB = σ2

w. In this
setting, we recover essentially the same 
2 error bound as that in Corollary 1
of [30] in case ‖β∗‖2 � 1, as we have on event A0 ∩ B0,∥∥∥β̂ − β∗

∥∥∥
2
≤ C(σw + a

1/2
max)

λmin(A)

√
σ2
ε + σ2

w ‖β∗‖22

√
d logm

n

where σ2
ε � M2

ε and K2 � 1. However, when ‖β∗‖2 = Ω(1), our statistical
precision appears to be sharper as we allow the term ‖β∗‖2 to be removed
entirely from the RHS when σw → 0 and hence recover the regular Lasso rate
of convergence.
The penalization parameter. We focus now on the penalization parameter
λ in (1.7). The effective rank condition in (3.2) implies that for n = O(m logm)

‖B‖2 ≤ τB
16c′K4

logm

log(3eM3
A/2) + log(m logm)− log n

≤ CBτB logm

where CB = 1
16c′K4 log(3eM3

A/2)
given that log(m logm)− logn > 0. This bound

is very crude given that in practice, we focus on cases where n � m logm. Note
that under (A1) (A2) and (A3), we have for n = O(m logm),

τ+B � τB +
‖A‖2 + ‖B‖2

m

≤ τB +
1

m
(κ(A)λmin(A) + CBτB logm) � τB +O

(
λmin(A)√

m

)
.

Without knowing τB , we will use τ̂B as defined in (1.5). Notice that we know
neither D′

0 nor Doracle in the definition of λ, where D2
oracle � D2; Indeed,

2D2 ≤ D2
oracle ≤ 4D2.

However, assuming that we normalize the column norms of the design matrix
X to be roughly at the same scale, we have for τB = O(1) and m sufficiently
large,

D′
0 � 1 while Doracle/

√
m = o(1) in case ‖A‖2 , ‖B‖2 ≤ M

for some large enough constant M . In summary, compared to Theorem 3, in

ψ, we replace D2 = 2(‖A‖2 + ‖B‖2) with D′
0 := ‖B‖2

1/2
+ a

1/2
max so that the
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dependency on ‖A‖2 becomes much weaker. As mentioned in Section 3.2, we

may use the plug-in estimate ‖B̂‖2 in D′
0, where B̂ is the corrected gram matrix

1
mXXT − tr(A)

m Im. Finally, the concentration of measure bound for the estimator
τ̂B as in (1.5) is stated in Lemma 5, which ensures that τ̂B is indeed a good
proxy for τB (cf. Lemma 23).
The sparsity parameter. The condition on d (andDφ) for the Lasso estimator
as defined in (4.3) suggests that as τB → 0, and thus τ+B → 0, the constraint on
the sparsity parameter d becomes slightly more stringent when K2M2

ε /b
2
0 � 1

and much more restrictive whenK2M2
ε /b

2
0 = o(1). Moreover, suppose we require

M2
ε = Ω(τ+BK2 ‖β∗‖22),

that is, the stochastic error ε in the response variable y as in (1.1a) does not
converge to 0 as quickly as the measurement error W in (1.1b) does, then the
sparsity constraint becomes essentially unchanged as τ+B → 0 as we show now.

Case 1. Suppose τB → 0 and Mε = Ω(τ
+/2
B K ‖β∗‖2). In this case, essentially,

we require that

d ≤ c0λ
2
min(A)

�2(s0 + 1)

n

logm

{
c′c′′K2M2

ε

b20
∧ 1

}
(4.12)

where Dφ � K2M2
ε

b20
given that

τ+BK4φ ≤ τ+BK4 ‖β∗‖22
b20

� K2M2
ε

b20

where c0, c
′ are absolute constants and c′′ :=

‖B‖2+amax

�2(s0+1) � 1 where

�(s0 + 1) = ρmax(s0 + 1, A) + τB . In this case, the sparsity constraint
becomes essentially unchanged as τ+B → 0.

Case 2. Analogous to (3.4), when M2
ε ≤ τ+BφK2b20, we could represent the con-

dition on d as follows:

d ≤ CAc
′c′′τ+BK4φ

n

logm
≤ CAc

′c′′Dφ
n

logm

which is sufficient for (4.3) to hold for τB → 0; Indeed, by assumption
that c′K4 ≤ 1 and M2

ε ≤ τ+BφK2b20, we have

8 > 2c′K4τ+Bφ ≥ c′Dφ � c′τ+BK4φ.

Hence, for c′τ+BK4 ≤ 1, we have

d ≤ CA(c
′c′′τ+BK4φ ∧ 8)

n

logm
� CAc

′′(c′τ+BK4φ ∧ 8)
n

logm

≤ CAc
′′c′τ+BK4φ

n

logm
� CAc

′′c′Dφ
n

logm

This condition, however, seems to be unnecessarily strong, when τB → 0
(and Mε → 0 simultaneously). We focus on the following Case 2 in the
present work.



1726 M. Rudelson and S. Zhou

For both cases, it is clear that sample size needs to satisfy

n = Ω̃

(
d logm

(ρmax(s0 + 1, A) + τB)
4

λmin(A)2(‖B‖2 + amax)

)
,

where Ω̃(·) notation hides parameters K,Mε, φ and b0, which we treat as ab-
solute constants that do not change as τB → 0. These tradeoffs are somehow
different from the behavior of the Conic programming estimator (cf (4.13)). We
will provide a more detailed analysis in Sections 6.1 and 6.4.

4.2. Oracle results on the Conic programming estimator

In order to exploit the oracle bound as stated in Theorem 12 regarding∥∥∥γ̂ − Γ̂β∗
∥∥∥
∞
, we need to know the noise level τB := tr(B)/n in W and then we

can set

μ � D′
0(τ

1/2
B +

Doracle√
m

)Kρn while retaining ω � D0Mερn,

where recall ρn = C0K

√
logm

n
and D0 =

√
τB +

√
amax.

This will in turn lead to improved bounds in Theorems 6 and 7.
The penalization parameter. Without knowing the parameter τB , we rely on
the estimate from τ̂B as in (1.5), as discussed in Section 3. For a chosen param-

eter C6 � Doracle, we use τ̂
1/2
B + C6r

1/2
m,m to replace τ

+/2
B := τ

1/2
B +Doracle/

√
m

and set

μ � C0D
′
0K

2(τ̂
1/2
B +Doracler

1/2
m,m)

√
logm

n

in view of Corollary 14, where an improved error bound over
∥∥∥γ̂ − Γ̂β∗

∥∥∥
∞

is

stated. Without knowing Doracle, we could replace it with an upper bound; for

example, assuming that D2
oracle � ‖A‖2 + ‖B‖2 = O

(√
n

logm

)
, we could set

μ � C0D
′
0K

2(τ̂
1/2
B +O(m−1/4))

√
logm

n
.

The sparsity parameter. Roughly speaking, for the Conic programming es-
timator (1.8), one can think of d0 as being bounded:

d0 = O

(
τ−B

√
n

logm

∧ n

log(m/d0)

)
where τ−B � τ

−1/2
B (4.13)

That is, when τB decreases, we allow larger values of d0; however, when τB → 0,
the sparsity level of d = O (n/ log(m/d)) starts to dominate, which enables the
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Conic programming estimator to achieve results similar to the Dantzig Selec-
tor when the design matrix X0 is a subgaussian random matrix satisfying the
Restricted Eigenvalue conditions; See for example [6, 4, 38].

In particular, when τB → 0, Theorem 7 allows us to recover a rate close
to that of the Dantzig selector with an exact recovery if τB = 0 is known a
priori; see Section 16. Moreover the constraint (3.7) on the sparsity parameter
d0 appearing in Theorem 4 can now be relaxed as in (4.8). In summary, our
results in Theorem 7 are stronger than those in [3] (cf. Corollary 1) as their rates
as stated therein are at the same order as ours in Theorem 4. We illustrate this
dependency on τB in Section 8 with numerical examples, where we clearly show
an advantage by taking the noise level into consideration when choosing the
penalty parameters for both the Lasso and the Conic programming estimators.

5. Optimization error on the gradient descent algorithm

We now present our computational convergence bounds. First we present Lem-
ma 8 regarding the RSC and RSM conditions on the loss function (1.7). Lemma 8
follows from Lemma 15 immediately.

Lemma 8. Suppose all conditions as stated in Theorem 3 hold. Suppose event
A0 holds. Then (2.4) and (2.5) hold with α� =

5
8λmin(A), αu = 11

8 λmax(A) and

τ�(Ln) = τu(Ln) = τ0
logm

n
, where τ0 � 400C2�(s0 + 1)2

λmin(A)
.

Theorem 9. Suppose all conditions in Theorem 6 hold and let ψ be defined
therein. Let g(β) = 1

λρλ(β) where ρλ(β) = λ ‖β‖1. Consider the optimization
program (1.10) for a radius R such that β∗ is feasible and a regularization pa-
rameter chosen such that

λ ≥
(
16Rξ

1− κ

)∨(
12ψ

√
logm

n

)
. (5.1)

Suppose that the step size parameter ζ ≥ αu � 3
2λmax(A). Suppose that the

sparsity parameter and sample size further satisfy the following relationship:

d <
n

512τ0 logm

(
λmin(A)

2

12λmax(A)

∧ (α�)
2

5ζ

)
=: d̄. (5.2)

Then on event A0 ∩ B0, the conclusions in Theorem 2 hold, where

P (A0 ∩ B0) ≥ 1− 4 exp

(
− c3n

M2
A logm

log

(
Vm logm

n

))
−2 exp

(
− 4c2n

M2
AK

4

)
− 22/m3.
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Corollary 10. Suppose all conditions as stated in Theorem 9 hold and event
A0 ∩ B0 defined therein holds. Consider for some constant M ≤ 400τ0 and δ̄2

as defined in Theorem 2,

δ2 � cε2stat
1− κ

d logm

n
=: δ̄2 and δ2 ≤ Mδ̄2 ≤ 400τ0δ̄

2.

Then for all t ≥ T ∗(δ) as in (2.12) and R = Ω(b0
√
d),∥∥∥βt − β̂

∥∥∥2
2

≤ 3

α�
δ2 +

α�

4
ε2stat +O

(
δ2ε2stat
b20

)
. (5.3)

Finally, suppose we fix for M+ = 32C�(s0+1)
λmin(A) ,

R �
√

d̄b0 � b0

20M+

√
6κ(A)

√
n

logm
,

in view of the upper bound d̄ (5.2). Then for all t ≥ T ∗(δ) as in (2.12),∥∥∥βt − β̂
∥∥∥2
2

≤ 3

α�
δ2 +

α�

4
ε2stat +

2

α�

δ4

b20 ‖A‖2
. (5.4)

We prove Theorem 9 and Corollary 10 in Section 14.

5.1. Discussions

Throughout this section, we assume ψ (4.2) is as defined in Theorem 6. Assume
that ζ ≥ αu ≥ ᾱ�. In addition, suppose that the radius R � b0

√
d as we set

in (1.7). Let d̄0 ≤ n
160M2

+ logm
be as defined in (4.3), where recall that we require

the following condition on d:

d ≤ CA {c′Cφ ∧ 8} n

logm
=: d̄0, where CA =

1

160M2
+

,

Cφ =
‖B‖2 + amax

�(s0 + 1)2
Dφ and b20 ≥ ‖β∗‖22 ≥ φb20.

Then by the proof of Lemma 18,

b0
√

d̄0 ≤ 5s0
3α

√
logm

n
ψ =:

ψ

τ

√
logm

n
, where τ =

3α

5s0
. (5.5)

In contrast, under (5.2), the following upper bound holds on d, which is slightly
more restrictive in the sense that the maximum level of sparsity allowed on β∗

has decreased by a factor proportional to κ(A) compared to the upper bound
d̄0 (4.3) in Theorem 6; Now we require that |supp(β∗)| ≤ d̄, where for CA =

1
160M2

+
,

d̄ � nλmin(A)
2

1024C2�(s0 + 1)2 logm

1

2400κ(A)
(5.6)

≈ CA
n

logm

(
λmin(A)

15λmax(A)

)
� d̄0

1

κ(A)
.
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To consider the general cases as stated in Theorem 6, we consider the ideal case
when we set

ζ = αu =
11

8
λmax(A)

such that
ζ

ᾱ�
≈ αu/(

59

60
α�) � κ(A), where α� =

5

8
λmin(A).

Following the derivation in Remark 14.1, we have

ξ

1− κ
≤ 6τ(Ln) +

80ζ

ᾱ�
τ(Ln) ≈ 200κ(A)τ(Ln). (5.7)

Combining (5.5) and (5.7), it is clear that one can set

λ = Ω

(
κ(A)ψ

√
logm

n

)
(5.8)

in order to satisfy the condition (5.1) on λ in Theorem 2 when we set

R � b0
√
d̄0 = O

(
ψ

τ

√
logm

n

)
(5.9)

and hence Rτκ(A) = O

(
κ(A)ψ

√
logm

n

)
.

This choice is potentially too conservative because we are setting R in (5.9) with
respect to the upper sparsity level d̄0 chosen to guarantee statistical convergence,
leading to a larger than necessary penalty parameter as in (5.8). Similarly, when
we choose step size parameter ζ to be too large, we need to increase the penalty

parameter λ correspondingly given the following lower bound: λ = Ω
(

Rξ
1−κ

)
where

Rξ

1− κ
= R

(
2τ(Ln)

(
ᾱ�

4ζ + 2�
ᾱ�

4ζ − 2�
+

5
ᾱ�

4ζ − 2�

))

≥ 40Rτ(Ln)
ζ

ᾱ�
+ 2Rτ(Ln) � Rτ(Ln)κ(A).

Suppose we set ζ = 3
2λmax(A) and ζ

ᾱ�
≈ 3κ(A) as in Theorem 9. It turns out

that the less conservative choice of λ as in (5.10)

λ �
(
b0
√

κ(A)�(s0)
∨

ψ
)√ logm

n
(5.10)

is sufficient, for example when τB = Ω(1), for which we now set

R � b0
√
d � b0

20M+

1√
6κ(A)

√
n

logm

as in Corollary 10. We will discuss the two scenarios as considered in Section 4.
See the detailed discussions in Section 14.
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6. Proof of theorems

In Section 6.1, we develop in Theorem 12 the crucial large deviation bound on∥∥∥γ̂ − Γ̂β∗
∥∥∥. This entity appears in the constraint set in the Conic programming

estimator (1.8), and is directly related to the choice of λ for the corrected Lasso
estimator in view of Theorem 16. Its corollaries are stated in Corollary 13 and
Corollary 14. In section 6.3, we provide an outline and additional Lemmas 15
and 17 to prove Theorem 3. The full proof of Theorem 3 appears in Section 10. In
Section 6.4, we give an outline illustrating the improvement for the Lasso error
bounds as stated in Theorem 6. We emphasize the impact of this improvement
over sparsity parameter d, which we restate in Lemma 18. In Section 6.5, we
provide an outline as well as technical results for Theorem 4. In Section 6.6,
we give an outline illuminating the improvement in error bounds for the Conic
programming estimator as stated in Theorem 7.

6.1. Stochastic error terms

In this section, we first develop stochastic error bounds in Lemma 11, where
we also define some events B4,B5,B10. Recall that B6 was defined in Lemma 5.
Putting the bounds in Lemma 11 together with that in Lemma 5 yields Theo-
rem 12.

Lemma 11. Assume that the stable rank of B, ‖B‖2F / ‖B‖22 ≥ logm. Let Z,X0

and W as defined in Theorem 3. Let Z0, Z1 and Z2 be independent copies of Z.
Let εT ∼ YMε/K where Y := eT1 Z

T
0 . Denote by B4 the event such that for

ρn := C0K
√

logm
n ,

1
n

∥∥∥A 1
2ZT

1 ε
∥∥∥
∞

≤ ρnMεa
1/2
max

and 1
n

∥∥∥ZT
2 B

1
2 ε
∥∥∥
∞

≤ ρnMε
√
τB where τB =

tr(B)

n
.

Then P (B4) ≥ 1− 4/m3. Moreover, denote by B5 the event such that

1
n

∥∥(ZTBZ − tr(B)Im)β∗∥∥
∞ ≤ ρnK ‖β∗‖2

‖B‖F√
n

and 1
n

∥∥XT
0 Wβ∗∥∥

∞ ≤ ρnK ‖β∗‖2
√
τBa

1/2
max.

Then P (B5) ≥ 1− 4/m3.
Finally, denote by B10 the event such that

1
n

∥∥(ZTBZ − tr(B)Im)
∥∥
max

≤ ρnK
‖B‖F√

n

and 1
n

∥∥XT
0 W

∥∥
max

≤ ρnK
√
τBa

1/2
max.

Then P (B10) ≥ 1− 4/m2.
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We prove Lemma 11 in Section C.2. Denote by B0 := B4 ∩B5 ∩B6, which we
use throughout this paper.

Theorem 12. Suppose (A1) holds. Let ρn = C0K
√

logm
n . Suppose that

‖B‖2F / ‖B‖22 ≥ logm where m ≥ 16.

Let Γ̂ and γ̂ be as in (1.6). Let D0 =
√
τB +

√
amax and D′

0 be as defined in

(2.17). Let D1 =
‖A‖F√

m
+

‖B‖F√
n

. On event B0, for which P (B0) ≥ 1− 16/m3,∥∥∥γ̂ − Γ̂β∗
∥∥∥
∞

≤
(
D′

0Kτ
1/2
B ‖β∗‖2 +

2D1K√
m

‖β∗‖∞ +D0Mε

)
ρn. (6.1)

We next state the first Corollary 13 of Theorem 12, which we use in proving

Theorems 3 and 4. Here we state a somewhat simplified bound on
∥∥∥γ̂ − Γ̂β∗

∥∥∥
∞

for the sake of reducing the number of unknown parameters involved with a
slight worsening of the statistical error bounds when τB � 1. On the other hand,
the bound in (6.1) provides a significant improvement over the error bound in
Corollary 13 in case τB = o(1).

Corollary 13. Suppose all conditions in Theorem 12 hold. Let Γ̂ and γ̂ be as
in (1.6). On event B0, we have for D2 = 2(‖A‖2 + ‖B‖2) and some absolute
constant C0∥∥∥γ̂ − Γ̂β∗

∥∥∥
∞

≤ ψ

√
logm

n
, where ψ = C0D2K (K ‖β∗‖2 +Mε)

is as defined in Theorem 3.

In particular, Corollary 13 ensures that for the corrected Lasso estimator,
(6.5) holds with high probability for λ chosen as in (3.5). We prove Corollary 13
in Section D.

6.2. What happens when τB → 0?

Recall D0 =
√
τB + a

1/2
max and D′

0 :=
√

‖B‖2 + a
1/2
max. When τB → 0, we have by

Theorem 12∥∥∥γ̂ − Γ̂β∗
∥∥∥
∞

= O

(
D1K

1√
m

‖β∗‖∞ +D0KMε

)
K

√
logm

n

where D0 → a
1/2
max and D1 =

‖A‖F√
m

+
‖B‖F√

n
→ ‖A‖1/22 under (A1), given that

‖B‖F /
√
n ≤ τ

1/2
B ‖B‖1/22 → 0. In this case, the error term involving ‖β∗‖2

in (4.2) vanishes, and we only need to set (cf. Theorem 16)

λ ≥ 2ψ

√
logm

n
for ψ � a1/2maxKMε + ‖A‖1/22 K2 ‖β∗‖∞ /m1/2,
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where the second term in ψ defined immediately above comes from the esti-
mation error in Lemma 5; this term vanishes if we were to assume that (1)
tr(B) is also known or (2) ‖β∗‖∞ = o(Mεm

1/2/K). For both cases, by setting

λ � 4a
1/2
maxKMε

√
logm
n , we can recover the regular Lasso rate of∥∥∥β̂ − β∗

∥∥∥
q
= Op(λd

1/q), for q = 1, 2,

when the design matrix X is almost free of measurement errors.
Finally, we state a second Corollary 14 of Theorem 12. Corollary 14 is essen-

tially a restatement of the bound in (6.1).

Corollary 14. Suppose all conditions in Theorem 12 hold. Let D0, D
′
0, Doracle,

and τ
+/2
B := τ

1/2
B + Doracle√

m
be as defined in (2.17) and (4.1). On event B0,

∥∥∥γ̂ − Γ̂β∗
∥∥∥
∞

≤ ψ

√
logm

n
, where

ψ := C0K
(
D′

0τ
+/2
B K ‖β∗‖2 +D0Mε

)
.

Then P (B0) ≥ 1− 16/m3.

We mention in passing that Corollaries 13 and 14 are crucial in proving
Theorems 3, 4, 6 and 7.

6.3. Outline for proof of Theorem 3

In this section, we state Theorem 16, and two Lemmas 15 and 17. Theorem 3
follows from Theorem 16 in view of Corollary 13, Lemmas 15 and 17. In more de-
tails, Lemma 15 checks the Lower and the Upper RE conditions on the modified
gram matrix,

Γ̂A := 1
n (X

TX − t̂r(B)Im), (6.2)

while Lemma 17 checks condition (6.4) as stated in Theorem 16 for curvature
α and tolerance τ regarding the lower RE condition as derived in Lemma 15.

First, we replace (A3) with (A3’) which reveals some additional information
regarding the constant hidden inside the O(·) notation.
(A3’) Suppose (A3) holds; moreover, mn ≥ 4096C2

0D
2
2K

4 logm/λ2
min(A) for

D2 = 2(‖A‖2 + ‖B‖2), or equivalently,

λmin(A)

‖A‖2 + ‖B‖2
> CK

√
logm

mn
for some large enough contant CK .

Lemma 15. (Lower and Upper-RE conditions) Suppose (A1), (A2) and
(A3’) hold. Denote by V := 3eM3

A/2, where MA is as defined in (2.3). Let
s0 ≥ 32 be as defined in (2.2). Recall that we denote by A0 the event that the
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modified gram matrix Γ̂ as defined in (1.6) satisfies the Lower as well as Upper
RE conditions with

curvature α =
5

8
λmin(A), smoothness α̃ =

11

8
λmax(A)

and tolerance
384C2�(s0)

2

λmin(A)

logm

n
≤ τ :=

λmin(A)− α

s0

≤ 396C2�2(s0 + 1)

λmin(A)

logm

n

for α, α̃ and τ as defined in Definitions 2.2 and 2.3, and C, s0, �(s0) in (2.2).
Suppose that for some c′ > 0 and c′K4 < 1,

tr(B)

‖B‖2
≥ c′K4 s0

ε2
log

(
3em

s0ε

)
where ε =

1

2MA
. (6.3)

Then P (A0) ≥ 1− 4 exp
(
− c3n

M2
A logm

log
(

Vm logm
n

))
− 2 exp

(
− 4c2n

M2
AK4

)
− 6/m3.

The main focus of the current section is then to apply Theorem 16 to show
Theorem 3. Theorem 16 follows from Theorem 1 by [30].

Theorem 16. Consider the regression model in (1.1a) and (1.1b). Let d ≤ n/2.

Let γ̂, Γ̂ be as constructed in (1.6). Suppose that the matrix Γ̂ satisfies the Lower-
RE condition with curvature α > 0 and tolerance τ > 0,

√
dτ ≤ min

{
α

32
√
d
,
λ

4b0

}
, (6.4)

where d, b0 and λ are as defined in (1.7). Then for any d-sparse vectors β∗ ∈ R
m,

such that ‖β∗‖2 ≤ b0 and ∥∥∥γ̂ − Γ̂β∗
∥∥∥
∞

≤ 1

2
λ, (6.5)

the following bounds hold:∥∥∥β̂ − β∗
∥∥∥
2
≤ 20

α
λ
√
d and

∥∥∥β̂ − β∗
∥∥∥
1
≤ 80

α
λd,

where β̂ is an optimal solution to the corrected Lasso estimator as in (1.7).

We include the proof of Theorem 16 for the sake of self-containment and defer
it to Section G for clarity of presentation.

Lemma 17. Let c′, φ, b0,Mε, M+ and K be as defined in Theorem 3, where we
assume that b20 ≥ ‖β∗‖22 ≥ φb20 for some 0 < φ ≤ 1. Suppose all conditions in
Lemma 15 hold. Suppose that s0 ≥ 32 and
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d := |supp(β∗)| ≤ CA
n

logm
{c′Dφ ∧ 2} , where (6.6)

CA :=
1

40M2
+

and Dφ = K4

(
M2

ε

K2b20
+ φ

)
≥ K4φ ≥ φ.

Then the following condition holds

d ≤ α

32τ

∧ 1

τ2
logm

n

(
ψ

b0

)2

, (6.7)

where ψ = C0D2K(K ‖β∗‖2 +Mε) is as defined in (3.5), α = 5λmin(A)/8, and
τ is as defined in Lemma 15.

We prove Lemmas 15 and 17 in Sections F and H.1 respectively. Lemma 15
follows immediately from Corollary 25. We prove Lemmas 15 and Corollary 25
in Sections F and L respectively.

Remark 6.1. Clearly for d, b0, φ as bounded in Theorem 3, we have by assump-
tion (3.3) the following upper and lower bound on Dφ:

2K4φ ≥ Dφ :=

(
M2

ε K
2

b20
+K4φ

)
≥ K4φ.

In this regime, the conditions on d as in (6.6) can be conveniently expressed as
that in (3.4) instead.

6.4. Improved bounds for the corrected Lasso estimator

The proof of Theorem 6 follows exactly the same line of arguments as in
Theorem 3, except that we now use the improved bound on the error term∥∥∥γ̂ − Γ̂β∗

∥∥∥
∞

given in Corollary 14, instead of that in Corollary 13. Moreover,

we replace Lemma 17 with Lemma 18, the proof of which follows from Lemma 17
with d now being bounded as in (4.3) and ψ being redefined as in (6.2). The
proof of Lemma 18 appears in Section H.2. See Section 12 for the proof of
Theorem 6.

Lemma 18. Let c′, φ, b0,Mε, M+ and K be as defined in Theorem 3. Suppose
all conditions in Lemma 15 hold. Suppose that (4.3) holds:

d := |supp(β∗)| ≤ CA
n

logm
{c′c′′Dφ ∧ 8} , where CA :=

1

160M2
+

, (6.8)

c′′ :=
‖B‖2 + amax

�(s0 + 1)2
≤
(

D′
0

�(s0 + 1)

)2

and Dφ =
K2M2

ε

b20
+ τ+BK4φ.

Then (6.7) holds with ψ as defined in Theorem 6 and α = 5
8λmin(A).
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6.5. Outline for proof of Theorem 4

We provide an outline and state the technical lemmas needed for proving The-
orem 4. Our first goal is to show that the following holds with high probability,∥∥∥γ̂ − Γ̂β∗

∥∥∥
∞

=
∥∥ 1
nX

T (y −Xβ∗) + 1
n t̂r(B)β∗∥∥

∞ ≤ μ ‖β∗‖2 + ω,

where μ, ω are chosen as in (6.9). This forms the basis for proving the 
q conver-
gence, where q ∈ [1, 2], for the Conic programming estimator (1.8). This follows
immediately from Theorem 12 and Corollary 13. More explicitly, we will state
it in Lemma 19.

Lemma 19. Let D0 =
√
τB +

√
amax and D2 = 2(‖A‖2 + ‖B‖2) be as in

Theorem 4. Suppose all conditions in Theorem 12 hold. Then on event B0 as
defined therein, the pair (β, t) = (β∗, ‖β∗‖2) belongs to the feasible set of the
minimization problem (1.8) with

μ � 2D2Kρn and ω � D0Mερn, where ρn := C0K

√
logm

n
. (6.9)

Before we proceed, we first need to introduce some notation and definitions.
Let X0 = Z1A

1/2 be defined as in (1.4). Let k0 = 1+ λ. First we need to define
the 
q-sensitivity parameter for Ψ := 1

nX
T
0 X0 following [3]:

κq(d0, k0) = min
J:|J|≤d0

min
Δ∈ConeJ (k0)

‖ΨΔ‖∞
‖Δ‖q

, where (6.10)

ConeJ(k0) = {x ∈ R
m | s.t. ‖xJc‖1 ≤ k0 ‖xJ‖1} .

See also [21]. Let (β̂, t̂) be the optimal solution to (1.8) and denote by v = β̂−β∗.
We will state the following auxiliary lemmas, the first of which is deterministic in
nature. The two lemmas reflect the two geometrical constraints on the optimal
solution to (1.8). The optimal solution β̂ satisfies:

1. The vector v obeys the following cone constraint: ‖vSc‖1 ≤ k0 ‖vS‖1, and
t̂ ≤ 1

λ ‖v‖1 + ‖β∗‖2.
2. ‖Ψv‖∞ is upper bounded by a quantity at the order of O(μ(‖β∗‖2 +

‖v‖1) + ω).

Lemma 20. Let μ, ω > 0 be set. Suppose that the pair (β, t) = (β∗, ‖β∗‖2)
belongs to the feasible set of the minimization problem (1.8), for which (β̂, t̂) is

an optimal solution. Denote by v = β̂ − β∗. Then

‖vSc‖1 ≤ (1 + λ) ‖vS‖1 and t̂ ≤ 1

λ
‖v‖1 + ‖β∗‖2 .

Lemma 21. On event B0 ∩ B10,

‖Ψv‖∞ ≤ μ1 ‖β∗‖2 + μ2 ‖v‖1 + ω′,

where μ1 = 2μ, μ2 = μ( 1λ + 1) and ω′ = 2ω for μ, ω as defined in (6.9).
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Now combining Lemma 6 of [3] and an earlier result of the two authors (cf.
Theorem 27 [38]), we can show that the RE(2d0, 3(1 + λ), A1/2) condition and
the sample requirement as in (3.8) are enough to ensure that the 
q-sensitivity
parameter satisfies the following lower bound for all 1 ≤ q ≤ 2: for some con-
tant c,

κq(d0, k0) ≥ cd
−1/q
0 ,

which ensures that for v = β̂ − β∗ and Ψ = 1
nX

T
0 X0,

‖Ψv‖∞ ≥ κq(d0, k0)‖v‖q ≥ cd
−1/q
0 ‖v‖q . (6.11)

Combining (6.11) with Lemmas 19, 20 and 21 gives us both the lower and upper
bounds on ‖Ψv‖∞, with the lower bound being κq(d0, k0) ‖v‖q and the upper
bound as specified in Lemma 21. Following some algebraic manipulation, this
yields the bound on the ‖v‖q for all 1 ≤ q ≤ 2. We prove Theorem 4 in Section 11
and Lemmas 19, 20 and 21 in Section I. The proof of Lemma 20 follows the same
line of arguments in [3] in view of Lemma 19.

6.6. Improved bounds for the DS-type estimator

Lemma 22 follows directly from Corollary 14.

Lemma 22. Suppose all conditions in Corollary 14 hold. Let D0 =
√
τB +√

amax � 1 under (A1). Then on event B0, the pair (β, t) = (β∗, ‖β∗‖2) belongs
to the feasible set Υ of the minimization problem (1.8) with

μ ≥ D′
0τ

+/2
B Kρn and ω ≥ D0Mερn, (6.12)

where τ
+/2
B := τ

1/2
B + Doracle√

m
is as defined in (4.1).

Lemma 23. On event B6 and (A1), the choice of τ̃
1/2
B := τ̂

1/2
B +C6r

1/2
m,m as in

(4.10), where recall rm,m = 2C0K
2
√

logm
mn , satisfies for m ≥ 16 and C0 ≥ 1,

τ
+/2
B ≤ τ̃

1/2
B ≤ τ

1/2
B +

3

2
C6r

1/2
m,m =: τ

†/2
B , (6.13)

τ̃B ≤ 2τB + 3C2
6rm,m � τ ‡B , and moreover τ̃

1/2
B τ−B ≤ 1. (6.14)

We next state an updated result in Lemma 24.

Lemma 24. On event B0 ∩ B10, the solution β̂ to (1.8) with μ, ω as in (4.10)

satisfies for v := β̂ − β∗∥∥ 1
nX

T
0 X0v

∥∥
∞ ≤ μ1 ‖β∗‖2 + μ2 ‖v‖1 + ω′,

where μ1 = 2μ, μ2 = 2μ(1 + 1
2λ ) and ω′ = 2ω.



Errors-in-variables models with dependent measurements 1737

7. Lower and Upper RE conditions

The goal of this section is to show that for Δ defined in (7.2), the presumption
in Lemmas 37 and 39 as restated in (7.1) holds with high probability (cf Theo-
rem 26). We first state a deterministic result showing that the Lower and Upper

RE conditions hold for Γ̂A under condition (7.1) in Corollary 25. This allows us
to prove Lemma 15 in Section F. See Sections K and L, where we show that
Corollary 25 follows immediately from the geometric analysis result as stated in
Lemma 39.

Corollary 25. Let 1/8 > δ > 0. Let 1 ≤ k < m/2. Let Am×m be a symmetric

positive semidefinite covariance matrice. Let Γ̂A be an m×m symmetric matrix
and Δ = Γ̂A − A. Let E = ∪|J|≤kEJ , where EJ = span{ej : j ∈ J}. Suppose
that ∀u, v ∈ E ∩ Sm−1

∣∣uTΔv
∣∣ ≤ δ ≤ 3

32
λmin(A). (7.1)

Then the Lower and Upper RE conditions hold: for all υ ∈ R
m,

υT Γ̂Aυ ≥ 5

8
λmin(A) ‖υ‖22 −

3λmin(A)

8k
‖υ‖21

and υT Γ̂Aυ ≤ 11

8
λmax(A) ‖υ‖22 +

3λmin(A)

8k
‖υ‖21 .

Theorem 26. Let Am×m, Bn×n be symmetric positive definite covariance ma-
trices. Let E = ∪|J|≤kEJ for 1 ≤ k < m/2. Let Z,X be n×m random matrices
defined as in Theorem 3. Let τ̂B be defined as in (1.5). Let

Δ := Γ̂A −A := 1
nX

TX − τ̂BIm −A.

Suppose that for some absolute constant c′ > 0 and 0 < ε ≤ 1
C ,

tr(B)

‖B‖2
≥

(
c′K4 k

ε2
log

(
3em

kε

))∨
logm, (7.2)

where C = C0/
√
c′ for C0 as chosen to satisfy (H.6).

Then with probability at least 1− 4 exp
(
−c2ε

2 tr(B)
K4‖B‖2

)
− 2 exp

(
−c2ε

2 n
K4

)
−

6/m3 for c2 ≥ 2, we have for all u, v ∈ E ∩ Sm−1,

∣∣uTΔv
∣∣ ≤ 8C�(k)ε+ 4C0D1K

2

√
logm

mn
,

where �(k) = τB + ρmax(k,A), and D1 ≤ ‖A‖F√
m

+
‖B‖F√

n
,

We prove Theorem 26 in Section M.
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8. Numerical results

In this section, we present results from numerical simulations designed to val-
idate the theoretical predictions as presented in previous sections. We imple-
mented the composite gradient descent algorithm as described in [1, 30, 31]

for solving the corrected Lasso objective function (1.7) with (Γ̂, γ̂) as defined
in (1.6). For the Conic programming estimator, we use the implementation pro-

vided by the authors [3] with the same input (Γ̂, γ̂) (1.6). Throughout our ex-
periments, A is a correlation matrix with amax = 1. We set the following as our

default parameters: D′
0 = ‖B‖1/22 +1, D0 =

√
τB + 1 and R = ‖β∗‖2

√
d, where

d is the sparsity parameter, the number of non-zero entries in β∗. In one set of
simulations, we also vary R.

In our simulations, we look at three different models from which A and B
will be chosen. Let Ω = A−1 = (ωij) and Π = B−1 = (πij). Let E denote edges
in Ω, and F denote edges in Π. We choose A from one of these two models:

• AR(1) model. In this model, the covariance matrix is of the form A =
{ρ|i−j|}i,j . The graph corresponding to the precision matrix A−1 is a chain.

• Star-Block model. In this model the covariance matrix is block-diagonal
with equal-sized blocks whose inverses correspond to star structured
graphs, where Aii = 1, for all i. We have 32 subgraphs, where in each
subgraph, 16 nodes are connected to a central hub node with no other
connections. The rest of the nodes in the graph are singletons. The co-
variance matrix for each block S in A is generated by setting Sij = ρA if
(i, j) ∈ E, and Sij = ρ2A otherwise, where ρA ∈ {0.3, 0.5, 0.7, 0.9}.

We choose B from one of the following models. Recall that τB = tr(B)/n.

• For B and B∗ = B/τB = ρ(B), we consider the AR(1) model with two
parameters. First we choose the AR(1) parameter ρB∗ ∈ {0.3, 0.7} for the
correlation matrix B∗. We then set B = τBB

∗, where τB ∈ {0.3, 0.7, 0.9},
depending on the experimental setup.

• We also consider a second model based on Π = B−1, where we use the
random concentration matrix model in [57]. The graph is generated ac-
cording to a type of Erdős–Rényi random graph model. Initially, we set
Π = cIn×n, and c is a constant. Then we randomly select n logn edges and
update Π as follows: for each new edge (i, j), a weight w > 0 is chosen uni-
formly at random from [wmin, wmax] where wmax > wmin > 0; we subtract
w from πij and πji, and increase πii and πjj by w. This keeps Π positive
definite. We then rescale B to have a certain desired trace parameter τB .

For a given β∗, we first generate matrices A and B, where A is m×m and B is
n×n. For the given covariance matrices A and B, we repeat the following steps
to estimate β∗ in the errors-in-variables model as in (1.1a) and (1.1b),

1. We first generate random matrices X0 ∼ Nn,m(0, A ⊗ I) and W ∼
Nn,m(0, I⊗B) independently from the matrix variate normal distribution
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as follows. Let Z ∈ R
n×m be a Gaussian random ensemble with indepen-

dent entries Zij satisfying EZij = 0, EZ2
ij = 1. Let Z1, Z2 be independent

copies of Z. Let X0 = Z1A
1/2 and W = B1/2Z2, where A

1/2 and B1/2 are
the unique square root of the positive definite matrix A and B = τBB

∗

respectively.
2. We then generate X = X0 + W and y = X0β

∗ + ε, where εi i.i.d. ∼
N(0, 1). We compute τ̂B , γ̂ and Γ̂ according to (1.5) and (1.6) using X, y,

where by (1.5), τ̂B := 1
n t̂r(B) = 1

mn

(
‖X‖2F − ntr(A)

)
+
.

3. Finally, we feed X and y to the Composite Gradient Descent algorithm
as described in [1, 30] to solve the Lasso program (1.7) to recover β∗,
where we set the step size parameter to be ζ. The output of this step is
denoted by β̂, the estimated β∗. We then compute the relative error of β̂:
‖β̂ − β∗‖/‖β∗‖, where ‖·‖ denotes either the 
1 or the 
2 norm.

The final relative error is the average of 100 runs for each set of tuning and step-
size parameters; for the Conic programming estimator, we solve (1.8) instead
of (1.7) to recover β∗.

8.1. Relative error

In the first experiment, A and B are generated using the AR(1) model with
parameters ρA, ρB∗ ∈ {0.3, 0.7} and trace parameter τB ∈ {0.3, 0.7, 0.9}. We
see in Figures 1 and 2 that a larger sample size is required when ρA, ρB∗ or τB
increases. To explain these results, we first recall the following definition of the
Signal-to-noise ratio, where we take K = Mε � 1

S/M � ‖β∗‖22
τB ‖β∗‖22 + 1

=
1

τB + (1/ ‖β∗‖22)
, where

S := ‖β∗‖22 and M := 1 + τB ‖β∗‖22 ,

which clearly increases as ‖β∗‖22 increases or as the measurement error metric
τB decreases. We keep ‖β∗‖2 = 5 throughout our simulations. The corrected
Lasso recovery problem thus becomes more difficult as τB increases. Indeed, we
observe that a larger sample size n is needed when τB increases from 0.3 to 0.9
in order to control the relative 
2 error to stay at the same level. Moreover, in
view of Theorem 6, we can express the relative error as follows: for α � λmin(A)
and K � 1, ∥∥∥β̂ − β∗

∥∥∥
2

‖β∗‖2
= OP

(
(‖B‖1/22 + 1)

λmin(A)

√
M

S

√
d logm

n

)
. (8.1)

Note that when ‖β∗‖2 is large enough and τB = Ω(1), the factor preceding√
d logm

n on the RHS of (8.1) is proportional to
(‖B‖1/2

2 +1)
√
τB

λmin(A) . When we plot

the relative 
2 error ‖β̂ − β∗‖2/‖β∗‖2 versus the rescaled sample size n
d logm
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Fig 1. Plots of the relative �2 error after running composite gradient descent algorithm on
recovering β∗ using the corrected Lasso objective function with sparsity parameter d = 	√m
,
where we vary m ∈ {256, 512, 1024}. We generate A and B using the AR(1) model with
ρA, ρB∗ ∈ {0.3, 0.7} and τB = {0.3, 0.7, 0.9}. In the left and right column, we plot the relative
�2 error with respect to sample size n as well as the rescaled sample size n/(d logm). As
n increases, we see that the statistical error decreases. In the top row, we vary the AR(1)
parameter ρA ∈ {0.3, 0.7}, while holding (τB , ρ∗B) and ‖β∗‖2 invariant. Plot (a) shows the
relative �2 error versus n for m = 256, 512, 1024. In Plots (c) and (d), we vary the trace
parameter τB ∈ {0.3, 0.7, 0.9}, while fixing the AR(1) parameters ρA, ρ∗B = 0.3. Plot (b) and
(d) show the relative �2 error versus the rescaled sample size n/(d logm). The curves now
align for different values of m in the rescaled plots, consistent with the theoretical prediction
in Theorem 6.

under the same S/M ratio, the two sets of curves corresponding to ρA = 0.3
and ρA = 0.7 indeed line up in Figure 1(b), as predicted by (8.1). We observe
in Figure 1(b), the rescaled curves overlap well for different values of (m, d) for
each ρA when we keep (ρB∗ , τB) and the length ‖β∗‖2 = 5 invariant. Moreover,
the upper bound on the relative 
2 error (8.1) characterizes the relative positions
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Fig 2. Plots of the relative �2 error after running composite gradient descent algorithm on
recovering β∗ using the corrected Lasso objective function with sparsity parameter d = 	√m
,
where we vary m ∈ {256, 512, 1024}. We generate A and B using the AR(1) model with
ρA = 0.3 and ρ∗B ∈ {0.3, 0.7}. We set B = τBB∗ and vary the trace parameter τB ∈ {0.3, 0.7}
for each value of ρB∗ . The parameters τB and ρ∗B affect the rate of convergence through

D′
0 = ‖B‖1/22 +a

1/2
max and τ

1/2
B . Plot (b) shows the relative �2 error versus the rescaled sample

size n/(d logm). We observe that as τB increases from 0.3 to 0.7, the two sets of curves
corresponding to ρB∗ = 0.3, 0.7 become visibly more separated. As n increases, all curves
converge to 0.

of these two sets of curves in that the ratio between the 
2 error corresponding
to ρA = 0.7 and that for ρA = 0.3 along the y-axis roughly falls within the
interval (2, 3) for each n, while λmin(AR(1), 0.3)/λmin(AR(1), 0.7) = 3. These
results are consistent with the theoretical predictions in Theorems 3 and 6.

In Figure 1(c) and (d), we also show the effect of τB when τB is chosen from
{0.3, 0.7, 0.9}, while fixing the AR(1) parameters ρA = 0.3 and ρB∗ = 0.3. As
predicted by our theory, as the measurement error magnitude τB increases, M
increases, resulting in a larger relative 
2 error for a fixed sample size n.

While the effect of ρA as shown in (8.1) through the minimal eigenvalue of
A is directly visible in Figure 1(b), the effect of ρB

∗ is more subtle, as it is
modulated by τB as shown in Figure 2(a) and (b). When τB is fixed, our theory
predicts that ‖B‖2 plays a role in determining the 
p error, p = 1, 2, through
the penalty parameter λ in view of (8.1). The effect of ρB∗ , which goes into the

parameter D′
0 = ‖B‖1/22 + a

1/2
max � 1, is not changing the sample requirement

or the rate of convergence as significantly as that of ρA when τB = 0.3. This is
shown in the bottom set of curves in Figure 2(a) and (b). On the other hand,
the trace parameter τB plays a dominating role in determining the sample size
as well as the 
p error for p = 1, 2, especially when the length of the signal β∗ is
large: ‖β∗‖2 = Ω(1). In particular, the separation between the two sets of curves
in Figure 2(b), which correspond to the two choices of ρB

∗, is clearly modulated
by τB and becomes more visible when τB = 0.7.
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These findings are also consistent with our theoretical prediction that in order
to guarantee statistical and computational convergence, the sample size needs
to grow according to the following relationship to be specified in (8.2). We will
show in the proof of Theorem 9 that the condition on sparsity d as stated in
(5.2) implies that as ρA, or τB , or the step size parameter ζ increases, we need
to increase the sample size in order to guarantee computational convergence for
the composite gradient descent algorithm given the following lower bound:

n = Ω

(
dτ0 logm

{
λmax(A)

λmin(A)2

}∨{
ζ

(ᾱ�)2

})
, where (8.2)

τ0 � (ρmax(s0, A) + τB)
2

λmin(A)
.

We illustrate the effect of the penalty and step size parameters in Section 8.2.

8.2. Corrected Lasso via GD versus Conic programming estimator

In the second experiment, both A and B are generated using the AR(1) model
with parameters ρA = 0.3, ρB∗ = 0.3, and τB ∈ {0.3, 0.7}. We set m = 1024,
d = 10 and ‖β∗‖2 = 5. We then compare the performance of the corrected Lasso
estimator (1.7) using the composite gradient descent algorithm with the Conic
programming estimator, which is a convex program designed and implemented
by authors of [3].

We consider three choices for the step size parameter for the composite
gradient descent algorithm: ζ1 = λmax(A) +

1
2λmin(A), ζ2 = 3

2λmax(A) and
ζ3 = 2λmax(A). We observe that the gradient descent algorithm consistently
produces an output such that its statistical error in 
2 norm is lower than the
best solution produced by the Conic programming estimator, when both meth-
ods are subject to optimal tuning after we fix upon the radius R =

√
d ‖β∗‖2

for (1.10) and (ω, λ) in (1.8) as follows. As illustrated in our theory, one can
think of the parameter λ in (1.7) and parameters μ, ω in (1.8) satisfying

λ � μ ‖β∗‖2 + ω,

where we set ω = 0.1D0

√
logm
n , where the factor 0.1 is chosen without loss of

generality, as we will sweep over f ∈ (0, 0.8] to run through a sufficiently large
range of values of the tuning parameters:

• For the corrected Lasso estimator, we set λ = fD′
0τ̂

1/2
B ‖β∗‖2

√
logm
n + ω;

• For the Conic programming estimator, we use μ = fD′
0τ̂

1/2
B

√
logm
n . We

set λ = 1 in (1.8), which is independent of the Lasso penalty.

The factor f is chosen to reflect the fact that in practice, we do not know the
exact value of ‖β∗‖2 or ‖β∗‖1, D0 or D′

0, or other parameters related to the
spectrum properties of A,B; moreover, in practice, we wish to understand the
whole-path behavior for both estimators.
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Fig 3. Plots of the relative �1 and �2 error
∥∥∥β̂ − β∗

∥∥∥ / ‖β∗‖ for the Conic programming

estimator and the corrected Lasso estimator obtained via running the composite gradient
descent algorithm on (approximately) recovering β∗. Set parameters d = 10 and m = 1024
while varying n. Generate A and B using the AR(1) model with parameters ρA = 0.3, ρB∗ =
0.3 and τB = 0.3. Set ζ ∈ {ζ1, ζ2, ζ3}. We compare the performance of the corrected Lasso and
the Conic programming estimators over choices of λ and μ while sweeping through f ∈ (0, 0.8].
In the top row, we plot the relative �2 error for the Conic programming estimator (blue
dotted lines) and the corrected Lasso (green dashed lines) via the composite gradient descent
algorithm with step size parameter set to be ζ2 = 3

2
λmax(A) and ζ3 = 2λmax(A); in the

bottom row, we plot the relative �1 error under the same settings. We note that the composite
gradient descent algorithm starts to converge even when we set the step size parameter to be
ζ1 = λmax(A) + 1

2
λmin(A).

In Figures 3 and 4, we plot the relative error in 
1 and 
2 norm as n increases
from 100 to 2500, while sweeping over penalty factor f ∈ [0.05, 0.8] for τB = 0.3
and τB = 0.7 respectively. For both estimators, the relative 
2 and 
1 error
versus the scaled sample size n/(d logm) are also plotted. In these figures, green
dashed lines are for the corrected Lasso estimator via gradient descent algorithm,
and blue dotted lines are for the Conic programming estimator. These plots
allow us to observe the behaviors of the two estimators across a set of tuning



1744 M. Rudelson and S. Zhou

Fig 4. Plots of the relative �1 and �2 error
∥∥∥β̂ − β∗

∥∥∥ / ‖β∗‖ after running the Conic program-

ming estimator and composite gradient descent algorithm on recovering β∗ using the corrected
Lasso objective function with sparsity parameter d = 10 and m = 1024 while varying n. Both
A and B are generated using the AR(1) model with parameters ρA = 0.3, ρB∗ = 0.3 and
τB = 0.7. We compare the performance of the corrected Lasso (green dashed lines) and
the Conic programming estimators (blue dotted lines) over choices of λ and μ while sweep-
ing through f ∈ (0, 0.8]. For the composite gradient descent algorithm, we choose ζ from
{ζ1, ζ2, ζ3}. In the top row, we plot the �2 error for the Conic and the corrected Lasso with
ζ2 = 3

2
λmax(A) and ζ3 = 2λmax(A), while in the bottom row, we plot the �1 error correspond-

ing to the two step size parameters.

parameters. Overall, we see that both methods are able to achieve low relative
error in 
p, p = 1, 2 norm when λ and μ are chosen from a suitable range.

For the corrected Lasso estimator, we display results where the step size
parameter ζ is set to ζ2 = 3

2λmax(A) and ζ3 = 2λmax(A) in the left and right
column respectively. We mention in passing that the algorithm starts to converge
even when we set ζ = ζ1 = λmax(A) +

1
2λmin(A) as we observe quantitively

similar behavior as the displayed cases. For both estimators, we observe that
we need a larger sample size n in case τB = 0.7 in order to control the error
at the same level as in case τB = 0.3. In Figure 5, we plot the 
2 and 
1 error
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Fig 5. Plot of the relative error in �2 and �1 norm versus the penalty factor f ∈ (0, 0.8] as
we change the sample size n. Set m = 1024 and d = 10. Both A and B are generated using
the AR(1) model with parameters ρA = 0.3 and ρB∗ = 0.3. We plot the relative error in
�1 and �2 norm versus the penalty parameter factor f ∈ (0, 0.8] for n = 300, 600, 1200 when
ζ = 3

2
λmax(A). In the left column, τB = 0.3. In the right column, we set τB = 0.7.
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versus the penalty factor f ∈ [0.05, 0.8] for sample size n ∈ {300, 600, 1200}. We
plot results for τB = 0.3 and τB = 0.7 in the left and right column respectively.
For these plots, we focus on cases when n > dκ(A) logm, by choosing n ∈
{300, 600, 1200}; Otherwise, the gradient descent algorithm does not yet reach
the sample requirement (8.2) that guarantees computational convergence. In
Figure 5, we observe that the Conic programming estimator is relatively stable
over the choices of μ once f ≥ 0.2. The composite gradient algorithm favors
smaller penalties such as f ∈ [0.05, 0.2], leading to smaller relative error in
the 
1 and 
2 norm, consistent with our theoretical predictions. These results
also confirm our theoretical prediction that the Lasso and Conic programming
penalty parameters λ and μ need to be adaptively chosen based on the noise
level τB , because a larger than necessary amount of penalty will cause larger
relative error in both 
1 and 
2 norm.

8.3. Sensitivity to tuning parameters

In the third experiment, we change the 
1-ball radius R ∈ {R∗, 5R∗, 9R∗}
in (1.10), where R∗ = ‖β∗‖2

√
d, while running through different penalties for

the composite gradient descent algorithm. In the left column in Figure 6, A and
B are generated using the AR(1) model with ρA = 0.3, ρB∗ = 0.3 and τB = 0.7.
In the right column, we set τB = 0.3, while keeping other parameters invariant.

As predicted by our theory, a larger radius demands correspondingly larger
penalty to ensure consistent estimation using the composite gradient descent
algorithm; this in turn will increase the relative error when R is too large,

for example, when R = Ω̃(
√

n
logm ), where the Ω̃(·) notation hides parameters

involving τB and κ(A). This is observed in Figure 6. When n is sufficiently
large relative to τB and κ(A), the optimal 
1 and 
2 error become less sensitive

with regard to the choice of R, so long as R = Õ(
√

n
logm ), where Õ(·) hides

parameters involving τB and κ(A), as shown in Figure 6.

8.4. Statistical and optimization error in gradient descent

In the last set of experiments, we study the statistical error and optimization
error for each iteration within the composite gradient descent algorithm. We
observe a geometric convergence of the optimization error ‖βt − β̂‖2.

For each experiment, we repeat the following procedure 10 times: we start
with a random initialization point β0 and apply the composite gradient de-
scent algorithm to compute an estimate β̂; we compute the optimization error
log(‖βt − β̂‖2), which records the difference between βt and β̂, where β̂ is the

final solution. In all simulations, we plot the log error log(‖βt − β̂‖2) between

the iterate βt at time t versus the final solution β̂, as well as the statistical error
log(‖βt−β∗‖2), which is the difference between βt and β∗ at time t. Each curve
plots the results averaged over ten random instances.
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Fig 6. Plot of the relative error in �2 and �1 norm versus the penalty factor f ∈ (0, 0.8] as we
change the radius R. Set m = 1024, d = 10 and n ∈ {600, 1200, 2500}. We change the �1-ball

radius R ∈ {R∗, 5R∗, 9R∗}, where R∗ = ‖β∗‖2
√
d, while running through different penalties

for the composite gradient descent algorithm. In the left column, A and B are generated
using the AR(1) model with ρA = 0.3, ρB∗ = 0.3 and τB = 0.7. In the right column, we set
τB = 0.3, while keeping other parameters invariant.
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Fig 7. Plots of the statistical error log(‖βt−β∗‖2), and the optimization error log(‖βt− β̂‖2)
versus iteration number t, generated by running the composite gradient descent algorithm
on the corrected Lasso objective function. Each curve represents an average over 10 random
trials, each with a different initialization point of β0. In Plots (a) and (b), B is generated
using the AR(1) model with ρB∗ = 0.3 and A is generated using the AR(1) model with
ρA = 0.3. We set τB = 0.3, 0.7 in Plot (a) and (b) respectively. We set n = �ρd logm, where
we vary ρ ∈ {1, 2, 3, 6, 12, 25}.

In the first experiment, both A and B are generated using the AR(1) model
with parameters ρA = 0.3 and ρB∗ = 0.3. We set m = 1024, d = 10 and
τB ∈ {0.3, 0.7}. These results are shown in Figure 7. Within each plot, the red
curves show the statistical error and the blue curves show the optimization er-
ror. We can see the optimization error ‖βt−β̂‖2 decreases exponentially for each
iteration, obeying a geometric convergence. To illuminate the dependence of con-
vergence rate on the sample size n, we study the optimization error log(‖βt−β̂‖2)
when n = �ρd logm�, where we vary ρ ∈ {1, 2, 3, 6, 12, 25}. When n = d logm,
the composite gradient algorithm fails to converge since the sample size is too
small for the RSC/RSM conditions to hold, resulting in the oscillatory behavior
of the algorithm for a constant step size. As the factor ρ increases, the lower
and upper RE curvature α and smoothness parameter α̃ become more concen-
trated around λmin(A) and λmax(A) respectively, and the tolerance parameter
τ decreases at the rate of logm

n . Hence we observe faster rates of convergence
for ρ = 25, 12, 6 compared to ρ = 2, 3. This is well aligned with our theoretical
prediction that once n = Ω(κ(A) τ0

λmin(A)d logm) (cf. (8.2)), we expect to observe

a geometric convergence of the computational error ‖βt − β̂‖2.
For the statistical error, we first observe the geometric contraction, and then

the curves flatten out after a certain number of iterations, confirming the claim
that βt converges to β∗ only up to a neighborhood of radius defined through the
statistical error bound ε2stat; that is, the geometric convergence is not guaranteed
to an arbitrary precision, but only to an accuracy related to statistical precision
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Fig 8. Plots of the statistical error log(‖βt − β∗‖2), and the optimization error when we
change the topology. In the last experiment, we have m = 1024, d = 10 and n = 2500. In (a),
A is generated using the AR(1) model with four choices of ρA ∈ {0.3, 0.5, 0.7, 0.9} and B is
generated using AR(1) model with ρB∗ = 0.7 and τB = 0.3. In (b), A follows the Star-Block
model and B follows the random graph model. We show four choices of ρA ∈ {0.3, 0.5, 0.7, 0.9}

of the problem measured by 
2 error: ‖β̂ − β∗‖22 =: ε2stat between the global

optimizer β̂ and the true parameter β∗.
In the second experiment, A is generated from the Star-Block model, where

we have 32 subgraphs and each subgraph has 16 edges; B is generated using the
random graph model with n logn edges and adjusted to have τB = 0.3. We set
m = 1024, n = 2500 and d = 10. We then choose ρA ∈ {0.3, 0.5, 0.7, 0.9}. The
results are shown in Figure 8(b). As we increase ρA, we need larger sample size
to control the statistical error. Hence for a fixed n, the statistical error is bigger
for ρA = 0.7, compared to cases where ρA = 0.5 or ρA = 0.3, for which we
have κ(A) = 42.06 and κ(A) = 10.2 (for ρA = 0.3) respectively; Moreover, the
rates of convergence are faster for the latter two compared to ρA = 0.7, where
κ(A) = 169.4. When ρA = 0.9, the composite gradient descent algorithm fails
to converge as ρ(A) is too large (hence not plotted here) with respect to the
sample size we fix upon. In Figure 8(a), we show results of A being generated
using the AR(1) model with four choices of ρA ∈ {0.3, 0.5, 0.7, 0.9} and B being
generated using the AR(1) model with ρB∗ = 0.7 and τB = 0.3. We observe
quantitively similar behavior as in Figure 8(b).

9. Proof of Lemma 1

Proof of Lemma 1. Part I: Suppose that the Lower-RE condition holds for Γ :=
ATA. Let x ∈ Cone(s0, k0). Then

‖x‖1 ≤ (1 + k0) ‖xT0‖1 ≤ (1 + k0)
√
s0 ‖xT0‖2 .
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Thus for x ∈ Cone(s0, k0) ∩ Sp−1 and τ(1 + k0)
2s0 ≤ α/2, we have

‖Ax‖2 = (xTATAx)1/2 ≥
(
α ‖x‖22 − τ ‖x‖21

)1/2
≥

(
α ‖x‖22 − τ(1 + k0)

2s0 ‖xT0‖
2
2

)1/2
≥

(
α− τ(1 + k0)

2s0
)1/2 ≥

√
α

2
.

Thus the RE(s0, k0, A) condition holds with

1

K(s0, k0, A)
:= min

x∈Cone(s0,k0)

‖Ax‖2
‖xT0‖2

≥
√

α

2

where we use the fact that for any J ∈ {1, . . . , p} such that |J | ≤ s0, ‖xJ‖2 ≤
‖xT0‖2. We now show the other direction.

Part II. Assume that RE(4R2, 2R−1, A) holds for some integer R > 1. Assume
that for some R > 1

‖x‖1 ≤ R ‖x‖2 .

Let (x∗
i )

p
i=1 be non-increasing arrangement of (|xi|)pi=1. Then

‖x‖1 ≤ R

⎛⎝ s∑
j=1

(x∗
j )

2 +

∞∑
j=s+1

(‖x‖1
j

)2
⎞⎠1/2

≤ R

(
‖x∗

J‖
2
2 + ‖x‖21

1

s

)1/2

≤ R

(
‖x∗

J‖2 + ‖x‖1
1√
s

)
where J := {1, . . . , s}. Choose s = 4R2. Then

‖x‖1 ≤ R ‖x∗
J‖2 +

1

2
‖x‖1 .

Thus we have

‖x‖1 ≤ 2R ‖x∗
J‖2 ≤ 2R ‖x∗

J‖1 and hence (9.1)

‖x∗
Jc‖1 ≤ (2R− 1) ‖x∗

J‖1 . (9.2)

Then x ∈ Cone(4R2, 2R − 1). Then for all x ∈ Sp−1 such that ‖x‖1 ≤ R ‖x‖2,
we have for k0 = 2R− 1 and s0 := 4R2,

xTΓx ≥ ‖xT0‖
2
2

K2(s0, k0, A)
≥ ‖x‖22√

s0K2(s0, k0, A)
=: α ‖x‖22

where we use the fact that (1 + k0) ‖xT0‖
2
2 ≥ ‖x‖22 by Lemma 33 with xT0 as

defined therein. Otherwise, suppose that ‖x‖1 ≥ R ‖x‖2. Then for a given τ > 0,

α ‖x‖22 − τ ‖x‖21 ≤ (
1√

s0K2(s0, k0, A)
− τR2) ‖x‖22 . (9.3)
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Thus we have by the choice of τ as in (2.1) and (9.3)

xTΓx ≥ λmin(Γ) ‖x‖22 ≥ (
1√

s0K2(s0, k0, A)
− τR2) ‖x‖22

≥ α ‖x‖22 − τ ‖x‖21 .

The Lemma thus holds.

10. Proof of Theorem 3

Throughout this proof, we assume that A0 ∩ B0 holds. First we note that it
is sufficient to have (3.2) in order for (6.3) to hold. Condition (3.2) guarantees
that for V = 3eM3

A/2,

r(B) :=
tr(B)

‖B‖2
≥ 16c′K4 n

logm
log

Vm logm

n

≥ 16c′K4 n

logm
log

(
3emM3

A logm

2n

)
= c′K4 1

ε2
4

M2
A

n

logm
log

(
6emMA

4
M2

A
(n/ logm)

)

≥ c′K4 1

ε2
s0 log

(
6emMA

s0

)
= c′K4 s0

ε2
log

(
3em

s0ε

)
(10.1)

where ε = 1
2MA

≤ 1
128C , and the last inequality holds given that k log(cm/k) on

the RHS of (10.1) is a monotonically increasing function of k,

s0 ≤ 4n

M2
A logm

and MA =
64C(ρmax(s0, A) + τB)

λmin(A)
≥ 64C.

Next we check that the choice of d as in (3.4) ensures that (6.6) holds for Dφ

defined there. Indeed, for c′K4 ≤ 1, we have

d ≤ CA(c
′K4 ∧ 1)

φn

logm
≤ CA (c′Dφ ∧ 1)

n

logm
.

By Lemma 15, we have on event A0, the modified gram matrix Γ̂A := 1
n (X

TX−
t̂r(B)Im) satisfies the Lower RE conditions with α and τ as in (10.2). Theorem 3
follows from Theorem 16, so long as we can show that condition (6.4) holds for

λ ≥ 4ψ
√

logm
n , where the parameter ψ is as defined (3.5),

curvature α =
5

8
λmin(A) and tolerance τ =

λmin(A)− α

s0
=

3α

5s0
. (10.2)

Combining (10.2) and (6.4), we need to show (6.7) holds. This is precisely the
content of Lemma 17. This is the end of the proof for Theorem 3
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11. Proof of Theorem 4

For the set ConeJ(k0) as in (F.3),

κRE(d0, k0) := min
J:|J|≤d0

min
Δ∈ConeJ (k0)

∣∣ΔTΨΔ
∣∣

‖ΔJ‖22
=

(
1

K(d0, k0, (1/
√
n)Z1A1/2)

)2

.

Recall the following Theorem 27 from [38].

Theorem 27. ( [38]) Set 0 < δ < 1, k0 > 0, and 0 < d0 < p. Let A1/2 be an
m×m matrix satisfying RE(d0, 3k0, A

1/2) condition as in Definition 2.1. Set

d = d0 + d0 max
j

∥∥∥A1/2ej

∥∥∥2
2

16K2(d0, 3k0, A
1/2)(3k0)

2(3k0 + 1)

δ2
.

Let Ψ be an n × m matrix whose rows are independent isotropic ψ2 random
vectors in R

m with constant α. Suppose the sample size satisfies

n ≥ 2000dα4

δ2
log

(
60em

dδ

)
. (11.1)

Then with probability at least 1−2 exp(−δ2n/2000α4), RE(d0, k0, (1/
√
n)ΨA1/2)

condition holds for matrix (1/
√
n)ΨA with

0 < K(d0, k0, (1/
√
n)ΨA1/2) ≤ K(d0, k0, A

1/2)

1− δ
. (11.2)

Proof of Theorem 4. Suppose RE(2d0, 3k0, A
1/2) holds. Then for d as defined

in (3.9) and n = Ω(dK4 log(m/d)), we have with probability at least 1 −
2 exp(δ2n/2000K4), RE(2d0, k0,

1√
n
Z1A

1/2) condition holds with

κRE(2d0, k0) =

(
1

K(2d0, k0, (1/
√
n)Z1A1/2)

)2

≥
(

1

2K(2d0, k0, A1/2)

)2

by Theorem 27.
The rest of the proof follows from [3] Theorem 1 and thus we only provide a

sketch. In more details, in view of the lemmas shown in Section 6, we need

κq(d0, k0) ≥ cd
−1/q
0

to hold for some constant c for Ψ := 1
nX

T
0 X0. It is shown in Appendix C

in [3] that under the RE(2d0, k0,
1√
n
Z1A

1/2) condition, for any d0 ≤ m/2 and
1 ≤ q ≤ 2,

κ1(d0, k0) ≥ cd−1
0 κRE(d0, k0) and

κq(d0, k0) ≥ c(q)d
−1/q
0 κRE(2d0, k0), (11.3)

where c(q) > 0 depends on k0 and q. The theorem is thus proved following
exactly the same line of arguments as in the proof of Theorem 1 in [3] in view of
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the 
q sensitivity condition derived immediately above, in view of Lemmas 19, 20

and 21. Indeed, for v := β̂−β∗, we have by definition of 
q sensitivity as in (6.10),

c(q)d
−1/q
0 κRE(2d0, k0) ‖v‖q ≤ κq(d0, k0) ‖v‖q

≤
∥∥ 1
nX

T
0 X0v

∥∥
∞

≤ μ1 ‖β∗‖2 + μ2 ‖v‖1 + ω

≤ μ1 ‖β∗‖2 + μ2(2 + λ) ‖vS‖1 + ω

≤ μ1 ‖β∗‖2 + μ2(2 + λ)d
1−1/q
0 ‖vS‖q + ω

≤ μ1 ‖β∗‖2 + μ2(2 + λ)d
1−1/q
0 ‖v‖q + ω. (11.4)

Thus we have for d0 = c0
√
n/ logm, where c0 is sufficiently small,

d
−1/q
0 (c(q)κRE(2d0, k0)− μ2(2 + λ)d0) ‖v‖q ≤ μ1 ‖β∗‖2 + ω

and hence ‖v‖q ≤ C(4D2ρnK ‖β∗‖2 + 2D0Mερn)d
1/q
0

≤ 4CD2ρn(K ‖β∗‖2 +Mε)d
1/q
0

for some constant

C = 1/ (c(q)κRE(2d0, k0)− μ2(2 + λ)d0) ≥ 1/ (2c(q)κRE(2d0, k0)) ,

where

μ2(2 + λ)d0 = 2D2Kρn(
1

λ
+ 1)(2 + λ)c0

√
n/ logm

= 2c0C0D2K
2(2 + λ)(

1

λ
+ 1)

is sufficiently small and thus (3.10) holds. The prediction error bound follows
exactly the same line of arguments as in [3] which we omit here. See proof of
Theorem 7 in Section 6.6 for details.

12. Proof of Theorem 6

Throughout this proof, we assume that A0∩B0 holds. The proof is also identical
to the proof of Theorem 3 up till (10.2), except that we replace the condition
on d as in the theorem statement by (4.3). Theorem 6 follows from Theorem 16,

so long as we can show that condition (6.4) holds for α and τ = λmin(A)−α
s0

as defined in (10.2), and λ ≥ 2ψ
√

logm
n , where the parameter ψ is as de-

fined (6.2). Combining (10.2) and (6.4), we need to show (6.7) holds. This
is precisely the content of Lemma 18. This is the end of the proof for Theo-
rem 6.
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13. Proof of Theorem 7

Throughout this proof, we assume that B0 ∩ B10 holds. The rest of the proof
follows that of Theorem 4, except for the last part. Let μ1, μ2, ω be as defined

in Lemma 21. We have for μ2 := 2μ(1 + 1
2λ ), where μ = D′

0Kρnτ̃
1/2
B and

d0 = c0τ
−
B

√
n/ logm,

μ2(2 + λ)d0 = 2C0D
′
0K

2τ̃
1/2
B (

1

2λ
+ 1)(2 + λ)c0τ

−
B (13.1)

≤ 2c0C0D
′
0K

2(2 + λ)(
1

2λ
+ 1) ≤ 1

2
c(q)κRE(2d0, k0),

which holds when c0 is sufficiently small, where τ−B τ̃
1/2
B ≤ 1 by (6.14). Hence

μ2d0 ≤ c(q)κRE(2d0, k0)

2(2 + λ)
.

Thus for c0 sufficiently small, μ1 = 2μ, we have by (11.3), (13.1), (11.4)
and (6.13),

d
−1/q
0

1

2
(c(q)κRE(2d0, k0)) ‖v‖q

= d
−1/q
0 (c(q)κRE(2d0, k0)− μ2(2 + λ)d0) ‖v‖q

≤ (κq(d0, k0)− μ2(2 + λ)d
1−1/q
0 ) ‖v‖q ≤ μ1 ‖β∗‖2 + ω

≤ 2D′
0ρnK

2((τ
1/2
B + (3/2)C6r

1/2
m,m) ‖β∗‖2 +Mε/K) (13.2)

and thus (4.11) holds, following the proof in Theorem 4. The prediction error
bound follows exactly the same line of arguments as in [3], which we now include
for the sake completeness. Following (4.11), we have by (13.2),

‖v‖1 ≤ C11d0(μ1 ‖β∗‖2 + ω)

where

C11 = 2/ (c(q)κRE(2d0, k0)) and hence

μ2 ‖v‖1 ≤ C11μ2d0(μ1 ‖β∗‖2 + ω)

≤ C11
1

2(2 + λ)
(c(q)κRE(2d0, k0)) (μ1 ‖β∗‖2 + ω)

=
1

2 + λ
(μ1 ‖β∗‖2 + ω).

Thus we have by (13.2), (6.14) and the bounds immediately above,

1
n

∥∥∥X(β̂ − β∗)
∥∥∥2
2
≤ ‖v‖1

∥∥ 1
nX

T
0 X0v

∥∥
∞

≤ C11d0(μ1 ‖β∗‖2 + ω) (μ1 ‖β∗‖2 + μ2 ‖v‖1 + 2ω)
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≤ C11d0(μ1 ‖β∗‖2 + ω)(1 +
1

2 + λ
) (μ1 ‖β∗‖2 + 2ω)

= C ′(D′
0)

2K4d0
logm

n

(
τ̃
1/2
B ‖β∗‖2 +

Mε

K

)2

≤ C ′′(‖B‖2 + amax)K
2d0

logm

n

(
(2τB + 3C2

6rm,m)K2 ‖β∗‖22 +M2
ε

)
,

where (D′
0)

2 ≤ 2 ‖B‖2 + 2amax. The theorem is thus proved.

14. Proof of Theorem 9

Suppose that event A0 ∩ B0 holds. The condition on d in (5.2) implies that

n > 512dτ0 logm

{
12λmax(A)

λmin(A)2

}∨{
4ζ

(ᾱ�)2

}
, where (14.1)

τ0 � 400C2�(s0 + 1)2

λmin(A)
. (14.2)

To see this, note that the following holds by the first bound in (5.2):

ν� =
64dτ0 logm

n
≤ 64dτ0 logm

λmin(A)

256dτ0 logm ∗ 24κ(A) (14.3)

=
λmin(A)

96κ(A)
≤ α�

60
,

where α� =
5
8λmin(A) by Lemma 8, and hence ᾱ� ≥ 59α�

60 . Thus we have

α2
�

5ζ
≤ ᾱ2

�

4ζ
, where ζ ≥ αu > λmax(A) ≥ κ(A)ᾱ�.

Now, by definition of ν(d,m, n) and the second bound on n in (14.1),

2ν(d,m, n) = 128dτu(Ln) :=
128dτ0 logm

n
≤ (ᾱ�)

2

16ζ

Then

2� :=
4ν(d,m, n)

ᾱ�
=

256dτu(Ln)

ᾱ�
≤ ᾱ�

8ζ
.

That is, we actually need to have for 2� ≤ ᾱ�

8ζ

ξ

1− κ
=

1

1− �
2τ(Ln)

(
ᾱ�

4ζ
+ 2�+ 5

)
1− �

ᾱ�

4ζ − 2�

= 2τ(Ln)

(
ᾱ�

4ζ
+ 2�+ 5

)
1

ᾱ�

4ζ − 2�
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= 2τ(Ln)

(
ᾱ�

4ζ + 2�
ᾱ�

4ζ − 2�
+

40ζ

ᾱ�

)
≤ 2τ(Ln)

(
3 +

40ζ

ᾱ�

)
≤ 6τ(Ln) +

80ζ

ᾱ�
τ(Ln),

where we use the second bound in (14.1), and hence

ᾱ�

4ζ
+ 2� ≤ 3

2

ᾱ�

4ζ
and

(1− κ)(1− �) =
ᾱ�

4ζ
− 2� ≥ 1

2

ᾱ�

4ζ
.

Finally, putting all bounds in (2.6), we have 0 < κ < 1. Thus the conclusion of
Theorem 2 hold.

14.1. Proof of Corollary 10

Suppose that event A0 ∩ B0 holds. We first show that

4νε2stat + 4τ(Ln)ε
2 � 64τ(Ln)

(
4dε2stat +

δ4

λ2

)
in case δ2 ≤ Mδ̄2.

Recall that ξ ≥ 10τ�(Ln) by definition of ξ in (2.7). The condition (5.1) on λ as
stated in Theorem 2 indicates that

λ ≥ 160b0
√
dτ�(Ln)

1− κ
where R � b0

√
d. (14.4)

We first show that for the choice of λ and R as in (14.4),∥∥∥Δ̂t
∥∥∥2
2

≤ 2

ᾱ�

(
δ2 + 64τ

(
4dε2stat +

δ4

λ2

))
≤ 3

α�
δ2 +

α�ε
2
stat

4
+

2

α�
O

(
δ2

τ0

Mε2stat
400b20

)
.

Then (5.3) holds.
For the second term on the RHS of (2.11), we have by (14.1),

n ≥ 256dτ0 logm

ᾱ�

8ζ

ᾱ�
, where τ0 � 400C2�(s0 + 1)2

λmin(A)
. (14.5)

Thus

4ν� = 256dτ0
logm

n
≤ ᾱ�

ᾱ�

8ζ
and

2

ᾱ�
4νε2stat ≤

ᾱ�

4ζ
ε2stat ≤

α�ε
2
stat

4ζ
.

Consider the choice of η̄ = δ2, where Mδ̄2 ≥ η̄ = δ2 ≥ cε2stat
1−κ

d logm
n =: δ̄2.
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Thus we have for (14.4),

2δ2

λ
≤ Mcε2stat

1− κ

d logm

n

1− κ

160b0
√
dτ�(Ln)

=
Mcε2stat
160b0

√
d

τ0
< R

and hence ε = 4δ2

λ .
Then for the last term on the RHS of (2.11), we have for τ�(Ln) � τ ,

4τ�(Ln)ε
2 = 16τ�(Ln)min

(
2δ2

λ
,R

)2

= 64τ
δ4

λ2
≤ δ4(1− κ)2

400b20τ0

n

d logm

≤ δ2
cMε2stat
1− κ

(1− κ)2

400b20τ0

=
cδ2

τ0

Mε2stat(1− κ)

400b20
= O

(
cδ2

τ0

Mε2stat
400b20

)
where δ2 ≤ Mcε2stat

1−κ
d logm

n .
Finally, suppose we fix

R � b0

20M+

√
6κ(A)

√
n

logm

in view of the upper bound d̄ (5.6). Then in order for

λ ≥ 16R
ξ

1− κ

to hold, we need to set

λ ≥ 640Rτ(Ln)κ(A),

because of the following lower bound ξ
1−κ ≥ 40τ(Ln)κ(A) as shown in (2.16).

Then (5.4) holds given that the last term on the RHS of (2.11) is now bounded
by

2

ᾱ�
4τ�(Ln)ε

2 =
2

ᾱ�
16τ�(Ln)min

(
2δ2

λ
,R

)2

≤ 60

59

2

α�

64δ4

6402R2κ(A)2τ�(Ln)

≤ 60

59

2

α�

δ4

6400κ(A)τ0

(
20M+

√
6

b0

)2

=
60

59

12

α�

δ4M2
+

16b20κ(A)τ0
≤ 60

59

3δ4

4α�

1024

400b20 ‖A‖2
≤ 2δ4

b20α� ‖A‖2
.

Remark 14.1. First we obtain an upper bound on ξ
1−κ for ζ = αu � 3λmax(A)

2

and 59
60

5
8λmin(A) ≤ ᾱ�



1758 M. Rudelson and S. Zhou

ξ

1− κ
≤ 6τ(Ln) +

80ζ

ᾱ�
τ(Ln)

≤ 6τ(Ln) +
80ζ

59
60

5
8λmin(A)

τ(Ln)

≈ 200τ(Ln)κ(A).

Now we obtain an upper bound using R ≤ b0
√
d for d ≤ d̄ as in (5.6),

R
ξ

1− κ
≤ 200κ(A)τb0

√
d ≤ 200κ(A)τ0

√
logm

n

b0

20M+

√
6κ(A)

= 200κ(A)τ0
λmin(A)

�(s0 + 1)

√
logm

n

b0

640C
√
6κ(A)

≤ 10b0
τ0

M+

√
6

√
κ(A)

√
logm

n

=
125b0√

6
C�(s0 + 1)

√
κ(A)

√
logm

n
,

where we use (5.2) and the fact that τ0
M+

= 12.5C�(s0+1). We now discuss the

implications of this bound on the choice of λ in Section 5.1. We consider two
cases.

• When τB = Ω(1). It is sufficient to have for ‖β∗‖2 ≤ b0 and τB � 1,

λ ≥ 16Cb0

(
50
√
κ(A)�(s0 + 1)

∨(
D′

0K(Kτ
1/2
B +

Mε

b0
)

))√
logm

n

following the discussions in Section 4, where the first and the second term
on the RHS are at the same order except that the new lower bound involves
the condition number κ(A), while the original bound in Theorem 6 involves

only D′
0 = ‖B‖1/22 + a

1/2
max.

• When τB = o(1) and Mε = Ω(τ
+/2
B K ‖β∗‖2). Now d satisfies (4.12) and

hence

b0
√
d ≤ 1

4
√
5M+

√
n

logm

{√
c′D′

0KMε

�(s0 + 1)
∧ b0

}
.

Now combining this with the condition on d as in (5.2) implies that it is
sufficient to set R such that

R
ξ

1− κ
� κ(A)τ

M+

(
b0√
κ(A)

∧ D′
0KMε

�(s0 + 1)

)√
n

logm

= κ(A)�(s0 + 1)

(
b0√
κ(A)

∧ D′
0KMε

�(s0 + 1)

)√
logm

n

≈
(
b0�(s0 + 1)

√
κ(A) ∧ κ(A)D′

0KMε

)√ logm

n
=: Ū .
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Hence it is sufficient to have for ψ � D′
0K
(
Mε +Kτ

+/2
B ‖β∗‖2

)
as in

(4.2),

λ ≥
(
Ū ∨ ψ

)√ logm

n
.

15. Proof of Theorem 12

Clearly the condition on the stable rank of B guarantees that

n ≥ r(B) =
tr(B)

‖B‖2
=

tr(B) ‖B‖2
‖B‖22

≥ ‖B‖2F / ‖B‖22 ≥ logm.

Thus the conditions in Lemmas 11 and 5 hold. First notice that

γ̂ = 1
n

(
XT

0 X0β
∗ +WTX0β

∗ +XT
0 ε+WT ε

)
( 1nX

TX − t̂r(B)
n Im)β∗ =

1
n (X

T
0 X0 +WTX0 +XT

0 W +WTW − t̂r(B)
n Im)β∗.

Thus∥∥∥γ̂ − Γ̂β∗
∥∥∥
∞

≤
∥∥γ̂ − 1

n

(
XTX − t̂r(B)Im

)
β∗∥∥

∞

= 1
n

∥∥XT
0 ε+WT ε−

(
WTW +XT

0 W − t̂r(B)Im
)
β∗∥∥

∞

≤ 1
n

∥∥XT
0 ε+WT ε

∥∥
∞ + 1

n

∥∥(WTW − t̂r(B)Im)β∗∥∥
∞

+
∥∥ 1
nX

T
0 Wβ∗∥∥

∞
≤ 1

n

∥∥XT
0 ε+WT ε

∥∥
∞ + 1

n (
∥∥(ZTBZ − tr(B)Im)β∗∥∥

∞)

+ 1
n

∥∥XT
0 Wβ∗∥∥

∞ + 1
n

∣∣t̂r(B)− tr(B)
∣∣ ‖β∗‖∞

=: U1 + U2 + U3 + U4.

By Lemma 11 we have on B4 for D0 :=
√
τB + a

1/2
max,

U1 = 1
n

∥∥XT
0 ε+WT ε

∥∥
∞ = 1

n

∥∥∥A 1
2ZT

1 ε+ ZT
2 B

1
2 ε
∥∥∥
∞

≤ ρnMεD0,

and on event B5 for D′
0 :=

√
‖B‖2 + a

1/2
max,

U2 + U3 = 1
n

∥∥(ZTBZ − tr(B)Im)β∗∥∥
∞ + 1

n

∥∥XT
0 Wβ∗∥∥

∞

≤ ρnK ‖β∗‖2
(‖B‖F√

n
+

√
τBa

1/2
max

)
≤ Kρn ‖β∗‖2 τ

1/2
B D′

0,

where recall ‖B‖F ≤
√

tr(B) ‖B‖1/22 . Denote by B0 := B4 ∩ B5 ∩ B6. We have
on B0 and under (A1), by Lemmas 11 and 5 and D1 defined therein,∥∥∥γ̂ − Γ̂β∗

∥∥∥
∞

≤ U1 + U2 + U3 + U4

≤ ρnMεD0 +D′
0τ

1/2
B Kρn ‖β∗‖2 + 1

n

∣∣t̂r(B)− tr(B)
∣∣ ‖β∗‖∞
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≤ D0Mερn +D′
0Kτ

1/2
B ‖β∗‖2 ρn +D1 ‖β∗‖∞ rm,m

≤ D0Mερn +D′
0Kτ

1/2
B ‖β∗‖2 ρn + 2D1K

1√
m
ρn.

Finally, we have by the union bound, P (B0) ≥ 1−16/m3. This is the end of the
proof of Theorem 12.

16. Conclusion

In this paper, we provide a unified analysis on the rates of convergence for both
the corrected Lasso estimator (1.7) and the Conic programming estimator (1.8).
As n increases or as the measurement error metric τB decreases, we see perfor-
mance gains over the entire paths for both 
1 and 
2 error for both estimators
as expected. When we focus on the lowest 
2 error along the paths as we vary
the penalty factor f ∈ [0.05, 0.8], the corrected Lasso via the composite gra-
dient descent algorithm performs slightly better than the Conic programming
estimator as shown in Figure 5.

For the Lasso estimator, when we require that the stochastic error ε in the
response variable y as in (1.1a) does not approach 0 as quickly as the measure-
ment error W in (1.1b) does, then the sparsity constraint becomes essentially
unchanged as τB → 0. These tradeoffs are somehow different from the behavior
of the Conic programming estimator versus the Lasso estimator; however, we
believe the differences are minor. Eventually, as τB → 0, the relaxation on d
as in (4.13) enables the Conic programming estimator to achieve bounds which
are essentially identical to the Dantzig Selector when the design matrix X0 is
a subgaussian random matrix satisfying the Restricted Eigenvalue conditions;
See for example [6, 4, 38].

When τB → 0 and Mε = Ω(τ+BK ‖β∗‖2), we set

λ ≥ 2ψ

√
logm

n
, where ψ := 4C0D

′
0KMε, (16.1)

so as to recover the regular lasso bounds in 
q loss for q = 1, 2 in (4.5) in
Theorem 6. Moreover, suppose that tr(B) is given, then one can drop the second
term in ψ as in (4.2) involving ‖β∗‖2 entirely and hence recover the lasso bound
as well.

Finally, we note that the bounds corresponding to the Upper RE condition
as stated in Corollary 25, Theorem 26 and Lemma 15 are not needed for Theo-
rems 3 and 6. They are useful to ensure algorithmic convergence and to bound
the optimization error for the gradient descent-type of algorithms as considered
in [1, 30], when one is interested in approximately solving the nonconvex op-
timization function (1.7). Our Theorem 9 illustrates this result. Our theory in
Theorem 9 predicts the dependencies of the computational and statistical rates
of convergence for the corrected Lasso via gradient descent algorithm on the
condition number κ(A), the trace parameter τB and the radius R as

λ � Rξ

1− κ
� τ0κ(A)

R logm

n
, where τ0 � (ρmax(s0, A) + τB)

2

λmin(A)
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depends on τB , sparse and minimal eigenvalues of A. Therefore, we need to
increase the penalty when we increase the 
1-ball radius R in (1.10) in order to
ensure algorithmic and statistical convergence as predicted in Theorem 9. This
is well-aligned with the observation in Figure 6. Our numerical results validate
such algorithmic and statistical convergence properties.

Appendix A: Outline

We prove Theorem 2 in Section B. In Sections C, we present variations of the
Hanson-Wright inequality as recently derived in [37] (cf. Lemma 32). We prove
Lemma 11 in Section C.2. In Sections H and I, we prove the technical lemmas
for Theorems 3 and 4 respectively. In Section J, we prove the Lemmas needed
for Proof of Theorem 7. In order to prove Corollary 25, we need to first state
some geometric analysis results Section K. We prove Corollary 25 in Section L
and Theorem 26 in Section M.

Appendix B: Proof of Theorem 2

Let us first define the following shorthand notation

Δ̂t = βt − β̂ and δt = φ(βt)− φ(β̂).

The proof of the theorem requires two technical Lemmas 28 and 30. Both are
stated under assumption (B.1), which is stated in terms of a given tolerance
η̄ > 0 and integer T > 0 such that

φ(βt)− φ(β̂) ≤ η̄, ∀t ≥ T, (B.1)

where the distance between βt and the global optimizer β̂ is measured in terms
of the objective function φ, namely, δt = φ(βt)− φ(β̂).

We first show Lemma 28, which ensures that the vector Δ̂t := βt− β̂ satisfies
a certain cone-type condition. The proof is omitted, as it is a shortened proof
of Lemma 1 of [31].

Lemma 28. (Iterated Cone Bound) Under the conditions of Theorem 2,
suppose there exists a pair (η̄, T ) such that (B.1) holds. Then for any iteration
t ≥ T , we have∥∥∥βt − β̂

∥∥∥
1
≤ 4

√
d
∥∥∥βt − β̂

∥∥∥
2
+ 8

√
d
∥∥∥β̂ − β∗

∥∥∥
2
+ 2 ·min

(
2η̄

λ
, R

)
.

We next state the following auxiliary result on the loss function. We use
Lemma 29 in the proof of Lemma 28 and Corollary 10.

Lemma 29. Denote by τ�(Ln) := τ0
logm
n and ν� = 64dτ�(Ln). Let ε̄stat =

8
√
dεstat, where εstat =

∥∥∥β̂ − β∗
∥∥∥
2
and ε = 2 ·min

(
2η̄
λ , R

)
. Under the assump-

tions of Lemma 28, we have for Δ̂t := βt − β̂ and t > T ,

T (β̂, βt) ≥ α� − ν�
2

∥∥∥Δ̂t
∥∥∥2
2
− 2τ�(Ln)(ε̄stat + ε)2 and (B.2)
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φ(βt)− φ(β̂) ≥ T (βt, β̂) ≥ α� − ν�
2

∥∥∥Δ̂t
∥∥∥2
2
− 2τ�(Ln)(ε̄stat + ε)2. (B.3)

Lemma 30. (Lemma 3 of Loh-Wainwright (2015)) Suppose the RSC and
RSM conditions as stated in (2.4) and (2.5) hold with parameters (α�, τ�(Ln))
and (αu, τu(Ln)) respectively. Under the conditions of Theorem 2, suppose there
exists a pair (η̄, T ) such that (B.1) holds. Then for any iteration t ≥ T , we have
for 0 < κ < 1,

φ(βt)− φ(β̂) ≤ κt−T (φ(βT )− φ(β̂)) +
ξ

1− κ
(ε̄2stat + ε2) for

ε̄stat := 8
√
dεstat and ε = 2 ·min

(
2η̄

λ
, R

)
,

where the quantities κ and ψ are as defined in Theorem 2 (cf. (2.6) and (2.7)).

Proof of Theorem 2. We are now ready to put together the final argument for
the theorem. First notice that (2.11) follows from (2.10) directly in view of (B.3)

and Lemma 28, where we set η̄ = δ2, ε̄stat = 8
√
dεstat and ε = 2min

(
2δ2

λ , R
)
.

Following (B.3), we have for ν� = 64dτ�(Ln),

α� − ν�
2

∥∥∥Δ̂t
∥∥∥2
2

≤ φ(βt)− φ(β̂) + 2τ�(Ln)(ε̄stat + ε)2,

and thus ∥∥∥Δ̂t
∥∥∥2
2

≤ 2

ᾱ�
(φ(βt)− φ(β̂) +

4

ᾱ�
τ�(Ln)(ε̄stat + ε)2

≤ 2

ᾱ�

(
δ2 + 2τ�(Ln)(2ε̄

2
stat + 2ε2)

)
≤ 2

ᾱ�

(
δ2 + 2τ�(Ln)(128dε

2
stat + 2ε2)

)
≤ 2

ᾱ�

(
δ2 + 4ν�ε

2
stat + 4τ�(Ln)ε

2
)
. (B.4)

The remainder of the proof follows an argument in [1]. We first prove the fol-
lowing inequality:

φ(βt)− φ(β̂) ≤ δ2, ∀t ≥ T ∗(δ).

We divide the iterations t ≥ 0 into a series of epochs [T�, T�+1] and defend the
tolerances η̄0 > η̄1 > . . . such that

φ(βt)− φ(β̂) ≤ η̄�, ∀t ≥ T�.

In the first iteration, we apply Lemma 30 with η̄0 := φ(β0)− φ(β̂) to obtain

φ(βt)− φ(β̂) ≤ κt(φ(β0)− φ(β̂)) +
ξ

1− κ
(ε̄2stat + 4R2) for any iteration t ≥ 0.



Errors-in-variables models with dependent measurements 1763

Set

η̄1 :=
2ξ

1− κ
(ε̄2stat + 4R2) and T1 :=

⌈
log(2η̄0/η̄1)

log(1/κ)

⌉
.

Then we have for any iteration t ≥ T1

φ(βt)− φ(β̂) ≤ η̄1 :=
4ξ

1− κ
max

{
ε̄2stat, 4R

2
}
.

The same argument can be now be applied in a recursive manner. Suppose that
for some 
 ≥ 1, we are given a pair (η̄�, T�) such that

φ(βt)− φ(β̂) ≤ η̄�, ∀t ≥ T�. (B.5)

We now define

η̄�+1 :=
2ξ

1− κ
(ε̄2stat + ε2�) and T�+1 :=

⌈
log(2η̄�/η̄�+1)

log(1/κ)

⌉
+ T�.

We can apply Lemma 30 to obtain for any iteration t≥T� and ε�:= 2min{ η̄�

λ , R},

φ(βt)− φ(β̂) ≤ κt−T�(φ(βT�)− φ(β̂)) +
ξ

1− κ
(ε̄2stat + ε2�),

which implies that for all t ≥ T�+1,

φ(βt)− φ(β̂) ≤ η̄�+1 ≤ 4ξ

1− κ
max{ε̄2stat, ε2�}

by our choice of {η�, T�}�≥1. Finally, we use the recursion

η̄�+1 ≤ 4ξ

1− κ
max(ε̄2stat, ε

2
�) and T� ≤ 
+

log(2�η̄0/η̄�)

log(1/κ)
(B.6)

to establish the recursion that

η̄�+1 ≤ η̄�

42�−1 and ε�+1 :=
η̄�+1

λ
≤ R

42�
∀
 = 1, 2, . . . . (B.7)

Taking these statements as given, we need to have

η̄� ≤ δ2.

It is sufficient to establish that

λR

42�−1 ≤ δ2.

Thus we find that the error drops below δ2 after at most


δ ≥ log
(
log(Rλ/δ2)/ log(4)

)
/ log 2 + 1 = log log(Rλ/δ2)
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epochs. Combining the above bound on 
δ with the recursion (B.6)

T� ≤ 
+
log(2�η̄0/η̄�)

log(1/κ)
,

we conclude that

φ(βt)− φ(β̂) ≤ δ2

is guaranteed to hold for all iterations

t > 
δ

(
1 +

log 2

log(1/κ)

)
+

log(η̄0/δ
2)

log(1/κ)
.

To establish (B.7), we start with 
 = 0 and establish that for ε̄stat = 8
√
dεstat =

o(
√
d) = o(R)

η̄1
λ

:=
4ξ

(1− κ)λ
max(ε̄2stat, 4R

2) =
16Rξ

(1− κ)λ
R ≤ R

4
(B.8)

and thus ε1 := 2min{ η̄1
λ
,R} = R/2 ≤ ε0 = R. (B.9)

Assume that ε̄stat ≤ ε1 (otherwise, we are done at the first iteration). First, we
obtain for 
 = 1,

η̄2 ≤ 4ξ

1− κ
max(ε̄2stat, ε

2
1) =

4ξ

1− κ
ε21 =

4ξ

1− κ

(
2η̄1
λ

)2

≤ 16ξ

1− κ

η̄21
λ2

≤ 16ξR

1− κ

η̄1
4λ

≤ η̄1
4
,

and
η̄2
λ

≤ η̄1
4λ

≤ R

16
,

where in the last three steps, we use the fact that λ ≥ 16Rξ
(1−κ) and (B.8).

Thus (B.6) holds for 
 = 1.
Now assume that (B.7) holds for d ≤ 
. In the induction step, we again use

the assumption that ε� := 2 η̄�

λ ≥ ε̄stat and (B.6) to obtain

η̄�+1 ≤ 4ξ

1− κ
max(ε̄2stat, ε

2
�) =

16ξ

1− κ

η̄2�
λ2

≤ 16ξ

1− κ

R

42(�−1)

η̄�
λ

=
16Rξ

1− κ

1

λ

η̄�

42(�−1)

≤ η̄�

42(�−1)
.

Finally, by the induction assumption

η̄�
λ

≤ R

42�−1 ,

we use the bound immediately above to obtain

η̄�+1

λ
≤ η̄�

42(�−1)

1

λ
≤ R

42�−1

1

42(�−1)
≤ R

42�
.
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The rest of the proof follows from that of Corollary 10. This is the end of the
proof for Theorem 2.

It remains to prove Lemma 29.

Proof of Lemma 29. Using the RSC condition, we have for τ�(Ln) := τ0
logm
n

and ν� = 64dτ�(Ln) ≤ α�

48 ,

T (β̂, βt) ≥ α�

2

∥∥∥Δ̂t
∥∥∥2
2
− τ�(Ln)

∥∥∥Δ̂t
∥∥∥2
1

(B.10)

≥ α�

2

∥∥∥Δ̂t
∥∥∥2
2
− τ�(Ln)

(
2 ∗ 16d

∥∥∥Δ̂t
∥∥∥2
2
+ 2(ε̄stat + ε)2

)
≥ 1

2
ᾱ�

∥∥∥Δ̂t
∥∥∥2
2
− 2τ�(Ln)(ε̄stat + ε)2

and by Lemma 28, for any iteration t ≥ T ,∥∥∥Δ̂t − β̂
∥∥∥
1

≤ 4
√
d
∥∥∥βt − β̂

∥∥∥
2
+ 8

√
d
∥∥∥β̂ − β∗

∥∥∥
2
+ 2 ·min

(
2η̄

λ
, R

)
≤ 4

√
d
∥∥∥Δ̂t

∥∥∥
2
+ (ε̄stat + ε).

By convexity of function g, we have

g(βt)− g(β̂)− 〈∇g(β̂), βt − β̂ 〉 ≥ 0. (B.11)

Thus

φ(βt)− φ(β̂)− 〈∇φ(β̂), βt − β̂ 〉
= Ln(β

t)− Ln(β̂)− 〈∇Ln(β̂), β
t − β̂ 〉

+λ(g(βt)− g(β̂)− 〈∇g(β̂), βt − β̂ 〉 ).

Moreover, by the first order optimality condition for β̂, we have for all feasible
βt ∈ Ω

〈∇φ(β̂), βt − β̂ 〉 ≥ 0,

and thus

φ(βt)− φ(β̂) ≥ Ln(β
t)− Ln(β̂)− 〈∇Ln(β̂), β

t − β̂ 〉 = T (βt, β̂),

where similar to (B.10), we have

T (βt, β̂) ≥ α1

∥∥∥Δ̂t
∥∥∥2
2
− τ�(Ln)

∥∥∥Δ̂t
∥∥∥2
1

≥ (α1 − 32dτ�(Ln))
∥∥∥Δ̂t

∥∥∥2
2
− 2τ�(Ln)(ε̄stat + ε)2

=
1

2
ᾱ�

∥∥∥Δ̂t
∥∥∥2
2
− 2τ�(Ln)(ε̄stat + ε)2,
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and by Lemma 28,

∥∥∥Δ̂t
∥∥∥2
1

≤ 32d
∥∥∥Δ̂t

∥∥∥2
2
+ 2

(
8
√
dεstat + 2 ·min

(
2η̄

λ
, R

))2

≤ 32d
∥∥∥Δ̂t

∥∥∥2
2
+ 2(ε̄stat + ε)2.

Appendix C: Some auxiliary results

We first need to state the following form of the Hanson-Wright inequality as
recently derived in Rudelson and Vershynin [37], and an auxiliary result in
Lemma 32 which may be of independent interests.

Theorem 31. Let X = (X1, . . . , Xm) ∈ R
m be a random vector with indepen-

dent components Xi which satisfy E (Xi) = 0 and ‖Xi‖ψ2
≤ K. Let A be an

m×m matrix. Then, for every t > 0,

P
(∣∣XTAX − E

(
XTAX

)∣∣ > t
)
≤ 2 exp

[
−cmin

(
t2

K4 ‖A‖2F
,

t

K2 ‖A‖2

)]
.

We note that following the proof of Theorem 31, it is clear that the following
holds: Let X = (X1, . . . , Xm) ∈ R

m be a random vector as defined in The-
orem 31. Let Y, Y ′ be independent copies of X. Let A be an m × m matrix.
Then, for every t > 0,

P
(∣∣Y TAY ′∣∣ > t

)
≤ 2 exp

[
−cmin

(
t2

K4 ‖A‖2F
,

t

K2 ‖A‖2

)]
. (C.1)

We next need to state Lemma 32, which we prove in Section N.

Lemma 32. Let u,w ∈ Sn−1. Let A � 0 be an m × m symmetric positive
definite matrix. Let Z be an n×m random matrix with independent entries Zij

satisfying EZij = 0 and ‖Zij‖ψ2
≤ K. Let Z1, Z2 be independent copies of Z.

Then for every t > 0,

P

(∣∣∣uTZ1A
1/2ZT

2 w
∣∣∣ > t

)
≤ 2 exp

(
−cmin

(
t2

K4tr(A)
,

t

K2 ‖A‖1/22

))
and

P
(∣∣uTZAZTw − EuTZAZTw

∣∣ > t
)

≤ 2 exp

(
−cmin

(
t2

K4 ‖A‖2F
,

t

K2 ‖A‖2

))
,

where c is the same constant as defined in Theorem 31.
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C.1. Proof of Lemma 5

First we write

XXT − tr(A)In =
(
Z1A

1/2 +B1/2Z2)
(
Z1A

1/2 +B1/2Z2

)T − tr(A)In

=
(
Z1A

1/2 +B1/2Z2)
(
ZT
2 B

1/2 +A1/2ZT
1

)
− tr(A)In

= Z1A
1/2ZT

2 B
1/2 +B1/2Z2Z

T
2 B

1/2

+B1/2Z2A
1/2ZT

1 + Z1AZ
T
1 − tr(A)In.

Thus we have for ťr(B) := 1
m

(
‖X‖2F − ntr(A)

)
,

1
n (ťr(B)− tr(B)) := 1

mn

(
‖X‖2F − ntr(A)−mtr(B)

)
=

1

mn
(tr(XXT )− ntr(A)−mtr(B))

=
2

mn
tr(Z1A

1/2ZT
2 B

1/2) +

(
tr(B1/2Z2Z

T
2 B

1/2)

mn
− tr(B)

n

)
+
tr(Z1AZ

T
1 )

mn
− tr(A)

m
.

By constructing a new matrix An = In ⊗ A, which is block diagonal with n
identical submatrices A along its diagonal, we prove the following large deviation
bound: for t1 = C0K

2 ‖A‖F
√
n logm and n > logm,

P
(∣∣tr(Z1AZ

T
1 )− ntr(A)

∣∣ ≥ t1
)

= P

(∣∣∣vec {Z1 }T (I⊗A)vec {Z1 } − ntr(A)
∣∣∣ ≥ t1

)
≤ exp

(
−cmin

(
t21

K4 ‖An‖2F
,

t1
K2 ‖An‖2

))

≤ 2 exp

(
−cmin

(
(C0K

2
√
n logm ‖A‖F )2

nK4 ‖A‖2F
,
C0K

2
√
n logm ‖A‖F

K2 ‖A‖2

))
≤ 2 exp (−4 logm) ,

where the first inequality holds by Theorem 31 and the second inequality holds
given that ‖An‖2F = n ‖A‖2F and ‖An‖2 = ‖A‖2.

Similarly, by constructing a new matrix Bm = Im⊗B, which is block diagonal
with m identical submatrices B along its diagonal, we prove the following large
deviation bound: for t2 = C0K

2 ‖B‖F
√
m logm and m ≥ 2,
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P
(∣∣tr(ZT

2 BZ2)−mtr(B)
∣∣ ≥ t2

)
=

P

(∣∣∣vec {Z2 }T (Im ⊗ B)vec {Z2 } −mtr(B)
∣∣∣ ≥ t2

)
≤ exp

(
−cmin

(
t22

K4m ‖B‖2F
,

t2
K2 ‖B‖2

))

≤ 2 exp

(
−cmin

(
(C0K

2
√
m logm ‖B‖F )2

K4m ‖B‖2F
,
C0K

2
√
m logm ‖B‖F

K2 ‖B‖2

))
≤ 2 exp (−4 logm) .

Finally, we have by (C.1) for t0 = C0K
2
√
tr(A)tr(B) logm,

P

(∣∣∣vec {Z1 }T B1/2 ⊗A1/2vec {Z2 }
∣∣∣ > t0

)
≤ 2 exp

(
−cmin

(
t20

K4
∥∥B1/2 ⊗A1/2

∥∥2
F

,
t0

K2
∥∥B1/2 ⊗A1/2

∥∥
2

))

= 2 exp

(
−cmin

(
(C0

√
tr(A)tr(B) logm)2

tr(A)tr(B)
,
C0

√
tr(A)tr(B) logm

‖B‖1/22 ‖A‖1/22

))
≤ 2 exp(−4 logm),

where we use the fact that r(A)r(B) ≥ logm,
∥∥B1/2 ⊗A1/2

∥∥
2
= ‖B‖1/22 ‖A‖1/22

and ∥∥∥B1/2 ⊗A1/2
∥∥∥2
F

= tr((B1/2 ⊗A1/2)(B1/2 ⊗A1/2))

= tr(B ⊗A) = tr(A)tr(B).

Thus we have with probability 1− 6/m4,

1
n

∣∣ťr(B)− tr(B)
∣∣ = 1

mn

∣∣tr(XXT )− ftr(A)−mtr(B)
∣∣

≤ 2

mn

∣∣∣vec {Z1 }T (B1/2 ⊗A1/2)vec {Z2 }
∣∣∣

+

∣∣∣∣ tr(ZT
2 BZ2)

mn
− tr(B)

n

∣∣∣∣+ ∣∣∣∣ tr(Z1AZ
T
1 )

mn
− tr(A)

m

∣∣∣∣
≤ 1

mn
(2t0 + t1 + t2) =

√
logm√
mn

C0K
2

(‖A‖F√
m

+ 2
√
τAτB +

‖B‖F√
n

)
≤ 2C0

√
logm√
mn

K2D1 =: D1rm,m,

where recall rm,m = 2C0K
2
√
logm√
mn

, D1 =
‖A‖F√

m
+

‖B‖F√
n

, and

2
√
τAτB ≤ τA + τB ≤ ‖A‖F√

m
+

‖B‖F√
n

.
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To see this, recall

mτA =

m∑
i=1

λi(A) ≤
√
m(

m∑
i=1

λ2
i (A))

1/2 =
√
m ‖A‖F and (C.2)

nτB =

n∑
i=1

λi(B) ≤
√
n(

n∑
i=1

λ2
i (B))1/2 =

√
n ‖B‖F

where λi(A), i = 1, . . . ,m and λi(B), i = 1, . . . , n denote the eigenvalues of
positive semidefinite covariance matrices A and B respectively.

Denote by B6 the following event{
1
n

∣∣ťr(B)− tr(B)
∣∣ ≤ D1rm,m

}
.

Clearly t̂r(B) := (ťr(B))+ by definition (1.5). As a consequence, on B6, t̂r(B) =
ťr(B) > 0 when τB > D1rm,m; hence

1
n

∣∣t̂r(B)− tr(B)
∣∣ = 1

n

∣∣ťr(B)− tr(B)
∣∣ ≤ D1rm,m.

Otherwise, it is possible that ťr(B) < 0. However, suppose we set

τ̂B := 1
n t̂r(B) := 1

n (ťr(B) ∨ 0),

then we can also guarantee that

|τ̂B − τB | = |τB | ≤ D1rm,m in case τB ≤ D1rm,m.

The lemma is thus proved.

C.2. Proof of Lemma 11

Following Lemma 32, we have for all t > 0, B � 0 being an n × n symmetric
positive definite matrix, and v, w ∈ R

m

P

(∣∣∣vTZT
1 B

1/2Z2w
∣∣∣ > t

)
≤ 2 exp

[
−cmin

(
t2

K4tr(B)
,

t

K2 ‖B‖1/22

)]
(C.3)

and

P
(∣∣vTZTBZw − EvTZTBZw

∣∣ > t
)
≤

2 exp

(
−cmin

(
t2

K4 ‖B‖2F
,

t

K2 ‖B‖2

))
.

Proof of Lemma 11. Let e1, . . . , em ∈ R
m be the canonical basis spanning R

m.
Let x1, . . . , xm, x′

1, . . . , x
′
m ∈ R

n be the column vectors Z1, Z2 respectively. Let
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Y ∼ eT1 Z
T
0 . Let wi =

A1/2ei
‖A1/2ei‖

2

for all i. Clearly the condition on the stable rank

of B guarantees that

n ≥ r(B) =
tr(B)

‖B‖2
=

tr(B) ‖B‖2
‖B‖22

≥ ‖B‖2F / ‖B‖22 ≥ logm.

By (C.1), we obtain for t′ = C0MεK
√
tr(B) logm

P

(
∃j,
∣∣∣εTB1/2Z2ej

∣∣∣ > t′
)
=

P

(
∃j, Mε

K

∣∣∣eT1 ZT
0 B

1/2Z2ej

∣∣∣ > C0MεK
√
logmtr(B)

1
2

)
≤ exp(logm)P

(∣∣∣Y TB1/2x′
j

∣∣∣ > C0K
2
√
logmtr(B)

1
2

)
≤ 2/m3

where the last inequality holds by the union bound, given that tr(B)
‖B‖2

≥ logm;

Similarly, for all j and t = C0K
2
√
logmtr(B)1/2,

P

(∣∣∣Y TB1/2x′
j

∣∣∣ > t
)

≤ 2 exp

(
−cmin

(
t2

K4tr(B)
,

t

K2 ‖B‖1/22

))
,

≤ 2 exp

(
−cmin

(
C2

0 logm,
C0 log

1/2 m
√

tr(B)

‖B‖1/22

))
≤ 2 exp

(
−cmin(C2

0 , C0) logm
)
≤ 2 exp (−4 logm) .

Let v, w ∈ Sm−1. Thus we have by Lemma 32, for t0 = C0MεK
√
n logm,

τ = C0K
2
√
n logm, wj =

A1/2ej

‖A1/2ej‖
2

and n ≥ logm,

P
(
∃j,
∣∣εTZ1wj

∣∣ > t0
)
≤ P

(
∃j, Mε

K

∣∣Y TZ1wj

∣∣ > C0MεK
√
n logm

)
≤ mP

(∣∣Y TZ1wj

∣∣ > C0K
2
√
n logm

)
= exp(logm)P

(∣∣eT1 ZT
0 Z1wj

∣∣ > τ
)
≤ 2 exp

(
−cmin

(
τ2

nK4
,
τ

K2

))
=: V

where

V ≤ 2 exp

(
−cmin

(
(C0K

2
√
n logm)2

nK4

C0K
2
√
n logm

K2

)
+ logm

)
≤ 2m exp

(
−cmin

(
C2

0 logm,C0 log
1/2 m

√
n
))

≤ 2m exp
(
−cmin(C2

0 , C0) logm
)
≤ 2 exp (−3 logm) .

Therefore we have with probability at least 1− 4/m3,
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2 B

1
2 ε
∥∥∥
∞

:= max
j=1,...,m

〈 εTB1/2Z2, ej 〉 ≤ t′ = C0MεK
√
tr(B) logm∥∥∥A 1

2ZT
1 ε
∥∥∥
∞

:= max
j=1,...,m

〈A1/2ej , Z
T
1 ε 〉

≤ max
j=1,...,m

∥∥∥A1/2ej

∥∥∥
2

max
j=1,...,m

〈wj , Z
T
1 ε 〉

≤ a1/2maxt0 = a1/2maxC0MεK
√
n logm.

The “moreover” part follows exactly the same arguments as above. Denote by
β̄∗ := β∗/ ‖β∗‖2 ∈ E ∩ Sm−1 and wi := A1/2ei/

∥∥A1/2ei
∥∥
2
. By (C.3)

P

(
∃i, 〈wi, Z

T
1 B

1/2Z2β̄
∗ 〉 ≥ C0K

2
√

logmtr(B)1/2
)

≤
m∑
i=1

P

(
〈wi, Z

T
1 B

1/2Z2β̄
∗ 〉 ≥ C0K

2
√

logmtr(B)
)

≤ 2 exp
(
−cmin

(
C2

0 logm,C0 logm
)
+ logm

)
≤ 2/m3.

Now for t = C0K
2
√
logm ‖B‖F and ‖B‖F / ‖B‖2 ≥

√
logm,

P

(
∃ei : 〈 ei, (ZTBZ − tr(B)Im)β̄∗ 〉 ≥ C0K

2
√
logm ‖B‖F

)
≤ 2m exp

[
−cmin

(
t2

K4 ‖B‖2F
,

t

K2 ‖B‖2

)]
≤ 2/m3.

By the two inequalities immediately above, we have with probability at least
1− 4/m3,

∥∥XT
0 Wβ∗∥∥

∞ =
∥∥∥A1/2ZT

1 B
1/2Z2β

∗
∥∥∥
∞

≤ ‖β∗‖2 max
ei

∥∥∥A1/2ei

∥∥∥
2

(
sup
wi

〈wi, Z
T
1 B

1/2Z2β̄
∗ 〉
)

≤ C0K
2 ‖β∗‖2

√
logma1/2max

√
tr(B)

and ∥∥(ZTBZ − tr(B)Im)β∗∥∥
∞ =

∥∥(ZTBZ − tr(B)Im)β̄∗∥∥
∞ ‖β∗‖2

= ‖β∗‖2
(
sup
ei

〈 ei, (ZTBZ − tr(B)Im)β̄∗ 〉
)

≤ C0K
2 ‖β∗‖2

√
logm ‖B‖F .

The last two bounds follow exactly the same arguments as above, except that
we replace β∗ with ej , j = 1, . . . ,m and apply the union bounds to m2 instead
of m events, and thus P (B10) ≥ 1− 4/m2.
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Appendix D: Proof of Corollary 13

Now following (6.1), we have on event B0,∥∥∥γ̂ − Γ̂β∗
∥∥∥
∞

≤ ρn

((
3

4
D2 +D2

1√
m

)
K ‖β∗‖2 +D0Mε

)
where 2D1 ≤ 2 ‖A‖2 + 2 ‖B‖2 = D2, and for (D′

0)
2 ≤ 2 ‖B‖2 + 2amax,

D0 ≤ D′
0 ≤

√
2(‖B‖2 + amax) ≤ 2(amax + ‖B‖2) = D2,

and D′
0τ

1/2
B ≤ (‖B‖1/22 + a1/2max)τ

1/2
B ≤ τB +

1

2
(‖B‖2 + amax) ≤

3

4
D2

given that under (A1) : τA = 1, ‖A‖2 ≥ amax ≥ a
1/2
max ≥ 1. Hence the lemma

holds for m ≥ 16 and ψ = C0D2K (K ‖β∗‖2 +Mε).

Appendix E: Proof of Corollary 14

Suppose that event B0 holds. Recall D′
0 = ‖B‖1/22 + a

1/2
max. Denote by ρn :=

C0K
√

logm
n . By (6.1) and the fact that 2D1 := 2(

‖A‖F√
m

+
‖B‖F√

n
) ≤ 2(‖A‖1/22 +

‖B‖1/22 )(
√
τA +

√
τB) ≤ DoracleD

′
0,∥∥∥γ̂ − Γ̂β∗

∥∥∥
∞

≤ D′
0Kτ

1/2
B ‖β∗‖2 ρn + 2D1K

1√
m

‖β∗‖∞ ρn +D0Mερn

≤ D′
0K ‖β∗‖2 ρn

(
τ
1/2
B +

Doracle√
m

)
+D0Mερn

The corollary is thus proved.

Appendix F: Proof of Lemma 15

In view of Remark F.1, Condition (6.3) implies that (7.2) in Theorem 26 holds
for k = s0 and ε = 1

2MA
. Now, by Theorem 26, we have ∀u, v ∈ E ∩ Sm−1,

under (A1) and (A3), condition (7.1) holds under event A0, and so long as
mn ≥ 4096C2

0D
2
2K

4 logm/λmin(A)
2,

∣∣uTΔv
∣∣ ≤ 8C�(s0)ε+ 2C0D2K

2

√
logm

mn
=: δ with

δ ≤ λmin(A)

16
+

λmin(A)

32
=

3

32
λmin(A) ≤

1

8
,

which holds for all

ε ≤ 1

2

λmin(A)

64C�(s0)
:=

1

2MA
≤ 1

128C

with P (A0) ≥ 1− 4 exp
(
−c2ε

2 tr(B)
K4‖B‖2

)
− 2 exp

(
−c2ε

2 n
K4

)
− 6/m3.
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Hence, by Corollary 25, ∀θ ∈ R
m,

θT Γ̂Aθ ≥ α ‖θ‖22 − τ ‖θ‖21 and θT Γ̂Aθ ≤ α̃ ‖θ‖22 + τ ‖θ‖21 ,

where α = 5
8λmin(A) and α̃ = 11

8 λmax(A) and τ = 3
8
λmin(A)

s0
.

Now for s0 ≥ 32 as defined in (2.2), we have

s0 ≤ n

logm

λ2
min(A)

1024C2�(s0)2
(F.1)

and s0 + 1 ≥ n

logm

λ2
min(A)

1024C2�2(s0 + 1)
(F.2)

given that τB + ρmax(s0 + 1, A) = O(λmax(A)) in view of (2.1) and (A3). Thus

384C2�(s0)
2

λmin(A)

logm

n
≤ τ =

3

8

λmin(A)

s0

≤ 33

32(s0 + 1)

3

8

λmin(A)

s0

≤ 396C2�2(s0 + 1)

λmin(A)

logm

n
.

The lemma is thus proved in view of Remark F.1.

Remark F.1. Clearly the condition on tr(B)/ ‖B‖2 as stated in Lemma 15
ensures that we have for ε = 1

2MA
and s0 � 4n

M2
A logm

,

ε2
tr(B)

K4 ‖B‖2
≥ ε2

K4
c′K4 s0

ε2
log

(
3em

s0ε

)
≥ c′s0 log

(
6emMA

s0

)
,

and hence

exp

(
−c2ε

2 tr(B)

K4 ‖B‖2

)
≤ exp

(
−c′c2s0 log

(
6emMA

s0

))
� exp

(
−c3

4n

M2
A logm

log

(
3eM3

Am logm

2n

))
.

F.1. Comparing the two type of RE conditions in Theorems 3 and 4

We define Cone(d0, k0), where 0 < d0 < m and k0 is a positive number, as the
set of vectors in R

m which satisfy the following cone constraint:

Cone(d0, k0) = {x ∈ R
m | ∃I ∈ {1, . . . ,m}, |I| = d0 s.t. ‖xIc‖1 ≤ k0 ‖xI‖1} .

For each vector x ∈ R
m, let T0 denote the locations of the d0 largest coefficients

of x in absolute values. The following elementary estimate [38] will be used in
conjunction with the RE condition.
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Lemma 33. For each vector x ∈ Cone(d0, k0), let T0 denotes the locations of
the d0 largest coefficients of x in absolute values. Then

‖xT0‖2 ≥ ‖x‖2√
1 + k0

. (F.3)

Lemma 34. Suppose all conditions in Lemma 15 hold. Let k0 := 1+λ. Suppose
that d0 = o

(
s0/64(1 + 3λ/4)2

)
. Now suppose that

τ(1 + 3k0)
22d0 = 2τ(4 + 3λ)2d0 ≤ α/2.

Then on event A0, we have RE
2(2d0, 3k0, Γ̂A) condition holds on Γ̂A in the sense

that

min
x∈Cone(2d0,3k0)

xT Γ̂Ax

‖xT0‖
2
2

≥ α

2
. (F.4)

Under (A2) and (A3), we could set d0 such that for some large enough constant
CA,

d0 ≤ n

CAκ(A)2 logm
= O

(
λ2
min(A)

�2(s0 + 1)

n

logm

)
(F.5)

where κ(A) := λmax(A)
λmin(A) , so that d0 = O(s0) and (F.4) holds.

Proof. Now following the proof Lemma 1, Part I. We have on A0, the Lower-RE
condition holds for ΓA. Thus for x ∈ Cone(2d0, 3k0)∩Sm−1 and τ(1+3k0)

22d0 ≤
α/2,

‖x‖21 ≤ (1 + 3k0)
2 ‖xT0‖

2
1 ≤ (1 + 3k0)

22d0 ‖xT0‖
2
2 .

Thus

xT Γ̂Ax ≥
(
α ‖x‖22 − τ ‖x‖21

)
≥

(
α ‖x‖22 − τ(1 + 3k0)

22d0 ‖xT0‖
2
2

)
≥

(
α− τ(1 + 3k0)

22d0
)
‖xT0‖

2
2 ≥ α

2
‖xT0‖

2
2 .

Thus (F.4) holds. Now (F.5) follows from (F.1), which holds by definition of s0
as in (2.2), where s0 is tightly bounded in the sense that both (F.1) and (F.2)
need to hold.

Remark F.2. We note that (F.4) can be understood to be the RE(2d0, 3k0)

condition on Γ̂A. In view of Lemma 15, it is clear that for d0 �
√

n/ logm, it
holds that

4d0(4 + 3λ)2 = o(s0)

given that τs0 = O(α) on event A0; indeed, we have by Lemma 15 the Lower-RE

condition holds for Γ̂A := ATA− t̂r(B)Im, with α, τ > 0 such that

curvature α =
5

8
λmin(A) and tolerance τ :=

3

8

λmin(A)

s0
,
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where recall s0 ≥ 32 is as defined in (2.2); moreover, we replaced the parameter

MA � ρmax(s0,A)+τB
λmin(A) with κ(A) in view of (2.1) and (A3).

Appendix G: Proof of Theorem 16

Denote by β = β∗. Let S := supp β, d = |S| and

υ = β̂ − β,

where β̂ is as defined in (1.7).
We first show Lemma 35, followed by the proof of Theorem 16.

Lemma 35. [4, 30] Suppose that (6.5) holds. Suppose that there exists a pa-
rameter ψ such that

√
dτ ≤ ψ

b0

√
logm

n
and λ ≥ 4ψ

√
logm

n
,

where b0, λ are as defined in (1.7). Then

‖υSc‖1 ≤ 3 ‖υS‖1 .

Proof. By the optimality of β̂, we have

λ ‖β‖1 − λ
∥∥∥β̂∥∥∥

1
≥ 1

2
β̂Γ̂β̂ − 1

2
βΓ̂β − 〈 γ̂, v 〉

=
1

2
υΓ̂υ + 〈 υ, Γ̂β 〉 − 〈 υ, γ̂ 〉

=
1

2
υΓ̂υ − 〈 υ, γ̂ − Γ̂β 〉 .

Hence, we have for λ ≥ 4ψ
√

logm
n ,

1

2
υΓ̂υ ≤ 〈 υ, γ̂ − Γ̂β 〉 + λ

(
‖β‖1 −

∥∥∥β̂∥∥∥
1

)
(G.1)

≤ λ
(
‖β‖1 −

∥∥∥β̂∥∥∥
1

)
+
∥∥∥γ̂ − Γ̂β

∥∥∥
∞

‖υ‖1 .

Hence

υΓ̂υ ≤ λ
(
2 ‖β‖1 − 2

∥∥∥β̂∥∥∥
1

)
+ 2ψ

√
logm

n
‖υ‖1 (G.2)

≤ λ

(
2 ‖β‖1 − 2

∥∥∥β̂∥∥∥
1
+

1

2
‖υ‖1

)
≤ λ

1

2
(5 ‖υS‖1 − 3 ‖υSc‖1) , (G.3)

where by the triangle inequality, and βSc = 0, we have

2 ‖β‖1 − 2
∥∥∥β̂∥∥∥

1
+

1

2
‖υ‖1

= 2 ‖βS‖1 − 2
∥∥∥β̂S

∥∥∥
1
− 2 ‖υSc‖1 +

1

2
‖υS‖1 +

1

2
‖υSc‖1
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≤ 2 ‖υS‖1 − 2 ‖υSc‖1 +
1

2
‖υS‖1 +

1

2
‖υSc‖1

≤ 1

2
(5 ‖υS‖1 − 3 ‖υSc‖1) . (G.4)

We now give a lower bound on the LHS of (G.1), applying the lower-RE condition
as in Definition 2.2,

υT Γ̂υ ≥ α ‖υ‖22 − τ ‖υ‖21 ≥ −τ ‖υ‖21
and hence − υT Γ̂υ ≤ ‖υ‖21 τ ≤ ‖υ‖1 2b0

√
dτ

≤ ‖υ‖1 2b0
ψ

b0

√
logm

n
= ‖υ‖1 2ψ

√
logm

n

≤ 1

2
λ(‖υS‖1 + ‖υSc‖1), (G.5)

where we use the assumption that

√
dτ ≤ ψ

b0

√
logm

n
and ‖υ‖1 ≤

∥∥∥β̂∥∥∥
1
+ ‖β‖1 ≤ 2b0

√
d,

which holds by the triangle inequality and the fact that both β̂ and β have 
1
norm being bounded by b0

√
d. Hence by (G.3) and (G.5)

0 ≤ −υΓ̂υ +
5

2
λ ‖υS‖1 −

3

2
λ ‖υSc‖1 (G.6)

≤ 1

2
λ ‖υS‖1 +

1

2
λ ‖υSc‖1 +

5

2
λ ‖υS‖1 −

3

2
λ ‖υSc‖1

≤ 3λ ‖υS‖1 − λ ‖υSc‖1 . (G.7)

Thus we have

‖υSc‖1 ≤ 3 ‖υS‖1 ,
and the lemma holds.

Proof of Theorem 16. Following the conclusion of Lemma 35, we have

‖υ‖1 ≤ 4 ‖υS‖1 ≤ 4
√
d ‖υ‖2 . (G.8)

Moreover, we have by the lower-RE condition as in Definition 2.2

υT Γ̂υ ≥ α ‖υ‖22 − τ ‖υ‖21 ≥ (α− 16dτ) ‖υ‖22 ≥ 1

2
α ‖υ‖22 , (G.9)

where the last inequality follows from the assumption that 16dτ ≤ α/2.
Combining the bounds in (G.9), (G.8) and (G.2), we have

1

2
α ‖υ‖22 ≤ υT Γ̂υ ≤ λ

(
2 ‖β‖1 − 2

∥∥∥β̂∥∥∥
1

)
+ 2ψ

√
logm

n
‖υ‖1

≤ 5

2
λ ‖υS‖1 ≤ 10λ

√
d ‖υ‖2 .

And thus we have ‖υ‖2 ≤ 20λ
√
d. The theorem is thus proved.
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Appendix H: Proofs for the Lasso-type estimator

Let

M+ =
32C�(s0 + 1)

λmin(A)
and �(s0 + 1) = ρmax(s0 + 1, A) + τB =: D.

By definition of s0, we have s0M
2
A ≤ 4n

logm and

(s0 + 1) ≥ n

M2
+ logm

given that
√
s0 + 1�(s0 + 1) ≥ λmin(A)

32C

√
n

logm
. (H.1)

To prove the first inequality in (6.4) and (6.7), we need to show that

d ≤ α

32τ
=

α

32

s0
λmin(A)− α

=
5s0
96

.

The first inequality in (6.4) holds so long as

d ≤ 1

20

1

M2
+

n

logm
≤ s0 + 1

20
≤ 5(s0 + 1)

100
≤ 5s0

96
, (H.2)

where the last inequality holds so long as s0 ≥ 24. To prove the second inequality
in (6.7), we need to show that

d ≤ 1

τ2
logm

n

(
ψ

b0

)2

, where τ =
3

5

α

s0
for α =

5

8
λmin(A),

which in turn ensures that the second inequality in (6.4) holds for λ ≥ 4ψ, for ψ
appropriately chosen. We use the following inequality in the proof of Lemma 17
and Lemma 18:

s0 + 1

α2
≥ 64

25λmin(A)2
1

M2
+

n

logm
≥
(
8

5

1

32C�(s0 + 1)

)2
n

logm

=

(
1

20CD

)2
n

logm
≥
(

1

10CD2

)2
n

logm
, (H.3)

where we use the fact that D = �(s0 + 1) = ρmax(s0 + 1, A) + τB ≤ ‖A‖2 +
‖B‖2 := D2/2.

H.1. Proof of Lemma 17

Let CA = 1
40M2

+
. The first inequality in (6.7) holds in view of (H.2). Recall that

b20 ≥ ‖β∗‖22 ≥ φb20 by definition of 0 < φ ≤ 1. Let C = C0/
√
c′. By (6.6) and

(H.3),

d ≤ CAc
′Dφ

n

logm
≤ 1

40M2
+

(
C0D2

CD2

)2

Dφ
n

logm

≤ 25

9

32

33

32

33

n

M2
+ logm

(
1

10CD2

)2

C2
0D

2
2Dφ
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≤ 25

9

32

33

32(s0 + 1)

33

(s0 + 1)

α2

logm

n

(
ψ

b0

)2

≤ 25

9

(s0)
2

α2

logm

n

(
ψ

b0

)2

,

where

C2
0D

2
2Dφ = C2

0D
2
2

(
K2M2

ε

b20
+K4φ

)
≤ C2

0D
2
2

K2

b20
(Mε +K ‖β∗‖2)2 =

(
ψ

b0

)2

, (H.4)

for ψ = C0D2K(K ‖β∗‖2 +Mε) as defined in (3.5). We have shown that (6.7)
indeed holds, and the lemma is thus proved.

H.2. Proof of Lemma 18

Let CA = 1
160M2

+
. The proof for d ≤ α

32τ = 5s0
96 follows from (H.2). In order to

show the second inequality, we follow the same line of arguments except that we
need to replace one inequality (H.4) with (H.5). By definition of D′

0, we have
‖B‖2 + amax ≤ (D′

0)
2 ≤ 2(‖B‖2 + amax). Let D = �(s0 + 1).

By (6.8), (H.1) and (H.3), we have for c′′ ≤
(

D′
0

D

)2
,

d ≤ CAc
′c′′Dφ

n

logm
≤ 1

160M2
+

n

logm

(
C0D

′
0

CD

)2

Dφ

≤ 25

9

322

332

(
1

20CD

)2 (
C2

0 (D
′
0)

2Dφ

) n

M2
+ logm

≤ 25

9

322

332
(s0 + 1)2

α2

logm

n

(
ψ

b0

)2

≤ 25

9

(s0)
2

α2

logm

n

(
ψ

b0

)2

,

where assuming that s0 ≥ 32, we have the following inequality by definition of
s0 and α = 5

8λmin(A),

s0 + 1

α2

logm

n
≥

(
8

5

1

32C�(s0 + 1)

)2

≥
(

1

20CD

)2

.

We now replace (H.4) with

C2
0 (D

′
0)

2Dφ = C2
0 (D

′
0)

2K
4

b20

(
M2

ε

K2
+ τ+Bφb20

)
≤ C2

0 (D
′
0)

2K
2

b20

(
Mε + τ

+/2
B K ‖β∗‖2

)2
≤
(
ψ

b0

)2

, (H.5)

where Dφ :=
K2M2

ε

b20
+ τ+BK4φ ≤ K4

b20

(
M2

ε

K2
+ τ+B ‖β∗‖22

)



Errors-in-variables models with dependent measurements 1779

and ψ = C0D
′
0K
(
Kτ

+/2
B ‖β∗‖2 +MεK

)
is now as defined in (4.2). The lemma

is thus proved.

Remark H.1. Throughout this paper, we assume that C0 is a large enough
constant such that for c as defined in Theorem 31,

cmin{C2
0 , C0} ≥ 4. (H.6)

By definition of s0, we have for �2(s0) ≥ 1,

s0�
2(s0) ≤ c′λ2

min(A)

1024C2
0

n

logm
, and hence

s0 ≤ c′λ2
min(A)

1024C2
0

n

logm
≤ λ2

min(A)

1024C2
0

n

logm
=: š0.

Remark H.2. The proof shows that one can take C = C0/
√
c′, and take

V = 3eM3
A/2 =

3e643C3�3(s0)

2λ3
min(A)

≤ 3e643C3
0�

3(š0)

2(c′)3/2λ3
min(A)

.

Hence a sufficient condition on r(B) is:

r(B) ≥ 16c′K4 n

logm

(
3 log

64C0�(š0)√
c′λmin(A)

+ log
3em logm

2n

)
. (H.7)

Appendix I: Proofs for the Conic programming estimator

We next provide proof for Lemmas 19 to 21 in this section.

I.1. Proof of Lemma 19

Suppose event B0 holds. Then by the proof of Corollary 13,∥∥ 1
nX

T (y −Xβ∗) + 1
n t̂r(B)β∗∥∥

∞ =
∥∥∥γ̂ − Γ̂β∗

∥∥∥
∞

≤ 2C0D2K
2 ‖β∗‖2

√
logm

n
+ C0D0KMε

√
logm

n
=: μ ‖β∗‖2 + ω.

The lemma follows immediately for the chosen μ, ω as in (6.9) given that
(β∗, ‖β∗‖2) ∈ Υ.

I.2. Proof of Lemma 20

By optimality of (β̂, t̂), we have∥∥∥β̂∥∥∥
1
+ λ

∥∥∥β̂∥∥∥
2
≤
∥∥∥β̂∥∥∥

1
+ λt̂ ≤ ‖β∗‖1 + λ ‖β∗‖2 .
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Thus we have for S := supp(β∗),∥∥∥β̂∥∥∥
1
=
∥∥∥β̂Sc

∥∥∥
1
+
∥∥∥β̂S

∥∥∥
1

≤ ‖β∗‖1 + λ(‖β∗‖2 −
∥∥∥β̂∥∥∥

2
).

Now by the triangle inequality,∥∥∥β̂Sc

∥∥∥
1
= ‖vSc‖1 ≤ ‖β∗

S‖1 −
∥∥∥β̂S

∥∥∥
1
+ λ(‖β∗‖2 −

∥∥∥β̂∥∥∥
2
)

≤ ‖vS‖1 + λ(‖β∗‖2 −
∥∥∥β̂∥∥∥

2
)

≤ ‖vS‖1 + λ(‖β∗‖2 −
∥∥∥β̂S

∥∥∥
2
)

= ‖vS‖1 + λ ‖vS‖2 ≤ (1 + λ) ‖vS‖1 .

The lemma thus holds given

t̂ ≤ 1

λ
(‖β∗‖1 −

∥∥∥β̂∥∥∥
1
) + ‖β∗‖2 ≤ 1

λ
‖v‖1 + ‖β∗‖2 .

I.3. Proof of Lemma 21

Recall the following shorthand notation:

D0 = (
√
τB +

√
amax) and D2 = 2(‖A‖2 + ‖B‖2).

First we rewrite an upper bound for v = β̂ − β∗, D = tr(B) and D̂ = t̂r(B),∥∥XT
0 X0v

∥∥
∞ =

∥∥∥(X −W )TX0(β̂ − β∗)
∥∥∥
∞

≤
∥∥∥XTX0(β̂ − β∗)

∥∥∥
∞

+
∥∥WTX0v

∥∥
∞

≤
∥∥∥XT (Xβ̂ − y)− D̂β̂

∥∥∥
∞

+
∥∥XT ε

∥∥
∞ +

∥∥∥(XTW −D)β̂
∥∥∥
∞

+
∥∥∥(D̂ −D)β̂

∥∥∥
∞

+
∥∥WTX0v

∥∥
∞ ,

where ∥∥∥XTX0(β̂ − β∗)
∥∥∥
∞

≤
∥∥∥XT (X0β̂ − y + ε)

∥∥∥
∞

=
∥∥∥XT ((X −W )β̂ − y)

∥∥∥
∞

+
∥∥XT ε

∥∥
∞

≤
∥∥∥XT (Xβ̂ − y)− D̂β̂

∥∥∥
∞

+
∥∥XT ε

∥∥
∞

+
∥∥∥(XTW −D)β̂

∥∥∥
∞

+
∥∥∥(D̂ −D)β̂

∥∥∥
∞

.

On event B0, we have by Lemma 20 and the fact that β̂ ∈ Υ,

I :=
∥∥∥γ̂ − Γ̂β̂

∥∥∥
∞

=
∥∥∥ 1
nX

T (y −Xβ̂) + 1
nD̂β̂

∥∥∥
∞

≤ μt̂+ ω
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≤ μ(
1

λ
‖v‖1 + ‖β∗‖2) + ω

= 2D2Kρn(
1

λ
‖v‖1 + ‖β∗‖2) +D0ρnMε;

and on event B4,

II := 1
n

∥∥XT ε
∥∥
∞ ≤ 1

n (
∥∥XT

0 ε
∥∥
∞ +

∥∥WT ε
∥∥
∞)

≤ ρnMε(a
1/2
max +

√
τB) = D0ρnMε.

Thus on event B0, we have

I + II ≤ 2D2Kρn(
1

λ
‖v‖1 + ‖β∗‖2) + 2D0ρnMε

= μ(
1

λ
‖v‖1 + ‖β∗‖2) + 2ω.

Now on event B6, we have for 2D1 ≤ D2

IV :=
∥∥∥(D̂ −D)β̂

∥∥∥
∞

≤
∣∣∣D̂ −D

∣∣∣ ∥∥∥β̂∥∥∥
∞

≤ 2D1K
1√
m
ρn(‖β∗‖∞ + ‖v‖∞)

≤ D2K
1√
m
ρn(‖β∗‖2 + ‖v‖1).

On event B5 ∩ B10, we have

III := 1
n

∥∥∥(XTW −D)β̂
∥∥∥
∞

≤ 1
n

∥∥(XTW −D)β∗∥∥
∞ + 1

n

∥∥(XTW −D)v
∥∥
∞

≤ 1
n

∥∥XT
0 Wβ∗∥∥

∞ + 1
n

∥∥(WTW −D)β∗∥∥
∞

+ 1
n

(∥∥(ZTBZ − tr(B)Im)
∥∥
max

+
∥∥XT

0 W
∥∥
max

)
‖v‖1

≤ ρnK

(‖B‖F√
n

+
√
τBa

1/2
max

)
(‖v‖1 + ‖β∗‖2)

and

V = 1
n

∥∥WTX0v
∥∥
∞

≤ 1
n

∥∥WTX0

∥∥
max

‖v‖1 ≤ ρnK
√
τBa

1/2
max ‖v‖1 .

Thus we have on B0 ∩ B10,

III + IV + V ≤

ρnK

(
‖B‖2 + τB + amax +

2√
m
(‖A‖2 + ‖B‖2)

)
(‖v‖1 + ‖β∗‖2)

≤ ρnK (4 ‖B‖2 + 3 ‖A‖2) (‖v‖1 + ‖β∗‖2)
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≤ 2D2Kρn(‖v‖1 + ‖β∗‖2)
≤ μ(‖v‖1 + ‖β∗‖2),

where D0 ≤ D2 and τA = 1, and∥∥ 1
nX

T
0 X0v

∥∥
∞ ≤ I + II + III + IV + V

≤ μ(
1

λ
‖v‖1 + ‖β∗‖2) + 2D0Mερn + μ(‖v‖1 + ‖β∗‖2)

≤ 2μ ‖β∗‖2 + μ(
1

λ
+ 1) ‖v‖1 + 2ω.

The lemma thus holds.

Appendix J: Proof for Theorem 7

We prove Lemmas 22 to 24 in this section.

J.1. Proof of Lemma 22

Suppose event B0 holds. Then by the proof of Corollary 14, we have for D′
0 =

‖B‖1/22 + a
1/2
max,∥∥∥γ̂ − Γ̂β∗

∥∥∥
∞

≤ D′
0τ

+/2
B Kρn ‖β∗‖2 +D0Mερn,

where τ
+/2
B =

√
τB + Doracle√

m
and Doracle = 2(‖B‖1/22 + ‖A‖1/22 ). The lemma

follows immediately for μ, ω as chosen in (6.12).

J.2. Proof of Lemma 23

Suppose event B6 holds. We first show (6.13) and (6.14).

Recall rm,m := 2C0K
2
√

logm
mn ≥ 2C0K

2 log1/2 m
m . By Lemma 5, we have on

event B6,

|τ̂B − τB | ≤ D1rm,m.

Moreover, we have under (A1),

1 = τA ≤ D1 :=
‖A‖F
m1/2

+
‖B‖F
n1/2

≤ ‖A‖2 + ‖B‖2 ≤ (
Doracle

2
)2,

in view of (C.2). Hence√
D1 ≤ Doracle

2
= ‖B‖1/22 + ‖A‖1/22 .
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By definition and construction, we have τB , τ̂B ≥ 0,∣∣∣τ̂1/2B − τ
1/2
B

∣∣∣ ≤ τ̂
1/2
B + τ

1/2
B ,

and
∣∣∣τ̂1/2B − τ

1/2
B

∣∣∣2 ≤
∣∣∣(τ̂1/2B + τ

1/2
B )(τ̂

1/2
B − τ

1/2
B )

∣∣∣ = |τ̂B − τB | .

Thus, ∣∣∣τ̂1/2B − τ
1/2
B

∣∣∣ ≤
√
|τ̂B − τB | ≤

√
D1r

1/2
m,m ≤ Doracle

2
r1/2m,m

and for C6 ≥ Doracle ≥ 2
√
D1 and Doracle = 2(‖A‖1/22 + ‖B‖1/22 ),

τ̂
1/2
B − Doracle

2
r1/2m,m ≤ τ

1/2
B ≤ τ̂

1/2
B +

Doracle

2
r1/2m,m. (J.1)

Thus we have for τ
+/2
B as defined in (4.1), (J.1) and the fact that

r1/2m,m ≥
√

2C0K
(logm)1/4√

m
≥ 2/

√
m for m ≥ 16 and C0 ≥ 1,

the following inequalities hold: for K ≥ 1,

τ
+/2
B := τ

1/2
B +Doraclem

−1/2 (J.2)

≤ τ̂
1/2
B +

Doracle

2
r1/2m,m +

Doracle

2
r1/2m,m

≤ τ̂
1/2
B +Doracler

1/2
m,m ≤ τ̃

1/2
B ,

where the last inequality holds by the choice of τ̃
1/2
B ≥ τ̂

1/2
B +Doracler

1/2
m,m as in

(4.10). Moreover, by (J.1),

τ̃
1/2
B := τ̂

1/2
B + C6r

1/2
m,m ≤ τ

1/2
B +

Doracle

2
r1/2m,m + C6r

1/2
m,m

≤ τ
1/2
B +

3

2
C6r

1/2
m,m,

and τ̃B := (τ̂
1/2
B + C6r

1/2
m,m)2 ≤ 2τ̂B + 2C2

6rm,m

≤ 2τB + 2D1rm,m + 2C2
6rm,m

≤ 2τB +
D2

oracle

2
rm,m + 2C2

6rm,m ≤ 2τB + 3C2
6rm,m.

Thus (6.13) and (6.14) hold given that 2D1 ≤ D2
oracle/2 ≤ C2

6/2.
Finally, we have for τ−B as defined in (4.8),

τ̃
1/2
B τ−B ≤ (τ

1/2
B +

3

2
C6r

1/2
m,m)τ−B ≤

τ
1/2
B + 3

2C6r
1/2
m,m

τ
1/2
B + 2C6r

1/2
m,m

≤ 1.

Remark J.1. The set Υ in our setting is equivalent to the following: for μ, ω
as defined in (4.10) and β ∈ R

m,

Υ =
{
(β, t) :

∥∥ 1
nX

T (y −Xβ) + 1
n t̂r(B)β

∥∥
∞ ≤ μt+ ω, ‖β‖2 ≤ t

}
. (J.3)
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J.3. Proof of Lemma 24

For the rest of the proof, we will follow the notation in the proof for Lemma 21.
Notice that the bounds as stated in Lemma 20 remain true with ω, μ chosen as
in (6.12), so long as (β∗, ‖β∗‖2) ∈ Υ. This indeed holds by Lemma 22: for ω and
μ (4.10) as chosen in Theorem 7, we have by (J.2),

μ � D′
0τ̃

1/2
B Kρn ≥ D′

0Kρnτ
+/2
B , where τ

+/2
B = (

√
τB +

Doracle√
m

),

which ensures that (β∗, ‖β∗‖2) ∈ Υ by Lemma 22.

On event B0, we have by Lemma 20 and the fact that β̂ ∈ Υ as in (J.3)

I + II :=
∥∥∥γ̂ − Γ̂β̂

∥∥∥
∞

+ 1
n

∥∥XT ε
∥∥
∞

≤
∥∥∥ 1
nX

T (y −Xβ̂) + 1
nD̂β̂

∥∥∥
∞

+ ω ≤ μt̂+ 2ω

≤ μ(
1

λ
‖v‖1 + ‖β∗‖2) + 2ω,

for ω, μ as chosen in (4.10). Now on event B6, we have under (A1),

IV :=
∥∥∥(D̂ −D)β̂

∥∥∥
∞

≤
∣∣∣D̂ −D

∣∣∣ ∥∥∥β̂∥∥∥
∞

≤ 2D1K
1√
m
ρn(‖β∗‖∞ + ‖v‖∞)

≤ D′
0

Doracle√
m

Kρn(‖β∗‖2 + ‖v‖1),

where 2D1 ≤ DoracleD
′
0 for 1 ≤ D′

0 := ‖B‖1/22 + a
1/2
max, for amax ≥ τA = 1 and

Doracle = 2
(
‖B‖1/22 + ‖A‖1/22

)
. Hence

III + IV + V ≤ ρnK
√
τB

(
‖B‖1/22 + a1/2max

)
(‖v‖1 + ‖β∗‖2)

+2D1K
1√
m
ρn(‖β∗‖2 + ‖v‖1) + ρnK

√
τBa

1/2
max ‖v‖1

≤ D′
0Kρn(‖v‖1 + ‖β∗‖2)(

√
τB +

Doracle√
m

) + ρnK
√
τBa

1/2
max ‖v‖1

≤ D′
0Kρnτ

+/2
B (‖v‖1 + ‖β∗‖2) +D′

0Kρn
√
τB ‖v‖1

≤ C0D
′
0K

2

√
logm

n
(τ

1/2
B +

Doracle√
m

)(2 ‖v‖1 + ‖β∗‖2)

≤ μ(2 ‖v‖1 + ‖β∗‖2),
for μ as defined in (4.10) in view of (J.2).

Thus we have

I + II + III + IV + V ≤ μ(
1

λ
‖v‖1 + ‖β∗‖2) + 2ω + μ(2 ‖v‖1 + ‖β∗‖2)

= 2μ((1 +
1

2λ
) ‖v‖1 + ‖β∗‖2) + 2ω,

and the improved bound as stated in the Lemma thus holds.
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Appendix K: Some geometric analysis results

Let us define the following set of vectors in R
m:

Cone(s) := {υ : ‖υ‖1 ≤
√
s ‖υ‖2}

For each vector x ∈ R
m, let T0 denote the locations of the s largest coefficients

of x in absolute values. Any vector x ∈ Sm−1 satisfies:∥∥xT c
0

∥∥
∞ ≤ ‖xT0‖1 /s ≤ ‖xT0‖2√

s
. (K.1)

We need to state the following result from [33]. Let Sm−1 be the unit sphere in
R

m, for 1 ≤ s ≤ m,

Us := {x ∈ R
m : | supp(x)| ≤ s}. (K.2)

The sets Us is an union of the s-sparse vectors. The following three lemmas are
well-known and mostly standard; See [33] and [30].

Lemma 36. For every 1 ≤ s ≤ m and every I ⊂ {1, . . . ,m} with |I| ≤ s,

√
|I|Bm

1 ∩ Sm−1 ⊂ 2 conv(Us ∩ Sm−1) =: 2 conv

⎛⎝ ⋃
|J|≤s

EJ ∩ Sm−1

⎞⎠
and moreover, for ρ ∈ (0, 1],√

|I|Bm
1 ∩ ρBm

2 ⊂ (1 + ρ) conv(Us ∩Bm
2 )

=: (1 + ρ) conv

⎛⎝ ⋃
|J|≤s

EJ ∩ Sm−1

⎞⎠ .

Proof. Fix x ∈ R
m. Let xT0 denote the subvector of x confined to the locations

of its s largest coefficients in absolute values; moreover, we use it to represent
its 0-extended version x′ ∈ R

m such that x′
T c = 0 and x′

T0
= xT0 . Throughout

this proof, T0 is understood to be the locations of the s largest coefficients in
absolute values in x.

Moreover, let (x∗
i )

m
i=1 be non-increasing rearrangement of (|xi|)mi=1. Denote

by

L =
√
sBm

1 ∩ ρBm
2 and

R = 2 conv

⎛⎝ ⋃
|J|≤s

EJ ∩Bm
2

⎞⎠ = 2 conv
(
E ∩Bm

2

)
.

Any vector x ∈ R
m satisfies:∥∥xT c

0

∥∥
∞ ≤ ‖xT0‖1 /s ≤ ‖xT0‖2√

s
. (K.3)
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It follows that for any ρ > 0, s ≥ 1 and for all z ∈ L, we have the ith largest
coordinate in absolute value in z is at most

√
s/i, and

sup
z∈L

〈x, z 〉 ≤ max
‖z‖2≤ρ

〈xT0 , z 〉 + max
‖z‖1≤

√
s
〈xT c

0
, z 〉

≤ ρ ‖xT0‖2 +
∥∥xT c

0

∥∥
∞

√
s

≤ ‖xT0‖2 (ρ+ 1) ,

where clearly max‖z‖2≤ρ 〈xT0 , z 〉 = ρ
∑s

i=1(x
∗2
i )1/2. And denote by SJ :=

Sm−1 ∩ EJ ,

sup
z∈R

〈x, z 〉 = (1 + ρ) max
J:|J|≤s

max
z∈SJ

〈x, z 〉

= (1 + ρ) ‖xT0‖2 ,

given that for a convex function 〈x, z 〉 , the maximum happens at an extreme
point; and in this case, it happens for z such that z is supported on T0, such
that zT0 =

xT0

‖xT0‖2

and zT c
0
= 0.

Lemma 37. Let 1/5 > δ > 0. Let E = ∪|J|≤sEJ for 0 < s < m/2 and k0 > 0.
Let Δ be a m×m matrix such that∣∣uTΔv

∣∣ ≤ δ, ∀u, v ∈ E ∩ Sm−1 (K.4)

Then for all v ∈
(√

sBm
1 ∩Bm

2

)
,∣∣υTΔυ

∣∣ ≤ 4δ. (K.5)

Proof. First notice that

max
υ∈
(√

sBm
1 ∩Bm

2

) ∣∣υTΔυ
∣∣ ≤ max

w,u∈
(√

sBm
1 ∩Bm

2

) ∣∣wTΔu
∣∣ . (K.6)

Now that we have decoupled u and w on the RHS of (K.6), we first fix u.

Then for any fixed u ∈ Sm−1 and matrix Δ ∈ R
m×m, f(w) =

∣∣wTΔu
∣∣

is a convex function of w, and hence for w ∈
(√

sBm
1 ∩ Bm

2

)
⊂

2 conv
(⋃

|J|≤s EJ ∩ Sm−1
)
,

max
w∈
(√

sBm
1 ∩Bm

2

) ∣∣wTΔu
∣∣ ≤ 2 max

w∈conv(E∩Sm−1)

∣∣wTΔu
∣∣

= 2 max
w∈E∩Sm−1

∣∣wTΔu
∣∣ ,

where the maximum occurs at an extreme point of the set conv(E ∩ Sm−1)
because of the convexity of the function f(w).
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Clearly the RHS of (K.6) is bounded by

max
u,w∈

(√
sBm

1 ∩Bm
2

) ∣∣wTΔu
∣∣ = max

u∈
(√

sBm
1 ∩Bm

2

) max
w∈
(√

sBm
1 ∩Bm

2

) ∣∣wTΔu
∣∣

≤ 2 max
u∈
(√

sBm
1 ∩Bm

2

) max
w∈
(
E∩Sm−1

) ∣∣wTΔu
∣∣

= 2 max
u∈
(√

sBm
1 ∩Bm

2

) g(u),
where the function g of u ∈

(√
sBm

1 ∩Bm
2

)
is defined as

g(u) = max
w∈
(
E∩Sm−1

) ∣∣wTΔu
∣∣ ;

g(u) is convex since it is the maximum of a function fw(u) :=
∣∣wTΔu

∣∣ which is
convex in u for each w ∈ (E ∩ Sm−1).

Thus we have for

u ∈ (
√
sBm

1 ∩Bm
2 ) ⊂ 2 conv

⎛⎝ ⋃
|J|≤s

EJ ∩ Sm−1

⎞⎠ =: 2 conv
(
E ∩ Sm−1

)
,

max
u∈
(√

sBm
1 ∩Bm

2

) g(u) ≤ 2 max
u∈conv(E∩Sm−1)

g(u)

= 2 max
u∈E∩Sm−1

g(u) (K.7)

= 2 max
u∈E∩Sm−1

max
w∈E∩Sm−1

∣∣wTΔu
∣∣ ≤ 4δ, (K.8)

where (K.7) holds given that the maximum occurs at an extreme point of the
set conv(E ∩Bm

2 ), because of the convexity of the function g(u).

Corollary 38. Suppose all conditions in Lemma 37 hold. Then ∀υ ∈ Cone(s),∣∣υTΔυ
∣∣ ≤ 4δ ‖υ‖22 . (K.9)

Proof. It is sufficient to show that ∀υ ∈ Cone(s) ∩ Sm−1,∣∣υTΔυ
∣∣ ≤ 4δ.

Denote by Cone := Cone(s). Clearly this set of vectors satisfy:

Cone ∩ Sm−1 ⊂
(√

sBm
1 ∩Bm

2

)
.

Thus (K.9) follows from (K.5).

Remark K.1. Suppose we relax the definition of Cone(s) to be:

Cone(s) := {υ : ‖υ‖1 ≤ 2
√
s ‖υ‖2}.

Clearly, Cone(s, 1) ⊂ Cone(s). given that ∀u ∈ Cone(s, 1), we have

‖u‖1 ≤ 2 ‖uT0‖1 ≤ 2
√
s ‖uT0‖2 ≤ 2

√
s ‖u‖2 .
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Lemma 39. Suppose all conditions in Lemma 37 hold. Then for all υ ∈ R
m,

∣∣υTΔυ
∣∣ ≤ 4δ(‖υ‖22 +

1

s
‖υ‖21). (K.10)

Proof. The lemma follows given that ∀υ ∈ R
m, one of the following must hold:

if υ ∈ Cone(s)
∣∣υTΔυ

∣∣ ≤ 4δ ‖υ‖22 ; (K.11)

otherwise
∣∣υTΔυ

∣∣ ≤ 4δ

s
‖υ‖21 , (K.12)

leading to the same conclusion in (K.10).

We have shown (K.11) in Lemma 37. Let Cone(s)c be the complement set of
Cone(s) in R

m. That is, we focus now on the set of vectors such that

Cone(s)c := {υ : ‖υ‖1 ≥
√
s ‖υ‖2}

and show that for u =
√
s v
‖v‖1

,

∣∣vTΔv
∣∣

‖v‖21
:=

1

s

∣∣uTΔu
∣∣ ≤ 1

s
δ.

Now, the last inequality holds by Lemma 37 given that

u ∈ (
√
sBm

1 ∩Bm
2 ) ⊂ 2 conv

⎛⎝ ⋃
|J|≤s

EJ ∩Bm
2

⎞⎠
and thus ∣∣vTΔv

∣∣
‖v‖21

≤ 1

s
sup

u∈√
sBm

1 ∩Bm
2

∣∣uTΔu
∣∣ ≤ 1

s
4δ.

Appendix L: Proof of Corollary 25

First we show that for all υ ∈ R
m, (L.1) holds. It is sufficient to check that the

condition (K.4) in Lemma 37 holds. Then, (L.1) follows from Lemma 39: for
υ ∈ R

m,

∣∣υTΔυ
∣∣ ≤ 4δ(‖υ‖22 +

1

k
‖υ‖21) ≤

3

8
λmin(A)(‖υ‖22 +

1

k
‖υ‖21). (L.1)

The Lower and Upper RE conditions thus immediately follow. The Corollary is
thus proved.
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Appendix M: Proof of Theorem 26

We first state the following preliminary results in Lemmas 40 and 41; their proofs
appear in Section O. Throughout this section, the choice of C = C0/

√
c′ satisfies

the conditions on C in Lemmas 40 and 41, where recall min{C0, C
2
0} ≥ 4/c for

c as defined in Theorem 31. For a set J ⊂ {1, . . . ,m}, denote FJ = A1/2EJ ,
where recall EJ = span{ej : j ∈ J}. Let Z be an n × m random matrix with
independent entries Zij satisfying EZij = 0, 1 = EZ2

ij ≤ ‖Zij‖ψ2
≤ K. Let

Z1, Z2 be independent copies of Z.

Lemma 40. Suppose all conditions in Theorem 26 hold. Let

E =
⋃

|J|=k

EJ ∩ Sm−1.

Suppose that for some c′ > 0 and ε ≤ 1
C , where C = C0/

√
c′,

r(B) :=
tr(B)

‖B‖2
≥ c′kK4 log(3em/kε)

ε2
. (M.1)

Then for all vectors u, v ∈ E ∩ Sm−1, on event B1,∣∣uTZTBZv − EuTZTBZv
∣∣ ≤ 4Cεtr(B),

where P (B1) ≥ 1− 2 exp
(
−c2ε

2 tr(B)
K4‖B‖2

)
for c2 ≥ 2.

Lemma 41. Suppose that ε ≤ 1/C, where C is as defined in Lemma 40. Suppose
that (M.1) holds. Let

E =
⋃

|J|=k

EJ and F =
⋃

|J|=k

FJ . (M.2)

Then on event B2, where P (B2) ≥ 1−2 exp
(
−c2ε

2 tr(B)
K4‖B‖2

)
for c2 ≥ 2, we have

for all vectors u ∈ E ∩ Sm−1 and w ∈ F ∩ Sm−1,∣∣∣wTZT
1 B

1/2Z2u
∣∣∣ ≤ Cεtr(B)

(1− ε)2 ‖B‖1/22

≤ 4Cεtr(B)/‖B‖1/22 .

In fact, the same conclusion holds for all y, w ∈ F ∩Sm−1; and in particular,
for B = I, we have the following.

Corollary 42. Suppose all conditions in Lemma 40 hold. Suppose that F =
A1/2E for E as defined in Lemma 40. Let

n ≥ c′kK4 log(3em/kε)

ε2
. (M.3)

Then on event B3, where P (B3) ≥ 1−2 exp
(
−c2ε

2n 1
K4

)
, we have for all vectors

w, y ∈ F ∩ Sm−1 and ε ≤ 1/C for C is as defined in Lemma 40,∣∣yT ( 1nZTZ − I)w
∣∣ ≤ 4Cε. (M.4)
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We prove Lemmas 40 and 41 and Corollary 42 in Section O. We are now
ready to prove Theorem 26.

Proof of Theorem 26. Let

Δ := Γ̂A −A := 1
nX

TX − 1
n t̂r(B)Im −A

= ( 1nX
T
0 X0 −A) + 1

n

(
WTX0 +XT

0 W
)
+ 1

n

(
WTW − t̂r(B)Im

)
,

where recall X0 = Z1A
1/2. Notice that∣∣∣uT (Γ̂A −A)υ

∣∣∣ = ∣∣uT (XTX − t̂r(B)Im −A)υ
∣∣

≤
∣∣uT ( 1nX

T
0 X0 −A)υ

∣∣+ ∣∣uT 1
n (W

TX0 +XT
0 W )υ

∣∣+∣∣∣uT ( 1nW
TW − t̂r(B)

f Im)υ
∣∣∣

≤
∣∣∣uTA1/2 1

nZ
T
1 Z1A

1/2υ − uTAυ
∣∣∣+ ∣∣uT 1

n (W
TX0 +XT

0 W )υ
∣∣

+
∣∣uT ( 1nZ

T
2 BZ2 − τBIm)υ

∣∣+ 1
n

∣∣t̂r(B)− tr(B)
∣∣ ∣∣uTυ

∣∣
=: I + II + III + IV.

For u ∈ E ∩ Sm−1, define h(u) := A1/2u

‖A1/2u‖
2

. The conditions in (M.1) and (M.3)

hold for k.
We first bound the middle term as follows. Fix u, υ ∈ E ∩ Sm−1. Then on

event B2, for Υ = ZT
1 B

1/2Z2,∣∣uT (WTX0 +XT
0 W )υ

∣∣ =
∣∣∣uTZT

2 B
1/2Z1A

1/2υ + uTA1/2ZT
1 B

1/2Z2υ
∣∣∣

≤
∣∣uTΥTh(v)

∣∣ ∥∥∥A1/2v
∥∥∥
2
+
∣∣h(u)TΥυ

∣∣ ∥∥∥A1/2u
∥∥∥
2

≤ 2 max
w∈F∩Sm−1,υ∈E∩Sm−1

∣∣wTΥυ
∣∣ ρ1/2max(k,A)

≤ 8Cεtr(B)

(
ρmax(k,A)

‖B‖2

)1/2

.

We now use Lemma 40 to bound both I and III. We have for C as defined in
Lemma 40, on event B1 ∩ B3,∣∣uT (ZT

2 BZ2 − tr(B)Im)υ
∣∣ ≤ 4Cεtr(B).

Moreover, by Corollary 42, we have on event B3, for all u, v ∈ E ∩ Sm−1,∣∣uT ( 1nX
T
0 X0 −A)υ

∣∣ =
∣∣∣uTA1/2ZTZA1/2υ − uTAυ

∣∣∣
=

∣∣h(u)T ( 1nZTZ − I)h(υ)
∣∣ ∥∥∥A1/2u

∥∥∥
2

∥∥∥A1/2υ
∥∥∥
2

≤ 1
n maxw,y∈F∩Sm−1

∣∣wT (ZTZ − I)y
∣∣ ρmax(k,A)

≤ 4Cερmax(k,A).
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Thus we have on event B1 ∩ B2 ∩ B3 and for τB := tr(B)/n,

I + II + III ≤ 4Cε

(
ρmax(k,A) + 2τB

(
ρmax(k,A)

‖B‖2

)1/2

+ τB

)
≤ 8Cε (τB + ρmax(k,A)) .

On event B6, we have for D1 as defined in Lemma 5,

IV ≤ |τ̂B − τB | ≤ 2C0D1K
2

√
logm

mn
.

The theorem thus holds by the union bound.

Appendix N: Proof of Lemma 32

Lemma 43 is a well-known fact.

Lemma 43. Let Auw := (u ⊗ w) ⊗ A, where u,w ∈ S
m−1 for m ≥ 2. Then

‖Auw‖2 ≤ ‖A‖2 and ‖Auw‖F ≤ ‖A‖F .

Proof of Lemma 32. Let z1, . . . , zn, z
′
1, . . . , z

′
n ∈ R

m be the row vectors Z1, Z2

respectively. Notice that we can write the quadratic form as follows:

uTZ1A
1/2ZT

2 w =
∑

i,j=1,m

uiwjziA
1/2z′j

= vec
{
ZT
1

}T (
(u⊗ w)⊗A1/2

)
vec
{
ZT
2

}
=: vec

{
ZT
1

}T
A1/2

uw vec
{
ZT
2

}
,

uTZAZTw = vec
{
ZT
}T (

(u⊗ w)⊗A
)
vec
{
ZT
}

=: vec
{
ZT
}T

Auwvec
{
ZT
}

where clearly by independence of Z1, Z2,

Evec
{
ZT
1

}T (
(u⊗ w)⊗A1/2

)
vec
{
ZT
2

}
= 0, and

Evec {Z }T
(
(u⊗ u)⊗A

)
vec {Z } = tr

(
(u⊗ u)⊗A

)
= tr(A).

Thus we invoke (C.1) and Lemma 43 to show the concentration bounds on event
{
∣∣uTZ1A

1/2ZT
2 w
∣∣ > t}:

P

(∣∣∣uTZ1A
1/2ZT

2 w
∣∣∣ > t

)
≤ 2 exp

⎛⎜⎝−min

⎛⎜⎝ t2

K4
∥∥∥A1/2

uw

∥∥∥2
F

,
t

K2
∥∥∥A1/2

uw

∥∥∥
2

⎞⎟⎠
⎞⎟⎠

≤ 2 exp

(
−min

(
t2

K4tr(A)
,

t

K2
∥∥A1/2

∥∥
2

))
.
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Similarly, we have by Theorem 31 and Lemma 43,

P
(∣∣uTZAZTw − EuTZAZTw

∣∣ > t
)

≤ 2 exp

(
−cmin

(
t2

K4 ‖Auw‖2F
,

t

K2 ‖Auw‖2

))

≤ 2 exp

(
−cmin

(
t2

K4 ‖A‖2F
,

t

K2 ‖A‖2

))
.

The Lemma thus holds.

Appendix O: Proof of Lemmas 40 and 41 and Corollary 42

Throughout the following proof, we denote by r(B) = tr(B)
‖B‖2

. Let ε ≤ 1
C where C

is large enough so that cc′C2 ≥ 4, and hence the choice of C = C0/
√
c′ satisfies

our need.

Proof of Lemma 40. First we prove concentration bounds for all pairs of u, v ∈
Π′, where Π′ ⊂ S

m−1 is an ε-net of E. Let t = CK2εtr(B). We have by
Lemma 32, and the union bound,

P
(
∃u, v ∈ Π′,

∣∣uTZTBZv − EuTZTBZv
∣∣ > t

)
≤ 2 |Π′|2 exp

[
−cmin

(
t2

K4 ‖B‖2F
,

t

K2 ‖B‖2

)]

≤ 2 |Π′|2 exp
[
−cmin

(
C2,

CK2

ε

)
ε2r(B)

K4

]
≤ 2 exp

(
−c2ε

2r(B)/K4
)
,

where we use the fact that ‖B‖2F ≤ ‖B‖2 tr(B) and

|Π′| ≤
(
m

k

)
(3/ε)k ≤ exp(k log(3em/kε)),

while

cmin

(
C2,

CK2

ε

)
ε2

r(B)

K4
= cC2ε2

tr(B)

‖B‖2 K4

≥ cC2
0k log

(3em
kε

)
≥ 4k log

(3em
kε

)
.

Denote by B2 the event such that for Λ := 1
tr(B) (Z

TBZ − I),

sup
u,v∈Π′

∣∣vTΛu∣∣ ≤ Cε =: r′k,n
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holds. A standard approximation argument shows that under B2 and for ε ≤ 1/2,

sup
x,y∈Sm−1∩E

∣∣yTΛx∣∣ ≤ r′k,n
(1− ε)2

≤ 4Cε. (O.1)

The lemma is thus proved.

Proof of Lemma 41. By Lemma 32, we have for t = Cεtr(B)/ ‖B‖1/22 for C =

C0/
√
c′,

P

(∣∣∣wTZT
1 B

1/2Z2u
∣∣∣ > t

)
≤ exp

⎛⎝−cmin

⎛⎝C2 tr(B)2

‖B‖2
ε2

K4tr(B)
,
Cεtr(B)

K2 ‖B‖2

⎞⎠⎞⎠
≤ 2 exp

(
−cmin

(
C2ε2rB
K4

,
CεrB
K2

))
≤ 2 exp

(
−cmin

(
C2,

CK2

ε

)
ε2rB/K

4

)
.

Choose an ε-net Π′ ⊂ Sm−1 such that

Π′ =
⋃

|J|=k

Π′
J where Π′

J ⊂ EJ ∩ Sm−1 (O.2)

is an ε-net for EJ ∩ Sm−1 and

|Π′| ≤
(
m

k

)
(3/ε)k ≤ exp(k log(3em/kε)).

Similarly, choose ε-net Π of F ∩ Sm−1 of size at most exp(k log(3em/kε)). By
the union bound and Lemma 32, and for K2 ≥ 1,

P

(
∃w ∈ Π, u ∈ Π′ s.t.

∣∣∣wTZT
1 B

1/2Z2u
∣∣∣ ≥ Cεtr(B)/‖B‖1/22

)
≤ |Π′| |Π| 2 exp

(
−cmin

(
CK2/ε, C2

)
ε2rB/K

4
)

≤ exp (2k log(3em/kε)) 2 exp
(
−cC2ε2rB/K

4
)

≤ 2 exp
(
−c2ε

2rB/K
4
)
,

where C is large enough such that cc′C2 := C ′ > 4 and for ε ≤ 1
C ,

cmin
(
CK2/ε, C2

)
ε2

tr(B)

‖B‖2 K4
≥ C ′k log(3em/kε) ≥ 4k log(3em/kε).

Denote by Υ := ZT
1 B

1/2Z2. A standard approximation argument shows that if

sup
w∈Π,u∈Π′

∣∣wTΥu
∣∣ ≤ Cε

tr(B)

‖B‖1/22

=: rk,n,
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an event which we denote by B2, then for all u ∈ E and w ∈ F ,∣∣∣wTZT
1 B

1/2Z2u
∣∣∣ ≤ rk,n

(1− ε)2
. (O.3)

The lemma thus holds for c2 ≥ C ′/2 ≥ 2.

Proof of Corollary 42. Clearly (M.4) implies that (M.1) holds for B = I.
Clearly (M.3) holds following the analysis of Lemma 40 by setting B = I,
while replacing event B1 with B3, which denotes an event such that

sup
u,v∈Π

1
n

∣∣vT (ZTZ − I)u
∣∣ ≤ Cε.

The rest of the proof follows by replacing E with F everywhere. The corollary
thus holds.
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